

SMITHSONIAN

MISCELLANEOUS COLLECTIONS

$$
\text { VOL. } 74
$$

[^0](Publication 2821)

GITY OF WASHINGTON

PUBLISHED BY THE SMITHSONIAN INSTITUTION

さbe Eord Waftimore (press

baltimore, md., U. S. A.

ADVERTISEMENT

The present series, entitled "Smithsonian Miscellaneous Collections," is intended to embrace all the octavo publications of the Institution, except the Annual Report. Its scope is not limited, and the volumes thus far issued relate to nearly every branch of science. Among these various subjects zoology, bibliography, geology, mineralogy, anthropology, and astrophysics have predominated.

The Institution also publishes a quarto series entitled "Smithsonian Contributions to Knowledge." It consists of memoirs based on extended original investigations, which have resulted in important additions to knowledge.

CHARLES D. WALCOTT, Secretary of the Smithsonian Institution.

CONTENTS

i. Adams, Edwin P., Greenhill, Sir George, Hippisley, Col. R. L., and Moulton, F. R. Smithsonian Mathematical Formulae and Tables of Elliptic Functions. December, 1923. 314 pp. (Publ. 2672.)
2. Oberholser, Harry C. New Timaline birds from the East Indies. September 27, 1922. I3 pp. (Publ. 2674.)
3. Miller, Gerrit S., Jr. Remains of mammals from caves in the Republic of Haiti. October 16, 1922. 8 pp. (Publ. 2707.)
4. Wetmore, Alexander. Remains of birds from caves in the Republic of Haiti. October 17, 1922. 4 pp. (Publ. 2708.)
5. Explorations and Field-Work of the Smithsonian Institution in 1922. April 30, 1923. 153 pp., 145 figs. (Publ. 2711.).
6. Fewkes, J. Walter. Designs on prehistoric pottery from the Mimbres Valley, New Mexico. May 29, 1923. 47 pp., 140 figs. (Publ. 2713.)
7. Abbot, C. G., Fowle, F. E., and Aldrich, L. B. The distribution of energy in the spectra of the sun and stars. June 4, i923. 30 pp., 6 figs. (Publ. 2714.)

SMITHSONIAN MISCELLANEOUS COLLECTIONS

Volume 74, Number 1

SMITHSONIAN MATHEMATICAL FORMULAE

 ANDTABLĖS OF ELLIPTIC FUNCTIONS

Mathematical Formulae Prepared by EDWIN P. ADAMS, Ph.D.
PROFESSOR OF PHYSICS, PRINCETON UNIVERSITY

Tables of Elliptic Functions Prepared under the Direction of Sir George Greenhill, Bart.

BY
COL. R. L.' HIPPISLEY, C.B.

Publication 2672
2

ADVERTISEMENT

The Smithsonian Institution has maintained for many years a group of publications in the nature of handy books of information on geographical, meteorological, physical, and mathematical subjects. These include the Smithsonian Geographical Tables (third edition, reprint, 1918); the Smithsonian Meteorological Tables (fourth revised edition, 1918); the Smithsonian Physical Tables (seventh revised edition, 1921); and the Smithsonian Mathematical Tables: Hyperbolic Functions (second reprint, 1921).

The present volume comprises the most important formulae of many branches of applied mathematics, an illustrated discussion of the methods of mechanical integration, and tables of elliptic functions. The volume has been compiled by Dr. E. P. Adams, of Princeton University. Prof. F. R. Moulton, of the University of Chicago, contributed the section on numerical solution of differential equations. The tables of elliptic functions were prepared by Col. R. L. Hippisley, C. B., under the direction of Sir George Greenhill, Bart., who has contributed the introduction to these tables.

The compiler, Dr. Adams, and the Smithsonian Institution are indebted to many physicists and mathematicians, especially to Dr. H. L. Curtis and colleagues of the Bureau of Standards, for advice, criticism, and coöperation in the preparation of this volume.

Charles D. Walcott, Secretary of the Smithsonian Institution.
May, 1922.

PREFACE

The original object of this collection of mathematical formulae was to bring together, compactly, some of the more useful results of mathematical analysis for the benefit of those who regard mathematics as a tool, and not as an end in itself. There are many such results that are difficult to remember, for one who is not constantly using them, and to find them one is obliged to look through a number of books which may not immediately be accessible.

A collection of formulae, to meet the object of the present one, must be largely a matter of individual selection; for this reason this volume is issued in an interleaved edition, so that additions, meeting individual needs, may be made, and be readily available for reference.

It was not originally intended to include any tables of functions in this volume, but merely to give references to such tables. An exception was made, however, in favor of the tables of elliptic functions, calculated, on Sir George Greenhill's new plan, by Colonel Hippisley, which were fortunately secured for this volume, inasmuch as these tables are not otherwise available.

In order to keep the volume within reasonable bounds, no tables of indefinite and definite integrals have been included. For a brief collection, that of the late Professor B. O. Peirce can hardly be improved upon; and the elaborate collection of definite integrals by Bierens de Haan show how inadequate any brief tables of definite integrals would be. A short list of useful tables of this kind, as well as of other volumes, having an object similar to this one, is appended.

Should the plan of this collection meet with favor, it is hoped that suggestions for improving it and making it more generally useful may be received.

To Professor Moulton, for contributing the chapter on the Numerical Integration of Differential Equations, and to Sir George Greenhill, for his Introduction to the Tables of Elliptic Functions, I wish to express my gratitude. And I wish also to record my obligations to the Secretary of the Smithsonian Institution, and to Dr. C. G. Abbot, Assistant Secretary of the Institution, for the way in which they have met all my suggestions with regard to this volume.
E. P. Adams

Princeton, New Jersey

COLLECTIONS OF MATHEMATICAL FORMULAE, ETC.

B. O. Peirce: A Short Table of Integrals, Boston, 1899.
G. Petit Bois: Tables d'Integrales Indefinies, Paris, 1906.
T. J. I'A. Bromwich: Elementary Integrals, Cambridge, igir.
D. Bierens de Haan: Nouvelles Tables d'Integrales Definies, Leiden, 1867.
E. Jahnke and F. Emde: Funktionentafeln mit Formeln und Kurven, Leipzig, 1909.
G. S. Carr: A Synopsis of Elementary Results in Pure and Applied Mathematics, London, 1880.
W. Laska: Sammlung von Formeln der reinen und angewandten Mathematik, Braunschweig, 1888-1894.
W. Ligowski: Taschenbuch der Mathematik, Berlin, 1893.
O. Тн. Bürklen: Formelsammlung und Repetitorium der Mathematik, Berlin, 1922.
F. Auerbach: Taschenbuch fur Mathematiker und Physiker, I. Jahrgang, 1909. Leipzig, 1909.
-

CONTENTS

PAGE
Symbols viii
I. Algebra I
II. Geometry 29
III. Trigonometry 6I
IV. Vector Analysis 9I
V. Curvilinear Coördinates 99
VI. Infinite Series. 109
VII. Special Applications of Analysis 145
VIII. Differential Equations 162
IX. Differential Equations (Continued) I9I
X. Numerical Solution of Differential Equations 220
XI. Elliptic Functions 243
Introduction by Sir George Greenhill, F.R.S. 245
Tables of Elliptic Functions, by Col. R. L. Hippisley 259
Index 3 II

SYMBOLS

\log logarithm. Whenever used the Naperian iogarithm is understood. To find the common logarithm to base io:

$$
\begin{aligned}
\log _{10} a & =0.43429 \ldots \log a . \\
\log a & =2.30259 \ldots \log _{10} a .
\end{aligned}
$$

! Factorial. n ! where n is an integer denotes $\mathrm{I} \cdot 2 \cdot 3 \cdot 4 \ldots \ldots$. Equivalent notation \llcorner
$\neq \quad$ Does not equal.
$>\quad$ Greater than.
$<\quad$ Less than.
$\geqslant \quad$ Greater than, or equal to.
$\leqslant \quad$ Less than, or equal to.
$\binom{n}{k} \quad$ Binomial coefficient. See $\mathbf{1 . 5 1}$.
$\rightarrow \quad$ Approaches.
$\left|a_{i k}\right|$ Determinant where $a_{i k}$ is the element in the i th row and k th column, $\frac{\partial\left(u_{1}, u_{2}, \ldots .\right)}{\partial\left(x_{1}, x_{2} . \ldots\right)}$ Functional determinant. See 1.37.
$|a|$ Absolute value of a. If a is a real quantity its numerical value, without regard to sign. If a is a complex quantity, $a=\alpha+i \beta$, $|a|=$ modulus of $a=+\sqrt{\alpha^{2}+\beta^{2}}$.
$i \quad$ The imaginary $=+\sqrt{-\mathrm{I}}$.
$\sum \quad$ Sign of summation, i.e., $\sum_{k=1}^{k=n} a_{k}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}$.
\prod Product, i.e., $\prod_{k=1}^{k=n}(\mathrm{I}+k x)=(\mathrm{I}+x)(\mathrm{I}+2 x)(\mathrm{I}+3 x) \ldots(\mathrm{I}+n x)$.

I. ALGEBRA

1.00 Algebraic Identities.

1. $a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^{2}+\ldots+a b^{n-2}+b^{n-1}\right)$.
2. $a^{n} \pm b^{n}=(a+b)\left(a^{n-1}-a^{n-2} b+a^{n-3} b^{2}-\ldots \ldots \mp a b^{n-2} \pm b^{n-1}\right)$.
n odd: upper sign.
n even: lower sign.
3. $\left(x+a_{1}\right)\left(x+a_{2}\right) \cdots\left(x+a_{n}\right)=x^{n}+P_{1} x^{n-1}+P_{2} x^{n-2}+\ldots$.

$$
+P_{n-1} x+P_{n}
$$

$$
\begin{aligned}
& P_{1}=a_{1}+a_{2}+\ldots \ldots+a_{n} \\
& P_{k}=\text { sum of all the products of the } a \text { 's taken } k \text { at a time. } \\
& P_{n}=a_{1} a_{2} a_{3} \ldots a_{n} .
\end{aligned}
$$

4. $\left(a^{2}+b^{2}\right)\left(\alpha^{2}+\beta^{2}\right)=(a \alpha \mp b \beta)^{2}+(a \beta \pm b \alpha)^{2}$.
5. $\left(a^{2}-b^{2}\right)\left(\alpha^{2}-\beta^{2}\right)=(a \alpha \pm b \beta)^{2}-(a \beta \pm b \alpha)^{2}$.
6. $\left(a^{2}+b^{2}+c^{2}\right)\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)=(a \alpha+b \beta+c \gamma)^{2}+(b \gamma-\beta c)^{2}+(c \alpha-\gamma a)^{2}$

$$
+(a \beta-\alpha b)^{2}
$$

7. $\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}\right)=(a \alpha+b \beta+c \gamma+d \delta)^{2}$

$$
+(a \beta-b \alpha+c \delta-d \gamma)^{2}+(a \gamma-b \delta-c \alpha+d \beta)^{2}+(a \delta+b \gamma-c \beta-d \alpha)^{2}
$$

8. $(a c-b d)^{2}+(a d+b c)^{2}=(a c+b d)^{2}+(a d-b c)^{2}$.
9. $(a+b)(b+c)(c+a)=(a+b+c)(a b+b c+c a)-a b c$.
10. $(a+b)(b+c)(c+a)=a^{2}(b+c)+b^{2}(c+a)+c^{2}(a+b)+2 a b c$.
II. $(a+b)(b+c)(c+a)=b c(b+c)+c a(c+a)+a b(a+b)+2 a b c$.
11. $3(a+b)(b+c)(c+a)=(a+b+c)^{3}-\left(a^{3}+b^{3}+c^{3}\right)$.
12. $(b-a)(c-a)(c-b)=a^{2}(c-b)+b^{2}(a-c)+c^{2}(b-a)$.
13. $(b-a)(c-a)(c-b)=a\left(b^{2}-c^{2}\right)+b\left(c^{2}-a^{2}\right)+c\left(a^{2}-b^{2}\right)$.
14. $(b-a)(c-a)(c-b)=b c(c-b)+c a(a-c)+a b(b-a)$.
15. $(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=2[(a-b)(a-c)+(b-a)(b-c)$

$$
+(c-a)(c-b)]
$$

17. $a^{3}\left(b^{2}-c^{2}\right)+b^{3}\left(c^{2}-a^{2}\right)+c^{3}\left(a^{2}-b^{2}\right)=(a-b)(b-c)(a-c)(a b+b c+c a)$.
18. $(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)=b c(b+c)+c a(c+a)+a b(a+b)+a^{3}+b^{3}+c^{3}$.
19. $(a+b+c)(b c+c a+a b)=a^{2}(b+c)+b^{2}(c+a)+c^{2}(a+b)+3 a b c$.
20. $(b+c-a)(c+a-b)(a+b-c)=a^{2}(b+c)+b^{2}(c+a)+c^{2}(a+b)$ $-\left(a^{3}+b^{3}+c^{3}+2 a b c\right)$.
21. $(a+b+c)(-a+b+c)(a-b+c)(a+b-c)=2\left(b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}\right)$

$$
-\left(a^{4}+b^{4}+c^{4}\right)
$$

22. $(a+b+c+d)^{2}+(a+b-c-d)^{2}+(a+c-b-d)^{2}+(a+d-b-c)^{2}$ $=4\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$.

$$
\text { If } \begin{aligned}
A & =a \alpha+b \gamma+c \beta \\
B & =a \beta+b \alpha+c \gamma \\
C & =a \gamma+b \beta+c \alpha
\end{aligned}
$$

23. $(a+b+c)(\alpha+\beta+\gamma)=A+B+C$.
24. $\left[a^{2}+b^{2}+c^{2}-(a b+b c+c a)\right]\left[\alpha^{2}+\beta^{2}+\gamma^{2}-(\alpha \beta+\beta \gamma+\gamma a)\right]$
$=A^{2}+B^{2}+C^{2}-(A B+B C+C A)$.
25. $\left(a^{3}+b^{3}+c^{3}-3 a b c\right)\left(a^{3}+\beta^{3}+\gamma^{3}-3 a \beta \gamma\right)=A^{3}+B^{3}+C^{3}-3 A B C$.

ALGEBRAIC EQUATIONS

1.200 The expression

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots \ldots+a_{n-1} x+a_{n}
$$

is an integral rational function, or a polynomial, of the nth degree in x.
1.201 The equation $f(x)=0$ has n roots which may be real or complex, distinct or repeated.
1.202 If the roots of the equation $f(x)=0$ are $c_{1}, c_{2}, \ldots, c_{n}$,

$$
f(x)=a_{0}\left(x-c_{1}\right)\left(x-c_{2}\right) \ldots \ldots\left(x-c_{n}\right)
$$

1.203 Symmetric functions of the roots are expressions giving certain combinations of the roots in terms of the coefficients. Among the more important are:

$$
\begin{aligned}
& c_{1}+c_{2}+\ldots \ldots+c_{n}=-\frac{a_{1}}{a_{0}} \\
& c_{1} c_{2}+c_{1} c_{3}+\ldots+c_{2} c_{3}+c_{2} c_{4}+\ldots \ldots+c_{n-1} c_{n}=\frac{a_{2}}{a_{0}} \\
& c_{1} c_{2} c_{3}+c_{1} c_{2} c_{4}+\ldots+c_{1} c_{3} c_{4}+\ldots \ldots+c_{n-2} c_{n-1} c_{n}=-\frac{a_{3}}{a_{0}}
\end{aligned}
$$

$$
c_{1} c_{2} c_{3} \ldots . c_{n}=(-\mathrm{I})^{n} \frac{a_{n}}{a_{0}}
$$

1.204 Newton's Theorem. If s_{k} denotes the sum of the k th powers of all the roots of $f(x)=0$,

$$
\begin{aligned}
& s_{k}=c_{1}^{k}+c_{2}^{k}+\ldots{ }^{k}+\ldots .+c_{n}^{k} \\
& \mathrm{r} a_{1}+s_{1} a_{0}=0 \\
& 2 a_{2}+s_{1} a_{1}+s_{2} a_{0}=\circ \\
& 3 a_{3}+s_{1} a_{2}+s_{2} a_{1}+s_{3} a_{0}=0 \\
& 4 a_{4}+s_{1} a_{3}+s_{2} a_{2}+s_{3} a_{1}+s_{4} a_{0}=0 \\
& \cdots \cdots \cdots
\end{aligned}
$$

or:

$$
\begin{aligned}
& s_{1}=-\frac{a_{1}}{a_{0}} \\
& s_{2}=-\frac{2 a_{2}}{a_{0}}+\frac{a_{1}^{2}}{a_{0}{ }^{2}} \\
& s_{3}=-\frac{3 a_{3}}{a_{0}}+\frac{3 a_{1} a_{2}}{a_{0}{ }^{2}}-\frac{a_{1}{ }^{3}}{a_{0}{ }^{3}} \\
& s_{4}=-\frac{4 a_{4}}{a_{0}}+\frac{4 a_{1} a_{3}}{a_{0}{ }^{2}}-\frac{4 a_{1}{ }^{2} a_{2}}{a_{0}{ }^{3}}+\frac{2 a_{2}{ }^{2}}{a_{0}{ }^{2}}+\frac{a_{1}^{4}}{a_{0}{ }^{4}}
\end{aligned}
$$

-•••••••
1.205 If S_{k} denotes the sum of the reciprocals of the k th powers of all the roots of the equation $f(x)=0$:

$$
\begin{aligned}
& S_{k}=\frac{\mathrm{I}}{c_{1}{ }^{k}}+\frac{\mathrm{I}}{c_{2}{ }^{k}}+\cdots \cdots+\frac{\mathrm{I}}{c_{n}{ }^{k}} \\
& \mathrm{I} a_{n-1}+S_{1} a_{n}=0 \\
& 2 a_{n-2}+S_{1} a_{n-1}+S_{2} a_{n}=0 \\
& 3 a_{n-3}+S_{1} a_{n-2}+S_{2} a_{n-1}+S_{3} a_{n}=0 \\
& \cdots \cdots \\
& \cdots \cdots \\
& S_{1}=-\frac{a_{n-1}}{a_{n}} \\
& S_{2}=-\frac{2 a_{n-2}}{a_{n}}+\frac{a^{2}{ }_{n-1}}{a_{n}{ }^{2}} \\
& S_{3}=-\frac{3 a_{n-3}}{a_{n}}+\frac{3 a_{n-1} a_{n-2}}{a_{n}{ }^{2}}-\frac{a^{3}{ }_{n-1}}{a_{n}^{3}}
\end{aligned}
$$

1.220 If $f(x)$ is divided by $x-h$ the result is

$$
f(x)=(x-h) Q+R
$$

Q is the quotient and R the remainder. This operation may be readily performed as follows:

Write in line the values of $a_{0}, a_{1}, \ldots, a_{n}$. If any power of x is missing write \circ in the corresponding place. Multiply a_{0} by h and place the product in the second line under a_{1}; add to a_{1} and place the sum in the third line under a_{1}. Multiply this sum by h and place the product in the second line under a_{2}; add to a_{2} and place the sum in the third line under a_{2}. Continue this series of operations until the third line is full. The last term in the third line is the remainder, R. The first term in the third line, which is a_{0}, is the coefficient of x^{n-1} in the quotient, Q; the second term is the coefficient of x^{n-2}, and so on.
1.221 It follows from 1.220 that $f(h)=R$. This gives a convenient way of evaluating $f(x)$ for $x=h$.
1.222 To express $f(x)$ in the form:

$$
f(x)=A_{0}(x-h)^{n}+A_{1}(x-h)^{n-1}+\ldots+A_{n-1}(x-h)+A_{n} .
$$

By 1.220 form $f(h)=A_{n}$. Repeat this process with each quotient, and the last term of each line of sums will be a succeeding value of the series of coefficients $A_{n}, A_{n-1}, \ldots, ., A_{0}$.

Example:

Thus:

$$
\begin{aligned}
Q & =3 x^{4}+8 x^{3}+16 x^{2}+24 x+50 \\
R & =f(2)=96 \\
f(x) & =3(x-2)^{5}+32(x-2)^{4}+136(x-2)^{3}+280(x-2)^{2}+274(x-2)+96
\end{aligned}
$$

TRANSFORMATION OF EQUATIONS

1.230 To transform the equation $f(x)=0$ into one whose roots all have their signs changed: Substitute $-x$ for x.
1.231 To transform the equation $f(x)=0$ into one whose roots are all multiplied by a constant, m : Substitute x / m for x.
1.232 To transform the equation $f(x)=0$ into one whose roots are the reciprocals of the roots of the given equation: Substitute I / x for x and multiply by x^{n}.
1.233 To transform the equation $f(x)=0$ into one whose roots are all increased or diminished by a constant, h : Substitute $x \pm h$ for x in the given equation,
the upper sign being used if the roots are to be diminished and the lower sign if they are to be increased. The resulting equation will be:

$$
f(\pm h)+x f^{\prime}(\pm h)+\frac{x^{2}}{2!} f^{\prime \prime}(\pm h)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(\pm h)+\ldots=0
$$

where $f^{\prime}(x)$ is the first derivative of $f(x), f^{\prime \prime}(x)$, the second derivative, etc. The resulting equation may also be written:

$$
A_{0} x^{n}+A_{1} x^{n-1}+A_{2} x^{n-2}+\ldots \ldots+A_{n-1} x+A_{n}=0
$$

where the coefficients may be found by the method of $\mathbf{1 . 2 2 2}$ if the roots are to be diminished. To increase the roots by h change the sign of h.

MULTIPLE ROOTS

1.240 If c is a multiple root of $f(x)=0$, of order m, i.e.. repeated m times, then

$$
f(x)=(x-c)^{m} \varrho ; \quad R=0
$$

c is also a multiple root of order m - I of the first derived equation, $f^{\prime}(x)=0$; of order $m-2$ of the second derived equation, $f^{\prime \prime}(x)=0$, and so on.
1.241 The equation $f(x)=0$ will have no multiple roots if $f(x)$ and $f^{\prime}(x)$ have no common divisor. If $F(x)$ is the greatest common divisor of $f(x)$ and $f^{\prime}(x)$, $f(x) / F(x)=f_{1}(x)$, and $f_{1}(x)$ will have no multiple roots.
1.250 An equation of odd degree, n, has at least one real root whose sign is opposite to that of a_{n}.
1.251 An equation of even degree, n, has one positive and one negative real root if a_{n} is negative.
1.252 The equation $f(x)=0$ has as many real roots between $x=x_{1}$ and $x=x_{2}$ as there are changes of sign in $f(x)$ between x_{1} and x_{2}.
1.253 Descartes' Rule of Signs: No equation can have more positive roots than it has changes of sign from + to - and from - to + , in the terms of $f(x)$. No equation can have more negative roots than there are changes of sign in $f(-x)$.
1.254 If $f(x)=0$ is put in the form

$$
A_{0}(x-h)^{n}+A_{1}(x-h)^{n-1}+\ldots \ldots+A_{n}=0
$$

by 1.222, and $A_{0}, A_{1}, \ldots, A_{n}$ are all positive, h is an upper limit of the positive roots.

If $f(-x)=0$ is put in a similar form, and the coefficients are all positive, h is a lower limit of the negative roots.

If $f(\mathrm{I} / x)=0$ is put in a similar form, and the coefficients are all positive, h is a lower limit of the positive roots. And with $f(-1 / x)=0, h$ is an upper limit of the negative roots.
1.255 Sturm's Theorem. Form the functions:

$$
\begin{aligned}
& f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n} \\
& f_{1}(x)=f^{\prime}(x)=n a_{0} x^{n-1}+(n-1) a_{1} x^{n-2}+\ldots+a_{n-1} \\
& f_{2}(x)=-R_{1} \text { in } f(x)=Q_{1} f_{1}(x)+R_{1} \\
& f_{3}(x)=-R_{2} \text { in } f_{1}(x)=Q_{2} f_{2}(x)+R_{2}
\end{aligned}
$$

The number of real roots of $f(x)=0$ between $x=x_{1}$ and $x=x_{2}$ is equal to the number of changes of sign in the series $f(x), f_{1}(x), f_{2}(x), \ldots$ when x_{1} is substituted for x minus the number of changes of sign in the same series when x_{2} is substituted for x. In forming the functions f_{1}, f_{2}, \ldots numerical factors may be introduced or suppressed in order to remove fractional coefficients.

Example:

$$
\begin{aligned}
f(x) & =x^{4}-2 x^{3}-3 x^{2}+10 x-4 \\
f_{1}(x) & =2 x^{3}-3 x^{2}-3 x+5 \\
f_{2}(x) & =9 x^{2}-27 x+11 \\
f_{3}(x) & =-8 x-3 \\
f_{4}(x) & =-1433
\end{aligned}
$$

	f	f_{1}	f_{2}	f_{3}	f_{4}	
$x=-\infty$	+	-	+	+	-	3 changes
$x=0$	-	+	+	-	-	2 changes
$x=+\infty$	+	+	+	-	-	1 change

Therefore there is one positive and one negative real root.
If it can be seen that all the roots of any one of Sturm's functions are imaginary it is unnecessary to calculate any more of them after that one.

If there are any multiple roots of 'the equation $f(x)=0$ the series of Sturm's functions will terminate with $f_{r}, r<n . f_{r}(x)$ is the highest common factor of f and f_{1}. In this case the number of real roots of $f(x)=0$ lying between $x=x_{1}$ and $x=x_{2}$, each multiple root counting only once, will be the difference between the number of changes of sign in the series $f, f_{1}, f_{2}, \ldots, f_{r}$ when x_{1} and x_{2} are successively substituted in them.
1.256 Routh's rule for finding the number of roots whose real parts are positive. (Rigid Dynamics, Part II, Art. 297.)

Arrange the coefficients in two rows:

x^{n}	a_{0}	a_{2}	a_{4}
x^{n-1}	a_{1}	a_{3}	a_{5}

Form a third row by cross-multiplication:
$x^{n-2} \quad \frac{a_{1} a_{2}-a_{0} a_{3}}{a_{1}} \quad \frac{a_{1} a_{4}-a_{0} a_{5}}{a_{1}} \quad \frac{a_{1} a_{6}-a_{0} a_{7}}{a_{1}}$
Form a fourth row by operating on these last two rows by a similar crossmultiplication. Continue this operation until there are no terms left. The number of variations of sign in the first column gives the number of roots whose real parts are positive.

If there are any equal roots some of the subsidiary functions will vanish. In place of one which vanishes write the differential coefficient of the last one which does not vanish and proceed in the same way. At the left of each row is written the power of x corresponding to the first subsidiary function in that row. This power diminishes by 2 for each succeeding coefficient in the row.

Any row may be multiplied or divided by any positive quantity in order to remove fractions.

DETERMINATION OF THE ROOTS OF AN EQUATION

1.260 Newton's Method. If a root of the equation $f(x)=0$ is known to lie between x_{1} and x_{2} its value can be found to any desired degree of approximation by Newton's method. This method can be applied to transcendental equations as well as to algebraic equations.

If b is an approximate value of a root,

$$
\begin{aligned}
& b-\frac{f(b)}{f^{\prime}(b)}=c \text { is a second approximation, } \\
& c-\frac{f(c)}{f^{\prime}(c)}=d \text { is a third approximation. }
\end{aligned}
$$

This process may be repeated indefinitely.
1.261 Horner's Method for approximating to the real roots of $f(x)=0$.

Let p_{1} be the first approximation, such that $p_{1}+\mathrm{I}>c>p_{1}$, where c is the root sought. The equation can always be transformed into one in which this condition holds by multiplying or dividing the roots by some power of io by 1.231 . Diminish the roots by p_{1} by 1.233 . In the transformed equation

$$
A_{0}\left(x-p_{1}\right)^{n}+A_{1}\left(x-p_{1}\right)^{n-1}+\ldots+A_{n-1}\left(x-p_{1}\right)+A_{n}=0
$$

put

$$
\frac{p_{2}}{\mathrm{IO}}=\frac{A_{n}}{A_{n-1}}
$$

and diminish the roots by $p_{2} / 10$, yielding a second transformed equation

$$
B_{0}\left(x-p_{1}-\frac{p_{2}}{10}\right)^{n}+B_{1}\left(x-p_{1}-\frac{p_{2}}{10}\right)^{n-1}+\ldots+B_{n}=0 .
$$

If B_{n} and B_{n-1} are of the same sign p_{2} was taken too large and must be diminished. Then take

$$
\frac{p_{3}}{100}=\frac{B_{n}}{B_{n-1}}
$$

and continue the operation. The required root will be:

$$
c=p_{1}+\frac{p_{2}}{10}+\frac{p_{3}}{100}+\ldots .
$$

1.262 Graeffe's Method. This method determines approximate values of all the roots of a numerical equation, complex as well as real. Write the equation of the nth degree

$$
f(x)=a_{0} x^{n}-a_{1} x^{n-1}+a_{2} x^{n-2}-\ldots \pm a_{n}=0 .
$$

The product

$$
f(x) \cdot f(-x)=A_{0} x^{2 n}-A_{1} x^{2 n-2}+A_{2} x^{2 n-4}-\ldots \pm A_{n}=0
$$

contains only even powers of x. It is an equation of the nth degree in x^{2}. The coefficients are determined by

$$
\begin{aligned}
& A_{0}=a_{0}^{2} \\
& A_{1}=a_{1}^{2}-2 a_{0} a_{2} \\
& A_{2}=a_{2}^{2}-2 a_{1} a_{3}+2 a_{0} a_{4} \\
& A_{3}=a_{3}^{2}-2 a_{2} a_{4}+2 a_{1} a_{5}-2 a_{0} a_{6} \\
& A_{4}=a_{4}^{2}-2 a_{3} a_{5}+2 a_{2} a_{6}-2 a_{1} a_{7}+2 a_{0} a_{8}
\end{aligned}
$$

The roots of the equation

$$
A_{0} y^{n}-A_{1} y^{n-1}+A_{2} y^{n-2}-\ldots \pm A_{n}=0
$$

are the squares of the roots of the given equation. Continuing this process we get an equation

$$
R_{0} u^{n}-R_{1} u^{n-1}+R_{2} u^{n-2}-\ldots \pm R_{n}=0
$$

whose roots are the 2^{r} th powers of the roots of the given equation. Put $\lambda=2^{r}$. Let the roots of the given equation be $c_{1}, c_{2}, \ldots, c_{n}$. Suppose first that

$$
c_{1}>c_{2}>c_{3}>\ldots \ldots c_{n}
$$

Then for large values of λ,

$$
c_{1}^{\lambda}=\frac{R_{1}}{R_{0}}, \quad c_{2}^{\lambda}=\frac{R_{2}}{R_{1}}, \quad \ldots ., \quad c_{n}{ }^{\lambda}=\frac{R_{n}}{R_{n-1}} .
$$

If the roots are real they may be determined by extracting the λ th roots of these quantities. Whether they are \pm is determined by taking the sign which approximately satisfies the equation $f(x)=0$.

Suppose next that complex roots enter so that there are equalities among the absolute values of the roots. Suppose that

$$
\begin{aligned}
\left|c_{1}\right| \geqslant\left|c_{2}\right| \geqslant\left|c_{3}\right| \geqslant \ldots \geqslant\left|c_{p}\right| ; \\
\left|c_{p+1}\right| \geqslant\left|c_{p+2}\right| \geqslant \ldots \geqslant\left|c_{n}\right|
\end{aligned}
$$

Then if λ is large enough so that $c_{p}{ }^{\lambda}$ is large compared to $c_{p+1}{ }^{\lambda}, c_{1}{ }^{\lambda}, c_{2}{ }^{\lambda}, \ldots$. $c_{p}{ }^{\lambda}$ approximately satisfy the equation:

$$
R_{0} u^{p}-R_{1} u^{p-1}+R_{2} u^{p-2}-\ldots \pm R_{p}=0
$$

and $c_{p+1}{ }^{\lambda}, c_{p+2}{ }^{\lambda}, \ldots, c_{n}{ }^{\lambda}$ approximately satisfy the equation:

$$
R_{p} u^{n-p}-R_{p+1} u^{n-p-1}+R_{p+2} u^{n-p-2}-\ldots \pm R_{n}=0 .
$$

Therefore when λ is large enough the given equation breaks down into a number of simpler equations. This stage is shown in the process of deriving the successive equations when certain of the coefficients are obtained from those of the preceding equation simply by squaring.

References: Encyklopadie der Math. Wiss. I, i, 3 a (Runge). Bairstow : Applied Aerodynamics, pp. 553-560; the solution of a numerical equation of the 8 th degree is given by Graeffe's Method.
1.270 Quadratic Equations.

$$
x^{2}+2 a x+b=0 .
$$

The roots are:

$$
\begin{aligned}
x_{1} & =-a+\sqrt{a^{2}-b} \\
x_{2} & =-a-\sqrt{a^{2}-b} \\
x_{1}+x_{2} & =-2 a \\
x_{1} x_{2} & =b .
\end{aligned}
$$

If
$a^{2}>b$ roots are real, $a^{2}<b$ roots are complex, $a^{2}=b$ roots are equal.
1.271 Cubic equations.
(I) $x^{3}+a x^{2}+b x+c=0$.

Substitute
(2) $x=y-\frac{a}{3}$
(3) $y^{3}-3 p y-2 q=0$
where

$$
\begin{aligned}
& 3 p=\frac{a^{2}}{3}-b \\
& 2 q=\frac{a b}{3}-\frac{2}{27} a^{3}-c .
\end{aligned}
$$

Roots of (3):
If $p>0, q>0, q^{2}>p^{3}$

$$
\cosh \phi=\frac{q}{\sqrt{\overline{p^{3}}}}
$$

$$
\begin{aligned}
& y_{1}=2 \sqrt{p} \cosh \frac{\phi}{3} \\
& y_{2}=-\frac{y_{1}}{2}+i \sqrt{3 p} \sinh \frac{\phi}{3} \\
& y_{3}=-\frac{y_{1}}{2}-i \sqrt{3 p} \sinh \frac{\phi}{3}
\end{aligned}
$$

If $p>0, q<0, q^{2}>p^{3}$,

$$
\begin{aligned}
\cosh \phi & =\frac{-q}{\sqrt{p^{3}}} \\
y_{1} & =-2 \sqrt{p} \cosh \frac{\phi}{3} \\
y_{2} & =-\frac{y_{1}}{2}+i \sqrt{3 p} \sinh \frac{\phi}{3} \\
y_{3} & =-\frac{y_{1}}{2}-i \sqrt{3 p} \sinh \frac{\phi}{3}
\end{aligned}
$$

If $p<0$

$$
\begin{aligned}
\sinh \phi & =\frac{q}{\sqrt{-p^{3}}} \\
y_{1} & =2 \sqrt{-p} \sinh \frac{\phi}{3} \\
y_{2} & =-\frac{y_{1}}{2}+i \sqrt{-3 p} \cosh \frac{\phi}{3} \\
y_{3} & =-\frac{y_{1}}{2}-i \sqrt{-3 p} \cosh \frac{\phi}{3}
\end{aligned}
$$

If $p>0, q^{2}<p^{3}$,

$$
\begin{aligned}
\cos \phi & =\frac{q}{\sqrt{p^{3}}} \\
y_{1} & =2 \sqrt{p} \cos \frac{\phi}{3} \\
y_{2} & =-\frac{y_{1}}{2}+\sqrt{3 p} \sin \frac{\phi}{3} \\
y_{3} & =-\frac{y_{1}}{2}-\sqrt{3 p} \sin \frac{\phi}{3}
\end{aligned}
$$

1.272 Biquadratic equations.

$$
a_{0} x^{4}+a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4}=0
$$

Substitute

$$
\begin{gathered}
x=y-\frac{a_{1}}{a_{0}} \\
y^{4}+\frac{6}{a_{0}^{2}} H y^{2}+\frac{4}{a_{0}^{3}} G y+\frac{\mathbf{I}}{a_{0}{ }^{4}} F=0
\end{gathered}
$$

$$
\begin{aligned}
H & =a_{0} a_{2}-a_{1}{ }^{2} \\
G & =a_{0}{ }^{2} a_{3}-3 a_{0} a_{1} a_{2}+2 a_{1}{ }^{3} \\
F & =a_{0}{ }^{3} a_{4}-4 a_{0}{ }^{2} a_{1} a_{3}+6 a_{0} a_{1}{ }^{2} a_{2}-3 a_{1}{ }^{4} \\
I & =a_{0} a_{4}-4 a_{1} a_{3}+3 a_{2}{ }^{2} \\
F & =a_{0}{ }^{2} I-3 H^{2} \\
J & =a_{0} a_{2} a_{4}+2 a_{1} a_{2} a_{3}-a_{0} a_{3}{ }^{2}-a_{1}{ }^{2} a_{4}-a_{2}{ }^{3} \\
\triangle & =I^{3}-27 J^{2}=\text { the discriminant } \\
G^{2} & +4 H^{3}=a_{0}{ }^{2}\left(H I-a_{0} J\right) .
\end{aligned}
$$

Nature of the roots of the biquadratic:
$\Delta=0$ Equal roots are present
Two roots only equal: I and J are not both zero
Three roots are equal: $I=J=0$
Two distinct pairs of equal roots: $G=0 ; \quad a_{0}{ }^{2} I-{ }_{1} 2 H^{2}=0$
Four roots equal: $H=I=J=0$.
$\Delta<0$ Two real and two complex roots
$\Delta>0$ Roots are either all real or all complex:
$H<0$ and $a_{0}{ }^{2} I-\mathrm{I} 2 H^{2}<0$ Roots all real $H>0$ and $a_{0}{ }^{2} I-12 H^{2}>0$ Roots all complex.

DETERMINANTS

1.300 A determinant of the nth order, with n^{2} elements, is written:

1.301 A determinant is not changed in value by writing rows for columns and columns for rows.
1.302 If two columns or two rows of a determinant are interchanged the resulting determinant is unchanged in value but is of the opposite sign.
1.303 A determinant vanishes if it has two equal columns or two equal rows.
1.304 If each element of a row or a column is multiplied by the same factor the determinant itself is multiplied by that factor.
1.305 A determinant is not changed in value if to each element of a row or column is added the corresponding element of another row or column multiplied by a common factor.
1.306 If each element of the l th row or column consists of the sum of two or more terms the determinant splits up into the sum of two or more determinants having for elements of the l th row or column the separate terms of the l th row or column of the given determinant.
1.307 If corresponding elements of two rows or columns of a determinant have a constant ratio the determinant vanishes.
1.308 If the ratio of the differences of corresponding elements in the p th and q th rows or columns to the differences of corresponding elements in the r th and sth rows or columns be constant the determinant vanishes.
1.309 If p rows or columns of a determinant whose elements are rational integral functions of x become equal or proportional when $x=h$, the determinant is divisible by $(x-h)^{p-1}$.

MULTIPLICATION OF DETERMINANTS

1.320 Two determinants of equal order may be multiplied together by the scheme:

$$
\begin{gathered}
\left|a_{i j}\right| \times\left|b_{i j}\right|=\left|c_{i j}\right| \\
c_{i j}=a_{i 1} b_{j 1}+a_{i 2} b_{j 2}+\ldots+a_{i n} b_{j n}
\end{gathered}
$$

where
1.321 If the two determinants to be multiplied are of unequal order the one of lower order can be raised to one of equal order by bordering it; i.e.:
1.322 The product of two determinants may be written:

DIFFERENTIATION OF DETERMINANTS

1.330 If the elements of a determinant, Δ, are functions of a variable, t :

$$
\begin{aligned}
& +\ldots+\left|\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & \ldots & a_{1 n}^{\prime} \\
a_{21} & a_{22} & \cdots & \cdots & a_{2 n}^{\prime} \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right|
\end{aligned}
$$

where the accents denote differentiation by t.

EXPANSION OF DETERMINANTS

1.340 The complete expansion of a determinant of the nth order contains n ! terms. Each of these terms contains one element from each row and one element from each column. Any term may be obtained from the leading term:

$$
a_{11} a_{22} a_{33} \ldots \ldots . . . a_{n n}
$$

by keeping the first suffixes unchanged and permuting the second suffixes among $\mathbf{I}, 2,3, \ldots ., n$. The sign of any term is determined by the number of inversions from the second suffixes of the leading term, being positive if there is an even number of inversions and negative if there is an odd number of inversions.
1.341 The coefficient of $a_{i j}$ when the determinant Δ is fully expanded is:

$$
\frac{\partial \Delta}{\partial a_{i j}}=\Delta_{i j} .
$$

$\Delta_{i j}$ is the first minor of the determinant Δ corresponding to $a_{i j}$ and is a determinant of order $n-\mathrm{r}$. It may be obtained from Δ by crossing out the row and column which intersect in $a_{i j}$, and multiplying by $(-\mathrm{I})^{i+j}$.

1.342

$$
\begin{aligned}
a_{i 1} \Delta_{i 1}+a_{i 2} \Delta_{j 2}+\ldots+a_{i n} \Delta_{j n} & =\frac{\circ \text { if } i \neq j}{\Delta \text { if } i=j} \\
a_{1 i} \Delta_{1 j}+a_{2 i} \Delta_{2 j}+\ldots+a_{n i} \Delta_{n j} & =\frac{\circ \text { if } i \neq j}{\Delta \text { if } i=j} .
\end{aligned}
$$

1.343

$$
\frac{\partial^{2} \Delta}{\partial a_{i j} \partial a_{k l}}=\frac{\partial \Delta_{k l}}{\partial a_{i j}}=\frac{\partial \Delta_{i j}}{\partial a_{k l}}
$$

is the coefficient of $a_{i j} a_{k l}$ in the complete expansion of the determinant Δ. It may be obtained from Δ, except for sign, by crossing out the rows and columns which intersect in $a_{i j}$ and $a_{k l}$.
1.344

$$
\begin{aligned}
\left|\Delta_{i j}\right| \times\left|a_{i j}\right| & =\Delta^{n} \\
\left|\Delta_{i j}\right| & =\Delta^{n-1} .
\end{aligned}
$$

The determinant $\left|\Delta_{i j}\right|$ is the reciprocal determinant to Δ.
1.345

$$
\Delta \cdot \frac{\partial^{2} \Delta}{\partial a_{i j} \partial a_{k l}}=\left|\begin{array}{ll}
\Delta_{i i} & \Delta_{i l} \\
\Delta_{k j} & \Delta_{k l}
\end{array}\right|=\frac{\partial \Delta}{\partial a_{i j}} \frac{\partial \Delta}{\partial a_{k l}}-\frac{\partial \Delta}{\partial a_{i l}} \frac{\partial \Delta}{\partial a_{k j}} .
$$

1.346

$$
\Delta^{2} \frac{\partial^{3} \Delta}{\partial a_{i j} \partial a_{k l} \partial a_{p q}}=\left|\begin{array}{lll}
\Delta_{i j} & \Delta_{i l} & \Delta_{i q} \\
\Delta_{k j} & \Delta_{k l} & \Delta_{k q} \\
\Delta_{p i} & \Delta_{p l} & \Delta_{p q}
\end{array}\right|
$$

1.347

$$
\frac{\partial^{2} \Delta}{\partial a_{i j} \partial a_{k l}}=-\frac{\partial^{2} \Delta}{\partial a_{i l} \partial a_{k j}}
$$

1.348 If $\Delta=0$,

$$
\frac{\partial \Delta}{\partial a_{i j}} \frac{\partial \Delta}{\partial a_{k l}}=\frac{\partial \Delta}{\partial a_{i l}} \frac{\partial \Delta}{\partial a_{k j}} .
$$

1.350 If $a_{i j}=a_{i i}$ the determinant is symmetrical. In a symmetrical determinant

$$
\Delta_{i j}=\Delta_{j i}
$$

1.351 If $a_{i j}=-a_{i i}$ the determinant is a skew determinant. In a skew determinant

$$
\Delta_{i j}=(-1)^{n-1} \Delta_{j i}
$$

1.352 If $a_{i j}=-a_{j i}$, and $a_{i i}=0$, the determinant is a skew symmetrical determinant.

A skew symmetrical determinant of even order is a perfect square.
A skew symmetrical determinant of odd order vanishes.
1.360 A system of linear equations:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots++a_{1 n} x_{n}=k_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots++a_{2 n} x_{n}=k_{2} \\
& \cdots \cdots \cdots \cdots \\
& \cdots \cdots \cdots+\cdots
\end{aligned}
$$

has a solution:

$$
\Delta \cdot x_{i}=k_{1} \Delta_{1 i}+k_{2} \Delta_{2 i}+\ldots+k_{n} \Delta_{n i}
$$

provided that

$$
\Delta=\left|a_{i j}\right| \neq 0 .
$$

1.361 If $\Delta=0$, but all the first minors are not 0 ,

$$
\Delta_{s s} \cdot x_{j}=x_{s} \Delta_{s j}+\sum_{r=1}^{n} k_{r} \frac{\partial^{2} \Delta}{\partial a_{s s} \partial a_{r j}} \quad(j=\mathrm{I}, 2, \ldots n)
$$

where s may be any one of the integers $\mathrm{I}, 2, \ldots, ., n$.
1.362 If $k_{1}=k_{2}=\ldots \ldots=k_{n}=0$, the linear equations are homogeneous, and if $\Delta=0$,

$$
\frac{x_{i}}{\Delta_{s i}}=\frac{x_{s}}{\Delta_{s s}} \quad(j=\mathbf{1}, 2, \ldots n) .
$$

1.363 The condition that n linear homogeneous equations in n variables shall be consistent is that the determinant, Δ, shall vanish.
1.364 If there are $n+\mathrm{I}$ linear equations in n variables:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots \cdots+a_{1 n} x_{n}=k_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots \cdots+a_{2 n} x_{n}=k_{2} \\
& \cdots \cdots \cdots+\cdots+a_{n n} x_{n}=k_{n} \\
& \cdots \cdots \cdots \cdots+\cdots \cdots+\cdots x_{n}=k_{n+1}
\end{aligned}
$$

the condition that this system shall be consistent is that the determinant:

$$
\left.\left\lvert\, \begin{array}{ccccccc}
a_{11} & a_{12} & \ldots & \ldots & \ldots & a_{1 n} & k_{1} \\
a_{21} & a_{22} & \ldots & \ldots & \ldots & . & a_{2 n} \\
k_{2} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right.\right)=0
$$

1.370 Functional Determinants.

If $y_{1}, y_{2}, \ldots ., y_{n}$ are n functions of $x_{1}, x_{2}, \ldots \ldots, x_{n}:$

$$
y_{k}=f_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

the determinant:

$$
J=\left|\begin{array}{c}
\frac{\partial y_{1}}{\partial x_{1}} \frac{\partial y_{1}}{\partial x_{2}} \ldots \ldots \cdot \frac{\partial y_{1}}{\partial x_{n}} \\
\frac{\partial y_{2}}{\partial x_{1}} \frac{\partial y_{2}}{\partial x_{2}} \ldots \ldots . \cdot \frac{\partial y_{2}}{\partial x_{n}} \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \cdots \cdots \cdot \\
\frac{\partial y_{n}}{\frac{\partial x_{1}}{}} \frac{\partial y_{n}}{\partial x_{2}} \cdots \cdots \cdot \frac{\partial y_{n}}{\partial x_{n}}
\end{array}\right|=\left|\frac{\partial y_{i}}{\partial x_{j}}\right|=\frac{\partial\left(y_{1}, y_{2}, \ldots, y_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}
$$

is the Jacobian.
1.371 If $y_{1}, y_{2}, \ldots \ldots, y_{n}$ are the partial derivatives of a function $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$:

$$
y_{i}=\frac{\partial F}{\partial x_{i}}(i=\mathrm{I}, 2, \ldots, n)
$$

the symmetrical determinant:

$$
H=\left|\frac{\partial^{2} F}{\partial x_{i} \partial x_{i}}\right|=\frac{\partial\left(\frac{\partial F}{\partial x_{1}}, \frac{\partial F}{\partial x_{2}} \ldots, \frac{\partial F}{\partial x_{n}}\right)}{\partial\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)}
$$

is the Hessian.
1.372 If $y_{1}, y_{2}, \ldots \ldots, y_{n}$ are given as implicit functions of $x_{1}, x_{2}, \ldots \ldots$, x_{n} by the n equations:

$$
\begin{aligned}
& F_{1}\left(y_{1}, y_{2}, \ldots \ldots, y_{n}, x_{1}, x_{2}, \ldots, \ldots\right. \\
& \left.\ldots \ldots, x_{n}\right)=0 \\
& F_{n}\left(y_{1}, y_{2}, \ldots . ., y_{n}, x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=0
\end{aligned}
$$

then

$$
\frac{\partial\left(v_{1}, y_{2}, \ldots \ldots, v_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}=(-I)^{n} \frac{\partial\left(F_{1}, F_{2}, \ldots, F_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)} \div \frac{\partial\left(F_{1}, F_{2}, \ldots, F_{n}\right)}{\partial\left(y_{1}, y_{2}, \ldots, y_{n}\right)}
$$

1.373 If the n functions $y_{1}, y_{2}, \ldots, y_{n}$ are not independent of each other the Jacobian, J, vanishes; and if $J=0$ the n functions $y_{1}, y_{2}, \ldots, y_{n}$ are not independent of each other but are connected by a relation

$$
F\left(y_{1}, y_{2}, \ldots, y_{n}\right)=0
$$

1.374 Covariant property. If the variables $x_{1}, x_{2}, \ldots, x_{n}$ are transformed by a linear substitution :

$$
x_{i}=a_{i 1} \xi_{1}+a_{i 2} \xi_{2}+\ldots \ldots+a_{i n} \xi_{n} \quad(i=1,2, \ldots, n)
$$

and the functions $y_{1}, y_{2}, \ldots, y_{n}$ of $x_{1}, x_{2}, \ldots, \ldots, x_{n}$ become the functions $\eta_{1}, \eta_{2}, \ldots ., \eta_{n}$ of $\xi_{1}, \xi_{2}, \ldots \ldots, \xi_{n}$:

$$
\begin{gathered}
J^{\prime}=\frac{\partial\left(\eta_{1}, \eta_{2}, \ldots \ldots, \eta_{n}\right)}{\partial\left(\xi_{1}, \xi_{2}, \ldots ., \xi_{n}\right)}=\frac{\partial\left(y_{1}, y_{2}, \ldots \ldots, y_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)} \cdot\left|a_{i j}\right| \\
J^{\prime}=J \cdot\left|a_{i j}\right|
\end{gathered}
$$

or
where $\left|a_{i j}\right|$ is the determinant or modulus of the transformation.
For the Hessian,

$$
H^{\prime}=H \cdot\left|a_{i j}\right|^{2}
$$

1.380 To change the variables in a multiple integral:

$$
I=\int \ldots, \ldots F\left(y_{1}, y_{2}, \ldots ., y_{n}\right) d y_{1} d y_{2} \ldots . . d y_{n}
$$

to new variables, $x_{1}, x_{2}, \ldots, x_{n}$ when $y_{1}, y_{2}, \ldots, y_{n}$ are given functions of $x_{1}, x_{2}, \ldots ., x_{n}$:

$$
I=\int \ldots \cdot \int \frac{\partial\left(y_{1}, y_{2}, \ldots, y_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots ., x_{n}\right)} F(x) d x_{1} d x_{2} \ldots . d x_{n}
$$

where $F(x)$ is the result of substituting $x_{1}, x_{2}, \ldots, x_{n}$ for $y_{1}, y_{2}, \ldots, y_{n}$ in $F\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

PERMUTATIONS AND COMBINATIONS

1.400 Given n different elements. Represent each by a number, r, 2, 3,, n. The number of permutations of the n different elements is,

$$
{ }_{n} \mathrm{P}_{n}=n!
$$

e.g., $n=3:$

$$
(123),(132),(2 \mathrm{I} 3),(23 \mathrm{I}),(3 \mathrm{I} 2),(32 \mathrm{I})=6=3!
$$

1.401 Given n different elements. The number of permutations in groups of $r(r<n)$, or the number of r-permutations, is,

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

e.g., $n=4, r=3$:

$$
\begin{aligned}
& (123)(\mathrm{I} 32)(\mathrm{I} 24)(\mathrm{I} 42)(\mathrm{I} 34)(\mathrm{I} 43)(234)(243)(23 \mathrm{I})(2 \mathrm{I} 3)(2 \mathrm{I} 4)(24 \mathrm{I})(34 \mathrm{I})(3 \mathrm{I} 4) \\
& (3 \mathrm{I} 2)(32 \mathrm{I})(324)(342)(4 \mathrm{I} 2)(42 \mathrm{I})(43 \mathrm{I})(4 \mathrm{I} 3)(423)(432)=24
\end{aligned}
$$

1.402 Given n different elements. The number of ways they can be divided into m specified groups, with $x_{1}, x_{2}, \ldots, x_{m}$ in each group respectively, $\left(x_{1}+x_{2}+\ldots+x_{m}\right)=n$ is

$$
\frac{n!}{x_{1}!x_{2}!\ldots \ldots x_{m}!}
$$

e.g., $n=6, m=3, x_{1}=2, x_{2}=3, x_{3}=\mathrm{I}$:

(12) (345) (6)	(13) (245) (6)	$\times 6=60$
(23) (145) (6)	(24) (135) (6)	
(34) (125) (6)	(35) (124) (6)	
(45) (123) (6)	(25) (234) (6)	
(14) (235) (6)	(15) (234) (6)	

1.403 Given n elements of which x_{1} are of one kind, x_{2} of a second kind,, x_{m} of an m th kind. The number of permutations is

$$
\begin{gathered}
\frac{n!}{x_{1}!x_{2}!\cdots \cdots x_{m}!} \\
x_{1}+x_{2}+\ldots \ldots+x_{m}=n
\end{gathered}
$$

1.404 Given n different elements. The number of ways they can be permuted among m specified groups, when blank groups are allowed, is

$$
\frac{(m+n-1)!}{(m-1)!}
$$

e.g., $n=3, m=2$:

$$
\begin{aligned}
& (\mathrm{I} 23, \mathrm{O})(\mathrm{I} 32, \mathrm{O})(2 \mathrm{I}, \mathrm{O})(23 \mathrm{I}, \mathrm{o})(3 \mathrm{I} 2, \mathrm{o})(32 \mathrm{I}, \mathrm{o})(\mathrm{I} 2,3)(2 \mathrm{I}, 3)(\mathrm{I} 3,2)(3 \mathrm{I}, 2)(23, \mathrm{I}) \\
& (32, \mathrm{I})(\mathrm{I}, 23)(\mathrm{I}, 32)(2,3 \mathrm{I})(2, \mathrm{I} 3)(3, \mathrm{I} 2)(3,2 \mathrm{I})(0, \mathrm{I} 23)(0,2 \mathrm{I} 3)(0, \mathrm{I} 32)(0,23 \mathrm{I}) \\
& (0,3 \mathrm{I} 2)(\mathrm{o}, 32 \mathrm{I})=24
\end{aligned}
$$

1.405 Given n different elements. The number of ways they can be permuted among m specified groups, when blank groups are not allowed, so that each group contains at least one element, is

$$
\frac{n!(n-\mathrm{I})!}{(n-m)!(m-\mathrm{I})!}
$$

e.g., $n=3, m=2$:

$$
(12,3)(2 \mathrm{I}, 3)(\mathrm{I} 3,2)(3 \mathrm{I}, 2)(23, \mathrm{I})(32, \mathrm{I})(\mathrm{I}, 23)\left(\mathrm{I}, 3_{2}\right)(2,3 \mathrm{I})(2, \mathrm{I} 3)(3, \mathrm{I} 2)(3,2 \mathrm{I})=\mathrm{I} 2
$$

1.406 Given n different elements. The number of ways they can be combined into m specified groups when blank groups are allowed is

$$
m^{n}
$$

e.g., $n=3, m=2$:

$$
(123,0)(12,3)(13,2)(23,1)(1,23)(2,31)(3,12)(0,123)=8
$$

1.407 Given n similar elements. The number of ways they can be combined into m different groups when blank groups are allowed is

$$
\frac{(n+m-1)!}{(m-1)!n!}
$$

e.g., $n=6, m=3$:

Group I 655444333322222 I I II I I I O O O O O O O
 Group 3 ○○IO2 IO 3 I 2 ○ 4 I 32 ○ 5 I 423 ○ 6 I 5243
1.408 Given n similar elements. The number of ways they can be combined into m different groups when blank groups are not allowed, so that each group shall contain at least one element, is

$$
\frac{(n-\mathrm{I})!}{(m-I)!(n-m)!}
$$

BINOMIAL COEFFICIENTS

1.51

I. $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\binom{n}{n-k}={ }_{n} C_{k}=\frac{n(n-\mathrm{I})(n-2) \ldots(n-k+\mathrm{r})}{k!}$.
2. $\binom{n}{k}+\binom{n}{k+\mathrm{I}}=\binom{n+\mathrm{I}}{k+\mathrm{I}}$.
3. $\binom{n}{0}=\mathrm{I},\binom{n}{\mathrm{I}}=n,\binom{n}{n}=\mathrm{I}$.
4. $\binom{-n}{k}=(-\mathrm{I})^{k}\binom{n+k-\mathrm{I}}{k}$.
5. $\binom{n}{k}=0$ if $n<k$.
6. $\binom{k}{k}+\binom{k+\mathrm{I}}{k}+\binom{k+2}{k}+\ldots+\binom{n}{k}=\binom{n+\mathrm{I}}{k+\mathrm{I}}$.
7. $\mathrm{I}-\binom{n}{\mathrm{I}}+\binom{n}{2}-\ldots+(-\mathrm{I})^{k}\binom{n}{k}=(-\mathrm{I})^{k}\binom{n-\mathrm{I}}{k}$.
8. $\binom{n}{k}+\binom{n}{k-\mathrm{I}}\binom{r}{\mathrm{I}}+\binom{n}{k-2}\binom{r}{2}+\ldots+\binom{r}{k}=\binom{n+r}{k}$.
9. $\mathrm{I}+\binom{n}{\mathrm{I}}+\binom{n}{2}+\ldots+\binom{n}{n}=2^{n}$.
10. $\mathrm{I}-\binom{n}{\mathrm{I}}+\binom{n}{2}-\ldots+(-\mathrm{I})^{n}\binom{n}{n}=0$.
II. $\mathrm{I}+\binom{n}{\mathrm{I}}^{2}+\binom{n}{2}^{2}+\ldots+\binom{n}{n}^{2}=\binom{2 n}{n}$.
1.52 Table of Binomial Coefficients.

1.521 Glaisher, Mess. of Math. 47, p. 97, 1918, has given a complete table of binomial coefficients, from $n=2$ to $n=50$, and $k=0$ to $k=n$.
1.61 Resolution into Partial Fractions.

If $F(x)$ and $f(x)$ are two polynomials in x and $f(x)$ is of higher degree than $F(x)$,

$$
\frac{F(x)}{f(x)}=\sum \frac{F(a)}{\phi(a)} \frac{\mathrm{I}}{x-a}+\sum \frac{\mathrm{I}}{(p-\mathrm{I})!} \frac{d^{p-1}}{d c^{p-1}}\left[\frac{F(c)}{\phi(c)} \frac{\mathrm{I}}{x-c}\right]
$$

where

$$
\begin{aligned}
& \phi(a)=\left[\frac{f(x)}{x-a}\right]_{x=a}, \\
& \phi(c)=\left[\frac{f(x)}{(x-c)^{p}}\right]_{x=c} .
\end{aligned}
$$

The first summation is to be extended for all the simple roots, a, of $f(x)$ and the second summation for all the multiple roots, c, of order p, of $f(x)$.

FINITE DIFFERENCES AND SUMS.

1.811 Definitions.
I. $\Delta f(x)=f(x+h)-f(x)$.
2. $\Delta^{2} f(x)=\Delta f(x+h)-\Delta f(x)$.

$$
=f(x+2 h)-2 f(x+h)+f(x) .
$$

3. $\Delta^{3} f(x)=\Delta^{2} f(x+h)-\Delta^{2} f(x)$.

$$
=f(x+3 h)-3 f(x+2 h)+3 f(x+h)-f(x) .
$$

4. $\Delta^{n} f(x)=f(x+n h)-\frac{n}{\mathrm{I}} f(x+\overline{\overline{n-1}} h)+\frac{n(n-\mathrm{I})}{2!} f(x+\overline{n-2 h})-\ldots$

$$
+(-I)^{n} f(x) .
$$

1.812

1. $\Delta[c f(x)]=c \Delta f(x) \quad(c$ a constant).
2. $\Delta\left[f_{1}(x)+f_{2}(x)+\ldots.\right]=\Delta f_{1}(x)+\Delta f_{2}(x)+\ldots$.
3. $\Delta\left[f_{1}(x) \cdot f_{2}(x)\right]=f_{1}(x) \cdot \Delta f_{2}(x)+f_{2}(x+h) \cdot \Delta f_{1}(x)$

$$
=f_{1}(x) \cdot \Delta f_{2}(x)+f_{2}(x) \cdot \Delta f_{1}(x)+\Delta f_{1}(x) \cdot \Delta f_{2}(x) .
$$

4. $\Delta \frac{f_{1}(x)}{f_{2}(x)}=\frac{f_{2}(x) \cdot \Delta f_{1}(x)-f_{1}(x) \cdot \Delta f_{2}(x)}{f_{2}(x) \cdot f_{2}(x+h)}$.
1.813 The nth difference of a polynomial of the nth degree is constant. If

$$
\begin{aligned}
f(x) & =a_{0} x_{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n} \\
\Delta^{n} f(x) & =n!a_{0} h^{n} .
\end{aligned}
$$

1.82

I. $\frac{\Delta^{m}\{(x-b)(x-b-h)(x-b-2 h) \ldots(x-b-\overline{n-\mathrm{I}} h)\}}{n(n-\mathrm{I})(n-2) \ldots(n-m+\mathrm{I}) h^{m}}$

$$
=(x-b)(x-b-h)(x-b-2 h) \ldots(x-b-\overline{n-m-1} h) .
$$

2. $\Delta^{m} \frac{\mathrm{I}}{(x+b)(x+b+h)(x+b+2 h) \ldots(x+b+\overline{n-1} h)}$

$$
=(-\mathrm{I})^{m} \frac{n(n+\mathrm{I})(n+2) \ldots \ldots(n+m-\mathrm{I}) h^{m}}{(x+b)(x+b+h)(x+b+2 h) \ldots(x+b+\overline{n+m-\mathrm{I}} h)} .
$$

3. $\Delta^{m} a^{x}=\left(a^{h}-1\right)^{m} a^{x}$
4. $\Delta \log f(x)=\log \left(\mathrm{I}+\frac{\Delta f(x)}{f(x)}\right)$.
5. $\Delta^{m} \sin (c x+d)=\left(2 \sin \frac{c h}{2}\right)^{m} \sin \left(c x+d+m \frac{c h+\pi}{2}\right)$.
6. $\Delta^{m} \cos (c x+d)=\left(2 \sin \frac{c h}{2}\right)^{m} \cos \left(c x+d+m \frac{c h+\pi}{2}\right)$.
1.83 Newton's Interpolation Formula.

$$
\begin{aligned}
f(x)=f(a) & +\frac{x-a}{h} \Delta f(a)+\frac{(x-a)(x-a-h)}{2!h^{2}} \Delta^{2} f(a)+ \\
& +\frac{(x-a)(x-a-h)(x-a-2 h)}{3!h^{3}} \Delta^{3} f(a)+\ldots \ldots \\
& +\frac{(x-a)(x-a-h) \ldots(x-a-\overline{n-1} h)}{n!h^{n}} \Delta^{n} f(a) \\
& +\frac{(x-a)(x-a-h) \ldots(x-a-n h)}{n+1!} f^{n+1)}(\xi)
\end{aligned}
$$

where ξ has a value intermediate between the greatest and least of $a,(a+n h)$, and x.
1.831

$$
\begin{aligned}
f(a+n h)=f(a) & +\frac{n}{1!} \Delta f(a)+\frac{n(n-\mathrm{I})}{2!} \Delta^{2} f(a)+\frac{n(n-\mathrm{I})(n-2)}{3!} \Delta^{3} f(a) \\
& +\ldots \ldots+n \Delta^{n-1} f(a)+\Delta^{n} f(a)
\end{aligned}
$$

1.832 Symbolically
I. $\Delta=e^{h \frac{\partial}{\partial x}}-\mathrm{I}$
2. $f(a+n h)=(\mathrm{I}+\Delta)^{n} f(a)$
1.833 If $u_{0}=f(a), u_{1}=f(a+h), u_{2}=f(a+2 h), \ldots, u_{x}=f(a+x h)$,

$$
u_{x}=(\mathrm{I}+\Delta)^{\grave{x}} u_{0}=e^{h x \frac{\partial}{\partial x}} u_{0} .
$$

1.840 The operator inverse to the difference, Δ, is the sum, Σ.

$$
\Sigma=\Delta^{-1}=\frac{I}{e^{\lambda \frac{\partial}{\partial x}}-I} .
$$

1.841 If $\Delta F(x)=f(x)$,

$$
\Sigma f(x)=F(x)+C,
$$

where C is an arbitrary constant.

1.842

1. $\Sigma c f(x)=c \Sigma f(x)$.
2. $\Sigma\left[f_{1}(x)+f_{2}(x)+\ldots\right]=\Sigma f_{1}(x)+\Sigma f_{2}(x)+\ldots$
3. $\Sigma\left[f_{1}(x) \cdot \Delta f_{2}(x)\right]=f_{1}(x) \cdot f_{2}(x)-\Sigma\left[f_{2}(x+h) \cdot \Delta f_{1}(x)\right]$.

1.843 Indefinite Sums.

I. $\Sigma[(x-b)(x-b-h)(x-b-2 h) \cdots(x-b-\overline{n-\mathrm{I}} h)]$

$$
=\frac{\mathrm{I}}{(n+\mathrm{I}) h}(x-b)(x-b-h) \ldots(x-b-n h)+C .
$$

2. $\sum \frac{1}{(x+b)(x+b+h) \ldots(x+b+\overline{n-1} h)}$

$$
=-\frac{\mathrm{I}}{(n-\mathrm{I}) h} \frac{\mathrm{I}}{(x+b)(x+b+h) \ldots(x+b+\overline{n-2} h)}+C .
$$

3. $\sum a^{x}=\frac{a^{x}}{a^{h}-\mathrm{I}}+C$.
4. $\sum \cos (c x+d)=\frac{\sin \left(c x-\frac{c h}{2}+d\right)}{2 \sin \frac{c h}{2}}+C$.
5. $\sum \sin (c x+d)=-\frac{\cos \left(c x-\frac{c h}{2}+d\right)}{2 \sin \frac{c h}{2}}+C$.
1.844 If $f(x)$ is a polynomial of degree n,

$$
\begin{gathered}
\sum a^{x} f(x)=\frac{a^{x}}{a^{h}-\mathrm{I}}\left\{f(x)-\frac{a^{h}}{a^{h}-\mathrm{I}} \Delta f(x)+\left(\frac{a^{h}}{a^{h}-\mathrm{I}}\right)^{2} \Delta^{2} f(x)-\ldots\right. \\
+\left(\frac{-a^{h}}{a^{h}-\mathrm{I}}\right)^{n} \Delta^{n} f(x)+C .
\end{gathered}
$$

1.845 If $f(x)$ is a polynomial of degree n,

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}
$$

and

$$
\begin{aligned}
\Sigma f(x) & =F(x)+C \\
F(x) & =c_{0} x^{n+1}+c_{1} x^{n}+c_{2} x^{n-1}+\ldots+c_{n} x+c_{n+1}
\end{aligned}
$$

where

$$
\begin{gathered}
(n+\mathrm{I}) h c_{0}=a_{0} \\
\frac{(n+\mathrm{I}) n}{2!} h^{2} c_{0}+n h c_{1}=a_{1} \\
\frac{(n+\mathrm{I}) n(n-\mathrm{I})}{3!} h^{3} c_{0}+\frac{n(n-\mathrm{I})}{2!} h^{2} c_{1}+(n-\mathrm{I}) h c_{2}=a_{2}
\end{gathered}
$$

The coefficient c_{n+1} may be taken arbitrarily:
1.850 Definite Sums. From the indefinite sum,

$$
\Sigma f(x)=F(x)+C,
$$

a definite sum is obtained by subtraction,

$$
\sum_{a+m h}^{a+n h} f(x)=F(a+n h)-F(a+m h)
$$

1.851

$$
\begin{aligned}
\sum_{a}^{a+n h} f(x) & =f(a)+f(a+h)+f(a+2 h)+\ldots+f(a+\overline{n-\tau} h) \\
& =F(a+n h)-F(a) .
\end{aligned}
$$

By means of this formula many finite sums may be evaluated.
1.852

$$
\begin{aligned}
\sum_{a}^{a+n h}(x & -b)(x-b-h)(x-b-2 h) \ldots(x-b \cdots \overline{k-\mathrm{I}} h) \\
& =\frac{(a-b+n h)(a-b+\overline{n-\mathrm{I}} h) \ldots(a-b+\overline{n-k} h)}{(k+\mathrm{I}) h} \\
& -\frac{(a-b)(a-b-h) \ldots(a-b-k h)}{(k+\mathrm{I}) h} .
\end{aligned}
$$

1.853

$$
\begin{gathered}
\sum_{a}^{a+n h}(x-a)(x-a-h) \ldots(x-a-\overline{k-1} h) \\
=\frac{n(n-1)(n-2) \ldots(n-k)}{(k+\mathrm{I})} h^{k}
\end{gathered}
$$

1.854 If $f(x)$ is a polynomial of degree m it can be expressed:

$$
\begin{aligned}
f(x)= & A_{0}+A_{1}(x-a)+A_{2}(x-a)(x-a-h)+\ldots \\
& +A_{m}(x-a)(x-a-h) \cdots(x-a-\overline{m-1} h) \\
\sum_{a}^{a+n h} f(x)= & A_{0} n+A_{1} \frac{n(n-\mathrm{I})}{2} h+A_{2} \frac{n(n-\mathrm{I})(n-2)}{3} h^{2} \\
& +A_{m} \frac{n(n-\mathrm{I}) \ldots(n-m)}{(m+\mathrm{I})} h^{m} .
\end{aligned}
$$

1.855 If $f(x)$ is a polynomial of degree ($m-\mathrm{I}$) or lower, it can be expressed:

$$
\begin{aligned}
f(x)= & A_{0}+A_{1}(x+m h)+A_{2}(x+m h)(x+\overline{m-1} h) \\
& +\ldots+A_{m-1}(x+m h) \ldots(x+2 h)
\end{aligned}
$$

and,
$\sum_{a}^{a+n h} \frac{f(x)}{x(x+h)(x+2 h) \ldots(x+m h)}=\frac{A_{0}}{m h}\left\{\frac{1}{a(a+h) \ldots(a+\overline{m-1} h)}\right.$

$$
1
$$

$\left.-\frac{\mathrm{I}}{(a+n h) \ldots(a+\overline{n+m-\mathrm{I}} h)}\right\}$
$+\frac{A_{1}}{(m-\mathrm{I}) h}\left\{\frac{\mathrm{I}}{a(a+h) \ldots(a+\overline{m-2} h)}-\frac{\mathrm{I}}{(a+n h) \ldots(a+\overline{n+m-2 h})}\right\}$ $+\ldots \ldots+\frac{A_{m-1}}{h}\left\{\frac{\mathrm{I}}{a}-\frac{\mathrm{I}}{a+n h}\right\}$.
1.856 If $f(x)$ is a polynomial of degree m it can be expressed:

$$
\begin{aligned}
f(x)= & A_{0}+A_{1}(x+m h)+A_{2}(x+m h)(x+\overline{m-\Upsilon} h)+\ldots \\
& +A_{m}(x+m h) \cdots(x+h)
\end{aligned}
$$

and,

$$
\begin{aligned}
& \sum_{a}^{a+n h} \frac{f(x)}{x(x+h) \ldots(x+m h)}=\frac{A_{0}}{m h}\left\{\frac{\mathrm{I}}{a(a+h) \ldots(a+\overline{m-\overline{1}} h)}\right. \\
& \left.\quad-\frac{\mathrm{I}}{(a+n h) \ldots(a+\overline{m+n-\mathrm{I}} h)}\right\} \\
& \quad+\ldots \ldots+\frac{A_{m-1}}{h}\left\{\frac{\mathrm{I}}{a}-\frac{\mathrm{I}}{a+n h}\right\}+A_{m} \sum_{a}^{a+n h} \frac{\mathrm{I}}{\bar{x}}
\end{aligned}
$$

where,

$$
\sum_{a}^{a+n h} \frac{\mathrm{I}}{x}=\frac{\mathrm{I}}{a}+\frac{\mathrm{I}}{a+h}+\frac{\mathrm{I}}{a+2 h}+\ldots+\frac{\mathrm{I}}{a+\overline{n-\mathrm{I}} h}
$$

1.86 Euler's Summation Formula.

$$
\begin{aligned}
& \sum_{a}^{b} f(x)= \frac{I}{h} \int_{a}^{b} f(z) d z+A_{1}\{f(b)-f(a)\}+A_{2} h\left\{f^{\prime}(b)-f^{\prime}(a)\right\}, \\
&+\ldots+A_{m-1} h^{m-2}\left\{f^{(m-2)}(b)-f^{(m-2)}(a)\right\}, \\
&-\int_{0}^{h} \phi_{m}(z) \sum_{x=a}^{x=b} \frac{d^{m} f(x+h-z)}{h d x^{m}} \cdot d z \\
& \phi_{m}(z)=\frac{z^{m}}{m!}+A_{1} \frac{h z^{m-1}}{(m-1)!}+A_{2} \frac{h^{2} z^{m-2}}{(m-2)!}+\ldots+A_{m-1} h^{m-1} z .
\end{aligned}
$$

$m!\phi_{m}(z)$, with $h=1$, is the Bernoullian polynomial.
$A_{1}=-\frac{1}{2}, A_{2 k+1}=0$; the coefficients $A_{2 k}$ are connected with Bernoulli's numbers (6.902), B_{k}, by the relation,

$$
A_{2 k}=(-\mathrm{I})^{k+1} \frac{B_{k}}{(2 k)!}
$$

$$
A_{1}=-\frac{\mathrm{I}}{2}, \quad A_{2}=\frac{\mathrm{I}}{\mathrm{I} 2}, \quad A_{4}=-\frac{\mathrm{I}}{720}, \quad A_{6}=\frac{\mathrm{I}}{30240} \ldots
$$

1.861

$$
\begin{aligned}
\sum_{a}^{b} f(x) & =\frac{I}{h} \int_{a}^{b} f(z) d z-\frac{\mathrm{I}}{2}\{f(b)-f(a)\}+\frac{h}{\mathrm{I} 2}\left\{f^{\prime}(b)-f^{\prime}(a)\right\} \\
& -\frac{h^{3}}{720}\left\{f^{\prime \prime \prime}(b)-f^{\prime \prime \prime}(a)\right\}+\frac{h^{5}}{30240}\left\{f^{v}(b)-f^{\mathrm{v}}(a)\right\}-\cdots
\end{aligned}
$$

1.862

$$
\sum u_{x}=C+\int u_{x} d x-\frac{1}{2} u_{x}+\frac{\mathrm{I}}{\mathrm{I} 2} \frac{d u_{x}}{d x}-\frac{\mathrm{I}}{720} \frac{d^{3} u_{x}}{d x^{3}}+\frac{\mathrm{I}}{30240} \frac{d^{5} u_{x}}{d x^{5}}-\ldots \ldots
$$

SPECIAL FINITE SERIES

1.871 Arithmetical progressions. If s is the sum, a the first term, δ the common difference, l the last term, and n the number of terms,

$$
\begin{aligned}
s & =a+(a+\delta)+(a+2 \delta)+\ldots[a+(n-\mathrm{I}) \delta] \\
l & =a+(n-\mathrm{I}) \delta \\
s & =\frac{n}{2}[2 a+(n-\mathrm{I}) \delta] \\
& =\frac{n}{2}(a+l) .
\end{aligned}
$$

1.872 Geometrical progressions.

$$
\begin{aligned}
s & =a+a p+a p^{2}+\ldots+a p^{n-1} \\
s & =a \frac{p^{n}-\mathrm{I}}{p-\mathrm{I}} \\
\text { If } p<\mathrm{I}, n & =\infty, s=\frac{a}{\mathrm{I}-p} .
\end{aligned}
$$

1.873 Harmonical progressions. a, b, c, d, \ldots form an harmonical progression if the reciprocals, $\mathrm{I} / a, \mathrm{I} / b, \mathrm{I} / c, \mathrm{I} / d, \ldots$ form an arithmetical progression.

1.874.

I. $\sum_{x=1}^{x=n} x=\frac{n(n+\mathrm{T})}{2}$
2. $\sum_{x=1}^{x=n} x^{2}=\frac{n(n+I)(2 n+I)}{6}$
3. $\sum_{x=1}^{x=n} x^{3}=\left[\frac{n(n+\mathrm{I})}{2}\right]^{2}$
4. $\sum_{x=1}^{x=n} x^{4}=\frac{n^{5}}{5}+\frac{n^{4}}{2}+\frac{n^{3}}{3}-\frac{n}{30}$.
1.875 In general,
$\sum_{x=1}^{x=n} x^{k}=\frac{n^{k+1}}{k+\mathrm{I}}+\frac{n^{k}}{2}+\frac{\mathrm{I}}{2}\binom{k}{\mathrm{I}} B_{1} n^{k-1}-\frac{\mathrm{I}}{4}\binom{k}{3} B_{2} n^{k-3}+\frac{\mathrm{I}}{6}\binom{k}{5} B_{3} n^{k-5}-\ldots$
$B_{1}, B_{2}, \quad B_{3}, \ldots$ are Bernoulli's numbers (6.902), $\binom{k}{h}$ are the binomial coefficients (1.51); the series ends with the term in n if k is even, and with the term in n^{2} if k is odd.

1.876

$$
\begin{aligned}
& \frac{\mathrm{I}}{\mathrm{I}}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\frac{\mathrm{I}}{4}+\ldots+\frac{\mathrm{I}}{n}=\gamma+\log n+\frac{\mathrm{I}}{2 n}-\frac{a_{2}}{n(n+\mathrm{I})} \\
&-\frac{a_{3}}{n(n+\mathrm{I})(n+2)}-\cdots
\end{aligned}
$$

$\boldsymbol{\gamma}=$ Euler's constant $=0.5772156649 \ldots$

$$
\begin{aligned}
& a_{2}=\frac{\mathrm{I}}{\mathrm{I} 2} \\
& a_{3}=\frac{\mathrm{I}}{\mathrm{I} 2} \\
& a_{4}=\frac{\mathrm{I} 9}{80} \quad a_{k}=\frac{\mathrm{I}}{k} \int_{0}^{\mathrm{I}} x(\mathrm{I}-x)(2-x) \ldots(k-\mathrm{I}-x) d x \\
& a_{5}=\frac{9}{20}
\end{aligned}
$$

1.877

$$
\begin{gathered}
\frac{\mathrm{I}}{\mathrm{I}^{2}}+\frac{\mathrm{I}}{2^{2}}+\frac{\mathrm{I}}{3^{2}}+\ldots+\frac{\mathrm{I}}{n^{2}}=\frac{\pi^{2}}{6}-\frac{b_{1}}{n+\mathrm{I}}-\frac{b_{2}}{(n+\mathrm{I})(n+2)} \\
\frac{b_{3}}{(n+\mathrm{I})(n+2)(n+3)}-\ldots \ldots \\
b_{k}=\frac{(k-\mathrm{I})!}{k}
\end{gathered}
$$

1.878

$$
\begin{gathered}
\frac{\mathrm{I}}{\mathrm{I}^{3}}+\frac{\mathrm{I}}{2^{3}}+\frac{\mathrm{I}}{3^{3}}+\ldots+\frac{\mathrm{I}}{n^{3}}=C-\frac{c_{2}}{(n+\mathrm{I})(n+2)} \\
\quad-\frac{c_{3}}{(n+\mathrm{I})(n+2)(n+3)}-\cdots \\
C=\sum_{k=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{k^{3}}=\mathrm{I} .202056903^{2} \\
c_{k}= \\
=\frac{(k-\mathrm{I})!}{k}\left(\frac{\mathrm{I}}{\mathrm{I}}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\ldots+\frac{\mathrm{I}}{k-\mathrm{I}}\right) .
\end{gathered}
$$

1.879 Stirling's Formula.

$$
\begin{aligned}
& \log (n!)=\log \sqrt{2 \pi}+\left(n+\frac{I}{2}\right) \log n-n \\
& \quad+\frac{A_{2}}{n}+\ldots+A_{2 k-2} \frac{(2 k-4)!}{n^{2 k-3}} \\
& \quad+\theta A_{2 k} \frac{(2 k-2)!}{n^{2 k-1}}
\end{aligned}
$$

$0<\theta<\mathrm{r}$. The coefficients A_{k} are given in 1.86.

1.88

I. $\mathrm{I}+\mathrm{I}!+2 \cdot 2!+3 \cdot 3!+\ldots+n \cdot n!=(n+1)$!
2. $I \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+3 \cdot 4 \cdot 5+\ldots+n(n+1)(n+2)=\frac{1}{4} n(n+1)(n+2)(n+3)$.
3. $\mathbf{I} \cdot 2 \cdot 3 \ldots r+2 \cdot 3 \cdot 4 \ldots(r+\mathrm{I})+\ldots \ldots+n(n+\mathrm{I})(n+2)$
.... $(n+r-\mathrm{I})$

$$
=\frac{n(n+1)(n+2) \ldots(n+r)}{r+1}
$$

4. $\mathbf{I} \cdot p+2(p+\mathrm{I})+3(p+2)+\ldots \ldots+n(p+n-\mathrm{I})$

$$
=\frac{1}{6} n(n+1)(3 p+2 n-2) .
$$

5. $p \cdot q+(p-1)(q-1)+(p-2)(q-2)+\ldots \ldots(p-n)(q-n)$

$$
=\frac{1}{6} n[6 p q-(n-1)(3 p+3 q-2 n+1)] .
$$

6. $\mathrm{I}+\frac{b}{a}+\frac{b(b+\mathrm{I})}{a(a+\mathrm{I})}+\ldots+\frac{b(b+\mathrm{I}) \ldots(b+n-\mathrm{I})}{a(a+\mathrm{I}) \ldots(a+n-\mathrm{I})}$.

$$
=\frac{b(b+\mathrm{I}) \ldots(b+n)}{(b+\mathrm{I}-a) a(a+\mathrm{I}) \ldots(a+n-\mathrm{I})}-\frac{a-\mathrm{I}}{b+\mathrm{I}-a} .
$$

II. GEOMETRY

2.00 Transformation of coördinates in a plane.
2.001 Change of origin. Let x, y be a system of rectangular or oblique coördinates with origin at O. Referred to x, y the coördinates of the new origin O^{\prime} are a, b. Then referred to a parallel system of coördinates with origin at O^{\prime} the coördinates are x^{\prime}, y^{\prime}.

$$
\begin{aligned}
& x=x^{\prime}+a \\
& y=y^{\prime}+b .
\end{aligned}
$$

2.002 Origin unchanged. Directions of axes changed. Oblique coördinates. Let ω be the angle between the $x-y$ axes measured counter-clockwise from the x - to the y-axis. Let the x^{\prime}-axis make an angle α with the x-axis and the y^{\prime}-axis an angle β with the x-axis. All angles are measured counter-clockwise from the x-axis. Then

$$
\begin{aligned}
x \sin \omega & =x^{\prime} \sin (\omega-\alpha)+y^{\prime} \sin (\omega-\beta) \\
y \sin \omega & =x^{\prime} \sin \alpha+y^{\prime} \sin \beta \\
\omega^{\prime} & =\beta-\alpha .
\end{aligned}
$$

2.003 Rectangular axes. Let both new and old axes be rectangular, the new axes being turned through an angle θ with respect to the old axes. Then $\omega=\frac{\pi}{2}, \alpha=\theta, \beta=\frac{\pi}{2}+\theta$.

$$
\begin{aligned}
& x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \\
& y=x^{\prime} \sin \theta+y^{\prime} \cos \theta .
\end{aligned}
$$

2.010 Polar coördinates. Let the y-axis make an angle ω with the x-axis and let the x-axis be the initial line for a system of polar coördinates r, θ. All angles are measured in a counter-clockwise direction from the x-axis.

$$
\begin{aligned}
& x=\frac{r \sin (\omega-\theta)}{\sin \omega} \\
& y=r \frac{\sin \theta}{\sin \omega}
\end{aligned}
$$

2.011 If the x, y axes are rectangular, $\omega=\frac{\pi}{2}$,

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

2.020 Transformation of coördinates in three dimensions.
2.021 Change of origin. Let x, y, z be a system of rectangular or oblique coördinates with origin at O. Referred to x, y, z the coördinates of the new origin O^{\prime} are a, b, c. Then referred to a parallel system of coördinates with origin at O^{\prime} the coördinates are $x^{\prime}, y^{\prime}, z^{\prime}$.

$$
\begin{aligned}
& x=x^{\prime}+a \\
& y=y^{\prime}+b \\
& z=z^{\prime}+c
\end{aligned}
$$

2.022 Transformation from one to another rectangular system. Origin unchanged. The two systems are x, y, z and $x^{\prime} y^{\prime} z^{\prime}$.

Referred to x, y, z the direction cosines of x^{\prime} are l_{1}, m_{1}, n_{1}
Referred to x, y, z the direction cosines of y^{\prime} are l_{2}, m_{2}, n_{2}
Referred to x, y, z the direction cosines of z^{\prime} are l_{3}, m_{3}, n_{3}
The two systems are connected by the scheme:

	x^{\prime}	y^{\prime}	z^{\prime}
x	l_{1}	l_{2}	l_{3}
y	m_{1}	m_{2}	m_{3}
z	n_{1}	n_{2}	n_{3}

$$
\begin{array}{lr}
x=l_{1} x^{\prime}+l_{2} y^{\prime}+l_{3} z^{\prime} & x^{\prime}=l_{1} x+m_{1} y+n_{1} z \\
y=m_{1} x^{\prime}+m_{2} y^{\prime}+m_{3} z^{\prime} & y^{\prime}=l_{2} x+m_{2} y+n_{2} z \\
z=n_{1} x^{\prime}+n_{2} y^{\prime}+n_{3} z^{\prime} & z^{\prime}=l_{3} x+m_{3} y+n_{3} z \\
l_{1}^{2}+m_{1}{ }^{2}+n_{1}^{2}=\mathrm{I} & l_{1}^{2}+l_{2}^{2}+l_{3}^{2}=\mathrm{I} \\
l_{2}^{2}+m_{2}{ }^{2}+n_{2}^{2}=\mathrm{I} & m_{1}^{2}+m_{2}^{2}+m_{3}{ }^{2}=\mathrm{I} \\
l_{3}^{2}+m_{3}{ }^{2}+n_{3}{ }^{2}=\mathrm{I} & n_{1}{ }^{2}+n_{2}^{2}+n_{3}{ }^{2}=\mathrm{I} \\
l_{1} m_{1}+l_{2} m_{2}+l_{3} m_{3}=0 & l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0 \\
m_{1} n_{1}+m_{2} n_{2}+m_{3} n_{3}=0 & l_{2} l_{3}+m_{2} m_{3}+n_{2} n_{3}=0 \\
n_{1} l_{1}+n_{2} l_{2}+n_{3} l_{3}=0 & l_{3} l_{1}+m_{3} m_{1}+n_{3} n_{1}=0
\end{array}
$$

2.023 If the transformation from one to another rectangular system is a rotation through an angle θ about an axis which makes angles α, β, γ with x, y, z respectively,

$$
2 \cos \theta=l_{1}+m_{2}+n_{3}-\mathrm{I}
$$

$\frac{\cos ^{2} \alpha}{m_{2}+n_{3}-l_{1}-\mathrm{I}}=\frac{\cos ^{2} \beta}{n_{3}+l_{1}-m_{2}-\mathrm{I}}=\frac{\cos ^{2} \gamma}{l_{1}+m_{2}-n_{3}-\mathrm{I}}$
2.024 Transformation from a rectangular to an oblique system. x, y, z rectangular system: $x^{\prime}, y^{\prime}, z^{\prime}$ oblique system.
$\cos \widehat{x x^{\prime}}=l_{1}$
$\cos \widehat{y x^{\prime}}=m_{1}$
$\cos \widehat{z x^{\prime}}=n_{1}$
$\cos \widehat{x y^{\prime}}=l_{2}$
$\cos \widehat{y y^{\prime}}=m_{2}$
$\cos \widehat{z y^{\prime}}=n_{2}$
$\cos \widehat{x z^{\prime}}=l_{3}$
$\cos \widehat{y z}^{\prime}=m_{3}$
$\cos \widehat{z z}^{\prime}=n_{3}$

$$
\begin{gathered}
x=l_{1} x^{\prime}+l_{2} y^{\prime}+l_{3} z^{\prime} \\
y=m_{1} x^{\prime}+m_{2} y^{\prime}+m_{3} z^{\prime} \\
z=n_{1} x^{\prime}+n_{2} y^{\prime}+n_{3} z^{\prime} \\
\cos \widehat{y^{\prime} z^{\prime}}=l_{2} l_{3}+m_{2} m_{3}+n_{2} n_{3} \\
\cos \widehat{z^{\prime} x^{\prime}}=l_{3} l_{1}+m_{3} m_{1}+n_{3} n_{1} \\
\cos \widehat{x^{\prime} y^{\prime}}=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} \\
l_{1}^{2}+m_{1}^{2}+n_{1}^{2}=\mathrm{I} \\
l_{2}^{2}+m_{2}^{2}+n_{2}^{2}=\mathrm{I} \\
l_{3}^{2}+m_{3}^{2}+n_{3}^{2}=\mathrm{I}
\end{gathered}
$$

2.025 Transformation from one to another oblique system.

$$
\begin{array}{lll}
\cos \widehat{x x^{\prime}}=l_{1} & \cos \widehat{x y^{\prime}}=l_{2} & \cos \widehat{\widehat{x z^{\prime}}}=l_{3} \\
\cos \widehat{y x^{\prime}}=m_{1} & \cos \widehat{y y^{\prime}}=m_{2} & \cos \widehat{y z^{\prime}}=m_{3} \\
\cos \widehat{z x^{\prime}}=n_{1} & \cos \widehat{z y^{\prime}}=n_{2} & \cos \widehat{z z^{\prime}}=n_{3} \\
\Delta=\left|\begin{array}{ll}
l_{1} & l_{2} \\
l_{3} \\
m_{1} m_{2} m_{3} \\
n_{1} n_{2} n_{3}
\end{array}\right| & \\
x=l_{1} x^{\prime}+l_{2} y^{\prime}+l_{3} z^{\prime} \\
y=m_{1} x^{\prime}+m_{2} y^{\prime}+m_{3} z^{\prime} & \\
z=n_{1} x^{\prime}+n_{2} y^{\prime}+n_{3} z^{\prime}
\end{array}
$$

$\Delta \cdot x^{\prime}=\left(m_{2} n_{3}-m_{3} n_{2}\right) x+\left(n_{2} l_{3}-n_{3} l_{2}\right) y+\left(l_{2} m_{3}-l_{3} m_{2}\right) z$, $\Delta \cdot y^{\prime}=\left(m_{3} n_{1}-m_{1} n_{3}\right) x+\left(n_{3} l_{1}-n_{1} l_{3}\right) y+\left(l_{3} m_{1}-l_{1} m_{3}\right) z$, $\Delta \cdot z^{\prime}=\left(m_{1} n_{2}-m_{2} n_{1}\right) x+\left(n_{1} l_{2}-n_{2} l_{1}\right) y+\left(l_{1} m_{2}-l_{2} m_{1}\right) z$.
$l_{1}^{2}+m_{1}^{2}+n_{1}^{2}+2 m_{1} n_{1} \cos \widehat{y z}+2 n_{1} l_{1} \cos \widehat{z x}+2 l_{1} m_{1} \cos \widehat{x y}=\mathrm{I}$, $l_{2}^{2}+m_{2}^{2}+n_{2}^{2}+2 m_{2} n_{2} \cos \widehat{y z}+2 n_{2} l_{2} \cos \widehat{z x}+2 l_{2} m_{2} \cos \widehat{x y}=\mathrm{I}$, $l_{3}{ }^{2}+m_{3}^{2}+n_{3}^{2}+2 m_{3} n_{3} \cos \widehat{y z}+2 n_{3} l_{3} \cos \widehat{z x}+2 l_{3} m_{3} \cos \widehat{x y}=\mathrm{I}$.

$$
\begin{aligned}
& x+y \cos \widehat{x y}+z \cos \widehat{x z}=l_{1} x^{\prime}+l_{2} y^{\prime}+l_{3} z^{\prime} \\
& y+x \cos \widehat{x y}+z \cos \widehat{z y}=m_{1} x^{\prime}+m_{2} y^{\prime}+m_{3} z^{\prime} \\
& z+x \cos \widehat{x z}+y \cos \widehat{z y}=n_{1} x^{\prime}+n_{2} y^{\prime}+n_{3} z^{\prime}
\end{aligned}
$$

2.026 Transformation from one to another oblique system.

If n_{x}, n_{y}, n_{z} are the normals to the planes $y z, z x, x y$ and $n_{x}{ }^{\prime}, n_{y}{ }^{\prime}, n_{z}{ }^{\prime}$ the normals to the planes $y^{\prime} z^{\prime}, z^{\prime} x^{\prime}, x^{\prime} y^{\prime}$,

$$
\begin{aligned}
& x \cos \widehat{x n} x=x^{\prime} \cos \widehat{x^{\prime} n_{x}}+y^{\prime} \cos \widehat{y^{\prime} n_{x}}+z^{\prime} \cos \widehat{z^{\prime} n_{x}} . \\
& y \cos \widehat{y_{n}} y_{y}=x^{\prime} \cos \widehat{x^{\prime} n_{y}}+y^{\prime} \cos \widehat{y^{\prime} n_{y}}+z^{\prime} \cos \widehat{z^{\prime} n_{y}} \text {. } \\
& z \cos \widehat{z n_{z}}=x^{\prime} \cos \widehat{x^{\prime} n_{z}}+y^{\prime} \cos \widehat{y^{\prime} n_{z}}+z^{\prime} \cos \widehat{z^{\prime} n_{z}} \text {. } \\
& x^{\prime} \cos \widehat{x^{\prime} n_{x}}{ }^{\prime}=x \cos \widehat{x n_{x}}{ }_{x}^{\prime}+y \cos \widehat{y n}_{x}^{\prime}+z \cos \widehat{z n_{x}}{ }^{\prime} . \\
& y^{\prime} \cos \widehat{y^{\prime} n_{y}}{ }^{\prime}=x \cos \widehat{x n}_{y}{ }^{\prime}+y \cos \widehat{y n}_{y}{ }^{\prime}+z \cos \widehat{z n_{y}}{ }^{\prime} \text {. } \\
& z^{\prime} \cos \widehat{z}^{\prime} n_{z}^{\prime}=x \cos \widehat{x n}_{z}^{\prime}+y \cos \widehat{y n}{ }_{z}^{\prime}+z \cos \widehat{z n_{z}}{ }^{\prime} \text {. }
\end{aligned}
$$

2.030 Transformation from rectangular to spherical polar coördinates.
r, the radius vector to a point makes an angle θ with the z-axis, the projection of r on the $x-y$ plane makes an angle ϕ with the x-axis.

$$
\begin{array}{ll}
x=r \sin \theta \cos \phi & r^{2}=x^{2}+y^{2}+z^{2} \\
y=r \sin \theta \sin \phi & \theta=\cos ^{-1} \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
z=r \cos \theta & \phi=\tan ^{-1} \frac{y}{x}
\end{array}
$$

2.031 Transformation from rectangular to cylindrical coördinates.
ρ, the perpendicular from the z-axis to a point makes an angle θ with the $x-z$ plane.

$$
\begin{array}{ll}
x=\rho \cos \theta & \rho=\sqrt{x^{2}+y^{2}} \\
y=\rho \sin \theta & \theta=\tan ^{-1} \frac{y}{x} \\
z=z &
\end{array}
$$

2.032 Curvilinear coördinates in general.

See 4.0

2.040 Eulerian Angles.

$O x y z$ and $O x^{\prime} y^{\prime} z^{\prime}$ are two systems of rectangular axes with the same origin O. $O K$ is perpendicular to the plane $z O z^{\prime}$ drawn so that if $O z$ is vertical, and the projection of $O z^{\prime}$ perpendicular to $O z$ is directed to the south, then $O K$ is directed to the east.

$$
\text { Angles } \quad \begin{aligned}
z^{\widehat{O} z} & =\theta, \\
\widehat{y O K} & =\phi, \\
\widehat{y_{O} K} & =\psi .
\end{aligned}
$$

The direction cosines of the two systems of axes are given by the following scheme :

	x	y	z
		y	
x^{\prime} y^{\prime} z^{\prime}	$\cos \phi \cos \theta \cos \psi-\sin \phi \sin \psi \psi$ $-\cos \phi \cos \theta \sin \psi-\sin \phi \cos \psi$ $\cos \phi \sin \theta$	$\sin \phi \cos \theta \cos \psi+\cos \phi \sin \psi$ $-\sin \phi \cos \theta \sin \psi+\cos \phi \cos \psi$ $\sin \phi \sin \theta$	$\sin \theta \cos \psi$ $\sin \theta \sin \psi$ $\cos \theta$

2.050 Trilinear Coördinates.

A point in a plane is defined if its distances from two intersecting lines are given. Let $C A$, $C B$ (Fig. I) be these lines:

$$
P R=p, \quad P S=q, \quad P T=r .
$$

Taking $C A$ and $C B$ as the x-, y-axes, including an angle C^{\prime},

$$
\begin{aligned}
& x=\frac{p}{\sin C}, \\
& y=\frac{q}{\sin C} .
\end{aligned}
$$

Fig. I

Any curve $f(x, y)=0$ becomes:

$$
f\left(\frac{p}{\sin C}, \frac{q}{\sin C}\right)=0 .
$$

If s is the area of the triangle $C A B$ (triangle of reference),

$$
\begin{gathered}
2 s=a p+b q+c r, \\
a=B C, \\
b=C A, \\
c=A B,
\end{gathered}
$$

and the equation of a curve may be written in the homogeneous form:

$$
f\left(\frac{2 s p}{(a p+b q+c r) \sin C}, \frac{2 s q}{(a p+b q+c r) \sin C}\right)=0 .
$$

2.060 Quadriplanar Coördinates.

These are the analogue in 3 dimensions of trilinear coördinates in a plane (2.050).
$x_{1}, x_{2}, x_{3}, x_{4}$ denote the distances of a point P from the four sides of a tetrahedron (the tetrahedron of reference); $l_{1}, m_{1}, n_{1} ; l_{2}, m_{2}, n_{2} ; l_{3}, m_{3}, n_{3}$; and l_{4}, m_{4}, n_{4} the direction cosines of the normals to the planes $x_{1}=0, x_{2}=0, x_{3}=0$, $x_{4}=0$ with respect to a rectangular system of coördinates x, y, z; and d_{1}, d_{2}, d_{3}, d_{4} the distances of these 4 planes from the origin of coördinates:

$$
\text { (I) }\left\{\begin{array}{l}
x_{1}=l_{1} x+m_{1} y+n_{1} z-d_{1} \\
x_{2}=l_{2} x+m_{2} y+n_{2} z-d_{2} \\
x_{3}=l_{3} x+m_{3} y+n_{3} z-d_{3} \\
x_{4}=l_{4} x+m_{4} y+n_{4} z-d_{4}
\end{array}\right.
$$

s_{1}, s_{2}, s_{3}, and s_{4} are the areas of the 4 faces of the tetrahedron of reference and V its volume:

$$
{ }_{3} V=x_{1} s_{1}+x_{2} s_{2}+x_{3} s_{3}+x_{4} s_{4} .
$$

By means of the first 3 equations of (x) x, y, z are determined:

$$
\begin{aligned}
& x=A_{1} x_{1}+B_{1} x_{2}+C_{1} x_{3}+D_{1}, \\
& y=A_{2} x_{1}+B_{2} x_{2}+C_{2} x_{3}+D_{2}, \\
& z=A_{3} x_{1}+B_{3} x_{2}+C_{3} x_{3}+D_{3} .
\end{aligned}
$$

The equation of any surface,

$$
F(x, y, z)=0,
$$

may be written in the homogeneous form:

$$
\begin{aligned}
F\{ & {\left[A_{1} x_{1}+B_{1} x_{2}+C_{1} x_{3}+\frac{D_{1}}{3 V}\left(s_{1} x_{1}+s_{2} x_{2}+s_{3} x_{3}+s_{4} x_{4}\right)\right] } \\
& {\left[A_{2} x_{1}+B_{2} x_{2}+C_{2} x_{3}+\frac{D_{2}}{3 V}\left(s_{1} x_{1}+s_{2} x_{2}+s_{3} x_{3}+s_{4} x_{4}\right)\right] } \\
& {\left.\left[A_{3} x_{1}+B_{3} x_{2}+C_{3} x_{3}+\frac{D_{3}}{3 V}\left(s_{1} x_{1}+s_{2} x_{2}+s_{3} x_{3}+s_{4} x_{4}\right)\right]\right\}=0 }
\end{aligned}
$$

PLANE GEOMETRY

2.100 The equation of a line:

$$
A x+B y+C=0 .
$$

2.101 If p is the perpendicular from the origin upon the line, and α and β the angles p makes with the x - and y-axes:

$$
p=x \cos \alpha+y \cos \beta
$$

2.102 If α^{\prime} and β^{\prime} are the angles the line makes with the x - and y-axes:

$$
p=y \cos \alpha^{\prime}-x \cos \beta^{\prime}
$$

2.103 The equation of a line may be written

$$
y=a x+b
$$

$a=$ tangent of angle the line makes with the x-axis,
$b=$ intercept of the y-axis by the line.
2.104 The two lines:

$$
\begin{aligned}
& y=a_{1} x+b_{1}, \\
& y=a_{2} x+b_{2},
\end{aligned}
$$

intersect at the point :

$$
x=\frac{b_{2}-b_{1},}{a_{1}-a_{2}} \quad y=\frac{a_{1} b_{2}-a_{2} b_{1}}{a_{1}-a_{2}} .
$$

2.105 If ϕ is the angle between the two lines 2.104:

$$
\tan \phi= \pm \frac{a_{1}-a_{2}}{1+a_{1} a_{2}} .
$$

2.106 Equations of two parallel lines:

$$
\left\{\begin{array} { l }
{ A x + B y + C _ { 1 } = 0 } \\
{ A x + B y + C _ { 2 } = 0 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
y=a x+b_{1} \\
y=a x+b_{2}
\end{array}\right.\right.
$$

2.107 Equations of two perpendicular lines:

$$
\left\{\begin{array} { l }
{ A x + B y + C _ { 1 } = 0 } \\
{ B x - A y + C _ { 2 } = 0 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
y=a x+b_{1} \\
y=-\frac{x}{a}+b_{2}
\end{array}\right.\right.
$$

2.108 Equation of line through x_{1}, y_{1} and parallel to the line:

$$
\begin{array}{rlrl}
A x+B y+C & =0 & \text { or } & y \\
=a x+b, \\
A\left(x-x_{1}\right)+B\left(y-y_{1}\right) & =0 & \text { or } & y-y_{1}
\end{array}=a\left(x-x_{1}\right) . ~ \text {. }
$$

2.109 Equation of line through x_{1}, y_{1} and perpendicular to the line

$$
\begin{array}{rlcc}
A x+B y+C=0 & \text { or } & y & =a x+b, \\
B\left(x-x_{1}\right)-A\left(y-y_{1}\right) & =0 & \text { or } & y-y_{1}
\end{array}=-\frac{x-x_{1}}{a} .
$$

2.110 Equation of line through x_{1}, y_{1} making an angle ϕ with the line $y=a x+b$:

$$
y-y_{1}=\frac{a+\tan \phi}{\mathrm{I}-a \tan \phi}\left(x-x_{1}\right) .
$$

2.111 Equation of line through the two points, x_{1}, y_{1}, and x_{2}, y_{2} :

$$
y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) .
$$

2.112 Perpendicular distance from the point x_{1}, y_{1} to the line

$$
\begin{array}{rll}
A x+B y+C=0 & \text { or } & y=a x+b, \\
p=\frac{A x_{1}+B y_{1}+C}{\sqrt{A_{2}+B_{2}}} & \text { or } & p=\frac{y_{1}-a x_{1}-b}{\sqrt{1+a^{2}}}
\end{array}
$$

2.113 Polar equation of the line $y=a x+b$:

$$
r=\frac{b \cos \alpha}{\sin (\theta-\alpha)},
$$

where

$$
\tan \alpha=a
$$

2.114 If p, the perpendicular to the line from the origin, makes an angle β with the axis:

$$
p=r \cos (\theta-\beta)
$$

2.130 Area of polygon whose vertices are at $x_{1}, y_{1} ; x_{2}, y_{2} ; \ldots \ldots$. $x_{n}, y_{n}=A$.
$2 A=y_{1}\left(x_{n}-x_{2}\right)+y_{2}\left(x_{1}-x_{3}\right)+y_{3}\left(x_{2}-x_{4}\right)+\ldots .+y_{n}\left(x_{n-1}-x_{1}\right)$.

plane curves

2.200 The equation of a plane curve in rectangular coördinates may be given in the forms:
(a)
$y=f(x)$.
(b) $\quad x=f_{1}(t), y=f_{2}(t)$. The parametric form.
(c) $\quad F(x, y)=0$.
2.201 If τ is the angle between the tangent to the curve and the x-axis:
(a) $\tan \tau=\frac{d y}{d x}=y^{\prime}$.
(b) $\tan \boldsymbol{\tau}=\frac{\frac{d f_{2}(t)}{d t}}{\frac{d f_{1}(t)}{d t}}$.
(c) $\tan \boldsymbol{\tau}=-\frac{\frac{\partial F(x, y)}{\partial x}}{\frac{\partial F(x, y)}{\partial y}}$.

In the following formulas,
$y^{\prime}=\frac{d y}{d x}=\tan \tau(2.201)$.

Fig. 2
$2.202 O M=x, M P=y$, angle $X T P=\tau$.
$T P=y \csc \tau=\frac{y \sqrt{\mathrm{~T}+y^{\prime 2}}}{y^{\prime}}=$ tangent,
$T M=\mathrm{y} \cot \tau=\frac{y}{y^{\prime}}=$ subtangent,
$P N=y \sec \tau=y \sqrt{1+y^{\prime 2}}=$ normal,
$M N=y \tan \tau=y y^{\prime}=$ subnormal.
$2.203 O T=x-\frac{y}{y^{\prime}}=$ intercept of tangent on x-axis, $O T^{\prime}=y-x y^{\prime}=$ intercept of tangent on y-axis, $O N=x+y y^{\prime}=$ intercept of normal on x-axis, $O N^{\prime}=y+\frac{x}{y^{\prime}}=$ intercept of normal on y-axis.
2.204 $O Q=\frac{y-x y^{\prime}}{\sqrt{I+y^{\prime 2}}}=\begin{gathered}\text { distance of tangent from origin }=P S=\text { projection of } \\ \text { radius vector on normal. }\end{gathered}$

$$
\text { Coördinates of } Q: \quad \frac{y^{\prime}\left(x y^{\prime}-y\right)}{1+y^{\prime 2}}, \frac{y-x y^{\prime}}{I+y^{\prime 2}} \text {. }
$$

2.205 $O S=\frac{x+y y^{\prime}}{\sqrt{1+y^{\prime 2}}}=\begin{gathered}\text { distance of normal from origin } \\ \text { radius vector on tangent. }\end{gathered}$ radius vector on tangent.
Coördinates of $S: \frac{x+y y^{\prime}}{I+y^{\prime 2}}, \frac{\left(x+y y^{\prime}\right) y^{\prime}}{I+y^{\prime 2}}$.
2.206 $O R=\frac{\sqrt{x^{2}+y^{2}}\left(y-x y^{\prime}\right)}{x+y y^{\prime}}=$ polar subtangent, $P R=\frac{\left(x^{2}+y^{2}\right) \sqrt{I+y^{\prime 2}}}{x+y y^{\prime}}=$ polar tangent,

Coördinates of $R: \frac{y\left(x y^{\prime}-y\right)}{x+y y^{\prime}}, \frac{x\left(y-x y^{\prime}\right)}{x+y y^{\prime}}$.
2.207 $O V=\frac{\sqrt{x^{2}+y^{2}}\left(x+y y^{\prime}\right)}{y-x y^{\prime}}=$ polar subnormal,

$$
P V=\frac{\left(x^{2}+y^{2}\right) \sqrt{I+y^{\prime 2}}}{y-x y^{\prime}}=\text { polar normal, }
$$

.Coördinates of $V: \frac{y\left(x+y y^{\prime}\right)}{y-x y^{\prime}},-\frac{x\left(x+y y^{\prime}\right)}{y-x y^{\prime}}$.
2.210 The equations of the tangent at x_{1}, y_{1} to the curve in the three forms of 2.200 are:
(a)

$$
y-y_{1}=f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)
$$

(b)

$$
\left(y-y_{1}\right) f_{1}^{\prime}\left(t_{1}\right)=\left(x-x_{1}\right) f_{2}^{\prime}\left(t_{1}\right)
$$

(c)

$$
\left(x-x_{1}\right)\left(\frac{\partial F}{\partial x}\right)_{\substack{x=x_{1} \\ y=y_{1}}}+\left(y-y_{1}\right)\left(\frac{\partial F}{\partial y}\right)_{\substack{x=x_{1} \\ y=y_{1}}}=0 .
$$

2.211 The equations of the normal at x_{1}, y_{1} to the curve in the three forms of 2.200 are:
(a)

$$
f^{\prime}\left(x_{1}\right)\left(y-y_{1}\right)+\left(x-x_{1}\right)=0
$$

(b)

$$
\left(y-y_{1}\right) f_{2}^{\prime}\left(t_{1}\right)+\left(x-x_{1}\right) f_{1}^{\prime}\left(t_{1}\right)=0
$$

(c)

$$
\left(x-x_{1}\right)\left(\frac{\partial F}{\partial y}\right)_{\substack{x=x_{1} \\ y=y_{1}}}=\left(y-y_{1}\right)\left(\frac{\partial F}{\partial x}\right)_{\substack{x=x_{1} \\ y=y_{1}}} .
$$

2.212 The perpendicular from the origin upon the tangent to the curve $F(x, y)=0$ at the point x, y is:

$$
p=\frac{x \frac{\partial F}{\partial x}+y \frac{\partial F}{\partial y}}{\sqrt{\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}}}
$$

2.213 Concavity and Convexity. If in the neighborhood of a point P a curve lies entirely on one side of the tangent, it is concave or convex upwards according as $y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}$ is positive or negative. The positive direction of the axes are shown in figure 2.
2.220 Convention as to signs. The positive direction of the normal is related to the positive direction of the tangent as the positive y-axis is related to the positive x-axis. The angle τ is measured positively in the counter-clockwise direction from the positive x-axis to the positive tangent.
2.221 Radius of curvature $=\rho ;$ curvature $=1 / \rho$.

$$
\frac{\mathrm{x}}{\rho}=\frac{d \tau}{d s}
$$

where s is the arc drawn from a fixed point of the curve in the direction of the positive tangent.
2.222 Formulas for the radius of curvature of curves given in the three forms of 2.200 .
(a)

$$
\begin{gathered}
\rho=\frac{\left\{\mathrm{I}+\left(\frac{d y}{d x}\right)^{2}\right\}^{\frac{3}{2}}}{\frac{d^{2} y}{d x^{2}}}=\frac{\left(\mathrm{I}+y^{\prime 2}\right)^{\frac{3}{2}}}{y^{\prime \prime}} \\
\rho=\frac{\left\{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}\right\}^{\frac{3}{3}}}{\frac{d x}{d t} \frac{d^{2} y}{d t^{2}}-\frac{d y}{d t} \frac{d^{2} x}{d t^{2}}}=\frac{\left(\frac{d s}{d t}\right)^{2}}{\left\{\left(\frac{d^{2} x}{d t^{2}}\right)^{2}+\left(\frac{d^{2} y}{d t^{2}}\right)^{2}-\left(\frac{d^{2} s}{d t^{2}}\right)^{2}\right\}^{3}}
\end{gathered}
$$

If s is taken as the parameter t :
(c)

$$
\begin{align*}
& \frac{\mathrm{I}}{\rho}=\frac{d x}{d s} \frac{d^{2} y}{d s^{2}}-\frac{d y}{d s} \frac{d^{2} x}{d s^{2}}=\left\{\left(\frac{d^{2} x}{d s^{2}}\right)^{2}+\left(\frac{d^{2} y}{d s^{2}}\right)^{2}\right\}^{\frac{1}{2}} \tag{b'}\\
& \rho=-\frac{\left\{\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}\right\}^{\frac{3}{2}}}{\frac{\partial^{2} F}{\partial x^{2}}\left(\frac{\partial F}{\partial y}\right)^{2}-2 \frac{\partial^{2} F}{\partial x \partial y} \frac{\partial F}{\partial x} \frac{\partial F}{\partial y}+\frac{\partial^{2} F}{\partial y^{2}}\left(\frac{\partial F}{\partial x}\right)^{2}}
\end{align*}
$$

2.223 The center of curvature is a point C (fig. 2) on the normal at P such that $P C=\rho$. If ρ is positive C lies on the positive normal (2.213); if negative, on the negative normal.
2.224 The circle of curvature is a circle with C as center and radius $=\rho$.
2.225 The chord of curvature is the chord of the circle of curvature passing through the origin and the point P.
2.226 The coördinates of the center of curvature at the point x, y are ξ, η :

$$
\begin{array}{ll}
\xi=x-\rho \sin \tau \\
\eta=y+\rho \cos \tau
\end{array} \quad \tan \tau=\frac{d y}{d x}
$$

If l^{\prime}, m^{\prime} are the direction cosines of the positive normal,

$$
\begin{aligned}
& \xi=x+l^{\prime} \rho \\
& \eta=y+m^{\prime} \rho .
\end{aligned}
$$

2.227 If l, m are the direction cosines of the positive tangent and l^{\prime}, m^{\prime} those of the positive normal,

$$
\begin{aligned}
\frac{d l}{d s} & =\frac{l^{\prime}}{\rho}, \frac{d m}{d s}=\frac{m^{\prime}}{\rho} . \\
l^{\prime} & =m, m^{\prime}=-l, \\
\frac{d l^{\prime}}{d s} & =-\frac{l}{\rho}, \frac{d m^{\prime}}{d s}=-\frac{m}{\rho}
\end{aligned}
$$

2.228 If the tangent and normal at P are taken as the x - and y - axes, then

$$
\rho={ }_{x \rightarrow 0} \operatorname{limil}_{x \rightarrow 0} \frac{x^{2}}{2 y}
$$

2.229 Points of Inflexion. For a curve given in the form (a) of 2.200 a point of inflexion is a point at which one at least of $\frac{d^{2} y}{d x^{2}}$ and $\frac{d^{2} x}{d y^{2}}$ exists and is continuous and at which one at least of $\frac{d^{2} y}{d x^{2}}$ and $\frac{d^{2} x}{d y^{2}}$ vanishes and changes sign.

If the curve is given in the form (b) a point of inflexion, t_{1}, is a point at which the determinant:

$$
\left|\begin{array}{ll}
f_{1}^{\prime \prime}\left(t_{1}\right) & f_{2}^{\prime \prime}\left(t_{1}\right) \\
f_{1}^{\prime}\left(t_{1}\right) & f_{2}^{\prime}\left(t_{1}\right)
\end{array}\right|
$$

vanishes and changes sign.
2.230 Eliminating x and y between the coördinates of the center of curvature (2.226) and the corresponding equations of the curve (2.200) gives the equation of the evolute of the curve - the locus of the center of curvature. A curve which has a given curve for evolute is called an involute of the given curve.
2.231 The envelope to a family of curves,
I.

$$
F(x, y, \boldsymbol{a})=0
$$

where \boldsymbol{a} is a parameter, is obtained by eliminating \boldsymbol{a} between (I) and
2.

$$
\frac{\partial F}{\partial a}=0
$$

2.232 If the curve is given in the form,
I.

$$
x=f_{1}(t, a)
$$

$$
\text { 2. } \quad y=f_{2}(t, a) \text {, }
$$

the envelope is obtained by eliminating t and \boldsymbol{a} between (1), (2) and the functional determinant,
3.

$$
\frac{\partial\left(f_{1}, f_{2}\right)}{\partial(t, a)}=0 \quad(\text { see } 1.370)
$$

2.233 Pedal Curves. The locus of the foot of the perpendicular from a fixed point upon the tangent to a given curve is the pedal of the given curve with reference to the fixed point.
2.240 Asymptotes. The line

$$
y=a x+b
$$

is an asymptote to the curve $y=f(x)$ if

$$
\begin{aligned}
a & ={ }_{x \rightarrow \infty}^{\text {limit }} f^{\prime}(x) \\
b & ={ }_{x \rightarrow \infty}^{\text {limit }}\left[f(x)-x f^{\prime}(x)\right]
\end{aligned}
$$

2.241 If the curve is

$$
x=f_{1}(t), y=f_{2}(t),
$$

and if for a value of t, t_{1}, f_{1} or f_{2} becomes infinite, there will be an asymptote if for that value of t the direction of the tangent to the curve approaches a limit and the distance of the tangent from a fixed point approaches a limit.
2.242 An asymptote may sometimes be determined by expanding the equation of the curve in a series,

If

$$
\begin{gathered}
y=\sum_{k=0}^{n} a_{k} x^{k}+\sum_{k=\mathrm{I}}^{\infty} \frac{b_{k}}{x^{k}} . \\
\\
\operatorname{limitit}_{x \rightarrow \infty}^{\infty} \sum_{k=\mathrm{I}}^{\infty} \frac{b_{k}}{x^{k}}=0,
\end{gathered}
$$

the equation of the asymptote is

$$
y=\sum_{k=0}^{n} a_{k} x^{k}
$$

If of the first degree in x, this represents a rectilinear asymptote; if of a higher degree, a curvilinear asymptote.
2.250 Singular Points. If the equation of the curve is $F(x, y)=0$, singular points are those for which

$$
\frac{\partial F}{\partial x}=\frac{\partial F}{\partial y}=0
$$

Put,

$$
\Delta=\frac{\partial^{2} F}{\partial x^{2}} \frac{\partial^{2} F}{\partial y^{2}}-\left(\frac{\partial^{2} F}{\partial x \partial y}\right)^{2}
$$

If $\Delta<0$ the singular point is a double point with two distinct tangents.
$\Delta>0$ the singular point is an isolated point with no real branch of the curve through it.
$\Delta=0$ the singular point is an osculating point, or a cusp. The curve has two branches, with a common tangent, which meet at the singular point. If $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial^{2} F}{\partial x^{2}}, \frac{\partial^{2} F}{\partial y^{2}}, \frac{\partial^{2} F}{\partial x \partial y}$ simultaneously vanish at a point the singular point is one of higher order.

PLANE CURVES, POLAR COÖRDINATES

2.270 The equation of the curve is given in the form,

$$
r=f(\theta) .
$$

In figure $2, O P=r$, angle $X O P=\theta$, angle $X T P=\tau$, angle $p P t=\phi$.
2.271θ is measured in the counter-clockwise direction from the initial line, $O X$, and s, the arc, is so chosen as to increase with θ. The angle ϕ is measured in the counter-clockwise direction from the positive radius vector to the positive tangent. Then,

$$
\tau=\theta+\phi .
$$

2.272
$\tan \phi=\frac{r d \theta}{d r}$
$\sin \phi=\frac{r d \theta}{d s}$
$\cos \phi=\frac{d r}{d s}$
2.273

$$
\begin{array}{r}
\tan \tau=\frac{\sin \theta \frac{d r}{d \theta}+r \cos \theta}{\cos \theta \frac{d r}{d \theta}-r \sin \theta} \\
d s=\left\{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}\right\}^{\frac{1}{2}} d \theta
\end{array}
$$

2.274

$$
\begin{array}{ll}
P R=r \sqrt{\mathrm{I}+\left(\frac{r d \theta}{d r}\right)^{2}} & =\text { polar tangent } \\
P V=\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} & =\text { polar normal } \\
O R=r^{2} \frac{d \theta}{d r} & =\text { polar subtangent } \\
O V=\frac{d r}{d \theta} & =\text { polar subnormal. }
\end{array}
$$

$2.275 O Q=\frac{r^{2}}{\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}}=p=$ distance of tangent from origin.
$O S=\frac{r \frac{d r}{d \theta}}{\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}}=$ distance of normal from origin.
2.276 If $u=\frac{1}{r}$, the curve $r=f(\theta)$ is concave or convex to the origin according as

$$
u+\frac{d^{2} u}{d \theta^{2}}
$$

is positive or negative. At a point of inflexion this quantity vanishes and changes sign.
2.280 The radius of curvature is,

$$
\rho=\frac{\left\{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}\right\}^{\frac{3}{2}}}{r^{2}+2\left(\frac{d r}{d \theta}\right)^{2}-r \frac{d^{2} r}{d \theta^{2}}} .
$$

2.281 If $u=\frac{\mathrm{I}}{r}$ the radius of curvature is

$$
\rho=\frac{\left\{u^{2}+\left(\frac{d u}{d \theta}\right)^{2}\right\}^{z}}{u^{3}\left(u+\frac{d^{2} u}{d \theta^{2}}\right)}
$$

2.282 If the equation of the curve is given in the form,

$$
r=f(s)
$$

where s is the arc measured from a fixed point of the curve,

$$
\rho=\frac{r \sqrt{\mathrm{I}-\left(\frac{d r}{d s}\right)^{2}}}{r \frac{d^{2} r}{d s^{2}}+\left(\frac{d r}{d s}\right)^{2}-\mathrm{I}}
$$

2.283 If p is the perpendicular from the origin upon the tangent to the curve,
I. $\quad \rho=r \frac{d r}{d p}$
2. $\rho=p+\frac{d^{2} p}{d \tau^{2}}$
2.284 If $u=\frac{\mathrm{I}}{r}$

$$
\begin{aligned}
& \frac{\mathrm{I}}{p^{2}}=u^{2}+\left(\frac{d u}{d \theta}\right)^{2} \\
& \frac{d^{2} u}{d \theta^{2}}+u=\frac{r^{2}}{p^{3}}\left(\frac{d p}{d r}\right)
\end{aligned}
$$

2.286 Polar coördinates of the center of curvature, r_{1}, θ_{1} :

$$
\begin{aligned}
r_{1}^{2} & =\frac{r^{2}\left\{\left(\frac{d r}{d \theta}\right)^{2}-r \frac{d^{2} r}{d \theta^{2}}\right\}^{2}+\left(\frac{d r}{d \theta}\right)^{2}\left\{\left(\frac{d r}{d \theta}\right)^{2}+r^{2}\right\}^{2}}{\left\{r^{2}+2\left(\frac{d r}{d \theta}\right)^{2}-r \frac{d^{2} r}{d \theta^{2}}\right\}^{2}} \\
\theta_{1} & =\theta+\chi, \\
\tan \chi & =\frac{\left(\frac{d r}{d \theta}\right)^{3}+r^{2} \frac{d r}{d \theta}}{r\left(\frac{d r}{d \theta}\right)^{2}-r^{2} \frac{d^{2} r}{d \theta^{2}}}
\end{aligned}
$$

2.287 If $2 c$ is the chord of curvature (2.225):

$$
\begin{aligned}
2 c & =2 p \frac{d r}{d p}=2 \rho \frac{p}{r} \\
& =2 \frac{u^{2}+\left(\frac{d u}{d \theta}\right)^{2}}{u^{2}\left(u+\frac{d^{2} u}{d \theta^{2}}\right)}
\end{aligned}
$$

2.290 Rectilinear Asymptotes. If r approaches ∞ as θ approaches an angle α, and if $r(\alpha-\theta)$ approaches a limit, b, then the straight line

$$
r \sin (\alpha-\theta)=b
$$

is an asymptote to the curve $r=f(\theta)$.
2.295 Intrinsic Equation of a plane curve. An intrinsic equation of a plane curve is one giving the radius of curvature, ρ, as a function of the arc, s,

$$
\rho=f(s)
$$

If τ is the angle between the x-axis and the positive tangent (2.271):

$$
\begin{array}{ll}
d \boldsymbol{\tau}=\frac{d s}{f(s)} & x=x_{0}+\int_{s_{0}}^{s} \cos \boldsymbol{\tau} \cdot d s \\
\boldsymbol{\tau}=\boldsymbol{\tau}_{0}+\int_{s_{0}}^{s} \frac{d s}{f(s)} & y=y_{0}+\int_{s_{0}}^{s} \sin \boldsymbol{\tau} \cdot d s
\end{array}
$$

2.300 The general equation of the second degree:

$$
\begin{aligned}
& a_{11} x^{2}+2 a_{12} x y+a_{22} y^{2}+2 a_{13} x+2 a_{23} y+a_{33}=0 \\
& A=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| ; a_{h k}=a_{k h} \\
& A_{h k}=\text { Minor of } a_{h k} .
\end{aligned}
$$

Criterion giving the nature of the curve:

	$A_{33} \neq O$			$A_{33}=O$		
$A \neq O$	$A_{33}<0$		${ }_{33}>0$	Parabola		
	Hyperbola	$\begin{array}{r} a_{11} A \\ <O \end{array}$	$\begin{array}{r} \text { or } a_{22} A \\ >O \end{array}$			
		Ellipse	Imaginary Curve			
$A=O$	$A_{33}<0$	$A_{33}>0$			$\begin{gathered} \text { or } \quad \begin{array}{c} A_{22} \\ >O \end{array}, ~ \end{gathered}$	$\begin{aligned} A_{11} & =A_{22} \\ & =O\end{aligned}$
	Pair of Real Straight Lines Intersecti	Pair of Imaginary Lines		Pair of Parallel Lines		Double Line

(Pascal: Repertorium der höheren Mathematik, II, I, p. 228)
2.400 Parabola (Fig. 3).
$2.401 \quad O$, Vertex; F, Focus; ordinate through D, Directrix.

Equation of parabola, origin at O,

$$
\begin{aligned}
y^{2} & =4 a x \\
x & =O M, y=M P, \\
O F & =O D=a \\
F L & =2 a=\text { semi latus }
\end{aligned}
$$

rectum.

$$
F P=D^{\prime} P
$$

2.402 $F P=F T=M D$

$$
=x+a .
$$

Fig. 3

$$
\begin{aligned}
& N P=2 \sqrt{a(a+x)}, T M=2 x, M N=2 a, O N=x+2 a . \\
& O N^{\prime}=\sqrt{\frac{x}{a}}(x+2 a), O Q=x \sqrt{\frac{a}{a+x}}, O S=(x+2 a) \sqrt{\frac{x}{a+x}} .
\end{aligned}
$$

$F B$ perpendicular to tangent $T P$.

$$
\begin{aligned}
F B & =\sqrt{a(a+x)}, T P=2 T B=2 \sqrt{x(a+x)} . \\
\overline{F B}^{2} & =F T \times F O=F P \times F O .
\end{aligned}
$$

The tangents $T P$ and $U P^{\prime}$ at the extremities of a focal chord $P F P^{\prime}$ mect on the directrix at U at right angles.

$$
\begin{aligned}
\tau & =\text { angle } X T P . \\
\tan \tau & =\sqrt{\frac{\bar{a}}{x}}
\end{aligned}
$$

The tangent at P bisects the angles $F P D^{\prime}$ and $F U D^{\prime}$.
2.403 Radius of curvature:

$$
\rho=\frac{2(x+a)^{\frac{3}{2}}}{\sqrt{a}}=\frac{\mathrm{I}}{4} \frac{\overline{N P}^{3}}{a^{2}} .
$$

Coördinates of center of curvature:

$$
\xi=3 x+2 a, \eta=-2 x \sqrt{\frac{x}{a}}
$$

Equation of Evolute:

$$
{ }^{2} 7 a y^{2}=4(x-2 a)^{3} .
$$

2.404 Length of arc of parabola measured from vertex,

$$
s=\sqrt{x(x+a)}+a \log \left(\sqrt{\mathrm{I}+\frac{x}{a}}+\sqrt{\frac{x}{a}}\right) .
$$

Area $O P M O=\frac{1}{3} x y$.
2.405 Polar equation of parabola:

$$
\begin{aligned}
& r=F P, \\
& \theta=\text { angle } X F P, \\
& r=\frac{2 a}{I-\cos \theta} .
\end{aligned}
$$

2.406 Equation of Parabola in terms of p, the perpendicular from F upon the tangent, and r, the radius vector $F P$:

$$
\begin{gathered}
\frac{l}{p^{2}}=\frac{2}{r} \\
l=\text { semi latus rectum. }
\end{gathered}
$$

2.410 Ellipse (Fig. 4).

Fig. 4
$2.411 O$, Centre; F, F^{\prime}, Foci.
Equation of Ellipse origin at O :

$$
\begin{gathered}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\mathbf{I} \\
x=O M, y=M P, a=O A, b=O B .
\end{gathered}
$$

2.412 Parametric Equations of Ellipse,

$$
x=a \cos \phi, \quad y=b \sin \phi
$$

$\phi=$ angle $X O P^{\prime}$, where P^{\prime} is the point where the ordinate at P meets the eccentric circle, drawn with O as center and radius a.
$2.413 \quad O F=O F^{\prime}=e a$

$$
\begin{aligned}
e & =\text { eccentricity }=\frac{\sqrt{a^{2}-b^{2}}}{a}, \\
F L & =\frac{b^{2}}{a}=a\left(\mathrm{I}-e^{2}\right)=\text { semi latus rectum. } \\
F^{\prime} P & =a+e x, F P=a-e x, F P+F^{\prime} P=2 a . \\
\tau & =\text { angle } X T T^{\prime} . \\
\tan \tau & =-\frac{b x}{a \sqrt{a^{2}-x^{2}}} \cdot \\
N M & =\frac{b^{2} x}{a^{2}}, O N=e^{2} x, O T=\frac{a^{2}}{x}, O T^{\prime}=\frac{b^{2}}{y}, M T=\frac{a^{2}-x^{2}}{x}, \\
P T & =\frac{\sqrt{a^{2}-x^{2}} \sqrt{a^{2}-e^{2} x^{2}}}{x}, O N^{\prime}=\frac{e^{2} a}{b} \sqrt{a^{2}-x^{2}}, P S=\frac{a b}{\sqrt{a^{2}-e^{2} x^{2}}}, \\
O S & =\frac{e^{2} x \sqrt{a^{2}-x^{2}}}{\sqrt{a^{2}-e^{2} x^{2}}} .
\end{aligned}
$$

2.414 $D D^{\prime}$ parallel to $T^{\prime} T ; D D^{\prime}$ and $P P^{\prime}$ are conjugate diameters:

$$
\begin{aligned}
O D^{2} & =a^{2}-e^{2} x^{2}=F P \times F^{\prime} P \\
O P^{2}+O D^{2} & =a^{2}+b^{2} \\
P S \times O D & =a b
\end{aligned}
$$

Equation of Ellipse referred to conjugate diameters as axes:

$$
\begin{array}{ll}
\frac{x^{2}}{a^{\prime 2}}+\frac{y^{2}}{b^{\prime 2}}=\mathrm{I} & \begin{array}{l}
\alpha=\text { angle } X O P \\
\beta=\text { angle } X O D
\end{array} \\
a^{\prime}=O D^{\prime} & a^{\prime 2}=\frac{a^{2} b^{2}}{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha} \\
b^{\prime}=O P & \tan \alpha \tan \beta=-\frac{b^{2}}{a^{2}} \\
b^{\prime 2}=\frac{a^{2} b^{2}}{a^{2} \sin ^{2} \beta+b^{2} \cos ^{2} \beta} &
\end{array}
$$

2.415 Radius of curvature of Ellipse:

$$
\begin{aligned}
& \rho=\frac{\left(a^{4} y^{2}+b^{4} x^{2}\right)^{\frac{3}{2}}}{a^{4} b^{4}}=\frac{\left(a^{2}-e^{2} x^{2}\right)^{\frac{3}{2}}}{a b} \\
& \text { angle } F P N=\text { angle } F^{\prime} P N=\omega \\
& \qquad \tan \omega=\frac{e a y}{b^{2}} \\
& \frac{2}{\rho \cos \omega}=\frac{1}{F P}+\frac{1}{F^{\prime} P}
\end{aligned}
$$

Coördinates of center of curvature:

$$
\xi=\frac{c^{2}-x^{3}}{a^{2}}, \eta=-\frac{a^{2} e^{2} y^{3}}{b^{4}} .
$$

Equation of Evolute of Ellipse,

$$
\left(\frac{a x}{e^{2}}\right)^{\frac{2}{3}}+\left(\frac{b y}{e^{2}}\right)^{\frac{3}{3}}=\mathbf{x} .
$$

2.416 Area of Ellipse, $\pi a b$.

Length of arc of Ellipse,

$$
s=a \int_{0}^{\phi} \sqrt{I-e^{2} \sin ^{2} \phi} d \phi
$$

2.417 Polar Equation of Ellipse,

$$
\begin{aligned}
r=F^{\prime} P, \theta & =\text { angle } X F^{\prime} P, \\
r & =\frac{a\left(\mathrm{I}-e^{2}\right)}{\mathrm{I}-e \cos \theta}
\end{aligned}
$$

2.418

$$
\begin{aligned}
r=O P, \theta & =\text { angle } X O P, \\
r & =\frac{b}{\sqrt{1-e^{2} \cos ^{2} \theta}}
\end{aligned}
$$

2.419 Equation of Ellipse in terms of p, the perpendicular from F upon the tangent at P, and r, the radius vector $F P$:

$$
\frac{l}{p^{2}}=\frac{2}{r}-\frac{1}{a} .
$$

$$
l=\text { semi latus rectum. }
$$

2.420 Hyperbola (Fig. 5).
2.421 O, Center; F, F^{\prime}, Foci.

Equation of hyperbola, origin at O,

$$
\begin{gathered}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\mathrm{I} \\
x=O M, y=M P, a=O A=O A^{\prime} .
\end{gathered}
$$

2.422 Parametric Equations of hyperbola,

$$
\begin{aligned}
& x=a \cosh u, y=b \sinh u . \\
& x=a \sec \phi, y=b \tan \phi .
\end{aligned}
$$

or
$\phi=$ angle $X O P^{\prime}$, where P^{\prime} is the point where the ordinate at T meets the circle of radius a, center O.
2.423 $O F=O F^{\prime}=e a$.

$$
e=\text { eccentricity }=\frac{\sqrt{a^{2}+b^{2}}}{a} .
$$

Fig. 5
$F L=\frac{b^{2}}{a}=a\left(e^{2}-\mathrm{I}\right)=$ semi latus rectum.
$F^{\prime} P=e x+a, F P=e x-a, F^{\prime} P-F P=2 a$.
$\boldsymbol{\tau}=$ angle $X T P$.
$\tan \boldsymbol{\tau}=\frac{b x}{a \sqrt{x^{2}-a^{2}}}$.

$$
N M=\frac{b^{2} x}{a^{2}}, O N=e^{2} x, O T=\frac{a^{2}}{x}, O T^{\prime}=\frac{b^{2}}{y}
$$

$$
M T=\frac{x^{2}-a^{2}}{x}, P T=\frac{\sqrt{x^{2}-a^{2}} \sqrt{e^{2} x^{2}-a^{2}}}{x}, \quad O N^{\prime}=\frac{e^{2} a}{b} \sqrt{x^{2}-a^{2}},
$$

$$
P S=\frac{a b}{\sqrt{e^{2} x^{2}-a^{2}}}, O S=\frac{e^{2} x \sqrt{x^{2}-a^{2}}}{\sqrt{e^{2} x^{2}-a^{2}}}
$$

2.424

$$
O U=\text { Asymptote }
$$

$$
\tan X O U=\frac{b}{a}
$$

$b=$ distance of vertex A from asymptote.
2.425 Radius of curvature of hyperbola,

$$
\rho=\frac{\left(e^{2} x^{2}-a^{2}\right)^{\frac{3}{2}}}{a b}
$$

angle $F^{\prime} P T=$ angle $F P T$.

$$
\begin{aligned}
& \text { angle } F P N=\omega=\frac{\pi}{2}-F P T \\
& \text { angle } F^{\prime} P N=\omega^{\prime}=\frac{\pi}{2}+F^{\prime} P T \\
& \qquad \tan \omega=\frac{a e y}{b^{2}}
\end{aligned}
$$

$$
\cos \omega=\frac{b}{\sqrt{e^{2} \cdot x^{2}-a^{2}}}
$$

$$
\frac{2}{\rho \cos \omega}=\frac{I}{F P}-\frac{\mathrm{I}}{F^{\prime} P} .
$$

Coördinates of center of curvature,

$$
\xi=\frac{e^{2} x^{3}}{a^{2}}, \eta=-\frac{a^{2} e^{2} y^{3}}{b^{4}} .
$$

Equation of Evolute of hyperbola,

$$
\left(\frac{a x}{e^{2}}\right)^{3}-\left(\frac{b y}{e^{2}}\right)^{3}=\text { г. }
$$

2.426 In a rectangular hyperbola $b=a$; the asymptotes are perpendicular to each other. Equation of rectangular hyperbola with asymptotes as axes and origin at O :

$$
x y=\frac{a^{2}}{2} .
$$

2.427 Length of arc of hyperbola,

$$
s=\frac{b^{2}}{a e} \int_{0}^{\phi} \frac{\sec ^{2} \phi d \phi}{\sqrt{I-k^{2} \sin ^{2} \phi}}, \quad k=\frac{\mathrm{I}}{e}, \quad \tan \phi=\frac{a e y}{b^{2}} .
$$

2.428 Polar Equation of hyperbola:

$$
\begin{aligned}
& r=F^{\prime} P, \quad \theta=X F^{\prime} P, \quad r=a \frac{e^{2}-\mathrm{I}}{e \cos \theta-\mathrm{I}}, \\
& r=O P, \quad \theta=X O P, \quad r^{2}=\frac{b^{2}}{e^{2} \cos ^{2} \theta-\mathrm{I}} .
\end{aligned}
$$

2.429 Equation of right-hand branch of hyperbola in terms of p, the perpendicular from F upon the tangent at P and r, the radius vector $F P$,

$$
\frac{l}{p^{2}}=\frac{2}{r}+\frac{\mathrm{I}}{a} .
$$

$$
l=\text { semi latus rectum. }
$$

2.450 Cycloids and Trochoids.

If a circle of radius a rolls on a straight line as base the extremity of any radius, a, describes a cycloid. The rectangular equation of a cycloid is:

$$
\begin{aligned}
& x=a(\phi-\sin \phi), \\
& y=a(\mathrm{I}-\cos \phi),
\end{aligned}
$$

where the x-axis is the base with the origin at the initial point of contact. ϕ is the angle turned through by the moving circle. (Fig. 6.)

Fig. 6
$A=$ vertex of cycloid.
$C=$ center of generating circle, drawn tangent at A.
The tangent to the cycloid at P is parallel to the chord $A Q$.

$$
\operatorname{Arc} A P=2 \times \operatorname{chord} A Q
$$

The radius of curvature at P is parallel to the chord $Q D$ and equal to $2 \times$ chord $Q D$. $P Q=$ circular arc $A Q$.
Length of cycloid: $s=8 a ; a=C A$.
Area of cycloid: $S=3 \pi a^{2}$.
2.451 A point on the radius, $b>a$, describes a prolate trochoid. A point, $b<a$, describes a curtate trochoid. The general equation of trochoids and cycloids is

$$
\begin{aligned}
& x=a \phi-(a+d) \sin \phi, \\
& y=(a+d)(\mathrm{I}-\cos \phi), \\
& d=\circ \text { Cycloid, } \\
& d>0 \text { Prolate trochoid, } \\
& d<0 \text { Curtate trochoid. }
\end{aligned}
$$

Radius of curvature:

$$
\rho=\frac{\left(2 a y+d^{2}\right)^{\frac{3}{3}}}{a y+a d+d^{2}}
$$

2.452 Epi- and Hypocycloids. An epicycloid is described by a point on a circle of radius a that rolls on the convex side o a fixed circle of radius b. An hypocycloid is described by a point on a circle of radius a that rolls on the concave side of a fixed circle of radius b.

Equations of epi- and hypocycloids.
Upper sign: Epicycloid,
Lower sign: Hypocycloid.

$$
\begin{aligned}
& x=(b \pm a) \cos \phi \mp \cos \frac{b \pm a}{a} \phi, \\
& y=(b \pm a) \sin \phi-a \sin \frac{b \pm a}{a} \phi .
\end{aligned}
$$

The origin is at the center of the fixed circle. The x-axis is the line joining the centers of the two circles in the initial position and ϕ is the angle turned through by the moving circle.

Radius of curvature:

$$
\rho=\frac{2 a(b \pm a)}{b \pm 2 a} \sin \frac{a}{2 b} \phi .
$$

2.453 In the epicycloid put $b=a$. The curve becomes a Cardioid:

$$
\left(x^{2}+y^{2}\right)^{2}-6 a^{2}\left(x^{2}+y^{2}\right)+8 a^{3} x=3 a^{4} .
$$

2.454 Catenary. The equation may be written:
I.

$$
\begin{aligned}
& y=\frac{I}{2} a\left(e^{\frac{x}{a}}+e^{-\frac{x}{a}}\right) . \\
& y=a \cosh \frac{x}{a} \\
& x=a \log \frac{y \pm \sqrt{y^{2}-a^{2}}}{a} .
\end{aligned}
$$

The radius of curvature, which is equal to the length of the normal, is:

$$
\rho=a \cosh ^{2} \frac{x}{a}
$$

2.455 Spiral of Archimedes. A point moving uniformly along a line which rotates uniformly about a fixed point describes a spiral of Archimedes. The equation is:

$$
r=a \theta
$$

or

$$
\sqrt{x^{2}+y^{2}}=a \tan ^{-1} \frac{y}{x} .
$$

The polar subtangent $=$ polar subnormal $=a$.
Radius of curvature:

$$
\rho=\frac{r\left(\mathrm{I}+\theta^{2}\right)^{\frac{3}{2}}}{\theta\left(2+\theta^{2}\right)}=\frac{\left(r^{2}+a^{2}\right)^{\frac{3}{2}}}{r^{2}+2 a^{2}} .
$$

2.456 Hyperbolic spiral:

$$
r \theta=a .
$$

2.457 Parabolic spiral:

$$
r^{2}=a^{2} \theta
$$

2.458 Logarithmic or equiangular spiral:

$$
\begin{aligned}
r & =a e^{n \theta} \\
n & =\cot \alpha=\text { const., } \\
\alpha & =\text { angle tangent to curve makes with the radius vector. }
\end{aligned}
$$

2.459 Lituus:

$$
r \sqrt{\theta}=a
$$

2.460 Neoid:

$$
r=a+b \theta
$$

2.461 Cissoid:

$$
\begin{aligned}
\left(x^{2}+y^{2}\right) x & =2 a y^{2} \\
r & =2 a \tan \theta \sin \theta
\end{aligned}
$$

2.462 Cassinoid:

$$
\begin{aligned}
\left(x^{2}+y^{2}+a^{2}\right)^{2} & =4 a^{2} x^{2}+b^{4} \\
r^{4}-2 a^{2} r^{2} \cos 2 \theta & =b^{4}-a^{4}
\end{aligned}
$$

2.463 Lemniscate ($b=a$ in Cassinoid):

$$
\begin{aligned}
\left(x^{2}+y^{2}\right)^{2} & =2 a^{2}\left(x^{2}-y^{2}\right) \\
r^{2} & =2 a^{2} \cos 2 \theta
\end{aligned}
$$

2.464 Conchoid:

$$
x^{2} y^{2}=(b+y)^{2}\left(a^{2}-y^{2}\right)
$$

2.465 Witch of Agnesi:

$$
x^{2} y=4 a^{2}(2 a-y)
$$

2.466 Tractrix:

$$
\begin{aligned}
x & =\frac{1}{2} a \log \frac{a+\sqrt{a^{2}-y^{2}}}{a-\sqrt{a^{2}-y^{2}}}-\sqrt{a^{2}-y^{2}}, \\
\frac{d y}{d x} & =-\frac{y}{\sqrt{a^{2}-y^{2}}} \\
\rho & =\frac{a \sqrt{a^{2}-y^{2}}}{y}
\end{aligned}
$$

SOLID GEOMETRY

2.600 The Plane. The general equation of the plane is:

$$
A x+B y+C z+D=0 .
$$

$2.601 l, m, n$ are the direction cosines of the normal to the plane and p is the perpendicular distance from the origin upon the plane.

$$
\begin{aligned}
l, m, n & =\frac{A, B, C}{\sqrt{A^{2}+B^{2}+C^{2}}} \\
p & =l x+m y+n z \\
p & =-\frac{D}{\sqrt{A^{2}+B^{2}+C^{2}}}
\end{aligned}
$$

2.602 The perpendicular from the point x_{1}, y_{1}, z_{1} upon the plane $A x+B y+$ $C z+D=0$ is:

$$
d=\frac{A x_{1}+B v_{1}+C z_{1}+D}{\sqrt{A^{2}+B^{2}+C^{2}}} .
$$

2.603θ is the angle between the two planes:

$$
\begin{gathered}
A_{1} x+B_{1} y+C_{1} z+D_{1}=0 \\
A_{2} x+B_{2} y+C_{2} z+D_{2}=0 \\
\cos \theta=\frac{A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2}}{\sqrt{A_{1}{ }^{2}+B_{1}{ }^{2}+C_{1}^{2}} \sqrt{A_{2}{ }^{2}+B_{2}{ }^{2}+C_{2}{ }^{2}}} .
\end{gathered}
$$

2.604 Equation of the plane passing through the three points $\left(x_{1}, y_{1}, z_{1}\right)\left(x_{2}, y_{2}, z_{2}\right)$ $\left(x_{3}, y_{3}, z_{3}\right)$:

$$
x\left|\begin{array}{lll}
y_{1} & z_{1} & I \\
y_{2} & z_{2} & \text { I } \\
y_{3} & z_{3} & \text { I }
\end{array}\right|+y\left|\begin{array}{lll}
z_{1} & x_{1} & I \\
z_{2} & x_{2} & I \\
z_{3} & x_{3} & \text { I }
\end{array}\right|+z\left|\begin{array}{lll}
x_{1} & y_{1} & I \\
x_{2} & y_{2} & I \\
x_{3} & y_{3} & \text { I }
\end{array}\right|=\left|\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right|
$$

the right line

2.620 The equations of a right line passing through the point x_{1}, y_{1}, z_{1}, and whose direction cosines are l, m, n are:

$$
\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n} .
$$

2.621θ is the angle between the two lines whose direction cosines are l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} :

$$
\begin{aligned}
& \cos \theta=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2} \\
& \sin ^{2} \theta=\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}+\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}
\end{aligned}
$$

2.622 The direction cosines of the normal to the plane defined by the two lines whose direction cosines are l_{1}, m_{1}, n_{1} and $l_{2}, m_{2} n_{2}$ are:

$$
\frac{m_{1} n_{2}-m_{2} n_{1}}{\sin \theta}, \quad \frac{n_{1} l_{2}-n_{2} l_{1}}{\sin \theta}, \quad \frac{l_{1} m_{2}-l_{2} m_{1}}{\sin \theta}
$$

2.623 The shortest distance between the two lines:

$$
\frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}} \quad \text { and } \quad \frac{x-x_{2}}{l_{2}}=\frac{y-y_{2}}{m_{2}}=\frac{z-z_{2}}{n_{2}},
$$

is:
$d=\frac{\left(x_{1}-x_{2}\right)\left(m_{1} n_{2}-m_{2} n_{1}\right)+\left(y_{1}-y_{2}\right)\left(n_{1} l_{2}-n_{2} l_{1}\right)+\left(z_{1}-z_{2}\right)\left(l_{1} m_{2}-l_{2} m_{1}\right)}{\left\{\left(m_{1} l_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}\right\}^{\frac{1}{2}}}$,
2.624 The direction cosines of the shortest distance between the two lines are:

$$
\frac{\left(m_{1} n_{2}-n_{2} m_{1}\right),\left(n_{1} l_{2}-n_{2} l_{1}\right),\left(l_{1} m_{2}-l_{2} m_{1}\right)}{\left\{\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}\right\}^{\frac{1}{2}}} .
$$

2.625 The perpendicular distance from the point x_{2}, y_{2}, z_{2} to the line:

$$
\frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}}
$$

is:
$d=\left\{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right\}^{\frac{2}{2}}-\left\{l_{1}\left(x_{2}-x_{1}\right)+m_{1}\left(y_{2}-y_{1}\right)+n_{1}\left(z_{2}-z_{1}\right)\right\}$.
2.626 The direction cosines of the line passing through the two points x_{1}, y_{1}, z_{1} and x_{2}, y_{2}, z_{2} are:

$$
\frac{\left(x_{2}-x_{1}\right), \quad\left(y_{2}-y_{1}\right), \quad\left(z_{2}-z_{1}\right)}{\left\{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right\}^{\frac{1}{2}}} .
$$

2.627 The two lines:

$$
\begin{array}{ll}
x=m_{1} z+p_{1}, \\
y=n_{1} z+q_{1}, & \text { and }
\end{array} \quad \begin{aligned}
& x=m_{2} z+p_{2}, \\
& y=n_{2} z+q_{2}
\end{aligned}
$$

intersect at a point if,

$$
\left(m_{1}-m_{2}\right)\left(q_{1}-q_{2}\right)-\left(n_{1}-n_{2}\right)\left(p_{1}-p_{2}\right)=0
$$

The coördinates of the point of intersection are:

$$
x=\frac{m_{1} p_{2}-m_{2} p_{1}}{m_{1}-m_{2}}, \quad y=\frac{n_{1} q_{2}-n_{2} q_{1}}{n_{1}-n_{2}}, \quad z=\frac{p_{2}-p_{1}}{m_{1}-m_{2}}=\frac{q_{2}-q_{1}}{n_{1}-n_{2}} .
$$

The equation of the plane containing the two lines is then

$$
\left(n_{1}-n_{2}\right)\left(x-m_{1} z-p_{1}\right)=\left(m_{1}-m_{2}\right)\left(y-n_{1} z-g_{1}\right)
$$

SURFACES

2.640 A single equation in x, y, z represents a surface:

$$
F(x, y, z)=0
$$

2.641 The direction cosines of the normal to the surface are:

$$
l, m, n=\frac{\frac{\partial F}{\partial x}, \quad \frac{\partial F}{\partial y}, \quad \frac{\partial F}{\partial z}}{\left\{\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}+\left(\frac{\partial F}{\partial z}\right)^{2}\right\}^{\frac{1}{2}}} .
$$

2.642 The perpendicular from the origin upon the tangent plane at x, y, z is:

$$
p=l x+m y+n z
$$

2.643 The two principal radii of curvature of the surface $F(x, y, z)=0$ are given by the two roots of:

$$
\left|\begin{array}{cccc}
\frac{k}{\rho}+\frac{\partial^{2} F}{\partial x^{2}} & \frac{\partial^{2} F}{\partial x \partial y} & \frac{\partial^{2} F}{\partial x \partial z} & \frac{\partial F}{\partial x} \\
\frac{\partial^{2} F}{\partial x \partial y} & \frac{k}{\rho}+\frac{\partial^{2} F}{\partial y^{2}} & \frac{\partial^{2} F}{\partial y \partial z} & \frac{\partial F}{\partial y} \\
\frac{\partial^{2} F}{\partial x \partial z} & \frac{\partial^{2} F}{\partial y \partial z} & \frac{k}{\rho}+\frac{\partial^{2} F}{\partial z^{2}} & \frac{\partial F}{\partial z} \\
\frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} & 0
\end{array}\right|=0
$$

where:

$$
k^{2}=\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}+\left(\frac{\partial F}{\partial z}\right)^{2}
$$

2.644 The coördinates of each center of curvature are:

$$
\xi=x+\frac{\rho}{k} \frac{\partial F}{\partial x}, \quad \eta=y+\frac{\rho}{k} \frac{\partial F}{\partial y}, \quad \zeta=z+\frac{\rho}{k} \frac{\partial F}{\partial z}
$$

2.645 The envelope of a family of surfaces:
1.

$$
F(x, y, z, \alpha)=0
$$

is found by eliminating α between (I) and
2.

$$
\frac{\partial F}{\partial \alpha}=0
$$

2.646 The characteristic of a surface is a curve defined by the two equations (I) and (2) in 2.645.
2.647 The envelope of a family of surfaces with two variable parameters, α, β, is obtained by eliminating α and β between:
I.

$$
F(x, y, z, \alpha, \beta)=0
$$

2.

$$
\begin{aligned}
& \frac{\partial F}{\partial \alpha}=0 . \\
& \frac{\partial F}{\partial \beta}=0 .
\end{aligned}
$$

2.648 The equations of a surface may be given in the parametric form:

$$
x=f_{1}(u, v), \quad y=f_{2}(u, v), \quad z=f_{3}(u, v)
$$

The equation of a tangent plane at x_{1}, y_{1}, z_{1} is:

$$
\left(x-x_{1}\right) \frac{\partial\left(f_{2}, f_{3}\right)}{\partial(u, v)}+\left(y-y_{1}\right) \frac{\partial\left(f_{3}, f_{1}\right)}{\partial(u, v)}+\left(z-z_{1}\right) \frac{\partial\left(f_{1}, f_{2}\right)}{\partial(u, v)}=0
$$

where

$$
\frac{\partial\left(f_{2}, f_{3}\right)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial f_{2}}{\partial u} & \frac{\partial f_{2}}{\partial v} \\
\frac{\partial f_{3}}{\partial u} & \frac{\partial f_{3}}{\partial v}
\end{array}\right|, \text { etc. See } 1.370
$$

2.649 The direction cosines to the normal to the surface in the form 2.648 are:

$$
l, m, n=\frac{\frac{\partial\left(f_{2}, f_{3}\right)}{\partial(u, v)}, \frac{\partial\left(f_{3}, f_{1}\right)}{\partial(u, v)}, \frac{\partial\left(f_{1}, f_{2}\right)}{\partial(u, v)}}{\left\{\left(\frac{\partial\left(f_{2}, f_{3}\right)}{\partial(u, v)}\right)^{2}+\left(\frac{\partial\left(f_{3}, f_{1}\right)}{\partial(u, v)}\right)^{2}+\left(\frac{\partial\left(f_{1}, f_{2}\right)}{\partial(u, v)}\right)^{2}\right\}^{\frac{2}{2}}} .
$$

2.650 If the equation of the surface is:

$$
z=f(x, y),
$$

the equation of the tangent plane at x_{1}, y_{1}, z_{1} is:

$$
z-z_{1}=\left(\frac{\partial f}{\partial x}\right)_{1}\left(x-x_{1}\right)+\left(\frac{\partial f}{\partial y}\right)_{1}\left(y-y_{1}\right) .
$$

2.651 The direction cosines of the normal to the surface in the form $\mathbf{2 . 6 5 0}$ are:

$$
l, m, n=\frac{-\left(\frac{\partial f}{\partial x}\right),-\left(\frac{\partial f}{\partial y}\right),+\mathrm{I}}{\left\{\mathrm{I}+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}\right\}^{\frac{1}{2}}} .
$$

2.652 The two principal radii of curvature of the surface in the form 2.650 are given by the two roots of:
$\left(r t-s^{2}\right) \rho^{2}-\left\{\left(\mathrm{I}+q^{2}\right) r-2 p q s+\left(\mathrm{I}+p^{2}\right) t\right\} \sqrt{\mathrm{I}+p^{2}+q^{2}} \rho+\left(\mathrm{I}+p^{2}+q^{2}\right)^{2}=0$, where

$$
p=\frac{\partial f}{\partial x}, \quad q=\frac{\partial f}{\partial y}, \quad r=\frac{\partial^{2} f}{\partial x^{2}}, \quad s=\frac{\partial^{2} f}{\partial x \partial y}, \quad t=\frac{\partial^{2} f}{\partial y^{2}} .
$$

2.653 If ρ_{1} and ρ_{2} are the two principal radii of curvature of a surface, and ρ is the radius of curvature in a plane making an angle ϕ with the plane of ρ_{1},

$$
\frac{\mathrm{I}}{\rho}=\frac{\cos ^{2} \phi}{\rho_{1}}+\frac{\sin ^{2} \phi}{\rho_{2}} .
$$

2.654 If ρ and ρ^{\prime} are the radii of curvature in any two mutually perpendicular planes, and ρ_{1} and ρ_{2} the two principal radii of curvature:

$$
\frac{\mathrm{I}}{\rho}+\frac{\mathrm{I}}{\rho^{\prime}}=\frac{\mathrm{I}}{\rho_{1}}+\frac{\mathrm{I}}{\rho_{2}}
$$

2.655 Gauss's measure of the curvature of a surface is:

$$
\frac{\mathrm{I}}{\rho}=\frac{\mathrm{I}}{\rho_{1} \rho_{2}} .
$$

SPACE CURVES

2.670 The equations of a space curve may be given in the forms:
(a)

$$
F_{1}(x, y, z)=0, \quad F_{2}(x, y, z)=0 .
$$

(b)

$$
x=f_{1}(t), \quad y=f_{2}(t), \quad z=f_{3}(t) .
$$

$$
\begin{equation*}
y=\phi(x), z=\psi(x) . \tag{c}
\end{equation*}
$$

2.671 The direction cosines of the tangent to a space curve in the form (a) are:

$$
\begin{gathered}
l=\frac{\frac{\partial F_{1}}{\partial y} \frac{\partial F_{2}}{\partial z}-\frac{\partial F_{1}}{\partial z} \frac{\partial F_{2}}{\partial y}}{T} \\
m=\frac{\frac{\partial F_{1}}{\partial z} \cdot \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial x} \frac{\partial F_{2}}{\partial z}}{T} \\
n=\frac{\frac{\partial F_{1}}{\partial x} \frac{\partial F_{2}}{\partial y}-\frac{\partial F_{1}}{\partial y} \frac{\partial F_{2}}{\partial x}}{T}
\end{gathered}
$$

where T is the positive root of:

$$
\begin{aligned}
T^{2}=\left\{\left(\frac{\partial F_{1}}{\partial x}\right)^{2}+\left(\frac{\partial F_{1}}{\partial y}\right)^{2}+\left(\frac{\partial F_{1}}{\partial z}\right)^{2}\right\}\left\{\left(\frac{\partial F_{2}}{\partial x}\right)^{2}\right. & \left.+\left(\frac{\partial F_{2}}{\partial y}\right)^{2}+\left(\frac{\partial F_{2}}{\partial z}\right)^{2}\right\} \\
& -\left\{\frac{\partial F_{1}}{\partial x} \frac{\partial F_{2}}{\partial x}+\frac{\partial F_{1}}{\partial y} \frac{\partial F_{2}}{\partial y}+\frac{\partial F_{1}}{\partial z} \frac{\partial F_{2}}{\partial z}\right\}^{2}
\end{aligned}
$$

2.672 The direction cosines of the tangent to a space curve in the form (b) are:

$$
l, m, n=\frac{x^{\prime}, y^{\prime}, z^{\prime}}{\left\{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right\}^{\frac{1}{2}}},
$$

where the accents denote differentials with respect to t.
2.673 If s, the length of arc measured from a fixed point on the curve is the parameter, t :

$$
l, m, n=\frac{d x}{d s}, \frac{d y}{d s}, \frac{d z}{d s}
$$

2.674 The principal radius of curvature of a space curve in the form (b) is:

$$
\begin{aligned}
\rho & =\frac{\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)^{\frac{3}{3}}}{\left\{\left(y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}\right)^{2}+\left(z^{\prime} x^{\prime \prime}-x^{\prime} z^{\prime \prime}\right)^{2}+\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)^{2}\right\}^{\frac{1}{2}}} \\
& =\frac{s^{\prime 2}}{\left(x^{\prime / 2}+y^{\prime / 2}+z^{\prime \prime 2}-s^{\prime \prime 2}\right)^{\frac{3}{2}}} .
\end{aligned}
$$

where the double accents denote second differentials with respect to t, and s, the length of arc, is a function of t.
2.675 When $t=s$:

$$
\frac{I}{\rho}=\left\{\left(\frac{d^{2} x}{d s^{2}}\right)^{2}+\left(\frac{d^{2} y}{d s^{2}}\right)^{2}+\left(\frac{d^{2} z}{d s^{2}}\right)^{2}\right\}^{\frac{1}{2}}
$$

2.676 The direction cosines of the principal normal to the space curve in the form (b) are:

$$
\begin{aligned}
l^{\prime} & =\frac{z^{\prime}\left(z^{\prime} x^{\prime \prime}-x^{\prime} z^{\prime \prime}\right)-y^{\prime}\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)}{L} \\
m^{\prime} & =\frac{x^{\prime}\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)-z^{\prime}\left(y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}\right)}{L}
\end{aligned}
$$

$$
n^{\prime}=\frac{y^{\prime}\left(y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}\right)-x^{\prime}\left(z^{\prime} x^{\prime \prime}-x^{\prime} z^{\prime \prime}\right)}{L},
$$

where

$$
L=\left\{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right\}^{\frac{1}{2}}\left\{\left(y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}\right)^{2}+\left(z^{\prime} x^{\prime \prime}-x^{\prime} z^{\prime \prime}\right)^{2}+\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)^{2}\right\}^{\prime 2} .
$$

2.677 The direction cosines of the binormal to the curve in the form (b) are:

$$
\begin{aligned}
& l^{\prime \prime}=\frac{y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}}{S}, \\
& m^{\prime \prime}=\frac{z^{\prime} x^{\prime \prime}-x^{\prime} z^{\prime \prime}}{S}, \\
& n^{\prime \prime}=\frac{x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}}{S},
\end{aligned}
$$

where

$$
S=\left\{\left(y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}\right)^{2}+\left(z^{\prime} x^{\prime \prime}-x^{\prime} z^{\prime \prime}\right)^{2}+\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)^{2}\right\}^{\frac{1}{2}} .
$$

2.678 If s, the distance measured along the curve from a fixed point on it is the parameter, t :

$$
l^{\prime}=\rho \frac{d^{2} x}{d s^{2}}, \quad m^{\prime}=\rho \frac{d^{2} y}{d s^{2}}, n^{\prime}=\rho \frac{d^{2} z}{d s^{2}},
$$

where ρ is the principal radius of curvature; and

$$
\begin{aligned}
l^{\prime \prime} & =\rho\left(\frac{d y}{d s} \frac{d^{2} z}{d s^{2}}-\frac{d z}{d s} \frac{d^{2} y}{d s^{2}}\right) \\
m^{\prime \prime} & =\rho\left(\frac{d z}{d s} \frac{d^{2} x}{d s^{2}}-\frac{d x}{d s} \frac{d^{2} z}{d s^{2}}\right), \\
n^{\prime \prime} & =\rho\left(\frac{d x}{d s} \frac{d^{2} y}{d s^{2}}-\frac{d y}{d s} \frac{d^{2} x}{d s^{2}}\right) .
\end{aligned}
$$

2.679 The radius of torsion, or radius of second curvature of a space curve is:

$$
\begin{aligned}
\tau & =\frac{\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right)^{\frac{2}{2}}}{\left\{\left(\frac{\partial l^{\prime \prime}}{\partial t}\right)^{2}+\left(\frac{\partial m^{\prime}}{\partial t}\right)^{2}+\left(\frac{\partial n^{\prime \prime}}{\partial t}\right)^{2}\right\}^{\frac{1}{2}}} \\
& =-\frac{\mathrm{I}}{S^{2}}\left|\begin{array}{lll}
x^{\prime} & y^{\prime} & z^{\prime} \\
x^{\prime \prime} & y^{\prime \prime} & z^{\prime \prime} \\
x^{\prime \prime \prime} & y^{\prime \prime \prime} & z^{\prime \prime \prime}
\end{array}\right|,
\end{aligned}
$$

where S is given in 2.677 .
2.680 When $t=s$:

$$
\frac{\mathbf{I}}{\tau}=\left\{\left(\frac{\partial l^{\prime \prime}}{\partial s}\right)^{2}+\left(\frac{\partial m^{\prime \prime}}{\partial s}\right)^{2}+\left(\frac{\partial n^{\prime \prime}}{\partial s}\right)^{2}\right\}^{\frac{1}{3}}
$$

$$
=-\rho^{2}\left|\begin{array}{lll}
\frac{d x}{d s} & \frac{d y}{d s} & \frac{d z}{d s} \\
\frac{d^{2} x}{d s^{2}} & \frac{d^{2} y}{d s^{2}} & \frac{d^{2} z}{d s^{2}} \\
\frac{d^{3} x}{d s^{3}} & \frac{d^{3} y}{d s^{3}} & \frac{d^{3} z}{d s^{3}}
\end{array}\right| .
$$

2.681 The direction cosines of the tangent to a space curve in the form (c) are:

$$
l, m, n=\frac{\mathrm{I}, y^{\prime}, z^{\prime}}{\sqrt{\mathrm{I}+y^{\prime 2}+z^{\prime 2}}}
$$

where accents denote differentials with respect to x :

$$
y^{\prime}=\frac{d \phi(x)}{d x}, \quad z^{\prime}=\frac{d \psi(x)}{d x} .
$$

2.682 The principal radius of curvature of a space curve in the form (c) is:

$$
\rho=\left\{\frac{\left(\mathrm{I}+y^{\prime 2}+z^{\prime 2}\right)^{3}}{\left(y^{\prime} z^{\prime \prime}-z^{\prime} y^{\prime \prime}\right)^{2}+y^{\prime 2}+z^{\prime \prime 2}}\right\}^{\frac{1}{2}} .
$$

2.683 The radius of torsion of a space curve in the form (c) is:

$$
\tau=\frac{\left(\mathrm{I}+y^{\prime 2}+z^{\prime 2}\right)^{3}}{\rho^{2}\left(y^{\prime \prime} z^{\prime \prime \prime}-z^{\prime \prime} y^{\prime \prime \prime}\right)} .
$$

2.690 The relation between the direction cosines of the tangent, principal normal and binormal to a space curve is:

$$
\left|\begin{array}{lll}
l & m & n \\
l^{\prime} & m^{\prime} & n^{\prime} \\
l^{\prime \prime} & m^{\prime \prime} & n^{\prime \prime}
\end{array}\right|=\mathrm{I} .
$$

2.691 The tangent, principal normal and binormal all being mutually perpendicular the relations of 2.00 hold among their direction cosines.

III. TRIGONOMETRY

$3.00 \tan x=\frac{\sin x}{\cos x}, \sec x=\frac{\mathrm{I}}{\cos x}, \csc x=\frac{\mathrm{I}}{\sin x}, \cot x=\frac{\mathrm{I}}{\tan x}$,
$\sec ^{2} x=\mathrm{I}+\tan ^{2} x, \csc ^{2} x=\mathrm{I}+\cot ^{2} x, \sin ^{2} x+\cos ^{2} x=\mathrm{I}$, versin $x=\mathrm{I}-\cos x$, coversin $x=\mathrm{I}-\sin x$, haversin $x=\sin ^{2} \frac{x}{2}$.
$3.01 \sin x=-\sin (-x)=\sqrt{\frac{1-\cos 2 x}{2}},=\sqrt[2]{\cos ^{2} \frac{x}{2}-\cos ^{4} \frac{x}{2}}$,

$$
\begin{aligned}
& =2 \sin \frac{x}{2} \cos \frac{x}{2}=\frac{\tan x}{\sqrt{I+\tan ^{2} x}}=\frac{2 \tan \frac{x}{2}}{\mathrm{I}+\tan ^{2} \frac{x}{2}}, \\
& =\frac{\mathrm{I}}{\sqrt{I+\cot ^{2} x}}=\frac{\mathrm{I}}{\cot \frac{x}{2}-\cot x}=\frac{\mathrm{I}}{\tan \frac{x}{2}+\cot x}, \\
& =\cot \frac{x}{2} \cdot(\mathrm{I}-\cos x)=\tan \frac{x}{2} \cdot(\mathrm{I}+\cos x), \\
& =\sin y \cos (x-y)+\cos y \sin (x-y), \\
& =\cos y \sin (x+y)-\sin y \cos (x+y), \\
& =-\frac{1}{2} i\left(e^{i x}-e^{-i x}\right) .
\end{aligned}
$$

$3.02 \cos x=\cos (-x)=\sqrt{\frac{\mathrm{I}+\cos 2 x}{2}}=\mathrm{I}-2 \sin ^{2} \frac{x}{2}$,

$$
\begin{aligned}
& =\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}=2 \cos ^{2} \frac{x}{2}-\mathrm{I}=\frac{\mathrm{I}}{\sqrt{\mathrm{I}+\tan ^{2} x}}, \\
& =\frac{\mathrm{I}-\tan ^{2} \frac{x}{2}}{\mathrm{I}+\tan ^{2} \frac{x}{2}}=\frac{\mathrm{I}}{\mathrm{I}+\tan x \tan \frac{x}{2}}=\frac{\mathrm{I}}{\tan x \cot \frac{x}{2}-\mathrm{I}}, \\
& =\frac{\cot \frac{x}{2}-\tan \frac{x}{2}}{\cot \frac{x}{2}+\tan \frac{x}{2}}=\frac{\cot x}{\sqrt{I+\cot ^{2} x}}=\frac{\sin 2 x}{2 \sin x}, \\
& =\cos y \cos (x+y)+\sin y \sin (x+y), \\
& =\cos y \cos (x-y)-\sin y \sin (x-y), \\
& =\frac{1}{2}\left(e^{i x}+e^{-i x}\right) .
\end{aligned}
$$

$3.03 \tan x=-\tan (-x)=\frac{\sin 2 x}{1+\cos 2 x}=\frac{1-\cos 2 x}{\sin 2 x},=$

$$
\begin{aligned}
& \sqrt{\frac{1-\cos 2 x}{\mathrm{I}+\cos 2 x}}=\frac{\sin (x+y)+\sin (x-y)}{\cos (x+y)+\cos (x-y)}, \\
= & \frac{\cos (x-y)-\cos (x+y)}{\sin (x+y)-\sin (x-y)}=\cot x-2 \cot 2 x, \\
= & \frac{\tan \frac{x}{2}}{I-\tan \frac{x}{2}}+\frac{\tan \frac{x}{2}}{\mathrm{I}+\tan \frac{x}{2}}=\frac{2 \tan \frac{x}{2}}{1-\tan ^{2} \frac{x}{2}}, \\
= & \frac{I}{I-\tan \frac{x}{2}}-\frac{I}{I+\tan \frac{x}{2}}, \\
= & i \frac{\mathrm{I}-e^{2 i x}}{\mathrm{I}+e^{2 i x}} .
\end{aligned}
$$

3.04 The values of five trigonometric functions in terms of the sixth are given in the following table. (For signs, see 3.05.)

	$\sin x=a$	$\cos x=a$	$\tan x=a$	$\cot x=a$	$\sec x=a$	$\operatorname{Csc} x=a$
$\sin x=$	a	$\sqrt{\mathrm{I}-a^{2}}$	$\frac{a}{\sqrt{I+a^{2}}}$	$\frac{I}{\sqrt{I+a^{2}}}$	$\frac{\sqrt{a^{2}-1}}{a}$	$\frac{1}{a}$
$\cos x=$	$\sqrt{I-a^{2}}$	a	$\frac{I}{\sqrt{I+a^{2}}}$	$\frac{a}{\sqrt{I+a^{2}}}$	$\frac{\mathrm{I}}{a}$	$\frac{\sqrt{a^{2}-1}}{a}$
$\tan x=$	$\frac{a}{\sqrt{\mathrm{I}-a^{2}}}$	$\frac{\sqrt{\mathrm{I}-a^{2}}}{a}$	a	$\frac{\mathrm{I}}{a}$	$\sqrt{\overline{a^{2}-1}}$	$\frac{\mathrm{I}}{\sqrt{a^{2}-\mathrm{I}}}$
$\cot x=$	$\frac{\sqrt{\mathrm{I}-a^{2}}}{a}$	$\frac{a}{\sqrt{I-a^{2}}}$	$\frac{\mathrm{I}}{a}$	a	$\frac{\mathrm{I}}{\sqrt{a^{2}-\mathrm{I}}}$	$\sqrt{a^{2}-1}$
$\sec x=$	$\frac{I}{\sqrt{I-a^{2}}}$	$\frac{\mathrm{I}}{a}$	$\sqrt{\mathrm{I}+a^{2}}$	$\frac{\sqrt{\mathrm{I}+a^{2}}}{a}$	a	$\frac{a}{\sqrt{a^{2}-\mathrm{I}}}$
$\csc x=$	$\frac{\mathrm{I}}{a}$	$\frac{I}{\sqrt{I-a^{2}}}$	$\frac{\sqrt{\mathrm{I}+a^{2}}}{a}$	$\sqrt{I+a^{2}}$	$\frac{a}{\sqrt{a^{2}-1}}$	a

3.05 The trigonometric functions are periodic, the periods of the $\sin , \cos , \mathrm{sec}$, csc being 2π, and those of the tan and cot, π. Their signs may be determined from the following table. In using formulas giving any of the trigonometric
functions by the root of some quantity, the proper sign may be taken from this table.

	\circ°	$\left\|\begin{array}{c} 0-\frac{\pi}{2} \\ 0-90^{\circ} \end{array}\right\|$	$\frac{\pi}{2}$ 90	(${ }^{\frac{\pi}{2}-\pi} \begin{gathered} \\ 90^{\circ}-180^{\circ}\end{gathered}$	π 180°	$\begin{gathered} \pi-\frac{3}{2} \pi \\ 180^{\circ}-270^{\circ} \end{gathered}$	$\frac{3}{2} \pi$ 270°	$\begin{aligned} & \frac{3}{2} \pi-2 \pi \\ & 270^{\circ}-360^{\circ} \end{aligned}$	2π 360°
\sin	\bigcirc	+	I	+	-	-	- I	-	\bigcirc
\cos	I	+	\bigcirc	-	- I	-	\bigcirc	+	I
\tan	\bigcirc	+	$\pm \infty$	-	\bigcirc	+	$\pm \infty$	-	\bigcirc
cot	$\mp \infty$	$+$	\bigcirc	-	$\mp \infty$	+	-	-	$\mp \infty$
sec	I	+	$\pm \infty$	-	- I	-	$\pm \infty$	+	I
csc	$\mp \infty$	$+$	I	+	$\pm \infty$	-	- I	-	$\mp \infty$

3.10 Functions of Half an Angle. (See 3.05 for signs.)
3.101

$$
\begin{aligned}
\sin \frac{I}{2} x & = \pm \sqrt{\frac{I-\cos x}{2}} \\
& =\frac{I}{2}\{ \pm \sqrt{I+\sin x} \mp \sqrt{I-\sin x}\} \\
& = \pm \sqrt{\frac{I}{2}\left(I-\frac{I}{ \pm \sqrt{I+\tan ^{2} x}}\right)}
\end{aligned}
$$

3.102

$$
\begin{aligned}
\cos \frac{I}{2} x & = \pm \sqrt{\frac{I+\cos x}{2}} \\
& =\frac{I}{2}\{ \pm \sqrt{I+\sin x} \pm \sqrt{I-\sin x}\} \\
& = \pm \sqrt{\frac{I}{2}\left(I+\frac{I}{ \pm \sqrt{I+\tan ^{2} x}}\right)}
\end{aligned}
$$

3.103

$$
\tan \frac{I}{2} x= \pm \sqrt{\frac{I-\cos x}{I+\cos x}},
$$

$$
\begin{aligned}
& =\frac{\sin x}{I+\cos x}=\frac{I-\cos x}{\sin x} \\
& =\frac{ \pm \sqrt{I+\tan ^{2} x}-1}{\tan x}
\end{aligned}
$$

3.11 Functions of the Sum and Difference of Two Angles.
3.111

$$
\begin{aligned}
\sin (x \pm y) & =\sin x \cos y \pm \cos x \sin y, \\
& =\cos x \cos y(\tan x \pm \tan y), \\
& =\frac{\tan x \pm \tan y}{\tan x \mp \tan y} \sin (x \mp y), \\
& =\frac{\mathrm{I}}{2}\{\cos (x+y)+\cos (x-y)\}(\tan x \pm \tan y) .
\end{aligned}
$$

3.112

$$
\begin{aligned}
\cos (x \pm y) & =\cos x \cos y \mp \sin x \sin y, \\
& =\cos x \cos y(\mathrm{I} \mp \tan x \tan y), \\
& =\frac{\cot x \mp \tan y}{\cot x \pm \tan y} \cos (x \mp y), \\
& =\frac{\cot y \mp \tan x}{\cot y \tan x \mp \mathrm{I}} \sin (x \mp y), \\
& =\cos x \sin y(\cot y \mp \tan x) .
\end{aligned}
$$

3.113

$$
\begin{aligned}
\tan (x \pm y) & =\frac{\tan x \pm \tan y}{\mathrm{I} \mp \tan x \tan y}, \\
& =\frac{\cot y \pm \cot x}{\cot x \cot y \mp \mathrm{x}}, \\
& =\frac{\sin 2 x \pm \sin 2 y}{\cos 2 x+\cos 2 y} .
\end{aligned}
$$

3.114

$$
\begin{aligned}
\cot (x \pm y) & =\frac{\cot x \cot y \mp \mathrm{I}}{\cot y \pm \cot x} \\
& =-\frac{\sin 2 x \mp \sin 2 y}{\cos 2 x-\cos 2 y} .
\end{aligned}
$$

3.115 The cosine and sine of the sum of any number of angles in terms of the sine and cosine of the angles are given by the real and imaginary parts of $\cos \left(x_{1}+x_{2}+\ldots+x_{n}\right)+i \sin \left(x_{1}+x_{2}+\ldots+x_{n}\right)$

$$
=\left(\cos x_{1}+i \sin x_{1}\right)\left(\cos x_{2}+i \sin x_{2}\right) \ldots\left(\cos x_{n}+i \sin x_{n}\right)
$$

3.12 Sums and Differences of Trigonometric Functions.
3.121

$$
\begin{aligned}
\sin x \pm \sin y & =2 \sin \frac{1}{2}(x \pm y) \cos \frac{1}{2}(x \mp y) \\
& =(\cos x+\cos y) \tan \frac{1}{2}(x \pm y) \\
& =(\cos y-\cos x) \cot \frac{1}{2}(x \mp y), \\
& =\frac{\tan \frac{1}{2}(x \pm y)}{\tan \frac{1}{2}(x \mp y)}(\sin x \mp \sin y)
\end{aligned}
$$

3.122

$$
\begin{aligned}
\cos x+\cos y & =2 \cos \frac{1}{2}(x+y) \cos \frac{1}{2}(x-y) \\
& =\frac{\sin x \pm \sin y}{\tan \frac{1}{2}(x \pm y)} \\
& =\frac{\cot \frac{1}{2}(x+y)}{\tan \frac{1}{2}(x-y)}(\cos y-\cos x)
\end{aligned}
$$

3.123

3.124

$$
\begin{aligned}
\cos x-\cos y & =2 \sin \frac{1}{2}(y+x) \sin \frac{1}{2}(y-x) \\
& =-(\sin x \pm \sin y) \tan \frac{1}{2}(x \mp y)
\end{aligned}
$$

$\tan x \pm \tan y=\frac{\sin (x \pm y)}{\cos x \cdot \cos y}$.
$=\frac{\sin (x \pm y)}{\sin (x \mp y)}(\tan x \mp \tan y)$,
$=\tan y \tan (x \pm y)(\cot y \mp \tan x)$,

$$
=\frac{\mathrm{I} \mp \tan x \tan y}{\cot (x \pm y)}
$$

$$
=(\mathrm{I} \mp \tan x \tan y) \tan (x \pm y) .
$$

$3.125 \quad \cot x \pm \cot y= \pm \frac{\sin (x \pm y)}{\sin x \sin y}$.

3.130

I.
2.
3.

$$
\begin{aligned}
& \frac{\sin x \pm \sin y}{\cos x+\cos y}=\tan \frac{1}{2}(x \pm y) \\
& \frac{\sin x \pm \sin y}{\cos x-\cos y}=-\cot \frac{1}{2}(x \mp y) \\
& \frac{\sin x+\sin y}{\sin x-\sin y}=\frac{\tan \frac{1}{2}(x+y)}{\tan \frac{1}{2}(x-y)}
\end{aligned}
$$

I.
2.

$$
\sin ^{2} x-\sin ^{2} y=\cos ^{2} y-\cos ^{2} x
$$

$$
=\sin (x+y) \sin (x-y)
$$

3.

$$
\cos ^{2} x-\sin ^{2} y=\cos (x+y) \cos (x-y)
$$

4.

$$
\sin ^{2}(x+y)+\sin ^{2}(x-y)=1-\cos 2 x \cos 2 y
$$

5.

$$
\sin ^{2}(x+y)-\sin ^{2}(x-y)=\sin 2 x \sin 2 y .
$$

6.

$$
\sin ^{2} x+\sin ^{2} y=I-\cos (x+y) \cos (x-y)
$$

$$
\cos ^{2}(x+y)+\cos ^{2}(x-y)=I+\cos 2 x \cos 2 y
$$

7.

$$
\cos ^{2}(x+y)-\cos ^{2}(x-y)=-\sin 2 x \sin 2 y
$$

3.150

I.
$\cos n x \cos m x=\frac{1}{2} \cos (n-m) x+\frac{1}{2} \cos (n+m) x$.
$\sin n x \sin m x=\frac{1}{2} \cos (n-m) x-\frac{1}{2} \cos (n+m) x$.
$\cos n x \sin m x=\frac{1}{2} \sin (n+m) x-\frac{1}{2} \sin (n-m) x$.
3.160
I.
2.
3.
4.

$$
\begin{aligned}
e^{x+i y} & =e^{x}(\cos y+i \sin y) \\
a^{x+i y} & =a^{x}\{\cos (y \log a)+i \sin (y \log a)\} \\
(\cos x \pm i \sin x)^{n} & =\cos n x \pm i \sin n x
\end{aligned}
$$

[De Moivre's Theorem].

$$
\sin (x \pm i y)=\sin x \cosh y \pm i \cos x \sinh y
$$

$\cos (x \pm i y)=\cos x \cosh y \mp i \sin x \sinh y$.

$$
\cos (x \pm i y)=\cos x \cosh y \mp i \sin x \sinh y .
$$

$$
\cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)
$$

$$
\sin x=-\frac{i}{2}\left(e^{i x}-e^{-i x}\right)
$$

8.

$$
e^{i x}=\cos x+i \sin x
$$

9.

$$
e^{-i x}=\cos x-i \sin x
$$

3.170 Sines and Cosines of Multiple Angles.
$3.171 n$ an even integer:
$\sin n x=n \cos x\left\{\sin x-\frac{\left(n^{2}-2^{2}\right)}{3!} \sin ^{3} x+\frac{\left(n^{2}-2^{2}\right)\left(n^{2}-4^{2}\right)}{5!} \sin ^{5} x-\ldots\right\}$. $\cos n x=\mathrm{I}-\frac{n^{2}}{2!} \sin ^{2} x+\frac{n^{2}\left(n^{2}-2^{2}\right)}{4!} \sin ^{4} x-\frac{n^{2}\left(n^{2}-2^{2}\right)\left(n^{2}-4^{2}\right)}{6!} \sin ^{6} x+\ldots$
$3.172 n$ an odd integer:
$\sin n x=n\left\{\sin x-\frac{\left(n^{2}-\mathrm{I}^{2}\right)}{3!} \sin ^{3} x+\frac{\left(n^{2}-\mathrm{I}^{2}\right)\left(n^{2}-3^{2}\right)}{5!} \sin ^{5} x-\ldots\right\}$.
$\cos n x=\cos x\left\{\mathrm{I}-\frac{\left(n^{2}-\mathrm{I}^{2}\right)}{2!} \sin ^{2} x+\frac{\left(n^{2}-\mathrm{I}^{2}\right)\left(n^{2}-3^{2}\right)}{4!} \sin ^{4} x-\ldots\right\}$.
$3.173 n$ an even integer:
$\sin n x=(-\mathrm{I})^{\frac{n}{2}-\mathrm{I}} \cos x\left\{2^{n-1} \sin ^{n-1} x-\frac{(n-2)}{\mathrm{I}!} 2^{n-3} \sin ^{n-3} x\right.$

$$
\begin{array}{r}
+\frac{(n-3)(n-4)}{2!} 2^{n-5} \sin ^{n-5} x-\frac{(n-4)(n-5)(n-6)}{3!} 2^{n-7} \sin ^{n-7} x \\
+\ldots\}
\end{array}
$$

$\cos n x=(-1)^{\frac{n}{2}}\left\{2^{n-1} \sin ^{n} x-\frac{n}{1!} 2^{n-3} \sin ^{n-2} x+\frac{n(n-3)}{2!} 2^{n-5} \sin ^{n-4} x\right.$

$$
\left.-\frac{n(n-3)(n-5)}{3!} 2^{n-7} \sin ^{n-6} x+\ldots\right\}
$$

$3.174 n$ an odd integer:
$\sin n x=(-\mathrm{I})^{\frac{n-1}{2}}\left\{2^{n-1} \sin ^{n} x-\frac{n}{1!} 2^{n-3} \sin ^{n-2} x+\frac{n(n-3)}{2!} 2^{n-5} \sin ^{n-4} x\right.$

$$
\left.-\frac{n(n-3)(n-5)}{3!} 2^{n-7} \sin ^{n-6} x+\ldots\right\}
$$

$\cos n x=(-\mathrm{I})^{\frac{n-1}{2}} \cos x\left\{2^{n-1} \sin ^{n-1} x-\frac{n-2}{\mathrm{I}!} 2^{n-3} \sin ^{n-3} x\right.$

$$
\begin{array}{r}
+\frac{(n-3)(n-4)}{2!} 2^{n-5} \sin ^{n-5} x-\frac{(n-4)(n-5)(n-6)}{3!} 2^{n-7} \sin ^{n-7} x \\
+\ldots \ldots\}
\end{array}
$$

$3.175 n$ any integer:
$\sin n x=\sin x\left\{2^{n-1} \cos ^{n-1} x-\frac{n-2}{\mathrm{I}!} 2^{n-3} \cos ^{n-3} x\right.$

$$
\begin{array}{r}
+\frac{(n-3)(n-4)}{2!} 2^{n-5} \cos ^{n-5} x-\frac{(n-4)(n-5)(n-6)}{3!} 2^{n-7} \cos ^{n-7} x \\
+\ldots\}
\end{array}
$$

$\cos n x=2^{n-1} \cos ^{n} x-\frac{n}{1!} 2^{n-3} \cos ^{n-2} x+\frac{n(n-3)}{2!} 2^{n-5} \cos ^{n-4} x$

$$
-\frac{n(n-4)(n-5)}{3!} 2^{n-7} \cos ^{n-6} x+\ldots
$$

3.176

$$
\begin{aligned}
\sin 2 x & =2 \sin x \cos x . \\
\sin 3 x & =\sin x\left(3-4 \sin ^{2} x\right) \\
& =\sin x\left(4 \cos ^{2} x-1\right) .
\end{aligned}
$$

$\sin 4 x=\sin x\left(8 \cos ^{3} x-4 \cdot \cos x\right)$.
$\sin 5 x=\sin x\left(5-20 \sin ^{2} x+16 \sin ^{4} x\right)$
$=\sin x\left(\mathrm{I} 6 \cos ^{4} x-\mathrm{I} 2 \cos ^{2} x+\mathrm{I}\right)$.
$\sin 6 x=\sin x\left(32 \cos ^{5} x-32 \cos ^{3} x+6 \cos x\right)$.
3.177

$$
\begin{aligned}
\cos 2 x & =\cos ^{2} x-\sin ^{2} x \\
& =1-2 \sin ^{2} x \\
& =2 \cos ^{2} x-\mathrm{I} . \\
\cos 3 x & =\cos x\left(4 \cos ^{2} x-3\right) \\
& =\cos x\left(\mathrm{I}-4 \sin ^{2} x\right) . \\
\cos 4 x & =8 \cos ^{4} x-8 \cos ^{2} x+\mathrm{I} . \\
\cos 5 x & =\cos x\left(\mathrm{I} 6 \cos ^{4} x-20 \cos ^{2} x+5\right) \\
& =\cos x\left(\mathrm{I} 6 \sin ^{4} x-\mathrm{I} 2 \sin ^{2} x+\mathrm{I}\right) . \\
\cos 6 x & =32 \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-\mathrm{I} .
\end{aligned}
$$

3.178

$$
\begin{aligned}
& \tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x} \\
& \cot 2 x=\frac{\cot ^{2} x-1}{2 \cot x}
\end{aligned}
$$

3.180 Integral Powers of Sine and Cosine.
$3.181 n$ an even integer:

$$
\begin{aligned}
\sin ^{n} x= & \frac{(-\mathrm{I})^{\frac{n}{2}}}{2^{n-1}}\left\{\cos n x-n \cos (n-2) x+\frac{n(n-\mathrm{I})}{2!} \cos (n-4) x\right. \\
& \left.-\frac{n(n-\mathrm{I})(n-2)}{3!} \cos (n-6) x+\ldots . .+(-1)^{\frac{n}{2}} \frac{1}{2} \frac{n!}{\left(\frac{n}{2}\right)!\left(\frac{n}{2}\right)!}\right\}
\end{aligned}
$$

$\cos ^{n} x=\frac{\mathrm{r}}{2^{n-1}}\left\{\cos n x+n \cos (n-2) x+\frac{n(n-1)}{2!} \cos (n-4) x\right.$

$$
\left.+\frac{n(n-1)(n-2)}{3!} \cos (n-6) x+\ldots+\frac{1}{2} \frac{n!}{\left(\frac{n}{2}\right)!\left(\frac{n}{2}\right)!} \cdot\right\}
$$

$3.182 n$ an odd integer :
$\sin ^{n} x=\frac{(-1)^{\frac{n-1}{2}}}{2^{n-1}}\left\{\sin n x-n \sin (n-2) x+\frac{n(n-1)}{2!} \sin (n-4) x\right.$

$$
\left.-\frac{n(n-\mathrm{I})(n-2)}{3!} \sin (n-6) x+\ldots+(-\mathrm{I})^{\frac{n-1}{2}} \frac{n!}{\left(\frac{n-\mathrm{I}}{2}\right)!\left(\frac{n+\mathrm{I}}{2}\right)!} \sin x\right\}
$$

$\cos ^{n} x=\frac{\mathrm{I}}{2^{n-1}}\left\{\cos n x+n \cos (n-2) x+\frac{n(n-\mathrm{x})}{2!} \cos (n-4) x\right.$

$$
\left.+\frac{n(n-\mathrm{I})(n-2)}{3!} \cos (n-6) x+\ldots+\frac{n!}{\left(\frac{n-\mathrm{I}}{2}\right)!\left(\frac{n+\mathrm{I}}{2}\right)!} \cos x\right\}
$$

3.183

$$
\begin{aligned}
& \sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \\
& \sin ^{3} x=\frac{1}{4}(3 \sin x-\sin 3 x) \\
& \sin ^{4} x=\frac{1}{8}(\cos 4 x-4 \cos 2 x+3) \\
& \sin ^{5} x=\frac{1}{16}(\sin 5 x-5 \sin 3 x+10 \sin x) \\
& \sin ^{6} x=-\frac{1}{32}(\cos 6 x-6 \cos 4 x+15 \cos 2 x-\text { IO }) .
\end{aligned}
$$

3.184

$$
\begin{aligned}
& \cos ^{2} x=\frac{1}{2}(1+\cos 2 x) \\
& \cos ^{3} x=\frac{1}{4}(3 \cos x+\cos 3 x) \\
& \cos ^{4} x=\frac{1}{8}(3+4 \cos 2 x+\cos 4 x) \\
& \cos ^{5} x=\frac{1}{16}(10 \cos x+5 \cos 3 x+\cos 5 x) \\
& \cos ^{6} x=\frac{1}{32}(10+15 \cos 2 x+6 \cos 4 x+\cos 6 x)
\end{aligned}
$$

INVERSE CIRCULAR FUNCTIONS

3.20 The inverse circular and logarithmic functions are multiple valued; i.e., if

$$
0<\sin ^{-1} x<\frac{\pi}{2}
$$

the solution of $x=\sin \theta$ is:

$$
\theta=2 n \pi+\sin ^{-1} x
$$

where n is a positive integer. In the following formulas the cyclic constants are omitted.

$$
\begin{aligned}
\sin ^{-1} x & =-\sin ^{-1}(-x)=\frac{\pi}{2}-\cos ^{-1} x=\cos ^{-1} \sqrt{I-x^{2}} \\
& =\frac{\pi}{2}-\sin ^{-1} \sqrt{\mathrm{I}-x^{2}}=\frac{\pi}{4}+\frac{\mathrm{I}}{2} \sin ^{-1}\left(2 x^{2}-\mathrm{I}\right) \\
& =\frac{\mathrm{I}}{2} \cos ^{-1}\left(\mathrm{I}-2 x^{2}\right)=\tan ^{-1} \frac{x}{\sqrt{\mathrm{I}-x^{2}}} \\
& =2 \tan ^{-1}\left\{\frac{\mathrm{I}-\sqrt{\mathrm{I}-x^{2}}}{x}\right\}=\frac{\mathrm{I}}{2} \tan ^{-1}\left\{\frac{2 x \sqrt{\mathrm{I}-x^{2}}}{\mathrm{I}-2 x^{2}}\right\} \\
& =\cot ^{-1} \frac{\sqrt{\mathrm{I}-x^{2}}}{x}=\frac{\pi}{2}-i \log \left(x+\sqrt{\left.x^{2}-\mathrm{I}\right)} .\right.
\end{aligned}
$$

3.22

$$
\begin{aligned}
\cos ^{-1} x & =\pi-\cos ^{-1}(-x)=\frac{\pi}{2}-\sin ^{-1} x=\frac{\mathrm{I}}{2} \cos ^{-1}\left(2 x^{2}-\mathrm{I}\right) \\
& =2 \cos ^{-1} \sqrt{\frac{\mathrm{I}+x}{2}}=\sin ^{-1} \sqrt{\mathrm{I}-x^{2}}=\tan ^{-1} \frac{\sqrt{\mathrm{I}-x^{2}}}{x} \\
& =2 \tan ^{-1} \sqrt{\frac{\mathrm{I}-x}{\mathrm{I}+x}}=\frac{\mathrm{I}}{2} \tan ^{-1}\left\{\frac{2 x \sqrt{\mathrm{I}-x^{2}}}{2 x^{2}-\mathrm{I}}\right\}=\cot ^{-1} \frac{x}{\sqrt{\mathrm{I}-x^{2}}} \\
& =i \log \left(x+\sqrt{x^{2}-\mathrm{I}}\right)=\pi-i \log \left(\sqrt{x^{2}-\mathrm{I}}-x\right) .
\end{aligned}
$$

3.23

$$
\begin{aligned}
\tan ^{-1} x & =-\tan ^{-1}(-x)=\sin ^{-1} \frac{x}{\sqrt{\mathrm{I}+x^{2}}}=\cos ^{-1} \frac{\mathrm{I}}{\sqrt{\mathrm{I}+x^{2}}} \\
& =\frac{\mathrm{I}}{2} \sin ^{-1} \frac{2 x}{\mathrm{I}+x^{2}}=\frac{\pi}{2}-\cot ^{-1} x=\sec ^{-1} \sqrt{\mathrm{I}+x^{2}} \\
& =\frac{\pi}{2}-\tan ^{-1} \frac{\mathrm{I}}{x}=\frac{\mathrm{I}}{2} \cos ^{-1} \frac{\mathrm{I}-x^{2}}{\mathrm{I}+x^{2}} \\
& =2 \cos ^{-1}\left\{\frac{\mathrm{I}+\sqrt{\mathrm{I}+x^{2}}}{2 \sqrt{\mathrm{I}+x^{2}}}\right\}^{\frac{I}{2}}=2 \sin ^{-1}\left\{\frac{\sqrt{\mathrm{I}+x^{2}}-\mathrm{I}}{2 \sqrt{\mathrm{I}+x^{2}}}\right\}^{\frac{\pi}{2}} \\
& =\frac{\mathrm{I}}{2} \tan ^{-1} \frac{2 x}{\mathrm{I}-x^{2}}=2 \tan ^{-1}\left\{\frac{\sqrt{\mathrm{I}+x^{2}}-\mathrm{I}}{x}\right\} \\
& =-\tan ^{-1} c+\tan ^{-1} \frac{x+c}{\mathrm{I}-c x} \\
& =\frac{\mathrm{I}}{2} i \log \frac{\mathrm{I}-i x}{\mathrm{I}+i x}=\frac{\mathrm{I}}{2} i \log \frac{i+x}{i-x}=-\frac{\mathrm{I}}{2} i \log \frac{\mathrm{I}+i x}{\mathrm{I}-i x}
\end{aligned}
$$

3.25

I.

$$
\begin{aligned}
\sin ^{-1} x \pm \sin ^{-1} y & =\sin ^{-1}\left\{x \sqrt{I-y^{2}} \pm y \sqrt{I-x^{2}}\right\} \\
\cos ^{-1} x \pm \cos ^{-1} y & =\cos ^{-1}\left\{x y \mp \sqrt{\left(I-x^{2}\right)\left(I-y^{2}\right)}\right\} \\
\sin ^{-1} x \pm \cos ^{-1} y & =\sin ^{-1}\left\{x y \pm \sqrt{\left(I-x^{2}\right)\left(I-y^{2}\right)}\right\} \\
& =\cos ^{-1}\left\{y \sqrt{I-x^{2}} \mp x \sqrt{I-y^{2}}\right\}
\end{aligned}
$$

4. $\tan ^{-1} x \pm \tan ^{-1} y=\tan ^{-1} \frac{x \pm y}{\mathrm{I} \mp x y}$.
5. $\tan ^{-1} x \pm \cot ^{-1} y=\tan ^{-1} \frac{x y \pm 1}{y \mp x}$

$$
=\cot ^{-1} \frac{y \mp x}{x y \pm 1} .
$$

HYPERBOLIC FUNCTIONS

3.30 Formulas for the hyperbolic functions may be obtained from the corresponding formulas for the circular functions by replacing x by $i x$ and using the following relations:

1. $\quad \sin i x=\frac{1}{2} i\left(e^{x}-e^{-x}\right)=i \sinh x$.
2. $\quad \cos i x=\frac{1}{2}\left(e^{x}+e^{-x}\right)=\cosh x$.
3. $\tan i x=\frac{i\left(e^{2 x}-\mathrm{r}\right)}{e^{2 x}+\mathrm{I}}=i \tanh x$.
4. $\quad \cot i x=-i \frac{e^{2 x}+\mathrm{I}}{e^{2 x}-\mathrm{I}}=-i \operatorname{coth} x$.
5. $\quad \sec i x=\frac{2}{e^{x}+e^{-x}}=\operatorname{sech} x$.
6. $\quad \csc i x=-\frac{2 i}{e^{x}-e^{-x}}=-i \operatorname{csch} x$.
7. $\sin ^{-1} i x=i \sinh ^{-1} x=i \log \left(x+\sqrt{i+x^{2}}\right)$.
8. $\quad \cos ^{-1} i x=-i \cosh ^{-1} x=\frac{\pi}{2}-i \log \left(x+\sqrt{1+x^{2}}\right)$.
9. $\tan ^{-1} i x=i \tanh ^{-1} x=i \log \sqrt{\frac{\mathrm{I}+x}{\mathrm{I}-x}}$.
10. $\quad \cot ^{-1} i x=-i \operatorname{coth}^{-1} x=-i \log \sqrt{\frac{x+1}{x-1}}$.
3.310 The values of five hyperbolic functions in terms of the sixth are given in the following table :

	$\sinh x=a$	$\cosh x=a$	$\tanh x=a$	$\operatorname{coth} x=a$	sech $x=a$	$\operatorname{csch} x=a$
$\sinh x=$	a	$\sqrt{a^{2}-1}$	$\frac{a}{\sqrt{1-a^{2}}}$	$\frac{1}{\sqrt{a^{2}-1}}$	$\frac{\sqrt{1-a^{2}}}{a}$	$\frac{1}{a}$
$\cosh x=$	$\sqrt{1+a^{2}}$	a	$\frac{1}{\sqrt{1-a^{2}}}$	$\frac{a}{\sqrt{a^{2}-1}}$	$\frac{\mathrm{I}}{a}$	$\frac{\sqrt{1+a^{2}}}{a}$
$\tanh x=$	$\frac{a}{\sqrt{\mathrm{I}+a^{2}}}$	$\frac{\sqrt{a^{2}-1}}{a}$	a	$\frac{\mathrm{I}}{a}$	$\sqrt{1-a^{2}}$	$\frac{\mathrm{I}}{\sqrt{1+a^{2}}}$
$\operatorname{coth} x=$	$\frac{\sqrt{a^{2}+\mathrm{I}}}{a}$	$\frac{a}{\sqrt{a^{2}-\mathrm{I}}}$	$\frac{\mathrm{I}}{\square}$	a	$\frac{I}{\sqrt{I-a^{2}}}$	$\sqrt{I+a^{2}}$
sech $x=$	$\frac{\mathrm{I}}{\sqrt{\mathrm{I}+a^{2}}}$	$\frac{\mathrm{I}}{a}$	$\sqrt{1-a^{2}}$	$\frac{\sqrt{a^{2}-\mathrm{I}}}{a}$	a	$\frac{a}{\sqrt{\mathrm{I}+a^{2}}}$
$\operatorname{csch} x=$	$\frac{\mathrm{I}}{a}$	$\stackrel{2}{\text { a }}$ $\frac{\mathrm{I}}{\sqrt{a^{2}-\mathrm{I}}}$	$\frac{\sqrt{\mathrm{I}-a^{2}}}{a}$	$\sqrt{a^{2}-\mathrm{I}}$	$\frac{a}{\sqrt{1-a^{2}}}$	a

3.311 Periodicity of the Hyperbolic Functions.

The functions $\sinh x, \cosh x, \operatorname{sech} x, \operatorname{csch} x$ have an imaginary period $2 \pi i$, e.g. :

$$
\cosh x=\cosh (x+2 \pi i n),
$$

where n is any integer. The functions $\tanh x, \operatorname{coth} x$ have an imaginary period πi.
The values of the hyperbolic functions for the argument $o, \frac{\pi}{2} i, \pi i, \frac{3 \pi i}{2}$, are given in the following table :

	0	$\frac{\pi}{2} i$	πi	$3 \frac{\pi}{2} i$
\sinh	0	i	0	$-i$
\cosh	I	0	-I	0
\tanh	0	$\infty \cdot i$	0	$\infty \cdot i$
coth	∞	0	∞	0
sech	I	∞	-I	∞
csch	∞	$-i$	∞	i

$\sinh \frac{1}{2} x=\sqrt{\frac{\cosh x-1}{2}}$
2. $\cosh \frac{1}{2} x=\sqrt{\frac{\cosh x+I}{2}}$
3. $\tanh \frac{1}{2} x=\frac{\cosh x-I}{\sinh x}=\frac{\sinh x}{\cosh x+1}=\sqrt{\frac{\cosh x-I}{\cosh x+1}}$.
I.
$\sinh (x \pm y)=\sinh x \cosh y \pm \cosh x \sinh y$.
2.
3.
4. $\quad \operatorname{coth}(x \pm y)=\frac{\operatorname{coth} x \operatorname{coth} y \pm \mathrm{I}}{\operatorname{coth} y \pm \operatorname{coth} x}$.
3.34
I.
$\sinh x+\sinh y=2 \sinh \frac{1}{2}(x+y) \cosh \frac{1}{2}(x-y)$.
2. $\quad \sinh x-\sinh y=2 \cosh \frac{1}{2}(x+y) \sinh \frac{1}{2}(x-y)$.
3. $\cosh x+\cosh y=2 \cosh \frac{1}{2}(x+y) \cosh \frac{1}{2}(x-y)$.
4. $\quad \cosh x-\cosh y=2 \sinh \frac{1}{2}(x+y) \sinh \frac{1}{2}(x-y)$.
5. $\quad \tanh x+\tanh y=\frac{\sinh (x+y)}{\cosh x \cosh y}$.
6. $\quad \tanh x-\tanh y=\frac{\sinh (x-y)}{\cosh x \cosh y}$.
7. $\quad \operatorname{coth} x+\operatorname{coth} y=\frac{\sinh (x+y)}{\sinh x \sinh y}$.
8. $\quad \operatorname{coth} x-\operatorname{coth} y=-\frac{\sinh (x-y)}{\sinh x \sinh y}$.
I.
2.
3.
4.
5.
6.
7.
8.
$\sinh (x+y)+\sinh (x-y)=2 \sinh x \cosh y$.
$\sinh (x+y)-\sinh (x-y)=2 \cosh x \sinh y$.
$\cosh (x+y)+\cosh (x-y)=2 \cosh x \cosh y$.
$\cosh (x+y)-\cosh (x-y)=2 \sinh x \sinh y$.
$\tanh \frac{1}{2}(x \pm y)=\frac{\sinh x \pm \sinh y}{\cosh x+\cosh y}$.
$\operatorname{coth} \frac{1}{2}(x \pm y)=\frac{\sinh x \mp \sinh y}{\cosh x-\cosh y}$.
$\frac{\tanh x+\tanh y}{\tanh x-\tanh y}=\frac{\sinh (x+y) .}{\sinh (x-y) .}$
$\frac{\operatorname{coth} x+\operatorname{coth} y}{\operatorname{coth} x-\operatorname{coth} y}=-\frac{\sinh (x+y)}{\sinh (x-y)}$.
3.36
I. $\sinh (x+y)+\cosh (x+y)=(\cosh x+\sinh x)(\cosh y+\sinh y)$.
2. $\quad \sinh (x+y) \sinh (x-y)=\sinh ^{2} x-\sinh ^{2} y$

$$
=\cosh ^{2} x-\cosh ^{2} y
$$

3. $\quad \cosh (x+y) \cosh (x-y)=\cosh ^{2} x+\sinh ^{2} y$

$$
=\sinh ^{2} x+\cosh ^{2} y
$$

4. $\sinh x+\cosh x=\frac{I+\tanh \frac{1}{2} x}{I-\tanh \frac{1}{2} x}$.
5.

$(\sinh x+\cosh x)^{n}=\cosh n x+\sinh n x$.

3.37

I.

$$
e^{x}=\cosh x+\sinh x
$$

2.
3.
4.

$$
e^{-x}=\cosh x-\sinh x
$$

$\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$.
$\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)$.
I.
$\sinh 2 x=2 \sinh x \cosh x$,

$$
=\frac{2 \tanh x}{\mathrm{I}-\tanh ^{2} x} .
$$

2. $\quad \cosh 2 x=\cosh ^{2} x+\sinh ^{2} x=2 \cosh ^{2} x-\mathrm{I}$,
$=\mathbf{I}+2 \sinh ^{2} x$,
$=\frac{I+\tanh ^{2} x}{I-\tanh ^{2} x}$.
3.
4.
5.
6. $\tanh 2 x=\frac{2 \tanh x}{I+\tanh ^{2} x}$. $\sinh 3 x=3 \sinh x+4 \sinh ^{3} x$. $\cosh 3 x=4 \cosh ^{3} x-3 \cosh x$. $\tanh 3 x=\frac{3 \tanh x+\tanh ^{3} x}{1+3 \tanh ^{2} x}$.
3.40 Inverse Hyperbolic Functions.

The hyperbolic functions being periodic, the inverse functions are multiple valued (3.311). In the following formulas the periodic constants are omitted, the principal values only being given.
I.
2.

$$
\begin{aligned}
& \sinh ^{-1} x=\log \left(x+\sqrt{x^{2}+1}\right)=\cosh ^{-1} \sqrt{x^{2}+1} . \\
& \cosh ^{-1} x=\log \left(x+\sqrt{x^{2}-1}\right)=\sinh ^{-1} \sqrt{x^{2}-1} . \\
& \tanh ^{-1} x=\log \sqrt{\frac{1+x}{I-x}} .
\end{aligned}
$$

4. $\quad \operatorname{coth}^{-1} x=\log \sqrt{\frac{x+1}{x-1}}=\tanh ^{-1} \frac{I}{x}$.
5. $\operatorname{sech}^{-1} x=\log \left(\frac{I}{x}+\sqrt{\frac{I}{x^{2}}-I}\right)=\cosh ^{-1} \frac{I}{x}$.
6. $\operatorname{csch}^{-1} x=\log \left(\frac{I}{x}+\sqrt{\frac{I}{x^{2}}+I}\right)=\sinh ^{-1} \frac{I}{x}$.

3.41

I.

$$
\begin{aligned}
& \text { I. } \quad \sinh ^{-1} x \pm \sinh ^{-1} y=\sinh ^{-1}\left(x \sqrt{I+y^{2}} \pm y \sqrt{\left.I+x^{2}\right)} .\right. \\
& \text { 2. } \quad \cosh ^{-1} x \pm \cosh ^{-1} y=\cosh ^{-1}\left(x y \pm \sqrt{\left(x^{2}-\mathrm{I}\right)\left(y^{2}-\mathrm{I}\right)}\right) . \\
& \text { 3. } \quad \tanh ^{-1} x \pm \tanh ^{-1} y=\tanh ^{-1} \frac{x \pm y}{\mathrm{I} \pm x y} .
\end{aligned}
$$

3.42

I.

$$
\begin{aligned}
\cosh ^{-1} \frac{1}{2}\left(x+\frac{1}{x}\right) & =\sinh ^{-1} \frac{1}{2}\left(x-\frac{1}{x}\right), \\
& =\tanh ^{-1} \frac{x^{2}-1}{x^{2}+1}=2 \tanh ^{-1} \frac{x-1}{x+1}, \\
& =\log x . \\
\cosh ^{-1} \csc 2 x & =-\sinh ^{-1} \cot 2 x=-\tanh ^{-1} \cos 2 x, \\
& =\log \tan x .
\end{aligned}
$$

2.
3.

$$
\tanh ^{-1} \tan ^{2}\left(\frac{\pi}{4}+\frac{x}{2}\right)=\frac{I}{I} \log \csc x .
$$

4.

$$
\tanh ^{-1} \tan ^{2} \frac{x}{2}=\frac{1}{2} \log \sec x
$$

3.43 The Gudermannian.

If,
I.

$$
\begin{aligned}
\cosh x & =\sec \theta \\
\sinh x & =\tan \theta
\end{aligned}
$$

2.

$$
e^{x}=\sec \theta+\tan \theta=\tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right) .
$$

4.

$$
x=\log \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right) .
$$

5.

$$
\theta=\operatorname{gd} x .
$$

3.44

I.
2.

$$
\cosh x=\sec \operatorname{gd} x
$$

3.

$$
\tanh x=\sin \operatorname{gd} x
$$

4.

$$
\sinh x=\tan \operatorname{gd} x
$$

4.

$$
\tanh \frac{x}{2}=\tan \frac{\mathrm{I}}{2} \operatorname{gd} x .
$$

5.

$$
c^{x}=\frac{1+\sin g d x}{\cos \operatorname{gd} x}=\frac{\mathrm{I}-\cos \left(\frac{\pi}{2}+\operatorname{gd} x\right)}{\sin \left(\frac{\pi}{2}+\operatorname{gd} x\right)}
$$

6. $\quad \tanh ^{-1} \tan x=\frac{1}{2} \operatorname{gd} 2 x$.
7. $\tan ^{-1} \tanh x=\frac{1}{2} \mathrm{gd}^{-1} 2 x$.

SOLUTION OF OBLIQUE PLANE TRIANGLES

3.50
$a, b, c=$ Sides of triangle,
$\alpha, \beta, \gamma=$ angles opposite to a, b, c, respectively,
$A=$ area of triangle,

$$
s=\frac{1}{2}(a+b+c)
$$

Given Sought $a, b, c \quad \alpha$
$a, b, \alpha \quad \beta$
$a, \alpha, \beta \quad b$
$\sin \beta=\frac{b \sin \alpha}{a}$.
When $a>b, \beta<\frac{\pi}{2}$ and but one value results. When $b>a$ β has two values.
γ

$$
\gamma=180^{\circ}-(\alpha+\beta)
$$

c

$$
c=\frac{a \sin \gamma}{\sin \alpha} .
$$

A
γ
c

Formula

$$
\begin{aligned}
\sin \frac{1}{2} \alpha & =\sqrt{\frac{(s-b)(s-c)}{b c}} \\
\cos \frac{\mathrm{I}}{2} \alpha & =\sqrt{\frac{s(s-a)}{b c}} \\
\tan \frac{\mathrm{I}}{2} \alpha & =\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \\
\cos \alpha & =\frac{c^{2}+b^{2}-a^{2}}{2 b c} \\
A & =\sqrt{s(s-a)(s-b)(s-c)}
\end{aligned}
$$

-

$$
A=\frac{1}{2} a b \sin \gamma
$$

$$
b=\frac{a \sin \beta}{\sin \alpha}
$$

$$
\gamma=180^{\circ}-(\alpha+\beta)
$$

$$
c=\frac{a \sin \gamma}{\sin \alpha}=\frac{a \sin (\alpha+\beta)}{\sin \alpha} .
$$

$$
\begin{aligned}
& \text { Given Sought } \\
& \text { A } \\
& \text { Formula } \\
& A=\frac{\mathrm{I}}{2} a b \sin \gamma=\frac{\mathrm{I}}{2} a^{2} \frac{\sin \beta \sin \gamma}{\sin \alpha} . \\
& a, b, \gamma \quad \alpha \quad \tan \alpha=\frac{a \sin \gamma}{b-a \cos \gamma} \text {. } \\
& \alpha, \beta \quad \frac{1}{2}(\alpha+\beta)=90^{\circ}-\frac{1}{2} \gamma . \\
& \tan \frac{\mathrm{I}}{2}(\alpha-\beta)=\frac{a-b}{a+b} \cot \frac{1}{2} \gamma \\
& c \\
& c=\left(a^{2}+b^{2}-2 a b \cos \gamma\right)^{\frac{1}{2}} . \\
& =\left\{(a+b)^{2}-4 a b \cos ^{2} \frac{1}{2} \gamma\right\}^{\frac{1}{2}} \\
& =\left\{(a-b)^{2}+4 a b \sin ^{2} \frac{1}{2} \gamma\right\}^{\frac{1}{2}} \text {. } \\
& =\frac{a-b}{\cos \phi} \text { where } \tan \phi=2 \sqrt{a b} \frac{\sin \frac{1}{2} \gamma}{a-b} \\
& =\frac{a \sin \gamma}{\sin \alpha} . \\
& \text { A } \\
& A=\frac{1}{2} a b \sin \gamma \text {. }
\end{aligned}
$$

SOLUTION OF SPHERICAL TRIANGLES

3.51 Right-angled spherical triangles.
$a, b, c=$ sides of triangle, c the side opposite γ, the right angle.
$\alpha, \beta, \gamma=$ angles opposite a, b, c, respectively.
3.511 Napier's Rules:

The five parts are $a, b, \cos c$, co α, co β, where $\cos c=\frac{\pi}{2}-c$. The right angle γ is omitted.

The sine of the middle part is equal to the product of the tangents of the adjacent parts.

The sine of the middle part is equal to the product of the cosines of opposite parts.

From these rules the following equations follow:

$$
\begin{aligned}
\sin a & =\sin c \sin \alpha \\
\tan a & =\tan c \cos \beta=\sin b \tan \alpha \\
\sin b & =\sin c \sin \beta \\
\tan b & =\tan c \cos \alpha=\sin a \tan \beta \\
\cos \alpha & =\cos a \sin \beta \\
\cos \beta & =\cos b \sin \alpha \\
\cos c & =\cot \alpha \cot \beta=\cos a \cos b
\end{aligned}
$$

3.52 Oblique-angled spherical triangles.
$a, b, c=$ sides of triangle.

$$
\alpha, \beta, \gamma=\text { angles opposite to } a, b, c \text {, respectively. }
$$

$$
s=\frac{1}{2}(a+b+c)
$$

$$
\sigma=\frac{1}{2}(\alpha+\beta+\gamma)
$$

$$
\boldsymbol{\epsilon}=\alpha+\beta+\gamma-\mathrm{I} 80=\text { spherical excess }
$$

$$
S=\text { surface of triangle on sphere of radius } r .
$$

Given Sought Formula
a, b, c
$\alpha \quad \sin ^{2} \frac{1}{2} \alpha=$ haversin α, $=\frac{\sin (s-b) \sin (s-c)}{\sin b \sin c}$
$\tan ^{2} \frac{\mathrm{I}}{2} \alpha=\frac{\sin (s-b) \sin (s-c)}{\sin s \sin (s-a)}$. $\cos ^{2} \frac{\mathrm{I}}{2} \alpha=\frac{\sin s \sin (s-a)}{\sin b \sin c}$. haversin $\alpha=\frac{\text { hav } a-\operatorname{hav}(b-c)}{\sin b \sin c}$.
α, β, γ

$$
\begin{aligned}
\sin ^{2} \frac{1}{2} a & =\text { haversin } a \\
& =\frac{-\cos \sigma \cos (\sigma-\alpha)}{\sin \beta \sin \gamma} \\
\tan ^{2} \frac{I}{2} a & =\frac{-\cos \sigma \cos (\sigma-\alpha)}{\cos (\sigma-\beta) \cos (\sigma-\gamma)} \\
\cos ^{2} \frac{I}{2} a & =\frac{\cos (\sigma-\beta) \cos (\sigma-\gamma)}{\sin \beta \sin \gamma}
\end{aligned}
$$

a, c, α
Ambiguous case.

$$
\sin \gamma=\frac{\sin \alpha \sin c}{\sin a}
$$

Two solutions possible.

$$
\begin{aligned}
\beta\left\{\begin{aligned}
\tan \theta & =\tan \alpha \cos c . \\
\sin (\beta+\theta) & =\sin \theta \tan c \cot a \\
\cot \phi & =\tan c \cos \alpha . \\
\sin (b+\phi) & =\frac{\cos a \sin \phi}{\cos c} .
\end{aligned}\right.
\end{aligned}
$$

α, γ, c
Ambiguous case.
Two solutions possible.

Given
a, b, γ
$\tan \theta=\tan a \cos \gamma$
$\tan \phi=\tan b \cos \gamma c$
$b\left\{\begin{aligned} \tan \theta & =\tan a \cos \gamma . \\ \sin (b-\theta) & =\cot \alpha \tan \gamma \sin \theta .\end{aligned}\right.$
$b\left\{\begin{aligned} \tan \frac{1}{2} b & =\frac{\sin \frac{1}{2}(\alpha+\gamma)}{\sin \frac{1}{2}(\alpha-\gamma)} \tan \frac{1}{2}(a-c) \\ & =\frac{\cos \frac{1}{2}(\alpha+\gamma)}{\cos \frac{1}{2}(\alpha-\gamma)} \tan \frac{1}{2}(a+c) .\end{aligned}\right.$
$\beta\left\{\begin{aligned} \cot \phi & =\cos a \tan \gamma \\ \sin (\beta-\phi) & =\frac{\cos \alpha \sin \phi}{\cos \gamma} .\end{aligned}\right.$
$\beta\left\{\begin{aligned} \cot \frac{I}{2} \beta & =\frac{\sin \frac{1}{2}(a+c)}{\sin \frac{1}{2}(a-c)} \tan \frac{1}{2}(\alpha-\gamma) . \\ & =\frac{\cos \frac{1}{2}(a+c)}{\cos \frac{1}{2}(a-c)} \tan \frac{1}{2}(\alpha+\gamma) .\end{aligned}\right.$
c

$$
=\frac{\cos b \cos (a-\phi)}{\cos \phi}
$$

hav $c=\operatorname{hav}(a-b)+\sin a \sin b$ hav γ
$\tan \alpha=\frac{\sin \theta \tan \gamma}{\sin (b-\theta)}$.
$\sin \beta=\frac{\sin \gamma \sin b}{\sin c}$.
$=\frac{\sin \alpha \sin b}{\sin a}$.
$\tan \beta=\frac{\sin \phi \tan \gamma}{\sin (a-\phi)}$.
$\alpha, \beta\left\{\begin{array}{l}\tan \frac{1}{2}(\alpha+\beta)=\frac{\cos \frac{1}{2}(a-b) \cot \frac{1}{2} \gamma}{\cos \frac{1}{2}(a+b)} \\ \tan \frac{1}{2}(\alpha-\beta)=\frac{\sin \frac{1}{2}(a-b) \cot \frac{1}{2} \gamma}{\sin \frac{1}{2}(a+b)} .\end{array}\right.$
c, α, β
$\tan \theta=\cos c \tan \alpha$
$\tan \phi=\cos c \tan \beta$
γ
$\cos \gamma=-\cos \alpha \cos \beta+\sin \alpha \sin \beta \cos c$.
$\cos \gamma=\frac{\cos \alpha \cos (\beta+\theta)}{\cos \theta}$.
$=\frac{\cos \beta \cos (\alpha+\phi)}{\cos \phi}$.
$\tan a=\frac{\tan c \sin \theta}{\sin (\beta+\theta)}$.

FINITE SERIES OF CIRCULAR FUNCTIONS

3.60 If the sum, $f(r)$, of the finite or infinite series:

$$
f(r)=a_{0}+a_{1} r+a_{2} r^{2}+\ldots .
$$

is known, the sums of the series:

$$
\begin{aligned}
& S_{1}=a_{0} \cos x+a_{1} r \cos (x+y)+a_{2} r^{2} \cos (x+2 y)+\ldots \\
& S_{2}=a_{0} \sin x+a_{1} r \sin (x+y)+a_{2} r^{2} \sin (x+2 y)+\ldots
\end{aligned}
$$

are:

$$
\begin{aligned}
& S_{1}=\frac{1}{2}\left\{e^{i x} f\left(r e^{i y}\right)+e^{-i x} f\left(r e^{-i y}\right)\right\}, \\
& S_{2}=-\frac{i}{2}\left\{e^{i x} f\left(r e^{i y}\right)-e^{-i x} f\left(r e^{-i y}\right)\right\}
\end{aligned}
$$

3.61 Special Finite Series.

1. $\sum_{k=1}^{n} \sin k x=\frac{\sin \frac{n x}{2} \sin \frac{n+\mathrm{I}}{2} x}{\sin \frac{x}{2}}$.
2. $\sum_{k=0}^{n} \cos k x=\frac{\cos \frac{n x}{2} \sin \frac{n+\mathrm{t}}{2} x}{\sin \frac{x}{2}}$.
3. $\sum_{k=1}^{n} \sin ^{2} k x=\frac{n}{2}-\frac{\cos (n+1) x \cdot \sin n x}{2 \sin x}$.
4. $\sum_{k=0}^{n} \cos ^{2} k x=\frac{n+2}{2}+\frac{\cos (n+1) x \cdot \sin n x x}{2 \sin x}$.
5. $\sum_{k=1}^{n-1} k \sin k x=\frac{\sin n x}{4 \sin ^{2} \frac{x}{2}}-\frac{n \cos \left(\frac{2 n-1}{2}\right) x}{2 \sin \frac{x}{2}}$.
6. $\sum_{k=1}^{n-\mathrm{I}} k \cos k x=\frac{n \sin \left(\frac{2 n-\mathrm{I}}{2}\right) x}{2 \sin \frac{x}{2}}-\frac{\mathrm{I}-\cos n x}{4 \sin ^{2} \frac{x}{2}}$.
7. $\sum_{k=1}^{n} \sin (2 k-1) x=\frac{\sin ^{2} n x}{\sin x}$.
8. $\sum_{k=0}^{n} \sin (x+k y)=\frac{\sin \left(x+\frac{n y}{2}\right) \sin \left(\frac{n+I}{2} y\right)}{\sin \frac{y}{2}}$.
9. $\sum_{k=0}^{n} \cos (x+k y)=\frac{\cos \left(x+\frac{n}{2} y\right) \sin \left(\frac{n+1}{2} y\right)}{\sin \frac{y}{2}}$.
10. $\sum_{k=\mathrm{I}}^{n+\mathrm{I}}(-\mathrm{I})^{k-1} \sin (2 k-\mathrm{I}) x=(-\mathrm{I})^{n} \frac{\sin (2 n+2) x}{2 \cos x}$.
II. $\sum_{k=\mathrm{x}}^{n}(-\mathrm{I})^{k} \cos k x=-\frac{\mathrm{I}}{2}+(-\mathrm{I})^{n} \frac{\cos \left(\frac{2 n+\mathrm{I}}{2} x\right)}{2 \cos _{2}^{x}}$.

I2. $\sum_{k=1}^{n-1} r^{k} \sin k x=\frac{r \sin x\left(\mathrm{I}-r^{n} \cos n x\right)-(\mathrm{I}-r \cos x) r^{n} \sin n x}{\mathrm{I}-2 r \cos x+r^{2}}$.
I3. $\sum_{k=0}^{n-1} r^{k} \cos k x=\frac{(I-r \cos x)\left(I-r^{n} \cos n x\right)+r^{n+1} \sin x \sin n x x}{I-2 r \cos x+r^{2}}$.
14. $\sum_{k=1}^{n}\left(\frac{\mathrm{I}}{2^{k}} \sec \frac{x}{2^{k}}\right)^{2}=\csc ^{2} x-\left(\frac{\mathrm{I}}{2^{n}} \csc \frac{x}{2^{n}}\right)^{2}$.
15. $\sum_{k=1}^{n}\left(2^{k} \sin ^{2} \frac{x}{2^{k}}\right)^{2}=\left(2^{n} \sin \frac{x}{2^{n}}\right)^{2}-\sin ^{2} x$.
16. $\sum_{k=0}^{n} \frac{I}{2^{k}} \tan \frac{x}{2^{k}}=\frac{I}{2^{n}} \cot \frac{x}{2^{n}}-2 \cot 2 x$.

I7. $\sum_{k=0}^{n-1} \cos \frac{k^{2} 2 \pi}{n}=\frac{\sqrt{n}}{2}\left(\mathrm{I}+\cos \frac{n \pi}{2}+\sin \frac{n \pi}{2}\right)$.
18. $\sum_{k=1}^{n-1} \sin \frac{k^{2} 2 \pi}{n}=\frac{\sqrt{n}}{2}\left(\mathrm{I}+\cos \frac{n \pi}{2}-\sin \frac{n \pi}{2}\right)$.

I9. $\sum_{k=1}^{n-1} \sin \frac{k \pi}{n}=\cot \frac{\pi}{2 n}$.
20. $\sum_{k-0}^{n} \frac{I}{2^{2 k}} \tan ^{2} \frac{x}{2^{k}}=\frac{2^{2 n+2}-I}{3 \cdot 2^{2 n-1}}+4 \cot ^{2} 2 x-\frac{I}{2^{2 n}} \cot \frac{x}{2^{n}}$.
3.62

$$
S_{n}=\sum_{k=1}^{n-1} \csc \frac{k \pi}{n}
$$

Watson (Phil. Mag. 3I, p. III, I9I6) has obtained an asymptotic expansion for this sum, and has given the following approximation:
$S_{n}=2 n\left\{0.7329355992 \log _{10}(2 n)-0.180645387 \mathrm{I}\right\}$

$$
-\frac{0.087266}{n}+\frac{0.01035}{n^{3}}-\frac{0.004}{n^{5}}+\frac{0.005}{n^{7}}-\ldots
$$

Values of S_{n} are tabulated by integers from $n=2$ to $n=30$, and from $n=30$ to $n=100$ at intervals of 5 .

The expansion of

$$
T_{n}=\sum_{k=1}^{n-1} \csc \left(\frac{k \pi}{n}-\frac{\beta}{2}\right)
$$

where

$$
-\frac{2 \pi}{n}<\beta<\frac{2 \pi}{n}
$$

is also obtained.
3.70 Finite Products.
r. $\sin n x=n \sin x \cos x \prod_{k=x}^{\frac{\pi}{2}-\mathrm{I}}\left(\mathrm{I}-\frac{\sin ^{2} x}{\sin ^{2} \frac{k \pi}{n}}\right) n$ even.
2.

$$
\cos n x=\prod_{k=I_{r}}^{\frac{n}{2}}\left(\mathrm{I}-\frac{\sin ^{2} x}{\sin ^{2} \frac{2 k-\mathrm{I}}{2 n} \pi}\right) n \text { even. }
$$

3.

$$
\sin n x=n \sin x \prod_{k=1}^{\frac{n-1}{2}}\left(\mathrm{I}-\frac{\sin ^{2} x}{\sin ^{2} \frac{k \pi}{n}}\right) n \text { odd }
$$

$\cos n x=\cos x \prod_{k=1}^{\frac{n-1}{2}}\left(\mathrm{I}-\frac{\sin ^{2} x}{\sin ^{2} \frac{2 k-1}{2 n} \pi}\right) n$ odd.
4.
5.
$\cos n x-\cos n y=2^{n-1} \prod_{k=0}^{n-1}\left\{\cos x-\cos \left(y+\frac{2 k \pi}{n}\right)\right\}$.
6. $\quad a^{2 n}-2 a^{n} b^{n} \cos n x+b^{2 n}=\prod_{k=0}^{n-1}\left\{a^{2}-2 a b \cos \left(x+\frac{2 k \pi}{n}\right)+b^{2}\right\}$.

ROOTS OF TRANSCENDENTAL EQUATIONS

$3.800 \tan x=x$.
The first 17 roots, and the corresponding maxima and minima of $\frac{\sin x}{x}$ are given in the following table (Lommel, Abh. Munch. Akad. (2) I5, 123, 1886):

n	x_{n}	$\begin{aligned} & \operatorname{Max} \sin x \\ & \operatorname{Min} \frac{x}{x} \end{aligned}$
1	\bigcirc	I
2	4.4934	-0.2172
3	7.7253	+0.1284
4	10.9041	-0.0913
5	14.0662	+0.0709
6	17.2208	-0.0580
7	20.3713	+0.0490
8	23.5195	-0.0425
9	26.6661	+0.0375
10	29.8116	-0.0335
II	32.9564	+0.0303
12	36.1006	-0.0277
13	39.2444	+0.0255
14	42.3879	-0.0236
15	45.53II	+0.0220
16	48.6741	-0.0205
17	51.8170	+0.0193

3.801

$$
\tan x=\frac{2 x}{2-x^{2}}
$$

The first three roots are:

$$
\begin{aligned}
& x_{1}=0, \\
& x_{2}=119.26 \frac{\pi}{\mathrm{I} 80} \\
& x_{3}=340.35 \frac{\pi}{\mathrm{I} 80}
\end{aligned}
$$

If x is large

$$
\begin{aligned}
& x_{n}=n \pi-\frac{2}{n \pi}-\frac{16}{3 n^{3} \pi^{3}}+\ldots \\
& \quad \text { (Rayleigh, Theory of Sound, II, p. 265.) }
\end{aligned}
$$

3.802

$$
\tan x=\frac{x^{3}-9 x}{4 x^{2}-9}
$$

The first two roots are:

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=3.3422
\end{aligned}
$$

(Rayleigh, l. c. p. 266.)
3.803

$$
\tan x=\frac{x}{1-x^{2}}
$$

The first two roots are:

$$
\begin{aligned}
& x_{1}=0, \\
& x_{2}=2.744 . \\
& \text { (J. J. Thomson, Recent Researches, p. 373.) }
\end{aligned}
$$

3.804

$$
\tan x=\frac{3 x}{3-x^{2}}
$$

The first seven roots are:

$$
\begin{aligned}
x_{1} & =\mathrm{o} \\
x_{2} & =\mathrm{I} .8346 \pi \\
x_{3} & =2.8950 \pi \\
x_{4} & =3.9225 \pi \\
x_{5} & =4.9385 \pi \\
x_{6} & =5.9489 \pi \\
x_{7} & =6.9563 \pi \\
& \text { (Lamb, London Math. Soc. Proc. } 13, I 882 .)
\end{aligned}
$$

3.805

$$
\tan x=\frac{4 x}{4-3 x^{2}}
$$

The first seven roots are:

$$
\begin{align*}
& x_{1}=0 \\
& x_{2}=0.8160 \pi \\
& x_{3}=1.9285 \pi \\
& x_{4}=2.9359 \pi \\
& x_{5}=3.9658 \pi \\
& x_{6}=4.9728 \pi \\
& x_{7}=5.9774 \pi \tag{Lamb,1.c.}
\end{align*}
$$

3.806

$$
\cos x \cosh x=\mathbf{I}
$$

The roots are:

$$
\begin{aligned}
x_{1} & =4.7300408, \\
x_{2} & =7.8532046, \\
x_{3} & =10.9956078, \\
x_{4} & =14.1371655, \\
x_{5} & =17.2787596, \\
x_{n} & =\frac{1}{2}(2 n+1) \pi n>5 . \\
& \quad(\text { Rayleigh, Theory of Sound, I, p. 278.) }
\end{aligned}
$$

3.807

$$
\cos x \cosh x=-\mathbf{I}
$$

The roots are:

$$
\begin{aligned}
& x_{1}=1.875104, \\
& x_{2}=4.694098, \\
& x_{3}=7.854757, \\
& x_{4}=10.99554 \mathrm{I}, \\
& x_{5}=14.137168, \\
& x_{6}=17.278759, \\
& x_{n}=\frac{1}{2}(2 n-1) \pi n>6 .
\end{aligned}
$$

3.808

$$
\mathrm{I}-\left(\mathrm{I}+x^{2}\right) \cos x=0 .
$$

The roots are:

$$
\begin{aligned}
& x_{1}=\mathrm{I} .102506, \\
& x_{2}=4.75476 \mathrm{I}, \\
& x_{3}=7.837964, \\
& x_{4}=11.003766, \\
& x_{5}=14.132185, \\
& x_{6}=\text { I } 7.282097 .
\end{aligned}
$$

(Schlömilch: Ubungsbuch, I, p. 354.)
3.809 The smallest root of

$$
\theta-\cot \theta=0,
$$

is

$$
\begin{equation*}
\theta=49^{\circ} 17^{\prime} 36^{\prime \prime} .5 \tag{1.c.p.355.}
\end{equation*}
$$

3.810 The smallest root of

$$
\theta-\cos \theta=0,
$$

is

$$
\begin{equation*}
\theta=42^{\circ} 20^{\prime} 47^{\prime \prime} \cdot 3 . \tag{1.c.p.353.}
\end{equation*}
$$

3.811 The smallest root of

$$
\begin{align*}
& x e^{x}-2=0, \\
& x=0.8526 . \tag{1.c.p.353.}
\end{align*}
$$

3.812 The smallest root of

$$
\begin{gather*}
\log (\mathrm{I}+x)-\frac{3}{4} x=0, \\
x=0.73360 . \tag{1.c.p.353.}
\end{gather*}
$$

3.813

$$
\tan x-x+\frac{1}{x}=0 .
$$

The first roots are:

$$
\begin{aligned}
& x_{1}=4.480 \\
& x_{2}=7.723 \\
& x_{3}=10.90 \\
& x_{4}=14.07 \\
& \text { (Collo, Annalen der Physik, } 65, \text { p. } 45, \text { I921.) }
\end{aligned}
$$

3.814

$$
\cot x+x-\frac{1}{x}=0 .
$$

The first roots are:

$$
\begin{aligned}
& x_{1}=0, \\
& x_{2}=2.744, \\
& x_{3}=6.117, \\
& x_{4}=9.317, \\
& x_{5}=12.48, \\
& x_{6}=15.64, \\
& x_{7}=18.80 .
\end{aligned}
$$

(Solo, l. c.)
3.90 Special Tables.
$\sin \theta, \cos \theta$: The British Association Report for 1916 contains the following tables:

Table I, p. bo. $\sin \theta, \cos \theta, \theta$ expressed in radians from $\theta=\circ$ to $\theta=\mathrm{r} .600$, interval 0.001, to decimal places.

Table II, p. 88. $\theta-\sin \theta, \mathrm{r}-\cos \theta, \theta=0.0000 \mathrm{r}$ to $\theta=0.00100$, interval 0.0000 I , io decimal places.

88

Table III, p. 90. $\sin \theta, \cos \theta ; \theta=0.1$ to $\theta=10.0$, interval o.I, 15 decimal places.
J. Peters (Abh. d. K. P. Akad. der Wissen., Berlin, 19II) has given sines and cosines for every sexagesimal second to 21 places.
hav $\theta, \log _{10}$ hav θ : Bowditch, American Practical Navigator, five-place tables, $0^{\circ}-180^{\circ}$, for $15^{\prime \prime}$ intervals.

Tables for Solution of Spherical Triangles.
Aquino's Altitude and Azimuth Tables, London, 1918. Reprinted in Hydrographic Office Publication, No. 200, Washington, 1918.

Hyperbolic Functions.
The Smithsonian Mathematical Tables: Hyperbolic Functions, contain the most complete five-place tables of Hyperbolic Functions.

Table I. The common logarithms (base io) of $\sinh u, \cosh u, \tanh u$, $\operatorname{coth} u$:

$$
\begin{array}{ll}
u=0.000 \mathrm{I} \text { to } u=0.1000 \text { interval } 0.000 \mathrm{I}, \\
u=0.00 \mathrm{I} & \text { to } u=3.000 \text { interval } 0.00 \mathrm{I}, \\
u=3.00 & \text { to } u=6.00 \\
\text { interval } 0.01
\end{array}
$$

Table II. $\sinh u, \cosh u, \tanh u$, $\operatorname{coth} u$. Same ranges and intervals.
Table III. $\sin u, \cos u, \log _{10} \sin u, \log _{10} \cos u$:
$u=0.0001$ to $u=0.1000$ interval 0.0001 ,
$u=0.100$ to $u=1.600$ interval 0.00 I .
Table IV. $\log _{10} e^{u}$ (7 places), e^{u} and e^{-u} (7 significant figures):

$$
\begin{aligned}
& u=0.00 \mathrm{I} \text { to } u=2.950 \text { interval } 0.00 \mathrm{I}, \\
& u=3.00 \text { to } u=6.00 \text { interval 0.01, } \\
& u=1.0 \quad \text { to } u=100 \quad \text { interval 1.0 } \quad \text { (9-10 figures). }
\end{aligned}
$$

Table V. five-place table of natural logarithms, $\log u$.

$$
\begin{aligned}
& u=1.0 \text { to } u=1000 \text { interval } 1.0, \\
& u=1000 \text { to } u=10,000 \text { varying intervals. }
\end{aligned}
$$

Table VI. $g d u$ (7 places); u expressed in radians, $u=0.001$ to $u=3.000$, interval 0.001, and the corresponding angular measure. $u=3.00$ to $u=6.00$, interval o.or.

Table VII. $g d^{-1} u$, to o^{\prime}. or, in terms of $g d u$ in degrees and minutes from $0^{\circ} \mathrm{I}^{\prime}$ to $89^{\circ} 59^{\prime}$.

Table VIII. Table for conversion of radians into angular measure.

Kennelly: Tables of Complex Hyperbolic and Circular Functions. Cambridge, Harvard University Press, 1914.

The complex argument, $x+i q=\rho e^{i \delta}$. In the tables this is denoted $\rho \angle \delta$. $\rho=\sqrt{x^{2}+q^{2}}, \tan \delta=q / x$.

Tables I, II, III give the hyperbolic sine, cosine and tangent of ($\rho<\delta^{\circ}$) expressed as $r \angle \gamma$:

$$
\begin{array}{ll}
\delta=45^{\circ} \text { to } \delta=90^{\circ} & \text { interval } \mathrm{I}^{\circ} \\
\rho=0.0 \text { r to } \rho=3.0 & \text { interval o.r. }
\end{array}
$$

Tables IV and V give $\frac{\sinh \theta}{\theta}, \frac{\tanh \theta}{\theta}$ expressed as $r \angle \gamma, \theta=\rho \angle \delta$,

$$
\begin{array}{ll}
\rho=0.1 \text { to } \rho=3.0 & \text { interval o.I, } \\
\delta=45^{\circ} \text { to } \delta=90^{\circ} & \text { interval } 1^{\circ} .
\end{array}
$$

Table VI gives $\sinh \left(\rho \angle 45^{\circ}\right), \cosh \left(\rho \angle 45^{\circ}\right), \tanh \left(\rho \angle 45^{\circ}\right), \operatorname{coth}\left(\rho \angle 45^{\circ}\right)$, $\operatorname{sech}\left(\rho \angle 45^{\circ}\right), \operatorname{csch}\left(\rho \angle 45^{\circ}\right)$ expressed as $r \angle \gamma$:

$$
\begin{array}{ll}
\rho=0 \quad \text { to } \rho=6.0 \quad \text { interval 0.I, } \\
\rho=6.05 \text { to } \rho=20.50 \quad \text { interval } 0.05 .
\end{array}
$$

Tables VII, VIII and IX give $\sinh (x+i q), \cosh (x+i q), \tanh (x+i q)$, expressed as $u+i v$:

$$
\begin{array}{ll}
x=0 \text { to } x=3.95 & \text { interval } 0.05 \\
q=0 \text { to } q=2.0 \quad \text { interval } 0.05
\end{array}
$$

Tables X, XI, XII give $\sinh (x+i q), \cosh (x+i q), \tanh (x+i q)$ expressed as $r \angle \gamma$:

$$
\begin{array}{ll}
x=0 \text { to } x=3.95 & \text { interval } 0.05, \\
q=0 \text { to } q=2.0 & \text { interval } 0.05 .
\end{array}
$$

Table XIII gives sinh $(4+i q)$, cosh $(4+i q)$, tanh $(4+i q)$ expressed both as $u+i v$ and $r \angle \gamma$:

$$
q=0 \text { to } q=2.0 \quad \text { interval } 0.05
$$

Table XIV gives $\frac{e^{x}}{2}$ and $\log _{10} \frac{e^{x}}{2}$.

$$
x=4.00 \text { to } x=10.00 \text { interval } 0.01
$$

Table XV gives the real hyperbolic functions: $\sinh \theta, \cosh \theta, \tanh \theta, \operatorname{coth} \theta$, $\operatorname{sech} \theta, \operatorname{csch} \theta$.

$$
\begin{aligned}
& \theta=0 \text { to } \theta=2.5 \text { interval o.or, } \\
& \theta=2.5 \text { to } \theta=7.5 \text { interval o.I. }
\end{aligned}
$$

Pernot and Woods: Logarithms of Hyperbolic Functions to 12 Significant Figures. Berkeley, University of California Press, 1918.

Table I. $\log _{10} \sinh x$, with the first three differences.

$$
x=.0000 \text { to } x=2 \text { or } 8 \text { nterval o.001. }
$$

Table II. $\log _{10} \cosh x$.

$$
x=0.000 \text { to } x=2.032 \text { interval } 0.001
$$

Table III. $\log _{10} \tanh x$.

$$
x=0.000 \text { to } x=2.018 \text { interval } 0.001
$$

Table IV. $\log _{10} \frac{\sinh x}{x}$.

$$
x=0.00 \text { to } x=0.506 \text { interval } 0.001
$$

Table V. $\log _{10} \frac{\tanh x}{x}$.

$$
x=0.000 \text { to } x=0.506 \text { interval } 0.001
$$

Van Orstrand, Memoirs of the National Academy of Sciences, Vol. XIV, fifth memoir, Washington, 1921.

Tables of $\frac{\mathrm{I}}{n!}, e^{x}, e^{-x}, e^{n \pi}, e^{-n \pi}, e^{ \pm \frac{n \pi}{360}}, \sin x, \cos x$, to $23-62$ decimal places or significant figures.

IV. VECTOR ANALYSIS

4.000 A vector \mathbf{A} has components along the three rectangular axes, x, y, z : A_{x}, A_{y}, A_{z}.

$$
\begin{aligned}
& A=\text { length of vector. } \\
& A=\sqrt{A_{x}{ }^{2}+A_{y}{ }^{2}+A_{z^{2}}} .
\end{aligned}
$$

Direction cosines of $\mathbf{A}, \frac{A_{x}}{A}, \frac{A_{y}}{A}, \frac{A_{z}}{A}$.
4.001 Addition of vectors.

$$
\mathrm{A}+\mathrm{B}=\mathrm{C}
$$

C is a vector with components.

$$
\begin{aligned}
& C_{x}=A_{x}+B_{x} . \\
& C_{y}=A_{y}+B_{y} . \\
& C_{z}=A_{z}+B_{z} .
\end{aligned}
$$

$4.002 \quad \theta=$ angle between A and B.

$$
\begin{aligned}
C & =\sqrt{A^{2}+B^{2}+2 A B \cos \theta} . \\
\cos \theta & =\frac{A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}}{A B} .
\end{aligned}
$$

4.003 If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are any three non-coplanar vectors of unit length, any vector, R , may be expressed:

$$
\mathbf{R}=a \mathbf{a}+b \mathbf{b}+c \mathbf{c},
$$

where a, b, c are the lengths of the projections of R upon $\mathrm{a}, \mathrm{b}, \mathrm{c}$ respectively.
4.004 Scalar product of two vectors:

$$
S \mathrm{AB}=(\mathrm{AB})=\mathrm{AB}
$$

are equivalent notations.

$$
\mathrm{AB}=A B \cos \widehat{A B}
$$

4.005 Vector product of two vectors:

$$
V \mathrm{AB}=\mathrm{A} \times \mathrm{B}=[\mathrm{AB}]=\mathrm{C} .
$$

C is a vector whose length is

$$
C=A B \sin \widehat{A B}
$$

The direction of \mathbf{C} is perpendicular to both \mathbf{A} and \mathbf{B} such that a right-handed rotation about \mathbf{C} through the angle $\widehat{A B}$ turns \mathbf{A} into \mathbf{B}.
$4.006 \mathbf{i}, \mathbf{j}, \mathbf{k}$ are three unit vectors perpendicular to each other. If their directions coincide with the axes x, y, z of a rectangular system of coördinates:

$$
\mathbf{A}=A_{x^{\mathbf{i}}}+A_{y} \mathbf{j}+A_{z} \mathbf{k} .
$$

4.007

$$
\begin{aligned}
& \mathrm{ii}=\mathrm{i}^{2}=\mathrm{jj}=\mathrm{j}^{2}=\mathrm{kk}=\mathbf{k}^{2}=\mathrm{I}, \\
& \mathrm{ij}=\mathrm{ji}=\mathrm{jk}=\mathrm{kj}=\mathrm{ki}=\mathrm{ik}=0 .
\end{aligned}
$$

4.008

$$
\begin{aligned}
V \mathrm{ij} & =-V_{\mathrm{ji}}=\mathbf{k}, \\
V \mathbf{j k} & =-V \mathbf{k j}=\mathbf{i}, \\
V \mathrm{ki} & =-V \mathrm{ik}=\mathbf{j} .
\end{aligned}
$$

4.009

$$
\mathbf{A B}=\mathbf{B A}=A B \cos \widehat{A B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

4.010

$$
\begin{aligned}
V \mathbf{A B}=-V \mathbf{B} \mathbf{A}=\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right| \\
=\left(A_{y} B_{z}-A_{z} B_{y}\right) \mathbf{i}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \mathbf{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \mathbf{k} .
\end{aligned}
$$

4.10 If A, B, C, are any three vectors:

$$
\mathbf{A} V \mathbf{B C}=\mathbf{B} V \mathbf{C} \mathbf{A}=\mathbf{C} V \mathbf{A B}
$$

$=$ Volume of parallelepipedon having $\mathbf{A}, \mathbf{B}, \mathbf{C}$ as edges

$$
=\left|\begin{array}{lll}
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right|
$$

4.11

I. $V \mathbf{A}(\mathbf{B}+\mathbf{C})=V \mathrm{AB}+V \mathrm{AC}$.
2. $V(\mathbf{A}+\mathbf{B})(\mathbf{C}+\mathbf{D})=V \mathbf{A}(\mathbf{C}+\mathbf{D})+V \mathbf{B}(\mathbf{C}+\mathbf{D})$.
3. $V \mathbf{A} V \mathbf{B C}=\mathbf{B} S \mathbf{A C}-\mathbf{C} S \mathbf{A B}$.
4. $V \mathbf{A} V \mathrm{BC}+V \mathrm{~B} V \mathrm{CA}+V \mathrm{C} V \mathrm{AB}=0$.
5. $V \mathrm{AB} \cdot V \mathrm{CD}=\mathrm{AC} \cdot \mathrm{BD}-\mathrm{BC} \cdot \mathrm{AD}$.
6. $V(V \mathrm{AB} \cdot V \mathrm{CD})=\mathbf{C} S(\mathrm{D} V \mathrm{AB})-\mathrm{D} S(\mathbf{C} V \mathrm{AB})$

$$
\begin{aligned}
& =\mathbf{C} S(\mathbf{A} V \mathbf{B D})-\mathbf{D} S(\mathbf{A} V \mathbf{B C}) \\
& =\mathbf{B} S(\mathbf{A} V \mathbf{C D})-\mathbf{A} S(\mathbf{B} V \mathbf{C D}) \\
& =\mathbf{B} S(\mathbf{C} V \mathbf{D A})-\mathbf{A} S(\mathbf{C} V \mathbf{D B}) .
\end{aligned}
$$

4.20
I.

$$
\begin{aligned}
d \mathbf{A B} & =\mathbf{A} d \mathbf{B}+\mathbf{B} d \mathbf{A} . \\
d V \mathbf{A B} & =V \mathbf{A} d \mathbf{B}+V d \mathbf{A} \mathbf{B} \\
& =V \mathbf{A} d \mathbf{B}-V \mathbf{B} d \mathbf{A} .
\end{aligned}
$$

4.21

I. $\quad \nabla=\mathrm{i} \frac{\partial}{\partial x}+\mathrm{j} \frac{\partial}{\partial y}+\mathrm{k} \frac{\partial}{\partial z}$.
2. $\nabla \mathbf{A}=\operatorname{div} \mathbf{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}$.
3. $\nabla \phi=\operatorname{grad} \phi=\mathbf{i} \frac{\partial \phi}{\partial x}+\mathrm{j} \frac{\partial \phi}{\partial y}+\mathrm{k} \frac{\partial \phi}{\partial z}$.
4. $\dot{V} \nabla \mathbf{A}=\operatorname{curl} \mathbf{A}=\operatorname{rot} \mathbf{A}$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right| \\
& =\mathrm{i}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\mathbf{j}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)+\mathbf{k}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) .
\end{aligned}
$$

5. $\quad \nabla \nabla=\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$.

4.22

I. curl grad $\phi=\operatorname{curl} \nabla \phi=V \nabla \nabla \phi=0$.
2. div $\operatorname{grad} \phi=\nabla \nabla \phi=\bar{\nabla}^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}$.
3. $\operatorname{div} \operatorname{curl} \mathbf{A}=0$.
4. $\operatorname{curl} \operatorname{curl} \mathbf{A}=\operatorname{curl}^{2} \mathbf{A}=\nabla \operatorname{div} \mathbf{A}-\bar{\nabla}^{2} \mathbf{A}$.
5.

$$
\bar{\nabla}^{2} \mathbf{A}=\mathbf{i} \bar{\nabla}^{2} \mathbf{A}_{x}+\mathbf{j} \bar{\nabla}^{2} A_{y}+\mathbf{k} \bar{\nabla}^{2} A_{z} .
$$

6.

$$
\mathbf{A} \nabla=A_{x} \frac{\partial}{\partial x}+A_{y} \frac{\partial}{\partial y}+A_{z} \frac{\partial}{\partial z} .
$$

4.23
I. $\quad \nabla \mathbf{A B}=\operatorname{grad} \mathbf{A B}=(\mathbf{A} \nabla) \mathbf{B}+(\mathbf{B} \nabla) \mathbf{A}+V . \mathbf{A}$ curl $\mathbf{B}+V . \mathbf{B}$ curl \mathbf{A}.
2. $\nabla V \mathbf{A B}=\operatorname{div} V \mathbf{A B}=\mathbf{B}$ curl $\mathbf{A}-\mathbf{A}$ curl \mathbf{B}.
3. $V \nabla V \mathbf{A B}=(\mathbf{B} \nabla) \mathbf{A}-(\mathbf{A} \nabla) \mathbf{B}+\mathbf{A} \operatorname{div} B-\mathbf{B} \operatorname{div} \mathbf{A}$.
4. $\operatorname{div} \phi \mathbf{A}=\phi \operatorname{div} \mathbf{A}+\mathbf{A} \nabla \phi$.
5. $\operatorname{curl} \phi \mathbf{A}=V \cdot \nabla \phi \mathbf{A}+\phi \operatorname{curl} \mathbf{A}=V \cdot \operatorname{grad} \phi \cdot \mathbf{A}+\phi \operatorname{curl} \mathbf{A}$.
6. $\quad \nabla \mathbf{A}^{2}=2(\mathbf{A} \nabla) \mathbf{A}+2 V \mathbf{A}$ curl \mathbf{A}.
7. $\mathbf{C}(\mathbf{A} \nabla) \mathbf{B}=\mathbf{A}(\mathbf{C} \nabla) \mathbf{B}+\mathbf{A} V \mathbf{C}$ curl \mathbf{B}.
8. $\quad \mathbf{B} \nabla \mathbf{A}^{2}={ }_{2} \mathbf{A}(\mathbf{B} \nabla) \mathbf{A}$.
4.24 \mathbf{R} is a radius vector of length r and \mathbf{r} a unit vector in the direction of \mathbf{R}.
I.

$$
\begin{aligned}
\mathbf{R} & =r \mathbf{r} \\
r^{2} & =x^{2}+y^{2}+z^{2} \\
\nabla \frac{\mathbf{I}}{r} & =-\frac{\mathbf{I}}{r^{3}} \mathbf{R}=-\frac{\mathbf{I}}{r^{2}} \mathbf{r}
\end{aligned}
$$

2.

$$
\nabla^{2} \frac{\mathrm{I}}{r}=0
$$

3.

$$
\nabla r=\frac{\mathrm{I}}{r} \mathbf{R}=\mathbf{r}=\operatorname{grad} r
$$

$$
\bar{\nabla}^{2} r=\frac{2}{r}
$$

5.

$V \nabla \mathbf{R}=\operatorname{curl} \mathbf{R}=0$.
$\nabla \mathbf{R}=\operatorname{div} \mathbf{R}=3$.

$$
\frac{d \phi}{d r}=\mathbf{r} \nabla \phi
$$

8.

$(\mathbf{R} \nabla) \mathbf{A}=r \frac{d \mathbf{A}}{d r}$.
9. $(\mathbf{r} \nabla) \mathbf{A}=\frac{d \mathbf{A}}{d r}$.
10.
$(\mathbf{A} \nabla) \mathbf{R}=\mathbf{A}$.
$4.30 d \mathbf{S}=$ an element of area of a surface regarded as a vector whose direction is that of the positive normal to the surface.
$d V=$ an element of volụme - a scalar.
$d \mathbf{s}=$ an element of arc of a curve regarded as a vector whose direction is that of the positive tangent to the curve.
4.31 Gauss's Theorem:

$$
\mathcal{J} \mathcal{S} \mathcal{S} \operatorname{div} \mathbf{A} d V=\int \mathcal{S} \mathbf{A} d \mathbf{S} .
$$

4.32 Green's Theorem:

І. $\iint \mathcal{S} \mathcal{S} \phi \nabla^{2} \psi d V+\iint \mathcal{S} \nabla \phi \nabla \psi d V=\iint \mathcal{S} \phi \nabla \psi d \mathrm{~S}$
2. $\int \mathcal{S} \mathcal{S}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d V=\int \mathcal{S}(\phi \nabla \psi-\psi \nabla \phi) d \mathbf{S}$.
4.33 Stokes's Theorem:

$$
\int \mathcal{S} \operatorname{curl} \mathbf{A} d \mathbf{S}=\int \mathbf{A} d \mathrm{~s}
$$

4.40 A polar vector is one whose components, referred to a rectangular system of axes, all change in sign when the three axes are reversed.
4.401 An axial vector is one whose components are unchanged when the axes are reversed.
4.402 The vector product of two polar or of two axial vectors is an axial vector.
4.403 The vector product of a polar and an axial vector is a polar vector.
4.404 The curl of a polar vector is an axial vector and the curl of an axial vector is a polar vector.
4.405 The scalar product of two polar or of two axial vectors is a true scalar, i.e., it keeps its sign if the axes to which the vectors are referred are reversed.
4.406 The scalar product of an axial vector and a polar vector is a pseudo-scalar, i.e., it changes in sign when the axes of reference are reversed.
4.407 The product or quotient of a polar vector and a true scalar is a polar vector; of an axial vector and a true scalar an axial vector; of a polar vector and a pseudo-scalar an axial vector; of an axial vector and a pseudo-scalar a polar vector.
4.408 The gradient of a true scalar is a polar vector; the gradient of a pseudoscalar is an axial vector.
4.409 The divergence of a polar vector is a true scalar; of an axial vector a pseudo-scalar.

4.6 Lincar Vector Functions.

4.610 A vector Q is a linear vector function of a vector R if its components, Q_{1}, Q_{2}, Q_{3}, along any three non-coplanar axes are linear functions of the components R_{1}, R_{2}, R_{3} of \mathbf{R} along the same axes.
4.611 Linear Vector Operator. If $\hat{\omega}$ is the linear vector operator,

$$
\mathbf{Q}=\hat{\omega} \mathbf{R}
$$

This is equivalent to the three scalar equations,

$$
\begin{aligned}
& Q_{1}=\omega_{11} R_{1}+\omega_{12} R_{2}+\omega_{13} R_{3} \\
& Q_{2}=\omega_{21} R_{1}+\omega_{22} R_{2}+\omega_{23} R_{3} \\
& Q_{3}=\omega_{31} R_{1}+\omega_{32} R_{2}+\omega_{33} R_{3}
\end{aligned}
$$

4.612 If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the three non-coplanar unit axes,

$$
\begin{array}{lll}
\omega_{11}=S . \mathrm{a} \hat{\omega} \mathrm{a}, & \omega_{21}=S . \mathrm{b} \hat{\omega} \mathrm{a}, & \omega_{31}=S . \mathbf{c} \hat{\omega} \mathrm{a} \\
\omega_{12}=S . \mathrm{a} \hat{\omega} \mathrm{~b}, & \omega_{22}=S . \mathrm{b} \hat{\omega} \mathrm{~b}, & \omega_{32}=S . \mathbf{c} \hat{\omega} \mathrm{b} \\
\omega_{13}=S . \mathrm{a} \hat{\omega} \mathbf{c}, & \omega_{23}=S . \mathrm{b} \hat{\omega} \mathbf{c} & \omega_{33}=S . \mathbf{c} \hat{\omega} \mathbf{c} .
\end{array}
$$

4.613 The conjugate linear vector operator $\hat{\omega}^{\prime}$ is obtained from $\hat{\omega}$ by replacing $\omega_{h k}$ by $\omega_{k h} ; h, k=\mathrm{I}, 2,3$.
4.614 In the symmetrical, or self-conjugate linear vector operator, denoted by ω,

Hence by 4.612

$$
\begin{gathered}
\omega=\frac{1}{2}\left(\hat{\omega}+\hat{\omega}^{\prime}\right) . \\
S . \mathrm{a} \omega \mathrm{~b}=S . \mathrm{b} \omega \mathrm{a}, \text { etc. }
\end{gathered}
$$

4.615 The general linear vector function $\hat{\omega} \mathbf{R}$ may always be resolved into the sum of a self-conjugate linear vector function of \mathbf{R} and the vector product of \mathbf{R} by a vector \mathbf{c} :

$$
\hat{\omega} \mathrm{R}=\omega \mathrm{R}+V \cdot \mathrm{cR}
$$

where

$$
\omega=\frac{1}{2}\left(\hat{\omega}+\hat{\omega}^{\prime}\right)
$$

and

$$
\mathbf{c}=\frac{1}{2}\left(\omega_{32}-\omega_{23}\right) \mathbf{i}+\frac{1}{2}\left(\omega_{13}-\omega_{31}\right) \mathbf{j}+\frac{1}{2}\left(\omega_{21}-\omega_{12}\right) \mathbf{k}
$$

if $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are three mutually perpendicular unit vectors.
4.616 The general linear vector operator $\hat{\omega}$ may be determined by three noncoplanar vectors, A, B, C, where,
$\mathbf{A}=\mathbf{a} \omega_{11}+\mathbf{b} \omega_{12}+\mathbf{c} \omega_{13}$,
$\mathbf{B}=\mathbf{a} \omega_{21}+\mathrm{b} \omega_{22}+\mathbf{c} \omega_{23}$,
$\mathbf{C}=\mathbf{a} \omega_{31}+\mathbf{b} \omega_{32}+\mathbf{c} \omega_{33}$,
and

$$
\hat{\omega}=\mathbf{a} S . \mathbf{A}+\mathbf{b} S . \mathbf{B}+\mathbf{c} S . \mathbf{C} .
$$

4.617 If $\hat{\omega}$ is the general linear vector operator and $\hat{\omega}^{\prime}$ its conjugate,

$$
\begin{aligned}
\hat{\omega} \mathrm{R} & =\mathrm{R} \hat{\omega}^{\prime}, \\
\hat{\omega}^{\prime} \mathrm{R} & =\mathrm{R} \hat{\omega}
\end{aligned}
$$

4.620 The symmetrical or self-conjugate linear vector operator has three mutually perpendicular axes. If these be taken along $\mathbf{i}, \mathbf{j}, \mathbf{k}$,

$$
\omega=\mathrm{i} S . \omega_{1} \mathrm{i}+\mathrm{j} S . \omega_{2} \mathrm{j}+\mathrm{k} S . \omega_{3} \mathrm{k},
$$

where $\omega_{1}, \omega_{2}, \omega_{3}$ are scalar quantities, the principal values of ω.
4.621 Referred to any system of three mutually perpendicular unit vectors, $\mathrm{a}, \mathrm{b}, \mathrm{c}$, the self-conjugate operator, ω, is determined by the three vectors (4.616):

$$
\begin{aligned}
& \mathbf{A}=\omega \mathbf{a}=\mathrm{a} \omega_{11}+\mathrm{b} \omega_{12}+\mathbf{c} \omega_{13}, \\
& \mathbf{B}=\omega \mathbf{b}=\mathrm{a} \omega_{21}+\mathrm{b} \omega_{22}+\mathbf{c} \omega_{23}, \\
& \mathbf{C}=\omega \mathbf{c}=\mathbf{a} \omega_{31}+\mathrm{b} \omega_{32}+\mathbf{c} \omega_{33},
\end{aligned}
$$

where

$$
\begin{aligned}
\omega_{h k} & =\omega_{k h}, \\
\omega & =\mathbf{a} S . \mathbf{A}+\mathbf{b} S . \mathbf{B}+\mathbf{c} S . \mathbf{C} .
\end{aligned}
$$

4.622 If n is one of the principal values, $\omega_{1}, \omega_{2}, \omega_{3}$, these are given by the roots of the cubic,

$$
n^{3}-n^{2}(S . \mathbf{A} \mathbf{a}+S . \mathbf{B b}+S . \mathbf{C} \mathbf{c})+n(S . \mathbf{a} V \mathbf{B C}+S . \mathbf{b} V \mathbf{C A}+\mathbf{S} . \mathbf{c} V \mathbf{A} B)
$$

4.623 In transforming from one to another system of rectangular axes the following are invariant:

$$
\begin{aligned}
S . \mathbf{A a}+S . \mathbf{B b}+S . \mathbf{C} \mathbf{c} & =\omega_{1}+\omega_{2}+\omega_{3 .} . \\
S \mathrm{a} V \mathbf{B C}+S . \mathrm{b} V \mathbf{C A}+S . \mathbf{c} V \mathbf{A B} & =\omega_{2} \omega_{3}+\omega_{3} \omega_{1}+\omega_{1} \omega_{2} . \\
S . \mathbf{A} V \mathbf{B C} & =\omega_{1} \omega_{2} \omega_{3} .
\end{aligned}
$$

4.624

$$
\begin{aligned}
& \omega_{1}+\omega_{2}+\omega_{3}=\omega_{11}+\omega_{22}+\omega_{33} \\
& \omega_{2} \omega_{3}+\omega_{3} \omega_{1}+\omega_{1} \omega_{2}=\omega_{22} \omega_{33}+\omega_{33} \omega_{11}+\omega_{11} \omega_{22}-\omega_{23}^{2}-\omega_{31}^{2}+\omega_{12}^{2} \\
& \omega_{1} \omega_{2} \omega_{3}=\omega_{11} \omega_{22} \omega_{33}+2 \omega_{23} \omega_{31} \omega_{12}-\omega_{11} \omega_{23}^{2}-\omega_{22} \omega_{31}^{2}-\omega_{33} \omega_{12}^{2}
\end{aligned}
$$

4.625 The principal axes of the self-conjugate operator, ω, are those of the quadric:

$$
\omega_{11} x^{2}+\omega_{22} y^{2}+\omega_{33} z^{2}+2 \omega_{23} y z+2 \omega_{31} z x+2 \omega_{12} x y=\text { const. }
$$

where x, y, z are rectangular axes in the direction of $\mathbf{a}, \mathbf{b}, \mathbf{c}$ respectively.
4.626 Referred to its principal axes the equation of the quadric is,

$$
\omega_{1} x^{2}+\omega_{2} y^{2}+\omega_{3} z^{2}=\text { const. }
$$

4.627 Applying the self-conjugate operator, ω, successively,

$$
\begin{aligned}
\omega \mathrm{R} & =\mathrm{i} \omega_{1} R_{1}+\mathrm{j} \omega_{2} R_{2}+\mathbf{k} \omega_{3} R_{3}, \\
\omega \omega \mathrm{R} & =\omega^{2} \mathbf{R}=\omega_{1}{ }^{2} R_{1}+\mathbf{j} \omega_{2}{ }^{2} R_{2}+\mathbf{k} \omega_{3}{ }^{2} R_{3}, \\
\omega \omega^{2} \mathbf{R} & =\omega^{3} \mathbf{R}=\mathrm{i} \omega_{1}{ }^{3} R_{1}+\mathrm{j} \omega_{2}{ }^{3} R_{2}+\mathbf{k} \omega_{3}{ }^{3} R_{3},
\end{aligned}
$$

$$
\omega^{-1} \mathrm{R}=\mathrm{i} \frac{R_{1}}{\omega_{1}}+\mathrm{j} \frac{R_{2}}{\omega_{2}}+\mathbf{k} \frac{R_{3}}{\omega_{3}} .
$$

-••
4.628 Applying a number of self-conjugate operators, a, β, \ldots. . all with the same axes but with different principal values $\left(\alpha_{1} a_{2} a_{3}\right),\left(\beta_{1} \beta_{2} \beta_{3}\right), \ldots$

$$
\begin{aligned}
\alpha \mathrm{R} & =\mathrm{i} \alpha R_{1}+\mathrm{j} \alpha_{2} R_{2}+\mathrm{k} \alpha_{3} R_{3}, \\
\beta a \mathrm{R} & =a \beta \mathrm{R}=\mathrm{i} \alpha_{1} \beta_{1} R_{1}+\mathrm{j} \alpha_{2} \beta_{2} R_{2}+\mathbf{k} \alpha_{3} \beta_{3} R_{3} .
\end{aligned}
$$

4.629

$$
\begin{aligned}
S . \mathbf{Q} \omega \mathbf{R} & =S . \mathbf{R} \omega Q, \\
& =\omega_{1} Q_{1} R_{1}+\omega_{2} Q_{2} R_{2}+\omega_{3} Q_{3} R_{3} .
\end{aligned}
$$

V. GURVILINEAR COÖRDINATES

5.00 Given three surfaces.
I.
2.
3.
4.

$$
\begin{gathered}
\left\{\begin{array}{c}
u=f_{1}(x, y, z), \\
v=f_{2}(x, y, z), \\
w=f_{3}(x, y, z) .
\end{array}\right. \\
\left\{\begin{array}{l}
x=\phi_{1}(u, v, w), \\
y=\phi_{2}(u, v, w), \\
z=\phi_{3}(u, v, w) .
\end{array}\right. \\
\left\{\begin{array}{l}
\frac{\mathrm{I}}{h_{l_{1}}{ }^{2}}=\left(\frac{\partial \phi_{1}}{\partial u}\right)^{2}+\left(\frac{\partial \phi_{2}}{\partial u}\right)^{2}+\left(\frac{\partial \phi_{3}}{\partial u}\right)^{2}, \\
\frac{\mathrm{I}}{h_{2}{ }^{2}}=\left(\frac{\partial \phi_{1}}{\partial v}\right)^{2}+\left(\frac{\partial \phi_{2}}{\partial v}\right)^{2}+\left(\frac{\partial \phi_{3}}{\partial v}\right)^{2}, \\
\frac{\mathrm{I}}{h_{3}{ }^{2}}=\left(\frac{\partial \phi_{1}}{\partial w}\right)^{2}+\left(\frac{\partial \phi_{2}}{\partial w}\right)^{2}+\left(\frac{\partial \phi_{3}}{\partial w}\right)^{2} . \\
g_{2}=\frac{\partial \phi_{1}}{\partial w} \frac{\partial \phi_{1}}{\partial u}+\frac{\partial \phi_{2}}{\partial w} \frac{\partial \phi_{2}}{\partial u}+\frac{\partial \phi_{3}}{\partial w}+\frac{\partial \phi_{2}}{\partial v} \frac{\partial \phi_{2}}{\partial w}+\frac{\partial \phi_{3}}{\partial v} \frac{\partial \phi_{3}}{\partial w}, \\
g_{3}=
\end{array},\right. \\
g_{3}=\frac{\partial \phi_{1}}{\partial u} \frac{\partial \phi_{1}}{\partial v}+\frac{\partial \phi_{2}}{\partial u} \frac{\partial \phi_{2}}{\partial v}+\frac{\partial \phi_{3}}{\partial u} \frac{\partial \phi_{3}}{\partial v} .
\end{gathered}
$$

5.01 The linear element of arc, $d s$, is given by:
$d s^{2}=d x^{2}+d y^{2}+d z^{2}=\frac{d u^{2}}{h_{1}{ }^{2}}+\frac{d v^{2}}{h_{2}{ }^{2}}+\frac{d w^{2}}{h_{3}{ }^{2}}+2 g_{1} d v \dot{d} w+2 g_{2} d \dot{v} d u+2 g_{3} d u d v$.
5.02 The surface elements, areas of parallelograms on the three surfaces, are:

$$
\begin{aligned}
& d S_{u}=\frac{d v d w}{h_{2} h_{3}} \sqrt{\mathrm{I}-h_{2}{ }^{2} h_{3}{ }^{2} g_{1}{ }^{2}} \\
& d S_{v}=\frac{d w d u}{h_{3} h_{1}} \sqrt{\mathrm{I}-h_{3}{ }^{2} h_{1}{ }^{2} g_{2}{ }^{2}} \\
& d S_{w}=\frac{d u d v}{h_{1} h_{2}} \sqrt{\mathrm{I}-h_{1}{ }^{2} h_{2}{ }^{2} g_{3}^{2}}
\end{aligned}
$$

5.03 The volume of an elementary parallelepipedon is:

$$
d \tau=\frac{d u d v d w}{h_{1} h_{2} h_{3}}\left\{\mathrm{I}-h_{1}{ }^{2} h_{2}{ }^{2} g_{3}{ }^{2}-h_{2}{ }^{2} h_{3}{ }^{2} g_{1}{ }^{2}-h_{3}{ }^{2} h_{1}{ }^{2} g_{2}{ }^{2}+h_{1}{ }^{2} h_{2}{ }^{2} h_{3}^{2} g_{1} g_{2} g_{3}\right\}^{\frac{1}{3}}
$$

$5.04 \omega_{1}, \omega_{2}, \omega_{3}$ are the angles between the normals to the surface $f_{2}, f_{3} ; f_{3}, f_{1} ;$ f_{1}, f_{2} respectively:

$$
\begin{aligned}
& \cos \omega_{1}=h_{2} h_{3} g_{1}, \\
& \cos \omega_{2}=h_{3} h_{1} g_{2} \\
& \cos \omega_{3}=h_{1} h_{2} g_{3} .
\end{aligned}
$$

5.05 Orthogonal Curvilinear Coördinates.

$$
\begin{aligned}
& g_{1}=g_{2}=g_{3}=0, \\
& d s^{2}=\frac{d u^{2}}{h_{1}{ }^{2}}+\frac{d v^{2}}{h_{2}{ }^{2}}+\frac{d w^{2}}{h_{3}{ }^{2}}, \\
& d S_{u}=\frac{d v d w}{h_{2} h_{3}}, d S_{v}=\frac{d w d u}{h_{3} h_{1}}, d S_{w}=\frac{d u d v}{h_{1} h_{2}}, \\
& d \tau=\frac{d u d v d w}{h_{1} h_{2} h_{3}} .
\end{aligned}
$$

$5.06 h_{1}{ }^{2}, h_{2}{ }^{2}, h_{3}{ }^{2}$ are given by 5.00 (3) and also by:

$$
\begin{aligned}
& h_{1}^{2}=\left(\frac{\partial f_{1}}{\partial x}\right)^{2}+\left(\frac{\partial f_{1}}{\partial y}\right)^{2}+\left(\frac{\partial f_{1}}{\partial z}\right)^{2} \\
& h_{2}^{2}=\left(\frac{\partial f_{2}}{\partial x}\right)^{2}+\left(\frac{\partial f_{2}}{\partial y}\right)^{2}+\left(\frac{\partial f_{2}}{\partial z}\right)^{2} \\
& h_{3}^{2}=\left(\frac{\partial f_{3}}{\partial x}\right)^{2}+\left(\frac{\partial f_{3}}{\partial y}\right)^{2}+\left(\frac{\partial f_{3}}{\partial z}\right)^{2}
\end{aligned}
$$

5.07 A vector, A, will have three components in the directions of the normals to the orthogonal surfaces u, v, w :

$$
A=\sqrt{A_{u}^{2}+A_{v}^{2}+A_{w^{2}}^{2}}
$$

5.08

I. $\operatorname{div} \mathbf{A}=h_{1} h_{2} h_{3}\left\{\frac{\partial}{\partial u}\left(\frac{A_{u}}{h_{2} h_{3}}\right)+\frac{\partial}{\partial v}\left(\frac{A_{v}}{h_{3} h_{1}}\right)+\frac{\partial}{\partial u^{\prime}}\left(\frac{A_{l v}}{h_{1} h_{2}}\right)\right\}$.
2. $\quad \bar{\nabla}^{2}=h_{1} h_{2} h_{3}\left\{\frac{\partial}{\partial u}\left(\frac{h_{1}}{h_{2} h_{3}} \frac{\partial}{\partial u}\right)+\frac{\partial}{\partial v}\left(\frac{h_{2}}{h_{3} h_{1}} \frac{\partial}{\partial i}\right)+\frac{\partial}{\partial w}\left(\frac{h_{3}}{h_{1} h_{2}} \frac{\partial}{\partial w}\right)\right\}$.
3.

$$
\left\{\begin{aligned}
& \operatorname{curl}_{u} \mathbf{A}=h_{2} h_{3}\left\{\frac{\partial}{\partial u}\left(\frac{A_{w}}{h_{3}}\right)-\frac{\partial}{\partial w}\left(\frac{A_{v}}{h_{2}}\right)\right\} \\
& \operatorname{curl}_{v} \mathbf{A}=h_{3} h_{1}\left\{\frac{\partial}{\partial w}\left(\frac{A_{u}}{h_{1}}\right)-\frac{\partial}{\partial u}\left(\frac{A_{w}}{h_{3}}\right)\right\}, \\
& \operatorname{curl}_{w} \mathbf{A}=h_{1} h_{2}\left\{\frac{\partial}{\partial u}\left(\frac{A_{v}}{h_{2}}\right)-\frac{\partial}{\partial v}\left(\frac{A_{u}}{h_{1}}\right)\right\}
\end{aligned}\right.
$$

5.09 The gradient of a scalar function, ψ, has three components in the directions of the normals to the three orthogonal surfaces:

$$
h_{1} \frac{\partial \psi}{\partial u}, h_{2} \frac{\partial \psi}{\partial v}, h_{3} \frac{\partial \psi}{\partial w} .
$$

5.20 Spherical Polar Coördinates.
I.

$$
\begin{gathered}
\left\{\begin{array}{c}
u=r \\
v=\theta \\
w=\phi
\end{array}\right. \\
\left\{\begin{aligned}
x=r \sin \theta \cos \phi \\
y=r \sin \theta \sin \phi \\
z=r \cos \theta
\end{aligned}\right.
\end{gathered}
$$

2.
3.

$$
h_{1}=\mathrm{I}, h_{2}=\frac{\mathrm{I}}{r}, h_{3}=\frac{\mathrm{I}}{r \sin \theta}
$$

$$
\left\{\begin{aligned}
d S_{r} & =r^{2} \sin \theta d \theta d \phi \\
d S_{\theta} & =r \sin \theta d r d \phi \\
d S_{\phi} & =r d r d \theta
\end{aligned}\right.
$$

5.

$$
d \tau=r^{2} \sin \theta d r d \theta d \phi
$$

6. $\operatorname{div} \mathbf{A}=\frac{\mathrm{I}}{r^{2} \sin \theta}\left\{\sin \theta \frac{\partial}{\partial r}\left(r^{2} A_{r}\right)+r \frac{\partial}{\partial \theta}\left(\sin \theta A_{\theta}\right)+r \frac{\partial A_{\phi}}{\partial \phi}\right\}$.
7. $\quad \bar{\nabla}^{2}=\frac{\mathrm{I}}{r^{2} \sin \theta}\left\{\sin \theta \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{\mathrm{I}}{\sin \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right\}$.
S.

$$
\left\{\begin{array}{l}
\operatorname{curl}_{r} \mathbf{A}=\frac{\mathrm{I}}{r \sin \theta}\left\{\frac{\partial}{\partial \theta}\left(\sin \theta A_{\phi}\right)-\frac{\partial A_{\phi}}{\partial \phi}\right\} \\
\operatorname{curl}_{\theta} \mathbf{A}=\frac{\mathrm{I}}{r \sin \theta}\left\{\frac{\partial A_{r}}{\partial \phi}-\sin \theta \frac{\partial\left(r A_{\phi}\right)}{\partial r}\right\} \\
\operatorname{curl}_{\phi} \mathbf{A}=\frac{\mathrm{I}}{r}\left\{\frac{\partial}{\partial r}\left(r A_{\theta}\right)-\frac{\partial A_{r}}{\partial \theta}\right\}
\end{array}\right.
$$

5.21 Cylindrical Coördinates.

I.

$$
\begin{gathered}
\left\{\begin{array}{l}
u=\rho, \\
v=\theta, \\
w=z
\end{array}\right. \\
\left\{\begin{array}{l}
x=\rho \cos \theta, \\
y=\rho \sin \theta, \\
z=z .
\end{array}\right.
\end{gathered}
$$

3.
4.

$$
h_{1}=\mathrm{I}, \quad h_{2}=\frac{\mathrm{I}}{\rho}, \quad h_{3}=\mathrm{I}
$$

$$
\left\{\begin{array}{l}
d S_{r}=\rho d \theta d z \\
d S_{\theta}=d z d \rho \\
d S_{z}=\rho d \rho d \theta
\end{array}\right.
$$

5.

$$
d \tau=\rho d \rho d \theta d z
$$

6.

$$
\operatorname{div} \mathbf{A}=\frac{I}{\rho}\left\{\frac{\partial}{\partial \rho}\left(\rho A_{\rho}\right)+\frac{\partial A_{\theta}}{\partial \theta}+\rho \frac{\partial A_{z}}{\partial z}\right\}
$$

7.

$$
\bar{\nabla}^{2}=\frac{I}{\rho}\left\{\frac{\partial}{\partial \rho}\left(\rho \frac{\partial}{\partial \rho}\right)+\frac{I}{\rho} \frac{\partial^{2}}{\partial \theta^{2}}+\rho \frac{\partial^{2}}{\partial z^{2}}\right\}
$$

8.

$$
\left\{\begin{array}{l}
\operatorname{curl}_{\rho} \mathbf{A}=\frac{I}{\rho} \frac{\partial A_{z}}{\partial \theta}-\frac{\partial A_{\theta}}{\partial z} \\
\operatorname{curl}_{\theta} \mathbf{A}=\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{z}}{\partial \rho} \\
\operatorname{curl}_{z} \mathbf{A}=\frac{I}{\rho}\left\{\frac{\partial}{\partial \rho}\left(\rho A_{\theta}\right)-\frac{\partial A_{\rho}}{\partial \theta}\right\}
\end{array}\right.
$$

5.22 Ellipsoidal Coördinates.

$$
u, v, w \text { are the three roots of the equation: }
$$

I.

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}+\theta}+\frac{v^{2}}{b^{2}+\theta}+\frac{z^{2}}{c^{2}+\theta}=\mathrm{I} \\
& \quad a>b>c, \quad u>v>w . \\
& \theta= u: \quad \text { Ellipsoid. } \\
& \theta=v: \quad \text { Hyperboloid of one sheet. } \\
& \theta= w: \quad \text { Hyperboloid of two sheets. }
\end{aligned}
$$

2.

$$
\begin{aligned}
& \left\{\begin{array}{l}
x^{2}=\frac{\left(a^{2}+u\right)\left(a^{2}+v\right)\left(a^{2}+w\right)}{\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)} \\
y^{2}=-\frac{\left(b^{2}+u\right)\left(b^{2}+v\right)\left(b^{2}+w\right)}{\left(b^{2}-c^{2}\right)\left(a^{2}-b^{2}\right)} \\
z^{2}=\frac{\left(c^{2}+u\right)\left(c^{2}+v\right)\left(c^{2}+w\right)}{\left(a^{2}-c^{2}\right)\left(b^{2}-c^{2}\right)} \\
\left\{\begin{array}{l}
h_{1}^{2}=\frac{4\left(a^{2}+u\right)\left(b^{2}+u\right)\left(c^{2}+u\right)}{(u-v)(u-w)} \\
h_{2}^{2}=\frac{4\left(a^{2}+v\right)\left(b^{2}+v\right)\left(c^{2}+v\right)}{(v-w)(v-u)} \\
h_{3}^{2}=\frac{4\left(a^{2}+w\right)\left(b^{2}+w\right)\left(c^{2}+w\right)}{(w-u)(w-v)}
\end{array}\right.
\end{array} .\right.
\end{aligned}
$$

4. $\operatorname{div} \mathbf{A}=2 \frac{\sqrt{\left(a^{2}+u\right)\left(b^{2}+u\right)\left(c^{2}+u\right)}}{(u-v)(u-w)} \frac{\partial}{\partial u}\left(\sqrt{(u-v)(u-w)} A_{u}\right)$

$$
\begin{aligned}
& +2 \frac{\sqrt{\left(a^{2}+v\right)\left(b^{2}+v\right)\left(c^{2}+v\right)}}{(v-w)(u-v)} \frac{\partial}{\partial v}\left(\sqrt{(w-v)(u-v)} A_{v}\right) \\
& +2 \frac{\sqrt{\left(a^{2}+w\right)\left(b^{2}+w\right)\left(c^{2}+w\right)}}{(u-w)(v-w)} \frac{\partial}{\partial w}\left(\sqrt{(u-w)(v-w)} A_{w}\right) .
\end{aligned}
$$

5. $\bar{\nabla}^{2}=4 \frac{\sqrt{\left(a^{2}+u\right)\left(b^{2}+u\right)\left(c^{2}+u\right)}}{(u-v)} \frac{\partial}{\partial u-w)}\left(\sqrt{\left(a^{2}+u\right)\left(b^{2}+u\right)\left(c^{2}+u\right)} \frac{\partial}{\partial u}\right)$

$$
\begin{aligned}
& +4 \frac{\sqrt{\left(a^{2}+v\right)(2+v)\left(b c^{2}+v\right)}}{(u-v)\left(v-w^{2}\right)} \\
& \frac{\partial}{\partial v}\left(\sqrt{\left(a^{2}+v\right)\left(b^{2}+v\right)\left(c^{2}+v\right)} \frac{\partial}{\partial v}\right) \\
& +4 \frac{\sqrt{\left(a^{2}+w\right)\left(b^{2}+w\right)\left(c^{2}+w\right)}}{(a-w)(v-w)}\left(\sqrt{\left(a^{2}+w^{\prime}\right)\left(b^{2}+w\right)\left(c^{2}+w\right)} \frac{\partial}{\delta w}\right) .
\end{aligned}
$$

6. $\left\{\operatorname{curl}_{u} \mathbf{A}=\frac{2}{v-w}\left\{\sqrt{\frac{\left(a^{2}+v\right)\left(b^{2}+v\right)\left(c^{2}+v\right)}{u-v}} \frac{\partial}{\partial v}\left(\sqrt{w-v} A_{w}\right)\right.\right.$

$$
-\sqrt{\frac{\left(a^{2}+w\right)\left(b^{2}+w\right)\left(c^{2}+w\right)}{u-w}} \frac{\partial}{\partial w}\left(\sqrt{v-w} A_{v}\right\} .
$$

$\left(\operatorname{curl}_{v} \mathbf{A}=\frac{2}{u-w}\left\{\sqrt{\frac{\left(a^{2}+w\right)\left(b^{2}+w\right)\left(c^{2}+w\right)}{v-w}} \frac{\partial}{\partial w}\left(\sqrt{u-w} A_{u}\right)\right.\right.$

$$
\left.-\sqrt{\frac{\left(a^{2}+u\right)\left(b^{2}+u\right)\left(c^{2}+u\right)}{v-u}} \frac{\partial}{\partial u}\left(\sqrt{w-u} A_{w}\right)\right\}
$$

$$
\operatorname{curl}_{w} \mathbf{A}=\frac{2}{u-v}\left\{\sqrt{\frac{\left(a^{2}+u\right)\left(b^{2}+u\right)\left(c^{2}+u\right)}{w-u}} \frac{\partial}{\partial u}\left(\sqrt{v-u} A_{r}\right)\right.
$$

$$
\left.-\sqrt{\frac{\left(a^{2}+v\right)\left(b^{2}+v\right)\left(c^{2}+v\right)}{w-v}} \frac{\partial}{\partial v}\left(\sqrt{u-v} A_{u}\right)\right\}
$$

5.23 Conical Coordinates.

The three orthogonal surfaces are: the spheres,
1.

$$
x^{2}+y^{2}+z^{2}=u^{2},
$$

the two cones:
2.

$$
\begin{aligned}
& \frac{x^{2}}{v^{2}}+\frac{y^{2}}{v^{2}-b^{2}}+\frac{z^{2}}{v^{2}-c^{2}}=0 \\
& \frac{x^{2}}{w^{2}}+\frac{y^{2}}{w^{2}-b^{2}}+\frac{z^{2}}{w^{2}-c^{2}}=0
\end{aligned}
$$

3.

$$
c^{2}>v^{2}>b^{2}>w^{2} .
$$

$$
x^{2}=\frac{u^{2} v^{2} w^{2}}{b^{2} c^{2}}
$$

4.

$$
\left\{\begin{array}{l}
y^{2}=\frac{u^{2}\left(v^{2}-b^{2}\right)\left(w^{2}-b^{2}\right)}{b^{2}\left(b^{2}-c^{2}\right)} \\
z^{2}=\frac{u^{2}\left(v^{2}-c^{2}\right)\left(w^{2}-c^{2}\right)}{c^{2}\left(c^{2}-b^{2}\right)}
\end{array}\right.
$$

5. $\quad h_{1}=1, \quad h_{2}{ }^{2}=\frac{\left(v^{2}-b^{2}\right)\left(c^{2}-v^{2}\right)}{u^{2}\left(v^{2}-w^{2}\right)}, \quad h_{3}{ }^{2}=\frac{\left(b^{2}-w^{2}\right)\left(c^{2}-w^{2}\right)}{u^{2}\left(v^{2}-w^{2}\right)}$.
6. $\operatorname{div} \mathbf{A}=\frac{\mathrm{x}}{u^{2}} \frac{\partial}{\partial u}\left(u^{2} A_{u}\right)+\frac{\sqrt{\left(v^{2}-b^{2}\right)\left(c^{2}-v^{2}\right)}}{u\left(v^{2}-w^{2}\right)} \frac{\partial}{\partial v}\left(\sqrt{v^{2}-w^{2}} A_{v}\right.$

$$
+\frac{\sqrt{\left(6^{2}-u^{2}\right)\left(c^{2}-u^{2}\right)}}{u\left(v^{2}-w^{2}\right)} \frac{\partial}{\partial w}\left(\sqrt{v^{2}-w^{2}} A_{w}\right) .
$$

7. $\bar{\nabla}^{2}=\frac{1}{u^{2}} \frac{\partial}{\partial u}\left(u^{2} \frac{\partial}{\partial u}\right)+\frac{\sqrt{\left(v^{2}-b^{2}\right)\left(c^{2}-v^{2}\right)}}{u^{2}\left(v^{2}-w^{2}\right)} \frac{\partial}{\partial v}\left(\sqrt{\left(v^{2}-b^{2}\right)\left(c^{2}-v^{2}\right)} \frac{\partial}{\partial v}\right)$.

$$
+\frac{\sqrt{\left(b^{2}-w^{2}\right)\left(c^{2}-w^{2}\right)}}{u^{2}\left(v^{2}-w^{2}\right)} \frac{\partial}{\partial w}\left(\sqrt{\left(b^{2}-w^{2}\right)\left(c^{2}-w^{2}\right)} \frac{\partial}{\partial w}\right) .
$$

$$
\left\{\begin{aligned}
\operatorname{curl}_{u} \mathbf{A}= & \frac{\mathrm{I}}{u\left(v^{2}-w^{2}\right)}\left\{\sqrt{\left(v^{2}-b^{2}\right)\left(c^{2}-v^{2}\right)} \frac{\partial}{\partial v}\left(\sqrt{v^{2}-w^{2}} A_{w}\right)\right. \\
& \left.-\sqrt{\left(b^{2}-w^{2}\right)\left(c^{2}-w^{2}\right)} \frac{\partial}{\partial w}\left(\sqrt{v^{2}-w^{2}} A_{v}\right)\right\} \\
\operatorname{curl}_{v} \mathbf{A}= & \left.\frac{\sqrt{\left(b^{2}-w^{2}\right)\left(c^{2}-w^{2}\right)}}{u \sqrt{v^{2}-w^{2}}} \frac{\partial A_{u}}{\partial w}-\frac{1}{u} \frac{\partial}{\partial u}\left(u A_{u}\right)\right\} \\
\operatorname{curl}_{w} \mathbf{A}= & \frac{\mathrm{I}}{u} \frac{\partial}{\partial u}\left(u A_{v}\right)-\frac{\sqrt{\left(v^{2}-b^{2}\right)\left(c^{2}-v^{2}\right)}}{u \sqrt{v^{2}-w^{2}}} \frac{\partial A_{u}}{\partial v} .
\end{aligned}\right.
$$

5.30 Elliptic Cylinder Coordinates.

The three orthogonal surfaces are:
r. The elliptic cylinders:

$$
\frac{x^{2}}{c^{2} u^{2}}+\frac{y^{2}}{c^{2}\left(u^{2}-\mathrm{I}\right)}=\mathrm{I}
$$

-

2. The hyperbolic cylinders:

$$
\frac{x^{2}}{c^{2} v^{2}}-\frac{y^{2}}{c^{2}\left(\mathrm{I}-v^{2}\right)}=\mathrm{I}
$$

3. The planes:

$$
z=w .
$$

$2 c$ is the distance between the foci of the confocal ellipses and hyperbolas:
4.

$$
x=c u v
$$

5.

$$
y=c \sqrt{u^{2}-\mathrm{I}} \sqrt{\mathrm{I}-v^{2}} .
$$

6.

$$
\frac{\mathrm{I}}{h_{1}^{2}}=\frac{\mathrm{I}}{h_{2}^{2}}=c^{2}\left(u^{2}-v^{2}\right), \quad h_{3}=\mathrm{I}
$$

7. $\operatorname{div} \mathbf{A}=\frac{\mathbf{I}}{c\left(u^{2}-v^{2}\right)}\left\{\frac{\partial}{\partial u}\left(\sqrt{u^{2}-v^{2}} A_{u}\right)+\frac{\partial}{\partial v}\left(\sqrt{u^{2}-v^{2}} A_{v}\right)\right\}+\frac{\partial A_{z}}{\partial z}$.
8. $\quad \bar{\nabla}^{2}=\frac{\mathrm{I}}{c^{2}\left(u^{2}-v^{2}\right)}\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right)+\frac{\partial^{2}}{\partial z^{2}}$.
$\int \operatorname{curl}_{u} \mathbf{A}=\frac{\mathrm{I}}{c \sqrt{u^{2}-v^{2}}} \frac{\partial A_{z}}{\partial v}-\frac{\partial A_{v}}{\partial z}$,
9. $\left\{\operatorname{curl}_{v} \mathbf{A}=\frac{\partial A_{u}}{\partial z}-\frac{\mathbf{I}}{c \sqrt{u^{2}-v^{2}}} \frac{\partial A_{z}}{\partial u}\right.$,
$\operatorname{curl}_{z} \mathbf{A}=\frac{\mathrm{I}}{c\left(u^{2}-v^{2}\right)}\left\{\frac{\partial}{\partial u}\left(\sqrt{u^{2}-v^{2}} A_{v}\right)-\frac{\partial}{\partial v}\left(\sqrt{u^{2}-v^{2}} A_{u}\right)\right\}$.
5.31 Parabolic Cylinder Coördinates.

The three orthogonal surfaces are the two parabolic cylinders:
I.

$$
\begin{aligned}
& y^{2}=4 c u x+4 c^{2} u^{2} \\
& y^{2}=-4 c v x+4 c^{2} v^{2}
\end{aligned}
$$

2.

And the planes:

$$
\begin{aligned}
& z=w . \\
& x=c(v-u) \\
& y=2 c \sqrt{u v}
\end{aligned}
$$

6.

$$
\frac{\mathrm{I}}{h_{1}^{2}}=\frac{u+v}{u}, \quad \frac{\mathrm{I}}{h_{2}^{2}}=\frac{u+v}{v}, \quad h_{3}=\mathrm{I} .
$$

7. $\operatorname{div} \mathbf{A}=\frac{\sqrt{u v}}{u+v}\left\{\frac{\partial}{\partial u}\left(\sqrt{\frac{u+v}{v}} A_{u}\right)+\frac{\partial}{\partial v}\left(\sqrt{\frac{u+v}{u}} A_{v}\right)\right\}+\frac{\partial A_{z}}{\partial z}$.
8. $\bar{\nabla}^{2}=\frac{\sqrt{u v}}{u+v}\left\{\frac{\partial}{\partial u}\left(\frac{u}{v} \frac{\partial}{\partial u}\right)+\frac{\partial}{\partial v}\left(\frac{v}{u} \frac{\partial}{\partial v}\right)\right\}+\frac{\partial^{2}}{\partial z^{2}}$.
9. $\left\{\begin{array}{l}\operatorname{curl}_{u} \mathrm{~A}=\sqrt{\frac{v}{u+v}} \frac{\partial A_{z}}{\partial v}-\frac{v}{u+v} \frac{\partial A_{v}}{\partial z}, \\ \operatorname{curl}_{v} \mathrm{~A}=\frac{u}{u+v} \frac{\partial A_{u}}{\partial z}-\sqrt{\frac{u}{u+v}} \frac{\partial A_{z}}{\partial u}, \\ \operatorname{curl}_{z} \mathbf{A}=\frac{\sqrt{u v}}{u+v}\left\{\frac{\partial}{\partial u}\left(\sqrt{\frac{v}{u+v}} A_{v}\right)-\frac{\partial}{\partial v}\left(\sqrt{\frac{u}{u+v}} A_{u}\right)\right\} .\end{array}\right.$
5.40 Helical Coördinates. (Nicholson, Phil. Mag. 19, 77, 1910.)

A cylinder of any cross-section is wound on a circular cylinder in the form of a helix of angle $\alpha, \quad a=$ radius of circular cylinder on which the central line of the normal cross-sections of the helical cylinder lies. The z-axis is along the axis of the cylinder of radius a.
$u=\rho$ and $v=\phi$ are the polar coördinates in the plane of any normal section of the helical cylinder. ϕ is measured from a line perpendicular to z and to the tangent to the cylinder.
$w=\theta=$ the twist in a plane perpendicular to z of the radius in that plane measured from a line parallel to the x-axis:
I.

$$
\left\{\begin{array}{l}
x=(a+\rho \cos \phi) \cos \theta+\rho \sin \alpha \sin \theta \sin \phi \\
y=(a+\rho \cos \phi) \sin \theta-\rho \sin \alpha \cos \theta \sin \phi \\
z=a \theta \tan \alpha+\rho \cos \alpha \sin \phi
\end{array}\right.
$$

2. $\quad\left\{\begin{array}{l}h_{1}=\mathrm{r}, \quad h_{2}=\frac{\mathrm{I}}{\rho}, \\ h_{3}{ }^{2}=\frac{\mathrm{I}}{a^{2} \sec ^{2} \alpha+2 a \rho \cos \phi+\rho^{2}\left(\cos ^{2} \phi+\sin ^{2} \alpha \sin ^{2} \phi\right)} .\end{array}\right.$
5.50 Surfaces of Revolution.
z-axis $=$ axis of revolution.
$\rho, \theta=$ polar coördinates in any plane perpendicular to z-axis.
I.

$$
\begin{aligned}
d s^{2} & =d z^{2}+d \rho^{2}+\rho^{2} d \theta^{2} \\
& =\frac{d v^{2}}{h_{1}{ }^{2}}+\frac{d v^{2}}{h_{2}{ }^{2}}+\frac{d w^{2}}{h_{0}^{2}} .
\end{aligned}
$$

In any meridian plane, z, ρ, determine u, v, from:
2.

$$
\begin{aligned}
f(z+i \rho) & =u+i v . \\
w & =\theta
\end{aligned}
$$

Then u, v, θ will form a system of orthogonal curvilinear coördinates.
5.51 Spheroidal Coördinates (Prolate Spheroids):
I.

$$
z+i \rho=c \cosh (u+i v) .
$$

2.

$$
\left\{\begin{array}{l}
z=c \cosh u \cos v \\
\rho=c \sinh u \sin v
\end{array}\right.
$$

The three orthogonal surfaces are the ellipsoids and hyperboloids of revolution, and the planes, θ :
3.

$$
\left\{\begin{array}{l}
\frac{z^{2}}{c^{2} \cosh ^{2} u}+\frac{\rho^{2}}{c^{2} \sinh ^{2} u}=\mathrm{I} \\
\frac{z^{2}}{c^{2} \cos ^{2} v}-\frac{\rho^{2}}{c^{2} \sin ^{2} v}=\mathrm{I}
\end{array}\right.
$$

With $\cos u=\lambda, \cos v=\mu$:
4.

$$
\left\{\begin{aligned}
z & =c \lambda \mu \\
\rho & =c \sqrt{\left(\lambda^{2}-I\right)\left(I-\mu^{2}\right)}
\end{aligned}\right.
$$

5. $\quad h_{1}{ }^{2}=\frac{\lambda^{2}-\mathrm{I}}{c^{2}\left(\lambda^{2}-\mu^{2}\right)}, \quad h_{2}{ }^{2}=\frac{\mathrm{I}-\mu^{2}}{c^{2}\left(\lambda^{2}-\mu^{2}\right)}, \quad h_{3}{ }^{2}=\frac{\mathrm{I}}{c^{2}\left(\lambda^{2}-\mathrm{I}\right)\left(\mathrm{I}-\mu^{2}\right)}$.
5.52 Spheroidal Coördinates (Oblate Spheroids):
I.

$$
\begin{aligned}
\rho+i z & =c \cosh (u+i v) \\
z & =c \sinh u \sin v \\
\rho & =c \cosh u \cos v
\end{aligned}
$$

$$
\cosh u=\lambda, \quad \cos v=\mu
$$

4. $\quad h_{1}^{2}=\frac{\mathrm{I}-\mu^{2}}{c^{2}\left(\lambda^{2}-\mu^{2}\right)}, \quad h_{2}^{2}=\frac{\lambda^{2}-\mathrm{I}}{c^{2}\left(\lambda^{2}-\mu^{2}\right)}, \quad h_{3}{ }^{2}=\frac{\mathrm{I}}{c^{2}\left(\lambda^{2}-\mathrm{I}\right)\left(\mathrm{I}-\mu^{2}\right)}$.
5.53 Parabolic Coördinates:
I.

$$
\begin{gathered}
z+i \rho=c(u+i v)^{2} \\
\left\{\begin{array}{l}
z=c\left(u^{2}-v^{2}\right) \\
\rho=2 c u v .
\end{array}\right.
\end{gathered}
$$

2.
3.

$$
u^{2}=\lambda, \quad v^{2}=\mu
$$

With curvilinear coördinates, λ, μ, θ :

$$
h_{1}=\frac{I}{c} \sqrt{\frac{\lambda}{\lambda+\mu}}, \quad h_{2}=\frac{I}{c} \sqrt{\frac{\mu}{\lambda+\mu}}, \quad h_{3}=\frac{I}{2 c \sqrt{\lambda \mu}}
$$

5.54 Toroidal Coördinates:
I.

$$
u+i v=\log \frac{z+a+i \rho}{z-a+i \rho},
$$

$$
\rho=\frac{a \sinh u}{\cosh u-\cos v} .
$$

2.

$$
z=\frac{a \sin v}{\cosh u-\cos v} .
$$

$$
h_{1}=h_{2}=\frac{\cosh u-\cos v}{a}, \quad h_{3}=\frac{\cosh u-\cos v}{a \sinh u} .
$$

The three orthogonal surfaces are:
(a) Anchor rings, whose axial circles have radii,

$$
a \operatorname{coth} u \text {, }
$$

and whose cross-sections are circles of radii,

$$
a \operatorname{csch} u \text {; }
$$

(b) Spheres, whose centers are on the axis of revolution at distances,

$$
\pm a \cot v
$$

from the origin, whose radii are,

$$
a \cdot \csc v
$$

and which accordingly have a common circle,

$$
\rho=a, z=0 ;
$$

(c) Planes through the axis,

$$
w=\theta=\text { const } .
$$

VI. INFINITE SERIES

6.00 An infinite series:

$$
\sum_{n=1}^{\infty} u_{n}=u_{1}+u_{2}+u_{3}+\ldots
$$

is absolutely convergent if the series formed of the moduli of its terms:

$$
\left|u_{1}\right|+\left|u_{2}\right|+\left|u_{2}\right|+\ldots
$$

is convergent.
A series which is convergent, but whose moduli do not form a convergent series, is conditionally convergent.

TESTS FOR CONVERGENCE

6.011 Comparison test. The series Σu_{n} is absolutely convergent if $\left|u_{n}\right|$ is less than $C\left|v_{n}\right|$ where C is a number independent of n, and v_{n} is the nth term of another series which is known to be absolutely convergent.
6.012 Cauchy's test. If

$$
\operatorname{Limit}_{n \rightarrow \infty}\left|u_{n}\right|^{\frac{1}{n}}<\mathrm{I},
$$

the series Σu_{n} is absolutely convergent.
6.013 D'Alembert's test. If for all values of n greater than some fixed value, r, the ratio $\left|\frac{u_{n+1}}{u_{n}}\right|$ is less than ρ, where ρ is a positive number less than unity and independent of n, the series Σu_{n} is absolutely convergent.
6.014 Cauchy's integral test. Let $f(x)$ be a steadily decreasing positive function such that,

$$
f(n) \geqslant a_{n} .
$$

Then the positive term series Σa_{n} is convergent if,

$$
\int_{m}^{\infty} f(x) d x,
$$

is convergent.
6.015 Raabe's test. The positive term series Σa_{n} is convergent if,

It is divergent if,

$$
n\left(\frac{a_{n}}{a_{n+1}}-\mathrm{I}\right) \geqslant l \text { where } l>\mathrm{I} \text {. }
$$

$$
n\left(\frac{a_{n}}{a_{n+1}}-\mathrm{I}\right) \leqslant \mathrm{I}
$$

6.020 Alternating series. A series of real terms, alternately positive and negative, is convergent if $a_{n+1} \leqslant a_{n}$ and

$$
\operatorname{limit}_{n \rightarrow \infty} a_{n}=0 .
$$

In such a series the sum of the first s terms differs from the sum of the series by a quantity less than the numerical value of the $(s+1) s t$ term.
6.025 If $\operatorname{limit}_{n \rightarrow \infty}^{\text {lit }}\left|\frac{u_{n+1}}{u_{n}}\right|=x$, the series Σu_{n} will be absolutely convergent if there is a positive number c, independent of n, such that,

$$
\operatorname{limit}_{n \rightarrow \infty} n\left\{\left|\frac{u_{n+1}}{u_{n}}\right|-\mathrm{I}\right\}=-\mathrm{I}-c .
$$

6.030 The sum of an absolutely convergent series is not affected by changing the order in which the terms occur.
6.031 Two absolutely convergent series,

$$
\begin{aligned}
& S=u_{1}+u_{2}+u_{3}+\ldots \\
& T=v_{1}+v_{2}+v_{3}+\ldots
\end{aligned}
$$

may be multiplied together, and the sum of the products of their terms, written in any order, is $S T$,

$$
S T=u_{1} v_{1}+u_{2} v_{1}+u_{1} v_{2}+\ldots .
$$

6.032 An absolutely convergent power series may be differentiated or integrated term by term and the resulting series will be absolutely convergent and equal to the differential or integral of the sum of the given series.
6.040 Uniform Convergence. An infinite series of functions of x,

$$
S(x)=u_{1}(x)+u_{2}(x)+u_{3}(x)+\ldots \ldots
$$

is uniformly convergent within a certain region of the variable x if a finite number, N, can be found such that for all values of $n \geqslant N$ the absolute value of the remainder, $\left|R_{n}\right|$ after n terms is less than an assigned arbitrary small quantity e at all points within the given range.

Example. The series,

$$
\sum_{n=0}^{\infty} \frac{x^{2}}{\left(\mathrm{~T}+x^{2}\right)^{n}}
$$

is absolutely convergent for all real values of x. Its sum is $\mathrm{I}+x^{2}$ if x is not zero. If x is zero the sum is zero. The series is non-uniformly convergent in the neighborhood of $x=0$.
6.041 A uniformly convergent series is not necessarily absolutely convergent, nor is an absolutely convergent series necessarily uniformly convergent.
6.042 A sufficient, though not necessary, test for uniform convergence is as follows:

If for all values of x within a certain region the moduli of the terms of the series,

$$
S=u_{1}(x)+u_{2}(x)+\ldots .
$$

are less than the corresponding terms of a convergent series of positive terms,

$$
T=M_{1}+M_{2}+M_{3}+\ldots
$$

where M_{n} is independent of x, then the series S is uniformly convergent in the given region.
6.043 A power series is uniformly convergent at all points within its circle of convergence.
6.044 A uniformly convergent series,

$$
S=u_{1}(x)+u_{2}(x)+\ldots .
$$

may be integrated term by term, and,

$$
\int S d x=\sum_{n=1}^{\infty} \int u_{n}(x) d x
$$

6.045 A uniformly convergent series,

$$
S=u_{1}(x)+u_{2}(x)+\ldots .
$$

may be differentiated term by term, and if the resulting series is uniformly convergent,

$$
\frac{d}{d x} S=\sum_{n=\mathrm{I}}^{\infty} \frac{d}{d x} u_{n}(x)
$$

6.100 Taylor's theorem.

$$
f(x+h)=f(x)+\frac{h}{\mathrm{I}!} f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\ldots+\frac{h^{n}}{n!} f^{(n)}(x)+R_{n}
$$

6.101 Lagrange's form for the remainder:

$$
R_{n}=f^{(n+1)}(x+\theta h) \cdot \frac{h^{n+1}}{(n+\mathrm{I})!} ; \quad 0<\theta<\mathrm{I}
$$

6.102 Cauchy's form for the remainder:

$$
R_{n}=f^{(n+1)}(x+\theta h) \frac{h^{n+1}(\mathrm{I}-\theta)^{n}}{n!} ; \circ<\theta<\mathrm{I}
$$

6.103

$$
\begin{gathered}
f(x)=f(h)+f^{\prime}(h) \cdot \frac{x-h}{1!}+f^{\prime \prime}(h) \cdot \frac{(x-h)^{2}}{2!}+\ldots+f^{(n)}(h) \frac{(x-h)^{n}}{n!}+R_{n} \\
R_{n}=f^{(n+1)}\{h+\theta(x-h)\} \frac{(x-h)^{n+1}}{(n+1)!} \quad 0<\theta<\mathrm{I} .
\end{gathered}
$$

6.104 Maclaurin's theorem:

$$
\begin{aligned}
f(x)=f(\mathrm{o})+f^{\prime}(\mathrm{o}) \frac{x}{I!}+f^{\prime \prime}(\mathrm{o}) \frac{x^{2}}{2!}+\ldots+f^{(n)}(\mathrm{o}) \frac{x^{n}}{n!}+R_{n} \\
R_{n}=f^{(n+1)}(\theta x) \frac{x^{n+1}}{(n+1)!}(\mathrm{I}-\theta)^{n} ; 0<\theta<\mathrm{I}
\end{aligned}
$$

6.105 Lagrange's theorem. Given:

$$
y=z+x \phi(y)
$$

The expansion of $f(y)$ in powers of x is:
$f(y)=f(z)+x \phi(z) f^{\prime}(z)+\frac{x^{2}}{2!} \frac{d}{d z}\left[\{\phi(z)\}^{2} f^{\prime}(z)\right]$

$$
+\ldots+\frac{x^{n}}{n!} \frac{d^{n-1}}{d z^{n-1}}\left[\{\phi(z)\}^{n} f^{\prime}(z)\right]+\ldots
$$

SYMBOLIC REPRESENTATION OF INFINITE SERIES
6.150 The infinite series:

$$
f(x)=\mathrm{I}+a_{1} x+\frac{\mathrm{I}}{2!} a_{2} x^{2}+\frac{\mathrm{I}}{3!} a_{3} x^{3}+\ldots+\frac{\mathrm{I}}{k!} a_{k} x^{k}+\ldots
$$

may be written:

$$
f(x)=e^{a x}
$$

where a^{k} is interpreted as equivalent to a_{k}.
6.151 The infinite series, written without factorials,

$$
f(x)=\mathrm{I}+a_{1} x+a_{2} x^{2}+\ldots+a_{k} x^{k}+\ldots .
$$

may be written:

$$
f(x)=\frac{\mathrm{I}}{\mathrm{I}-a x}
$$

where a^{k} is interpreted as equivalent to a_{k}.
6.152 Symbolic form of Taylor's theorem:

$$
f(\dot{x}+h)=e^{h \frac{\partial}{\partial x}} f(x)
$$

6.153 Taylor's theorem for functions of many variables:

$$
\begin{aligned}
& f\left(x_{1}+h_{1}, x_{2}+h_{2}, \ldots .\right)=e^{h_{1}} \frac{\partial}{\partial x_{1}}+h_{2} \frac{\partial}{\partial x_{2}}+\ldots f\left(x_{1}, x_{2}, \ldots\right) \\
& =f\left(x_{1}, x_{2}, \ldots\right)+h_{1} \frac{\partial f}{\partial x_{1}}+h_{2} \frac{\partial f}{\partial x_{2}}+\ldots \\
& +\frac{h_{1}^{2}}{2!} \frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{2}{2!} h_{1} h_{2} \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}+\frac{h_{2}^{2}}{2!} \frac{\partial^{2} f}{\partial x_{2}^{2}}+\ldots . \\
& +\ldots .
\end{aligned}
$$

TRANSFORMATION OF INFINITE SERIES

Series which converge slowly may often be transformed to more rapidly converging series by the following methods.
6.20 Euler's transformation formula:

$$
\begin{aligned}
S & =a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots \\
& =\frac{\mathrm{I}}{\mathrm{I}-x} a_{0}+\frac{\mathrm{I}}{\mathrm{I}-x} \sum_{k=1}^{\infty}\left(\frac{x}{\mathrm{I}-x}\right)^{k} \Delta^{k} a_{0}
\end{aligned}
$$

where:

$$
\begin{aligned}
& \Delta a_{0}=a_{1}-a_{0}, \\
& \Delta^{2} a_{0}=\Delta a_{1}-\Delta a_{0}=a_{2}-2 a_{1}+a_{0,} \\
& \Delta^{3} a_{0}=\Delta^{2} a_{1}-\Delta^{2} a_{0}=a_{3}-3 a_{2}+3 a_{1}-a_{0},
\end{aligned}
$$

-

$$
\Delta^{k} a_{n}=\sum_{m=0}^{k}(-\mathrm{I})^{m}\binom{k}{m} a_{k+n-m} .
$$

The second series may converge more rapidly than the first.
Example I.

$$
\begin{aligned}
& S=\sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{\mathrm{I}}{2 k+\mathrm{I}}, \\
& x=-\mathrm{I}, \quad a_{k}=\frac{\mathrm{I}}{2 k+\mathrm{I}}, \\
& S=\frac{\mathrm{I}}{2} \sum_{k=0}^{\infty} \frac{k!}{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 k+\mathrm{I})} .
\end{aligned}
$$

Example 2.

$$
\begin{aligned}
& S=\sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{\mathrm{I}}{k+\mathrm{I}}=\log 2 \\
& x=-\mathrm{I}, \quad a_{k}=\frac{\mathrm{I}}{k+\mathrm{I}} \\
& S=\sum_{k=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{k 2^{k}}
\end{aligned}
$$

6.21 Markoff's transformation formula. (Differenzenrechnung, p. i8o.)
$\sum_{k=0}^{n} a_{k} x^{k}-\left(\frac{x}{\mathrm{I}-x}\right)^{m} \sum_{k=0}^{n} x^{k} \Delta^{m} a_{k}=\sum_{k=0}^{m} \frac{x^{k}}{(\mathrm{I}-x)^{k+1}} \Delta^{k} a_{0}-\sum_{k=0}^{m} \frac{x^{k+n}}{(\mathrm{I}-x)^{k+1}} \Delta^{k} a_{n}$.
6.22 Kummer's transformation.
$A_{0}, A_{1}, A_{2}, \ldots$ is a sequence of positive numbers such that

$$
\lambda_{m}=A_{m}-A_{m+1} \frac{a_{m+1}}{a_{m}},
$$

and

$$
\operatorname{Limit}_{m \rightarrow \infty} \lambda_{m},
$$

approaches a definite positive value. Usually this limit can be taken as unity. If not, it is only necessary to divide A_{m} by this limit:

$$
\alpha=\operatorname{Limit}_{m \rightarrow \infty} A_{m} a_{m}
$$

Then:

$$
\sum_{m=n}^{\infty} a_{m}=\left(A_{n} a_{n}-\alpha\right)+\sum_{m=n}^{\infty}\left(\mathrm{I}-\lambda_{m}\right) a_{m} .
$$

Example 1.

$$
\begin{aligned}
S & =\sum_{m=\mathrm{r}}^{\infty} \frac{\mathrm{I}}{m^{2}}, \\
A_{m} & =m, \quad \lambda_{m}=\frac{m}{m+\mathrm{I}}, \quad \operatorname{Limit}_{m \rightarrow \infty} \lambda_{m}=\mathrm{I}, \\
\alpha & =0 \\
\sum_{m=\mathrm{r}}^{\infty} \frac{\mathrm{I}}{m^{2}} & =\mathrm{I}+\sum_{m=\mathrm{r}}^{\infty} \frac{\mathrm{I}}{(m+\mathrm{I}) m^{2}} .
\end{aligned}
$$

Applying the transformation to the series on the right:

$$
\begin{gathered}
A_{m}=\frac{m}{2}, \quad \lambda_{m}=\frac{m}{m+2}, \quad \alpha=0, \\
\sum_{m=1}^{\infty} \frac{\mathrm{I}}{m^{2}}=\mathrm{I}+\frac{\mathrm{I}}{2^{2}}+2 \sum_{m=1}^{\infty} \frac{\mathrm{I}}{m^{2}(m+\mathrm{I})(m+2)} .
\end{gathered}
$$

Applying the transformation n times:

$$
\sum_{m=n+\mathrm{I}}^{\infty} \frac{\mathrm{I}}{m^{2}}=n!\sum_{m=\mathrm{r}}^{\infty} \frac{\mathrm{I}}{m^{2}(m+\mathrm{I})(m+2) \ldots(m+n)}
$$

Example 2.

$$
\begin{aligned}
S & =\sum_{m=\mathrm{I}}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{2 m-\mathrm{I}} \\
A_{m} & =\frac{\mathrm{I}}{2}, \quad \lambda_{m}=\frac{2 m}{2 m+\mathrm{I}}, \quad \alpha=0 \\
S & =\frac{\mathrm{I}}{2}+\sum_{m=\mathrm{I}}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{4 m m^{2}-\mathrm{I}}
\end{aligned}
$$

Applying the transformation again, with:

$$
\begin{aligned}
& A_{m}=\frac{\mathrm{I}}{2} \frac{2 m+\mathrm{I}}{2 m-\mathrm{I}}, \quad \lambda_{m}=\frac{4 m^{2}+\mathrm{I}}{4 m^{2}-\mathrm{I}}, \quad \alpha=0 \\
& S=\mathrm{I}-2 \sum_{m=\mathrm{I}}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{\left(4 m^{2}-\mathrm{I}\right)^{2}}
\end{aligned}
$$

Applying the transformation again, with:

$$
\begin{aligned}
A_{m} & =\frac{\mathrm{I}}{2} \frac{2 m+\mathrm{I}}{2 m-3}, \quad \lambda_{m}=\frac{4 m^{2}+3}{4 m^{2}-9}, \quad \alpha=0 \\
S & =\frac{4}{3}+24 \sum_{\text {min }}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{\left(4 m^{2}-\mathrm{I}\right)^{2}\left(4 m^{2}-9\right)}
\end{aligned}
$$

Example 3.

$$
\begin{gathered}
S=\sum_{m=\mathrm{I}}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{(2 m-\mathrm{I})^{2}}, \\
A_{m}=\frac{2 m-\mathrm{I}}{2(2 m-3)}, \quad \lambda_{m}=\frac{4 m^{2}-4 m+\mathrm{I}}{(2 m-3)(2 m+\mathrm{I})}, \quad \alpha=\mathrm{O}, \\
S=\frac{5}{6}+4 \sum_{m=\mathrm{I}}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{(2 m-\mathrm{I})(2 m+3)(2 m+\mathrm{I})^{2}} .
\end{gathered}
$$

6.23 Leclert's modification of Kummer's transformation. With the same notation as in 6.22 and,

$$
\operatorname{Limit}_{m \rightarrow \infty} \lambda_{m}=\omega
$$

$$
\sum_{n=0}^{\infty} a_{n}=a_{0}+\frac{A_{1} a_{1}}{\lambda_{1}}-\frac{\alpha}{\omega}+\sum_{m=1}^{\infty}\left(\frac{\mathrm{I}}{\lambda_{m+1}}-\frac{\mathrm{I}}{\lambda_{m}}\right) A_{m+1} a_{m+1}
$$

Example 1.

$$
\begin{gathered}
S=\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n-1} \frac{\mathrm{I}}{2 n-\mathrm{I}}, \\
a_{0}=0, \quad A_{m}=\mathrm{I}, \quad \omega=2, \quad \alpha=0, \quad \lambda_{m}=\frac{4 m}{2 m+\mathrm{I}}, \\
S=\frac{3}{4}+\frac{\mathrm{I}}{4} \sum_{m=\mathrm{I}}^{\infty}(-\mathrm{I})^{m-1} \frac{\mathrm{I}}{m(2 m+\mathrm{I})(m+\mathrm{I})} .
\end{gathered}
$$

Applying the transformation to the series on the right, with:

$$
\begin{gathered}
a_{0}=0, \quad A_{m}=\frac{2 m+\mathrm{I}}{m-\mathrm{I}}, \quad \lambda_{m}=\frac{(2 m+\mathrm{I})^{2}}{(m-\mathrm{I})(m+2)}, \quad \omega=4, \quad \alpha=0, \\
S=\frac{19}{24}+\frac{9}{2} \sum_{m=1}^{\infty}(-\mathrm{I})^{m} \frac{\mathrm{I}}{m(m+2)(2 m+\mathrm{I})^{2}(2 m+3)^{2}} .
\end{gathered}
$$

6.26 Reversion of series. The power series:

$$
z=x-b_{1} x^{2}-b_{2} x^{3}-b_{3} x^{4}-\ldots \ldots
$$

may be reversed, yielding:

$$
x=z+c_{1} z^{2}+c_{2} z^{3}+c_{3} z^{4}+\ldots
$$

where:

$$
\begin{aligned}
& c_{1}=b_{1}, \\
& c_{2}=b_{2}+2 b_{1}{ }^{2}, \\
& c_{3}=b_{3}+5 b_{1} b_{2}+5 b_{1}{ }^{3}, \\
& c_{4}=b_{4}+6 b_{1} b_{3}+3 b_{2}{ }^{2}+21 b_{1}{ }^{2} b_{2}+14 b_{1}{ }^{4}, \\
& c_{5}=b_{5}+7\left(b_{1} b_{4}+b_{2} b_{3}\right)+28\left(b_{1}{ }^{2} b_{3}+b_{1} b_{2}{ }^{2}\right)+84 b_{1}{ }^{3} b_{2}+42 b_{1}{ }^{5}, \\
& c_{6}=b_{6}+4\left(2 b_{1} b_{5}+2 b_{2} b_{4}+b_{3}{ }^{2}\right)+12\left(3 b_{1}{ }^{2} b_{4}+6 b_{1} b_{2} b_{3}+b_{2}{ }^{3}\right) \\
& \quad+60\left(2 b_{1}{ }^{3} b_{3}+3 b_{1} b_{2}{ }^{2}\right)+330 b_{1}{ }^{4} b_{2}+132 b_{1}{ }^{6}, \\
& c_{7}=b_{7}+9\left(b_{1} b_{6}+b_{2} b_{5}+b_{3} b_{4}\right)+45\left(b_{1}{ }^{2} b_{5}+b_{1} b_{3}{ }^{2}+b_{2}{ }^{2} b_{3}+2 b_{1} b_{2} b_{4}\right) \\
& \\
& \\
& \quad+165\left(b_{1}{ }^{3} b_{4}+b_{1} b_{2}{ }^{3}+3 b_{1} b_{2} b_{3}\right)+495\left(b_{1}{ }^{4} b_{3}+2 b_{1}{ }^{3} b_{2}{ }^{2}\right) \\
& \\
& \\
&
\end{aligned}
$$

Van Orstrand (Phil. Mag. 19, 366, 1910) gives the coefficients of the reversed series up to c_{12}.
6.30 Binomial series.

$$
\begin{aligned}
& (\mathrm{I}+x)^{n}=\mathrm{I}+\frac{n}{\mathrm{I}} x+\frac{n(n-\mathrm{I})}{2!} x^{2}+\frac{n(n-\mathrm{I})(n-2)}{3!} x^{3}+\ldots \\
& \quad+\frac{n!}{(n-k)!k!} x^{k}+\ldots=\mathrm{I}+\binom{n}{\mathrm{I}} x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\ldots\binom{n}{k} x^{k}+\ldots
\end{aligned}
$$

6.31 Convergence of the binomial series.

The series converges absolutely for $|x|<\mathrm{I}$ and diverges for $|x|>_{\mathrm{I}}$. When $x=\mathrm{I}$, the series converges for $n>-\mathrm{I}$ and diverges for $n \leqslant-\mathrm{I}$. It is absolutely convergent only for $n>0$.

When $x=-\mathrm{I}$ it is absolutely convergent for $n>0$, and divergent for $n<0$.
6.32 Special cases of the binomial series.

$$
(a+b)^{n}=a^{n}\left(\mathrm{I}+\frac{b}{a}\right)^{n}=b^{n}\left(\mathrm{I}+\frac{a}{b}\right)^{n} .
$$

If $\left|\frac{b}{a}\right|<$ I put $x=\frac{b}{a}$ in 6.30 ; if $\left|\frac{b}{a}\right|>$ I put $x=\frac{a}{b}$ in 6.30 .

6.33

I. $(\mathrm{I}+x)^{\frac{n}{n}}=\mathrm{I}+\frac{n}{m} x-\frac{n(m-n)}{2!m^{2}} x^{2}+\frac{n(m-n)(2 m-n)}{3!m^{3}} x^{3}-$

$$
+(-\mathrm{I})^{k} \frac{n(m-n)(2 m-n) \ldots[(k-\mathrm{I}) m-n] x^{k}}{k!m^{k}}
$$

2. $(\mathrm{I}+x)^{-1}=\mathrm{I}-x+x^{2}-x^{3}+x^{4}-\ldots$.
3. $(\mathrm{I}+x)^{-2}=\mathrm{I}-2 x+3 x^{2}-4 x^{3}+5 x^{4}-\ldots$.
4. $\sqrt{\mathrm{I}+x}=\mathrm{I}+\frac{\mathrm{I}}{2} x-\frac{\mathrm{I} \cdot \mathrm{I}}{2 \cdot 4} x^{2}+\frac{\mathrm{I} \cdot \mathrm{I} \cdot 3}{2 \cdot 4 \cdot 6} x^{3}-\frac{\mathrm{I} \cdot \mathrm{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8} x^{4}+\ldots$
5. $\frac{\mathrm{I}}{\sqrt{\mathrm{I}+x}}=\mathrm{I}-\frac{\mathrm{I}}{2} x+\frac{\mathrm{I} \cdot 3}{2 \cdot 4} x^{2}-\frac{\mathrm{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} x^{3}+\frac{\mathrm{I} \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8} x^{4}-\ldots$
6. $(\mathrm{I}+x)^{\frac{1}{3}}=\mathrm{I}+\frac{\mathrm{I}}{3} x-\frac{\mathrm{I} \cdot 2}{3 \cdot 6} x^{2}+\frac{\mathrm{I} \cdot 2 \cdot 5}{3 \cdot 6 \cdot 9} x^{3}-\frac{\mathrm{I} \cdot 2 \cdot 5 \cdot 8}{3 \cdot 6 \cdot 9 \cdot \mathrm{I} 2} x^{4}+\ldots$.
7. $(\mathrm{I}+x)^{-3}=\mathrm{I}-\frac{\mathrm{I}}{3} x+\frac{\mathrm{I} \cdot 4}{3 \cdot 6} x^{2}-\frac{\mathrm{I} \cdot 4 \cdot 7}{3 \cdot 6 \cdot 9} x^{3}+\frac{\mathrm{Y} \cdot 4 \cdot 7 \cdot \mathrm{IO}}{3 \cdot 6 \cdot 9 \cdot \mathrm{I} 2} x^{4}-\ldots$
8. $(\mathrm{I}+x)^{\frac{3}{2}}=\mathrm{I}+\frac{3}{2} x+\frac{3 \cdot \mathrm{I}}{2 \cdot 4} x^{2}-\frac{3 \cdot \mathrm{I} \cdot \mathrm{I}}{2 \cdot 4 \cdot 6} x^{3}+\frac{3 \cdot \mathrm{I} \cdot \mathrm{I} \cdot 3}{2 \cdot 4 \cdot 6 \cdot 8} x^{4}-\frac{3 \cdot \mathrm{I} \cdot \mathrm{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8 \cdot \mathrm{IO}} x^{5}+\ldots$
9. $(\mathrm{I}+x)-\frac{3}{2}=\mathrm{I}-\frac{3}{2} x+\frac{3 \cdot 5}{2 \cdot 4} x^{2}-\frac{3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6} x^{3}+\ldots .$.
10. $(\mathrm{I}+x)^{\frac{2}{4}}=\mathrm{I}+\frac{\mathrm{I}}{4} x-\frac{3}{32} x^{2}+\frac{7}{128} x^{3}-\frac{77}{2048} x^{4}+\ldots$
II. $(\mathrm{I}+x)^{-\frac{1}{2}}=\mathrm{I}-\frac{1}{4} x+\frac{5}{3^{2}} x^{2}-\frac{15}{128} x^{3}+\frac{195}{2048} x^{4}-\ldots$
11. $(\mathrm{I}-\mathrm{L} x)^{\frac{2}{2}}=\mathrm{I}+\frac{\mathrm{I}}{5} x-\frac{2}{25} x^{2}+\frac{6}{125} x^{3}-\frac{2 \mathrm{I}}{625} x^{4}+\ldots$.

IT. $(\mathrm{I}+x)^{-\frac{1}{3}}=\mathrm{I}-\frac{\mathrm{I}}{5} x+\frac{3}{25} x^{2}-\frac{1 \mathrm{I}}{125} x^{3}+\frac{44}{625} x^{4}-\ldots$
14. $(\mathrm{I}+x)^{\frac{1}{6}}=\mathrm{I}+\frac{\mathrm{I}}{6} x-\frac{5}{72} x^{2}+\frac{55}{1296} x^{3}-\frac{935}{31104} x^{4}+\ldots$.
15. $(1+x)^{-\frac{1}{6}}=1-\frac{1}{6} x+\frac{7}{72} x^{2}-\frac{91}{1296} x^{3}+\frac{1729}{31104} x^{4}-\ldots$.

6.350

I. $\frac{x}{\mathrm{I}-x}=\frac{x}{\mathrm{I}+x}+\frac{2 x^{2}}{\mathrm{I}+x^{2}}+\frac{4 x^{4}}{\mathrm{I}+x^{4}}+\frac{8 x^{8}}{\mathrm{I}+x^{8}}+\ldots$.
$\left[x^{2}<I\right]$.
2. $\frac{x}{\mathrm{I}-x}=\frac{x}{\mathrm{I}-x^{2}}+\frac{x^{2}}{\mathrm{I}-x^{4}}+\frac{x^{4}}{\mathrm{I}-x^{8}}+\ldots$. $\left[x^{2}<I\right]$.
3. $\frac{\mathrm{I}}{x-\mathrm{I}}=\frac{\mathrm{I}}{x+\mathrm{I}}+\frac{2}{x^{2}+\mathrm{I}}+\frac{4}{x^{4}+\mathrm{I}}+\ldots .$.
$\left[x^{2}>\mathrm{I}\right]$.

6.351

I. $\{\mathrm{I}+\sqrt{\mathrm{I}+x}\}^{n}=2^{n}\left\{\mathrm{I}+n\left(\frac{x}{4}\right)+\frac{n(n-3)}{2!}\left(\frac{x}{4}\right)^{2}\right.$

$$
\left.+\frac{n(n-4)(n-5)}{3!}\left(\frac{x}{4}\right)^{3}+\ldots\right\} \cdot \quad\left[x^{2}<\mathrm{I}\right]
$$

n may be any real number.
2. $\left(x+\sqrt{\mathrm{I}+x^{2}}\right)^{n}=\mathrm{I}+\frac{n^{2}}{2!} x^{2}+\frac{n^{2}\left(n^{2}-2^{2}\right)}{4!} x^{4}+\frac{n^{2}\left(n^{2}-2^{2}\right)\left(n^{2}-4^{2}\right)}{6!} x^{6}+\ldots$

$$
+\frac{n}{\mathrm{I}!} x+\frac{n\left(n^{2}-\mathrm{I}^{2}\right)}{3!} x^{3}+\frac{n\left(n^{2}-\mathrm{I}^{2}\right)\left(n^{2}-3^{2}\right)}{5!} x^{5}+\ldots \quad\left[x^{2}<\mathrm{I}\right] .
$$

6.352 If a is a positive integer:
$\frac{\mathrm{I}}{a}+\frac{\mathrm{I}}{a(a+\mathrm{I})} x+\frac{\mathrm{I}}{a(a+\mathrm{I})(a+2)} x^{2}+\ldots . . .=\frac{(a-\mathrm{I})!}{x^{a}}\left\{e^{x}-\sum_{n=0}^{a-\mathrm{I}} \frac{x^{n}}{n!}\right\}$.
6.353 If a and b are positive integers, and $a<b$:
$\frac{a}{b}+\frac{a(a+1)}{b(b+1)} x+\frac{a(a+1)(a+2)}{b(b+1)(b+2)} x^{2}+\ldots$.
$=(b-a)\binom{b-\mathrm{I}}{a-\mathrm{I}}\left\{\frac{\left(0_{\mathrm{I}}\right)^{b-a} \log (\mathrm{I}-x)}{x^{b}}(\mathrm{I}-x)^{b-a-1}\right.$
$\left.+\frac{\mathrm{I}}{x^{a}} \sum_{k=\mathrm{I}}^{b-a}(-\mathrm{I})^{k}\binom{b-a-\mathrm{I}}{k-\mathrm{I}} \sum_{n=\mathrm{I}}^{a+k-\mathrm{I}} \frac{x^{n-k}}{n}\right\}$.
(Schwatt, Phil. Mag. 3I, 75, 1916)

POLYNOMIAL SERIES

6.360

$$
\begin{aligned}
& \frac{b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\ldots}{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots}=\frac{\mathrm{I}}{a_{0}}\left(c_{0}+c_{1} x+c_{2} x^{2}+\ldots\right), \\
& c_{0}-b_{0}=0, \\
& c_{1}+\frac{c_{0} a_{1}}{a_{0}}-b_{1}=\circ, \\
& c_{2}+\frac{c_{1} a_{1}}{a_{0}}+\frac{c_{0} a_{2}}{a_{0}}-b_{2}=0, \\
& c_{3}+\frac{c_{2} a_{1}}{a_{0}}+\frac{c_{1} a_{2}}{a_{0}}+\frac{c_{0} a_{3}}{a_{0}}-b_{3}=0 . \\
& \text { •••• } \\
& \text { ••••• }
\end{aligned}
$$

6.361

$$
\begin{aligned}
\left(a_{0}+a_{1} x\right. & \left.+a_{2} x^{2}+\ldots .\right)^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\ldots \\
c_{0} & =a_{0}{ }^{n}, \\
a_{0} c_{1} & =n a_{1} c_{0}, \\
2 a_{0} c_{2} & =(n-\text { I }) a_{1} c_{1}+2 n a_{2} c_{0}, \\
3 a_{0} c_{3} & =(n-2) a_{1} c_{2}+(2 n-\text { I }) a_{2} c_{1}+3 n a_{3} c_{0} .
\end{aligned}
$$

6.362

$$
\begin{aligned}
& \qquad y=a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
& b_{1} y+b_{2} y^{2}+b_{3} y^{3}+\ldots=c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots \\
& c_{1}=a_{1} b_{1} \\
& c_{2}=a_{2} b_{1}+a_{1}{ }^{2} b_{2}, \\
& c_{3}=a_{3} b_{1}+2 a_{1} a_{2} b_{2}+a_{1}^{3} b_{3} \\
& c_{4}=a_{4} b_{1}+a_{2}{ }^{2} b_{2}+2 a_{1} a_{3} b_{2}+3 a_{1}{ }^{2} a_{2} b_{3}+a_{1}{ }^{4} b_{4} \\
& \ldots \ldots
\end{aligned}
$$

6.363

$$
\begin{aligned}
& e^{a_{1} x+a_{2} x^{2}}+a_{33} x^{3}+\cdots=\mathrm{I}+c_{1} x+c_{2} x^{2}+\ldots \\
& c_{1}=a_{1} \\
& c_{2}=a_{2}+\frac{1}{2} a_{1}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& c_{3}=a_{3}+a_{1} a_{2}+\frac{\mathrm{I}}{6} a_{1}^{3} \\
& c_{4}=a_{4}+a_{1} a_{3}+\frac{\mathrm{I}}{2} a_{2}^{2}+\frac{\mathrm{I}}{2} a_{2} a_{1}^{2}+\frac{\mathrm{I}}{24} a_{1}^{4}
\end{aligned}
$$

6.364

$$
\begin{aligned}
\log \left(1+a_{1} x+a_{2} x^{2}\right. & \left.+a_{3} x^{3}+\ldots\right)=c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots \\
a_{1} & =c_{1}, \\
2 a_{2} & =a_{1} c_{1}+2 c_{2}, \\
3 a_{3} & =a_{2} c_{1}+2 a_{1} c_{2}+3 c_{3}, \\
4 a_{4} & =a_{3} c_{1}+2 a_{2} c_{2}+3 a_{3} c_{3}+4 a_{4} . \\
\cdots & \\
c_{1} & =a_{1} \\
c_{2} & =a_{2}-\frac{1}{2} c_{1} a_{1}, \\
c_{3} & =a_{3}-\frac{1}{3} c_{1} a_{2}-\frac{2}{3} c_{2} a_{1}, \\
c_{4} & =a_{4}-\frac{I}{4} c_{1} a_{3}-\frac{2}{4} c_{2} a_{2}-\frac{3}{4} c_{3} a_{1} .
\end{aligned}
$$

6.365

$$
\begin{aligned}
y & =a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
z & =b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\ldots \\
y z & =c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+\ldots \\
c_{2} & =a_{1} b_{1} \\
c_{3} & =a_{1} b_{2}+a_{2} b_{1} \\
c_{4} & =a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1} \\
& \cdots \\
c_{k} & =a_{1} b_{k-1}+a_{2} b_{k-2}+a_{3} b_{k-3}+\ldots a_{k-1} b_{1}
\end{aligned}
$$

6.37. The Multinomial Theorem.

The general term in the expansion of

$$
\begin{equation*}
\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots\right)^{n} \tag{I}
\end{equation*}
$$

where n is positive or negative, integral or fractional, is,

where

$$
p+c_{1}+c_{2}+c_{3}+\ldots . \ldots=n
$$

$c_{1}, c_{2}, c_{3}, \ldots$ are positive integers.
If n is a positive integer, and hence p also, the general term in the expansion may be written,

$$
\text { . } \quad-
$$

(3)

$$
\frac{n!}{p!c_{1}!c_{2}!\ldots} a_{0}{ }^{p} a_{1}^{c_{1}} a_{2}^{c_{2}} a_{3}^{c_{3}} \ldots x^{c_{1}+2 c_{2}+3 c_{3}+} \ldots
$$

The coefficient of x^{k} (k an integer) in the expansion of (I) is found by taking the sum of all the terms (2) or (3) for the different combinations of p, c_{1}, c_{2}, c_{3}, \ldots whica satisfy

$$
\begin{aligned}
& c_{1}+2 c_{2}+3 c_{3}+\ldots \ldots=k \\
& p+c_{1}+c_{2}+c_{3}+\ldots=n
\end{aligned}
$$

cf. 6.361.

In the following series the coefficients B_{n} are Bernoulli's numbers (6.902) and the coefficients E_{n}, Euler's numbers (6.903).

6.400

I. $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots .=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{x^{2 n+1}}{(2 n+\mathrm{I})!}$ $\left[x^{2}<\infty\right]$.
2. $\cos x=\mathrm{r}-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots .=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{x^{2 n}}{(2 n)!}$ $\left[x^{2}<\infty\right]$.
3. $\tan x=x+\frac{\mathrm{I}}{3} x^{3}+\frac{2}{\mathrm{I} 5} x^{5}+\frac{\mathrm{I} 7}{3 \mathrm{I} 5} x^{7}+\frac{62}{2835} x^{9}+\ldots$.

$$
=\sum_{n=1}^{\infty} \frac{2^{2 n}\left(2^{2 n}-\mathrm{I}\right)}{(2 n)!} B_{n} x^{2 n-1} \quad\left[x^{2}<\frac{\pi^{2}}{4}\right]
$$

4. $\cot x=\frac{\mathrm{I}}{x}-\frac{x}{3}-\frac{\mathrm{I}}{45} x^{3}-\frac{2}{945} x^{5}-\frac{\mathrm{I}}{4725} x^{7}-\ldots$.

$$
=\frac{\mathrm{I}}{x}-\sum_{n=\mathrm{I}}^{\infty} \frac{2^{2 n} B_{n}}{(2 n)!} x^{2 n-1} \quad\left[x^{2}<\pi^{2}\right]
$$

5. $\sec x=\mathrm{I}+\frac{\mathrm{I}}{2!} x^{2}+\frac{5}{4!} x^{4}+\frac{6 \mathrm{I}}{6^{1}} x^{6}+. \quad=\sum_{n=0}^{\infty} \frac{E_{n}}{(2 n)!} x^{2 n} \quad\left[x^{2}<\frac{\pi^{2}}{4}\right]$.
6. $\csc x=\frac{\mathrm{I}}{x}+\frac{\mathrm{I}}{3!} x+\frac{7}{3 \cdot 5!} x^{3}+\frac{3 \mathrm{I}}{3 \cdot 7!} x^{5}+\ldots$

$$
=\frac{\mathrm{x}}{x}+\sum_{n=0}^{\infty} \frac{2\left(2^{2 n+1}-\mathrm{I}\right)}{(2 n+2)!} B_{n+1} x^{2 n+1} \quad\left[x^{2}<\pi^{2}\right]
$$

6.41

I. $\sin ^{-1} x=x+\frac{\mathrm{I}}{2 \cdot 3} x^{3}+\frac{\mathrm{I} \cdot 3}{2 \cdot 4 \cdot 5} x^{5}+\frac{\mathrm{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7} x^{7}+\ldots$.
$\left[x^{2} \leqslant \mathrm{I}\right]$.

$$
=\frac{\pi}{2}-\cos ^{-1} x=\sum_{n=0}^{\infty} \frac{(2 n)!}{2^{2 n}(n!)^{2}(2 n+\mathrm{I})} x^{2 n+1}
$$

2. $\tan ^{-1} x=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\ldots$ (Gregory's Series) $\quad\left[x^{2} \leqslant \mathrm{I}\right]$

$$
=\frac{\pi}{2}-\cot ^{-1} x=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{x^{2 n+1}}{2 n+\mathrm{I}}
$$

3. $\tan ^{-1} x=\frac{x}{I+x^{2}}\left\{I+\frac{2}{3} \frac{x^{2}}{I+x^{2}}+\frac{2 \cdot 4}{3 \cdot 5}\left(\frac{x^{2}}{I+x^{2}}\right)^{2}+\ldots\right\}$

$$
=\frac{x}{\mathrm{I}+x^{2}} \sum_{n=0}^{\infty} \frac{2^{2 n}(n!)^{2}}{(2 n+\mathrm{I})!}\left(\frac{x^{2}}{\mathrm{I}+x^{2}}\right)^{n}
$$

4. $\tan ^{-1} x=\frac{\pi}{2}-\frac{\mathrm{I}}{x}+\frac{\mathrm{I}}{3 x^{3}}-\frac{\mathrm{I}}{5 x^{5}}+\frac{\mathrm{I}}{7 x^{7}}-\ldots$

$$
=\frac{\pi}{2}-\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{\mathrm{I}}{(2 n+\mathrm{I}) x^{2 n+1}} \quad\left[x^{2} \geqslant \mathrm{I}\right]
$$

5. $\sec ^{-1} x=\frac{\pi}{2}-\frac{I}{x}-\frac{\mathrm{I}}{2 \cdot 3} \frac{\mathrm{I}}{x^{3}}-\frac{\mathrm{I} \cdot 3}{2 \cdot 4 \cdot 5} \frac{\mathrm{I}}{x^{5}}+\frac{\mathrm{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7} \frac{\mathrm{I}}{x^{7}}-\ldots$

$$
=\frac{\pi}{2}-\csc ^{-1} x=\frac{\pi}{2}-\sum_{n=0}^{\infty} \frac{(2 n)!}{2^{2 n}(n!)^{2}(2 n+\mathrm{I})} x^{-2 n-1} \quad[x>\mathrm{I}]
$$

6.42

I. $\left(\sin ^{-1} x\right)^{2}=x^{2}+\frac{2}{3} \frac{x^{4}}{2}+\frac{2 \cdot 4}{3 \cdot 5} \frac{x^{6}}{3}+\frac{2 \cdot 4 \cdot 6}{3 \cdot 5 \cdot 7} \frac{x^{8}}{4}+\ldots$.

$$
=\sum_{n=0}^{\infty} \frac{2^{2 n}(n!)^{2}}{(2 n+1)!(n+1)} x^{2 n+2}
$$

$$
\left[x^{2} \leqslant \mathrm{I}\right]
$$

2. $\left(\sin ^{-1} x\right)^{3}=x^{3}+\frac{3!}{5!} 3^{2}\left(\mathrm{I}+\frac{\mathrm{I}}{3^{2}}\right) x^{5}+\frac{3!}{7!} 3^{2} 5^{2}\left(\mathrm{I}+\frac{\mathrm{I}}{3^{2}}+\frac{\mathrm{I}}{5^{2}}\right) x^{7}+\ldots .\left[x^{2} \leqslant \mathrm{I}\right]$.
3. $\left(\tan ^{-1} x\right)^{p}=p!\sum_{k_{0}=1}^{\infty}(-\mathrm{I})^{k_{0}-1} \frac{x^{2 k_{0}+p-2}}{2 k_{0}+p-2} \prod_{a=1}^{p-1}\left(\sum_{k a=1}^{k a-1} \frac{\mathrm{I}}{2 k_{a}+p-a-2}\right)$.
(Schwatt, Phil. Mag. 31, p. 490, 1916).
4. $\sqrt{\mathrm{I}-x^{2}} \sin ^{-1} x=x-\frac{x^{3}}{3}+\frac{2}{3 \cdot 5} x^{5}-\frac{2 \cdot 4}{3 \cdot 5 \cdot 7} x^{7}+\ldots$

$$
=x+\sum_{n=1}^{\infty}(-\mathrm{I})^{n} \frac{2^{2 n-2}[(n-\mathrm{I})!]^{2}}{(2 n-\mathrm{I})!(2 n+\mathrm{I})} x^{2 n+1} \quad\left[x^{2}<\mathrm{I}\right]
$$

$$
\text { 5. } \frac{\sin ^{-1} x}{\sqrt{I-x^{2}}}=x+\frac{2}{3} x^{3}+\frac{2 \cdot 4}{3 \cdot 5} x^{5}+\frac{2 \cdot 4 \cdot 6}{3 \cdot 5 \cdot 7} x^{7}+\ldots
$$

$$
=\sum_{n=0}^{\infty} \frac{2^{2 n}(n!)^{2}}{(2 n+1)!} x^{2 n+1} \quad\left[x^{2}<\mathrm{I}\right]
$$

6.43

I. $\log \sin x=\log x-\left\{\frac{1}{6} x^{2}+\frac{1}{180} x^{4}+\frac{1}{2835} x^{6}+\ldots\right\}$

$$
=\log x-\sum_{n=1}^{n} \frac{2^{2 n-1}}{n(2 n)!} B_{n} x^{2 n} \quad\left[x^{2}<\pi^{2}\right] .
$$

2. $\log \cos x=-\frac{1}{2} x^{2}-\frac{1}{12} x^{4}-\frac{1}{45} x^{6}-\frac{17}{2520} x^{8}-\ldots$.

$$
=-\sum_{n=1}^{\infty} \frac{2^{2 n-1}\left(2^{2 n}-1\right) B_{n}}{n(2 n)!} x^{2 n} \quad\left[x^{2}<\frac{\pi^{2}}{4}\right]
$$

3. $\log \tan x=\log x+\frac{1}{3} x^{2}+\frac{7}{90} x^{4}+\frac{62}{2835} x^{6}+\frac{127}{18900} x^{8}+\ldots$.

$$
=\log x+\sum_{n=1}^{\infty} \frac{\left(2^{2 n-1}-\mathrm{I}\right) 2^{2 n}}{n(2 n)!} B_{n} x^{x^{2 n}} \quad\left[x^{2}<\frac{\pi^{2}}{4}\right] .
$$

4. $\log \cos x=-\frac{\mathrm{I}}{2}\left\{\sin ^{2} x+\frac{\mathrm{I}}{2} \sin ^{4} x+\frac{\mathrm{I}}{3} \sin ^{6} x+\ldots\right\}$

$$
=-\frac{\mathrm{I}}{2} \sum_{n=1}^{\infty} \frac{\mathrm{I}}{n} \sin ^{2 n} x . \quad\left[x^{2}<\frac{\pi^{2}}{4}\right]
$$

6.44

I. $\log (\mathrm{I}+x)=x-\frac{\mathrm{I}}{2} x^{2}+\frac{\mathrm{I}}{3} x^{3}-\frac{\mathrm{I}}{4} x^{4}+\ldots$

$$
=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}
$$

$$
[-\mathrm{I}<x \leqslant \mathrm{I}] .
$$

$\{\log (\mathrm{I}+x)\}^{p}$ see 7.369.
2. $\log \left(x+\sqrt{\mathrm{I}+x^{2}}\right)=x-\frac{\mathrm{I} \cdot \mathrm{I}}{2 \cdot 3} x^{3}+\frac{\mathrm{I} \cdot \mathrm{I} \cdot 3}{2 \cdot 4 \cdot 5} x^{5}-\frac{\mathrm{I} \cdot \mathrm{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7} x^{7}+\ldots$

$$
=x+\sum_{n=1}^{\infty}(-1)^{n} \frac{(2 n-1)!x^{2 n+1}}{2^{2 n-1} n!(n-1)!(2 n+1)} \quad[-\mathrm{I} \leqslant x \leqslant \mathrm{I}] .
$$

3. $\log \left(\mathrm{I}+\sqrt{\mathrm{I}+\mathrm{x}^{2}}\right)=\log 2+\frac{\mathrm{I} \cdot \mathrm{I}}{2 \cdot 2} x^{2}-\frac{\mathrm{I} \cdot \mathrm{I} \cdot 3}{2 \cdot 4 \cdot 4} x^{4}+\frac{\mathrm{I} \cdot \mathrm{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 6} x^{6}-\ldots$

$$
=\log 2-\sum_{n=1}^{\infty}(-1)^{n} \frac{(2 n-1)!}{2^{2 n-1} n!(n-1)!} \frac{x^{2 n}}{2 n} \quad\left[x^{2} \leqslant 1\right] .
$$

4. $\log \left(I+\sqrt{I+x^{2}}\right)=\log x+\frac{I}{x}-\frac{I \cdot I}{2 \cdot 3} \frac{I}{x^{3}}+\frac{I \cdot I \cdot 3}{2 \cdot 4 \cdot 5} \frac{I}{x^{5}}-\ldots$

$$
=\log x+\frac{\mathrm{I}}{x}+\sum_{n=1}^{\infty}(-\mathrm{I})^{n} \frac{(2 n-\mathrm{I})!}{2^{2 n-1} n!(n-\mathrm{I})!} \frac{x^{-2 n-1}}{(2 n+\mathrm{I})} \quad\left[x^{2} \geqslant \mathrm{I}\right] .
$$

5. $\log x=(x-\mathrm{I})-\frac{\mathrm{I}}{2}(x-\mathrm{I})^{2}+\frac{\mathrm{I}}{3}(x-\mathrm{I})^{3}-\ldots$

$$
=\sum_{n=1}^{\infty}(-\mathrm{I})^{n+1} \frac{(x-\mathrm{I})^{n}}{n} \quad[0<x \leqslant 2]
$$

6. $\log x=\frac{x-\mathrm{I}}{x}+\frac{\mathrm{I}}{2}\left(\frac{x-\mathrm{I}}{x}\right)^{2}+\frac{\mathrm{I}}{3}\left(\frac{x-\mathrm{I}}{x}\right)^{3}+\ldots$.

$$
=\sum_{n=1}^{\infty} \frac{\mathrm{I}}{n}\left(\frac{x-\mathrm{I}}{x}\right)^{n} \quad\left[x \geqslant \frac{1}{2}\right]
$$

7. $\log x=2\left\{\frac{x-\mathrm{I}}{x+\mathrm{I}}+\frac{\mathrm{I}}{3}\left(\frac{x-\mathrm{I}}{x+\mathrm{I}}\right)^{3}+\frac{\mathrm{I}}{5}\left(\frac{x-\mathrm{I}}{x+\mathrm{I}}\right)^{5}+\ldots\right\}$

$$
=2 \sum_{n=0}^{\infty} \frac{\mathrm{I}}{2 n+\mathrm{I}}\left(\frac{x-\mathrm{I}}{x+\mathrm{I}}\right)^{2 n+1} \quad[x>0]
$$

8. $\log \frac{I+x}{I-x}=2\left\{x+\frac{\mathrm{I}}{3} x^{3}+\frac{\mathrm{I}}{5} x^{5}+\ldots.\right\}$

$$
=2 \sum_{n=0}^{\infty} \frac{\mathrm{I}}{2 n+\mathrm{I}} x^{2 n+1}
$$

9. $\log \frac{x+\mathrm{I}}{x-\mathrm{I}}=2\left\{\frac{\mathrm{I}}{x}+\frac{\mathrm{I}}{3} \frac{\mathrm{I}}{x^{3}}+\frac{\mathrm{I}}{5} \frac{\mathrm{I}}{x^{5}}+\ldots\right\}$

$$
=2 \sum_{n=0}^{\infty} \frac{\mathrm{I}}{(2 n+\mathrm{I}) x^{2 n+1}}
$$

$\left[x^{2}>\mathrm{I}\right]$.
10. $\sqrt{\mathrm{I}+x^{2}} \log \left(x+\sqrt{\left.\mathrm{I}+x^{2}\right)}=x+\frac{\mathrm{I}}{3} x^{3}-\frac{\mathrm{I} \cdot 2}{3 \cdot 5} x^{5}+\frac{\mathrm{I} \cdot 2 \cdot 4}{3 \cdot 5 \cdot 7} x^{7}-\ldots\right.$

$$
=x-\sum_{n=1}^{\infty}(-\mathrm{I})^{n} \frac{(n-\mathrm{I})!2^{2 n-1} n!}{(2 n+\mathrm{I})!} x^{2 n+1} \quad\left[x^{2}<\mathrm{I}\right]
$$

II. $\frac{\log \left(x+\sqrt{I+x^{2}}\right)}{\sqrt{I+x^{2}}}=x-\frac{2}{3} x^{3}+\frac{2 \cdot 4}{3 \cdot 5} x^{5}-\frac{2 \cdot 4 \cdot 6}{3 \cdot 5 \cdot 7} x^{7}+\ldots$.

$$
=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{2^{2 n}(n!)^{2}}{(2 n+I)!} x^{2 n+1} \quad\left[x^{2}<\mathrm{I}\right]
$$

I2. $\left\{\log \left(x+\sqrt{I+x^{2}}\right)\right\}^{2}=\frac{x^{2}}{I}-\frac{2}{3} \frac{x^{4}}{2}+\frac{2 \cdot 4}{3 \cdot 5} \frac{x^{6}}{3}-\ldots$.

$$
=\sum_{n=1}^{\infty}(-\mathrm{I})^{n-1} \frac{2^{2 n-2}(n-\mathrm{I})!(n-\mathrm{I})!}{(2 n-\mathrm{I})!} \frac{x^{2 n}}{n} \cdot\left[x^{2}<\mathrm{I}\right]
$$

13. $\frac{1}{2}\{\log (\mathrm{I}+x)\}^{2}=\frac{\mathrm{I}}{2} s_{1} x^{2}-\frac{1}{3} s_{2} x^{3}+\frac{\mathrm{I}}{4} s_{3} x^{4}-\ldots$
where $s_{n}=\frac{\mathrm{I}}{\mathrm{I}}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\ldots \frac{\mathrm{I}}{n}$
(See 1.876).
14. $\frac{I}{6}\{\log (I+x)\}^{3}=\frac{I}{3} \cdot \frac{I}{2} s_{1} x^{3}-\frac{I}{4}\left(\frac{I}{2} s_{1}+\frac{I}{3} s_{2}\right) x^{4}$

$$
+\frac{\mathrm{I}}{5}\left(\frac{\mathrm{I}}{2} s_{1}+\frac{\mathrm{I}}{3} s_{2}+\frac{\mathrm{I}}{4} s_{3}\right) x^{5}-\ldots \quad\left[x^{2}<\mathrm{I}\right] .
$$

15. $\frac{\log (\mathrm{I}+x)}{(\mathrm{I}+x)^{n}}=x-n(n+\mathrm{I})\left(\frac{\mathrm{I}}{n}+\frac{\mathrm{I}}{n+\mathrm{I}}\right) \frac{x^{2}}{2!}$

$$
+n\left(n+\text { I) }(n+2)\left(\frac{\mathrm{I}}{n}+\frac{\mathrm{I}}{n+\mathrm{I}}+\frac{\mathrm{I}}{n+2}\right) \frac{x^{3}}{3!}-\ldots . \quad\left[x^{2}<\mathrm{I}\right] .\right.
$$

6.445 (See 6.705.)
I. $\frac{3}{4 x}-\frac{\mathrm{I}}{2 x^{2}}+\frac{(\mathrm{I}-x)^{2}}{2 x^{3}} \log \frac{\mathrm{I}}{\mathrm{I}-x}=\frac{\mathrm{I}}{\mathrm{I} \cdot 2 \cdot 3}+\frac{x}{2 \cdot 3 \cdot 4}+\frac{x^{2}}{3 \cdot 4 \cdot 5}+\ldots \quad\left[x^{2}<\mathrm{I}\right]$.
2. $\frac{I}{4 x}\left\{\frac{\mathrm{I}+x}{\sqrt{x}} \log \frac{\mathrm{I}+\sqrt{x}}{\mathrm{I}-\sqrt{x}}+2 \log (\mathrm{I}-x)-2\right\}=\frac{\mathrm{I}}{\mathrm{I} \cdot 2 \cdot 3}+\frac{x}{3 \cdot 4 \cdot 5}$

$$
+\frac{x^{2}}{5 \cdot 6 \cdot 7}+\ldots \quad[0<x<\mathrm{I}]
$$

3. $\frac{\mathrm{I}}{2 x}\left\{\mathrm{I}-\log (\mathrm{I}+x)-\frac{\mathrm{I}-x}{\sqrt{x}} \tan ^{-1} x\right\}=\frac{\mathrm{I}}{\mathrm{I} \cdot 2 \cdot 3}-\frac{x}{3 \cdot 4 \cdot 5}$

$$
+\frac{x^{2}}{5 \cdot 6 \cdot 7}-\ldots \quad[0<x \leqslant \mathrm{I}] .
$$

6.455

I. $-\log (\mathrm{I}+x) \cdot \log (\mathrm{r}-x)=x^{2}+\left(\mathrm{I}-\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}\right) \frac{x^{4}}{2}$

$$
+\left(\mathrm{I}-\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}-\frac{\mathrm{I}}{4}+\frac{\mathrm{I}}{5}\right) \frac{x^{6}}{3}+\ldots . \quad\left[x^{2}<\mathrm{I}\right] .
$$

2. $\frac{\mathrm{I}}{2} \tan ^{-1} x \cdot \log \frac{\mathrm{I}+x}{\mathrm{I}-x}=x^{2}+\left(\mathrm{I}-\frac{\mathrm{I}}{3}+\frac{\mathrm{I}}{5}\right) \frac{x^{6}}{3}+\left(\mathrm{I}-\frac{\mathrm{I}}{3}+\frac{\mathrm{I}}{5}-\frac{\mathrm{I}}{7}+\frac{\mathrm{I}}{9}\right) \frac{x^{10}}{5}$

$$
+\ldots
$$

$\left[x^{2}<I\right]$.
3. $\frac{\mathrm{I}}{2} \tan ^{-1} x \cdot \log \left(\mathrm{I}+x^{2}\right)=\left(\mathrm{I}+\frac{\mathrm{I}}{2}\right) \frac{x^{3}}{3}-\left(\mathrm{I}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\frac{\mathrm{I}}{4}\right) \frac{x^{5}}{5}+\ldots \quad\left[x^{2}<\mathrm{I}\right]$.

6.456

I. $\cos \left\{k \log \left(x+\sqrt{I+x^{2}}\right)\right\}=\mathrm{I}-\frac{k^{2}}{2!} x^{2}+\frac{k^{2}\left(k^{2}+2^{2}\right)}{4!} x^{4}$

$$
-\frac{k^{2}\left(k^{2}+2^{2}\right)\left(k^{2}+4^{2}\right)}{6!} x^{6}+\ldots . \quad x^{2}<\mathrm{I} .
$$

k may be any real number.
2. $\sin \left\{k \log \left(x+\sqrt{I+x^{2}}\right)\right\}=\frac{k}{I!} x-\frac{k^{2}\left(k^{2}+\mathrm{I}^{2}\right)}{3!} x^{3}$

$$
+\frac{k^{2}\left(k^{2}+\mathrm{I}^{2}\right)\left(k^{2}+3^{2}\right)}{5!} x^{5}-\ldots \quad x^{2}<\mathrm{I}
$$

6.457

$\frac{\mathrm{I}}{\mathrm{I}-2 x \cos \alpha+x^{2}}=\mathrm{I}+\sum_{n=\mathrm{I}}^{\infty} A_{n} x^{n}$

$$
\left[x^{2}<\mathrm{I}\right]
$$

where,

$$
\begin{aligned}
A_{2 n} & =(-\mathrm{I})^{n} \sum_{k=0}^{n}(-\mathrm{I})^{k}\left(\frac{n+k}{2 k}\right)(2 \cos \alpha)^{2 k} \\
A_{2 n+1} & =(-\mathrm{I})^{n} \sum_{k=0}^{n}(-\mathrm{I})^{k}\left(\frac{n+k+\mathrm{I}}{2 k+\mathrm{I}}\right)(2 \cos \alpha)^{2 k+1}
\end{aligned}
$$

6.460
I. $e^{x}=\mathrm{I}+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots . .=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
$\left[x^{2}<\infty\right]$.
2. $a^{x}=\mathrm{I}+x \log a+\frac{(x \log a)^{2}}{2!}+\frac{(x \log a)^{3}}{3!}+\ldots$.
$\left[x^{2}<\infty\right]$.
3. $e^{e^{x}}=e\left(\mathrm{I}+x+\frac{2}{2!} x^{2}+\frac{5}{3!} x^{3}+\frac{15}{4!} x^{4}+\ldots\right)$.
4. $e^{\sin x}=\mathrm{I}+x+\frac{x^{2}}{2!}-\frac{3 x^{4}}{4!}-\frac{8 x^{5}}{5!}+\frac{3 x^{6}}{6!}+\frac{56 x^{7}}{7!}+\ldots$
5. $e^{\cos x}=e\left(\mathrm{I}-\frac{x^{2}}{2!}+\frac{4 x^{4}}{4!}-\frac{3 \mathrm{I} x^{6}}{6!}+\ldots.\right)$.
6. $e^{\tan x}=\mathrm{I}+x+\frac{x^{2}}{2!}+\frac{3 x^{3}}{3!}+\frac{9 x^{4}}{4!}+\frac{37 x^{5}}{5!}+\ldots$
7. $e^{\sin ^{-1} x}=\mathrm{I}+x+\frac{x^{2}}{2!}+\frac{2 x^{3}}{3!}+\frac{5 x^{4}}{4!}+\ldots$.
8. $e^{\tan ^{-1} x}=\mathrm{I}+x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{7 x^{4}}{24}-\ldots$.
6.470
I. $\sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+I)!} \quad\left[x^{2}<\infty\right]$.
2. $\cosh x=\mathrm{I}+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!} \quad\left[x^{2}<\infty\right]$.
3. $\tanh x=x-\frac{1}{3} x^{3}+\frac{2}{15} x^{5}-\frac{17}{315} x^{7}+\ldots$.

$$
=\sum_{n=\mathrm{r}}^{\infty}(-\mathrm{I})^{n-1} \frac{2^{2 n}\left(2^{2 n}-\mathrm{r}\right)}{(2 n)!} B_{n} x^{2 n-1} \quad\left[x^{2}<\frac{\pi^{2}}{4}\right]
$$

4. $x \operatorname{coth} x=\mathrm{I}+\frac{\mathrm{I}}{3} a^{2}-\frac{\mathrm{I}}{45} x^{4}+\frac{2}{945} x^{6}-\ldots$

$$
=\mathrm{I}+\sum_{n=1}^{\infty}(-\mathrm{r})^{n-1} \frac{2^{2 n} B_{n}}{(2 n)!} x^{2 n} \quad\left[x^{2}<\pi^{2}\right]
$$

5. $\operatorname{sech} x=\mathrm{I}-\frac{\mathrm{I}}{2} x^{2}+\frac{5}{24} x^{4}-\frac{6 \mathrm{I}}{720} x^{6}+\ldots=\mathrm{I}+\sum_{n=1}^{\infty}(-\mathrm{I})^{n} \frac{E_{n}}{(2 n)!} x^{2 n} \quad\left[x^{2}<\frac{\pi}{4}\right]$.
6. $x \operatorname{csch} x=\mathrm{I}-\frac{\mathrm{I}}{6} x^{2}+\frac{7}{360} x^{4}-\frac{3 \mathrm{I}}{\mathrm{I}_{5120}} x^{6}+\ldots$

$$
=\mathrm{I}+\sum_{n=1}^{\infty}(-\mathrm{I})^{n} \frac{2\left(2^{2 n-1}-\mathrm{I}\right)}{(2 n)!} B_{n} x^{2 n} \quad\left[x^{2}<\pi^{2}\right]
$$

6.475

I. $\cosh x \cos x=\mathrm{I}-\frac{2^{2}}{4!} x^{4}+\frac{2^{4}}{8!} x^{8}-\frac{2^{6}}{\mathrm{I} 2!} x^{12}+\ldots$
2. $\sinh x \sin x=\frac{2^{2}}{2!} x^{2}-\frac{2^{4}}{6!} x^{6}+\frac{2^{6}}{10!} x^{10}-\ldots$.
6.476
I. $\quad e^{x \cos \theta} \cos (x \sin \theta)=\sum_{n=0}^{\infty} \frac{x^{n} \cos n \theta}{n!}$
$\left[x^{2}<\mathrm{I}\right]$.
2. $e^{x \cos \theta} \sin (x \sin \theta)=\sum_{n=1}^{\infty} \frac{x^{n} \sin n \theta}{n!}$
$\left[x^{2}<\mathrm{I}\right]$.
3. $\cosh (x \cos \theta) \cdot \cos (x \sin \theta)=\sum_{n=0}^{\infty} \frac{x^{2 n} \cos 2 n \theta}{(2 n)!}$
$\left[x^{2}<\mathrm{I}\right]$.
4. $\sinh (x \cos \theta) \cdot \cos (x \sin \theta)=\sum_{n=0}^{\infty} \frac{x^{2 n+1} \cos (2 n+1) \theta}{(2 n+1)!}$
$\left[x^{2}<\mathrm{I}\right]$.
5. $\cosh (x \cos \theta) \cdot \sin (x \sin \theta)=\sum_{n=0}^{\infty} \frac{x^{2 n+1} \sin (2 n+1) \theta}{(2 n+1)!}$
$\left[x^{2}<\mathrm{I}\right]$.
6. $\sinh (x \cos \theta) \cdot \sin (x \sin \theta)=\sum_{n=1}^{\infty} \frac{x^{2 n} \sin 2 n \theta}{(2 n)!}$
$\left[x^{2}<1\right]$.
6.480
I. $\sinh ^{-1} x=x-\frac{1}{2 \cdot 3} x^{3}+\frac{1 \cdot 3}{2 \cdot 4 \cdot 5} x^{5}-\ldots$

$$
=\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}(2 n+1)} x^{2 n+1}
$$

$$
\left[x^{2}<I\right] .
$$

2. $\sinh ^{-1} x=\log 2 x+\frac{1}{2} \frac{\mathrm{I}}{2 x^{2}}-\frac{\mathrm{I} \cdot 3}{2 \cdot 4} \frac{\mathrm{I}}{4 x^{4}}+\ldots$

$$
=\log 2 x+\sum_{n=0}^{\infty-}(-1)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2} 2 n} x^{-2 n} \quad\left[x^{2}>\mathrm{I}\right] .
$$

3. $\cosh ^{-1} x=\log 2 x-\frac{1}{2} \frac{\mathrm{I}}{2 x^{2}}-\frac{\mathrm{I} \cdot 3}{2 \cdot 4} \frac{\mathrm{I}}{4 x^{4}}-\ldots$

$$
=\log 2 x-\sum_{n=0}^{\infty} \frac{(2 n)!}{2^{2 n}(n!)^{2} 2 n} x^{-2 n}
$$

$\left[x^{2}>\mathrm{I}\right]$.
4. $\tanh ^{-1} x=x+\frac{\mathrm{I}}{3} x^{3}+\frac{\mathrm{I}}{5} x^{5}+\frac{\mathrm{I}}{7} x^{7}+\ldots=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{2 n+\mathrm{I}}$
$\left[x^{2}<1\right]$.
5. $\sinh ^{-1} \frac{\mathrm{I}}{x}=\frac{\mathrm{I}}{x}-\frac{\mathrm{I}}{2} \frac{\mathrm{I}}{3 x^{3}}+\frac{\mathrm{I} \cdot 3}{2 \cdot 4} \frac{\mathrm{I}}{5 x^{5}}-\ldots$.

$$
=\operatorname{csch}^{-1} x=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}(2 n+1)} x^{-2 n-1} \quad\left[x^{2}>\mathrm{I}\right] .
$$

6. $\cosh ^{-1} \frac{\mathrm{I}}{x}=\log \frac{2}{x}-\frac{1}{2} \frac{x^{2}}{2}-\frac{1 \cdot 3}{2 \cdot 4} \frac{x^{4}}{4}-\ldots$

$$
=\operatorname{sech}^{-1} x=\log \frac{2}{x}-\sum_{n=0}^{\infty} \frac{(2 n)!}{2^{2 n}(n!)^{2} 2 n} x^{2 n} \quad\left[x^{2}<1\right]
$$

7. $\sinh ^{-1} \frac{\mathrm{I}}{x}=\log \frac{2}{x}+\frac{\mathrm{I}}{2} \frac{x^{2}}{2}-\frac{\mathrm{I} \cdot 3}{2 \cdot 4} \frac{x^{4}}{4}+\ldots$.

$$
=\operatorname{csch}^{-1} x=\log \frac{2}{x}+\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2} 2 n} x^{2 n} \quad\left[x^{2}<\mathrm{I}\right] .
$$

8. $\tanh ^{-1} \frac{\mathrm{I}}{x}=\frac{\mathrm{I}}{x}+\frac{\mathrm{I}}{3 x^{3}}+\frac{\mathrm{I}}{5 x^{5}}+\ldots$.

$$
-\operatorname{coshh}^{-1} x=\sum_{2 n+1}^{x^{n n-1}+1} \quad\left[x^{2 \gg}\right] \text {. }
$$

6.490
I. $\frac{\mathrm{I}}{2 \sinh x}=\sum_{n=0}^{\infty} e^{-x(2 n+\mathrm{x})}$.
2. $\frac{\mathrm{I}}{2 \cosh x}=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} e^{-x(2 n+\mathrm{I})}$.
3. $\frac{\mathrm{I}}{2}(\tanh x-\mathrm{I})=\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n} e^{-2 n x}$.
4. $-\frac{\mathrm{I}}{2} \log \tanh \frac{x}{2}=\sum_{n=0}^{\infty} \frac{\mathrm{I}}{2 n+\mathrm{I}} e^{-x(2 n+\mathrm{I})}$.
6.491

$$
\frac{\mathrm{I}}{2}+\sum_{n=\mathrm{I}}^{\infty} e^{-(n x)^{2}}=\frac{\sqrt{\pi}}{x}\left\{\frac{\mathrm{I}}{2}+\sum_{n=1}^{\infty} e^{-\left(\frac{n \pi}{x}\right)^{2}}\right\}
$$

By means of this formula a slowly converging series may be transformed into a rapidly converging series.

6.495

I. $\tan x=2 x\left\{\frac{\mathrm{I}}{\left(\frac{\pi}{2}\right)^{2}-x^{2}}+\frac{\mathrm{I}}{\left(\frac{3 \pi}{2}\right)^{2}-x^{2}}+\frac{\mathrm{I}}{\left(\frac{5 \pi}{2}\right)^{2}-x^{2}}+\ldots.\right\}$

$$
=\sum_{n=1}^{\infty} \frac{8 x}{(2 n-I)^{2} \pi^{2}-4 x^{2}}
$$

2. $\cot x=\frac{\mathrm{I}}{x}-\frac{2 x}{\pi^{2}-x^{2}}-\frac{2 x}{(2 \pi)^{2}-x^{2}}-\frac{2 x}{(3 \pi)^{2}-x^{2}}-\ldots=\frac{\mathbf{I}}{x}-\sum_{n=1}^{\infty} \frac{2 x}{n^{2} \pi^{2}-x^{2}}$.
3. $\sec x=\frac{\pi}{\left(\frac{\pi}{2}\right)^{2}-x^{2}}-\frac{3 \pi}{\left(\frac{3 \pi}{2}\right)^{2}-x^{2}}+\frac{5 \pi}{\left(\frac{5 \pi}{2}\right)^{2}-x^{2}}-\ldots$.

$$
=\sum_{n=1}^{\infty}(-\mathrm{I})^{n-1} \frac{4(2 n-\mathrm{I}) \pi}{(2 n-\mathrm{I})^{2} \pi^{2}-4 x^{2}} .
$$

4. $\csc x=\frac{1}{x}+\frac{2 x}{\pi^{2}-x^{2}}-\frac{2 x}{(2 \pi)^{2}-x^{2}}+\frac{2 x}{(3 \pi)^{2}-x^{2}}-\ldots$

$$
=\frac{\mathrm{I}}{x}+\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n-1} \frac{2 x}{n^{2} \pi^{2}-x^{2}} .
$$

By replacing x by $i x$ the corresponding series for the hyperbolic functions may be written.

INFINITE PRODUCTS

6.50
I. $\sin x=x \prod_{n=1}^{\infty}\left(\mathrm{I}-\frac{x^{2}}{n^{2} \pi^{2}}\right)$.
2. $\sinh x=x \prod_{n=1}^{\infty}\left(\mathrm{I}+\frac{x^{2}}{n^{2} \pi^{2}}\right)$.
3. $\cos x=\prod_{n=0}^{\infty}\left(\mathrm{I}-\frac{4 x^{2}}{(2 n+\mathrm{I})^{2} \pi^{2}}\right)$.
4. $\cosh x=\prod_{n=0}^{\infty}\left(\mathrm{I}+\frac{4 x^{2}}{(2 n+\mathrm{I})^{2} \pi^{2}}\right)$.
6.51
I. $\frac{\sin x}{x}=\prod_{n=1}^{\infty} \cos \frac{x}{2^{n}}$.
6.52
I. $\frac{\mathrm{I}}{\mathrm{I}-x}=\prod_{n=0}^{\infty}\left(\mathrm{I}+x^{2 n}\right)$.
$\left[x^{2}<\mathrm{I}\right]$.
6.53
I. $\cosh x-\cos y=2\left(\mathrm{I}+\frac{x^{2}}{y^{2}}\right) \sin ^{2} \frac{y}{2} \prod_{n=1}^{\infty}\left(\mathrm{I}+\frac{x^{2}}{(2 n \pi+y)^{2}}\right)\left(\mathrm{I}+\frac{x^{2}}{(2 n \pi-y)^{2}}\right)$.
2. $\cos x-\cos y=2\left(I-\frac{x^{2}}{y^{2}}\right) \sin ^{2} \frac{y}{2} \prod_{n=1}^{\infty}\left(\mathrm{I}-\frac{x^{2}}{(2 n \pi+y)^{2}}\right)\left(\mathrm{I}-\frac{x^{2}}{(2 n \pi-y)^{2}}\right)$.
6.55 The convergent infinite series:

$$
\mathrm{I}+u_{1}+u_{2}+\ldots=\mathrm{I}+\sum_{n=1}^{\infty} u_{n}
$$

may be transformed into the infinite product

$$
\begin{aligned}
& \left(I+v_{1}\right)\left(I+v_{2}\right)\left(I+v_{3}^{\prime}\right) \ldots \\
& =\prod_{n=I}^{\infty}\left(I+v_{n}\right)
\end{aligned}
$$

where

$$
v_{n}=\frac{u_{n}}{I+u_{1}+u_{2}+\ldots+u_{n-1}}
$$

6.600 The Gamma Function:

$$
\Gamma(z)=\frac{1}{z} \prod_{n=1}^{\infty} \frac{\left(\mathrm{I}+\frac{\mathrm{I}}{n}\right)^{z}}{\mathrm{r}+\frac{z}{n}},
$$

z may have any real or complex value, except $0,-1,-2,-3, \ldots$. .
6.601

$$
\frac{\mathrm{I}}{\Gamma(z)}=z e^{\gamma_{z}} \prod_{n=1}^{\infty}\left(\mathrm{I}+\frac{z}{n}\right) e^{-\frac{z}{n}} .
$$

6.602

$$
\begin{aligned}
\gamma & =\operatorname{Limit}_{m \rightarrow \infty}\left\{\mathrm{I}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\ldots+\frac{\mathrm{I}}{m}-\log m\right\} \\
& =\int_{0}^{\infty}\left\{\frac{e^{-t}}{\mathrm{I}-e^{-t}}-\frac{e^{-t}}{t}\right\} d t=0.5772157 \ldots
\end{aligned}
$$

6.603

$$
\begin{aligned}
\Gamma(z+1) & =z \Gamma(z), \\
\Gamma(z) \Gamma(1-z) & =\frac{\pi}{\sin \pi z} .
\end{aligned}
$$

6.604 For z real and positive $=x$:

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t
$$

$\log \Gamma(\mathrm{I}+x)=\left(x+\frac{\mathrm{I}}{2}\right) \log x-x+\frac{\mathrm{I}}{2} \log 2 \pi+\int_{0}^{\infty}\left\{\frac{\mathrm{I}}{e^{t}-\mathrm{I}}-\frac{\mathrm{I}}{t}+\frac{\mathrm{I}}{2}\right\} e^{-x t} \frac{d t}{t}$.
6.605 If $z=n$, a positive integer:

$$
\begin{aligned}
\Gamma(n) & =(n-1)!, \\
\Gamma\left(n+\frac{1}{2}\right) & =\frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{2^{n}} \sqrt{\pi}, \\
\Gamma\left(\frac{1}{2}\right) & =\sqrt{\pi} .
\end{aligned}
$$

6.606 The Beta Function. If x and y are real and positive:

$$
\begin{aligned}
\mathrm{B}(x, y) & =\mathrm{B}(y, x)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} \\
\mathrm{B}(x, y) & =\int_{0}^{1} t^{x-1}(\mathrm{I}-t)^{y-1} d t \\
\mathrm{~B}(x+\mathrm{r}, y) & =\frac{x}{x+y} \mathrm{~B}(x, y) \\
\mathrm{B}(x, \mathbf{I}-x) & =\frac{\pi}{\sin \pi x}
\end{aligned}
$$

6.610 For x real and positive:

$$
\psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}=-\gamma-\sum_{n=0}^{\infty}\left(\frac{\mathrm{I}}{x+n}-\frac{\mathrm{I}}{n+\mathrm{I}}\right)
$$

6.611

$$
\begin{aligned}
& \psi(x+\mathrm{I})=\frac{\mathrm{I}}{x}+\psi(x) \\
& \quad \psi(\mathrm{I}-x)=\psi(x)+\pi \cot \pi x
\end{aligned}
$$

6.612

$$
\begin{aligned}
& \psi\left(\frac{1}{2}\right)=-\gamma-2 \log 2 \\
& \psi(\mathrm{I})=-\gamma \\
& \psi(2)=\mathrm{I}-\gamma \\
& \psi(3)=\mathrm{I}+\frac{\mathrm{I}}{2}-\gamma \\
& \psi(4)=\mathrm{I}+\frac{\mathrm{I}}{2}+\frac{I}{3}-\gamma
\end{aligned}
$$

6.613

$$
\begin{aligned}
\psi(x) & =\int_{0}^{\infty}\left\{\frac{e^{-t}}{t}-\frac{e^{-t x}}{\mathrm{I}-e^{-t}}\right\} d t \\
& =-\gamma+\int_{0}^{1} \frac{\mathrm{I}-t^{x-1}}{\mathrm{I}-t} d t
\end{aligned}
$$

6.620

$$
\begin{aligned}
\beta(x) & =\sum_{n=0}^{\infty} \frac{(-\mathrm{I})^{n}}{x+n} \\
& =\frac{I}{2}\left\{\psi\left(\frac{x+\mathrm{I}}{2}\right)-\psi\left(\frac{x}{2}\right)\right\} .
\end{aligned}
$$

6.621

$$
\begin{aligned}
& \beta(x+1)+\beta(x)=\frac{\mathrm{I}}{x} \\
& \beta(x)+\beta(\mathrm{I}-x)=\frac{\pi}{\sin \pi x}
\end{aligned}
$$

6.622

$$
\begin{aligned}
& \beta(\mathrm{x})=\log 2 \\
& \beta\left(\frac{\mathrm{x}}{2}\right)=\frac{\pi}{2} .
\end{aligned}
$$

6.630 Gauss's II Function:
I. $\Pi(k, z)=k^{z} \prod_{n=1}^{k} \frac{n}{z+n}$.
2. $\Pi(k, z+\mathrm{I})=\Pi(k, z) \cdot \frac{\mathrm{I}+z}{\mathrm{I}+\frac{\mathrm{I}+z}{k}}$.
3. $\Pi(z)=\underset{k \rightarrow \infty}{\text { Limit }} \Pi(k, z)$.
4. $\Pi(z)=\Gamma(z+I)$.
5. $\Pi(-z) \Pi(z-1)=\pi \csc \pi z$.
6. $\Pi\left(\frac{I}{2}\right)=\frac{I}{2} \sqrt{\pi}$.
6.631 If z is an integer, n,

$$
\Pi(n)=n!
$$

DEFINITE INTEGRALS EXPRESSED AS INFINITE SERIES

6.700

$$
\begin{aligned}
\int_{0}^{x} e^{-x^{2}} d x & =\sum_{k=0}^{\infty} \frac{(-\mathrm{I}) k}{k!(2 k+\mathrm{I})} x^{2 k+1} \\
& =e^{-x^{2}} \sum_{k=0}^{\infty} \frac{2^{k} x^{2 k+1}}{\mathrm{I} \cdot 3 \cdot 5 \cdots \cdot(2 k+\mathrm{I})}
\end{aligned}
$$

Darling (Quarterly Journal, 49, p. 36, 1920) has obtained an approximation to this integral:

$$
\frac{\sqrt{\pi}}{2}-\frac{2}{\sqrt{\pi}} \tan ^{-1}\left\{e^{\sqrt{\pi}}\left(I+x^{2} e^{-\sqrt{\pi}}\right)^{2}\right\}^{-x}
$$

Fresnel's Integrals:
$6.701 \int_{0}^{x} \cos \left(x^{2}\right) d x=\sum_{k=.0}^{\infty} \frac{(-\mathrm{I})^{k}}{(2 k)!(4 k+\mathrm{I})} x^{4 k+1}$

$$
\begin{aligned}
& =\cos \left(x^{2}\right) \sum_{k_{k}=0}^{\infty}(-\mathrm{I})^{k} \frac{2^{2 k} x^{4 k+1}}{\mathrm{I} \cdot 3 \cdot 5 \cdots(4 k+\mathrm{I})} \\
& +\sin \left(x^{2}\right) \sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{2^{2 k+1} x^{4 k+3}}{\mathrm{I} \cdot 3 \cdot 5 \cdots(4 k+3)} .
\end{aligned}
$$

$6.702 \int_{0}^{x} \sin \left(x^{2}\right) d x=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!(4 k+3)} x^{4 k+3}$

$$
=\sin \left(x^{2}\right) \sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{2^{2 k}}{\mathrm{I} \cdot 3 \cdot 5 \cdots\left(4^{k}+\mathrm{I}\right)} x^{4 k+1}
$$

$$
-\cos \left(x^{2}\right) \sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{2^{2 k+1} x^{4 k+3}}{\mathrm{I} \cdot 3 \cdot 5 \cdots\left(4^{k}+3\right)}
$$

$6.703 \int_{0}^{1} \frac{t^{a-1}}{\mathrm{I}+t^{b}} d t=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{\mathrm{I}}{a+n b}$
$6.704 \frac{\mathrm{I}}{(k-\mathrm{I})!} \int_{0}^{1} \frac{t^{a-1}(\mathrm{I}-t)^{k-1}}{\mathrm{I}-x t^{b}} d t$

$$
=\sum_{n=0}^{\infty} \frac{x^{n}}{(a+n b)(a+n b+\mathrm{I})(a+n b+2) \ldots(a+n b+k-\mathrm{I})}
$$

$$
\left[b>0, x^{2} \leqslant I\right] .
$$

(Special cases, 6.445 and 6.922).
$6.705 \int_{0}^{x} e^{-t} t^{y-1} d t=\sum_{n=0}^{\infty}(-\mathrm{I})^{n} \frac{x^{n+y}}{n!(n+y)}=e^{-x} \sum_{n=0}^{\infty} \frac{x^{n+y}}{y(y+1) \ldots(y+n)}$.
6.706 If the sum of the series,

$$
f(x)=\sum_{n=0}^{m} c_{n} x^{n} \quad[0<x<1]
$$

is known, then
シ̌

$$
\begin{aligned}
\frac{c_{n} x^{n}}{(a+n b)(a+n b+\mathrm{I})(a+n b+2) \cdots(a+n b+k-\mathrm{I})} \quad[b>0] \\
=\frac{\mathrm{I}}{(k-\mathrm{I})!} \int_{0}^{1} t^{a-1}(\mathrm{I}-t)^{k-1} f\left(x t^{t}\right) d t .
\end{aligned}
$$

$6.707 \int_{0}^{\infty} f(x) \sum_{n=1}^{\infty} \frac{\mathrm{I}}{n} \sin n x \cdot d x=\frac{\mathrm{I}}{2} \int_{0}^{2 \pi}(\pi-t) \sum_{n=0}^{\infty} f(t+2 n \pi) \cdot d t$.
Example I.

$$
\begin{equation*}
f(x)=e^{-k x} \tag{k>0}
\end{equation*}
$$

I. $\quad \frac{\mathrm{I}}{k}+2 k \sum_{n=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{k^{2}+n^{2}}=\pi \frac{e^{k \pi}+e^{-k \pi}}{e^{k \pi}-e^{-k \pi}}$.

Replacing k by $\frac{k}{2}$, and subtracting,
$2 \quad \frac{\mathrm{I}}{k}+2 k \sum_{n=1}^{\infty}(-\mathrm{I})^{n} \frac{\mathrm{I}}{k^{2}+n^{2}}=\frac{2 \pi}{e^{k \pi}-e^{-k \pi}}$.
Example 2. With $f(x)=e^{-\lambda x} \cos \mu x$ and $e^{-\lambda x} \sin \mu x$.
3. $\frac{\lambda}{\lambda^{2}+\mu^{2}}+\sum_{n=1}^{\infty}\left\{\frac{\lambda}{\lambda^{2}+(n-\mu)^{2}}+\frac{\lambda}{\lambda^{2}+(n+\mu)^{2}}\right\}=\frac{\pi \sinh 2 \lambda \pi}{\cosh 2 \lambda \pi-\cos 2 \mu \pi}$.
4. $\frac{\mu}{\lambda^{2}+\mu^{2}}-\sum_{n=1}^{\infty}\left\{\frac{n-\mu}{\lambda^{2}+(n-\mu)^{2}}+\frac{n+\mu}{\lambda^{2}+(n+\mu)^{2}}\right\}=\frac{\pi \sin 2 \mu \pi}{\cosh 2 \lambda \pi-\cos 2 \mu \pi}$.
6.709 If the sum of the series,

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

is known, then
$a_{0}+a_{1} y+a_{2} y(y+\mathrm{I})+a_{3} y(y+\mathrm{I})(y+2)+\ldots=\frac{\int_{n}^{\infty} e^{-t} t^{y-1} f(t) d t}{\Gamma(y)}$.
6.710 The complete elliptic integral of the first kind:

$$
\begin{align*}
K & =\int_{0}^{\mathrm{I}} \frac{d x}{\sqrt{\left(\mathrm{I}-x^{2}\right)\left(\mathrm{I}-k^{2} x^{2}\right)}}=\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{\mathrm{I}-k^{2} \sin ^{2} \theta}} \\
& =\frac{\pi}{2}\left\{\mathrm{I}+\left(\frac{\mathrm{I}}{2}\right)^{2} k^{2}+\left(\frac{\mathrm{I} \cdot 3}{2 \cdot 4}\right)^{2} k^{4}+\ldots .\right\} \\
& =\frac{\pi}{2}\left\{\mathrm{I}+\sum_{n=\mathrm{I}}^{\infty}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} k^{2 n}\right\} \tag{2}
\end{align*}
$$

If

$$
\begin{aligned}
k^{\prime} & =\frac{\mathrm{I}-\sqrt{\mathrm{I}-k^{2}}}{\mathrm{I}+\sqrt{\mathrm{I}-k^{2}}} \\
K & =\frac{\pi\left(\mathrm{I}+k^{\prime}\right)}{2}\left\{\mathrm{I}+\left(\frac{\mathrm{I}}{2}\right)^{2} k^{\prime 2}+\left(\frac{\mathrm{I} \cdot 3}{2 \cdot 4}\right)^{2} k^{\prime 4}+\ldots\right\} \\
& =\frac{\pi\left(\mathrm{I}+k^{\prime}\right)}{2}\left\{\mathrm{I}+\sum_{n=\mathrm{I}}^{\infty}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} k^{\prime 2 n}\right\}
\end{aligned}
$$

6.711 The complete elliptic integral of the second kind:

$$
\begin{aligned}
E & =\int^{\frac{\pi}{2}} \sqrt{I-k^{2} \sin ^{2} \theta} d \theta . \\
E & =\frac{\pi}{2}\left\{\mathrm{I}-\left(\frac{\mathrm{I}}{2}\right)^{2} \frac{k^{2}}{\mathrm{I}}-\left(\frac{\mathrm{I} \cdot 3}{2 \cdot 4}\right)^{2} \frac{k^{4}}{3}-\ldots .\right\} . \\
& =\frac{\pi}{2}\left\{\mathrm{I}-\sum_{n=\mathrm{I}}^{\infty}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \cdot \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} \cdot \frac{k^{2 n}}{2 n-\mathrm{I}} .\right.
\end{aligned}
$$

If

$$
\begin{aligned}
& k^{\prime}=\frac{\mathrm{I}-\sqrt{\mathrm{I}-k^{2}}}{\mathrm{I}+\sqrt{\mathrm{I}-k^{2}}} . \\
& E=\frac{\pi\left(\mathrm{I}-k^{\prime}\right)}{2}\left\{\mathrm{I}+5\left(\frac{\mathrm{I}}{2}\right)^{2} k^{\prime 2}+9\left(\frac{\mathrm{I} \cdot 3}{2 \cdot 4}\right)^{2} k^{\prime 4}+\ldots\right\} \\
&=\frac{\pi\left(\mathrm{I}-k^{\prime}\right)}{2}\left\{\mathrm{I}+\sum_{n=\mathrm{I}}^{\infty}(4 n+\mathrm{I})\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} k^{\prime 2 n}\right\} \\
&=\frac{\pi}{2\left(\mathrm{I}+k^{\prime}\right)}\left\{\mathrm{I}+\left(\frac{\mathrm{I}}{2}\right)^{2} k^{\prime 2}+\left(\frac{\mathrm{I}}{2 \cdot 4}\right)^{2} k^{\prime 4}+\left(\frac{\mathrm{I} \cdot 3}{2 \cdot 4 \cdot 6}\right)^{2} k^{\prime 6}+\ldots\right\} \\
&=\frac{\pi}{2\left(\mathrm{I}+k^{\prime}\right)}\left\{\mathrm{I}+k^{\prime 2}\left[\frac{\mathrm{I}}{4}+\sum_{n=\mathrm{I}}^{\infty}\left(\frac{\mathrm{I} \cdot 3 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots(2 n+2)}\right)^{2} k^{\prime 2 n}\right]\right\} .
\end{aligned}
$$

FOURIER'S SERIES

6.800 If $f(x)$ is uniformly convergent in the interval:

$$
\begin{gathered}
-c<x<+\mathrm{c} \\
f(x)=\frac{\mathrm{I}}{2} b_{0}+b_{1} \cos \frac{\pi x}{c}+b_{2} \cos \frac{2 \pi x}{c}+b_{3} \cos \frac{3 \pi x}{c}+\ldots \\
+a_{1} \sin \frac{\pi x}{c}+a_{2} \sin \frac{2 \pi x}{c}+a_{3} \sin \frac{3 \pi x}{c}+\ldots \\
\dot{b}_{m}= \\
\frac{\mathrm{I}}{c} \int_{-c}^{+c} f(x) \cos \frac{m \pi x}{c} d x, \\
a_{m}= \\
\frac{\mathrm{I}}{c} \int_{-c}^{+c} f(x) \sin \frac{m \pi x}{c} d x .
\end{gathered}
$$

6.801 If $f(x)$ is uniformly convergent in the interval:

$$
\begin{aligned}
& \quad 0<x<c \\
& f(x)=\frac{\mathrm{I}}{2} b_{0}+b_{1} \cos \frac{2 \pi x}{c}+b_{2} \cos \frac{4 x \pi}{c}+b_{3} \cos \frac{6 \pi x}{c}+\ldots \\
&+a_{1} \sin \frac{2 \pi x}{c}+a_{2} \sin \frac{4 \pi x}{c}+a_{3} \sin \frac{6 \pi x}{c}+\ldots \\
& b_{m}=\frac{2}{c} \int_{0}^{c} f(x) \cos \frac{2 m \pi x}{c} d x \\
& a_{m}=\frac{2}{c} \int_{0}^{c} f(x) \sin \frac{2 m \pi x}{c} d x .
\end{aligned}
$$

6.802 Special Developments in Fourier's Series.

$$
\begin{aligned}
& f(x)=a \text { from } x=k c \text { to } x=\left(k+\frac{\mathrm{I}}{2}\right) c, \\
& f(x)=-a \text { from } x=\left(k+\frac{\mathrm{I}}{2}\right) c \text { to } x=(k+\mathrm{I}) c,
\end{aligned}
$$

where k is any integer, including 0 .

$$
f(x)=\frac{4 a}{\pi} \sum_{n=1}^{\infty} \frac{\mathrm{I}}{2 n-\mathrm{I}} \sin \frac{2(2 n-\mathrm{I}) \pi}{c} x
$$

6.803

$$
\begin{array}{rlrl}
f(x) & =m x, & -\frac{c}{4} \leqslant x \leqslant+\frac{c}{4} \\
& =-m\left(x-\frac{c}{2}\right), & \frac{c}{4} \leqslant x \leqslant \frac{3 c}{4} \\
& =m(x-c), & \frac{3 c}{4} \leqslant x \leqslant \frac{5 c}{4} \\
& =-m\left(x-\frac{3 c}{2}\right), & \frac{5 c}{4} \leqslant x \leqslant \frac{7 c}{4} \\
\cdots & \cdots \\
& \cdots & \\
f(x)=\frac{2 m c}{\pi^{2}} \sum_{n=1}^{\infty}(-\mathrm{I})^{n-1} \frac{\mathrm{I}}{(2 n-\mathrm{I})^{2}} \sin \frac{2(2 n-\mathrm{I}) \pi}{c} x .
\end{array}
$$

6.804

$$
\begin{array}{rlrl}
f(x) & =m x, & & -\frac{c}{2}<x<+\frac{c}{2} \\
& =m(x-c), & +\frac{c}{2}<x<\frac{3 c}{2}, \\
f(x) & =\frac{c m}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \sin \frac{2 n \pi x}{c} .
\end{array}
$$

6.805

$$
\begin{array}{rlrl}
f(x) & =-a, & -5 b \leqslant x \leqslant-3 b, \\
& =\frac{a}{b}(x+2 b), & & -3 b \leqslant x \leqslant-b, \\
& =a, & & b \leqslant x \leqslant+b, \\
& =-\frac{a}{b}(x-2 b), & & b \leqslant x \leqslant \quad 3 b, \\
& =-a, & & \\
& \cdots \cdots & & \\
& \cdots \cdots & \\
f(x)=\frac{8 \sqrt{2} a}{\pi^{2}}\left\{\cos \frac{\pi x}{4 b}-\frac{1}{3^{2}} \cos \frac{3 \pi x}{4^{b}}-\frac{1}{5^{2}} \cos \frac{7 \pi x}{4^{b}}+\frac{1}{7^{2}} \cos \frac{7 \pi x}{4^{b}}\right.
\end{array}
$$

$$
\begin{aligned}
f(x) & =\frac{b}{l} x+b, \quad-l \leqslant x \leqslant 0, \\
& =-\frac{b}{l} x+b, \quad 0 \leqslant x \leqslant l . \\
f(x) & =\frac{8 b}{\pi^{2}} \sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}} \cos (2 n+1) \frac{\pi x}{2 l} .
\end{aligned}
$$

6.807

$$
\begin{array}{rlr}
f(x) & =\frac{a}{b} x, & 0 \leqslant x \leqslant b, \\
& =-\frac{a}{l-b} x+\frac{a l}{l-b^{2}}, \quad b \leqslant x \leqslant l, \\
f(x) & =\frac{2 a l^{2}}{\pi^{2} b(l-b)} \sum_{n=x}^{\infty} \frac{1}{n^{2}} \sin \frac{n \pi b}{l} \sin \frac{n \pi x .}{l} .
\end{array}
$$

$6.810 \quad x=2 \sum_{n=1}^{\infty} \frac{(-\mathrm{I})^{n-1}}{n} \sin n x$
$[-\pi<x<\pi]$.
$6.811 \cos a x=\frac{2}{\pi} \sin a \pi\left\{\frac{\mathrm{I}}{2 a}+a \sum_{n=1}^{\infty} \frac{(-\mathrm{I})^{n-1}}{n^{2}-a^{2}} \cos n x\right\} \quad[-\pi<x<\pi]$.
$6.812 \sin a x=\frac{2}{\pi} \sin a \pi \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}-a^{2}} n \sin n x \quad[-\pi<x<\pi]$.
$6.813 \frac{\pi-x}{2}=\sum_{n=1}^{\infty} \frac{\sin n x}{n}$
$[0<x<2 \pi]$.
$6.814 \frac{\mathrm{I}}{2} \log \frac{\mathrm{I}}{2(\mathrm{I}-\cos x)}=\sum_{n=1}^{\infty} \frac{\cos n x}{n}$ $[0<x<2 \pi]$.
$6.815 \frac{\pi^{2}}{6}-\frac{\pi x}{2}+\frac{x^{2}}{4}=\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}$
$[0<x<2 \pi]$.
$6.816 \frac{\pi^{2} x}{6}-\frac{\pi x^{2}}{4}+\frac{x^{3}}{\mathrm{I} 2}=\sum_{n=1}^{\infty} \frac{\sin n x}{n^{3}}$
$[0<x<2 \pi]$.
$6.817 \frac{\pi^{4}}{90}-\frac{\pi^{2} x^{2}}{12}+\frac{\pi x^{3}}{\mathrm{I} 2}-\frac{x^{4}}{48}=\sum_{n=1}^{\infty} \frac{\cos n x}{n^{4}}$
$[0<x<2 \pi]$.
$6.818 \frac{\pi^{4} x}{90}-\frac{\pi^{2} x^{3}}{36}+\frac{\pi x^{4}}{48}-\frac{x^{5}}{240}=\sum_{n=1}^{\infty} \frac{\sin n x}{n^{5}}$
$[0<x<2 \pi]$.
$6.820 \quad x^{2}=\frac{c^{2}}{3}-\frac{4 c^{2}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-\mathrm{I})^{n-1}}{n^{2}} \cos \frac{n \pi x}{c}$ $[-c \leqslant x \leqslant c]$.
$6.821 \frac{e^{x}}{e^{c}-e^{-c}}=\frac{\mathrm{I}}{2 c}-c \sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n-1} \frac{\mathrm{I}}{(n \pi)^{2}+c^{2}} \cos \frac{n \pi x}{c}$

$$
+\pi \sum_{n=1}^{\infty}(-\mathrm{I})^{n-1} \frac{\mathrm{I}}{(n \pi)^{2}+c^{2}} \sin \frac{n \pi x}{c} \quad[-c<x<c] .
$$

$6.822 e^{c x}=\frac{2 c}{\pi}\left(e^{c \pi}-\mathrm{I}\right)\left\{\frac{\mathrm{I}}{2 c^{2}}-\sum_{n=1}^{\infty}(-\mathrm{I})^{n-1} \frac{\mathrm{I}}{c^{2}+n^{2}} \cos n x\right\} \quad[0<x<\pi]$.
$6.823 \cos 2 x-\left(\frac{\pi}{2}-x\right) \sin 2 x+\sin ^{2} x \log \left(4 \sin ^{2} x\right)=\sum_{n=1}^{\infty} \frac{\cos 2(n+1) x}{n(n+1)}$

$$
[0 \leqslant x \leqslant \pi]
$$

$6.824 \sin 2 x-(\pi-2 x) \sin ^{2} x-\sin x \cos x \log \left(4 \sin ^{2} x\right)$

$$
=\sum_{n=1}^{\infty} \frac{\sin 2(n+\mathrm{I}) x}{n(n+\mathrm{I})}[0 \leqslant x \leqslant \pi] .
$$

$6.825 \frac{\mathrm{I}}{2}-\frac{\pi}{4} \sin x=\sum_{n=1}^{\infty} \frac{\cos 2 n x}{(2 n-\mathrm{I})(2 n+\mathrm{I})}$

$$
\left[0 \leqslant x \leqslant \frac{\pi}{2}\right]
$$

$6.830 \frac{r \sin x}{\mathrm{I}-2 r \cos x+r^{2}}=\sum_{n=1}^{\infty} r^{n} \sin n x$

$$
\left[r^{2}<I\right]
$$

$6.831 \tan ^{-1} \frac{r \sin x}{\mathrm{I}-r \cos x}=\sum_{n=1}^{\infty} \frac{\mathrm{I}}{n} r^{n} \sin n x$

$$
[r<\mathrm{I}]
$$

$6.832 \frac{\mathrm{I}}{2} \tan ^{-1} \frac{2 r \sin x}{\mathrm{I}-r^{2}}=\sum_{n=1}^{\infty} \frac{r^{2 n-1}}{2 n-\mathrm{I}} \sin (2 n-\mathrm{I}) x$
$\left[r^{2}<\mathrm{I}\right]$.
6.833

$$
\frac{\mathrm{I}-r \cos x}{\mathrm{I}-2 r \cos x+r^{2}}=\sum_{n=0}^{\infty} r^{n} \cos n x
$$

$$
\left[r^{2}<\mathrm{I}\right]
$$

$6.834 \quad \operatorname{og} \frac{\mathrm{I}}{\sqrt{\mathrm{I}-2 r \cos x+r^{2}}}=\sum_{n=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{n} r^{n} \cos n x$

$6.835 \frac{\mathrm{I}}{2} \tan ^{-1} \frac{2 r \cos x}{\mathrm{I}-r^{2}}=\sum_{n=1}^{\infty}(-\mathrm{I})^{n-1} \frac{r^{2 n-1}}{2 n-\mathrm{I}} \cos (2 n-\mathrm{I}) x \quad\left[r^{2}<\mathrm{I}\right]$.

NUMERICAL SERIES
6.900

$$
\begin{array}{ll}
S_{n}=\frac{\mathrm{I}}{\mathrm{I}^{n}}+\frac{\mathrm{I}}{2^{n}}+\frac{\mathrm{I}}{3^{n}}+\frac{\mathrm{I}}{4^{n}}+\ldots=\sum_{k=1}^{\infty} \frac{\mathrm{I}}{k^{n}}, \\
S_{1}=\infty & S_{6}=\frac{\pi^{6}}{945}=\mathrm{I} .0173430620, \\
S_{2}=\frac{\pi^{2}}{6}=1.6449340668 & S_{7}=\frac{\pi^{7}}{2995.286}=1.0083492774 \\
S_{3}=\frac{\pi^{3}}{25.79436}=1.2020569032 & S_{8}=\frac{\pi^{8}}{9450}=1.0040773562 \\
S_{4}=\frac{\pi^{4}}{90}=1.0823232337 & S_{9}=\frac{\pi^{9}}{29749.35}=1.0020083928, \\
S_{5}=\frac{\pi^{5}}{295.1215}=1.036927755 \mathrm{I} & S_{10}=1.000994575 \mathrm{I}, \\
S_{11}=1.0004941886 .
\end{array}
$$

6.901

$$
\begin{aligned}
u_{n} & =\mathrm{I}-\frac{\mathrm{I}}{3^{n}}+\frac{\mathrm{I}}{5^{n}}-\frac{\mathrm{I}}{7^{n}}+\ldots . \sum_{k=0}^{\infty}(-\mathrm{I})^{k-1} \frac{\mathrm{I}}{(2 k+\mathrm{I})^{n}} \\
u_{1} & =\frac{\pi}{4} \\
u_{2} & =0.9159656 \ldots \\
u_{4} & =0.98894455 \ldots \\
u_{6} & =0.99868522 \ldots
\end{aligned}
$$

A table of u_{n} from $n=\mathrm{I}$ to $n=38$ to I 8 decimal places is given by Glaisher, Messenger of Mathematics, 42, p. 49, 1913.
6.902 Bernoulli's Numbers.
I. $\frac{2^{2 n-1} \pi^{2 n}}{(2 n)!} B_{n}=\frac{\mathrm{I}}{\mathrm{I}^{2 n}}+\frac{\mathrm{I}}{2^{2 n}}+\frac{\mathrm{I}}{3^{2 n}}+\frac{\mathrm{I}}{4^{2 n}}+\ldots . .=\sum_{k=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{k^{2 n}}$.
2. $\frac{\left(2^{2 n}-\mathrm{I}\right) \pi^{2 n}}{2(2 n)!} B_{n}=\frac{\mathrm{I}}{\mathrm{I}^{2 n}}+\frac{\mathrm{I}}{3^{2 n}}+\frac{\mathrm{I}}{5^{2 n}}+\frac{\mathrm{I}}{7^{2 n}}+\ldots . .=\sum_{k=0}^{\infty} \frac{\mathrm{I}}{(2 k+\mathrm{I})^{2 n}}$.
3. $\frac{\left(2^{2 n-1}-\mathrm{I}\right) \pi^{2 n}}{(2 n)!} B_{n}=\frac{\mathrm{I}}{\mathrm{I}^{2 n}}-\frac{\mathrm{I}}{2^{2 n}}+\frac{\mathrm{I}}{3^{2 n}}-\frac{\mathrm{I}}{4^{2 n}}+\ldots .=\sum_{k=\mathrm{I}}^{\infty}(-\mathrm{I})^{n-1} \frac{\mathrm{I}}{k^{2 n}}$.

$$
\begin{array}{ll}
B_{1}=\frac{I}{6}, & B_{3}=\frac{I}{42} \\
B_{2}=\frac{I}{30}, & B_{4}=\frac{I}{30}
\end{array}
$$

$$
\begin{array}{ll}
B_{5}=\frac{5}{66}, & B_{8}=\frac{3617}{510} \\
B_{6}=\frac{691}{2730} & B_{9}=\frac{43867}{798} \\
B_{7}=\frac{7}{6}, & B_{10}=\frac{1746 \mathrm{II}}{330}
\end{array}
$$

6.903 Euler's Numbers

$\frac{\pi^{2 n+1}}{2^{2 n+2}(2 n)!} E_{n}=\mathrm{I}-\frac{\mathrm{I}}{3^{2 n+1}}+\frac{\mathrm{I}}{5^{2 n+1}}-\frac{\mathrm{I}}{7^{2 n+1}}+\ldots=\sum_{k=1}^{\infty}(-\mathrm{I})^{k-1} \frac{\mathrm{I}}{(2 k-\mathrm{I})^{2 n+1}}$.

$$
\begin{array}{ll}
E_{1}=\mathrm{I}, & E_{4}=1385, \\
E_{2}=5, & E_{5}=5052 \mathrm{I}, \\
E_{3}=6 \mathrm{r}, & E_{6}=2702765 .
\end{array}
$$

6.904
$E_{n}-\frac{2 n(2 n-\mathrm{I})}{2!} E_{n-1}+\frac{2 n(2 n-\mathrm{I})(2 n-2)(2 n \quad 3)}{4!} E_{n-2}-\ldots$.
6.905

$$
\begin{aligned}
& \frac{2^{2 n}\left(2^{2 n}-1\right)}{2 n} B_{n}=(2 n-1) E_{n-1}-\frac{(2 n-1)(2 n-2)(2 n-3)}{3!} E_{n-2} \\
& +\frac{(2 n-1)(2 n-2)(2 n-3)(2 n-4)(2 n-5)}{5!} E_{n-3}-\ldots++(-1)^{n-1}
\end{aligned}
$$

6.910

$$
\begin{array}{ll}
S_{r}=\sum_{n=1}^{\infty} \frac{n^{r}}{n!} \\
S_{1}=e, & S_{5}=52 e, \\
S_{2}=2 e, & S_{6}=203 e, \\
S_{3}=5 e, & S_{7}=877 e, \\
S_{4}=15 e, & S_{8}=4140 e .
\end{array}
$$

6.911

$$
S_{r}=\sum_{n=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{\left(4 n^{2}-\mathrm{I}\right)^{r}} .
$$

$$
\begin{array}{ll}
S_{1}=\frac{\mathrm{I}}{2}, & S_{3}=\frac{32-3 \pi^{2}}{64} \\
S_{2}=\frac{\pi^{2}-8}{\mathrm{I} 6}, & S_{4}=\frac{\pi^{4}+30 \pi^{2}-384}{768}
\end{array}
$$

6.912
I. $\log 2=\sum_{n=1}^{\infty} \frac{1}{n \cdot 2^{n}}$.
2. $\frac{\pi^{2}}{12}-\frac{1}{2}(\log 2)^{2}=\sum_{n=1}^{\infty} \frac{\mathrm{I}}{n^{2} 2^{n}}$.

6.913

I. $2 \log 2-\mathrm{I}=\sum_{n=1}^{\infty} \frac{\mathrm{I}}{n\left(4 n^{2}-\mathrm{I}\right)}$.
2. $\frac{3}{2}(\log 3-\mathrm{I})=\sum_{n=1}^{\infty} \frac{\mathrm{I}}{n\left(9 n^{2}-\mathrm{I}\right)}$.
3. $-3+\frac{3}{2} \log 3+2 \log 2=\sum_{n=1}^{\infty} \frac{\mathrm{I}}{n\left(36 n^{2}-\mathrm{I}\right)}$.
6.914

$$
\begin{gathered}
S_{r}=\sum_{n=\mathrm{I}}^{\infty}\left(\frac{\mathrm{x} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots \cdot 2 n}\right)^{2} \frac{\mathrm{I}}{2 n+r}, \\
u_{2}=0.9159656 \ldots \quad(\text { see } 6.901)
\end{gathered}
$$

$S_{0}=2 \log 2-\frac{4}{\pi} u_{2}$,
$S_{-1}=1-\frac{2}{\pi}$,
$S_{1}=\frac{4}{\pi} u_{2}-\mathrm{I}$,
$S_{-2}=\frac{\mathrm{I}}{2} \log 2+\frac{\mathrm{I}}{4}-\frac{\mathrm{I}}{2 \pi}\left(2 u_{2}+\mathrm{I}\right)$,
$S_{2}=\frac{2}{\pi}-{ }_{2}{ }^{\mathrm{I}}$,
$S_{-3}=\frac{\mathrm{I}}{3}-\frac{10}{9 \pi}$,
$S_{3}=\frac{\mathrm{I}}{2 \pi}\left(2 u_{2}+\mathrm{I}\right)-\frac{\mathrm{I}}{3}$,
$S_{-4}=\frac{9}{3^{2}} \log 2+\frac{\mathrm{II}}{\mathrm{I} 28}-\frac{\mathrm{I}}{32 \pi}\left(\mathrm{I} 8 u_{2}+\mathrm{I}_{3}\right)$,
$S_{4}=\frac{10}{9 \pi}-\frac{\mathrm{I}}{4}$,
$S_{-5}=\frac{\mathrm{I}}{5}-\frac{178}{225 \pi}$,
$S_{5}=\frac{\mathrm{I}}{32 \pi}\left(18 u_{2}+\mathrm{I}_{3}\right)-\frac{\mathrm{I}}{5}$,
$S_{-6}=\frac{25}{128} \log 2+\frac{71}{1536}-\frac{1}{128 \pi}\left(50 u_{2}+43\right)$.
$S_{6_{3}}=\frac{178}{225 \pi}-\frac{1}{6}$,
$S_{7}=\frac{\mathrm{I}}{\mathrm{I} 28 \pi}\left(50 u_{2}+43\right)-\frac{\mathrm{I}}{7}$,
When r is a negative even integer the value $n=\frac{r}{2}$ is to be excluded in the summation.
6.915
I. $A_{n}=\frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}=\frac{(2 n-\mathrm{I})!}{2^{2 n-1} n!(n-\mathrm{I})!}$.
2. $\mathrm{I}-\frac{\pi}{4}=\sum_{n=1}^{\infty} A_{n} \frac{\mathrm{I}}{4 n n^{2}-\mathrm{I}}$.
3. $\frac{\pi}{2}-\mathrm{I}=\sum_{n=1}^{\infty} A_{n} \frac{\mathrm{I}}{2 n+\mathrm{I}}$.
4. $\log (\mathrm{I}+\sqrt{2})-\mathrm{I}=\sum_{n=1}^{\infty}(-\mathrm{I})^{n} A_{n} \frac{\mathrm{I}}{2 n+\mathrm{I}}$.
5. $\frac{\mathrm{I}}{2}=\sum_{n=1}^{\infty} A_{n}{ }^{2} \frac{4 n+\mathrm{I}}{(2 n-\mathrm{I})(2 n+2)}$.
6. $\frac{2}{\pi}-\frac{\mathbf{I}}{2}=\sum_{n=1}^{\infty}(-\mathrm{I})^{n+1} A_{n}{ }^{3} \frac{4 n+\mathrm{I}}{(2 n-\mathrm{I})(2 n+2)}$.
7. $\frac{2}{\pi}-\mathrm{I}=\sum_{n=1}^{\infty}(-\mathrm{I})^{n} A_{n}{ }^{3}(4 n+\mathrm{I})$.
8. $\frac{\mathrm{I}}{2}-\frac{4}{\pi^{2}}=\sum_{n=1}^{\infty} A_{n}{ }^{4} \frac{4 n+\mathrm{I}}{(2 n-\mathrm{I})(2 n+2)}$.
6.916

If m is an integer, and $n=m$ is excluded from the summation:
I. $-\frac{3}{4 m^{2}}=\sum_{n=1}^{\infty} \frac{\mathrm{I}}{m^{2}-n^{2}}$.
2. $\frac{3}{4 m^{2}}=\sum_{n=1}^{\infty} \frac{(-\mathrm{I})^{n-1}}{m^{2}-n^{2}}$. (m even)

6.917

I. $\mathrm{I}=\sum_{n=2}^{\infty} \frac{n-\mathrm{I}}{n!}$.
2. $\frac{I}{2}=\sum_{n=1}^{\infty} \frac{\mathrm{I}}{4 n^{2}-\mathrm{I}}$.
3. $2 \log 2=\sum_{n=1}^{\infty} \frac{12 n^{2}-\mathrm{I}}{n\left(4 n^{2}-\mathrm{I}\right)^{2}}$.
6.918

$$
\frac{2}{\sqrt{3}} \log \frac{\mathrm{I}+\sqrt{3}}{\sqrt{2}}=\mathrm{I}+\sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n} \frac{2 \cdot 4 \cdot 6 \ldots . \ldots 2 n}{3 \cdot 5 \cdot 7 \ldots(2 n+\mathrm{I})} \frac{\mathrm{I}}{2^{n}}
$$

6.919

$$
\frac{\mathrm{I}}{2}(\mathrm{I}-\log 2)=\sum_{n=\mathrm{I}}^{\infty}\left\{n \log \left(\frac{2 n+\mathrm{I}}{2 n-\mathrm{I}}\right)-\mathrm{I}\right\}
$$

6.920
I. $e=\mathrm{I}+\frac{\mathrm{I}}{\mathrm{I}!}+\frac{\mathrm{I}}{2!}+\frac{\mathrm{I}}{3!}+\ldots=2.7 \mathrm{I} 828$.
2. $\frac{\mathrm{I}}{e}=\mathrm{I}-\frac{\mathrm{I}}{\mathrm{I}!}+\frac{\mathrm{I}}{2!}-\frac{\mathrm{I}}{3!}-\ldots=0.36788$.
3. $\frac{\mathrm{I}}{2}\left(e+\frac{\mathrm{I}}{e}\right)=\mathrm{I}+\frac{\mathrm{I}}{2!}+\frac{\mathrm{I}}{4!}+\ldots .=\mathbf{I} .54308$.
4. $\frac{\mathrm{I}}{2}\left(e-\frac{\mathrm{I}}{e}\right)=\mathrm{I}+\frac{\mathrm{I}}{3!}+\frac{\mathrm{I}}{5!}+\ldots .=\mathrm{I} . \mathrm{I} 7520 \mathrm{I}$.
5. $\cos I=I-\frac{I}{2!}+\frac{I}{4!}-\ldots=0.54030$.
6. $\sin I=I-\frac{I}{3!}+\frac{I}{5!}-\ldots=0.84147$.

6.921

I. $\frac{4}{5}=\mathrm{I}-\frac{\mathrm{I}}{2^{2}}+\frac{\mathrm{I}}{2^{4}}-\frac{\mathrm{I}}{2^{6}}+\ldots$.
2. $\frac{9}{10}=I-\frac{I}{3^{2}}+\frac{I}{3^{4}}-\frac{I}{3^{6}}+\ldots$.
3. $\frac{I 6}{I 7}=I-\frac{I}{4^{2}}+\frac{I}{4^{4}}-\frac{I}{4^{6}}+\ldots$.
4. $\frac{25}{26}=\mathrm{I}-\frac{\mathrm{I}}{5^{2}}+\frac{\mathrm{I}}{5^{4}}-\frac{\mathrm{I}}{5^{6}}+\ldots$.
$6.922 \quad \frac{\left(2^{\frac{1}{2}}-\mathrm{I}\right) \Gamma\left(\frac{1}{4}\right)}{2^{1,2} \pi^{3}}=e^{-\pi}+e^{-9 \pi}+e^{-25 \pi}+\ldots ; \Gamma\left(\frac{1}{4}\right)=3.6256 \ldots$
6.923 (Special cases of 6.705):
I. $\frac{\mathrm{I}}{\mathrm{I} \cdot 2 \cdot 3}+\frac{\mathrm{I}}{3 \cdot 4 \cdot 5}+\frac{\mathrm{I}}{5 \cdot 6 \cdot 7}+\ldots \quad=\log 2-\frac{\mathrm{I}}{2}$.
2. $\frac{I}{I \cdot 2 \cdot 3}-\frac{I}{3 \cdot 4 \cdot 5}+\frac{I}{5 \cdot 6 \cdot 7}-\ldots \quad=\frac{I}{2}(I-\log 2)$.
3. $\frac{I}{2 \cdot 3 \cdot 4}+\frac{I}{4 \cdot 5 \cdot 6}+\frac{I}{6 \cdot 7 \cdot 8}+\ldots \quad=\frac{3}{4}-\log 2$.
4. $\frac{I}{2 \cdot 3 \cdot 4}-\frac{I}{4 \cdot 5 \cdot 6}+\frac{I}{6 \cdot 7 \cdot 8}-\ldots=\frac{I}{4}(\pi-3)$.
5. $\frac{I}{I \cdot 2 \cdot 3}+\frac{I}{4 \cdot 5 \cdot 6}+\frac{I}{7 \cdot 8 \cdot 9}+\ldots \quad=\frac{I}{4}\left(\frac{\pi}{\sqrt{3}}-\log 3\right)$.
6. $\frac{\mathrm{I}}{2 \cdot 3 \cdot 4}+\frac{\mathrm{I}}{6 \cdot 7 \cdot 8}+\frac{\mathrm{I}}{\mathrm{IO} \cdot \mathrm{II} \cdot \mathrm{I} 2}+\ldots .=\frac{\pi}{8}-\frac{\mathrm{I}}{2} \log 2$.
7. $\frac{I}{I \cdot 2 \cdot 3 \cdot 4}+\frac{I}{4 \cdot 5 \cdot 6 \cdot 7}+\frac{I}{7 \cdot 8 \cdot 9 \cdot 10}+\ldots=\frac{I}{6}\left(I+\frac{\pi}{2 \sqrt{3}}\right)-\frac{I}{4} \log 3$.

VII. SPECIAL APPLICATIONS OF ANALYSIS.

7.10 Indeterminate Forms.
$7.101 \frac{\circ}{\circ}$. If $\frac{f(x)}{F(x)}$ assumes the indeterminate value $\frac{\circ}{\circ}$ for $x=a$, the true value of the quotient may be found by replacing $f(x)$ and $F(x)$ by their developments in series, if valid for $x=a$.

Example:

$$
\frac{\left[\frac{\sin ^{2} x}{I-\cos x}\right]_{x=0} ;}{\sin ^{2} x} \frac{\left(x-\frac{x^{3}}{3!}+\ldots\right)^{2}}{\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\ldots}=\frac{\left(I-\frac{x^{2}}{3!}+\ldots\right)^{2}}{\frac{I}{2!}-\frac{x^{2}}{4!}+\ldots}
$$

Therefore,

$$
\left[\frac{\sin ^{2} x}{I-\cos x}\right]_{x=0}=2 .
$$

7.102 L'Hospital's Rule. If $f(a+h)$ and $F(a+h)$ can be developed by Taylor's Theorem (6.100) then the true value of $\frac{f(x)}{F(x)}$ for $x=a$ is,

$$
\frac{f^{\prime}(a)}{F^{\prime}(a)}
$$

provided that this has a definite value (o, finite, or infinite). If the ratio of the first derivatives is still indeterminate, the true value may be found by taking that of the ratio of the first one of the higher derivatives that is definite.
7.103 The true value of $\frac{f(x)}{F(x)}$ for $x=a$ is the limit, for $h=0$, of

$$
\frac{q!}{p!} h^{p-q} \cdot \frac{f^{(p)}(a)}{F^{(q)}(a)}
$$

where $f^{(p)}(a)$ and $F^{(q)}(a)$ are the first of the higher derivatives of $f(x)$ and $F(x)$ that do not vanish for $x=a$. The true value of $\frac{f(x)}{F(x)}$ for $x=a$ is \circ if $p>q, \infty$ if $p<q$, and equal to $\frac{f^{(p)}(a)}{F^{(p)}(a)}$ if $p=q$.

Example:

$$
\begin{aligned}
& {\left[\frac{\sinh x-x \cosh x}{\sin x-x \cos x}\right]_{x=0}=\left[\frac{-x \sinh x}{x \sin x}\right]_{x=0}} \\
& =\left[-\frac{\sinh x}{\sin x}\right]_{x=0}=\left[-\frac{\cosh x}{\cos x}\right]_{x=0}=-\mathrm{I}
\end{aligned}
$$

7.104 Failure of L'Hospital's Rule. In certain cases this rule fails to determine the true value of an expression for the reason that all the higher derivatives vanish at the limit. In such cases the true value may often be found by factoring the given expression, or resolving into partial fractions (1.61).

Example:

$$
\left[\frac{\sqrt{x^{2}-a^{2}}}{\sqrt{x-a}}\right]_{x=a}=[\sqrt{x+a}]_{x=a}=\sqrt{2 a}
$$

7.105 In applying L'Hospital's Rule, if any of the successive quotients contains a factor which can be evaluated at once its determinate value may be substituted.

Example:

$$
\begin{aligned}
{\left[\frac{(\mathrm{I}-x) e^{x}-\mathrm{I}}{\tan ^{2} x}\right]_{x=0} } & =\left[\frac{-x e^{x}}{2 \tan x \sec ^{2} x}\right]_{x=0} \\
{\left[\frac{x}{\tan x}\right]_{x=0} } & =\mathbf{I}
\end{aligned}
$$

Hence the given function is,

$$
\left[-\frac{e^{x}}{2 \sec ^{2} x}\right]_{x=0}=-\frac{I}{2}
$$

7.106 If the given function can be separated into factors each of which is indeterminate, the factors may be evaluated separately.

Example:

$$
\left[\frac{\left(e^{x}-\mathrm{I}\right) \tan ^{2} x}{x^{3}}\right]_{x=0}=\left[\left(\frac{\tan x}{x}\right)^{2} \frac{e^{x}-\mathrm{I}}{x}\right]_{x=0}=\mathrm{I}
$$

$7.110 \frac{\infty}{\infty}$. If, for $x=a, \frac{f(x)}{F(x)}$ takes the form $\frac{\infty}{\infty}$, this quotient may be written:

$$
\frac{\frac{\mathrm{I}}{F(x)}}{\frac{\mathrm{I}}{f(x)}}
$$

which takes the form $\frac{0}{\circ}$ for $x=a$ and the preceding sections will apply to it.
7.111 L'Hospital's Rule (7.102) may be applied directly to indeterminate forms $\frac{\infty}{\infty}$, if the expansion by Taylor's Theorem is valid.

Example:

$$
\left[\frac{x}{e^{x}}\right]_{x=\infty}=\left[\frac{\mathrm{I}}{e^{x}}\right]_{x=\infty}=0 .
$$

7.112 If $f(x)$ and x approach ∞ together, and if $f(x+\mathrm{I})-f(x)$ approaches a definite limit, then,

$$
\operatorname{Limit}_{x \rightarrow \infty}\left[\frac{f(x)}{x}\right]=\operatorname{Limit}_{x \rightarrow \infty}[f(x+\mathrm{I})-f(x)] .
$$

7.120 $\circ \times \infty$. . If, for $x=a, f(x) \times F(x)$ takes the form $\circ \times \infty$, this product may be written,

$$
\frac{\frac{f(x)}{\mathrm{I}}}{\frac{\mathrm{I}}{F(x)}}
$$

which takes the form $\frac{\circ}{\circ}$ (7.101).

$$
f(x)-F(x)=f(x)\left\{\mathrm{I}-\frac{F(x)}{f(x)}\right\} .
$$

If ${ }_{x \rightarrow \infty}^{\text {Limit }} \frac{F(x)}{f(x)}$ is different from unity the true value of $f(x)-F(x)$ for $x=a$ is ∞. If $\operatorname{Limit}_{x \rightarrow \infty} \frac{F(x)}{f(x)}=+\mathrm{r}$, the expression has the indeterminate form $\infty \times \circ$ which may be treated by 7.120.
7.140 $\mathrm{I} \infty, 0^{0}, \infty^{0}$. If $\{F(x)\}^{(f x)}$ is indeterminate in any of these forms for $x=a$, its true value may be found by finding the true value of the logarithm of the given expression.

Example:

$$
\left[\left(\frac{\mathrm{I}}{x}\right)^{\tan x}\right]_{x \rightarrow 0}
$$

$$
\left(\frac{\mathrm{I}}{x}\right)^{\tan x}=y ; \quad \log y=-\tan x \cdot \log x
$$

$[\tan x \cdot \log x]_{x=0}=\left[\frac{\log x}{\cot x}\right]_{x=0}=\left[\frac{\frac{1}{x}}{\csc ^{2} x}\right]_{x=0}=\left[\frac{\sin x}{x} \cdot \sin x\right]_{x=0}=0$.
Hence,

$$
\left[\left(\frac{1}{x}\right)^{\tan x}\right]_{x=0}=\mathrm{I}
$$

7.141 If $f(x)$ and x approach ∞ together, and $\frac{f(x+\mathrm{I})}{f(x)}$ approaches a definite limit, then,

$$
\operatorname{Limit}_{x \rightarrow \infty}\left[\{f(x)\}^{\frac{1}{x}}\right]=\operatorname{Limit}_{x \rightarrow \infty} \frac{f(x+\mathrm{r})}{f(x)} .
$$

7.150 Differential Coefficients of the form $\frac{0}{\circ}$. In determining the differential coefficient $\frac{d y}{d x}$ from an equation $f(x, y)=0$, by means of the formula,

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} \tag{I}
\end{equation*}
$$

it may happen that for a pair of values, $x=a, y=b$, satisfying $f(x, y)=0$, $\frac{d y}{d x}$ takes the form $\frac{\circ}{\circ}$.

Writing $\frac{d y}{d x}=y^{\prime}$, and applying 7.102 to the quotient (I), a quadratic equation is obtained for determining y^{\prime}, giving, in general, two different determinate values. If y^{\prime} is still indeterminate, apply 7.102 again, giving a cubic equation for determining y^{\prime}. This process may be continued until determinate values result.

Example:

$$
\begin{aligned}
f(x, y) & =\left(x^{2}+y^{2}\right)^{2}-c^{2} x y=0, \\
y^{\prime} & =-\frac{4 x\left(x^{2}+y^{2}\right)-c^{2} y}{4 y\left(x^{2}+y^{2}\right)-c^{2} x} .
\end{aligned}
$$

For $x=0, y=0, y^{\prime}$ takes the value $\frac{0}{\circ}$.
Applying 7.102,

$$
-y^{\prime}=\frac{\mathrm{I} 2 x^{2}+4 y^{2}+\left(8 x y-c^{2}\right) y^{\prime}}{4 y^{\prime}\left(x^{2}+3 y^{2}\right)+8 x y-c^{2}}
$$

Solving this quadratic equation in y^{\prime}, the two determinate values, $y^{\prime}=0, y^{\prime}=\infty$, result for $x=0, y=0$.
7.17 Special Indeterminate Forms and Limiting Values. In the following the notation $[f(x)]_{a}$ means the limit approached by $f(. x)$ as x approaches a as a limit.
7.171
I. $\left[\left(\mathrm{I}+\frac{c}{x}\right)^{x}\right]_{\infty}=e^{c} \quad(c$ a constant $)$.
2. $[\sqrt{x+c}-\sqrt{x}]_{\infty}=0$.
3. $[\sqrt{x(x+c)}-x]_{\infty}=\frac{c}{2}$.
4. $\left[\sqrt{\left(x+c_{1}\right)\left(x+c_{2}\right)}-x\right]_{\infty}=\frac{1}{2}\left(c_{1}+c_{2}\right)$.
5. $\left[\sqrt[n]{\left(x+c_{1}\right)\left(x+c_{2}\right) \ldots\left(x+c_{n}\right)}-x\right]_{\infty}=\frac{1}{n}\left(c_{1}+c_{2}+\ldots c_{n}\right)$.
6. $\left[\frac{\log \left(c_{1}+c_{2} e^{x}\right)}{x}\right]_{\infty}=\mathrm{I}$.
7. $\left[\log \left(c_{1}+c_{2} e^{x}\right) \cdot \log \left(\mathrm{I}+\frac{\mathrm{I}}{x}\right)\right]_{\infty}=\mathrm{I}$.
8. $\left[\left(\frac{\log x}{x}\right)^{\frac{1}{x}}\right]_{\infty}=\mathrm{I}$.
9. $\left[\frac{x}{(\log x)^{m}}\right]_{\infty}=\infty$.
10. $\left[\frac{a^{x}}{x^{m}}\right]_{\infty}=\infty \quad(a>1)$.
II. $\left[\frac{a^{x}}{x!}\right]_{\infty}=0 \quad$ (x a positive integer).
12. $\left[x^{\frac{1}{x}}\right]_{\infty}=\mathrm{I}$.
13. $\left[\frac{\log x}{x}\right]_{\infty}=0$.
14. $\left[\left(a+b c^{x}\right)^{\frac{1}{x}}\right]_{\infty}=c \quad(c>\mathrm{I})$.
15. $\left[\left(\frac{1}{a+b c^{x}}\right)^{\frac{c}{x}}\right]_{\infty}=e^{-c}$.
16. $\left[\frac{x}{\alpha+\beta x^{2}} \cdot \log \left(a+b e^{x}\right)\right]_{\infty}=\frac{\mathrm{I}}{\boldsymbol{\beta}}$.
17. $\left[\left(a+b x^{m}\right)^{\frac{\mathrm{I}}{\alpha+\beta \log x}}\right]_{\infty}=e^{\frac{m}{\beta}} \quad(m>0)$.

I50 MATHEMATICAL FORMULE AND ELLIPTIC FUNCTIONS
7.172
I. $\left[x \sin \frac{c}{x}\right]_{\infty}=c$.
7. $\left[\frac{\cot \frac{c}{x}}{x}\right]_{\infty}=\frac{I}{c}$.
2. $\left[\therefore\left(\mathrm{I}-\cos \frac{c}{x}\right)\right]_{\infty}=0$.
8. $\left[\sin \frac{c}{x} \cdot \log \left(a+b e^{x}\right)\right]_{\infty}=c$.
3. $\left[x^{2}\left(1-\cos \frac{c}{x}\right)\right]_{\infty}=\frac{c^{2}}{2}$.
9. $\left[\left(\cos \sqrt{\frac{2 c}{x}}\right)^{x}\right]_{\infty}=e^{-c}$
4. $\left[\left(\cos \frac{c}{x}\right)^{x}\right]_{\infty}=\mathbf{I}$.
10. $\left[\left(\mathrm{I}+a \tan \frac{c}{x}\right)^{x}\right]_{\infty}=e^{a c}$.
5. $\left[\left(\cos \frac{c}{x}\right)^{x^{2}}\right]_{\infty}=e^{-\frac{c^{2}}{2} .}$
II. $\left[\left(\cos \frac{c}{x}+a \sin \frac{c}{x}\right)^{x}\right]_{\infty}=e^{a c}$.
7.173
I. $\left[\frac{\sin x}{x}\right]_{0}=\mathbf{I}$.
4. $\left[\sin ^{-1} x \cdot \cot x\right]_{0}=\mathrm{I}$.
2. $\left[\frac{\tan x}{x}\right]_{0}=\mathrm{I}$.
5. $\left[\left\{\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\right\}^{\cot x}\right]_{0}=e$.
3. $\left[\left(\frac{\sin n x}{x}\right)^{m}\right]_{0}=n^{m}$.
7.174
I. $\left[x^{x}\right]_{0}=$ I.
7. $\left[\frac{e^{x}-\mathrm{I}}{x}\right]_{0}=\mathrm{I}$.
2. $\left[x^{\frac{\mathrm{I}}{a+b \log x}}\right]_{0}=e^{\frac{\mathrm{x}}{b}}$.
8. $\left[x^{m} \log x\right]_{0}=0 \quad(m>0)$.
3. $\left[x^{\frac{1}{\log \left(e^{x}-1\right)}}\right]_{0}=e$.
9. $\left[\frac{e^{x}-e^{-x}-2 x}{\left(e^{x}-I\right)^{3}}\right]_{0}=\frac{I}{3}$.
4. $\left[x^{m} \log \frac{I}{x}\right]_{0}=0 \quad(m \geqslant \mathrm{I})$.
10. $\left[x e^{\frac{\mathrm{T}}{\bar{x}}}\right]_{0}=\infty$.
5. $[\log \cos x \cdot \cot x]_{0}=0$.

I . $\left[\frac{e^{x}-e^{-x}}{\log (1+x)}\right]_{0}=2$.
6. $\left[\log \tan \left(\frac{\pi}{4}+\frac{x}{2}\right) \cdot \cot x\right]_{0}=\mathrm{I}$.
12. $\left[\frac{\log \tan 2 x}{\log \tan x}\right]_{0}=\mathrm{I}$.

7.175

I. $\left[x^{\frac{x}{1-x}}\right]_{1}=\frac{\mathrm{r}}{e} \cdot \cdot$
2. $[(\pi-2 x) \tan x] \frac{\pi}{2}=2$.
3. $\left[\log \left(2-\frac{x}{c}\right) \cdot \tan \frac{\pi x}{2 c}\right]_{c}=\frac{2}{\pi}$.
4. $\left[\left(e^{c}-e^{x}\right) \tan \frac{\pi x}{2 c}\right]_{c}=\frac{2 c}{\pi} e^{c}$.
5. $\left[\cos ^{-1} \frac{x}{c} \cdot \tan \frac{\pi x}{2 c}\right]_{c}=\infty$
6. $\left[\left(a+b e^{\tan x}\right)^{\pi-2 x}\right]_{\frac{\pi}{2}}=e^{2}$.
7. $\left[\left(2-\frac{2 x}{\pi}\right)^{\tan x}\right]_{\frac{\pi}{2}}=e^{\frac{2}{\pi}}$
8. $\left[(\tan x)^{\tan 2 x}\right] \frac{\pi}{4}=\frac{1}{e}$.
7.18 Limiting Values of Sums.
I. $\operatorname{Limit}_{n \rightarrow \infty}\left(\frac{\mathrm{I}^{k}+2^{k}+3^{k}+\ldots \ldots+n^{k}}{n^{k+1}}\right)=\frac{\mathrm{I}}{k+\mathrm{I}}$ if $k>-\mathrm{I}$.

$$
\infty \text { if } k<-\mathbf{I} .
$$

2. $\operatorname{Limit}_{n \rightarrow \infty}\left(\frac{\mathrm{I}}{n a}+\frac{\mathrm{I}}{n a+b}+\frac{\mathrm{I}}{n a+2 b}+\ldots+\frac{\mathrm{I}}{n a+(n-\mathrm{I}) b}\right)$

$$
=\frac{\log (a+b)-\log a}{b}(a, b>0) .
$$

$\operatorname{Limit}_{n \rightarrow \infty}\left(\frac{n-1^{2}}{I \cdot 2 \cdot(n+1)}+\frac{n-2^{2}}{2 \cdot 3 \cdot(n+2)}+\frac{n-3^{2}}{3 \cdot 4 \cdot(n+3)}+\ldots\right.$

$$
\left.+\frac{\left(n-n^{2}\right.}{n \cdot(n+\mathrm{I}) \cdot(n+n)}\right)=\mathrm{I}-\log 2
$$

4. $\operatorname{Limit}_{n \rightarrow \infty}\left[\left(a+b \frac{\sqrt{I}}{n}\right)^{2}+\left(a^{2}+b \frac{\sqrt{2}}{n}\right)^{2}+\left(a^{3}+b \frac{\sqrt{3}}{n}\right)^{2}+\ldots\right.$.

$$
\left.+\left(a^{n}+b \frac{\sqrt{n}}{n}\right)^{2}\right]=\frac{a^{2}}{1-a^{2}}+\frac{b^{2}}{2},
$$

if a is a positive proper fraction.
5. $\operatorname{Limit}_{n \rightarrow \infty}\left[\sqrt{a+\frac{b}{n}}+\sqrt{a^{2}+\frac{b}{n}}+\sqrt{a^{3}+\frac{b}{n}}+\ldots+\sqrt{a^{n}+\frac{b}{n}}\right]=\infty$,
if $b>0$ and a is a positive proper fraction.
6. $\operatorname{Limit}_{n \rightarrow \infty}\left[\sqrt{a+\frac{b}{\mathrm{I} \cdot n}}+\sqrt{a^{2}+\frac{b}{2 \cdot n}}+\sqrt{a^{3}+\frac{b}{3 \cdot n}}+\ldots+\sqrt{a^{n}+\frac{b}{n \cdot n}}\right]$

$$
=\frac{\sqrt{a}}{\mathrm{I}-\sqrt{a}}+2 \sqrt{b},
$$

if $b>0$ and a is a positive proper fraction.
7. $\operatorname{Limit}_{n \rightarrow \infty}\left[\mathrm{I}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\ldots+\frac{\mathrm{I}}{n}-\log n\right]=\gamma=0.5772157 \ldots$
(6.602).
7.19 Limiting Values of Products.
I. $\operatorname{Limit}_{n \rightarrow \infty}\left[\left(\mathrm{I}+\frac{c}{n}\right)\left(\mathrm{I}+\frac{c}{n+\mathrm{I}}\right)\left(\mathrm{I}+\frac{c}{n+2}\right) \ldots(\mathrm{I}+\underset{2 n-\mathrm{I}}{2 n})\right]=2^{c}$,

$$
\text { if } c>0 \text {. }
$$

2. $\operatorname{Limit}_{n \rightarrow \infty}\left[\left(\mathrm{I}+\frac{c}{n a}\right)\left(\mathrm{I}+\frac{c}{n a+b}\right)\left(\mathrm{I}+\frac{c}{n a+2 b}\right) \ldots\left(\mathrm{I}+\frac{c}{n a+(n-\mathrm{I}) b}\right)\right]$

$$
=\left(\mathrm{I}+\frac{b}{a}\right)^{\frac{c}{b}}
$$

if a, b, c are all positive.
3. $\operatorname{Limit}_{n \rightarrow \infty}\left[\frac{\{m(m+1)(m+2) \ldots(m+n-1)\}^{\frac{1}{n}}}{m+\frac{1}{2}(n-1)}\right]=\frac{2}{e}$, if $m>0$.
4. $\operatorname{Limit}_{n \rightarrow}\left[\left(\mathrm{I}+\frac{2 c}{n^{2}}\right)\left(\mathrm{I}+\frac{4 c}{n^{2}}\right)\left(\mathrm{I}+\frac{6 c}{n^{2}}\right) \ldots .\left(\mathrm{I}+\frac{2 n c}{n^{2}}\right)\right]=e^{c}$.
7.20 Maxima and Minima.
7.201 Functions of One Variable. $y=f(x)$ is a maximum or minimum for the values of x satisfying the equation, $f^{\prime}(x)=\frac{\partial f(x)}{\partial x}=0$, provided that $f^{\prime}(x)$ is continuous for these values of x.
7.202 If, for $x=a, f^{\prime}(a)=0$,

$$
\begin{aligned}
& y=f(a) \text { is a maximum if } f^{\prime \prime}(a)<0 \\
& y=f(a) \text { is a minimum if } f^{\prime \prime}(a)>0 .
\end{aligned}
$$

Example:

$$
\begin{aligned}
y & =\frac{x}{x^{2}+\alpha x+\beta}, \quad \beta>0 \\
f^{\prime}(x) & =\frac{-x^{2}+\beta}{\left(x^{2}+\alpha x+\beta\right)^{2}}, \\
f^{\prime}(x) & =0 \text { when } x= \pm \sqrt{\beta} \\
f^{\prime \prime}(x) & =\frac{2 x^{3}-6 \beta x-2 \alpha \beta}{\left(x^{2}+\alpha x+\beta\right)^{3}}
\end{aligned}
$$

For $x=+\sqrt{\beta}, f^{\prime \prime}(x)=\frac{-2}{\sqrt{\beta}} \frac{1}{(2 \sqrt{\beta}+\alpha)^{2}} \quad$ Maximum,
-
*
-

8

$$
\text { For } \begin{aligned}
x=-\sqrt{\beta}, f^{\prime \prime}(x) & =\frac{+2}{\sqrt{\bar{\beta}}} \frac{\mathrm{I}}{(2 \sqrt{\beta}-\alpha)^{2}} \quad \text { Minimum, } \\
y_{\max } & =\frac{\mathrm{I}}{\alpha+2 \sqrt{\beta}} \\
y_{\min } & =\frac{\mathrm{I}}{\alpha-2 \sqrt{\beta}}
\end{aligned}
$$

7.203 If for $x=a, f^{\prime}(a)=0$ and $f^{\prime \prime}(a)=0$, in order to determine whether $y=f(a)$ is a maximum or minimum it is necessary to form the higher differential coefficients, until one of even order is found which does not vanish for $x=a$. $y=f(a)$ is a maximum or minimum according as the first of the differential coefficients, $f^{\prime \prime}(a), f^{\text {iv }}(a), f^{\mathrm{vi}}(a), \ldots \ldots$ of even order which does not vanish is negative or positive.
7.210 Functions of Two Variables. $F(x, y)$ is a maximum or minimum for the pair of values of x and y that satisfy the equations,

$$
\frac{\partial F}{\partial x}=\mathrm{o}, \frac{\partial F}{\partial y}=\mathrm{o}
$$

and for which

$$
\left(\frac{\partial^{2} F}{\partial x} \partial y\right)^{2}-\frac{\partial^{2} F}{\partial x^{2}} \frac{\partial^{2} F}{\partial y^{2}}<0 .
$$

If both $\frac{\partial^{2} F}{\partial x^{2}}$ and $\frac{\partial^{2} F}{\partial y^{2}}$ are negative for this pair of values of x and $y, F(x, y)$ is a maximum. If they are both positive $F(x, y)$ is a minimum.
7.220 Functions of n Variables. For the maximum or minimum of a function of n variables, $F\left(x_{1}, x_{2} \ldots \ldots, x_{n}\right)$, it is necessary that the first derivatives, $\frac{\partial F}{\partial x_{1}}, \frac{\partial F}{\partial x_{2}}, \ldots \ldots, \frac{\partial F}{\partial x_{n}}$ all vanish; and that the lowest order of the higher derivatives which do not all vanish be an even number. If this number be 2 the necessary condition for a minimum is that all of the determinants,
where

$$
f_{i j}=\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}},
$$

shall be positive. For a maximum the determinants must be alternately negative and positive, beginning with $D_{1}=\frac{\partial^{2} F}{\partial x_{1}^{2}}$ negative.
7.230 Maxima and Minima with Conditions. If $F\left(x_{1}, x_{2}, \ldots, \ldots, x_{n}\right)$ is to be made a maximum or minimum subject to the conditions,

$$
\text { I. }\left\{\begin{array}{l}
\phi_{1}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=0 \\
\phi_{2}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=0 \\
\cdots \ldots \ldots \\
\cdots \ldots \\
\phi_{k}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=0
\end{array}\right.
$$

where $k<n$, the necessary conditions are,
2.

$$
\frac{\partial F}{\partial x_{i}}+\sum_{j=1}^{k} \lambda_{i} \frac{\partial \phi_{j}}{\partial x_{i}}=0 \quad i=\mathrm{x}, 2, \ldots n,
$$

where the λ 's are k undetermined multipliers. The n equations (2) together with the k equations of condition (I) furnish $k+n$ equations to determine the $k+n$ quantities, $x_{1}, x_{2}, \ldots \ldots, x_{n}, \lambda_{1}, \lambda_{2}, \ldots \ldots, \lambda_{k}$.

Example:

To find the axes of the ellipsoid, referred to its center as origin,

$$
a_{11} x^{2}+a_{22} y^{2}+a_{33} z^{2}+2 a_{12} x y+2 a_{23} y z+2 a_{13} x z=\mathbf{1}
$$

Denoting the radius vector to the surface by r, and its direction-cosines by l, m, n, so that $x=l r, y=m r, z=n r$, it is necessary to find the maxima and minima of

$$
r^{2}=\frac{1}{a_{11} l^{2}+a_{22} m^{2}+a_{33} n^{2}+2 a_{12} l m+2 a_{23} m+2 a_{13} l n n},
$$

subject to the condition

$$
\phi(l, m, n)=l^{2}+m^{2}+n^{2}-\mathrm{I}=0 .
$$

This is the same as finding the minima and maxima of

$$
F(l, m, n)=a_{11} l^{2}+a_{22} 2 m^{2}+a_{33} n^{2}+2 a_{12} l m+2 a_{23} m n+2 a_{13} l n
$$

Equation (2) gives:

$$
\begin{aligned}
& \left(a_{11}+\lambda\right) l+a_{12} m+a_{13} l=0, \\
& a_{12} l+\left(a_{22}+\lambda\right) m+a_{23} l=0, \\
& a_{13} l+a_{23} m+\left(a_{33}+\lambda\right) n=0 .
\end{aligned}
$$

Multiplying these 3 equations by l, m, n respectively and adding,

$$
\lambda=-\frac{1}{r^{2}} .
$$

Then by (I . 1.363) the 3 values of r are given by the 3 roots of

$$
\left|\begin{array}{lll}
a_{11}-\frac{\mathrm{I}}{r^{2}} & a_{12} & a_{13} \\
a_{12} & a_{22}-\frac{\mathrm{I}}{r^{2}} & a_{23} \\
a_{13} & a_{23} & a_{33}-\frac{\mathrm{I}}{r^{2}}
\end{array}\right|=0
$$

7.30 Derivatives.

7.31 First Derivatives.
I. $\frac{d x^{n}}{d x^{n}}=n x^{n-1}$.
2. $\frac{d a^{x}}{d x}=a^{x} \log a$. .
3. $\frac{d e^{x}}{d x}=e^{x}$.
4. $\frac{d x^{x}}{d x}=x^{x}(\mathrm{I}+\log x)$.
5. $\frac{d \log _{a} x}{d x}=\frac{\mathrm{I}}{x \log a}=\frac{\log _{a} e}{x}$.
6. $\frac{d \log x}{d x}=\frac{I}{x}$.
7. $\frac{d x^{\log x}}{d x}=2 x^{\log x-1} \log x$.
8. $\frac{d(\log x)^{x}}{d x}=(\log x)^{x-1}\{\mathrm{I}+\log x \cdot \log \log x\}$.
9. $\frac{d\left(\frac{x}{e}\right)^{x}}{d x}=\left(\frac{x}{e}\right)^{x} \log x$.
15. $\frac{d \csc x}{d x}=-\csc ^{2} x \cdot \cos x$.
10. $\frac{d \sin x}{d x}=\cos x$.
16. $\frac{d \sin ^{-1} x}{d x}=-\frac{d \cos ^{-1} x}{d x}=\frac{\mathrm{I}}{\sqrt{\mathrm{I}-x^{2}}}$.
II. $\frac{d \cos x}{d x}=-\sin x$.
12. $\frac{d \tan x}{d x}=\sec ^{2} x$.
13. $\frac{d \cot x}{d x}=-\csc ^{2} x$.
17. $\frac{d \tan ^{-1} x}{d x}=-\frac{d \cot ^{-1} x}{d x}=\frac{\mathrm{I}}{\mathrm{I}+x^{2}}$.
18. $\frac{d \sec ^{-1} x}{d x}=-\frac{d \csc ^{-1} x}{d x}=\frac{\mathrm{I}}{x \sqrt{x^{2}-\mathrm{I}}}$.
14. $\frac{d \sec x}{d x}=\sec ^{2} x \cdot \sin x$.
19. $\frac{d \sinh x}{d x}=\cosh x$.
20. $\frac{d \cosh x}{d x}=\sinh x$.
21. $\frac{d \tanh x}{d x}=\operatorname{sech}^{2} x$.
22. $\frac{d \operatorname{coth} x}{d x}=-\operatorname{csch}^{2} x$.
23. $\frac{d \operatorname{sech} x}{d x}=-\operatorname{sech} x \cdot \tanh x$.
24. $\frac{d \operatorname{csch} x}{d x}=-\operatorname{csch} x \cdot \operatorname{coth} x$.
25. $\frac{d \sinh ^{-1} x}{d x}=\frac{\mathrm{I}}{\sqrt{x^{2}+\mathrm{I}}}$.
26. $\frac{d \cosh ^{-1} x}{d x}=\frac{\mathrm{I}}{\sqrt{x^{2}-\mathrm{I}}}$.
27. $\frac{d \tanh ^{-1} x}{d x}=\frac{d \operatorname{coth}^{-1}}{d x}-\frac{\mathrm{I}}{\mathrm{I}-x^{2}}$.
28. $\frac{d \operatorname{sech}^{-1} x}{d x}=-\frac{\mathrm{I}}{x \sqrt{I-x^{2}}}$.
29. $\frac{d \operatorname{csch}^{-1} x}{d x}=-\frac{I}{x \sqrt{I+x^{2}}}$.
30. $\frac{d g d x}{d x}=\operatorname{sech} x$.
31. $\frac{d g d^{-1} x}{d x}=\sec x$.

7.32

I. $\frac{d\left(y_{1} y_{2} y_{3} \ldots . y_{n}\right)}{d x}=y_{1} y_{2} \ldots y_{n}\left(\frac{\mathrm{I}}{y_{1}} \frac{d y_{1}}{d x}+\frac{\mathrm{I}}{y_{2}} \frac{d y_{2}}{d x}+\ldots+\frac{\mathbf{I}}{y_{n}} \frac{d y_{n}}{d x}\right)$.
2. $\frac{d\left(\frac{u}{v}\right)}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$.
4. $\frac{d e^{u}}{d x}=e^{u} \frac{d u}{d x}$.
3. $\frac{d a^{u}}{d x}=a^{u} \frac{d u}{d x} \log a$.
5. $\frac{d f(u)}{d x}=\frac{d f(u)}{d u} \cdot \frac{d u}{d x}$.
7.33 Derivative of a Definite Integral.

1. $\frac{d}{d a} \int_{\psi(a)}^{\phi(a)} f(x, a) d x=f(\phi(a), a) \frac{d \phi(a)}{d a}-f(\psi(a), a) \frac{d \psi(a)}{d a}+\int_{\psi(a)}^{\phi(a)} \frac{d}{d a} f(x, a) d x$.
2. $\frac{d}{d a} \int_{b}^{a} f(x) d x=f(a)$.
3. $\frac{d}{d b} \int_{b}^{a} f(x) d x=-f(b)$.
7.35 Higher Derivatives.
7.351 Leibnitz's Theorem. If u and v are functions of x,
$\frac{d^{n}(u v)}{d x^{n}}=u \frac{d^{n} v}{d x^{n}}+\frac{n}{\mathrm{I}!} \frac{d u}{d x} \frac{d^{n-1} v}{d x^{n-1}}+\frac{n(n-\mathrm{I})}{2!} \frac{d^{2} u}{d x^{2}} \frac{d^{n-2} v}{d x^{n-2}}$

$$
+\frac{n(n-1)(n-2)}{3!} \frac{d^{3} u}{d x^{3}} \frac{d^{n-3} v}{d x^{n-3}}+\ldots \ldots+v \frac{d^{n} u}{d x^{n}} .
$$

7.352 Symbolically,

$$
\frac{d^{n}(u v)}{d x^{n}}=(u+v)^{(n)},
$$

where
7.353

$$
\begin{gathered}
u^{0}=u, \quad v^{0}=v . \\
\frac{d^{n} e^{a x} u}{d x^{n}}=e^{a x}\left(a+\frac{d}{d x}\right)^{n} u .
\end{gathered}
$$

7.354 If $\phi\left(\frac{d}{d x}\right)$ is a polynomial in $\frac{d}{d x}$,

$$
\phi\left(\frac{d}{d x}\right) e^{a x} u=e^{a x} \phi\left(a+\frac{d}{d x}\right) u .
$$

7.355 Euler's Theorem. If u is a homogeneous function of the nth degree of r variables, $x_{1}, x_{2}, \ldots x_{r}$,

$$
\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+\ldots+x_{r} \frac{\partial}{\partial x_{r}}\right)^{m} u=n^{m} u
$$

where m may be any integer, including \circ.
7.36 Derivatives of Functions of Functions.
7.361 If $f(x)=F(y)$, and $y=\phi(x)$,
I. $\frac{d^{n}}{d x^{n}} f(x)=\frac{U_{1}}{1!} F^{\prime}(y)+\frac{U_{2}}{2!} F^{\prime \prime}(y)+\frac{U_{3}}{3!} F^{\prime \prime \prime}(y)+\ldots+\frac{U_{n}}{n!} F^{(n)}(y)$, where
2. $U_{k}=\frac{\partial^{n}}{\partial x^{n}} y^{k}-\frac{k}{1!} y \frac{\partial^{n}}{\partial x^{n}} y^{k-1}+\frac{k(k-\mathrm{I})}{2!} y^{2} \frac{\partial^{n}}{\partial x^{n}} y^{k-2}-\ldots$.

7.362

I. $(-\mathrm{I})^{n} \frac{d^{n}}{d x^{n}} F\left(\frac{\mathrm{I}}{x}\right)=\frac{\mathrm{I}}{x^{2 n}} F^{(n)}\left(\frac{\mathrm{I}}{x}\right)+\frac{n-\mathrm{I}}{x^{2 n-1}} \frac{n}{\mathrm{I}!} F^{(n-1)}\left(\frac{\mathrm{I}}{x}\right)$

$$
+\frac{(n-1)(n-2)}{x^{2 n-2}} \cdot \frac{n(n-1)}{2!} F^{(n-2)}\left(\frac{1}{x}\right)+\ldots \ldots
$$

2. $(-\mathrm{I})^{n} \frac{d^{n}}{d x^{n}} e^{\frac{a}{x}}=\frac{\mathrm{I}}{x^{n}} e^{\frac{a}{x}}\left\{\left(\frac{a}{x}\right)^{n}+(n-\mathrm{I}) \frac{n}{\mathrm{I}!}\left(\frac{a}{x}\right)^{n-1}\right.$

$$
+(n-1)(n-2) \frac{n(n-1)}{2!}\left(\frac{a}{x}\right)^{n-2}
$$

$$
\left.+(n-1)(n-2)(n-3) \frac{n(n-1)(n-2)}{3!}\left(\frac{a}{x}\right)^{n-3}+\ldots\right\} .
$$

I. $\frac{d^{n}}{d x^{n}} F\left(x^{2}\right)=(2 x)^{n} F^{(n)}\left(x^{2}\right)+\frac{n(n-\mathrm{I})}{1!}(2 x)^{n-2} F^{(n-1)}\left(x^{2}\right)$

$$
+\frac{n(n-1)(n-2)(n-3)}{2!}(2 x)^{n-4} F^{(n-2)}\left(x^{2}\right)
$$

$$
+\frac{n(n-1)(n-2)(n-3)(n-4)(n-5)}{3!}(2 x)^{n-6} F^{(n-3)}\left(x^{2}\right)+\ldots
$$

2. $\frac{d^{n}}{d x^{n}} e^{a x^{2}}=(2 a x)^{n} e^{a x^{2}}\left\{\mathrm{I}+\frac{n(n-\mathrm{I})}{1!\left(4 a x^{2}\right)}+\frac{n(n-\mathrm{I})(n-2)(n-3)}{2!\left(4 a x^{2}\right)^{2}}\right.$

$$
\left.+\frac{n(n-1)(n-2)(n-3)(n-4)(n-5)}{3!\left(4 a x^{2}\right)^{3}}+\ldots\right\}
$$

3. $\frac{d^{n}}{d x^{n}}\left(\mathrm{I}+a x^{2}\right)^{\mu}$

$$
\begin{array}{r}
=\frac{\mu(\mu-\mathrm{I})(\mu-2) \ldots(\mu-n+\mathrm{I})(2 a x)^{n}}{\left(\mathrm{I}+a x^{2}\right)^{n-\mu}}\left\{\mathrm{I}+\frac{n(n-\mathrm{I})}{\mathrm{I} \cdot(\mu-n+\mathrm{I})} \frac{\left(\mathrm{I}+a x^{2}\right)}{4 a x^{2}}\right. \\
\left.\quad+\frac{n(n-\mathrm{I})(n-2)(n-3)}{2!(\mu-n+\mathrm{I})(\mu-n+2)}\left(\frac{\mathrm{I}+a x^{2}}{4 a x^{2}}\right)^{2}+\ldots\right\}
\end{array}
$$

4. $\frac{d^{m-1}}{d x^{m-1}}\left(\mathrm{I}-x^{2}\right)^{m-\frac{1}{2}}=(-\mathrm{I})^{m-1} \frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 m-\mathrm{I})}{m} \sin \left(m \cos ^{-1} x\right)$.

7.364

I. $\frac{d^{n}}{d x^{n}} F(\sqrt{x})=\frac{F^{(n)}(\sqrt{x})}{(2 \sqrt{x})^{n}}-\frac{n(n-\mathrm{I})}{\mathrm{I}!} \frac{F^{(n-1)}(\sqrt{x})}{(2 \sqrt{x})^{n+1}}$

$$
+\frac{(n+\mathrm{I}) n(n-\mathrm{I})(n-2)}{2!} \frac{F^{(n-2)}(\sqrt{x})}{(2 \sqrt{x})^{n+2}}-\ldots
$$

2. $\frac{d^{n}}{d x^{n}}(\mathrm{I}+a \sqrt{x})^{2 n-1}=\frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{2^{n}} \frac{a}{\sqrt{x}}\left(a^{2}-\frac{\mathrm{I}}{x}\right)^{n-1}$.

7.365

1. $\frac{d^{n}}{d x^{n}} F\left(e^{x}\right)=\frac{E_{1}}{1!} e^{x} F^{\prime}\left(e^{x}\right)+\frac{E_{2}}{2!} e^{2 x} F^{\prime \prime}\left(e^{x}\right)+\frac{E_{3}}{3!} e^{3 x} F^{\prime \prime \prime}\left(e^{x}\right)+\ldots$
where
2.

$$
E_{k}=k^{n}-\frac{k}{\mathrm{I}!}(k-\mathrm{I})^{n}+\frac{k(k-\mathrm{I})}{2!}(k-2)^{n}-\ldots
$$

3. $\frac{d^{n}}{d x^{n}} \frac{\mathrm{I}}{\mathrm{I}+e^{2 x}}=-E_{1} e^{x} \frac{\sin \left(2 \tan ^{-1} e^{-x}\right)}{\sqrt{\left(\mathrm{I}+e^{2 x}\right)^{2}}}+E_{2} e^{2 x} \frac{\sin \left(3 \tan ^{-1} e^{-x}\right)}{\sqrt{\left(\mathrm{I}+e^{2 x}\right)^{3}}}$

$$
-E_{3} e^{3 x} \frac{\sin \left(4 \tan ^{-1} e^{-x}\right)}{\sqrt{\left(\mathrm{I}+e^{2 x}\right)^{4}}}+\ldots
$$

4. $\frac{d^{n}}{d x^{n}} \frac{e^{x}}{\mathrm{I}+e^{2 x}}=-E_{1} e^{x} \frac{\cos \left(2 \tan ^{-1} e^{-x}\right)}{\sqrt{\left(\mathrm{I}+e^{2 x}\right)^{2}}}+E_{2} e^{x} \frac{\cos \left(3 \tan ^{-1} e^{-x}\right)}{\sqrt{\left(\mathrm{I}+e^{2 x}\right)^{3}}}$

$$
-E_{3} e^{3 x} \frac{\cos \left(4 \tan ^{-1} e^{-x}\right)}{\sqrt{\left(\mathrm{I}+e^{2 x}\right)^{4}}}+\ldots
$$

7.366

I. $\frac{d^{n}}{d x^{n}} F(\log x)=\frac{\mathrm{I}}{x^{n}}\left\{\stackrel{n}{C}_{0} F^{(n)}(\log x)-\stackrel{n}{C}_{1} F^{(n-1)}(\log x)+\stackrel{n}{C}_{2} F^{(n-2)}(\log x)-\ldots\right\}$. $\stackrel{n}{C}_{0}=1$,
$\stackrel{n}{C}_{1}=I+2+3+\ldots+(n-1)$

$$
=\frac{n(n-\mathrm{r})}{2},
$$

${ }^{n}{ }_{2}=\mathrm{I} \cdot 2+\mathrm{I} \cdot 3+\mathrm{I} \cdot 4+\ldots+\mathrm{I} \cdot(n-\mathrm{I})$

$$
\begin{aligned}
+2 \cdot 3 & +2 \cdot 4+\ldots+2 \cdot(n-1) \\
& +3 \cdot 4+\ldots+3 \cdot(n-1)
\end{aligned}
$$

+

$$
+(n-2)(n-1)=\frac{n(n-1)(n-2)(3 n-1)}{24}
$$

2. $\stackrel{n+\mathrm{I}}{C_{k}}=\stackrel{n}{C}{ }_{k}+n \stackrel{n}{C}_{k-1}$.
3. $\bar{C}_{k}^{-n}=\stackrel{-(n-1)}{C_{k}}+n \stackrel{-n}{C}_{k-1}$.

$$
\begin{array}{llllll}
\stackrel{n}{C}_{0}=\mathrm{I} & \stackrel{k}{C}=\mathrm{o}, & & \bar{C}_{0}=\mathrm{I} & \overline{C_{k}}=\mathrm{I}, \\
\stackrel{2}{C}_{1}=\mathrm{I} & \stackrel{3}{C_{1}}=3 & \stackrel{4}{C_{1}}=6, & \bar{C}_{1}^{2}=3 & \bar{C}_{1}^{3}=6 & \bar{C}_{1}^{4}=\mathrm{IO} \\
& \stackrel{3}{C_{2}}=2 & \stackrel{4}{C_{2}}=\mathrm{II}, & \bar{C}_{2}^{2}=7 & \bar{C}_{2}^{3}=25 & \bar{C}_{2}^{4}=65 \\
& & \stackrel{4}{C}_{3}=6, & \bar{C}_{3}^{2}=15 & \bar{C}_{3}^{3}=90 & \bar{C}_{3}^{4}=350 .
\end{array}
$$

7.367 Table of $\stackrel{n}{C}_{k}$.

$n=$	-4	-3	- 2	- I	$+1$	$+2$	$+3$	+ 4	$+5$	+ 6	+ 7	$+8$	$+9$
$C_{0}=$	I	I	I	I	I	I	1	1	I	I	I	I	1
$C_{1}=$	10	6	3	I		I	3	6	10	15	21	2 S	36
$C_{2}=$	65	25	7	I			2	I I	35	S5	175	322	546
$C_{3}=$	350	90	I 5	I				6	50	225	735	1960	4536
$C_{4}=$	1701	301	31	I					24	274	1624	6769	22449
$C_{5}=$	7770	966	63	I						I20	1764	13I32	67284
$C_{6}=$	34105	3025	127	I							720	13068	IISI24
$C_{7}=$	145750	9330	225	I								5040	109584
$C_{8}=$	6II501	28501	5 II	I									40,320

7.368

I. $\frac{d^{n}}{d x^{n}}(\log x)^{p}=\frac{(-\mathrm{I})^{n-1}}{x^{n}}\left\{\stackrel{n}{C}_{n-1} p(\log x)^{p-1}-\stackrel{n}{C}_{n-2} p(p-\mathrm{I})(\log x)^{p-2}\right.$

$$
\left.+\stackrel{n}{C}_{n-3} p(p-1)(p-2)(\log x)^{p-3}-\ldots\right\}
$$

where p is a positive integer. If $n<p$ there are n terms in the series. If $n \geqslant p$,
2. $\frac{d^{n}}{d x^{n}}(\log x)^{p}=\frac{(-\mathrm{I})^{n-1}}{x^{n}}\left\{\stackrel{n}{C}_{n-1} p(\log x)^{p-1}-\stackrel{n}{C}_{n-2} p(p-1)(\log x)^{p-2}\right.$

$$
\left.+\ldots \ldots+(-1)^{p+1} C_{n-p}^{n} p(p-1)(p-2) \ldots 2 \cdot 1\right\}
$$

$7.369\{\log (\mathrm{I}+x)\}^{p}=\stackrel{p}{C}_{0} x^{p}-\stackrel{p+1}{C}_{1} \frac{x^{p+1}}{p+\mathrm{I}}+\stackrel{p+2}{C_{2}} \frac{x^{p+2}}{(p+1)(p+2)}-\ldots$. $-\mathbf{I}<x<+1$.
7.37 Derivatives of Powers of Functions. If $y=\phi(x)$.
I. $\frac{d^{n}}{d x^{n}} y^{p}=p\binom{n-p}{n}\left\{-\binom{n}{I} \frac{\mathrm{I}}{p-\mathrm{I}} y^{p-1} \frac{d^{n} y}{d x^{n}}+\binom{n}{2} \frac{\mathrm{I}}{p-2} y^{p-2} \frac{d^{n} y^{2}}{d x^{n}}-\ldots.\right\}$.
2. $\frac{d^{n}}{d x^{n}} \log y=\binom{n}{I} \frac{\mathrm{I}}{\mathrm{I} \cdot y} \frac{d^{n} y}{d x^{n}}-\binom{n}{2} \frac{\mathrm{I}}{2 \cdot y^{2}} \frac{d^{n} y^{2}}{d x^{n}}+\binom{n}{3} \frac{\mathrm{I}}{3 \cdot y^{3}} \frac{d^{n} y^{3}}{d x^{n}}-\ldots$.

7.38

I. $\frac{d^{n}(a+b x)^{m}}{d x^{n}}=m(m-1)(m-2) \ldots \ldots(m-[n-\mathrm{I}]) b^{n}(a+b x)^{m-n}$.
2. $\frac{d^{n}(a+b x)^{-1}}{d x^{n}}=(-\mathrm{I})^{n} \frac{n!b^{n}}{(a+b x)^{n+1}}$.
3. $\frac{d^{n}(a+b x)^{-\frac{1}{2}}}{d x^{n}}=(-\mathrm{I})^{n} \frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2^{n}(a+b x)^{n+\frac{1}{2}}} b^{n}$.
4. $\frac{d^{n} \log (a+b x)}{d x^{n}}=(-\mathrm{r})^{n-1} \frac{(n-\mathrm{I})!b^{n}}{\left(a^{2}+b x\right)^{n}}$.
5. $\frac{d^{n} e^{a x}}{d x^{n}}=a^{n} e^{a x}$.
6. $\frac{d^{n} \sin x}{d x^{n}}=\sin \left(\frac{1}{2} n \pi+x\right)$.
7. $\frac{d^{n} \cos x}{d x^{n}}=\cos \left(\frac{1}{2} n \pi+x\right)$.
8. $\frac{d^{n}}{d x^{n}}\left(\frac{\log x}{x}\right)=(-\mathrm{I})^{n} \frac{n!}{x^{n+1}}\left\{\log x-\left(\frac{\mathrm{I}}{\mathrm{I}}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}+\ldots+\frac{\mathrm{I}}{n}\right)\right\}$.
9. $\frac{d^{n+1}}{d x^{n+1}} \sin ^{-1} x=\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2^{n}(\mathrm{I}-x)^{n} \sqrt{\mathrm{I}-x^{2}}}\left\{\mathrm{I}-\frac{\mathrm{I}}{2 n-\mathrm{I}}\binom{n}{\mathrm{I}} \frac{\mathrm{I}-x}{\mathrm{I}+x}\right\}$
$+\frac{\mathrm{I} \cdot 3}{(2 n-\mathrm{I})(2 n-3)}\binom{n}{2}\left(\frac{\mathrm{I}-x}{\mathrm{I}+x}\right)^{2}-\frac{\mathrm{I} \cdot 3 \cdot 5}{(2 n-\mathrm{I})(2 n-3)(2 n-5)}\binom{n}{3}\left(\frac{\mathrm{I}-x}{\mathrm{I}+x}\right)^{3}$
10. $\frac{d^{n}}{d x^{n}}\left(\tan ^{-1} x\right)=(-\mathrm{I})^{n-1} \frac{(n-\mathrm{I})!}{\left(\mathrm{I}+x^{2}\right) \frac{n}{2}} \sin \left(n \tan ^{-1} \frac{\mathrm{I}}{x}\right)$.
7.39 Derivatives of Implicit Functions.
7.391 If y is a function of x, and $f(x, y)=0$.
I. $\frac{d y}{d x}=-\frac{\frac{\partial}{\partial x}}{\frac{\partial f}{\partial y}}$.
2. $\frac{d^{2} y}{d x^{2}}=-\frac{\left(\frac{\partial f}{\partial y}\right)^{2} \frac{\partial^{2} f}{\partial x^{2}}-2 \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \frac{\partial^{2} f}{\partial x \partial y}+\left(\frac{\partial f}{\partial x}\right)^{2} \frac{\partial^{2} f}{\partial v^{2}}}{\left(\frac{\partial f}{\partial y}\right)^{3}}$
7.392 If z is a function of x and y, and $f(x, y, z)=0$.
I. $\frac{\partial z}{\partial x}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial z}} ; \quad \frac{\partial z}{\partial y}=-\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial z}}$.
2. $\frac{\partial^{2} z}{\partial x^{2}}=-\frac{\left(\frac{\partial f}{\partial z}\right)^{2} \frac{\partial^{2} f}{\partial x^{2}}-2 \frac{\partial f}{\partial x} \frac{\partial f}{\partial x} \frac{d^{2} f}{\partial x \partial z}+\left(\frac{\partial f}{\partial x}\right)^{2} \frac{\partial^{2} f}{\partial z^{2}}}{\left(\frac{\partial f}{\partial z}\right)^{3}}$.
3. $\frac{\partial^{2} z}{\partial y^{2}}=-\frac{\left(\frac{\partial f}{\partial z}\right)^{2} \frac{\partial^{2} f}{\partial y^{2}}-2 \frac{\partial f}{\partial z} \frac{\partial f}{\partial y} \frac{\partial^{2} f}{\partial y \partial z}+\left(\frac{\partial f}{\partial y}\right)^{2} \frac{\partial^{2} f}{\partial z^{2}}}{\left(\frac{\partial f}{\partial z}\right)^{3}}$.
4. $\frac{\partial^{2} z}{\partial x \partial y}=-\frac{\left(\frac{\partial \dot{f}}{\partial z}\right)^{2} \frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial f}{\partial z}\left(\frac{\partial f}{\partial x} \frac{\partial^{2} f}{\partial y \partial z}+\frac{\partial f}{\partial y} \frac{\partial^{2} f}{\partial x \partial z}\right)+\frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \frac{\partial^{2} f}{\partial z^{2}}}{\left(\frac{\partial f}{\partial z}\right)^{3}}$.

VIII. DIFFERENTIAL EQUATIONS.

8.000 Ordinary differential equations of the first order. General form:

$$
\frac{d y}{d x}=f(x, y) .
$$

8.001 Variables are separable. $f(x, y)$ is of, or can be reduced to, the form:

$$
f(x, y)=-\frac{X}{Y}
$$

where X is a function of x alone and Y is a function of y alone. The solution is:

$$
\int X d x+\int Y d y=C
$$

8.002 Linear equations of the form:

$$
\frac{d y}{d x}+P(x) y=Q(x) .
$$

Solution:

$$
y=e^{-\int_{P(x) d x}}\left\{\int Q(x) e^{-\int_{P(x) d x}} d x+C\right\}
$$

8.003 Equations of the form:

$$
\frac{d y}{d x}+P(x) y=y^{n} Q(x)
$$

Solution:

$$
\frac{\mathrm{I}}{y^{n-1}} e^{-(n-\mathrm{I}) \boldsymbol{\int}_{P(x)} d x}+(n-\mathrm{I}) \int Q(\cdot x) e^{-(n-1)} \boldsymbol{S}_{P(x)} d x d x=C
$$

8.010 Homogeneous equations of the form:

$$
\frac{d y}{d x}=-\frac{P(x, y)}{Q(x, y)},
$$

where $P(x, y)$ and $Q(x, y)$ are homogeneous functions of x and y of the same degree. The change of variable:
gives the solution:

$$
y=v x
$$

$$
\int \frac{d v}{\frac{P(\mathrm{I}, v)}{Q(\mathrm{I}, v)}+v}+\log x=C .
$$

8.011 Equations of the form:

$$
\frac{d y}{d x}=\frac{a^{\prime} x+b^{\prime} y+c^{\prime}}{a x+b y+c} .
$$

If $a b^{\prime}-a^{\prime} b \neq 0$, the substitution

$$
x=x^{\prime}+p, \quad y=y^{\prime}+q,
$$

where

$$
\begin{aligned}
a p+b q+c & =0, \\
a^{\prime} p+b^{\prime} q+c^{\prime} & =0,
\end{aligned}
$$

renders the equation homogeneous, and it may be solved by 8.010.
If $a b^{\prime}-a^{\prime} b=0$ and $b^{\prime} \neq 0$, the change of variables to either x and z or y and z by means of

$$
z=a x+b y,
$$

will make the variables separable (8.001).
8.020 Exact differential equations. The equation,

$$
P(x, y) d x+Q(x, y) d y=0
$$

is exact 1 r ,

$$
\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y} .
$$

The solution is:

$$
\int P(x, y) d x+\int\left\{Q(x, y)-\frac{\partial}{\partial y} \int P(x, y) d x\right\} d y=C
$$

or

$$
\int Q(x, y) d y+\int\left\{P(x, y)-\frac{\partial}{\partial x} \int Q(x, y) d y\right\} d x=C .
$$

8.030 Integrating factors. $v(x, y)$ is an integrating factor of

$$
P(x, y) d x+Q(x, y) d y=0,
$$

if

$$
\frac{\partial}{\partial x}(v Q)=\frac{\partial}{\partial y}(v P) .
$$

8.031 If one only of the functions $P x+Q y$ and $P x-Q y$ is equal to \circ, the reciprocal of the other is an integrating factor of the differential equation.
8.032 Homogeneous equations. If neither $P x+Q y$ nor $P x-Q y$ is equal to o, $\frac{\mathrm{I}}{P \cdot x+Q y}$ is an integrating factor of the equation if it is homogeneous.
8.033 An equation of the form,

$$
P(x, y) y d x+Q(x, y) x d y=0,
$$

has an integrating factor:

$$
\frac{1}{x P-y Q} .
$$

8.034 If

$$
\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q}=F(x)
$$

is a function of x only, an integrating factor is

$$
e^{\int F(x) d x}
$$

8.035 If

$$
\frac{\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}}{P}=F(y)
$$

is a function of y only, an integrating factor is

$$
e^{\int F(y) d y}
$$

8.036 If

$$
\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q y-P x}=F(x y)
$$

is a function of the product $x y$ only, an integrating factor is

$$
e^{\int F(x y) d(x y)} .
$$

8.037 If

$$
\frac{x^{2}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)}{P x+Q y}=F\left(\frac{y}{x}\right)
$$

is a function of the quotient $\frac{y}{x}$ only, an integrating factor is

$$
e^{\int F}\left(\frac{y}{x}\right) d\left(\frac{y}{x}\right) .
$$

8.040 Ordinary differential equations of the first order and of degree higher than the first.

Write:

$$
\frac{d y}{d x}=p
$$

General form of equation:

$$
f(x, y, p)=0
$$

8.041 The equation can be solved as an algebraic equation in p. It can be written

$$
\left(p-R_{1}\right)\left(p-R_{2}\right) \ldots \ldots\left(p-R_{n}\right)=0 .
$$

The differential equations:

$$
\begin{aligned}
& p=R_{1}(x, y), \\
& p=R_{2}(x, y),
\end{aligned}
$$

.
may be solved by the previous methods. Write the solutions:

$$
f_{1}(x, y, c)=0 ; \quad f_{2}(x, y, c)=0 ; \ldots \ldots
$$

where c is the same arbitrary constant in each. The solution of the given differential equation is:

$$
f_{1}(x, y, c) f_{2}(x, y, c) \ldots \ldots .
$$

8.042 The equation can be solved for y :
r. $\quad y=f(x, p)$.

Differentiate with respect to x :
2.

$$
p=\psi\left(x, p, \frac{d p}{d x}\right) .
$$

It may be possible to integrate (2) regarded as an equation in the two variables x, p, giving a solution
3. $\quad \phi(x, p, c)=0$.

If p is eliminated between (1) and (3) the result will be the solution of the given equation.
8.043 The equation can be solved for x :
I.

$$
x=f(y, p)
$$

Differentiate with respect to y :
2.

$$
\frac{I}{p}=\psi\left(y, p, \frac{d p}{d y}\right) .
$$

If a solution of (2) can be found:
3.

$$
\phi(y, p, c)=0 .
$$

Eliminate p between (I) and (3) and the result will be the solution of the given equation.
8.044 The equation does not contain x :

It may be solved for p, giving,

$$
f(y, p)=0 .
$$

which can be integrated.

$$
\frac{d y}{d x}=F(y),
$$

8.045 The equation does not contain y :

$$
f(x, p)=0 .
$$

It may be solved for p, giving,

$$
\frac{d y}{d x}=F(x)
$$

which can be integrated.
It may be solved for x, giving,

$$
x=F(p),
$$

which may be solved by 8.043 .
8.050 Equations homogeneous in x and y.

General form:

$$
F\left(p, \frac{y}{x}\right)=0 .
$$

(a) Solve for p and proceed as in 8.001
(b) Solve for $\frac{y}{x}$.

$$
y=x f(p) .
$$

Differentiate with respect to x :

$$
\frac{d x}{x}=\frac{f^{\prime}(p) d p}{p-f(p)},
$$

which may be integrated.
8.060 Clairaut's differential equation:
I.
the solution is:

$$
\begin{aligned}
& y=p x+f(p) \\
& y=c x+f(c)
\end{aligned}
$$

The singular solution is obtained by eliminating p between (I) and
2.

$$
x+f^{\prime}(p)=0
$$

8.061 The equation
I.

$$
y=x f(p)+\phi(p) .
$$

The solution is that of the linear equation of the first order:
2.

$$
\frac{d x}{d p}-\frac{f^{\prime}(p)}{p-f(p)} x=\frac{\phi^{\prime}(p)}{p-f(p)},
$$

which may be solved by 8.002 . Eliminating p between (I) and the solution of (2) gives the solution of the given equation.
8.062 The equation:

$$
x \phi(p)+y \psi(p)=\chi(p),
$$

may be reduced to 8.061 by dividing by $\psi(p)$.

DIFFERENTIAL EQUATIONS OF AN ORDER HIGHER THAN THE FIRST
8.100 Linear equations with constant coefficients. General form:

$$
\frac{d^{n} y}{d x^{n}}+a_{1} \frac{d^{n-1} y}{d x^{n-1}}+a_{2} \frac{d^{n-2} y}{d x^{n-2}}+\ldots+a_{n} y=V(x)
$$

The complete solution consists of the sum of
(a) The complementary function, obtained by solving the equation with $V(x)=0$, and containing n arbitrary constants, and
(b) The particular integral, with no arbitrary constants.
8.101 The complementary function. Assume $y=e^{\lambda x}$. The equation for determining λ is:

$$
\lambda^{n}+a_{1} \lambda^{n-1}+a_{2} \lambda^{n-2}+\ldots . .+a_{n}=0 .
$$

8.102 If the roots of 8.101 are all real and distinct the complementary function is:

$$
y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x}+\ldots+c_{n} e^{\lambda_{n} x} .
$$

8.103 For a pair of complex roots:

$$
\mu \pm i \nu
$$

the corresponding terms in the complementary function are:

$$
e^{\mu x}(A \cos \nu x+B \cos \nu x)=C e^{\mu x} \cos (\nu x-\theta)=C e^{\mu x} \sin (\nu x+\theta),
$$

where

$$
C=\sqrt{A^{2}+B^{2}}, \quad \tan \theta=\frac{B}{A} .
$$

8.104 If there are r equal real roots the terms in the complementary function corresponding to them are:

$$
e^{\lambda x}\left(A_{1}+A_{2} x+A_{3} x^{2}+\ldots+A_{r} x^{r-1}\right)
$$

where λ is the repeated root, and $A_{1}, A_{2}, \ldots ., A_{r}$ are the r arbitrary constants.
8.105 If there are m equal pairs of complex roots the terms in the complementary function corresponding to them are:

$$
\begin{aligned}
e^{\mu x}\left\{\left(A_{1}+A_{2} x+A_{3} x^{2}+\ldots\right.\right. & \left.+A_{m} x^{m-1}\right) \cos \nu x \\
& \left.+\left(B_{1}+B_{2} x+B_{3} x^{2}+\ldots+B_{m} x^{m-1}\right) \sin \nu x\right\}
\end{aligned}
$$

$=e^{\mu x}\left\{C_{1} \cos \left(\nu x-\theta_{1}\right)+C_{2} x \cos \left(\nu x-\theta_{2}\right)+\ldots+C_{m} x^{m-1} \cos \left(\nu x-\theta_{m}\right)\right\}$
$=e^{\mu x}\left\{C_{1} \sin \left(\nu x+\theta_{1}\right)+C_{2} x \sin \left(\nu x+\theta_{2}\right)+\ldots+C_{m} x^{m-1} \sin \left(\nu x+\theta_{m}\right)\right\}$
where $\lambda_{ \pm} i \mu$ is the repeated root and

$$
\begin{aligned}
C_{k} & =\sqrt{\overline{A_{k}^{2}+B_{k}^{2}},} \\
\tan \theta_{k} & =\frac{B_{k}}{A_{k}} .
\end{aligned}
$$

The particular integral.
8.110 The operator D stands for $\frac{\partial}{\partial x}, D^{2}$ for $\frac{\partial^{2}}{\partial x^{2}}, \ldots \ldots$.

The differential equation 8.100 may be written:

$$
\begin{gathered}
\left(D^{n}+a_{1} D^{n-1}+a_{2} D^{n-2}+\ldots+a_{n}\right) y=f(D) y=V(x) \\
y=\frac{V(x)}{f(D)}, \\
f(D)=\left(D-\lambda_{1}\right)\left(D-\lambda_{2}\right) \ldots \ldots\left(D-\lambda_{n}\right),
\end{gathered}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, ., \lambda_{n}$ are determined as in 8.101. The particular integral is:

$$
y=e^{\lambda_{1} x} \int e^{\left(\lambda_{2}-\lambda_{1}\right) x} d x \int e\left(\left(_{3}-\lambda_{2}\right)^{x} d x \ldots \int e^{-\lambda_{n}(x)} V(x) d x .\right.
$$

$8.111 \frac{1}{f(D)}$ may be resolved into partial fractions:

$$
\frac{\mathrm{I}}{f(D)}=\frac{N_{1}}{D-\lambda_{1}}+\frac{N_{2}}{D-\lambda_{2}}+\ldots+\frac{N_{n}}{D-\lambda_{n}} .
$$

The particular integral is:
$y=N_{1} e^{\lambda_{1} x} \int e^{-\lambda_{1} x} V(x) d x+N_{2} e^{\lambda_{2} x} \int e^{-\lambda_{2} x} V(x) d x+\ldots .$.

$$
+N_{n} \lambda_{n} x \int e^{-\lambda_{n} x} V(x) d x
$$

THE PARTICULAR INTEGRAL IN SPECIAL CASES

8.120 $V(x)=$ const. $=c$,

$$
y=\frac{c}{a_{n}} .
$$

8.121 $V(x)$ is a rational integral function of x of the m th degree. Expand $\frac{\mathrm{I}}{f(D)}$ in ascending powers of D, ending with D^{m}. Apply the operators D, D^{2}, , D^{m} to each term of $V(x)$ separately and the particular integral will be the sum of the results of these operations.
8.122

$$
\begin{aligned}
V(x) & =c e^{k x}, \\
y & =\frac{c}{f(k)} e^{k x},
\end{aligned}
$$

unless k is a root of $f(D)=0$. If k is a multiple root of order r of $f(D)=0$

$$
y=\frac{c x^{r} e^{k x}}{r!\psi(k)},
$$

where

$$
f(D)=(D-k)^{\imath} \psi(D) .
$$

8.123

$$
V(x)=c \cos (k x+\alpha) .
$$

If $i k$ is not a root of $f(D)=0$ the particular integral is the real part of

$$
\frac{c}{f(i k)} e^{i(k x+\alpha)} .
$$

If $i k$ is a multiple root of order r of $f(D)=0$ the particular integral is the real part of

$$
\frac{c x^{r} e^{i(k x+\alpha)}}{f^{(r)}(i k)}
$$

where $f^{(r)}(i k)$ is obtained by taking the r th derivative of $f(D)$ with respect to D, and substituting $i k$ for D.
8.124

$$
V(x)=c \sin (k x+\alpha) .
$$

If $i k$ is not a root of $f(D)=0$ the particular integral is the real part of

$$
\frac{-i c e^{i(k x+\alpha)}}{f(i k)}
$$

If $i k$ is a multiple root of order r of $f(D)=0$ the particular integral is the real .part of

$$
\frac{-i c x^{T} e^{i(k x+\alpha)}}{f^{(r)}(i k)}
$$

8.125

$$
V(x)=c e^{k x} \cdot X
$$

where X is any function of x.

$$
y=c e^{k x} \frac{\mathrm{I}}{f(D+k)} X .
$$

If X is a rational integral function of x this may be evaluated by the method of 8.121.
$8.126 \quad V(x)=c \cos (k x+\alpha) \cdot X$, where X is any function of x. The particular integral is the real part of

$$
c e^{i k x+\alpha)} \frac{\mathrm{I}}{f(D+i k)} X
$$

8.127

$$
V(x)=c \sin (k x+\alpha) \cdot X
$$

The particular integral is the real part of

$$
-i c e^{i(k x+\alpha)} \frac{\mathrm{I}}{f(D+i k)} X
$$

8.128

$$
V(x)=c e^{\beta x} \cos (k x+\alpha) .
$$

If $(\beta+i k)$ is not a root of $f(D)=0$ the particular integral is the real part of

$$
c e^{i(k x+\alpha)} \frac{\mathrm{I}}{f(\beta+i k)} e^{\beta x} .
$$

If $(\beta+i k)$ is a multiple root of order r of $f(D)=0$ the particular integral is the real part of

$$
\frac{c e^{i(k x+\alpha)} x^{r} e^{\beta x}}{f^{(r)}(\beta+i k)}
$$

where $f^{(r)}(\beta+i k)$ is formed as in 8.123.
8.129

$$
V=c e^{\beta x} \sin (k x+\alpha) .
$$

If $(\beta+i k)$ is not a root of $f(D)=\circ$ the particular integral is the real part of

$$
\frac{-i c e^{i(k x+\alpha)} e^{\beta_{x}}}{f(\beta+i k)}
$$

If $(\beta+i k)$ is a multiple root of order r of $f(D)=0$ the particular integral is the real part of

$$
\frac{-i c e^{i(k x+\alpha)} x^{r} e^{\beta x}}{f^{(r)}(\beta+i k)}
$$

8.130

$$
V(x)=x^{m} X
$$

where X is any function of x.
$y=x^{m} \frac{\mathrm{I}}{f(D)} X+m x^{m-1}\left\{\frac{d}{d D} \frac{\mathrm{I}}{f(D)}\right\} X+\frac{m(m-\mathrm{I})}{2!} x^{m-2}\left\{\frac{d^{2}}{d D^{2}} \frac{\mathrm{I}}{f(D)}\right\} X+\ldots \ldots$.
The series must be extended to the ($m+\mathrm{I}$)th term.
8.200 Homogeneous linear equations. General form:

$$
x^{n} \frac{d^{n} y}{d x^{n}}+a_{1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{n-1} x \frac{d y}{d x}+a_{n} y=V(x) .
$$

Denote the operator:

$$
\begin{gathered}
x \frac{d}{d x}=\theta \\
x^{m} \frac{d^{m}}{d x^{m}}=\theta(\theta-1)(\theta-2) \ldots(\theta-m+1)
\end{gathered}
$$

The differential equation may be written:

$$
F(\theta) \cdot y=V(x)
$$

The complete solution is the sum of the complementary function, obtained by solving the equation with $V(x)=0$, and the particular integral.
8.201 The complementary function.

$$
y=c_{1} x^{\lambda_{1}}+c_{2} x^{\lambda_{2}}+\ldots+c_{n} x^{\lambda_{n}}
$$

where $\lambda_{\mathrm{i}}, \lambda_{2}, \ldots, \lambda_{n}$ are the n roots of

$$
F(\lambda)=0
$$

if the roots are all distinct.
If λ_{k} is a multiple root of order r, the corresponding terms in the complementary function are:

$$
x^{\lambda_{k}\left\{b_{1}+b_{2} \log x+b_{3}(\log x)^{2}+\ldots+b_{r}(\log x)^{r-1}\right\} . ~}
$$

If $\lambda=\mu \pm i \nu$ is a pair of complex roots, of order r, the corresponding terms in the complementary function are:

$$
\begin{aligned}
& x^{\mu}\left\{\left[A_{1}+A_{2} \log x+A_{3}(\log x)^{2}+\ldots+A_{r}(\log x)^{r-1}\right] \cos (\nu \log x)\right. \\
& \\
& \left.\quad+\left[B_{1}+B_{2} \log x+B_{3}(\log x)^{2}+\ldots+B_{r}(\log x)^{r-1}\right] \sin (\nu \log x)\right\} .
\end{aligned}
$$

8.202 The particular integral.

If

$$
\begin{gathered}
F(\theta)=\left(\theta-\lambda_{1}\right)\left(\theta-\lambda_{2}\right) \cdots \cdot\left(\theta-\lambda_{n}\right), \\
y=x^{\lambda_{1}} \int x^{\lambda_{2}-\lambda_{1}-1} d x \int x^{\lambda_{3}-\lambda_{2}-1} d x \ldots x^{\lambda_{n} \lambda_{n-1}-1} V(x) d x .
\end{gathered}
$$

8.203 The operator $\frac{\mathrm{I}}{F(\theta)}$ may be resolved into partial fractions:

$$
\begin{aligned}
& \frac{\mathrm{I}}{F(\theta)}=\frac{N_{1}}{\theta-\lambda_{1}}+\frac{N_{2}}{\theta-\lambda_{2}}+\ldots++\frac{N_{n}}{\theta-\lambda_{n}}, \\
& y= N_{1} x^{\lambda_{1}} \int x^{-\lambda_{1}-1} V(x) d x+ \\
&+N_{2} x^{\lambda_{2}} \int x^{-\lambda_{2}-1} V(x) d x \\
&+\ldots+N_{n} x^{\lambda_{n}} \int x^{-\lambda_{n}-1} V(x) d x .
\end{aligned}
$$

The particular integral in special cases.
8.210

$$
\begin{aligned}
V(x) & =c x^{k}, \\
y & =\frac{c}{F(k)} x^{k},
\end{aligned}
$$

unless k is a root of $F(\theta)=0$.
If k is a multiple root of order r of $F(\theta)=0$.

$$
y=\frac{c(\log x)^{r}}{F^{(r)}(k)},
$$

where $F^{(\tau)}(k)$ is obtained by taking the r th derivative of $F(\theta)$ with respect to θ and after differentiation substituting k for θ.
8.211

$$
V(x)=c x^{k} X
$$

where X is any function of x.

$$
y=c x^{k} \frac{\mathrm{I}}{F(\theta+k)} X
$$

8.220 The differential equation:

$$
(a+b x)^{n} \frac{d^{n} y}{d x^{n}}+(a+b x)^{n-1} a_{1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots .+(a+b x) a_{n-1} \frac{d y}{d x}+a_{n} y=V(x)
$$

may be reduced to the homogeneous linear equation (8.200) by the change of variable

$$
z=a+b x
$$

It may be reduced to a linear equation with constant coefficients by the change of variable:

$$
e^{z}=a+b x
$$

8.230 The general linear equation. General form:

$$
P_{0} \frac{d^{n} y}{d x^{n}}+P_{1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots+P_{n-1} \frac{d y}{d x}+P_{n}=V
$$

where $P_{0}, P_{1}, \ldots ., P_{n}, V$ are functions of x only.
The complete solution is the sum of:
(a) The complementary function, which is the general solution of the equation with $V=0$, and containing n arbitrary constants, and
(b) The particular integral.
8.231 Complementary Function. If $y_{1}, y_{2}, \ldots, y_{n}$ are n independent solutions of 8.230 with $V=0$, the complementary function is

$$
y=c_{1} y_{1}+c_{2} y_{2}+\cdots \cdots+c_{n} y_{n}
$$

The conditions that $y_{1}, y_{2}, \ldots, y_{n}$ be n independent solutions is that the determinant $\Delta \neq 0$.

When $\Delta \neq 0$:

$$
\Delta=C e^{-\int \frac{P_{1}}{P_{0}} d x}
$$

8.232 The particular integral. If Δ_{k} is the minor of $\frac{d^{n-1} y_{k}}{d x^{n-1}}$ in Δ, the particular integral is:

$$
y=y_{1} \int \frac{V \Delta_{1}}{P_{0} \Delta} d x+y_{2} \int \frac{V \Delta_{2}}{P_{0} \Delta} d x+\ldots+y_{n} \int \frac{V \Delta_{n}}{P_{0} \Delta} d x .
$$

8.233 If y_{1} is one integral of the equation 8.230 with $v=0$, the substitution

$$
y=u y_{1}, \quad v=\frac{d u}{d x},
$$

will result in a linear equation of order $n-\mathrm{I}$.
8.234 If $y_{1}, y_{2}, \ldots \ldots, y_{n-1}$ are $n-$ I independent integrals of 8.230 with $V=0$ the complete solution is:

$$
y=\sum_{k=\mathrm{I}}^{n-\mathrm{I}} y c_{k k}+c_{n} \sum_{k=\mathrm{I}}^{n-\mathrm{I}} y_{k} \int \frac{\Delta_{k}}{\Delta^{2}} e^{-\int \frac{P_{1}}{P_{0}} d x} d x
$$

where Δ is the determinant:
and Δ_{k} is the minor of $\frac{d^{n-2} y_{k}}{d x^{n-2}}$ in Δ.

SYMBOLIC METHODS

8.240 Denote the operators:

$$
\begin{aligned}
\frac{d}{d x} & =D \\
x \frac{d}{d x} & =\theta .
\end{aligned}
$$

8.241 If X is a function of x :
r.

$$
(D-m)^{-1} X=e^{m x} \cdot \int^{c^{-m x}} X d x .
$$

2.

$(D-m)^{-1} \circ=c e^{m x}$.
3.

$$
(\theta-m)^{-1} X=x^{m} . \int x^{-m-1} X d x .
$$

4.

$$
(\theta-m)^{-1} \circ=c x^{m} .
$$

8.242 If $F(D)$ is a polynomial in D,
I.

$$
\begin{aligned}
F(D) e^{m x} & =e^{m x} F(m) \\
F(D) e^{m x} X & =e^{m x} F(D+m) X \\
e^{m x} F(D) X & =F(D-m) e^{m x} X
\end{aligned}
$$

2.
3.

8.243 If $F(\theta)$ is a polynomial in θ,
I.

$$
\begin{aligned}
F(\theta) x^{m} & =x^{m} F(m) \\
F(\theta) x^{m} X & =x^{m} F(\theta+m) X \\
x^{m} F(\theta) X & =F(\theta-m) x^{m} X
\end{aligned}
$$

8.244

$$
x^{m} \frac{d^{m}}{d x^{m}}=\theta(\theta-\mathrm{I})(\theta-2) \ldots(\theta-m+\mathrm{I})
$$

INTEGRATION IN SERIES

8.250 If a linear differential equation can be expressed in the symbolic form:

$$
\left[x^{m} F(\theta)+f(\theta)\right] y=0
$$

where $F(\theta)$ and $f(\theta)$ are polynomials in θ, the substitution,

$$
y=\sum_{n=0}^{\infty} a_{n} x^{\rho+n m}
$$

leads to the equations,

$$
\begin{aligned}
a_{0} f(\rho) & =0, \\
a_{0} F(\rho)+a_{1} f(\rho+m) & =0, \\
a_{1} F(\rho+m)+a_{2} f(\rho+2 m) & =0, \\
a_{2} F(\rho+2 m)+a_{3} f(\rho+3 m) & =0 .
\end{aligned}
$$

8.251 The equation

$$
f(\rho)=0
$$

is the "indicial equation." If it is satisfied a_{0} may be chosen arbitrarily, and the other coefficients are then determined.
8.252 An equation:

$$
\left[F(\theta)+\phi(\theta) \frac{d^{m}}{d x^{m}}\right] y=0
$$

may be reduced to the form 8.250, where,

$$
f(\theta)=\phi(\theta-m) \theta(\theta-1)(\theta-2) \ldots(\theta-m+\mathbf{I})
$$

If the degree of the polynomial f is greater than that of F the series always converges; if the degree of f is less than that of F the series always diverges.
8.300

$$
\frac{d^{n} y}{d x^{n}}=X,
$$

where X is a function of x only.

$$
y=\frac{\mathrm{I}}{(n-\mathrm{I})!} \int_{0}^{x}(x-t)^{n-1} T d t+c_{1} x^{n-1}+c_{2} x^{n-2}+\ldots+c_{n-1} x+c_{n}
$$

where T is the same function of t that X is of x.

8.301

$$
\frac{d^{2} y}{d x^{2}}=Y,
$$

where Y is a function of y only.
If

$$
\psi(y)=2 \int Y d y
$$

the solution is:

$$
\int \frac{d y}{\left\{\psi(y)+c_{1}\right\}^{\frac{1}{2}}}=x+c_{2} .
$$

8.302

$$
\frac{d^{n} y}{d x^{n}}=F\left(\frac{d^{n-1} y}{d x^{n-1}}\right) .
$$

Put

$$
\begin{aligned}
\frac{d^{n-1} y}{d x^{n-1}} & =Y ; \quad \frac{d Y}{d x}=F(Y), \\
x+c_{1} & =\int \frac{d Y}{F(Y)}=\psi(Y), \\
Y & =\phi\left(x+c_{1}\right), \\
\frac{d^{n-1} y}{d x^{n-1}} & =\phi\left(x+c_{1}\right),
\end{aligned}
$$

and this equation may be solved by 8.300 .
Or the equation can be solved:

$$
y=\int \frac{d Y}{F(Y)} \int \frac{d Y}{F(Y)} \cdots \cdots \int \frac{Y d Y}{F(Y)},
$$

where the integration is to be carried out from right to left and an arbitrary constant added after each integration. Eliminating Y between this result and
gives the solution.

$$
Y=\phi\left(x+c_{1}\right)
$$

8.303

$$
\frac{d^{n} y}{d x^{n}}=F\left(\frac{d^{n-2} y}{d x^{n-2}}\right) .
$$

Put

$$
\begin{aligned}
\frac{d^{n-2} y}{d x^{n-2}} & =Y \\
\frac{d^{2} Y}{d x^{2}} & =F(Y)
\end{aligned}
$$

which may be solved by 8.301. If the solution can be expressed:

$$
Y=\phi(x),
$$

$n-2$ integrations will solve the given differential equation.
Or putting

$$
\begin{gathered}
\psi(y)=2 \int Y d y \\
y=\int \frac{d Y}{\left\{c_{1}+\psi(Y)\right\}^{\frac{3}{2}}} \int \frac{d Y}{\left\{c_{1}+\psi(Y)\right\}^{\frac{1}{2}}} \cdots \cdots \iint \frac{Y d Y}{\left\{c_{1}+\psi(Y)\right\}^{\frac{1}{2}}},
\end{gathered}
$$

where the integration is to be carried out from right to left and an arbitrary constant added after each integration. The solution of the given differential equation is obtained by elimination between this result and

$$
Y=\phi(x) .
$$

8.304 Differential equations of the second order in which the independent variable does not appear. General type:

$$
F\left(y, \frac{d y}{d x^{\prime}}, \frac{d^{2} y}{d x^{2}}\right)=0
$$

Put

$$
p=\frac{d y}{d x}, \quad p \frac{d p}{d y}=\frac{d^{2} y}{d x^{2}} .
$$

A differential equation of the first order results:

$$
F\left(y, p, p \frac{d p}{d y}\right)=0 .
$$

If the solution of this equation is:

$$
p=f(y),
$$

the solution of the given equation is,

$$
x+c_{2}=\int \frac{d y}{f(y)} .
$$

8.305 Differential equations of the second order in which the dependent variable does not appear. General type:

$$
F\left(x, \frac{d y}{d x^{\prime}}, \frac{d^{2} y}{d x^{2}}\right)=0
$$

Put

$$
p=\frac{d y}{d x}, \quad \frac{d p}{d x}=\frac{d^{2} y}{d x^{2}} .
$$

A differential equation of the first order results:

$$
F\left(x, p, \frac{d p}{d x}\right)=0 .
$$

If the solution of this equation is:

$$
p=f(x)
$$

the solution of the given equation is:

$$
y=c_{2}+\int f(x) d x
$$

8.306 Equations of an order higher than the second in which either the independent or the dependent variable does not appear. The substitution:

$$
\frac{d y}{d x}=p
$$

as in 8.304 and 8.305 will result in an equation of an order less by unity than the given equation.
8.307 Homogeneous differential equations. If y is assumed to be of dimensions n, x of dimensions $\mathrm{I}, \frac{d y}{d x}$ of dimensions $(n-\mathrm{I}), \frac{d^{2} y}{d x^{2}}$ of dimensions $(n-2)$, then if every term has the same dimensions the equation is homogeneous. If the independent variable is changed to θ and the dependent variable changed to z by the relations,

$$
x=e^{\theta}, \quad y=z e^{n \theta},
$$

the resulting equation will be one in which the independent variable does not appear and its order can be lowered by unity by 8.306 .

If $y, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \ldots$ are assumed all to be of the same dimensions, and the equation is homogeneous; the substitution:

$$
y=e^{\int u d x},
$$

will result in an equation in u and x of an order less by unity than the given equation.
8.310 Exact differential equations. A linear differential equation:

$$
P_{n} \frac{d^{n} y}{d x^{n}}+P_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots+P_{1} \frac{d y}{d x}+P_{0}=P
$$

where $P, P_{0}, P_{1}, \ldots \ldots P_{n}$ are functions of x is exact if:

$$
P_{0}-\frac{d P_{1}}{d x}+\frac{d^{2} P_{2}}{d x^{2}}-\ldots \ldots+(-1)^{n} \frac{d^{n} P_{n}}{d x^{n}}=0 .
$$

The first integral is:

$$
Q_{n} \frac{d^{n-1}}{d x^{n-1}}+Q_{n-1} \frac{d^{n-2} y}{d x^{n-2}}+\ldots+Q_{1} y=\int P d x+c_{1}
$$

where,

$$
\begin{aligned}
Q_{n} & =P_{n}, \\
Q_{n-1} & =P_{n-1}-\frac{d P_{n}}{d x}, \\
Q_{n-2} & =P_{n-2}-\frac{d P_{n-1}}{d x}+\frac{d^{2} P_{n}}{d x^{2}}, \\
\cdots & \cdots \\
\cdots & \\
Q_{1} & =P_{1}-\frac{d P_{2}}{d x}+\frac{d^{2} P_{3}}{d x^{2}}-\ldots+(-1)^{n-1} \frac{d^{n-1} P_{n}}{d x^{n-1}} .
\end{aligned}
$$

If the first integral is an exact differential equation the process may be continued as long as the coefficients of each successive integral satisfy the condition of integrability.
8.311 Non-linear differential equations. A non-linear differential equation of the nth order:

$$
V\left(\frac{d^{n} y}{d x^{n}}, \frac{d^{n-1} y}{d x^{n-1}}, \ldots \ldots, \frac{d y}{d x}, y, x\right)=0
$$

to be exact must contain $\frac{d^{n} y}{d x^{n}}$ in the first degree only. Put

$$
\frac{d^{n-1} y}{d x^{n-1}}=p, \quad \frac{d^{n} y}{d x^{n}}=\frac{d p}{d x}
$$

Integrate the equation on the assumption that p is the only variable and $\frac{d p}{d x}$ its differential coefficient. Let the result be V_{1}. In $V d x-d V_{1}, \frac{d^{n-1} y}{d x^{n-1}}$ is the highest differential coefficient and it occurs in the first degree only. Repeat this process as often as may be necessary and the first integral of the exact differential equation will be

$$
V_{1}+V_{2}+\ldots \ldots=c
$$

If this process breaks down owing to the appearance of the highest differential coefficient in a higher degree than the first the given differential equation was not exact.
8.312 General condition for an exact differential equation. Write:

$$
\frac{d y}{d x}=y^{\prime} \quad \frac{d^{2} y}{d x^{2}}=y^{\prime \prime} \ldots \quad \frac{d^{n} y}{d x^{n}}=y^{(n)} .
$$

In order that the differential equation:

$$
V\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots \ldots, y^{(n)}\right)=0
$$

be exact it is necessary and sufficient that

$$
\frac{\partial V}{\partial y}-\frac{\partial}{\partial x}\left(\frac{\partial V}{\partial y^{\prime}}\right)+\frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial V}{\partial y^{\prime \prime}}\right)-\ldots \ldots+(-1)^{n} \frac{\partial^{n}}{\partial x^{n}}\left(\frac{\partial V}{\partial y^{(n)}}\right)=0 .
$$

8.400 Linear differential equations of the second order.

General form:

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R
$$

where P, Q, R are, in general, functions of x.
8.401 If a solution of the equation with $R=0$:

$$
y=w
$$

can be found, the complete solution of the given differential equation is:

$$
y=c_{2} w+c_{1} w \int e^{-\int P d x} \frac{d x}{w^{2}}+w \int e^{-\int P d x} \frac{d x}{w^{2}} \int w R e^{\int P d x} d x .
$$

8.402 The general linear differential equation of the second order may be reduced to the form:
where:

$$
\frac{d^{2} v}{d x^{2}}+I v=R e^{\frac{1}{2} \int P d x}
$$

$$
\begin{aligned}
& y=v e^{-\frac{1}{1} \int P d x} \\
& I=Q-\frac{1}{2} \frac{d P}{d x}-\frac{1}{4} P^{2} .
\end{aligned}
$$

8.403 The differential equation:

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=0
$$

by the change of independent variable to

$$
z=\int e^{-\int P d x} d x
$$

becomes:

$$
\frac{d^{2} y}{d z^{2}}+Q e^{2} \int P d x y=0
$$

By the change of independent variable.

$$
\begin{aligned}
& d z=Q e^{\int P d x} d x, \\
& Q e^{2} \quad P d x=\frac{1}{U(z)},
\end{aligned}
$$

it becomes:

$$
\frac{d}{d z}\left\{\frac{\mathrm{x}}{U} \frac{d y}{d z}\right\}+y=0 .
$$

8.404 Resolution of the operator. The differential equation:

$$
u \frac{d^{2} y}{d x^{2}}+v \frac{d y}{d x}+w y=0
$$

may sometimes be solved by resolving the operator,

$$
u \frac{d^{2}}{d x^{2}}+v \frac{d}{d x}+w
$$

into the product,

$$
\left(p \frac{d}{d x}+q\right)\left(r \frac{d}{d x}+s\right)
$$

The solution of the differential equation reduces to the solution of

$$
r \frac{d y}{d x}+s y=c_{1} e^{-\int \frac{q}{p} d x}
$$

The equations for determining p, r, q, s are:

$$
\begin{aligned}
p r & =u \\
q r+p s+p \frac{d r}{d x} & =v \\
q s+p \frac{d s}{d x} & =w
\end{aligned}
$$

8.410 Variation of parameters. The complete solution of the differential equation:

$$
\frac{d^{2} y}{d x^{2}}+P \frac{d y}{d x}+Q y=R
$$

is

$$
y=c_{1} f_{2}(x)+c_{2} f_{1}(x)+\frac{1}{C} \int^{x} R(\xi) e^{f^{\xi}{ }_{P d x}}\left\{f_{2}(x) f_{1}(\xi)-f_{1}(x) f_{2}(\xi)\right\} d \xi
$$

where $f_{1}(x)$ and $f_{2}(x)$ are two particular solutions of the differential equation with $R=0$, and are therefore connected by the relation

$$
f_{1} \frac{d f_{2}}{d x}-f_{2} \frac{d f_{1}}{d x}=C e^{-P d x}
$$

C is an absolute constant depending upon the forms of f_{1} and f_{2} and may be taken as unity.
8.500 The differential equation:

$$
\left(a_{2}+b_{2} x\right) \frac{d^{2} y}{d x^{2}}+\left(a_{1}+b_{1} x\right) \frac{d y}{d x}+\left(a_{0}+b_{0} x\right) y=0 .
$$

8.501 Let

$$
D=\left(a_{0} b_{1}-a_{1} b_{0}\right)\left(a_{1} b_{2}-a_{2} b_{1}\right)-\left(a_{0} b_{2}-a_{2} b_{0}\right)^{2}
$$

Special cases.
$8.502 b_{2}=b_{1}=b_{0}=0$.
The solution is:

$$
y_{1}=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x},
$$

where:

$$
\frac{\lambda_{1}}{\lambda_{2}}=\frac{-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{0} a_{2}}}{2 a_{2}} .
$$

$8.503 D=0, b_{2}=0$,

$$
y=e^{\lambda x}\left\{c_{1}+c_{2} \int e^{-(k+2 \lambda) x-m x^{2}} d x\right\},
$$

where:

$$
k=\frac{a_{1}}{a_{2}} \quad m=\frac{b_{1}}{2 a_{2}} \quad \lambda=-\frac{b_{0}}{b_{1}} .
$$

$8.504 D=0, b_{2} \neq 0$:

$$
y=e^{\lambda x}\left\{c_{1}+c_{2} \int e^{-(k+2 \lambda) x}\left(a_{2}+b_{2} x\right)^{m} d x\right\},
$$

where

$$
k=\frac{b_{1}}{b_{2}} \quad m=\frac{a_{2} b_{1}-a_{1} b_{2}}{b_{2}^{3}},
$$

and λ is the common root of:

$$
\begin{aligned}
& a_{2} \lambda^{2}+a_{1} \lambda+a_{0}=0, \\
& b_{2} \lambda^{2}+b_{1} \lambda+b_{0}=0 .
\end{aligned}
$$

8.505 $D \neq 0, b_{2}=b_{1}=0$. If $\eta=f(\xi)$ is the complete solution of:

$$
\begin{aligned}
\frac{d^{2} \eta}{d \xi^{2}}+\xi \eta & =0 \\
y & =e^{\lambda \times f}\left(\frac{\alpha+\beta x}{\beta^{3}}\right),
\end{aligned}
$$

where

$$
\alpha=\frac{4 a_{0} a_{2}-a_{1}{ }^{2}}{4 a_{2}^{2}} \quad \beta=\frac{b_{0}}{a_{2}} \quad \lambda=-\frac{a_{1}}{2 a_{2}} .
$$

8.510 The differential equation 8.500 under the condition $D \neq \circ$ can always be reduced to the form:

$$
\xi \frac{d^{2} \phi}{d \xi^{2}}+(p+q+\xi) \frac{d \phi}{d \xi}+p \phi=0 .
$$

8.511 Denote the complete solution of 8.510:
$8.512 b_{2}=b_{1}=0$:

$$
\phi=F\{\xi\} .
$$

where:

$$
\begin{gathered}
y=e^{\lambda x+(\mu+\nu x)^{3}} F\left\{2(\mu+\nu x)^{\frac{3}{2}}\right\}, \\
\lambda=-\frac{a_{1}}{2 a_{2}} \quad \mu=\frac{a_{1}{ }^{2}-4 a_{0} a_{2}}{4 a_{2}^{2}}\left(\frac{4 a_{2}{ }^{2}}{9 b_{0}^{2}}\right)^{\frac{3}{3}}, \\
\nu=-\left(\frac{4 b_{0}}{9 a_{2}}\right)^{3} \\
p=q=\frac{1}{6}
\end{gathered}
$$

$8.513 b_{2}=0, b_{1} \neq 0$:

$$
y=e^{\lambda x} F\left\{\frac{\left(\alpha_{1}+\beta_{1} x\right)^{2}}{2 \beta_{1}}\right\}
$$

where:

$$
\begin{aligned}
& \lambda=-\frac{b_{0}}{b_{1}} \quad \alpha_{1}=\frac{a_{1} b_{1}-2 a_{2} b_{0}}{a_{2} b_{1}}, \quad \beta_{1}=\frac{b_{1}}{a_{2}}, \\
& p=\frac{a_{2} b_{0}^{2}-a_{1} b_{0} b_{1}+a_{0} b_{1}^{2}}{2 b_{1}^{3}}, \\
& q=\frac{1}{2}-p .
\end{aligned}
$$

$8.514 \quad b_{2} \neq 0, b_{0}=\frac{b_{1}{ }^{2}}{4 b_{2}}$:
where:

$$
y=e^{\lambda x+\sqrt{\mu+\nu x}} F\{2 \sqrt{\mu+\nu x}\},
$$

$$
\begin{aligned}
& \lambda=-\frac{b_{1}}{2 b_{2}}, \mu=-a_{2} \frac{4 a_{0} b_{2}^{2}-2 a_{1} b_{1} b_{2}+a_{2} b_{1}^{2}}{b_{2}^{4}}, \\
& \nu=-\frac{4 a_{0} b_{2}^{2}-2 a_{1} b_{1} b_{2}+a_{2} b_{1}^{2}}{b_{2}^{3}}, \\
& p=q=\frac{a_{1} b_{2}-a_{2} b_{1}}{b_{2}^{2}}-\frac{I}{2} .
\end{aligned}
$$

$8.515 \quad b_{2} \neq 0, b_{0} \neq \frac{b_{1}^{2}}{4 b_{2}}:$

$$
y=e^{\lambda x} F\left\{\frac{\beta_{1}\left(\alpha_{2}+\beta_{2} x\right)}{\beta_{2}{ }^{2}}\right\},
$$

where $\alpha_{2}=a_{2}, \beta_{2}=b_{2}, \beta_{1}=2 b_{2} \lambda+b_{1}$ and λ is one of the roots of $b_{2} \lambda^{2}+b_{1} \lambda+b_{0}=0$.

$$
p=\frac{a_{2} \lambda^{2}+a_{1} \lambda+a_{0}}{2 b_{2} \lambda+b_{1}}, \quad q=\frac{a_{1} b_{2}-a_{2} b_{1}}{b_{2}^{2}}-p
$$

8.520 The solution of 8.510 will be denoted:

$$
\phi=F(p, q, \xi) .
$$

I.

$$
F(p, q, \xi)=e^{-\xi} F(q, p,-\xi) .
$$

$$
F(p, q,-\xi)=e^{\xi} F(q, p, \xi)
$$

$$
F(q, p, \xi)=e^{-\xi} F(p, q,-\xi)
$$

$$
F(p, q, \xi)=\xi^{1-p-q} F(\mathrm{I}-q, \mathrm{I}-p, \xi)
$$

$$
\text { 5. } \quad F(-p,-q, \xi)=\xi^{1+p+q} F(\mathrm{I}+q, \mathrm{I}+p, \xi)
$$

$$
\text { 6. } \quad F(p+m, q, \xi)=\frac{d^{m}}{d \xi^{m}} F(p, q, \xi) .
$$

7. $\quad F(p, q+n, \xi)=(-\mathrm{I})^{n} e^{-\xi} \frac{d^{n}}{d \xi^{n}}\left\{e^{\xi} F(p, q, \xi)\right\}$.
8.521 The function $F(p, q, \xi)$ can always be found if it is known for positive proper fractional values of p and q.
8.522 p and q positive improper fractions:

$$
p=m+r, \quad q=n+s
$$

where m and n are positive integers and r and s positive proper fractions.

$$
F(m+r, n+s, \xi)=(-\mathrm{I})^{n} \frac{d^{m}}{d \xi^{m}}\left[e^{-\xi} \frac{d^{n}}{d \xi^{n}}\left\{e^{\xi} F(r, s, \xi)\right\}\right] .
$$

$8.523 p$ and q both negative:

$$
p=-(m-\mathrm{I}+r) \quad q=-(n-\mathrm{I}+s),
$$

$F(-m+\mathrm{I}-r,-n+\mathrm{I}-s, \xi)=(-\mathrm{I})^{m} \xi^{m+n+r+s-1} \frac{d^{n}}{d \xi^{n}}\left[e^{-\xi} \frac{d^{m}}{d \xi^{m}}\left\{e^{\xi} F(s, r, \xi)\right\}\right]$.
$8.524 p$ positive, q negative:

$$
\begin{gathered}
p=m+r, \quad q=-n+s, \\
F(m+r,-n+s, \xi)=\frac{d^{m}}{d \xi^{m}}\left[\xi^{n+1-r-s} \frac{d^{n}}{d \xi^{n}} F(\mathrm{I}-s, \mathrm{I}-r, \xi)\right] .
\end{gathered}
$$

$8.525 \quad p$ negative, q positive:

$$
p=-m+r, \quad q=n+s
$$

$F(-m+r, n+s, \xi)=(-\mathrm{I})^{m+n} e^{-\xi} \frac{d^{n}}{d \xi^{n}}\left[\xi^{m+1-r-s} \frac{d^{m}}{d \xi^{m}}\left\{e^{\xi} F(\mathrm{I}-s, \mathrm{I}-r, \xi)\right\}\right]$.
8.530 If either p or q is zero the relation $D=0$ is satisfied and the complete solution of the differential equation is given in $8.502,3$.
8.531 If $p=m$, a positive integer:
$\phi=F(m, q, \xi)=c_{1} \frac{d^{m-1}}{d \xi^{m-1}}\left[\xi^{-q} e^{-\xi} \int \xi^{q-1} e^{\xi} d \xi\right]+c_{2} \frac{d^{m-1}}{d \xi^{m-1}}\left[\xi^{-q} e^{-\xi}\right]$.
8.532 If $p=m$, a positive integer and both q and ξ are positive:
$\left.\phi=F(m, q, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{m-1}(\mathrm{I}-u)^{q-1} e^{-\xi u} d u+c_{2} e^{-\xi} \int_{(\mathrm{I}}^{\infty}+u\right)^{m-1} u^{q-1} e^{-\xi u} d u$.
8.533 If $q=n$, a positive integer:
$\phi=F(p, n, \xi)=c_{1} e^{-\xi} \frac{d^{n-1}}{d \xi \xi^{n-1}}\left[\xi^{-p} e^{\xi} \iint \xi^{p-1} e^{-\xi} d \xi\right]+c_{2} e^{-\xi} \frac{d^{n-1}}{d \xi^{n-1}}\left[\xi^{-p} e^{\xi}\right]$.
8.534 If $q=n$, a positive integer and both p and ξ are positive:
$\phi=F(p, n, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{p-1}(\mathrm{I}-u)^{n-1} e^{-\xi} u d u+c_{2} e^{-\xi} \int_{0}^{\infty}(\mathrm{I}+u)^{p-1} u^{n-1} e^{-\xi} d u$.
8.540 The general solution of equation 8.510 may be written:

$$
\begin{aligned}
& \phi=F(p, q, \xi)=c_{1} M+c_{2} N, \\
& M=\int_{0}^{x} u^{p-1}(\mathrm{x}-u)^{q-1} e^{-\xi u} d u \quad \begin{array}{ll}
p>0 \\
q>0
\end{array} \\
& N=\int_{0}^{\infty}(\mathrm{I}+u)^{p-1} u^{q-1} e^{-\xi(1+u)} d u \quad \begin{array}{l}
q>0 \\
\xi>0
\end{array} \\
& M=\frac{\Gamma(p) \Gamma(q)}{\Gamma(s)}\left\{\mathrm{I}-\frac{p}{s} \frac{\xi}{\mathrm{I}!}+\frac{p(p+\mathrm{I})}{s(s+\mathrm{I})} \frac{\xi^{2}}{2!}-\frac{p(p+\mathrm{I})(p+2)}{s(s+\mathrm{I})(s+2)} \frac{\xi^{3}}{3!}+\ldots\right\} \\
& s=p+q, \\
& N=\frac{\Gamma(q) e^{-\xi}}{\xi^{q}}\left\{\mathrm{I}+\frac{(p-\mathrm{I}) q}{\mathrm{I}!\xi}+\frac{(p-\mathrm{I})(p-2) q(q+\mathrm{I})}{2!\xi}+\ldots .\right. \\
& +\frac{(p-1)(p-2) \cdots(p-\overline{n-1})(q) \cdot(q+1) \cdots(q+n-2)}{(n-1)!\xi^{n-1}} \\
& \left.+\frac{\rho(p-1)(p-2) \ldots(p-n) q(q+1)(q+2) \ldots(q+n-1)}{n!\xi^{n}}\right\},
\end{aligned}
$$

where $\circ<\rho<\mathrm{I}$ and the real part of ξ is positive.

the complete solution of equation 8.510 in special cases

$8.550 p>0, q>0$, real part of $\xi>0$:

$$
F(p, q, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{p-1}(\mathrm{I}-u)^{q-1} e^{-\xi u} d u+c_{2} e^{-\xi} \int_{0}^{\infty}(\mathrm{I}+u)^{p-1} u^{q-1} e^{-\xi u} d u .
$$

$8.551 p>0, q>0, \xi<0$:

$$
F(p, q, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{p-1}(\mathrm{I}-u)^{q-1} e^{-\xi u} d u+c_{2} \int^{\infty} u^{p-1}(\mathrm{I}+u)^{q-1} e^{\xi u} d u .
$$

$8.552 p<0, q<0, \xi>0$:

$$
F(p, q, \xi)=\xi^{1-p-q}\left\{c_{1} \int_{0}^{\mathrm{I}}(\mathrm{I}-u)^{-p} u^{-q} e^{-\xi} d u+c_{2} e^{-\xi} \int_{0}^{\infty} u^{-p}(\mathrm{I}+u)^{-q} e^{-\xi u} d u\right\} .
$$

$8.553 p<0, q<0, \xi<0$:

$$
F(p, q, \xi)=\xi^{1-p-q}\left\{c_{1} \int_{0}^{\mathrm{t}}(\mathrm{I}-u)^{-p^{-p} u^{-q} e^{-\xi} u} d u+c_{2} \int_{0}^{\infty}(\mathrm{I}+u)^{-p} u^{-q} e^{+\xi u} d u\right\} .
$$

$8.554 p>0, q<0$
$p=m+r$, where m is a positive integer and r a proper fraction.

$$
F(m+r, q, \xi)=\frac{d^{m}}{d \xi^{m}}\left\{\xi^{1-r-q} F(\mathrm{I}-r, \mathrm{I}-q, \xi)\right\}
$$

```
1 \(\cdot\)
```

$\xi>0: \quad F(\mathrm{I}-r, \mathrm{I}-q, \xi)=c_{1} \int_{0}^{\mathrm{x}} u^{-r}(\mathrm{I}-u)^{-q} e^{-\xi u} d u$

$$
+c_{2} e^{-\xi} \int_{0}^{\infty}(\mathrm{I}+u)^{-r} u^{-q} e^{-\xi u} d u
$$

$\xi<0: \quad F(\mathrm{I}-r, \mathrm{I}-q, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{-r}(\mathrm{I}-u)^{-q} e^{-\xi_{u}} d u$

$$
+c_{2} \int_{0}^{\infty} u^{-r}(\mathrm{I}+u)^{-q} e^{\xi u} d u
$$

$8.555 p<0, q>0$,
$q=n+s$, where n is a positive integer and s a proper fraction.

$$
F(p, n+s, \xi)=e^{-\xi} \frac{d^{n}}{d \xi^{n}}\left\{e^{\xi} \xi^{1-p-s} F(\mathrm{I}-s, \mathrm{I}-p, \xi)\right\}
$$

$\xi>0: \quad F(\mathrm{x}-s, \mathrm{x}-p, \xi)=c_{1} \int_{0}^{\mathrm{x}} u^{-s}(\mathrm{x}-u)^{-p} e^{-\xi i} d u$

$$
+c_{2} e^{-\xi} \int_{0}^{\infty}(1+u)^{-s} u^{-p} e^{-\xi u} d u
$$

$\xi<0: \quad F(\mathrm{I}-s, \mathrm{I}-p, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{-s}(\mathrm{I}-u)^{-p} e^{-\xi} d u$

$$
+c_{2} \int_{0}^{\infty} u^{-s}(I+u)^{-p_{\epsilon} \xi u} d u .
$$

8.556ξ pure imaginary:
$p=r, q=s$, where r and s are positive proper fractions.
$r+s \neq \mathrm{I}:$

$$
\begin{aligned}
& F(r, s, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{r-1}(\mathrm{I}-u)^{s-1} e^{-\xi u} d u \\
&+c_{2} \xi^{1-r-s} \int_{0}^{\mathrm{I}} u^{-s}(\mathrm{I}-u)^{-r} e^{-\xi u} d u
\end{aligned}
$$

$r+s=\mathrm{I}:$

$$
\begin{aligned}
& F(r, s, \xi)=c_{1} \int_{0}^{\mathrm{I}} u^{r-1}(\mathrm{I}-u)^{s-1} e^{-\xi u} d u \\
&+c_{2} \int_{0}^{\mathrm{I}} u^{r-1}(\mathrm{I}-u)^{s-1} e^{-\xi u} \log \{\xi u(\mathrm{I}-u)\} d u
\end{aligned}
$$

8.600 The differential equation:

$$
x \frac{d^{2} y}{d x^{2}}+(\gamma-x) \frac{d y}{d x}-\alpha y=0
$$

is satisfied by the confluent hypergeometric function. The complete solution is:

$$
y=c_{1} M(\alpha, \gamma, x)+c_{2} x^{1-\gamma} M(\alpha-\gamma+\mathrm{I}, 2-\gamma, x)=\bar{M}(\alpha, \gamma, x)
$$

where

$$
M(\alpha, \gamma, x)=\mathrm{I}+\frac{\alpha}{\gamma} \frac{x}{\mathrm{I}}+\frac{\alpha(\alpha+\mathrm{I})}{\gamma(\gamma+\mathrm{I})} \frac{x^{2}}{2!}+\frac{\alpha(\alpha+\mathrm{I})(\alpha+2)}{\gamma(\gamma+\mathrm{I})(\gamma+2)} \frac{x^{3}}{3!}+
$$

The series is absolutely and uniformly convergent for all real and complex values of α, γ, x, except when γ is a negative integer or zero.

When γ is a positive integer the complete solution of the differential equation is:

$$
\begin{aligned}
y & =\left\{c_{1}+c_{2} \log x\right\} M(\alpha, \gamma, x)+c_{2}\left\{\frac{a x}{\gamma}\left(\frac{\mathrm{I}}{\alpha}-\frac{\mathrm{I}}{\gamma}-\mathrm{I}\right)\right. \\
& +\frac{\alpha(\alpha+\mathrm{I})}{\gamma(\gamma+\mathrm{I})} \frac{x^{2}}{2!}\left(\frac{\mathrm{I}}{\alpha}+\frac{\mathrm{I}}{\alpha+\mathrm{I}}-\frac{\mathrm{I}}{\gamma}-\frac{\mathrm{I}}{\gamma+\mathrm{I}}-\mathrm{I}-\frac{\mathrm{I}}{2}\right) \\
& +\frac{\alpha(\alpha+\mathrm{I})(\alpha+2)}{\gamma(\gamma+\mathrm{I})(\gamma+2)} \frac{x^{3}}{3!}\left(\frac{\mathrm{I}}{\alpha}+\frac{\mathrm{I}}{\alpha+\mathrm{I}}+\frac{\mathrm{I}}{\alpha+2}-\frac{\mathrm{I}}{\gamma}-\frac{\mathrm{I}}{\gamma+\mathrm{I}}-\frac{\mathrm{I}}{\gamma+2}-\mathrm{I}-\frac{\mathrm{I}}{2}-\frac{\mathrm{I}}{3}\right) \\
& +\ldots \ldots
\end{aligned}
$$

8.601 For large values of x the following asymptotic expansion may be used:
$M(\alpha, \gamma, x)$

$$
\begin{aligned}
& =\frac{\Gamma(\gamma)}{\Gamma(\gamma-\alpha)}(-x)^{-\alpha}\left\{\mathrm{I}-\frac{\alpha(\alpha-\gamma+\mathrm{I})}{\mathrm{I}} \frac{\mathrm{I}}{x}+\frac{\alpha(\alpha+\mathrm{I})(\alpha-\gamma+\mathrm{I})(\alpha-\gamma+2)}{2!} \frac{\mathrm{I}}{x^{2}} \cdots\right\} \\
& +\frac{\Gamma(\gamma)}{\Gamma(\alpha)} e^{x} x^{\alpha-\gamma}\left\{\mathrm{I}+\frac{(\mathrm{I}-\alpha)(\gamma-\alpha)}{\mathrm{I}} \frac{\mathrm{I}}{x}+\frac{(\mathrm{I}-\alpha)(2-\alpha)(\gamma-\alpha)(\gamma-\alpha+\mathrm{I})}{2!} \frac{\mathrm{I}}{x^{2}}+\cdots\right\}
\end{aligned}
$$

8.61

I. $M(\alpha, \gamma, x)=e^{x} M(\gamma-\alpha, \gamma,-x)$.
2. $x^{1-\gamma} M(\alpha-\gamma+\mathrm{I}, 2-\gamma, x)=e^{x} x^{1-\gamma} M(\mathrm{I}-\alpha, 2-\gamma,-x)$.
3. $\frac{x}{\gamma} M(\alpha+\mathrm{I}, \gamma+\mathrm{I}, x)=M(\alpha+\mathrm{I}, \gamma, x)-M(\alpha, \gamma, x)$.
4. $\alpha M(\alpha+\mathrm{I}, \gamma+\mathrm{I}, x)=(\alpha-\gamma) M(\alpha, \gamma+\mathrm{I}, x)+\gamma M(\alpha, \gamma, x)$.
5. $(\alpha+x) M(\alpha+\mathrm{I}, \gamma+\mathrm{I}, x)=(\alpha-\gamma) M(\alpha, \gamma+\mathrm{I}, x)+\gamma M(\alpha+\mathrm{I}, \gamma, x)$.
6. $\alpha \gamma M(\alpha+\mathrm{I}, \gamma, x)=\gamma(\alpha+x) M(\alpha, \gamma, x)-x(\gamma-\alpha) M(\alpha, \gamma+\mathrm{I}, x)$.
7. $\alpha M(\alpha+\mathrm{I}, \gamma, x)=(x+2 \alpha-\gamma) M(\alpha, \gamma, x)+(\gamma-\alpha) M(\alpha-\mathrm{I}, \gamma, x)$.
8. $\frac{\gamma-\alpha}{\gamma} x M(\alpha, \gamma+\mathrm{I}, x)=(x+\gamma-\mathrm{I}) M(\alpha, \gamma, x)+(\mathrm{I}-\gamma) M(\alpha, \gamma-\mathrm{I}, x)$.

8.62

I. $\frac{d}{d x} M(\alpha, \gamma, x)=\frac{\alpha}{\gamma} M(\alpha+\mathrm{I}, \gamma+\mathrm{I}, x)$.
2. $(\mathrm{I}-\alpha) \int_{0}^{x} M(\alpha, \gamma, x) d x=(\mathrm{I}-\gamma) M(\alpha-\mathrm{I}, \gamma-\mathrm{I}, x)+(\gamma-\mathrm{I})$.

SPECIAL DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS IN TERMS OF $\bar{M}(\alpha, \gamma, x)$

8.630

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+2(p+q x) \frac{d y}{d x}+\left\{4 \alpha q+p^{2}-q^{2} m^{2}+2 q x(p+q m)\right\} y=0 \\
y=e^{-(p+q m) x} \bar{M}\left(\alpha, \frac{1}{2},-q(x-m)^{2}\right)
\end{gathered}
$$

8.631

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+\left(2 p+\frac{\gamma}{x}\right) \frac{d y}{d x}+\left\{p^{2}-t^{2}+\frac{1}{x}(\gamma p+\gamma t-2 \alpha t)\right\} y=0, \\
y=e^{-(p+t) x} \bar{M}(\alpha, \gamma, 2 t x) .
\end{gathered}
$$

8.632

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+2(p+q x) \frac{d y}{d x}+\left\{q+c(\mathrm{I}-4 \alpha)+(p+q x)^{2}-c^{2}(x-m)^{2}\right\} y=0, \\
y=e^{-p x-\frac{1}{2} q x^{2}-\frac{1}{2} c(x-m)^{2}} \bar{M}\left(\alpha, \frac{1}{2}, c(x-m)^{2}\right) .
\end{gathered}
$$

8.633

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+\left(2 p+\frac{q}{x}\right) \frac{d y}{d x}+\left\{p^{2}-\imath^{2}+\frac{1}{x}(p q+\gamma t-2 \alpha t)+\frac{1}{4 x^{2}}(\gamma-q)(2-q-\gamma)\right\} y=0, \\
y=e^{-(p+t) x} x^{\frac{\gamma-q}{2}} \bar{M}(\alpha, \gamma, 2 t x) .
\end{gathered}
$$

8.634

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+\left\{\frac{2 \gamma-1}{x}+2 \alpha+2(b-c) x\right\} \frac{d y}{d x} \\
& +\left\{\frac{\alpha(2 \gamma-1)}{x}+\left(a^{2}+2 b \gamma-4 \alpha c\right)+2 a(b-c) x+b(b-2 c) x^{2}\right\} y=0, \\
& y=e^{-a x-\frac{1}{2} b x^{2}} \bar{M}\left(\alpha, \gamma, c x^{2}\right) .
\end{aligned}
$$

8.635

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+\frac{\mathrm{I}}{x}\left(2 p x^{r}+q r-r+\mathrm{I}\right) \frac{d y}{d x} \\
+\frac{\mathrm{I}}{x^{2}}\left\{\left(p^{2}-t^{2}\right) x^{2 r}+r(p q+\gamma t-2 \alpha t) x^{r}+\frac{\mathrm{I}}{4} r^{2}(\gamma-q)(2-q-\gamma)\right\} y=0, \\
y=e^{-\frac{(p+t)}{r} x^{r}} x^{\frac{r}{2}(\gamma-q)} \bar{M}\left(\alpha, \gamma, \frac{2 t x^{r}}{r}\right)
\end{gathered}
$$

8.640 Tables and graphs of the function $M(\alpha, \gamma, x)$ are given by Webb and Airey (Phil. Mag. 36, p. 129, 1918) for getting approximate numerical solu-
tions of any of these differential equations. The range in x is 1 to 10 ; in $\alpha,+0.5$ to +4.0 and -0.5 to -3.0 ; in γ, r to 7 . For negative values of x the equations of 8.61 may be used.

SPECIAL DIFFERENTIAL EQUATIONS

8.700

$$
\frac{d^{2} y}{d x^{2}}+n^{2} y=X(x)
$$

where $X(x)$ is any function of x. The complete solution is:

$$
y=c_{1} e^{n x}+c_{2} e^{-n x}+\frac{\mathrm{I}}{n} \int^{x} X(\xi) \sinh n(x-\xi) d \xi .
$$

8.701

$$
\frac{d^{2} y}{d x^{2}}+\kappa \frac{d y}{d x}+n^{2} y=X(x)
$$

The complete solution, satisfying the conditions:

$$
\begin{array}{lr}
x=0 & y=y_{0}, \\
x=0 & \frac{d y}{d x}=y_{0}{ }^{\prime},
\end{array}
$$

$y=e^{-\frac{1}{2} \kappa x}\left\{y_{0}^{\prime} \frac{\sin n^{\prime} x}{n^{\prime}}+y_{0}\left(\cos n^{\prime} x+\frac{\kappa}{2 n^{\prime}} \sin n^{\prime} x\right)\right\}$

$$
\begin{aligned}
& \quad+\frac{\mathrm{I}}{n^{\prime}} \int_{0}^{x} e^{-\frac{3 k}{2} \kappa(x-\xi)} \sin n^{\prime}(x-\xi) X(\xi) d \xi, \\
& n^{\prime}=\sqrt{n^{2}-\frac{\kappa^{2}}{4}}
\end{aligned}
$$

where
8.702

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+f(x) \frac{d y}{d x}+g(x)\left(\frac{d y}{d x}\right)^{2}=0, \\
y=\int \frac{e^{-\int f(x) d x} d x}{\int e^{-\int(x) d x} g(x) d x+c_{1}}+c_{2}
\end{gathered}
$$

8.703

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+f(y)\left(\frac{d y}{d x}\right)^{2}+g(y)=0, \\
x= \pm \int \frac{e^{\int f(y) d y} d y}{\left\{c_{1}-2 \int e^{2 \int(y) d y} g(y) d y\right\}^{\frac{1}{2}}}+c_{2} .
\end{gathered}
$$

8.704

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+f(y) \frac{d y}{d x}+g(y)\left(\frac{d y}{d x}\right)^{2}=0 \\
x=\int \frac{e^{\int \theta(y) d y} d y}{c_{1}-\int e^{\int o(y) d y} f(y) d y}+c_{2} .
\end{gathered}
$$

8.705

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+f(x) \frac{d y}{d x}+g(y)\left(\frac{d y}{d x}\right)^{2}=0, \\
\int e^{f(y) d y} d y=c_{1} \int e^{-\int f(x) d x} d x+c_{2}
\end{gathered}
$$

8.706

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+(a+b x) \frac{d y}{d x}+a b x y=0 . \\
& y=e^{-a x}\left\{c_{1}+c_{2} \int e^{a x-\frac{1}{2} b x^{2}} d x\right\}
\end{aligned}
$$

8.707

$$
\begin{aligned}
& x \frac{d^{2} y}{d x^{2}}+(a+b x) \frac{d y}{d x}+a b y=0, \\
& y=e^{-b x}\left\{c_{1}+c \int x^{-a} e^{b x} d x\right\}
\end{aligned}
$$

8.708

$$
\frac{d^{2} y}{d x^{2}}+\frac{a}{x} \frac{d y}{d x}+\frac{b}{x^{2}} y=0 .
$$

I. $(a-\mathrm{I})^{2}>4 b ; \quad \lambda=\frac{\mathrm{I}}{2} \sqrt{(a-\mathrm{I})^{2}-4 b}$

$$
y=x^{-\frac{a-r}{2}\left\{c_{1} x+c_{2} x-\lambda\right\} .}
$$

2. $(a-\mathrm{I})^{2}<4 b ; \quad \lambda=\frac{\mathrm{I}}{2} \sqrt{4 b-(a-\mathrm{I})^{2}}$

$$
y=x^{-\frac{a-x}{2}\left\{c_{1} \cos (\lambda \log x)+c_{2} \sin (\lambda \log x)\right\} .}
$$

3. $(a-\mathrm{I})^{2}=4^{b}$

$$
y=x^{-\frac{a-x}{2}}\left(c_{1}+c_{2} \log x\right) .
$$

8.709

$$
\frac{d^{2} y}{d x^{2}}+2 b x \frac{d y}{d x}+\left(a+b^{2} x^{2} y=0 .\right.
$$

I. $a<b, \quad \lambda=\sqrt{b-a}$,

$$
y=e^{-\frac{b x^{2}}{2}}\left(c_{1} e^{\lambda x}+c_{2} e^{-\lambda x}\right)
$$

2. $a>b, \quad \lambda=\sqrt{a-b}$,

$$
y=e^{-\frac{b x^{2}}{2}}\left(c_{1} \cos \lambda x+c_{2} \sin \lambda x\right)
$$

8.710

$$
\begin{gathered}
f(x) \frac{d^{2} y}{d x^{2}}-(a+b x) \frac{d y}{d x}+b y=0, \\
\int \frac{a+b x}{f(x)} d x=X, \\
y=c_{1}(a+b x)+c_{2}\left\{e^{X}-(a+b x) \int \frac{1}{f(x)} e^{X} d x\right\} \cdot
\end{gathered}
$$

8.711

$$
\begin{gathered}
\left(a^{2}-x^{2}\right) \frac{d^{2} y}{d x^{2}}+2(\mu-\mathrm{I}) x \frac{d y}{d x}-\mu(\mu-\mathrm{I}) y=\mathrm{O} \\
y=(a+x)_{\mu}\left\{1_{1}+c_{2} \int \frac{(a-x)^{\mu-1}}{(a+x)^{\mu+1}} d x\right\}
\end{gathered}
$$

8.712

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+\frac{2}{x} \frac{d y}{d x}+\mu^{2} y=\frac{a}{x} \\
y=\frac{\mathbf{I}}{x}\left\{{ }_{1} \cos \mu x+c_{2} \sin \mu x+\frac{a}{\mu^{2}}\right\} .
\end{gathered}
$$

8.713

$$
\frac{d^{4} y}{d x^{4}}+2 d \frac{d^{3} y}{d x^{3}}+c \frac{d^{2} y}{d x^{2}}+2 b \frac{d y}{d x}+a y=0
$$

$y=c_{1} e^{-\rho_{1} x}\left\{\rho_{1} \sin \left(\omega_{1} x+\alpha_{1}\right)+\omega_{1} \cos \left(\omega_{1} x+\alpha_{1}\right)\right\}$

$$
+c_{2} e^{-\rho_{2} x}\left\{\rho_{2} \sin \left(\omega_{2} x+\alpha_{2}\right)+\omega_{2} \cos \left(\omega_{2} x+\alpha_{2}\right)\right\}
$$

where:

$$
\begin{aligned}
4 \omega_{1}^{2} & =z+c-2 d^{2}+2 \sqrt{z^{2}-4 a}-2 d \sqrt{z-c+d^{2}} \\
4 \omega_{2}^{2} & =z+c-2 d^{2}-2 \sqrt{z^{2}-4 a}+2 d \sqrt{z-c+d^{2}} \\
2 \rho_{1} & =d+\sqrt{z-c+d^{2}} \\
2 \rho_{2} & =d-\sqrt{z-c+d^{2}}
\end{aligned}
$$

and z is a root of

$$
z^{3}-c z^{2}-4(a-b d) z+4\left(a c-a d^{2}-b^{2}\right)=0
$$

(Kiebitz, Ann. d. Physik, 40, p. 138, I9I3)

IX. DIFFERENTIAL EQUATIONS (continued)

9.00 Legendre's Equation:

$$
\left(\mathrm{I}-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+\mathrm{I}) y=0 .
$$

9.001 If n is a positive integer one solution is the Legendre polynomial, or Zonal Harmonic, $P_{n}(x)$:
$P_{n}(x)=\frac{(2 n)!}{2^{n}(n!)^{2}}\left\{x^{n}-\frac{n(n-1)}{2(2 n-1)} x^{n-2}+\frac{n(n-\mathrm{I})(n-2)(n-3)}{2 \cdot 4 \cdot(2 n-\mathrm{I})(2 n-3)} x^{n-4}-\ldots\right\}$.
9.002 If n is even the last term in the finite series in the brackets is:

$$
(-1)^{\frac{n}{2}} \frac{(n!)^{3}}{\left(\frac{n}{2}!\right)^{2}(2 n)!} .
$$

9.003 If n is odd the last term in the brackets is:

$$
(-\mathrm{I})^{\frac{n-1}{2}} \frac{(n!)^{2}(n-\mathrm{I})!}{\left(\left[\frac{1}{2}(n-\mathrm{I})\right]!\right)^{2}(2 n-\mathrm{I})!} x .
$$

9.010 If n is a positive integer a second solution of Legendre's Equation is the infinite series:

$$
\begin{aligned}
Q_{n}(x)=\frac{2^{n}(n!)^{2}}{(2 n+1)!}\left\{x^{-(n+1)}\right. & +\frac{(n+1)(n+2)}{2(2 n+3)} x^{-(n+3)} \\
& \left.+\frac{(n+1)(n+2)(n+3)(n+4)}{2 \cdot 4 \cdot(2 n+3)(2 n+5)} x^{-(n+5)}+\ldots\right\} .
\end{aligned}
$$

9.011

$P_{2 n}(\cos \theta)=(-I)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}}\left\{\sin ^{2 n} \theta-\frac{(2 n)^{2}}{2!} \sin ^{2 n-2} \theta \cos ^{2} \theta\right.$

$$
\left.+\ldots+(-1)^{n} \frac{(2 n)^{2}(2 n-2)^{2} \ldots 4^{2} 2^{2}}{(2 n)!} \cos ^{2 n} \theta\right\}
$$

9.012

$$
P_{2 n+1}(\cos \theta)=(-1)^{n} \frac{(2 n+1)!}{2^{2 n}(n!)^{2}}\left\{\sin ^{2 n} \theta \cos \theta-\frac{(2 n)^{2}}{3!} \sin ^{2 n-2} \theta \cos ^{3} \theta\right.
$$

$$
\left.+\ldots+(-1)^{n} \frac{(2 n)^{2}(2 n-2)^{2} \ldots \cdot 4^{2} 2^{2}}{(2 n+1)!} \cos ^{2 n+1} \theta\right\}
$$

(Brodetsky: Mess. of Math. 42, p. 65, 1912)
9.02 Recurrence formulae for $P_{n}(x)$:
I.
2. $(2 n+\mathrm{r}) P_{n}=\frac{d P_{n+1}}{d x}-\frac{d P_{n-1}}{d x}$.

$$
(n+\mathrm{I}) P_{n+1}+n P_{n-1}=(2 n+\mathrm{I}) x P_{n}
$$

3.

$$
(n+1) P_{n}=\frac{d P_{n+1}}{d x}-x \frac{d P_{n}}{d x}
$$

4.

$$
n P_{n}=x \frac{d P_{n}}{d x}-\frac{d P_{n-1}}{d x}
$$

5. $\left(\mathrm{I}-x^{2}\right) \frac{d P_{n}}{d x}=(n+\mathrm{I})\left(x P_{n}-P_{n+1}\right)$.
6. $\left(\mathrm{I}-x^{2}\right) \frac{d P_{n}}{d x}=n\left(P_{n-1}-x P_{n}\right)$.
7. $(2 n+\mathrm{I})\left(\mathrm{I}-x^{2}\right) \frac{d P_{n}}{d x}=n(n+\mathrm{I})\left(P_{n-1}-P_{n+1}\right)$.
9.028 Recurrence formulae for $Q_{n}(x)$. These are the same as those for $P_{n}(x)$.
9.030 Special Values.

$$
\begin{aligned}
& P_{0}(x)=1, \\
& P_{1}(x)=x, \\
& P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), \\
& P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right), \\
& P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right), \\
& P_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right), \\
& P_{6}(x)=\frac{1}{16}\left(231 x^{6}-315 x^{4}+105 x^{2}-5\right), \\
& P_{7}(x)=\frac{1}{16}\left(429 x^{7}-693 x^{5}+315 x^{3}-35 x\right), \\
& P_{8}(x)=\frac{1}{128}\left(6435 x^{8}-12012 x^{6}+6930 x^{4}-1260 x^{2}+35\right) .
\end{aligned}
$$

9.031

$$
\begin{aligned}
& Q_{0}(x)=\frac{\mathrm{I}}{2} \log \frac{x+\mathrm{I}}{x-\mathrm{I}}, \\
& Q_{1}(x)=\frac{\mathrm{I}}{2} x \log \frac{x+\mathrm{I}}{x-\mathrm{I}}-\mathrm{I}, \\
& Q_{2}(x)=\frac{\mathrm{I}}{2} P_{2}(x) \log \frac{x+\mathrm{I}}{x-\mathrm{I}}-\frac{3}{2} x, \\
& Q_{3}(x)=\frac{\mathrm{I}}{2} P_{3}(x) \log \frac{x+\mathrm{I}}{x-\mathrm{I}}-\frac{5}{2} x^{2}+\frac{2}{3} .
\end{aligned}
$$

9.032

$$
\begin{aligned}
P_{2 n}(0) & =(-\mathrm{I})^{n} \frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4^{\cdot 6} \ldots 2 n}, \\
P_{2 n+1}(\mathrm{o}) & =0, \\
P_{n}(\mathrm{I}) & =\mathrm{I}, \\
P_{n}(-x) & =(-\mathrm{I})^{n} P_{n}(x) .
\end{aligned}
$$

9.033 If $z=r \cos \theta$:

$$
\begin{aligned}
& \frac{\partial P_{n}(\cos \theta)}{\partial z}=\frac{n+\mathrm{I}}{r}\left\{P_{1}(\cos \theta) P_{n}(\cos \theta)-P_{n+1}(\cos \theta)\right\} \\
&=\frac{n(n+\mathrm{I})}{(2 n+\mathrm{I}) r}\left\{P_{n-1}(\cos \theta)-P_{n+1}(\cos \theta)\right\} .
\end{aligned}
$$

9.034 Rodrigues' Formula:

$$
P_{n}(x)=\frac{\mathrm{I}}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-\mathrm{I}\right)^{n} .
$$

9.035 If $z=r \cos \theta:$

$$
P_{n}(\cos \theta)=\frac{(-\mathrm{I})^{n}}{n!} r^{n+1} \frac{\partial^{n}}{\partial z^{n}}\left(\frac{1}{r}\right) .
$$

9.036 If $m \leqslant n$:

$$
P_{m}(x) P_{n}(x)=\sum_{k=0}^{m} \frac{A_{m-k} A_{k} A_{n-k}}{A_{n+m-k}}\left(\frac{2 n+2 m-4 k+\mathrm{I}}{2 n+2 m-2 k+\mathrm{I}}\right) P_{n+m-2 k}(x),
$$

where:

$$
A_{r}=\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 r-\mathrm{I})}{r!} .
$$

MEHLER'S INTEGRALS

9.040 For all values of n :

$$
P_{n}(\cos \theta)=\frac{2}{\pi} \int_{0}^{\theta} \frac{\cos \left(n+\frac{1}{2}\right) \phi d \phi}{\sqrt{2(\cos \phi-\cos \theta)}} .
$$

9.041 If n is a positive integer:

$$
P_{n}(\cos \theta)=\frac{2}{\pi} \int^{\pi} \frac{\sin \left(n+\frac{1}{2}\right) \phi d \phi}{\sqrt{2(\cos \theta-\cos \phi)}}
$$

LAPLACE'S INTEGRALS, FOR ALL VALUES OF n
9.042

$$
P_{n}(x)=\frac{I}{\pi} \int_{0}^{\pi}\left\{x+\sqrt{x^{2}-I} \cos \phi\right\}^{n} d \phi .
$$

9.043

$$
Q_{n}(x)=\int^{\infty} \frac{d \phi}{\left\{x+\sqrt{x^{2}-1} \cosh \phi\right\}^{n+1}} .
$$

INTEGRAL PROPERTIES

9.044

$$
\begin{aligned}
\int_{-1}^{+1} P_{m}(x) \dot{P}_{n}(x) d x & =0 \text { if } m \neq n \\
& =\frac{2}{2 n+1} \text { if } m=n
\end{aligned}
$$

9.045

$$
\begin{aligned}
& (m-n)(m+n+1) \int_{x}^{\mathrm{r}} P_{m}(x) P_{n}(x) d x \\
& \quad=\frac{1}{2}\left\{P_{m}\left[(n+1) P_{n+1}-n P_{n-1}\right]-P_{n}\left[(m+\mathrm{I}) P_{m+1}-m P_{m-1}\right]\right\} .
\end{aligned}
$$

9.046

$$
\begin{aligned}
(2 n+\mathrm{I}) \int^{\mathrm{I}} P_{n}{ }^{2}(x) d x=\mathrm{I}-x P_{n}{ }^{2}-2 x\left(P_{1}^{2}\right. & \left.+P_{2}{ }^{2}+\ldots+P_{n-1}{ }^{2}\right) \\
& +2\left(P_{1} P_{2}+P_{2} P_{3}+\ldots+P_{n-1} P_{n}\right)
\end{aligned}
$$

EXPANSIONS IN LEGENDRE FUNCTIONS

9.050 Neumann's expansion:

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n} P_{n}(x), \\
a_{n} & =\left(n+\frac{1}{2}\right) \int_{-\mathrm{I}}^{+\mathrm{I}} f(x) P_{n}(x) d x, \\
& =\frac{n+\frac{1}{2}}{2^{n} n!} \int_{-\mathrm{I}}^{+\mathrm{I}} f^{(n)}(x) \cdot\left(\mathrm{I}-x^{2}\right)^{n} d x .
\end{aligned}
$$

9.051 Any polynomial in x may be expressed as a series of Legendre's polynomials. If $f_{n}(x)$ is a polynomial of degree n :

$$
\begin{aligned}
f_{n}(x) & =\sum_{k=0}^{n} a_{k} P_{k}(x), \\
a_{k} & =\frac{2 k+\mathrm{I}}{2} \int_{-\mathrm{I}}^{+\mathrm{I}} f_{n}(x) P_{k}(x) d x .
\end{aligned}
$$

SPECIAL EXPANSIONS IN LEGENDRE FUNCTIONS

9.060 For all positive real values of n :
I. $\cos n \theta=-\frac{\mathrm{I}+\cos n \pi}{2\left(n^{2}-\mathrm{I}\right)}\left\{P_{0}(\cos \theta)+\frac{5 n^{2}}{\left(n^{2}-3^{2}\right)} P_{2}(\cos \theta)\right.$

$$
\begin{aligned}
& \left.+\frac{9 n^{2}\left(n^{2}-2^{2}\right)}{\left(n^{2}-3^{2}\right)\left(n^{2}-5^{2}\right)} P_{4}(\cos \theta)+\ldots\right\}-\frac{1-\cos n \pi}{2\left(n^{2}-2^{2}\right)}\left\{{ }_{3} P_{1}(\cos \theta)\right. \\
& \left.+\frac{7\left(n^{2}-\mathrm{I}^{2}\right)}{\left(n^{2}-4^{2}\right)} P_{3}(\cos \theta)+\frac{\mathrm{rI}\left(n^{2}-\mathrm{I}^{2}\right)\left(n^{2}-3^{2}\right)}{\left(n^{2}-4^{2}\right)\left(n^{2}-6^{2}\right)} P_{5}(\cos \theta)+\ldots\right\} .
\end{aligned}
$$

2. $\sin n \theta=-\frac{\mathrm{I}}{2} \frac{\sin n \pi}{\left(n^{2}-\mathrm{I}\right)}\left\{P_{0}(\cos \theta)+\frac{5 n^{2}}{\left(n^{2}-3^{2}\right)} P_{2}(\cos \theta)\right.$

$$
\begin{aligned}
& \left.+\frac{9 n^{2}\left(n^{2}-2^{2}\right)}{\left(n^{2}-3^{2}\right)\left(n^{2}-5^{2}\right)} P_{4}(\cos \theta)+\ldots\right\}+\frac{\mathrm{I}}{2} \frac{\sin n \pi}{\left(n^{2}-2^{2}\right)}\left\{3 P_{1}(\cos \theta)\right. \\
& \left.+\frac{7\left(n^{2}-\mathrm{I}^{2}\right)}{\left(n^{2}-4^{2}\right)} P_{3}(\cos \theta)+\frac{\mathrm{II}\left(n^{2}-\mathrm{I}^{2}\right)\left(n^{2}-3^{2}\right)}{\left(n^{2}-4^{2}\right)\left(n^{2}-6^{2}\right)} P_{5}(\cos \theta)+\ldots\right\}
\end{aligned}
$$

9.061 If n is a positive integer:
I. $\cos n \theta=\frac{\mathrm{I}}{2} \frac{2 \cdot 4 \cdot 6 \ldots 2 n}{3 \cdot 5 \cdot 7 \cdots(2 n+\mathrm{I})}\left\{(2 n+\mathrm{I}) P_{n}(\cos \theta)\right.$

$$
+(2 n-3) \frac{\left[n^{2}-(n+1)^{2}\right]}{\left[n^{2}-(n-2)^{2}\right]} P_{n-2}(\cos \theta)
$$

$$
\left.+(2 n-7) \frac{\left[n^{2}-(n+1)^{2}\right]\left[n^{2}-(n-1)^{2}\right]}{\left[n^{2}-(n-2)^{2}\right]\left[n^{2}-(n-4)^{2}\right]} P_{n-4}(\cos \theta)+\ldots\right\}
$$

2. $\sin n \theta=\frac{\pi}{4} \frac{\mathrm{x} \cdot 3 \cdot 5 \ldots(2 n-3)}{2 \cdot 4 \cdot 6 \ldots(2 n-2)}\left\{(2 n-\mathrm{I}) P_{n-1}(\cos \theta)\right.$

$$
+(2 n+3) \frac{\left[n^{2}-(n-1)^{2}\right]}{\left[n^{2}-(n+2)^{2}\right]} P_{n+1}(\cos \theta)
$$

9.062

$$
\left.+(2 n+7) \frac{\left[n^{2}-(n-1)^{2}\right]\left[n^{2}-(n+1)^{2}\right]}{\left[n^{2}-(n+2)^{2}\right]\left[n^{2}-(n+4)^{2}\right]} P_{n+3}(\cos \theta)+\ldots\right\}
$$

I. $\quad \theta=\frac{\pi}{2}-\frac{\pi}{2} \sum_{n=1}^{\infty} \frac{(4 n-\mathrm{I})}{(2 n-\mathrm{I})^{2}}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} P_{2 n-1}(\cos \theta)$.
2. $\sin \theta=\frac{\pi}{4}-\frac{\pi}{2} \sum_{n=\mathrm{I}}^{\infty} \frac{(4 n+\mathrm{I})}{(2 n-\mathrm{I})(2 n+2)}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} P_{2 n}(\cos \theta)$.
3. $\cot \theta=\frac{\pi}{2} \sum_{n=1}^{\infty} \frac{2 n(4 n-\mathrm{I})}{(2 n-\mathrm{I})}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} P_{2 n-1}(\cos \theta)$.
4. $\csc \theta=\frac{\pi}{2}+\frac{\pi}{2} \sum_{n=1}^{\infty}(4 n+\mathrm{I})\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{2} P_{2 n}(\cos \theta)$.
9.063
I. $\log \frac{\mathrm{I}+\sin \frac{\theta}{2}}{\sin \frac{\theta}{2}}=\mathrm{I}+\sum_{n=\mathrm{I}}^{\infty} \frac{\mathrm{I}}{n+\mathrm{I}} P_{n}(\cos \theta)$.
2. $\log \frac{\tan \frac{1}{4}(\pi-\theta)}{\frac{1}{2} \sin \theta}=-\log \sin \frac{\theta}{2}-\log \left(\mathrm{I}+\sin \frac{\theta}{2}\right)=\sum_{n=1}^{\infty} \frac{\mathrm{I}}{n} P_{n}(\cos \theta)$.
9.064 $K(k)$ and $E(k)$ denote the complete elliptic integrals of the first and second kinds, and $k=\sin \theta$:

工. $K(k)=\frac{\pi^{2}}{4}+\frac{\pi^{2}}{4} \sum_{n=\mathrm{I}}^{\infty}(-\mathrm{I})^{n}(4 n+\mathrm{I})\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{3} P_{2 n}(\cos \theta)$.
2. $E(k)=\frac{\pi^{2}}{8}+\frac{\pi^{2}}{4} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{(4 n+1)}{(2 n-1)(2 n+2)}\left(\frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-1)}{2 \cdot 4 \cdot 6 \ldots 2 n}\right)^{3} P_{2 n}(\cos \theta)$. (Hargreaves, Mess. of Math. 26, p. 89, 1897)
9.070 The differential equation:

$$
\left(\mathrm{I}-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+\left\{n(n+\mathrm{I})-\frac{m^{2}}{\mathrm{I}-x^{2}}\right\} y=0
$$

If m is a positive integer, and $-\mathrm{I}>x>+\mathrm{I}$, two solutions of this differential equation are the associated Legendre functions

$$
\begin{aligned}
& P_{n}^{m}(x)=\left(\mathrm{I}-x^{2}\right)^{\frac{m}{2}} \frac{d^{m} P_{n}(x)}{d x^{m}} \\
& Q_{n}^{m}(x)=\left(\mathrm{I}-x^{2}\right)^{\frac{m}{2}} \frac{d^{m} Q_{n}(x)}{d x^{m}}
\end{aligned}
$$

9.071 If n, m, r are positive integers, and $n>m, r>m$:

$$
\begin{aligned}
\int_{-1}^{+1} P_{n}^{m}(x) P_{r}^{m}(x) d x & =0 \text { if } r \neq n, \\
& =\frac{2}{2 n+\mathbf{1}} \frac{(n+m)!}{(n-m)!} \text { if } r=n
\end{aligned}
$$

9.100 Bessel's Differential Equation:

$$
\frac{d^{2} y}{d x^{2}}+\frac{\mathrm{I}}{x} \frac{d y}{d x}+\left(\mathrm{I}-\frac{\nu^{2}}{x^{2}}\right) y=0
$$

9.101 One solution is:

$$
y=J_{\nu}(x)=\sum_{k=0}^{\infty}(-I)^{k} \frac{x^{\nu+2 k}}{2^{\nu+2 k} k!\Gamma(\nu+k+I)}
$$

9.102 A second independent solution when ν is not an integer is:

$$
y=J_{-\nu}(x)
$$

9.103 If $\nu=n$, an integer:

$$
J_{-n}(x)=(-\mathrm{I})^{n} J_{n}(x)
$$

9.104 A second independent solution when $\nu=n$, an integer, is:

$$
\begin{aligned}
\pi Y_{n}(x)=2 J_{n}(x) & \cdot \log \frac{x}{2}-\sum_{k=0}^{n-\mathrm{I}} \frac{(n-k-\mathrm{I})!}{k!}\left(\frac{x}{2}\right)^{2 k-n} \\
& -\sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{\mathrm{I}}{k!(k+n)!}\left(\frac{x}{2}\right)^{n+2 k}\{\psi(k+\mathrm{I})+\psi(k+n+\mathrm{I})\}
\end{aligned}
$$

9.105 For all values of ν, whether integral or not:

$$
\begin{aligned}
Y_{\nu}(x) & =\frac{\mathrm{I}}{\sin \nu \pi}\left(\cos \nu \pi J_{\nu}(x)-J_{-\nu}(x)\right) \\
J_{-\nu}(x) & =\cos \nu \pi J_{\nu}(x)-\sin \nu \pi Y_{\nu}(x) \\
Y_{-\nu}(x) & =\sin \nu \pi J_{\nu}(x)+\cos \nu \pi Y_{\nu}(x)
\end{aligned}
$$

9.106 For $\nu=n$, an integer:

$$
Y_{-n}(x)=(-\mathrm{I})^{n} Y_{n}(x)
$$

9.107 Cylinder Functions of the third kind, solutions of Bessel's differential equation:
I.
2.
3.

$$
\begin{aligned}
H_{\nu}^{\mathrm{I}}(x) & =J_{\nu}(x)+i Y_{\nu}(x) \\
H_{\nu}^{\mathrm{II}}(x) & =J_{\nu}(x)-i Y_{\nu}(x) . \\
H_{-\nu}^{\mathrm{I}}(x) & =e^{\nu \pi i} H_{\nu}^{\mathrm{I}}(x) . \\
H_{-\nu}^{\mathrm{II}}(x) & =e^{-\nu \pi i} H_{\nu}^{\mathrm{II}}(x) .
\end{aligned}
$$

4.

9.110 Recurrence formulae satisfied by the functions $J_{\nu}, Y_{\nu}, H_{\nu}^{\mathrm{I}}, H_{\nu}^{\mathrm{II}}, C_{\nu}$ represents any one of these functions.
I.

$$
C_{\nu-1}(x)-C_{\nu+1}(x)=2 \frac{d}{d x} C_{\nu}(x)
$$

2.

$$
C_{-1}(x)+C_{\nu+1}(x)=\frac{2 \nu}{x} C_{\nu}(x)
$$

3.

$$
\frac{d}{d x} C_{\nu}(x)=C_{\nu-1}(x)-\frac{\nu}{x} C_{\nu}(x)
$$

4.

$$
\frac{d}{d x} C(x)=\frac{\nu}{x} C_{\nu}(x)-C_{\nu+1}(x)
$$

5.

$$
\frac{d}{d x}\left\{x^{\nu} C_{\nu(x)}\right\}=x^{\nu} C_{\nu-1}(x)
$$

6.

$$
\frac{d^{2} C_{\nu}(x)}{d x^{2}}=\frac{\mathrm{I}}{4}\left\{C_{\nu+2}(x)+C_{\nu-2}(x)-{ }_{2} C_{\nu}(x)\right\}
$$

9.111

I. $J_{\nu}(x) \frac{d Y_{\nu}(x)}{d x}-Y_{\nu}(x) \frac{d J_{\nu}(x)}{d x}=\frac{2}{\pi x} . \quad$ 2. $J_{\nu+1}(x) Y_{\nu}(x)-J_{\nu}(x) Y_{\nu+1}(x)=\frac{2}{\pi x}$. ASYMPTOTIC EXPANSIONS FOR LARGE VALUES OF \mathfrak{x}
9.120
I. $J_{\nu}(x)=\sqrt{\frac{2}{\pi x}}\left\{P(x) \cos \left(x-\frac{2 \nu+\mathrm{I}}{4} \pi\right)-Q_{\nu}(x) \sin \left(x-\frac{2 \nu+\mathrm{I}}{4} \pi\right)\right\}$,
2. $Y_{\nu}(x)=\sqrt{\frac{2}{\pi x}}\left\{P_{\nu}(x) \sin \left(x-\frac{2 \nu+\mathrm{I}}{4} \pi\right)+Q_{\nu}(x) \cos \left(x-\frac{2 \nu+\mathrm{I}}{4} \pi\right)\right\}$,
3. $H_{\nu}^{\mathrm{I}}(x)=e^{i\left(x-\frac{2 \nu+\mathrm{T}}{4} \pi\right)} \sqrt{\frac{2}{\pi x}}\left\{P_{\nu}(x)+i Q_{\nu}(x)\right\}$,
4. $H_{\nu}^{\mathrm{II}}(x)=e^{-i\left(x-\frac{2 \nu+\mathrm{r}}{4} \pi\right)} \sqrt{\frac{2}{\pi x}}\left\{P_{\nu}(x)-i Q_{\nu}(x)\right\}$,
where
$P_{\nu}(x)=\mathrm{I}+\sum_{k=\mathrm{r}}^{\infty}(-\mathrm{I})^{k} \frac{\left(4 \nu^{2}-\mathrm{I}^{2}\right)\left(4 \nu^{2}-3^{2}\right) \ldots \ldots\left(4 \nu^{2}-\overline{4 k}-\mathrm{I}^{2}\right)}{(2 k)!2^{6 k} x^{2 k}}$,
$Q_{\nu}(x)=\sum_{k=1}^{\infty}(-\mathrm{I})^{k+1} \frac{\left(4 \nu^{2}-\mathrm{r}^{2}\right)\left(4 \nu^{2}-3^{2}\right) \ldots\left(4 \nu^{2}-\overline{4 k-3}^{2}\right)}{(2 k-\mathrm{I})!2^{6 k-3} x^{2 k-1}}$.

SPECIAL VALUES

9.130

I. $J_{0}(x)=\mathrm{I}-\frac{\mathrm{I}}{(\mathrm{I}!)^{2}}\left(\frac{x}{2}\right)^{2}+\frac{\mathrm{I}}{(2!)^{2}}\left(\frac{x}{2}\right)^{4}-\frac{\mathrm{I}}{(3!)^{2}}\left(\frac{x}{2}\right)^{6}+\ldots$
2. $J_{1}(x)=-\frac{d J_{0}(x)}{d x}=\frac{x}{2}\left\{\mathrm{I}-\frac{\mathrm{I}}{\mathrm{I}!2!}\left(\frac{x}{2}\right)^{2}+\frac{\mathrm{I}}{2!3!}\left(\frac{x}{2}\right)^{4}-\frac{1}{3!4!}\left(\frac{x}{2}\right)^{6}+\ldots\right\}$.
3. $\frac{\pi}{2} Y_{0}(x)=\left(\log \frac{x}{2}+\gamma\right) J_{0}(x)+\left(\frac{x}{2}\right)^{2}-\frac{\mathrm{I}}{(2!)^{2}}\left(\mathrm{I}+\frac{\mathrm{I}}{2}\right)\left(\frac{x}{2}\right)^{4}$

$$
+\frac{I}{(3!)^{2}}\left(I+\frac{I}{2}+\frac{I}{3}\right)\left(\frac{x}{2}\right)^{6}-\ldots
$$

$$
=\left(\log \frac{x}{2}+\gamma\right) J_{0}(x)+4\left\{\frac{\mathrm{x}}{2} J_{2}(x)-\frac{\mathrm{I}}{4} J_{4}(x)+\frac{\mathrm{I}}{6} J_{6}(x)-\ldots\right\} .
$$

4. $\frac{\pi}{2} Y_{1}(x)=\left(\log \frac{x}{2}+\gamma\right) J_{1}(x)-\frac{\mathrm{I}}{x} J_{0}(x)-\frac{x}{2}\left\{\mathrm{I}-\frac{\mathrm{I}}{\mathrm{Y}!2!}\left(\mathrm{I}+\frac{\mathrm{I}}{2}\right)\left(\frac{x}{2}\right)^{2}\right.$

$$
\left.+\frac{I}{2!3!}\left(I+\frac{I}{2}+\frac{I}{3}\right)\left(\frac{x}{2}\right)^{4}-\ldots\right\}
$$

$$
=\left(\log \frac{x}{2}+\gamma\right) J_{1}(x)-\frac{\mathrm{I}}{x} J_{0}(x)+\frac{3}{\mathrm{I} \cdot 2} J_{3}(x)-\frac{5}{2 \cdot 3} J_{5}(x)
$$

$$
\gamma=0.5772157
$$

$$
+\frac{7}{3 \cdot 4} J_{7}(x)-\ldots .
$$

9.131 Limiting values for $x=0$:

$$
\begin{aligned}
J_{0}(x) & =\mathrm{I} \\
J_{1}(x) & =0 \\
Y_{0}(x) & =\frac{2}{\pi}\left(\log \frac{x}{2}+\gamma\right) \\
Y_{1}(x) & =-\frac{2}{\pi x} .
\end{aligned}
$$

9.132 Limiting values for $x=\infty$:

$$
\begin{array}{ll}
J_{0}(x)=\frac{\cos \left(x-\frac{\pi}{4}\right)}{\sqrt{\frac{\pi x}{2}}}, & Y_{0}(x)=\frac{\sin \left(x-\frac{\pi}{4}\right)}{\sqrt{\frac{\pi x}{2}}} \\
J_{1}(x)=\frac{\sin \left(x-\frac{\pi}{4}\right)}{\sqrt{\frac{\pi x}{2}}}, & Y_{1}(x)=-\frac{\cos \left(x-\frac{\pi}{4}\right)}{\sqrt{\frac{\pi x}{2}}} .
\end{array}
$$

9.140 Bessel's Addition Formula:

$$
J_{\nu}(x+h)=\left(\frac{x+h}{x}\right)^{\nu} \sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{h^{k}}{k!}\left(\frac{2 x+h}{2 x}\right)^{k} J_{\nu+k}(x)
$$

9.141 Multiplication formula:

$$
J_{\nu}(\alpha x)=\alpha^{\nu} \sum_{k=0}^{\infty} \frac{\left(\mathrm{I}-\alpha^{2}\right)^{k}}{k!}\left(\frac{x}{2}\right)^{k} J_{\nu+k}(x)
$$

9.142

$$
J_{\nu}(\alpha x) J_{\mu}(\beta x)=\sum_{k=0}^{\infty}(-\mathrm{I})^{k} A_{k}\left(\frac{x}{2}\right)^{\mu+\nu+2 k}
$$

where

$$
A_{k}=\sum_{s=0}^{k} \frac{\alpha^{2 k-2 s} \beta^{2 s}}{s!(k-s)!\Gamma(\nu+k-s+\mathrm{I}) \Gamma(\mu+s+\mathrm{I})}
$$

9.143

$$
J_{\nu}(x) J_{\mu}(x)=\sum_{k=0}^{\infty} \frac{(-\mathrm{I})^{k}}{\Gamma(\nu+k+\mathrm{I}) \Gamma(\mu+k+\mathrm{I})}\binom{\mu+\nu+2 k}{k}\left(\frac{x}{2}\right)^{\mu+\nu+2 k}
$$

DEFINITE INTEGRAL EXPRESSIONS FOR BESSEL'S FUNCTIONS

9.150

$$
J_{\nu}(x)=\frac{2\left(\frac{x}{2}\right)^{\nu}}{\sqrt{\pi} \Gamma\left(\nu+\frac{I}{2}\right)} \int^{\frac{\pi}{2}} \cos (x \sin \phi) \cos ^{2 \nu} \phi \cdot d \phi
$$

9.151

$$
J_{\nu}(x)=\frac{2\left(\frac{1}{2}\right)}{\sqrt{\pi} \Gamma\left(\nu+\frac{I}{2}\right)} \int_{0}^{\pi} \cos (x \cos \phi) \sin ^{2 \nu} \phi \cdot d \phi
$$

9.152

$$
J_{\nu}(x)=\frac{\left(\frac{x}{2}\right)^{\nu}}{\sqrt{\pi} \Gamma\left(\nu+\frac{x}{2}\right)} \int_{0}^{\pi} e^{i x \cos \phi} \sin ^{2 \nu} \phi \cdot d \phi .
$$

If n is an integer:

9.153

$$
J_{2 n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin \phi) \cos (2 n \phi) d \phi=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} .
$$

9.154
9.155

$$
J_{2 n}(x)=\frac{(-1)^{n}}{\pi} \int_{0}^{\pi} \cos (x \cos \phi) \cos (2 n \phi) d \phi=\frac{2(-1)^{n}}{\pi} \int_{0}^{\frac{\pi}{2}} .
$$

$$
J_{2 n+1}(x)=\frac{1}{\pi} \int_{0}^{\pi} \sin (x \sin \phi) \sin (2 n+1) \phi d \phi=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} .
$$

9.156

$$
J_{2 n+1}(x)=\frac{(-1)^{n}}{\pi} \int_{0}^{\pi} \sin (x \cos \phi) \cos (2 n+1) \phi d \phi=\frac{2(-1)^{n}}{\pi} \int_{0}^{\frac{\pi}{2}} .
$$

9.157

$$
J_{n}(x)=\frac{\mathrm{I}}{2 \pi} \int_{-\pi}^{+\pi} e^{-i n \phi+i x \sin \phi} d \phi=\frac{\mathrm{I}}{2 \pi} \int_{0}^{2 \pi} e^{-i n \phi+i x \sin \phi} d \phi
$$

INTEGRAL PROPERTIES

9.160 If $C_{\nu}(\mu x)$ is any one of the particular integrals:

$$
J_{\nu}(\mu x), Y_{\nu}(\mu x), H_{\nu}^{\mathrm{I}}(\mu x), H_{\nu}^{\mathrm{II}}(\mu x)
$$

of the differential equation:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+\frac{\mathrm{I}}{x} \frac{d y}{d x}+\left(\mu^{2}-\frac{\nu^{2}}{x^{2}}\right) y=0, \\
\int_{a}^{b} C_{\nu}\left(\mu_{k} x\right) C_{\nu}\left(\mu_{l} x\right) x d x \\
=\frac{\mathrm{I}}{\mu_{k}{ }^{2}-\mu_{l}{ }^{2}}\left[x\left\{\mu_{l} C_{\nu}\left(\mu_{k} x\right) C_{\nu}{ }^{\prime}\left(\mu_{l} x\right)-\mu_{k} C_{\nu}\left(\mu_{l} x\right) C_{\nu}{ }^{\prime}\left(\mu_{k} x\right)\right\}\right]_{a}^{b} ; \mu_{k} \neq \mu_{l .}
\end{gathered}
$$

9.161 If μ_{k} and μ_{l} are two different roots of

$$
\begin{aligned}
C_{\nu}(\mu b) & =0, \\
\int_{a}^{b} C_{\nu}\left(\mu_{k} x\right) C_{v}\left(\mu_{l} x\right) x d x & =\frac{a}{\mu_{k}^{2}-\mu_{l}^{2}}\left\{\mu_{k} C_{v}\left(\mu_{l} a\right) C_{v}{ }^{\prime}\left(\mu_{k} a\right)-\mu_{l} C_{\nu}\left(\mu_{k} a\right) C_{v}{ }^{\prime}\left(\mu_{l} a\right)\right\} .
\end{aligned}
$$

9.162 If μ_{k} and μ_{l} are two different roots of

$$
\begin{gathered}
a \frac{C_{\nu}{ }^{\prime}(\mu a)}{C_{v}(\mu a)}=p \mu+q \frac{\mathbf{I}}{\mu} \\
C_{\nu}(\mu b)=0 \\
C_{\nu}\left(\mu_{k} x\right) C_{v}\left(\mu_{k} x\right) x d x=p C_{v}\left(\mu_{k} a\right) C_{\nu}\left(\mu_{l} a\right)
\end{gathered}
$$

and

If $\mu_{k}=\mu_{l}$:
$\int^{b} C_{\nu}\left(\mu_{k} x\right) C_{\nu}\left(\mu_{l} x\right) x d x=\frac{I}{2}\left\{b^{2} C_{\nu}^{\prime 2}\left(\mu_{k} b\right)-a^{2} C_{\nu}^{\prime 2}\left(\mu_{k} a\right)-\left(a^{2}-\frac{\nu^{2}}{\mu_{k}^{2}}\right) C_{\nu}{ }^{2}\left(\mu_{k} a\right)\right\}$.
,
9.170 Schlömilch's Expansion. Any function $f(x)$ which has a continuous differential coefficient for all values of x in the closed range $(0, \pi)$ may be expanded in the series:

$$
f(x)=a_{0}+\sum_{k=1} a_{k} J_{0}(k x)
$$

where

$$
\begin{aligned}
& a_{0}=f(0)+\frac{\mathrm{I}}{\pi} \int_{0}^{\pi} u \int_{0}^{\frac{\pi}{2}} f^{\prime}(u \sin \theta) d \theta d u \\
& a_{k}=\frac{2}{\pi} \int_{0}^{\pi} u \cos k u \int_{0}^{\frac{\pi}{2}} f^{\prime}(u \sin \theta) d \theta d u
\end{aligned}
$$

9.171

$$
f(x)=a_{0} x^{n}+\sum_{k=1}^{\infty} a_{k} J_{n}\left(\alpha_{k} x\right) \quad 0<x<\mathrm{I}
$$

where

$$
\begin{aligned}
J_{n+1}\left(\alpha_{k}\right) & =0 \\
a_{0} & =2(n+\mathrm{I}) \int^{\mathrm{I}} f(x) x^{n+1} d x \\
a_{k} & =\frac{2}{\left[J_{n}\left(\alpha_{k}\right)\right]^{2}} \int_{0}^{1} x f(x) J_{n}\left(\alpha_{k} x\right) d x
\end{aligned}
$$

(Bridgman, Phil. Mag. I6, p. 947, I908)
9.172

$$
f(x)=\sum_{k=1}^{\infty} A_{k} J_{0}\left(\mu_{k} x\right) \quad a<x<b
$$

where:

$$
a \frac{J_{0}^{\prime}\left(\mu_{k} a\right)}{J_{0}\left(\mu_{k} a\right)}=p \mu_{k}+\frac{q}{\mu_{k}}
$$

and

$$
J_{0}\left(\mu_{k} b\right)=0
$$

$$
A_{k}=2 \frac{\int_{a}^{b} x f(x) J_{0}\left(\mu_{k} x\right) d x-p f(a) J_{0}\left(\mu_{k} a\right)}{b^{2} J_{0}^{\prime 2}\left(\mu_{k} b\right)-a^{2} J_{0}^{\prime 2}\left(\mu_{k} a\right)-\left(a^{2}+2 p\right) J_{0}^{2}\left(\mu_{k} a\right)}
$$

(Stephenson, Phil. Mag. 14, p. 547, 1907)

SPECIAL EXPANSIONS IN BESSEL'S FUNCTIONS

9.180
I. $\sin x=2 \sum_{k=0}^{\infty}(-\mathrm{I})^{k} J_{2 k+1}(x)$,
2. $\cos x=J_{0}(x)+2 \sum_{k=1}^{\infty}(-1)^{k} J_{2 k}(x)$.

9.181

I. $\cos (x \sin \theta)=J_{0}(x)+2 \sum_{k=1}^{\infty} J_{2 k}(x) \cos 2 k \theta$,
2. $\sin (x \sin \theta)=2 \sum_{k=0}^{\infty} J_{2 k+1}(x) \sin (2 k+1) \theta$.
9.182
I. $\left(\frac{x}{2}\right)^{n}=\sum_{k=0}^{\infty} \frac{(n+2 k)(n+k-1)!}{k!} J_{n+2 k}(x)$,
2. $\sqrt{\frac{2 x}{\pi}}=\sum_{k=0}^{\infty} \frac{(4 k+1)(2 k)!}{2^{2 k}(k!)^{2}} J_{2 k+\frac{1}{2}}(x)$.
9.183

$$
\begin{align*}
\frac{d J_{\nu}(x)}{d \nu} & =\left\{\log \frac{x}{2}-\psi(\nu+\mathrm{I})\right\} J(x)+\sum_{k=1}^{\infty}(-\mathrm{I})^{k-1} \frac{\nu+2 k}{k(\nu+k)} J_{\nu+2 k}(x) \\
& =J_{\nu}(x) \log \frac{x}{2}-\sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{\psi(\nu+k+\mathrm{I})}{k!\Gamma(\nu+k+\mathrm{I})}\left(\frac{x}{2}\right)^{\nu+2 k} . \tag{see6.61}
\end{align*}
$$

9.200 The differential equation:

$$
\frac{d^{2} y}{d x^{2}}+\frac{2}{x} \frac{d y}{d x}+\left(\mu^{2}-\frac{n(n+1)}{x^{2}}\right) y=0
$$

with the substitution:

$$
z=y \sqrt{x}, \quad \mu x=\rho
$$

becomes:

$$
\frac{d^{2} z}{d \rho^{2}}+\frac{\mathrm{I}}{\rho} \frac{d z}{d \rho}+\left(\mathrm{I}-\frac{\left(n+\frac{1}{2}\right)^{2}}{\rho^{2}}\right) z=0
$$

which is Bessel's equation of order $n+\frac{1}{2}$.
9.201 Two independent solutions are:

$$
\begin{aligned}
& z=J_{n+\frac{1}{2}}(\rho) . \\
& z=J_{-n-\frac{1}{2}}(\rho) .
\end{aligned}
$$

The former remains finite for $\rho=0$; the latter becomes infinite for $\rho=0$.
9.202 Special values.

$$
\begin{aligned}
& J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x \\
& J(x)=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x}{x}-\cos x\right) \\
& J_{\frac{5}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left\{\left(\frac{3}{x^{2}}-\mathrm{I}\right) \sin x-\frac{3}{x} \cos x\right\} \\
& J_{\frac{3}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left\{\left(\frac{15}{x^{3}}-\frac{6}{x}\right) \sin x-\left(\frac{15}{x^{2}}-\mathrm{I}\right) \cos x\right\} \\
& J_{\frac{2}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left\{\left(\frac{105}{x^{4}}-\frac{45}{x^{2}}+\mathrm{I}\right) \sin x-\left(\frac{105}{x^{3}}-\frac{10}{x}\right) \cos x\right\}
\end{aligned}
$$

9.203

$$
\begin{aligned}
& J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos x \\
& J_{-\frac{3}{2}}(x)=-\sqrt{\frac{2}{\pi x}}\left(\sin x+\frac{\cos x}{x}\right) \\
& J_{-\frac{5}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left\{\frac{3}{x} \sin x+\left(\frac{3}{x^{2}}-\mathrm{I}\right) \cos x\right\} \\
& J_{-\frac{2}{2}}(x)=-\sqrt{\frac{2}{\pi x}}\left\{\left(\frac{15}{x^{2}}-\mathrm{I}\right) \sin x+\left(\frac{15}{x^{3}}-\frac{6}{x}\right) \cos x\right\} \\
& J_{-\frac{9}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left\{\left(\frac{105}{x^{3}}-\frac{10}{x}\right) \sin x+\left(\frac{105}{x^{4}}-\frac{45}{x^{2}}+\mathrm{I}\right) \cos x\right\}
\end{aligned}
$$

9.204

$$
\begin{aligned}
& H_{\frac{1}{2}}^{\mathrm{I}}(x)=-i \sqrt{\frac{2}{\pi x}} e^{i x} \\
& H_{2}^{\mathrm{I}}(x)=-\sqrt{\frac{2}{\pi x}} e^{i x}\left(\mathrm{I}+\frac{i}{x}\right) \\
& H_{\frac{1}{2}}^{\mathrm{I}}(x)=-\sqrt{\frac{2}{\pi x}} e^{i x}\left\{\frac{3}{x}+i\left(\frac{3}{x^{2}}-\mathrm{I}\right)\right\}
\end{aligned}
$$

9.205

$$
\begin{aligned}
H_{\mathrm{x}}^{\mathrm{II}}(x) & =i \sqrt{\frac{2}{\pi x}} e^{-i x} \\
H^{\mathrm{II}}(x) & =-\sqrt{\frac{2}{\pi x}} e^{-i x}\left(\mathrm{I}-\frac{i}{x}\right) \\
H_{8}^{\mathrm{II}}(x) & =-\sqrt{\frac{2}{\pi x}} e^{-i x}\left\{\frac{3}{x}-i\left(\frac{3}{x^{2}}-\mathrm{I}\right)\right\} .
\end{aligned}
$$

9.210 The differential equation:

$$
\frac{d^{2} y}{d x^{2}}+\frac{\mathrm{I}}{x} \frac{d y}{d x}-\left(\mathrm{I}+\frac{\nu^{2}}{x^{2}}\right) y=0
$$

with the substitution,

$$
x=i z
$$

becomes Bessel's equation.
9.211 Two independent solutions of 9.210 are:

$$
\begin{aligned}
& I_{\nu}(x)=i^{-\nu} J_{\nu}(i x), \\
& K^{\nu}(x)=e^{\frac{\nu+\mathrm{r}}{2} \pi i} \frac{\pi}{2} H_{\nu}^{\mathrm{I}}(i x) .
\end{aligned}
$$

9.212 If $\nu=n$, an integer:

$$
\begin{aligned}
& I_{n}(x)=\sum_{k=0}^{\infty} \frac{\mathrm{I}}{k!(n+k)!}\left(\frac{x}{2}\right)^{n+2 k}, \\
& K_{n}(x)=i^{n+1} \frac{\pi}{2} H_{n}^{I}(x)
\end{aligned}
$$

9.213

$$
\begin{aligned}
& I_{\nu}(x)=\frac{1}{\sqrt{\pi} \Gamma\left(\nu+\frac{1}{2}\right)}\left(\frac{x}{2}\right)^{\nu} \int_{0}^{\pi} \cosh (x \cos \phi) \sin ^{2 \nu} \phi d \phi, \\
& K_{\nu}(x)=\frac{\sqrt{\pi}}{\Gamma\left(\nu+\frac{1}{2}\right)}\left(\frac{x}{2}\right)^{\nu} \int^{\infty} \sinh ^{2 \nu} \phi e^{-x \cosh \phi} d \phi .
\end{aligned}
$$

9.214 If x is large, to a first approximation:

$$
\begin{aligned}
I_{n}(x) & =(2 \pi x \cosh \beta)^{-\frac{1}{2}} e^{x(\cosh \beta-\beta \sinh \beta)}, \\
K_{n}(x) & =\pi(2 \pi x \cosh \beta)^{-\frac{1}{2}} e^{-x(\cosh \beta-\beta \sinh \beta)}, \\
n & =x \sinh \beta .
\end{aligned}
$$

9.215 Ber and Bei Functions.

$$
\begin{gathered}
\text { ber } x+i \text { bei } x=I(x \sqrt{i}), \\
\text { ber } x-i \text { bei } x=I_{0}(i x \sqrt{i}), \\
\text { ber } x=\mathrm{I}-\frac{\mathrm{I}}{(2!)^{2}}\left(\frac{x}{2}\right)^{4}+\frac{\mathrm{I}}{(4!)^{2}}\left(\frac{x}{2}\right)^{8}-\ldots \\
\text { bei } x=\left(\frac{x}{2}\right)^{2}-\frac{\mathrm{I}}{(3!)^{2}}\left(\frac{x}{2}\right)^{6}+\frac{\mathrm{I}}{(5!)^{2}}\left(\frac{x}{2}\right)^{10}-\ldots
\end{gathered}
$$

9.216 Ker and Kei Functions:

$$
\begin{aligned}
& \operatorname{ker} x+i \text { kei } x=K_{0}(x \sqrt{i}) \\
& \text { ker } x-i \text { kei } x=K_{0}(i x \sqrt{i}),
\end{aligned}
$$

$\operatorname{ker} x=\left(\log \frac{2}{x}-\gamma\right)$ ber $x+\frac{\pi}{4}$ bei $x-\frac{\mathrm{I}}{(2!)^{2}}\left(\mathrm{I}+\frac{\mathrm{I}}{2}\right)\left(\frac{x}{2}\right)^{4}$

$$
+\frac{I}{(4!)^{2}}\left(I+\frac{I}{2}+\frac{I}{3}+\frac{I}{4}\right)\left(\frac{x}{2}\right)^{8}-\ldots
$$

kei $x=\left(\log \frac{2}{x}-\gamma\right)$ bei $x-\frac{\pi}{4}$ ber $x+\left(\frac{x}{2}\right)^{2}-\frac{\mathrm{I}}{(3!)^{2}}\left(\mathrm{I}+\frac{\mathrm{I}}{2}+\frac{\mathrm{I}}{3}\right)\left(\frac{x}{2}\right)^{6}+\ldots$
9.220 The Bessel-Clifford Differential Equation:

$$
x \frac{d^{2} y}{d x^{2}}+(\nu+\mathrm{I}) \frac{d y}{d x}+y=0
$$

With the substitution:

$$
z=x^{\nu / 2} y \quad u=2 \sqrt{x}
$$

the differential equation reduces to Bessel's equation.
9.221 Two independent solutions of 9.220 are:

$$
\begin{aligned}
C_{\nu}(x) & =x^{-\frac{\nu}{2}} J_{\nu}(2 \sqrt{x})=\sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{x^{k}}{k!\Gamma(\nu+k+\mathrm{I})}, \\
D_{\nu}(x) & =x^{-\frac{\nu}{2}} Y_{\nu}(2 \sqrt{x})
\end{aligned}
$$

9.222

$$
\begin{aligned}
C_{\nu+1}(x) & =-\frac{d}{d x} C_{\nu}(x) \\
x C_{\nu+2}(x) & =(\nu+\mathrm{I}) C_{\nu+1}(x)-C_{\nu}(x)
\end{aligned}
$$

9.223 If $\nu=n$, an integer:

$$
\begin{aligned}
& C_{n}(x)=(-\mathrm{I})^{n} \frac{d^{n}}{d x^{n}} C_{0}(x) \\
& C_{0}(x)=\sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{x^{k}}{(k!)^{2}}
\end{aligned}
$$

9.224 Changing the sign of ν, the corresponding solution of:

$$
\begin{gathered}
x \frac{d^{2} y}{d x^{2}}-(\nu-I) \frac{d y}{d x}+y=0 \\
y=x^{\nu} C_{\nu}(x)
\end{gathered}
$$

9.225 If ν is half an odd integer:

$$
\begin{aligned}
& C_{\frac{1}{3}}(x)=\frac{\sin (2 \sqrt{x}+\boldsymbol{\epsilon})}{2 \sqrt{x}}, \\
& C_{\frac{1}{2}}(x)=-\frac{d}{d x} C_{\frac{1}{2}}(x)=\frac{\sin (2 \sqrt{x}+\epsilon)}{4 x^{\frac{3}{2}}}-\frac{\cos (2 \sqrt{x}+\boldsymbol{\epsilon})}{2 x}, \\
& C_{\frac{8}{8}}(x)=-\frac{d}{d x} C_{\frac{3}{2}}(x)=\frac{3-4 x}{8 x^{\frac{3}{2}}} \sin (2 \sqrt{x}+\epsilon)-\frac{3 \cos (2 \sqrt{x}+\boldsymbol{\epsilon})}{4 x^{2}}, \\
& \ldots \ldots \\
& \cdots \cdots \\
& C_{-\frac{1}{3}}(x)=-\cos (2 \sqrt{x}+\epsilon), \\
& C_{-\frac{1}{2}}(x)=x^{3} C_{\frac{3}{2}}(x), \\
& C_{-\frac{8}{2}}(x)=x^{\frac{8}{8}} C_{\frac{1}{2}}(x) .
\end{aligned}
$$

ϵ is arbitrary so as to give a second arbitrary constant.
9.226 For x negative, the solution of the equation:

$$
x \frac{d^{2} y}{d x^{2}}+\left(\pm \nu+\text { 1) } \frac{d y}{d x}-y=0,\right.
$$

when ν is half an odd integer, is obtained from the values in 9.225 by changing \sin and \cos to sinh and cosh respectively.

9.227

$$
\begin{aligned}
& (m+n+1) \int C_{m+1}(x) C_{n+1}(x) d x=-x C_{m+1}(x) C_{n+1}(x)-C_{m}(x) C_{n}(x) \\
& (m+n+1) \int x^{m+n} C_{m}(x) C_{n}(x) d x=x^{m+n+1}\left\{x C_{m+1}(x) C_{n+1}(x)+C_{m}(x) C_{n}(x)\right\}
\end{aligned}
$$

9.228

I.

$$
\int_{0}^{\pi} C_{-\frac{1}{2}}\left(x \cos ^{2} \phi\right) d \phi=\pi C_{0}(x)
$$

2.

$$
\int_{0}^{\pi} C_{\frac{1}{2}}\left(x \cos ^{2} \phi\right) d \phi=\pi C_{1}(x) .
$$

3.

$$
\int_{0}^{\pi} C_{0}\left(x \sin ^{2} \phi\right) \sin \phi d \phi=C_{\frac{1}{2}}(x) .
$$

4.

$\int_{0}^{\pi} C_{1}\left(x \sin ^{2} \phi\right) \sin ^{3} \phi d \phi=C_{\frac{1}{2}}(x)$.
5.

$$
\int_{0}^{\pi} C_{1}\left(x \sin ^{2} \phi\right) \sin \phi d \phi=\frac{\mathrm{I}-\cos 2 \sqrt{x}}{x} \frac{2}{}
$$

9.229 Many differential equations can be solved in a simpler form by the use of the C_{n} functions than by the use of Bessel's functions.
(Greenhill, Phil. Mag. 38, p. 501, I9I9)
9.240 The differential equation:

$$
\frac{d^{2} y}{d x^{2}}+\frac{2(n+\mathrm{I})}{x} \frac{d y}{d x}+y=0
$$

with the change of variable:

$$
y=z x^{-n-\frac{1}{2}},
$$

becomes Bessel's equation 9.200.
9.241 Solutions of 9.240 are:
I.

$$
y=x^{-n-\frac{1}{2}} J_{n+\frac{1}{2}}(x) .
$$

$$
y=x^{-n-\frac{1}{2}} Y_{n+\frac{1}{2}}(x)
$$

3.

$y=x^{-n-\frac{1}{2}} H_{n^{+\frac{1}{2}}}^{\mathrm{I}}(x)$.
4.
$y=x^{-n-\frac{1}{2}} H_{n^{+\frac{1}{2}}}^{\mathrm{II}}(x)$.
9.242 The change of variable:

$$
x=2 \sqrt{z},
$$

transforms equation 9.240 into the Bessel-Clifford differential equation 9.220.
This leads to a general solution of 9.240 :

$$
y=C_{n+\frac{1}{2}}\left(\frac{x^{2}}{4}\right)
$$

When n is an integer the equations of 9.225 may be employed.

$$
\begin{aligned}
& C_{1}\left(\frac{x^{2}}{4}\right)=\frac{\sin (x+\epsilon)}{x}, \\
& C_{\frac{3}{2}}\left(\frac{x^{2}}{4}\right)=\frac{2 \sin (x+\epsilon)}{x^{3}}-\frac{\cos (x+\epsilon)}{x} .
\end{aligned}
$$

9.243 The solution of

$$
\frac{d^{2} y}{d x^{2}}+\frac{2(n+\mathrm{I})}{x} \frac{d y}{d x}-y=0,
$$

may be obtained from 9.242 by writing \sinh and \cosh for \sin and \cos respectively.
9.244 The differential equation 9.240 is also satisfied by the two independent functions (when n is an integer):
$\psi_{n}(x)=\left(-\frac{\mathrm{I}}{x} \frac{d}{d x}\right)^{n} \frac{\sin x}{x}$

$$
=\frac{\mathrm{I}}{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n+\mathrm{I})} \sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{x^{2 k}}{2^{k} k!(2 n+3) \ldots(2 n+2 k+\mathrm{I})},
$$

$$
\begin{aligned}
\Psi_{n}(x) & =\left(-\frac{\mathrm{I}}{x} \frac{d}{d x}\right)^{n} \frac{\cos x}{x} \\
& =\frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{x^{2 n+1}} \sum_{k=0}^{\infty}(-\mathrm{I})^{k} \frac{x^{2 k}}{2^{k} k!(\mathrm{I}-2 n)(3-2 n) \ldots(2 k-2 n-\mathrm{I})} .
\end{aligned}
$$

9.245 The general solution of 9.240 may be written:

$$
y=\left(\frac{1}{x} \frac{d}{d x}\right)^{n} \frac{A e^{i x}+B e^{-i x}}{x}
$$

9.246 Another particular solution of 9.240 is:

$$
\begin{gathered}
y=f_{n}(x)=\left(-\frac{\mathrm{I}}{x} \frac{d}{d x}\right)^{n} \frac{e^{-i x}}{x}=\Psi_{n}(x)-i \psi_{n}(x) \\
f_{n}(x)=\frac{i^{n} e^{-i x}}{x^{n+1}}\left\{\mathrm{I}+\frac{n(n+\mathrm{I})}{2 i x}+\frac{(n-\mathrm{I}) n(n+\mathrm{I})(n+2)}{2 \cdot 4 \cdot(i x)^{2}}+\ldots\right. \\
\left.+\frac{\mathrm{I} \cdot 2 \cdot 3 \ldots \cdot 2 n}{2 \cdot 4 \cdot 6 \ldots 2 n(i x)^{n}}\right\}
\end{gathered}
$$

9.247 The functions $\psi_{n}(x), \Psi_{n}(x), f_{n}(x)$ satisfy the same recurrence formulae:

$$
\begin{gathered}
\frac{d \psi_{n}(x)}{d x}=-x \psi_{n+1}(x) \\
x \frac{d \psi_{n}(x)}{d x}+(2 n+\mathrm{I}) \psi_{n}(x)=\psi_{n-1}(x)
\end{gathered}
$$

9.260 The differential equation:

$$
\frac{d^{2} y}{d x^{2}}-\frac{n(n+1)}{x^{2}} y+y=0
$$

with the change of variable:

$$
y=u \sqrt{x}
$$

is transformed into Bessel's equation of order $n+\frac{1}{2}$.
9.261 Solutions of 9.260 are:
I.

$$
\begin{aligned}
& S_{n}(x)=\sqrt{\frac{\pi x}{2}} J_{n+\frac{1}{2}}(x)=x^{n+1}\left(-\frac{\mathrm{I}}{x} \frac{d}{d x}\right)^{n} \frac{\sin x}{x} \\
& C_{n}(x)=(-\mathrm{I})^{n} \sqrt{\frac{\pi x}{2}} J_{-n-\frac{1}{2}}(x)=x^{n+1}\left(-\frac{\mathrm{I}}{x} \frac{d}{d x}\right)^{n}-\frac{\cos x}{x} \\
& E_{n}(x)=C_{n}(x)-i S_{n}(x)=x^{n+1}\left(-\frac{\mathrm{I}}{x} \frac{d}{d x}\right)^{n} \frac{e^{-i x}}{x}
\end{aligned}
$$

2.

9.262 The functions $S_{n}(x), C_{n}(x), E_{n}(x)$ satisfy the same recurrence formulae:

$$
\text { I. } \frac{d S_{n}(x)}{d x}=\frac{n+\mathrm{I}}{x} S_{n}(x)-S_{n+1}(x)
$$

2. $\frac{d S_{n}(x)}{d x}=S_{n-1}(x)-\frac{n}{x} S_{n}(x)$.
3. $S_{n+1}(x)=\frac{2 n+1}{x} S_{n}(x)-S_{n-1}(x)$.
9.30 The hypergeometric differential equation:

$$
x(\mathrm{I}-x) \frac{d^{2} y}{d x^{2}}+\{\gamma-(\alpha+\beta+\mathrm{I}) x\} \frac{d y}{d x}-\alpha \beta y=0 .
$$

9.31 The equation 9.30 is satisfied by the hypergcometric series:
$F(\alpha, \beta, \gamma, x)=\mathrm{I}+\frac{\alpha}{\mathrm{I}} \frac{\beta}{\gamma} x+\frac{\alpha(\alpha+\mathrm{I})}{\mathrm{I} \cdot 2} \frac{\beta(\beta+\mathrm{I})}{\gamma(\gamma+\mathrm{I})} x^{2}$

$$
+\frac{\alpha(\alpha+\mathrm{I})(\alpha+2)}{\mathrm{I} \cdot 2 \cdot 3} \frac{\beta(\beta+\mathrm{I})(\beta+2)}{\gamma(\gamma+\mathrm{I})(\gamma+2)} x^{3}+\ldots \ldots
$$

The series converges absolutely when $x<1$ and diverges when $x>1$. When $x=+\mathrm{I}$ it converges only when $\alpha+\beta-\gamma<0$, and then absolutely. When $x=-\mathrm{I}$ it converges only when $\alpha+\beta-\gamma-\mathrm{I}<0$, and absolutely if $\alpha+\beta-\gamma<$.
9.32

$$
\begin{aligned}
\frac{d}{d x} F(\alpha, \beta, \gamma, x) & =\frac{\alpha \beta}{\gamma} F(\alpha+\mathrm{r}, \beta+\mathrm{r}, \gamma+\mathrm{r}, x) . \\
F(\alpha, \beta, \gamma, \mathrm{r}) & =\frac{\Gamma(\gamma) \Gamma(\gamma-\alpha-\beta)}{\Gamma(\gamma-\alpha) \Gamma(\gamma-\beta)} .
\end{aligned}
$$

9.33 Representation of various functions by hypergeometric series.

$$
\begin{aligned}
(\mathrm{I}+x)^{n} & =F(-n, \beta, \beta,-x), \\
\log (\mathrm{I}+x) & =x F(\mathrm{I}, \mathrm{I}, 2,-x), \\
e^{x} & =\operatorname{Limit}_{\beta=\infty} F\left(\mathrm{I}, \beta, \mathrm{I}, \frac{x}{\beta}\right),
\end{aligned}
$$

$$
\begin{aligned}
(\mathrm{I}+x)^{n}+(\mathrm{I}-x)^{n} & =2 F\left(-\frac{n}{2},-\frac{n}{2}+\frac{\mathrm{I}}{2}, \frac{\mathrm{I}}{2}, x^{2}\right), \\
\log \frac{\mathrm{I}+x}{\mathrm{I}-x} & =2 x F\left(\frac{\mathrm{I}}{2}, \mathrm{I}, \frac{3}{2}, x^{2}\right), \\
\cos n x & =F\left(\frac{n}{2},-\frac{n}{2}, \frac{\mathrm{I}}{2}, \sin ^{2} x\right), \\
\sin n x & =n \sin x F\left(\frac{n+\mathrm{I}}{2}, \frac{\mathrm{I}-n}{2}, \frac{3}{2}, \sin ^{2} x\right), \\
\cosh x & =\alpha=\beta=\infty \text { Limit } \\
\sin ^{-1} x & =x F\left(\frac{\mathrm{I}}{2}, \frac{\mathrm{I}}{2}, \frac{3}{2}, x^{2}\right), \\
\tan ^{-1} x & =x F\left(\frac{\mathrm{I}}{2}, \mathrm{I}, \frac{3}{2},-\frac{x^{2}}{4 \alpha \beta}\right), \\
P_{n}(x) & =F\left(-n, n+\mathrm{I}, \mathrm{I}, \frac{\mathrm{I}-x}{2}\right), \\
Q_{n}(x) & =\frac{\sqrt{\pi} \Gamma}{2^{n+1} \Gamma(n+\mathrm{I})} \frac{\mathrm{I}}{x^{n+1}} F\left(\frac{n+\frac{3}{2}}{2}, \frac{n+2}{2}, n+\frac{3}{2}, \frac{\mathrm{I}}{x^{2}}\right) .
\end{aligned}
$$

9.4 Heaviside's Operational Methods of Solving Partial Differential Equations.
9.41 The partial differential equation,

$$
a \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}
$$

where a is a constant, may be solved by Heaviside's operational method.
Writing $\frac{\partial}{\partial t}=p$, and $\frac{p}{a}=q^{2}$, the equation becomes,

$$
\frac{\partial^{2} u}{\partial x^{2}}=q^{2} u
$$

whose complete solution is $u=e^{q x} A+e^{-q x} B$, where A and B are integration constants to be determined by the boundary conditions. In many applications the solution $u=e^{-q x} B$, only, is required: and the boundary conditions will lead to $u=e^{-q x} f(q) u_{0}$, where u_{0} is a constant. If $e^{-q x} f(q)$ be expanded in an infinite power series in q, and the integral and fractional, positive and negative powers of p be interpreted as in 9.42, the resulting series will be a solution of the differential equation, satisfying the boundary conditions, and reducing to $u=0$ at $t=0$. The expansion of $e^{-q x} f(q)$ may be carried out in two or more ways, leading to series suitable for numerical calculation under different conditions.
9.42 Fractional Differentiation and Integration.

In the following expressions, I stands for a function of t which is zero up to $t=0$, and equal to I for $t>0$.

9.421

$$
\begin{array}{ll}
p^{\frac{1}{2}} \mathrm{I}=\frac{\mathrm{I}}{\sqrt{\pi t}} \\
p^{\frac{3}{2}} \mathrm{I}=\frac{\mathrm{I}}{2 t \sqrt{\pi t}} & p^{\frac{2 n+1}{2}} \mathrm{I}=(-\mathrm{I})^{n} \frac{\mathrm{I} \cdot 3 \cdot 5 \cdots(2 n-\mathrm{I})}{2^{n} t^{n} \sqrt{\pi t}} \\
p^{\frac{5}{2}} \mathrm{I}=\frac{3}{2^{2} t^{2} \sqrt{\pi t}}
\end{array}
$$

9.422

$p \mathrm{I}=0$
$p^{2} \mathrm{r}=0$

$$
p^{n} \mathrm{I}=0
$$

$$
p^{3} \mathrm{I}=0
$$

-••
-••

9.423

$$
\begin{array}{ll}
p^{-\frac{1}{2}}= & 2 \sqrt{\frac{t}{\pi}} \\
p^{-\frac{3}{2}} & =\frac{2^{2} t}{3} \sqrt{\frac{t}{\pi}} \\
p^{-2} & =\frac{2^{3} t^{2}}{3 \cdot 5} \sqrt{\frac{t}{\pi}}
\end{array}
$$

9.424

$$
\frac{\mathrm{I}}{p^{\nu}}=\frac{t^{\nu}}{\Gamma(\mathrm{I}+\nu)},
$$

where ν may have any real value, except a negative integer. (Conjectural.)
9.425

$$
\begin{aligned}
& \frac{p}{p-a} \mathrm{I}=e^{a t} \\
& \frac{\mathrm{I}}{p-a} \mathrm{I}=\frac{\mathrm{I}}{a}\left(e^{a t}-\mathrm{I}\right)
\end{aligned}
$$

9.426 With $p=a q^{2}$,

$$
\begin{aligned}
q^{2 n+1} \mathrm{I} & =(-\mathrm{I})^{n} \frac{\mathrm{I} \cdot 3 \cdot 5 \ldots(2 n-\mathrm{I})}{(2 a t)^{n} \sqrt{\pi a t}} \\
q^{-2 n} \mathrm{I} & =\frac{(a t)^{n}}{n!} \cdot
\end{aligned}
$$

$$
q e^{-q x} \mathrm{I}=\frac{\mathrm{I}}{\sqrt{\pi a t}} e^{-\frac{x^{2}}{4 a t}}
$$

9.428 If $z=\frac{x}{2 \sqrt{a t}}$,

$$
\begin{aligned}
e^{-q x} & =\frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-v 2} d v \\
\frac{\mathrm{I}}{q} e^{-q x} & =\frac{x}{\sqrt{\pi}} \int_{z}^{\infty} e^{-v^{2}} \frac{d v}{v^{2}} .
\end{aligned}
$$

9.43 Many examples of the use of this method are given by Heaviside: Electromagnetic Theory, Vol. II. Bromwich, Proceedings Cambridge Philosophical Society, XX, p. 4II, 192r, has justified its application by the method of contour integration and applied it to the solution of a problem in the conduction of heat.
9.431 Herlitz, Arkiv for Matematik, Astronomi och Fysik, XIV, 1919, has shown that the same methods may be applied to the more general partial differential equations of the type,

$$
\sum_{\alpha, \beta} A_{\alpha, \beta}(x) \frac{\partial^{\alpha+\beta}(u)}{\partial x^{\alpha} \partial t^{\beta}}=0,
$$

and the relations of 9.42 are valid.

9.44 Heaviside's Expansion Theorem.

The operational solution of the differential equation of 9.41 , or the more general equation, 9.431 , satisfying the given boundary conditions, may be written in the form,

$$
u=\frac{F(p)}{\Delta(p)} u_{0}
$$

where $F(p)$ and $\Delta(p)$ are known functions of $p=\frac{\partial}{\partial t}$. Then Heaviside's Expansion Theorem is:

$$
u=u_{0}\left\{\frac{F(\mathrm{o})}{\Delta(\circ)}+\sum \frac{F(\alpha)}{\alpha \Delta^{\prime}(\alpha)} e^{\alpha t}\right\}
$$

where α is any root, except 0 , of $\Delta(p)=0, \Delta^{\prime}(p)$ denotes the first derivative of $\Delta(p)$ with respect to p, and the summation is to be taken over all the roots of $\Delta(p)=0$. This solution reduces to $u=0$ at $t=0$.

Many applications of this expansion theorem are given by Heaviside, Electromagnetic Theory, II, and III; Electrical Papers, Vol. II. Herlitz, 9.431, has also applied this expansion theorem to the solution of the problem of the distribution of magnetic induction in cylinders and plates.
9.45 Bromwich's Expansion Theorem. Bromwich has extended Heaviside's Expansion Theorem as follows. If the operational solution of the partial differential equation of 9.41 , obtained to satisfy the boundary conditions, is

$$
u=\frac{F(p)}{\Delta(p)}(G t)
$$

where G is a constant, then the solution of the differential equation is

$$
u=G\left\{N_{0} t+N_{1}+\sum \frac{F(\alpha)}{\alpha^{2} \Delta^{\prime}(\alpha)} \epsilon^{\alpha t}\right\}
$$

where N_{0} and N_{1} are defined by the expansion,

$$
\frac{\dot{F}(p)}{\Delta(p)}=N_{0}+N_{1} p+N_{2} p^{2}+\ldots
$$

α is any root of $\Delta(p)=0, \Delta^{\prime}(p)$ is the first derivative of $\Delta(p)$ with respect to p, and the summation is over all the roots, α. This solution reduces to $u=0$ at $t=0$. Phil. Mag. 37, p. 407, 1919; Proceedings London Mathematical Society, I5, p. 40I, 1916.

9.9 References to Bessel Functions.

Nielsen: Handbuch der Theorie der Cylinder Funktionen.
Leipzig, 1904.
The notation and definitions given by Nielsen have been adopted in the present collection of formulae. The only difference is that Nielsen uses an upper index, $J^{n}(x)$, to denote the order, where the more usual custom of writing $J_{n}(x)$ is here employed. In place of $H_{1}{ }^{n}$ and $H_{2}{ }^{n}$ used by Nielsen for the cylinder functions of the third kind, $H_{n}{ }^{\mathrm{I}}$ and $H_{n}{ }^{\mathrm{II}}$ are employed in this collection.

Gray and Mathews: Treatise on Bessel Functions.

London, is95. ${ }^{1}$
The Bessel Function of the second kind, $Y_{n}(x)$, employed by Gray and Mathews is the function

$$
\frac{\pi}{2} Y_{n}(x)+(\log 2-\gamma) J_{n}(x)
$$

of Nielsen.
Schafheitlin: Die Theorie der Besselschen Funktionen.
Leipzig, 1908.
Schafheitlin defines the function of the second kind, $Y_{n}(x)$, in the same way as Nielsen, except that its sign is changed.

Note. A Treatise on the Theory of Bessel Functions, by G. N. Watson, Cambridge University Press, 1922, has been brought out while this volume is in press. This Treatise gives by far the most complete account of the theory and properties of Bessel Functions that exists, and should become the standard work on the subject with respect to notation. A particularly valuable feature is the Collection of Tables of Bessel Functions at the end of the volume and the Bibliography, giving references to all the important works on the subject.
9.91 Tables of Legendre, Bessel and allied functions.
$P_{n}(x) \quad$ (9.001).
${ }^{1}$ A second edition of Gray and Mathews' Treatise, prepared by A. Gray and T. M. MacRobert, has been published ($192 z$) while this volume is in press. The notation of the first edition has been altered in some respects.
B. A. Report, 1879 , pp. 54-57. Integral values of n from I to 7 ; from $x=0.01$ to $x=1.00$, interval 0.01 , 16 decimal places.

Jahnke and Emde: Funktionentafeln, p. 83; same to 4 decimal places.
$P_{n}(\cos \theta)$
Phil. Trans. Roy. Soc. London, 203, p. 100, 1904. Integral values of n from I to 20 , from $\theta=0$ to $\theta=90$, interval 5,7 decimal places.

Phil. Mag. 32, p. 512, 1891. Integral values of n from 1 to $7, \theta=0$ to $\theta=90$, interval i; 4 decimal places. Reproduced in Jahnke and Emde, p. 85.

Tallquist, Acta Soc. Sc. Fennicae, Helsingfors, 33, pp. r-8. Integral values of n from I to $8 ; \theta=\circ$ to $\theta=90$, interval I , 10 decimal places.

Airey, Proc. Roy. Soc. London, 96, p. i, 1919. Tables by means of which zonal harmonics of high order may be calculated.

Lodge, Phil. Trans. Roy. Soc. London, 203, 1904, p. 87. Integral values of n from I to $20 ; \theta=0$ to $\theta=90$, interval 5, 7 decimal places. Reprinted in Rayleigh, Collected Works, Volume V, p. 162.
$\frac{\partial P_{n}(\cos \theta)}{\partial \theta}$.
Farr, Proc. Roy. Soc. London, 64, 199, 1899. Integral values of n from I to 7 ; $\theta=\circ$ to $\theta=90$, interval $\mathrm{I}, 4$ decimal places. Reproduced in Jahnke and Emde, p. 88.
$J_{0}(x), J_{1}(x) \quad$ (9.101).
Meissel's tables, $x=0.01$ to $x=15.50$, interval 0.01 , to 12 decimal places, are given in Table I of Gray and Mathews' Treatise on Bessel's Functions.

Aldis, Proc. Roy. Soc. London 66, 40, 1900. $x=0.1$ to $x=6.0$, interval o.r, 21 decimal places.

Jahnke and Emde, Funktionentafeln, Table III. $x=0.01$ to $x=15.50$, interval o.or, 4 decimal places.
$J_{n}(x) \quad$ (9.101).
Gray and Mathews, Table II. Integral values of n from $n=0$ to $n=60$; integral values of x from $x=1$ to $x=24$, 18 decimal places.

Jahnke and Emde, Table XXIII, same, to 4 significant figures.
B. A. Report, 1915, p. 29; $n=0$ to $n=13$.

$$
\begin{array}{llr}
x=0.2 \text { to } x=6.0 & \text { interval } 0.2 & 6 \text { decimal places, } \\
x=6.0 \text { to } x=16.0 & \text { interval } 0.5 & \text { 1o decimal places. }
\end{array}
$$

Hague, Proc. London Physical Soc. 29, 211, 1916-17, gives graphs of $J_{n}(x)$ for integral values of n from ○ to 12 , and $n=18, x$ ranging from o to 17 .
$-\frac{\pi}{2} Y_{0}(x)=G_{0}(x) ; \quad-\frac{\pi}{2} Y_{1}(x)=G_{1}(x)$.
B. A. Report, I9I3, pp. II6-130. $x=0.01$ to $x=16.0$, interval $0.01,7$ decimal places.
B. A. Report, $1915, x=6.5$ to $x=15.5$, interval 0.5 , 10 decimal places.

Aldis, Proc. Roy. Soc. London, 66,40 , 1900: $x=0.1$ to $x=6.0$. Interval 0.I, 2I decimal places.

Jahnke and Emde, Tables VII and VIII, functions denoted $\mathrm{K}_{0}(x)$ and $\mathrm{K}_{1}(x)$, $x=0.1$ to $x=6.0$, interval 0.1; $x=0.01$ to $x=0.99$, interval $0.01 ; x=1.0$ to $x=10.3$, interval $0.1 ; 4$ decimal places.
$-\frac{\pi}{2} Y_{n}(x)=G_{n}(x)$.
B. A. Report, 1914, p. 83. Integral values of n from \circ to 13 . $x=0.0$ to $x=6.0$, interval 0.1; $x=6.0$ to $x=16.0$, interval $0.5 ; 5$ decimal places.
$\frac{\pi}{2} Y_{0}(x)+(\log 2-\gamma) J_{0}(x), \quad$ Denoted $Y_{0}(x)$ and $Y_{1}(x)$ $\frac{\pi}{2} Y_{1}(x)+(\log 2-\gamma) J_{1}(x) . \quad$ respectively in the tables.
B. A. Report, 1914, p. 76, $x=0.02$ to $x=15.50$, interval $0.02,6$ decimal places.
B. A. Report, 1915, p. $33, x=0.1$ to $x=6.0$, interval $0.1 ; x=6.0$ to $x=15.5$, interval 0.5 , 10 decimal places.

Jahnke and Emde, Table VI, $x=0.01$ to $x=1.00$, interval 0.01; $x=1.0$ to $x=$ Io.2, interval o.I, 4 decimal places.
$Y_{0}(x), Y_{1}(x)$.
Denoted $N_{0}(x)$ and $N_{1}(x)$ respectively.
Jahnke and Emde, Table IX, $x=0.1$ to $x=10.2$, interval 0.1, 4 decimal places.
$\frac{\pi}{2} Y_{n}(x)+(\log 2-\gamma) J_{n}(x)$. Denoted $Y_{n}(x)$ in tables.
B. A. Report, 1915. Integral values of n from I to I3. $x=0.2$ to $x=6.0$, interval $0.2 ; x=6.0$ to $x=15.5$, interval $0.5,6$ decimal places.
$J_{n+\frac{1}{2}}(x)$.
Jahnke and Emde, Table II. Integral values of n from $n=0$ to $n=6$, and $n=-$ I to $n=-7 ; x=0$ to $x=50$, interval I.o, 4 figures.
$J_{\frac{3}{3}}(x), J_{-\frac{3}{3}}(x)$.
Watson, Proc. Roy. Soc. London, 94, 204, 1918.

$$
\begin{aligned}
& x=0.05 \text { to } x=2.00 \text { interval } 0.05, \\
& x=2.0 \text { to } x=8.0 \text { interval } 0.2,
\end{aligned}
$$

4 decimal places.
$J_{\alpha}(\alpha), J_{\alpha-1}(\alpha)$
$-\frac{\pi}{2} Y_{\alpha}(\alpha),-\frac{\pi}{2} Y_{\alpha-1}(\alpha) . \quad$ Denoted $G_{\alpha}(\alpha)$ and $G_{\alpha-1}(\alpha)$ respectively.
$\frac{\pi}{2} Y_{\alpha}(\alpha)+(\log 2-\gamma) J_{\alpha}(\alpha)$,
$\frac{\pi}{2} Y_{\alpha-1}(\alpha)+(\log 2-\gamma) J_{\alpha-1}(\alpha) . \quad$ Denoted $-Y_{\alpha}(\alpha)$ and $-Y_{\alpha-1}(\alpha)$.
Tables of these six functions are given in the B. A. Report, I916, as follows:

From α	to α	Interval
I	50	I
50	100	5
100	200	10
200	400	20
400	1000	50
1000	2000	100
2000	5000	500
5000	20000	1000
20000	30000	10000
100,000		
500,000		
$\mathbf{I , 0 0 0 , 0 0 0}$		

$I_{0}(x), I_{1}(x) \quad(9.211)$.
Aldis, Proc. Roy. Soc. London, 64, pp. 218-223, 1899; $x=0.1$ to $x=6.0$, interval o.I; $x=6.0$ to $x=$ Ir.o, interval ı.०, 21 decimal places.

Jahnke and Emde, Tables XI and XII, 4 places:

$$
\begin{array}{ll}
x=0.01 \text { to } x=5.10 . & \text { interval } 0.01 \\
x=5.10 \text { to } x=6.0 & \text { interval } 0 . \mathrm{I}, \\
x=6.0 \text { to } x=11.0 & \text { interval 1.O. }
\end{array}
$$

$\mathrm{I}_{0}(x) \quad$ (9.211).
B. A. Report, $1896 ; x=0.001$ to $x=5.100$, interval $0.00 \mathrm{I}, 9$ decimal places.
$\mathrm{I}_{1}(x)$ (9.211).
B. A. Report, $1893 ; x=0.001$ to $x=5.100$, interval $0.001,9$ decimal places.

Gray and Mathews, Table V, $x=0.01$ to $x=5.10$, interval $0.01,9$ decimal places.
$\mathrm{I}_{n}(x) \quad$ (9.211).
B. A. Report, 1889 , pp. $28-32$; integral values of n from, ○ to $11, x=0.2$ to $x=6.0$, interval $0>2$, I2 decimal places. These tables áre reproduced in Gray and Mathews, Table VI.

Jahnke and Emde, Table XXIV; same ranges, to 4 places.
$\begin{array}{ll}J_{0}(x \sqrt{i}) & =X-i Y, \\ \sqrt{2} J_{1}(x \sqrt{i}) & =X_{1}+i Y_{1}\end{array}$

Aldis, Proc. Roy. Soc. London, 66, 142, 1900; $x=0.1$ to $x=6.0$, interval o.I, 21 decimal places.

Jahnke and Emde, Tables XV and XVI, same range, to 4 places.
$J_{0}(x \sqrt{i})$.
Gray and Mathews, Table IV; $x=0.2$ to $x=6.0$, interval $0.2,9$ decimal places.
$Y_{0}(x \sqrt{i})$ (9.104) Denoted $N_{0}(x \sqrt{i})$ in table.
$H_{0}^{\mathrm{I}}(x \sqrt{\bar{i}}), H_{1}^{\mathrm{I}}(x \sqrt{ } \bar{i})$.
Jahnke and Emde, Tables XVII and XVIII; $x=0.2$ to $x=6.0$, interval $0.2,4^{-7}$ figures.

$$
\frac{i \pi}{2} H_{0}^{\mathrm{I}}(i x)=K_{0}(x)
$$

(9.212).
$-\frac{\pi}{2} H_{0}^{\mathrm{I}}(i x)=K_{1}(x)$,
Aldis, Proc. Roy. Soc. London, 64, 219-223, $1899 ; x=0.1$ to $x=12.0$, interval o.I, 2I decimal places.

Jahnke and Emde, Table XIV; same, to 4 places.
$i H_{0}^{\mathrm{I}}(i x),-H_{0}^{\mathrm{I}}(i x) \quad$ (9.107).
Jahnke and Emde, Table XIII; $x=0.12$ to $x=6.0$, interval 0.2, 4 figures. ber x, ber x, bei x, bei' x, (9.215).
B. A. Report, 1912; $x=0 . \mathrm{I}$ to $x=10.0$, interval 0.I, 9 decimal places.

Jahnke and Emde, Table XX; $x=0.5$ to $x=6.0$, interval 0.5 , and $x=8$, 10, $15,20,4$ decimal places.
ker $x, \operatorname{ker}^{\prime} x$, kei x, kei $^{\prime} x$, (9.216).
B. A. Report, 1915; $x=0.1$ to $x=10.0$, interval $0.1,7$-10 decimal places. ber $^{2} x+$ bei $^{2} x$, ber $^{\prime 2} x+$ bei $^{\prime 2} x$,
ber x bei' x - bei x ber' x, and the corresponding ker and kei ber x ber' $^{\prime} x+$ bei x bei' $^{\prime} x$, functions.
B. A. Report, 1916; $x=0.2$ to $x=10.0$, interval 0.2, decimal places.
$S_{n}(x), S_{n}^{\prime}(x), \log S_{n}(x), \log S^{\prime}{ }_{n}(x)$, $C_{n}(x), C^{\prime}{ }_{n}(x), \log C_{n}(x), \log C^{\prime}{ }_{n}(x)$, (9.261). $E_{n}(x), E_{n}^{\prime}(x), \log E_{n}(x), \log E_{n}^{\prime}(x)$,
B. A. Report, i916; integral values of n from \circ to 1о, $x=$ 1.1 to $x=$ 1.9, interval 0.I, 7 decimal places.

$$
\begin{aligned}
& G(x)=-\sqrt{2} \Pi\left(\frac{1}{4}\right) x^{-\frac{1}{2}} J_{\frac{1}{2}}\left(\frac{x}{2}\right)=-\frac{1}{0.78012} x^{-\frac{1}{2}} J_{\frac{1}{2}}\left(\frac{x}{2}\right) \\
& D(x)=\frac{1}{\sqrt{2}} \Pi\left(-\frac{1}{4}\right) x^{\frac{1}{2}} J_{-\frac{1}{2}}\left(\frac{x}{2}\right)=\frac{I}{1.15407} x^{\frac{1}{2}} J_{-\frac{1}{6}}\left(\frac{x}{2}\right)
\end{aligned}
$$

Table I of Jahnke and Emde gives these two functions to 3 decimal places for $x=0.2$ to $x=8.0$, interval 0.2 , and $x=8.0$ to $x=12.0$, interval 1.0.

Roots of $J_{0}(x)=0$.
Airey, Phil. Mag. 36, p. 24I, 1918: First 40 roots (ρ) with corresponding values of $J_{1}(\rho), 7$ decimal places.

Jahnke and Emde, Table IV, same, to 4 decimal places.
Roots of $J_{1}(x)=0$.
Gray and Mathews, Table III, first 50 roots, with corresponding values of $J_{0}(x)$, 16 decimal places.

Airey, Phil. Mag. 36, p. 24I: First 40 roots (r) with corresponding values of $J_{0}(r), 7$ decimal places.

Jahnke and Emde, Table IV, same, to 4 decimal places.
Roots of $J_{n}(x)=0$.
B. A. Report, I9I7, first io roots, to 6 figures, for the following integral values of n : O-IO, I5, 20, 30, 40, 50, 75, 100, 200, 300, 400, 500, 750, 1000 .

Jahnke and Emde, Table XXII, first 9 roots, 3 decimal places, integral values of $n 0-9$.
Roots of:
$(\log 2-\gamma) J_{n}(x)+\frac{\pi}{2} Y_{n}(x)=0$.
Denoted $Y_{n}(x)=0$ in table.
Airey: Proc. London Phys. Soc. 23, p. 219, 1910-11. First 40 roots for $n=0,1,2,5$ decimal places.
Jahnke and Emde, Table X, first 4 roots for $n=0$, r. $\quad E$ decimal places.
Roots of:
$Y_{0}(x)=0$,
$Y_{1}(x)=0$.
Denoted $N_{0}(x)$ and $N_{1}(x)$ in tables.
Airey: l. c. First io roots, 5 decimal places.
Roots of:

$$
\begin{array}{rll}
J_{0}(x) \pm(\log 2-\gamma) J_{0}(x)+\frac{\pi}{2} Y_{0}(x)=0 . & \text { Denoted } & J_{0}(x) \pm Y_{0}(x)=0 \\
J_{1}(x)+(\log 2-\gamma) J_{1}(x)+\frac{\pi}{2} Y_{1}(x)=0 . & \text { Denoted } & J_{1}(x)+Y_{1}(x)=0 \\
J_{0}(x)-2(\log 2-\gamma) J_{0}(x)+\frac{\pi}{2} Y_{0}(x)=0 . & \text { Denoted } & J_{0}(x)-2 Y_{0}(x)=0 \\
1 \circ J_{0}(x) \pm(\log 2-\gamma) J_{0}(x)+\frac{\pi}{2} Y_{0}(x)=0 . & \text { Denoted } 1 \circ J_{0}(x) \pm Y_{0}(x)=0
\end{array}
$$

Airey, l. c. First to roots, 5 decimal places.
Roots of \cdot

$$
\frac{J_{n+1}(x)}{J_{n}(x)}+\frac{I_{n+1}(x)}{I_{n}(x)}=0 .
$$

Airey, 1. c. First ro roots: $n=0,4$ decimal places, $n=1,2,3,3$ decimal places.

Jahnke and Emde, Table XXV, first 5 roots for $n=0,3$ for $n=1,2$ for $n=2: 4$ figures.

Airey, l. c. gives roots of some other equations involving Bessel's functions connected with the vibration of circular plates.
Roots of:

$$
J_{\nu}(x) Y_{\nu}(x)=J_{\nu}(k x) Y_{\nu}(k x) .
$$

Jahnke and Emde, Table XXVI, first 6 roots, 4 decimal places, for $\nu=0, \mathrm{I} / 2, \mathrm{I}, 3 / 2,2,5 / 2: k=\mathrm{I} .2, \mathrm{I} .5,2.0$.

Table XXVIII, first root, multiplied by $(k-\mathrm{I})$ for $k=\mathrm{I}, \mathrm{I} .2, \mathrm{I} .5,2-\mathrm{II}$, 19, $39, \infty$: ν same as above.

Table XXIX, first 4 roots, multiplied by $(k-1)$ for certain irrational values of k, and $\nu=0$, I .

X. NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

By F. R. Moulton, Ph.D., Professor of Astronomy, University of Chicago;
Research Associate of the Cernegic Institution of Washington.

INTRODUCTION

Differential equations are usually first encountered in the final chapter of a book on integral calculus. The methods which are there given for solving them are essentially the same as those employed in the calculus. Similar methods are used in the first special work on the subject. That is, numerous types of differential equations are given in which the variables can be separated by suitable devices; little or nothing is said about the existence of solutions of other types, or about methods of finding the solutions. The false impression is often left that only exceptionally can differential equations be solved. Whatever satisfaction there may be in learning that some problems in geometry and physics lead to standard forms of differential equations is more than counterbalanced by the discovery that most practical problems do not lead to such forms.
10.01 The point of view adopted here and the methods which are developed can be best understood by considering first some simpler and better known mathematical theories. Suppose
I.

$$
F(x)=x^{n}+a_{1} x^{n-1}+\ldots .+a_{n-1} x+a_{n}=0
$$

is a polynomial equation in x having real coefficients $a_{1}, a_{2}, \ldots, a_{n}$. If n is $\mathrm{r}, 2,3$, or 4 the values of x which satisfy the equation can be expressed as explicit functions of the coefficients. If n is greater than 4 , formulas for the solution can not in general be written down. Nevertheless, it is possible to prove that n solutions exist and that at least one of them is real if n is odd. If the coefficients are given numbers, there are straightforward, though somewhat laborious, methods of finding the solutions. That is, even though general formulas for the solutions are not known, yet it is possible both to prove the existence of the solutions and also to find them in any special numerical case.
10.02 Consider as another illustration the definite integral
I.

$$
I=\int_{a}^{b} f(x) d x
$$

where $f(x)$ is continuous for $a \leqslant x \leqslant b$. If $F(x)$ is such a function that
2.

$$
\frac{d F}{d x}=f(x),
$$

then $I=F(b)-F(a)$. But suppose no $F(x)$ can be found satisfying (2). It is nevertheless possible to prove that the integral I exists, and if the value of (x) is given for every value of x in the interval $a \leqslant x \leqslant b$, it is possible to find the numerical value of I with any desired degree of approximation. That is, it is not necessary that the primitive of the integrand of a definite integral be known in order to prove the existence of the integral, or even to find its value in any particular example.
10.03 The facts are analogous in the case of differential equations. Those having numerical coefficients and prescribed initial conditions can be solved regardless of whether or not their variables can be separated. They need to satisfy only mild conditions which are always fulfilled in physical problems. It is with a sense of relief that one finds he can solve, numerically, any particular problem which can be expressed in terms of differential equations.
10.04 This chapter will contain an account of a method of solving ordinary differential equations which is applicable to a broad class including all those which arise in physical problems. A large amount of experience has shown that the method is very convenient in practice. It must be understood that there is for it an underlying logical basis, involving refinements of modern analysis, which fully justifies the procedure. In other words, it can be proved that the process is capable of furnishing the solution with any desired degree of accuracy. The proofs of these facts belong to the domain of pure analysis and will not be given here.
10.10 Simpson's Method of Computing Definite Integrals. The method of solving differential equations which will be given later involves the computation of definite integrals by a special process which will be developed in this and the following sections.

Let t be the variable of integration, and consider the definite integral
I.

$$
F=\int_{a}^{b} f(t) d t
$$

This integral can be interpreted as the area between the t-axis and the curve $y=f(t)$ and bounded by the ordinates $t=a$ and $t=b$, figure I .

Let $t_{0}=a, t_{n}=b, y_{i}=f\left(t_{i}\right)$, and divide the interval $a \leqslant t \leqslant b$ up into n equal parts, each of length $h=$

Fig. I $(b-a) / n$. Thẹn an approximate value of F is
2.

$$
F_{0}=h\left(y_{1}+y_{2}+\ldots+y_{n}\right) .
$$

This is the sum of rectangles whose ordinates, figure I , are $y_{1}, y_{2}, \ldots, y_{n}$.
10.11 A more nearly exact value can be obtained for the first two intervals, for example, by putting a curve of the second degree through the three points
y_{0}, y_{1}, y_{2}, and finding the area between the t-axis and this curve and bounded by the ordinates t_{0} and t_{2}. The equation of the curve is
I.

$$
y=a_{0}+a_{1}\left(t-t_{0}\right)+a_{2}\left(t-t_{0}\right)^{2}
$$

where the coefficients a_{0}, a_{1}, and a_{2} are determined by the conditions that y shall equal y_{0}, y_{1}, and y_{2} at t equal to t_{0}, t_{1} and t_{2} respectively; or
2.

$$
\left\{\begin{array}{l}
y_{0}=a_{0} \\
y_{1}=a_{0}+a_{1}\left(t_{1}-t_{0}\right)+a_{2}\left(t_{1}-t_{0}\right)^{2} \\
y_{2}=a_{0}+a_{1}\left(t_{2}-t_{0}\right)+a_{2}\left(t_{2}-t_{0}\right)^{2}
\end{array}\right.
$$

It follows from these equations and $t_{2}-t_{1}=t_{1}-t_{0}=h$ that
3.

$$
\left\{\begin{array}{l}
a_{0}=y_{0} \\
a_{1}=-\frac{\mathrm{x}}{2 h}\left(3 y_{0}-4 y_{1}+y_{2}\right), \\
a_{2}=\frac{\mathrm{I}}{2 h^{2}}\left(y_{0}-2 y_{1}+y_{2}\right)
\end{array}\right.
$$

The definite integral $\int_{t_{0}}^{t_{2}} y d t$ is approximately

$$
I=\int_{t_{0}}^{t_{2}}\left[a_{0}+a_{1}\left(t-t_{0}\right)+a_{2}\left(t-t_{0}\right)^{2}\right] d t=2 h\left[a_{0}+a_{1} h+\frac{4}{3} a_{2} h^{2}\right],
$$

which becomes as a consequence of (3)
4.

$$
I=\frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right) .
$$

10.12 The value of the integral over the next two intervals, or from t_{2} to t_{4}, can be computed in the same way. If n is even, the approximate value of the integral from t_{0} to t_{n} is therefore

$$
F_{1}=\frac{h}{3}\left[y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+\ldots+4 y_{n-1}+y_{n}\right] .
$$

This formula, which is due to Simpson, gives results which are usually remarkably accurate considering the simplicity of the arithmetical operations.
10.13 If a curve of the third degree had been passed through the four points y_{0}, y_{1}, y_{2}, and y_{3}, the integral corresponding to (4), but over the first three intervals, would have been found to be

$$
I=\frac{3 h}{8}\left[y_{0}+3 y_{1}+3 y_{2}+y_{3}\right] .
$$

10.20 Digression on Difference Functions. For later work it will be necessary to have some properties of the successive differences of the values of a function for equally spaced values of its argument.

As before, let y_{i} be the value of $f(t)$ for $t=t_{i}$. Then let

$$
\begin{aligned}
& \Delta_{1} y_{1}=y_{1}-y_{0}, \\
& \Delta_{1} y_{2}=y_{2}-y_{1}, \\
& . y_{1} y_{n}=y_{n}-y_{n-1},
\end{aligned}
$$

These are the first differences of the values of the function y for successive values of t. All the successive intervals for t are supposed to be equal.
10.21 In a similar way the second differences are defined by

$$
\begin{aligned}
& \Delta_{2} y_{2}=\Delta_{1} y_{2}-\Delta_{1} y_{1}, \\
& \Delta_{2} y_{3}=\Delta_{1} y_{3}-\Delta_{1} y_{2}, \\
& \hdashline \cdots \\
& \Delta_{2} y_{n}=\Delta_{1} y_{n}-\Delta_{1} y_{n-1},
\end{aligned}
$$

10.22 In a similar way third differences are defined by

$$
\begin{aligned}
& \Delta_{3} y_{3}=\Delta_{2} y_{3}-\Delta_{2} y_{2}, \\
& \Delta_{3} y_{4}=\Delta_{2} y_{4}-\Delta_{2} y_{3}, \\
& \Delta_{3} y_{n}=\Delta_{2} y_{n}-\Delta_{2} y_{n-1},
\end{aligned}
$$

and obviously the process can be repeated as many times as may be desired. 10.23 The table of successive differences can be formed conveniently from the tabular values of the function and can be arranged in a table as follows:

Table I

y	$\Delta_{1} y$	$\Delta_{2} y$	$\Delta_{3} y$
y_{0}			
y_{1}	$\Delta_{1} y_{1}$		
y_{2}	$\Delta_{1} y_{2}$	$\Delta_{2} y_{2}$	
y_{3}	$\Delta_{1} y_{3}$	$\Delta_{2} y_{3}$	
$\ldots \ldots \ldots \ldots$	$\ldots \ldots \ldots \ldots \ldots$	$\ldots \ldots \ldots \ldots$	$\ldots \ldots \ldots \ldots$

In this table the numbers in each column are subtracted from those immediately below them and the remainders are placed in the next column to the right on the same line as the minuends. Variations from this precise arrangement could be, and indeed often have been, adopted.
10.24 A very important advantage of a table of differences is that it is almost sure to reveal any errors that may have been committed in computing the y_{i}. If a single y_{i} has an error ϵ, it follows from $\mathbf{1 0 . 2 0}$ that the first difference $\Delta_{1} y_{i}$ will contain the error $+\epsilon$ and $\Delta_{1} y_{i+1}$ will contain the error $-\epsilon$. But the second differences $\Delta_{2} y_{i}, \Delta_{2} y_{i+1}$, and $\Delta_{2} y_{i+2}$ will contain the respective errors $+\epsilon,-2 \epsilon$, $+\epsilon$. Similarly, the third differences $\Delta_{3} y_{i}, \Delta_{3} y_{i+1}, \Delta_{3} y_{i+2}$, and $\Delta_{3} y_{i+3}$ will contain the respective errors $+\boldsymbol{\epsilon},-3 \boldsymbol{\epsilon},+3 \boldsymbol{\epsilon},-\boldsymbol{\epsilon}$. An error in a single y_{i} affects $j+1$ differences of order j, and the coefficients of the error are the binomial coefficients with alternating signs. The algebraic sums of the errors in the affected
numbers in the various difference columns are zero. Now in such functions as ordinarily occur in practice the numerical values of the differences, if the intervals are not too great, decrease with rapidity and run smoothly. If an error is present, however, the differences of higher order become very irregular. 10.25 As an illustration, consider the function $y=\sin t$ for t equal to 10°, $15^{\circ}, \ldots$. . . The following table gives the function and its successive differences, expressed in terms of units of the fourth decimal: ${ }^{1}$

Table II

t	$\sin t$	$\Delta_{1} \sin t$	$\Delta_{2} \sin t$	$\Delta_{3} \sin t$
10°	1736			
15	2588	852		
20	3420	832	-20	
25	4226	806	-26	-6
30	5000	774	-32	-6
35	5736	736	-38	-6
40	6428	692	-44	-6
45	7071	643	-49	-5
50	7660	589	-54	-5
55	8191	531	-58	-4
60	8660	469	-62	-4
65	9063	403	-66	-4
70	9397	334	-69	-3

Suppose, however, that an error of two units had been made in determining the sine of 45° and that 7073 had been taken in place of 7071 . Then the part of the table adjacent to this number would have been the following:

Table III

t	$\sin t$	$\Delta_{1} \sin$	$\Delta_{2} \sin t$	$\Delta_{3} \sin t$
25°	4226			
30	5000	774		
35	5736	736	-38	
40	6428	692	-44	- 6
45	7073	645	-47	- 3
50	7660	587	-58	-II
55	8191	531	-56	+ 2
60	8660	469	-62	- 6
65	9063	403	-66	- 4

The irregularity in the numbers of the last column shows the existence of an error, and, in fact, indicates its location. In the third differences four numbers
${ }^{1}$ Often it is not necessary to carry along the decimal and zeros to the left of the first significant figure.
will be affected by an error in the value of the function. The erroneous numbers in the last column are clearly the second, third, fourth, and fifth. The algebraic sum of these four numbers equals the sum of the four correct numbers, or -I 8 . Their average is -4.5 . Hence the central numbers are probably -5 and -4 . Since the errors in these numbers are -3ϵ and $+3 \epsilon$, it follows that ϵ is probably +2 . The errors in the second and fifth numbers are $+\epsilon$ and $-\epsilon$ respectively. On making these corrections and working back to the first column, it is found that 7073 should be replaced by 707 I .
10.30 Computation of Definite Integrals by Use of Difference Functions.

Suppose the values of $f(t)$ are known for $t=t_{n-2}, t_{n-1}, t_{n}$, and t_{n+1}. Suppose it is desired to find the integral

$$
\text { I. } \quad I_{n}=\int_{t_{n}}^{t_{n+\mathrm{x}}} f(t) d t .
$$

The coefficients b_{0}, b_{1}, b_{2}, and b_{3} of the polynomial can be determined, as above, so that the function
2.

$$
y=b_{0}+b_{1}\left(t-t_{n}\right)+b_{2}\left(t-t_{n}\right)^{2}+b_{3}\left(t-t_{n}\right)^{3}
$$

shall take the same values as $f(t)$ for $t=t_{n-2}, t_{n-1}, t_{n}$, and t_{n+1}.
With this approximation to the function $f(t)$, the integral becomes (since $t_{n+1}-t_{n}=h$)
3.

$$
\begin{aligned}
I_{n} & =\int_{t_{n}}^{t_{n+1}}\left[b_{0}+b_{1}\left(t-t_{n}\right)+b_{2}\left(t-t_{n}\right)^{2}+b_{3}\left(t-t_{n}\right)^{3}\right] d t \\
& =h\left[b_{0}+\frac{\mathrm{I}}{2} b_{1} h+\frac{\mathrm{I}}{3} b_{2} h^{2}+\frac{\mathrm{I}}{4} b_{3} h^{3}\right] .
\end{aligned}
$$

The coefficients b_{0}, b_{1}, b_{2}, and b_{3} will now be expressed in terms of $y_{n+1}, \Delta_{1} y_{n+1}$, $\Delta_{2} y_{n+1}$, and $\Delta_{3} y_{n+1}$. It follows from (2) that
4.

$$
\left\{\begin{array}{l}
y_{n-2}=b_{0}-2 b_{1} h+4 b_{2} h^{2}-8 b_{3} h^{3}, \\
y_{n-1}=b_{0}-b_{1} h+b_{2} h^{2}-b_{3} h^{3}, \\
y_{n}=b_{0}, \\
y_{n+1}=b_{0}+b_{1} h+b_{2} h^{2}+b_{3} h^{3} .
\end{array}\right.
$$

Then it follows from the rules for determining the difference functions that
5.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Delta_{1} y_{n-1}=b_{1} h-3 b_{2} h^{2}+7 b_{3} h^{3} \\
\Delta_{1} y_{n}=b_{1} h-b_{2} h^{2}+b_{3} h^{3} \\
\Delta_{1} y_{n+1}=b_{1} h+b_{2} h h^{2}+b_{3} h^{3}
\end{array}\right. \\
& \left\{\begin{array}{l}
\Delta_{2} y_{n}=2 b_{2} h^{2}-6 b_{3} h^{3} \\
\Delta_{2} y_{n+1}=2 b_{2} h^{2}
\end{array}\right.
\end{aligned}
$$

7.

$$
\Delta_{3} y_{n+1}=6 b_{3} h^{3} .
$$

It follows from the last equations of these four sets of equations that
8.

$$
\left\{\begin{array}{l}
b_{0}=y_{n+1}-\Delta_{1} y_{n+1} \\
b_{1} h=\Delta_{1} y_{n+1}-\frac{I}{2} \Delta_{2} y_{n+1}-\frac{\overline{1}}{6} \Delta_{3} y_{n+1} \\
b_{2} h^{2}=\frac{\mathrm{I}}{2} \Delta_{2} y_{n+1} \\
b_{3} h^{3}=\frac{\mathrm{I}}{6} \Delta_{3} y_{n+1}
\end{array}\right.
$$

Therefore the integral (3) becomes
9.

$$
I_{n}=h\left[y_{n+1}-\frac{\mathrm{I}}{2} \Delta_{1} y_{n+1}-\frac{\mathrm{I}}{\mathrm{I} 2} \Delta_{2} y_{n+1}-\frac{\mathrm{I}}{24} \Delta_{3} y_{n+1}-\ldots .\right]
$$

The coefficients of the higher order terms $\Delta_{4} y_{n+1}$ and $\Delta_{5} y_{n+1}$ are $-\frac{19}{720}$ and $\frac{1}{48}$ respectively.
10.31 Obviously, if it were desired, the integral from t_{n-2} to t_{n-1}, or over any other part of this interval, could be computed by the same methods. For example, the integral from t_{n-1} to t_{n} is

$$
\begin{aligned}
I_{n-1} & =\int_{t_{n-1}}^{t_{n}} f(t) d t \\
& =h\left[y_{n+1}-\frac{3}{2} \Delta_{1} y_{n+1}+\frac{5}{\mathrm{I} 2} \Delta_{2} y_{n+1}+\frac{\mathrm{I}}{24} \Delta_{3} y_{n+1}+\ldots\right] .
\end{aligned}
$$

NUMERICAL ILLUSTRATIONS

10.32 Consider first the application of Simpson's method. Suppose it is required to find

$$
I=\int_{25^{\circ}}^{55^{\circ}} \sin t d t=-[\cos t]_{25^{\circ}}^{55^{\circ}}=0.3327
$$

On applying 10.12 with the numbers taken from Table I, it is found that

$$
I_{1}=\frac{5^{\circ}}{3}[.4226+2.0000+1.1472+2.5712+1.4142+3.0640+.8191]
$$

which becomes, on reducing 5° to radians,

$$
I_{1}=0.3327
$$

agreeing to four places with the correct result.
10.33 On applying 10.11 (4) and omitting alternate entries in Table II, it is found that

$$
I=\int_{25^{\circ}}^{245^{\circ}} \sin t d t=\frac{10^{\circ}}{3}[.4226+2.2944+.707 \mathrm{I}]=0.199^{2}
$$

which is also correct to four places. These formulas could hardly be surpassed in ease and convenience of application.
10.34 Now consider the application of 10.30 (9). As it stands it furnishes the integral over the single interval t_{n} to t_{n+1}. If it is desired to find the integral from t_{n} to t_{n+m}, the formula for doing so is obviously the sum of m formulas such as (9), the value of the subscript going from $n+1$ to $n+m+1$, or

$$
\begin{aligned}
& I_{n, m}=h\left[\left(y_{n+1}+\ldots .+y_{n+m+1}\right)-\frac{\mathrm{I}}{2}\left(\Delta_{1} y_{n+1}+\ldots . \Delta_{1} y_{n+m+1}\right)\right. \\
& \left.-\frac{\mathrm{I}}{\mathrm{I} 2}\left(\Delta_{2} y_{n+1}+\ldots+\Delta_{2} y_{n+m+1}\right)-\frac{\mathrm{I}}{24}\left(\Delta_{3} y_{n+1}+\ldots+\Delta_{3} y_{n+m+1}\right)+\ldots\right]
\end{aligned}
$$

On applying this formula to the numbers of Table I, it is found that

$$
\begin{aligned}
I=\int_{25^{\circ}}^{.55^{\circ}} \sin t d t=5^{\circ}[(.5000 & +.5736+.6428+.707 \mathrm{I}+.7660+.8 \mathrm{I} 9 \mathrm{I}) \\
& -\frac{\mathrm{I}}{2}(.0774+.0736+.0692+.0643+.0589+.053 \mathrm{I}) \\
& +\frac{\mathrm{I}}{\mathrm{I} 2}(.0032+.0038+.0044+.0049+.0054+.0058) \\
& \left.+\frac{\mathrm{I}}{24}(.0006+.0006+.0006+.0005+.0005+.0004)\right] \\
& =0.3327
\end{aligned}
$$

agreeing to four places with the exact value. When a table of differences is at hand covering the desired range this method involves the simplest numerical operations. It must be noted, however, that some of the required differences necessitate a knowledge of the value of the function for earlier values of the argument than the lower limit of the integral.
10.40 Reduced Form of the Differential Equations. Differential equations which arise from physical problems usually involve second derivatives. For example, the differential equation satisfied by the motion of a vibrating tuning fork has the form

$$
\frac{d^{2} x}{d t^{2}}=-k x
$$

where k is a constant depending on the tuning fork.
10.41 The differential equations for the motion of a body subject to gravity and a retardation which is proportional to its velocity are

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}=-c \frac{d x}{d t} \\
\frac{d^{2} y}{d t^{2}}=-c \frac{d y}{d t}-g
\end{array}\right.
$$

where c is a constant depending on the resisting medium and the mass and shape of the body, while g is the acceleration of gravity.
10.42 The differential equations for the motion of a body moving subject to the law of gravitation are

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}=-k^{2} \frac{x}{r^{3}} \\
\frac{d^{2} y}{d l^{2}}=-k^{2} \frac{y}{r^{3}}, \\
\frac{d^{2} z}{d t^{2}}=-k^{2} \frac{z}{r^{3}}, \\
r^{2}=x^{2}+y^{2}+z^{2} .
\end{array}\right.
$$

10.43 These examples illustrate sufficiently the types of differential equations which arise in practical problems. The number of the equations depends on the problem and may be small or great. In the problem of three bodies there are nine equations. The equations are usually not independent as is illustrated in 10.42 , where each equation involves all three variables x, y, and z through r. On the other hand, equations 10.41 are mutually independent for the first does not involve y or its derivatives and the second does not involve x or its derivatives. The right members may involve x, y, and z as is the case in 10.42, or they may involve the first derivatives, as is the case in 10.41, or they may involve both the coördinates and their first derivatives. In some problems they also involve the independent variable t.
10.44 Hence physical problems usually lead to differential equations which are included in the form

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}=f\left(x, y, \frac{d x}{d t}, \frac{d y}{d t}, t\right), \\
\frac{d^{2} y}{d t^{2}}=g\left(x, y, \frac{d x}{d t}, \frac{d y}{d t}, t\right),
\end{array}\right.
$$

where f and g are functions of the indicated arguments. Of course, the number of equations may be greater than two.
10.45 If we let

$$
x^{\prime}=\frac{d x}{d t}, \quad y^{\prime}=\frac{d y}{d t},
$$

equations 10.44 can be written in the form

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x^{\prime}, \\
\frac{d x^{\prime}}{d t}=f\left(x, y, x^{\prime}, y^{\prime}, t\right), \\
\frac{d y}{d t}=y^{\prime}, \\
d y^{\prime} \\
d t=g\left(x, y, x^{\prime}, y^{\prime}, t\right) .
\end{array}\right.
$$

10.46 If we let $x=x_{1}, x^{\prime}=x_{2}, y=x_{3}, y^{\prime}=x_{4}, \ldots$. equations 10.45 are included in the form

$$
\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=f_{1}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}, t\right) \\
\cdots \cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \\
\frac{d x_{n}}{d t}=f_{n}\left(x_{1}, x_{2}, \ldots \ldots, x_{n}, t\right)
\end{array}\right.
$$

This is the final standard form to which it will be supposed the differential equations are reduced.
10.50 Definition of a Solution of Differential Equations. For simplicity in writing, suppose the differential equations are two in number and write them in the form
I.

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=f(x, y, t), \\
\frac{d y}{d t}=g(x, y, t),
\end{array}\right.
$$

where f and g are known functions of their arguments. Suppose $x=a, y=b$ at $t=0$. Then
2.

$$
\left\{\begin{array}{l}
x=\phi(t), \\
y=\psi(t),
\end{array}\right.
$$

is the solution of (1) satisfying these initial conditions if ϕ and ψ are such functions that

$$
\begin{aligned}
& \phi(\mathrm{o})=a, \\
& \psi(\mathrm{o})=b,
\end{aligned}
$$

$$
\frac{d \phi}{d t}=f(\phi, \psi, t)
$$

$$
\frac{d \psi}{d t}=g(\phi, \psi, t)
$$

the last two equations being satisfied for all $\circ \leqslant t \leqslant T$, where T is a positive constant, the largest value of t for which the solution is determined. It is not necessary that ϕ and ψ be given by any formulas - it is sufficient that they have the properties defined by (3). Solutions always exist, though it will not be proved here, if f and g are continuous functions of t and have derivatives with respect to both x and y.
10.51 Geometrical Interpretation of a Solution of Differential Equations. Geometrical interpretations of definite integrals have been of great value not only in leading to an understanding of their real meaning but also in suggesting
practical means of obtaining their numerical values. The same things are true in the case of differential equations.

For simplicity in the geometrical representation, consider a single equation
I.

$$
\frac{d x}{d t}=f(x, t),
$$

where $x=a$ at $t=0$. Suppose the solution is
2.

$$
x=\phi(t)
$$

Equation (2) defines a curve whose coördinates are x and t. Suppose it is represented by figure 2. The value of the tangent to the curve at every point on it

Fig. 2 is given by equation (I), for there is, corresponding to each point, a pair of values of x and t which gives $\frac{d x}{d t}$, the value of the tangent, when substituted in the right member of equation (r).

Consider the initial point on the curve, viz. $x=a, t=0$. The tangent at this point is $f(a, \circ)$. The curve lies close to the tangent for a short distance from the initial point. Hence an approximate value of x at $t=t_{1}, t_{1}$ being small, is the ordinate of the point where the tangent at a intersects the line $t=t_{1}$, or

$$
x_{1}=f(a, o) t_{1} .
$$

The tangent at x_{1}, t_{1} is defined by (I), and a new step in the solution can be made in the same way. Obviously the process can be continued as long as x and t have values for which the right member of (I) is defined. And the same process can be applied when there are any number of equations. While the steps of this process can be taken so short that it will give the solution with any desired degree of accuracy, it is not the most convenient process that may be employed. It is the one, however, which makes clearest to the intuitions the nature of the solution.
10.6 Outline of the Method of Solution. Consider equations $\mathbf{1 0 . 5 0}(\mathrm{I})$ and their solution (2). The problem is to find functions ϕ and ψ having the properties (2). If we integrate the last two equations of $\mathbf{1 0 . 5 0}$ (3) we shall have
I.

$$
\left\{\begin{array}{l}
\phi=a+\int_{0}^{t} f(\phi, \psi, t) d t \\
\psi=b+\int_{0}^{t} g(\phi, \psi, t) d t
\end{array}\right.
$$

The difficulty arises from the fact that ϕ and ψ are not known in advance and the integrals on the right can not be formed. Since ϕ and ψ are the solution values of x and y, we may replace them by the latter in order to preserve the original notation, and we have
2.

$$
\left\{\begin{array}{l}
x=a+\int_{0}^{t} f(x, y, t) d t \\
y=b+\int_{0}^{t} g(x, y, t) d t
\end{array}\right.
$$

If x and y do not change rapidly in numerical value, then $f(x, y, t)$ and $g(x, y, t)$ will not in general change rapidly, and a first approximation to the values of x and y satisfying equations (2) is
3.

$$
\left\{\begin{array}{l}
x_{1}=a+\int_{0}^{t} f(a, b, t) d t \\
y_{1}=b+\int_{0}^{t} g(a, b, t) d t
\end{array}\right.
$$

at least for values of t near zero. Since a and b are constants, the integrands in (3) are known and the integrals can be computed. If the primitives can not be found the integrals can be computed by the methods of 10.1 or 10.3 .

After a first approximation has been found a second approximation is given by
4.

$$
\left\{\begin{array}{l}
x_{2}=a+\int_{0}^{t} f\left(x_{1}, y_{1}, t\right) d t \\
y_{2}=b+\int_{0}^{t} g\left(x_{1}, y_{1}, t\right) d t
\end{array}\right.
$$

The integrands are again known functions of t because x_{1} and y_{1} were determined as functions of t by equations (3). Consequently x_{2} and y_{2} can be computed. The process can evidently be repeated as many times as is desired. The nth approximation is
5.

$$
\left\{\begin{array}{l}
x_{n}=a+\int_{0}^{t} f\left(x_{n-1}, y_{n-1}, t\right) d t \\
y_{n}=b+\int_{0}^{t} g\left(x_{n-1}, y_{n-1}, t\right) d t
\end{array}\right.
$$

There is no difficulty in carrying out the process, but the question arises whether it converges to the solution. The answer, first established by Picard, is that, as n increases, x_{n} and y_{n} tend toward the solution for all values of t for which all the approximations belong to those values of x, y, and t for which f and g have the properties of continuity with respect to t and differentiability with respect to x and y. If, for example, $f=\frac{\sin x}{x^{2}}$ and the value of x_{n} tends towards zero for $t=T$, then the solution can not be extended beyond $t=T$.

It is found in practice that the longer the interval over which the integration is extended in the successive approximations, the greater the number of approximations which must be made in order to obtain a given degree of accuracy. In fact, it is preferable to take first a relatively short interval and to find the solution over this interval with the required accuracy, and then to continue from the end values of this interval over a new interval. This is what is done in actual work. The details of the most convenient methods of doing it will be explained in the succeeding sections.
10.7 The Step-by-Step Construction of the Solution. Suppose the differential equations are

I

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=f(x, y, t), \\
\frac{d y}{d t}=g(x, y, t),
\end{array}\right.
$$

with the initial conditions $x=a, y=b$ at $t=0$. It is more difficult to start a solution than it is to continue one after the first few steps have been made. Therefore, it will be supposed in this section that the solution is well under way, and it will be shown how to continue it. Then the method of starting a solution will be explained in the next section, and the whole process will be illustrated numerically in the following one.

Suppose the values of x and y have been found for $t=t_{1}, t_{2}, \ldots, t_{n}$. Let them be respectively $x_{1}, y_{1} ; x_{2}, y_{2} ; \ldots ; x_{n}, y_{n}$, care being taken not to confuse the subscripts with those used in section 10.6 in a different sense. Suppose the intervals $t_{2}-t_{1}, t_{3}-t_{2}, \ldots, t_{n}-t_{n-1}$ are all equal to h and that it is. desired to find the values of x and y at t_{n+1}, where $t_{n+1}-t_{n}=h$.

It follows from this notation and equations (2) of $\mathbf{1 0 . 6}$ that the desired quantities are
2.

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}+\int_{t_{n}}^{t_{n}+\mathrm{r}} f(x, y, t) d t \\
y_{n+1}=y_{n}+\int_{t_{n}}^{t_{n+1}} g(x, y, t) d t
\end{array}\right.
$$

The values of x and y in the integrands are of course unknown. They can be found by successive approximations, and if the interval is short, as is supposed, the necessary approximations will be few in number.

A fortunate circumstance makes it possible to reduce the number of approximations. The values of x and y are known at $t=t_{n}, t_{n-1}, t_{n-2}, \ldots$ From these values it is possible to determine in advance, by extrapolation, very close approximations to x and y for $t=t_{n+1}$. The corresponding values of f and g can be computed because these functions are given in terms of x, y, and t. They are also given for $t=t_{n}, t_{n-1}, \ldots$ Consequently, curves for f and g agreeing with their values at $t=t_{n+1}, t_{n}, t_{n-1}, \ldots$ can be constructed and the integrals (2) can be computed by the methods of $\mathbf{1 0 . 1}$ and 10.3.

The method of extrapolating values of x_{n+1} and y_{n+1} must be given. Since the method is the same for both, consider only the former. Since, by hypothesis, x is known for $t=t_{n}, t_{n-1}, t_{n-2}, \ldots$ the values of $x_{n}, \Delta_{1} x_{n}, \Delta_{2} x_{n}$, and $\Delta_{3} x_{n}$ are known. If the interval h is not too large the value of $\Delta_{3} x_{n+1}$ is very nearly equal to $\Delta_{3} x_{n}$. As an approximation $\Delta_{3} x_{n+1}$ may be taken equal to $\Delta_{3} x_{n}$, or perhaps a closer value may be determined from the way the third differences
$\Delta_{3} x_{n-3}, \Delta_{3} x_{n-2}, \Delta_{3} x_{n-1}$, and $\Delta_{3} x_{n}$ vary. For example, in Table II it is easy to see that $\Delta_{3} \sin 75^{\circ}$ is almost certainly -3. It follows from $10.20,1,2$ that
3.

$$
\left\{\begin{array}{l}
\Delta_{2} x_{n+1}=\Delta_{3} x_{n+1}+\Delta_{2} x_{n}, \\
\Delta_{1} x_{n+1}=\Delta_{2} x_{n+1}+\Delta_{1} x_{n}, \\
x_{n+1}=\Delta_{1} x_{n+1}+x_{n} .
\end{array}\right.
$$

After the adopted value of $\Delta_{3} x_{n+1}$ has been written in its column the successive entries to the left can be written down by simple additions to the respective numbers on the line of t_{n}. For example, it is found from Table II that $\Delta_{2} \sin 75^{\circ}=-72, \Delta_{1} \sin 75^{\circ}=262, \sin 75^{\circ}=9659$. This is, indeed, the correct value of $\sin 75^{\circ}$ to four places.

Now having extrapolated approximate values of x_{n+1} and y_{n+1} it remains to compute f and g for $x=x_{n+1}, y=y_{n+1}, t=t_{n+1}$. The next step is to pass curves through the values of f and g for $t=t_{n+1}, t_{n}, t_{n-1}, \ldots$ and to compute the integrals (2). This is the precise problem that was solved in $\mathbf{1 0 . 3 0}$, the only difference being that in that section the integrand was designated by y. On applying equation $\mathbf{1 0 . 3 0}(9)$ to the computation of the integrals (2), the latter give
4.

$$
\left\{\begin{array}{l}
x_{n+1}=x_{n}+h\left[f_{n+1}-\frac{1}{2} \Delta_{1} f_{n+1}-\frac{\mathrm{I}}{\mathrm{I} 2} \Delta_{2} f_{n+1}-\frac{\mathrm{I}}{24} \Delta_{3} f_{n+1} \ldots\right], \\
y_{n+1}=y_{n}+h\left[g_{n+1}-\frac{1}{2} \Delta_{1} g_{n+1}-\frac{\mathrm{I}}{\mathrm{I} 2} \Delta_{2} g_{n+1}-\frac{\mathrm{I}}{24} \Delta_{3} g_{n+1} \ldots\right],
\end{array}\right.
$$

where
5.

$$
\left\{\begin{array}{l}
f_{n+1}=f\left(x_{n+1}, y_{n+1}, t_{n+1}\right), \\
g_{n+1}=g\left(x_{n+1}, y_{n+1}, t_{n+1}\right) .
\end{array}\right.
$$

The right members of (4) are known and therefore x_{n+1} and y_{n+1} are determined.

It will be recalled that f_{n+1} and g_{n+1} were computed from extrapolated values of x_{n+1} and y_{n+1}, and hence are subject to some error. They should now be recomputed with the values of x_{n+1} and y_{n+1} furnished by (4). Then more nearly correct values of the entire right members of (4) are at hand and the values of x_{n+1} and y_{n+1} should be corrected if necessary. If the interval h is small it will not generally be necessary to correct x_{n+1} and y_{n+1}. But if they require corrections, then new values of f_{n+1} and g_{n+1} should be computed. In practice it is advisable to take the interval h so small that one correction to f_{n+1} and g_{n+1} is sufficient.

After x_{n+1} and y_{n+1} have been obtained, values of x and y at t_{n+2} can be found in precisely the same manner, and the process can be continued to $t=t_{n+3}, t_{n+4}$, If the higher differences become large and irregular it is advisable to interpolate values at the mid-intervals of the last two steps and to continue with an interval half as great. On the other hand, if the higher differences become very small it is advisable to proceed with an interval twice as great as that used in the earlier part of the computation.

The foregoing, expressed in words, seems rather complicated. As a matter of fact, it goes very simply in practice, as will be shown in section 10.9.
10.8 The Start of the Construction of the Solution. Suppose the differential equations are again
I.

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=f(x, y, t) \\
\frac{d y}{d t}=g(x, y, t)
\end{array}\right.
$$

with the initial conditions $x=a, y=b$ at $t=0$. Only the initial values of x and y are known. But it follows from (I) that the rates of change of x and y at $t=0$ are $f(a, b, \circ)$ and $g(a, b, o)$ respectively. Consequently, first approximations to values of x and y at $t=t_{1}=h$ are
2.

$$
\left\{\begin{array}{l}
x_{1}{ }^{(1)}=a+h f(a, b, \circ), \\
y_{1}{ }^{(1)}=b+h g(a, b, \circ) .
\end{array}\right.
$$

Now it follows from (I) that the rates of change of x and y at $x=x_{1}, y=y_{1}$, $t=t_{1}$ are approximately $f\left(x_{1}^{(1)}, y_{1}{ }^{(1)}, t_{1}\right)$ and $g\left(x_{1}{ }^{(1)}, y_{1}{ }^{(1)}, t_{1}\right)$. These rates will be different from those at the beginning, and the average rates of change for the first interval will be nearly the average of the rates at the beginning and at the end of the interval. Therefore closer approximations than those given in (2) to the values of x and y at $t=t_{1}$ are
3.

$$
\left\{\begin{array}{l}
x_{1}^{(2)}=a+\frac{1}{2} h\left[f(a, b, \circ)+f\left(x_{1}^{(1)}, y_{1}^{(1)}, t_{1}\right)\right], \\
y_{1}^{(2)}=b+\frac{1}{2} h\left[g(a, b, o)+g\left(x_{1}^{(1)}, y_{1}^{(1)}, t_{1}\right)\right] .
\end{array}\right.
$$

The process could be repeated on the first interval, but it is not advisable when the interval is taken as short as it should be.

The rates of change at the beginning of the second interval are approximately $f\left(x_{1}^{(2)}, y_{1}^{(2)}, t_{1}\right)$ and $g\left(x_{1}^{(2)}, y_{1}^{(2)}, t_{1}\right)$ respectively. Consequently, first approximations to the values of x and y at $t=t_{2}$, where $t_{2}-t_{1}=h$, are
4.

$$
\left\{\begin{array}{l}
x_{2}^{(1)}=x_{1}^{(2)}+h f\left(x_{1}^{(2)}, y_{1}{ }^{(2)}, t_{1}\right), \\
y_{2}{ }^{(1)}=y_{1}{ }^{(2)}+h g\left(x_{1}{ }^{(2)}, y_{1}{ }^{(2)}, t_{1}\right) .
\end{array}\right.
$$

With these values of x and y approximate values of f_{2} and g_{2} are computed. Since $f_{0}, g_{0} ; f_{1}, g_{1}$ are known, it follows that $\Delta_{1} f_{2}, \Delta_{1} g_{2} ; \Delta_{2} f_{2}$, and $\Delta_{2} g_{2}$ are also known. Hence equations (4) of 10.7 , for $n+\mathrm{r}=2$, can be used, with the exception of the last terms in the right members, for the computation of x_{2} and y_{2}.

At this stage of work $x_{0}=a, y_{0}=b ; x_{1}, y_{1} ; x_{2}, y_{2}$ are known, the first pair exactly and the last two pairs with considerable approximation. After f_{2} and g_{2} have been computed, x_{1} and y_{1} can be corrected by 10.31 for $n=1$. Then approximate values of x_{3} and y_{3} can be extrapolated by the method explained in the preceding section, after which approximate values of f_{3} and g_{3} can be computed. With these values and the corresponding difference functions, x_{2} and y_{2} can be corrected by using $\mathbf{1 0 . 3 1}$. Then after correcting all the corresponding differences of all the functions, the solution is fully started and proceeds by the method given in the preceding section.
10.9 Numerical Illustration. In this section a numerical problem will be treated which will illustrate both the steps which must be taken and also the method of
arranging the work. A convenient arrangement of the computation which preserves a complete record of all the numerical work is very important.

Suppose the differential equation is
I.

$$
\left\{\begin{aligned}
\frac{d^{2} x}{d t^{2}} & =-\left(\mathrm{I}+\kappa^{2}\right) x+2 \kappa^{2} x^{3} \\
x & =0, \frac{d x}{d t}=\mathrm{I} \text { at } t=0
\end{aligned}\right.
$$

The problem of the motion of a simple pendulum takes this form when expressed in suitable variables. This problem is chosen here because it has an actual physical interpretation, because it can be integrated otherwise so as to express t in terms of x, and because it will illustrate sufficiently the processes which have been explained.

Equation (I) will first be integrated so as to express t in terms of x. On multiplying both sides of (r) by $2 \frac{d x}{d t}$ and integrating, it is found that the integral which satisfies the initial conditions is
2. $\left(\frac{d x}{d t}\right)^{2}=\left(\mathrm{I}-x^{2}\right)\left(\mathrm{I}-\kappa^{2} x^{2}\right)$.

On separating the variables this equation gives
3.

$$
t=\int_{0}^{x} \frac{d x}{\sqrt{\left(\mathrm{I}-x^{2}\right)\left(\mathrm{I}-\kappa^{2} x^{2}\right)}} .
$$

Suppose $\kappa^{2}<\mathrm{I}$ and that the upper limit x does not exceed unity. Then
4.

$$
\frac{\mathrm{I}}{\sqrt{\mathrm{I}-\kappa^{2} x^{2}}}=\mathrm{I}+\frac{\mathrm{I}}{2} \kappa^{2} x^{2}+\frac{3}{8} \kappa^{4} x^{4}+\frac{5}{16} \kappa^{6} x^{6}+\ldots
$$

where the right member is a converging series. On substituting (4) into (3) and integrating, it is found that
5. $t=\sin ^{-1} x+\frac{1}{4}\left[-x \sqrt{1-x^{2}}+\sin ^{-1} x\right] \kappa^{2}+\frac{3}{8}\left[-x^{3} \sqrt{1-x^{2}}-\frac{3}{4} x\left(1-x^{2}\right)^{\frac{3}{3}}\right.$

$$
\left.\left.+\frac{3}{8} x \sqrt{1-x^{2}}+\frac{3}{8} \sin ^{-1} x\right] \kappa^{4}+\ldots \ldots .\right] .
$$

When $x=1$ this integral becomes
6.

$$
T=\frac{\pi}{2}\left[\mathrm{I}+\left(\frac{\mathrm{I}}{2}\right)^{2} \kappa^{2}+\left(\frac{\mathrm{I} \cdot 3}{2 \cdot 4}\right)^{2} \kappa^{4}+\left(\frac{\mathrm{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^{2} \kappa^{6}+\ldots\right] .
$$

Equation (5) gives t for any value of x between -I and +I . But the problem is to determine x in terms of t. Of course, if a table is constructed giving t for many values of x, it may be used inversely to obtain the value of x corresponding to any value of t. The labor involved is very great. When κ^{2} is given numerically it is simpler to compute the integral (3) by the method of $\mathbf{1 0 . 1}$ or $\mathbf{1 0 . 3}$.

In mathematical terms, t is an elliptical integral of x of the first kind, and the inverse function, that is, x as a function of t, is the sine-amplitude function, which has the real period $4 T$.

Suppose $\kappa^{2}=\frac{1}{2}$ and let $y=\frac{d x}{d t}$. Then equation (I) is equivalent to the two equations
7.

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=y \\
\frac{d y}{d t}=-\frac{3}{2} x+x^{3},
\end{array}\right.
$$

which are of the form 10.50 (I), where
8.

$$
\left\{\begin{array}{l}
f=y \\
g=-\frac{3}{2} x+x^{3}
\end{array}\right.
$$

and $x=0, y=\mathrm{I}$ at $t=0$.
The first step is to determine the interval which is to be used in the start of the solution. No general rule can be given. The larger f_{0} and g_{0} the smaller must the interval be taken. A fairly good rule is in general to take h so small that $h f_{0}$ and $h g_{0}$ shall not be greater than rooo times the permissible error in the results. In the present instance we may take $h=0$.r.

First approximations to x and y at $t=0.1$ are found from the initial conditions and equations 10.8 (2) to be
9.

$$
\left\{\begin{array}{l}
x_{1}^{(1)}=0+\frac{I}{10} \cdot I=0.1000 \\
y_{1}^{(1)}=I+\frac{I}{10} 0=1.0000
\end{array}\right.
$$

It follows from (8) and these values of x_{1} and y_{1} that
10.

$$
\left\{\begin{array}{l}
f\left(x_{1}^{(1)}, y_{1}^{(1)}, t_{1}\right)=1.0000, \\
g\left(x_{1}^{(1)}, y_{1}^{(1)}, t_{1}\right)=-0.1490 .
\end{array}\right.
$$

Hence the more nearly correct values of x_{1} and y_{1}, which are given by 10.8 (3), are
II. $\left\{\begin{array}{l}x_{1}^{(2)}=0+\frac{0.1}{2}[1.0000+1.0000]=0.1000, \\ y_{1}{ }^{(2)}=1+\frac{0.1}{2}[0.0000-0.1490]=0.99^{2} 5 .\end{array}\right.$

Since in this particular problem $x=\int y d t$, it is not necessary to compute both f and g by the exact process explained in section $\mathbf{1 0 . 8}$, for after y has been determined x is given by the integral. It follows from (7), (8), (IO), and (II) that a first approximation to the value of y at $t=t_{2}=0.2$ is
12.

$$
y_{2}^{(1)}=.0025-\frac{1}{10} \cdot 1490=.9776
$$

With the values of y at $\mathrm{o}, \mathrm{I}, .2$ given by the initial conditions and in equations (9) and (12), the first trial y-table is constructed as follows:

First Trial y-Table

t	y	$\Delta_{1} y$	$\Delta_{2} y$
0	1.0000		
	I	.9925	-.0075
.2	.9776	-.0149	-.0074

Since $y=f$ it now follows from the first equations of (iI) and $\mathbf{1 0 . 7}$ (4) for $n=\mathrm{I}$ that an approximate value of x_{2} is

I3.

$$
x_{2}^{(1)}=0.1000+\frac{\mathrm{I}}{10}\left[.9776+\frac{\mathrm{I}}{2} .0149+\frac{\mathrm{I}}{\mathrm{I} 2} .0074\right]=.1986 .
$$

With this value of x_{2} it is found from the second of (8) that $g_{2}=.290$ I. Then the first trial g-table constructed from the values of g at $t=0,0.1,0.2$, is:

First Trial g-Table

t	g	$\Delta_{1} g$	$\Delta_{2 g}$
0	.0000		
. I	.- I 490	.- I 490	
.2	-.2901	.- I 4 II	+.0079

Then the second equation of 10.7 (4) gives for $n=I$ the more nearly correct value of y_{2},
14. $y_{2}=.9925+\frac{\mathrm{I}}{\mathrm{IO}}\left[-.290 \mathrm{I}+\frac{\mathrm{I}}{\mathrm{I} 2} \cdot \mathrm{I} 4 \mathrm{II}-\frac{\mathrm{I}}{\mathrm{I} 2} \cdot 0079\right]=.9705$.

This value of y_{2} should replace the last entry in the first trial y-table. When this is done it is found that $\Delta_{1} y_{2}=-.0220, \Delta_{2} y_{2}=-.0145$. Then the first equation of 10.7 (4) gives
15.

$$
x_{2}=.1000+\frac{I}{10}\left[.9705+\frac{I}{2} .0220+\frac{I}{I 2} .0145\right]=.1983
$$

The computation is now well started although x_{1}, y_{1}, x_{2}, and y_{2} are still subject to slight errors. The values of x_{1} and y_{1} can be corrected by applying 10.31 for $n=1$. It is necessary first to compute a more nearly correct value of g_{2} by using the value of x_{2} given in (15). The result is $g_{2}=-.2896, \Delta_{1} g_{2}=-.1406$, $\Delta_{2} g_{2}=+.0084$. Then the second equation of 10.7 (4) gives
16.

$$
y_{2}=.9925+\frac{1}{10}\left[-.2896+\frac{1}{2} .1406-\frac{1}{12} .0084\right]=.9705
$$

agreeing with (I4). This value of y_{2} is therefore essentially correct. An application of $\mathbf{1 0 . 3 1}$ then gives
17. $x_{1}=.0000+\frac{\mathrm{T}}{10}\left[.9705+\frac{3}{2} .0220-\frac{5}{12} .0145\right]=.0997$,
after which it is found that $g_{1}=-.1486, \Delta_{1} g_{1}=-.1486$. Now the first trial y-table can be corrected by using the value of y_{2} given in (14). The result is:

Second Trial y-Table

t	y	$\Delta_{1} y$	$\Delta_{2} y$
0	1.0000		
.1	.9925	-.0075	
.2	.9705	-.0220	-.0145

In order to correct x_{2} and y_{2} by the same method, which is the most convenient one to follow, it is necessary first to obtain approximate values of g_{3} and y_{3}. The trial g-table can be corrected by computing g with the values of x given by (17) and (15). Then the line for g_{3} can be extrapolated. The results are:

Second Trial g-Table

t	g	$\Delta_{1 g}$	$\Delta_{2 g}$
0	.0000		
. I	-.1486	-.1486	
.2	-.2896	-.1410	+.0076
.3	-.4230	-.1334	+.0076

Then the second equation of 10.7 (4) gives for $n=2$,
18.

$$
y_{3}=.9705+\frac{\mathrm{I}}{10}\left[-.4230+\frac{\mathrm{I}}{2} \cdot \mathrm{I} 334-\frac{\mathrm{I}}{12} .0076\right]=.9348 .
$$

When this is added to the second trial y-table, it is found that

$$
\text { 19. } y_{3}=.9348, \Delta_{1} y_{3}=-.0357, \Delta_{2} y_{3}=-.0137, \Delta_{3} y_{3}=+.0008 \text {. }
$$

Now x_{2} and y_{2} can be corrected by applying $\mathbf{1 0 . 3 1}$ to these numbers and those in the last line of the second trial g-table. The results are
20.

$$
\left\{\begin{array}{l}
x_{2}=.0997+\frac{1}{10}\left[.9348+\frac{3}{2} .0357-\frac{5}{12} .0137+\frac{1}{24} \cdot 0008\right]=.1980, \\
y_{2}=.9925+\frac{1}{10}\left[-.4230+\frac{3}{2} \cdot 1334+\frac{5}{12} \cdot 0076\right]=.9705 .
\end{array}\right.
$$

The preliminary work is finished and x and y have been determined for $t=0$, . 1 , and .2 with an error of probably not more than one unit in the last place. As the process is read over it may seem somewhat complicated, but this is largely because on the printed page preliminary values of the unknown quantities can not be erased and replaced by more nearly correct ones. As a matter of fact, the
first steps are very simple and can be carried out in practice in a few minutes if the chosen time-interval is not too great.

The problem now reduces to simple routine. There are an x-table, a y-table (which in this problem serves also as an f-table), a g-table, and a schedule for computing g. It is advisable to use large sheets so that all the computations except the schedule for computing g can be kept side by side on the same sheet. The process consists of six steps: (I) Extrapolate a value of g_{n+1} and its differences in the g-table; (2) compute y_{n+1} by the second equation of 10.7 (4); (3) enter the result in the y-table and write down the differences; (4) use these results to compute x_{n+1} by the first equation of $\mathbf{1 0 . 7}$ (4); (5) with this value of x_{n+1} compute g_{n+1} by the g-computation schedule; and (6) correct the extrapolated value of g_{n+1} in the g-table.

Usually the correction to g_{n+1} will not be great enough to require a sensible correction to y_{n+1}. But if a correction is required, it should, of course, be made. It follows from the integration formulas 10.7 (4) and the way that the difference functions are formed that an error ϵ in g_{n+1} produces the error $\frac{3}{8} h \epsilon$ in y_{n+1}, and the corresponding error in x_{n+1} is $\frac{9}{64} h^{2} \epsilon$. It is never advisable to use so large a value of h that the error in x_{n+1} is appreciable. On the other hand, if the differences in the g-table and the y-table become so small that the second differences are insensible the interval may be doubled.

The following tables show the results of the computations in this problem reduced from five to four places.

Final x-Table

t	x	$\Delta_{1} x$	$\Delta_{2} x$	$\Delta_{3} x$
	.0000			
.1	.0997	.0997		
.2	.1980	.0983	-.0014	
.3	.2934	.0954	-.0029	-.0015
.4	.3847	.0913	-.004 I	-.0012
.5	.4708	.0861	-.0052	-.0011
.6	.5508	.0800	-.0061	-.0009
.7	.6243	.0735	-.0065	-.0004
.8	.6909	.0666	-.0069	-.0004
.9	.7505	.0596	-.0070	-.0001
I.0	.8030	.0525	-.0071	-.0001
I.I	.8486	.0456	-.0069	+.0002
I.2	.8877	.0391	-.0065	+.0004
I.3	.9205	.0328	-.0063	+.0002
I.4	.9472	.0267	-.006 I	+.0002
I.5	.9682	.0210	-.0057	+.0004
I.6	.9837	.0155	-.0055	+.0002
I.7	.9940	.0103	-.0052	+.0003
I.8	.9993	.0053	-.0050	+.0002
I.9	.9995	.0002	-.0051	-.0001

Final y-Table

t	y	$\Delta_{1} y$	$\Delta_{2} y$	$\Delta_{3} y$
\bigcirc	1.0000			
I	. 9925	-. 0075		
. 2	. 9705	-. 0220	-. 0145	
. 3	. 9352	-. 0353	-. OI33	+.0012
. 4	. 8882	-. 0470	-. 0117	+.0016
. 5	. 8320	-. 0562	-. 0092	+. 0025
. 6	.7687	-. 0633	-. 0071	+.0019
. 7	. 7009	-. 0678	-. 0045	+. 0016
. 8	. 6308	- . 0701	-. 0023	+.0022
. 9	. 5602	-. 0706	-. 0005	+. 0008
I. 0	. 4906	-. 0696	+.0010	+.0015
I. I	. 4231	-. 0675	+.002I	+. 0011
I. 2	. 3584	-. 0647	+. 0028	+. 0007
I. 3	. 2968	-. 0616	+.0031	+. 0003
I. 4	. 2382	-. 0586	+.0030	-. 0001
I. 5	. 1824	-. 0558	+.0028	-. 0002
1. 6	. 1290	-. 0534	+. 0024	-. 0004
1.7	. 0775	-. 0515	+.0019	-. 0005
I. 8	. 0271	-. 0504	+.0011	-. 0008
I. 9	-. 0230	-. 0501	+.0003	-. 0008

Final g-Schedule

t	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
$\log x$	8.9989	9.2967	9.4675	9.5851	9.6728	9.7410	9.7954	9.8394	9.8753
$\log x^{3}$	6.9967	7.8901	8.4025	8.7553	9.0184	9.2230	9.3862	9.5182	9.6259
$3 x$. 2992	. 594 I	. 8802	r.1541	1.4124	1. 6524	1.8729	2.0727	2.2515
$-\frac{3}{2} x$	-. 1496	-. 2970	-.4401	$-.5770$	$-.7062$	-.8262	-. 9365	-1.0364	-1.1257
x^{3}	. 0010	. 0077	. 0252	. 0569	. 1044	.1671	. 2434	. 3298	. 4227
g	-.1486	-. 2893	-. 4149	$-.5201$	-.6018	-.6591	-.6931	-. 7066	-. 7030

Final g-Table

t	g	$\Delta_{1} \mathrm{~g}$	$\Delta_{2} g$	$\Delta_{3} g$
-	. 0000			
. 1	-. 1486	-. 1486		
. 2	-. 2893	-. 1407	+.0079	
- 3	-. 4149	-. 1256	+.0151	+.0072
. 4	-. 5201	-. 1052	+. 0204	+. 0053
. 5	-. 6018	-. 081 r 7	+. 0235	+.0031
. 6	-. 6591	-. 0573	+. 0244	+. 0009
. 7	-. 6931	-. 0340	+. 0233	-. 0011
. 8	-. 7066	-. 0135	+. 0205	-. 0028
. 9	-. 7030	+.0036	+.0171	-. 0034
1.0	-. 6867	+. 0163	+. 0127	-. 0044
1.1	-. 6618	+. 0249	+.0086	-. 0041
1.2	-. 6320	+. 0298	+. 0049	-. 0037
1.3	-. 6008	+.0312	+.0014	-. 0035
1.4	-. 5710	+. 0298	-. 0014	-. 0028
I. 5	-. 5447	+. 0263	-. 0035	-. 0021
I. 6	-. 5236	+. 0211	-. 0052	-. 0017
1.7	-. 5088	+. 0148	-. 0063	-. 0011
1.8	-. 5011	+.0077	-. 007 I	-. .0008
I. 9	-. 5008	+.0003	-. 0074	-. 0003

Final g-Schedule - Continued

1.0	1.I	1.2	I. 3	1. 4	1. 5	т. 6	1.7	ı. 8	1.9
9.9047	9.9287	9.9483	9.9640	9.9764	9.9860	9.9929	9.9974	9.9997	9.9998
9.7141	9.786 I	9.8449	9.8920	9.9292	9.9580	9.9787	9.9922	9.9991	9.9994
2.4990	2.5458	2.6631	2.7615	2.8416	2.9046	2.9511	2.9820	2.9979	2.9985
-1.2045	-1.2729	-1.3316	-1.3807	-1.4208	-I.4523	-1.4756	-1.4910	-1.4989	-I. 4992
. 5178	.6111	. 6996	.7799	. 8498	. 9076	. 9520	. 9822	. 9978	. 9984
-. 6867	-.6618	- . 6320	-. 6008	-. 5710	- . 5447	-. 5236	-. 5088	- . 5011	- . 5008

As has been remarked, large sheets should be used so that the x, y, and g-tables can be put side by side on one sheet. Then the t-column need be written but once for these three tables. The g-schedule, which is of a different type, should be on a separate sheet.

The differential equation (I) has an integral which becomes for $\kappa^{2}=\frac{1}{2}$ and $\frac{d x}{d t}=y$.
21.

$$
y^{2}+\frac{3}{2} x^{2}-\frac{1}{4} x^{4}=1,
$$

and which may be used to check the computation because it must be satisfied at every step. It is found on trial that (2I) is satisfied to within one unit in the fourth place by the results given in the foregoing tables for every value of t.

The value of t for which $x=\mathrm{I}$ and $y=0$ is given by (6). When $\kappa^{2}=\frac{1}{2}$ it is found that $T=1.854 \mathrm{I}$. It is found from the final x-table by interpolation based on first and second differences that x rises to its maximum unity for almost exactly this value of t; and, similarly, that y vanishes for this value of t.

XI ELLIPTIC FUNCTIONS

By Sir George Greenhill, F. R. S.

INTRODUCTION TO THE TABLES OF ELLIPTIC FUNCTIONS

By Sir George Greenhill

In the integral calculus, $\int \frac{d x}{\sqrt{X}}$, and more generally, $\int \frac{M+N \sqrt{\bar{X}}}{P+Q \sqrt{\bar{X}}} d x$, where M, N, P, Q are rational algebraical functions of x, can always be expressed by the elementary functions of analysis, the algebraical, circular, logarithmic or hyperbolic, so long as the degree of X does not exceed the second. But when X is of the third or fourth degree, new functions are required, called elliptic functions, because encountered first in the attempt at the rectification of an ellipse by means of an integral.

To express an elliptic integral numerically, when required in an actual question of geometry, mechanics, or physics and electricity, the integral must be normalised to a standard form invented by Legendre before the Tables can be employed; and these Tables of the Elliptic Functions have been calculated as an extension of the usual tables of the logarithmic and circular functions of trigonometry. The reduction to a standard form of any assigned elliptic integral that arises is carried out in the procedure described in detail in a treatise on the elliptic functions.
11.1. Legendre's Standard Elliptic Integral of the First Kind (E. I. I) is

$$
F \phi=\int_{0}^{\phi} \frac{d \phi}{\sqrt{\mathrm{I}-\kappa^{2} \sin ^{2} \phi}}=\int_{0}^{x} \frac{d x}{\sqrt{\left(\mathrm{I}-x^{2}\right)\left(\mathrm{I}-\kappa^{2} x^{2}\right)}}=u
$$

defining ϕ as the amplitude of u, to the modulus κ, with the notation,

$$
\begin{aligned}
\phi & =\operatorname{am} u \\
x & =\sin \phi=\sin \mathrm{am} u
\end{aligned}
$$

abbreviated by Gudermann to,

$$
\begin{aligned}
x & =\operatorname{sn} u \\
\cos \phi & =\operatorname{cn} u \\
\Delta \phi & =\sqrt{ }\left(\mathrm{I}-\kappa^{2} \sin ^{2} \phi\right)=\Delta \operatorname{am} u=\operatorname{dn} u,
\end{aligned}
$$

and $\mathrm{sn} u$, cn $u, \mathrm{dn} u$ are the three elliptic functions. Their differentiations are,

$$
\begin{aligned}
& \frac{d \phi}{d u}=\Delta \phi \quad \text { or } \frac{d \text { am } u}{d u}=\operatorname{dn} u \\
& \frac{d \sin \phi}{d u}=\cos \phi \cdot \Delta \phi \quad \text { or } \frac{d \operatorname{sn} u}{d u}=\mathrm{cn} u \operatorname{dn} u
\end{aligned}
$$

$$
\begin{aligned}
\frac{d \cos \phi}{d u} & =-\sin \phi \Delta \phi \quad \text { or } \frac{d \mathrm{cn} u}{d u}=-\operatorname{sn} u \operatorname{dn} u \\
\frac{d \Delta \phi}{d u} & =-\kappa^{2} \sin \phi \cos \phi \text { or } \frac{d \operatorname{dn} u}{d u}=-\kappa^{2} \operatorname{sn} u \mathrm{cn} u
\end{aligned}
$$

11.11. The complete integral over the quadrant, $0<\phi<\frac{\pi}{2}, 0<x<\mathrm{I}$, defines the (quarter) period, K,

$$
K=F \frac{\pi}{2}=\int_{0}^{\frac{1}{2} \pi} \frac{d \phi}{\Delta \phi}
$$

making

$$
\begin{aligned}
& \text { sn } K=\mathbf{1} \\
& \text { cn } K=0 \\
& \operatorname{dn} K=\kappa^{\prime} .
\end{aligned}
$$

κ^{\prime} is the comodulus to $\kappa, \kappa^{2}+\kappa^{\prime 2}=\mathrm{I}$, and the coperiod, K^{\prime}, is,

$$
K^{\prime}=\int_{0}^{\frac{\pi}{2}} \frac{d \phi}{\sqrt{\left(\mathrm{I}-\kappa^{\prime 2} \sin ^{2} \phi\right)}}
$$

11.12.

$$
\begin{aligned}
& \quad \mathrm{sn}^{2} u+\mathrm{cn}^{2} u=\mathrm{I} \\
& \\
& \mathrm{cn}^{2} u+\kappa^{2} \mathrm{sn}^{2} u=\mathrm{I} \\
& \\
& \mathrm{dn}^{2} u-\kappa^{2} \mathrm{cn}^{2} u=\kappa^{\prime 2} . \\
& \text { sn } \circ=\mathrm{o}, \quad \mathrm{cn} \circ=\mathrm{dn}, \quad \quad \mathrm{o}=\mathrm{I} . \\
& \text { sn } K=\mathrm{I}, \quad \text { cn } K=\mathrm{o}, \quad \operatorname{dn} K=\kappa^{\prime} .
\end{aligned}
$$

11.13. Legendre has calculated for every degree of θ, the modular angle, $\kappa=\sin \theta$, the value of $F \phi$ for every degree in the quadrant of the amplitude ϕ, and tabulated them in his Table IX, Fonctions elliptiques, t. II, $90 \times 90=8100$ entries.

But in this new arrangement of the Table, we take $u=F \phi$ as the independent variable of equal steps, and divide it into 90 degrees of a quadrant K, putting

$$
u=e K=\frac{r^{\circ}}{90^{\circ}} K, \quad r^{\circ}=90^{\circ} e .
$$

As in the ordinary trigonometrical tables, the degrees of r run down the left of the page from 0° to 45°, and rise up again on the right from 45° to 90°. Then columns II, III, X, XI are the equivalent of Legendre's Table of $F \phi$ and ϕ, but rearranged so that $F \phi$ proceeds by equal increments I° in r°, and the increments in ϕ are unequal, whereas Legendre took equal increments of ϕ giving unequal increments in $u=F \phi$.

The reason of this rearrangement was the great advance made in elliptic function theory when Abel pointed out that $F \phi$ was of the nature of an inverse function, as it would be in a degenerate circular integral with zero modular angle. On Abel's recommendation, the notation is reversed, and ϕ is to be
considered a function of u, denoted already by $\phi=$ am u, instead of looking at u, in Legendre's manner, as a function, $F \phi$, of ϕ. Jacobi adopted the idea in his Fundamenta nova, and employs the elliptic functions

$$
\sin \phi=\sin \mathrm{am} u, \quad \cos \phi=\cos \mathrm{am} u, \quad \Delta \phi=\Delta \mathrm{am} u,
$$

single-valued, uniform, periodic functions of the argument u, with (quarter) period K, as ϕ grows from ○ to $\frac{1}{2} \pi$. Gudermann abbreviated this notation to the one employed usually today.
11.2. The E. I. I is encountered in its simplest form, not as the elliptic arc, but in the expression of the time in the pendulum motion of finite oscillation, unrestricted to the small invisible motion of elementary treatment.

The compound pendulum, as of a clock, is replaced by its two equivalent particles, one at O in the centre of suspension, and the other at the centre of oscillation, P; the particles are adjusted so as to have the same total weight as the pendulum, the same centre of gravity at G, and the same moment of inertia about G or O; the two particles, if rigidly connected, are then the kinetic equivalent of the compound pendulum and move in the same way in the same field of force (Maxwell, Matter and Motion, CXXI).

Putting $O P=l$, called the simple equivalent pendulum length, and P starting from rest at B, in Figure I, the particle P will move in the circular arc $B A B^{\prime}$ as if sliding down a smooth curve; and P will acquire the same velocity as if it fell vertically $K P=N D$; this is all the dynamical theory required.
(velocity of $P)^{2}=2 g \cdot K P$,
(velocity of $N)^{2}=2 g \cdot N D \cdot \sin ^{2} A O P$ $=2 g \cdot N D \cdot \frac{N P^{2}}{O P^{2}}=\frac{g_{2}}{l^{2}} \cdot N D \cdot N A \cdot N E$, and with $A D=h, A N=y, N D$ $=h-y, A E=2 l, N E=2 l-y$,
$\left(\frac{d y}{d t}\right)^{2}=\frac{2 g}{l^{2}}\left(h y-y^{2}\right)(2 l-y)=\frac{2 g}{l^{2}} Y$,
where Y is a cubic in y. Then t is given by an elliptic integral of the form

Fig. I
$\int \frac{d y}{\sqrt{\bar{Y}}}$. This integral is normalised to Legendre's standard form of his E. I. I by putting $y=h \sin ^{2}: \phi$, making $A O Q=\phi, h-y=h \cos ^{2} \phi$, $2 l-y=2 l\left(\mathrm{I}-\kappa^{2} \sin ^{2} \phi\right)$,

$$
\kappa^{2}=\frac{h}{2 l}=\frac{A D}{A E}=\sin ^{2} A E B .
$$

κ is called the modulus, $A E B$ the modular angle which Legendre denoted by $\theta ; \sqrt{\left(I-\kappa^{2} \sin ^{2} \phi\right)}$ he denoted by $\Delta \phi$.

With $g=\ln ^{2}$, and reckoning the time t from A, this makes

$$
n t=\int_{0}^{\phi} \frac{d \phi}{\Delta \phi}=F \phi,
$$

in Legendre's notation. Then the angle ϕ is called the amplitude of $n t$, to be denoted am $n t$, the particle P starting up from A at time $t=0$; and with $u=n t$,

$$
\begin{array}{ll}
\text { sn } u=\frac{A P}{A B}=\frac{A Q}{A D} & \mathrm{sn}^{2} u=\frac{A N}{A D} \\
\text { cn } u=\frac{D Q}{A D} & \mathrm{cn}^{2} u=\frac{P K}{A D} \\
\text { dn } u=\frac{E P}{E A} & \mathrm{dn}^{2} u=\frac{N E}{A E}
\end{array}
$$

Velocity of $P=n \cdot A B \cdot \mathrm{cn} u=\sqrt{B P \cdot P B^{\prime}}$, with an oscillation beat of T seconds in $u=e K, e=2 t / T$.
11.21. The numerical values of $\mathrm{sn}, \mathrm{cn}, \mathrm{dn}, \mathrm{tn}(u, \kappa)$ are taken from a table to modulus $\kappa=\sin$ (modular angle, θ) by means of the functions $\mathrm{Dr}, \mathrm{Ar}, \mathrm{Br}$, Cr, in columns V, VI, VII, VIII, by the quotients,

$$
\begin{aligned}
\sqrt{\kappa^{\prime}} \operatorname{sn} e K & =\frac{A}{D} \\
\operatorname{cn} e K & =\frac{B}{D} \\
\frac{\mathrm{dn} e K}{\sqrt{\kappa^{\prime}}} & =\frac{C}{D} \\
\sqrt{\kappa^{\prime}} \operatorname{tn} e K & =\frac{A}{B} \\
r^{\circ} & =90^{\circ} e \\
u & =e K .
\end{aligned}
$$

These D, A, B, C are the Theta Functions of Jacobi, normalised, defined by

$$
\begin{array}{ll}
D(r)=\frac{\theta u}{\Theta o}, & A(r)=\frac{H u}{H K}, \\
B(r)=A\left(90^{\circ}-r\right) & C(r)=D\left(90^{\circ}-r\right) .
\end{array}
$$

They were calculated from the Fourier series of angles proceeding by multiples of r°, and powers of q as coefficients, defined by

$$
\begin{aligned}
& q=e^{-\pi \pi^{\frac{k^{\prime}}{k}}} \\
& \Theta u=\mathrm{I}-2 q \cos 2 r+2 q^{4} \cos 4 r-2 q^{9} \cos 6 r+\ldots \\
& H u=2 q^{\mathfrak{1}} \sin r-2 q^{\mathfrak{B}} \sin 3 r+2 q^{252} \sin 5 r-\ldots
\end{aligned}
$$

11.3. The Elliptic Integral of the Second Kind (E. I. II) arose first historically in the rectification of the ellipse, hence the name. With $B O P=\phi$ in Figure 2, the minor eccentric angle of P, and s the $\operatorname{arc} B P$ from B to P at $x=a \sin \phi$, $y=b \cos \phi$,
-

$$
\frac{d s}{d \phi}=\sqrt{a^{2} \cos ^{2} \phi+b^{2} \sin ^{2} \phi}=a \Delta(\phi, \kappa)
$$

to the modulus κ, the eccentricity of the ellipse. Then $s=a E \phi$, where $\int_{0}^{\phi} \Delta \phi \cdot d \phi$ is denoted by $E \phi$ in Legendre's notation of his standard E. I. II; it is tabulated in his Table IX alongside of $F \phi$ for every degree of the modular angle θ, and to every degree in the quadrant of the amplitude ϕ.

But it is not possible to make the inversion and express ϕ as a single-valued function of $E \phi$.

Fig. 2
11.31. The E. I. II, $E \phi$, arises also in the expression of the time, t, in the oscillation of a particle, P, on the arc of a parabola, as $F \phi$ was required on the arc

Fig. 3

$$
\begin{aligned}
& =a^{2}\left(\mathrm{I}-\sin ^{2} \alpha \sin ^{2} \phi\right) \cos ^{2} \phi\left(\frac{d \phi}{d t}\right)^{2}=2 g y=2 g h \cos ^{2} \phi \\
& =V^{2} \cos ^{2} \phi
\end{aligned}
$$

if V denotes the velocity of P at A, and $O A^{\prime}=a$. Then with s the elliptic $\operatorname{arc} B R$,

$$
V \frac{d t}{d \phi}=a \Delta \phi=a \frac{d s}{d \phi}, \quad V t=s
$$

and so the point R moves round the ellipse with constant velocity V, and accompanies the point P on the same vertical, oscillating on the parabola from B to B^{\prime}.

In the analogous case of the circular pendulum, the time t would be given by the arc of an Elastica, in Kirchhoff's Kinetic Analogue, and this can be placed as a bow on Figure r , with the cord along $A E$ and vertex at B.

Legendre has shown also how in the oscillation of R on the semi-ellipse $B R B^{\prime}$ in a gravity field the time t is expressible by elliptic integrals, two of the first and two of the second kind, to complementary modulus (Fonctions elliptiques, I, p. I83).
11.32. In these tables, $E \phi$ is replaced by the columns IV, IX, of $E(r)$ and $G(r)=E(9 \circ-r)$, defined, in Jacobi's notation, by

$$
\begin{aligned}
& E(r)=\mathrm{zn} e K=E \phi-e E \\
& G(r)=\mathrm{zn}(\mathrm{I}-e) K, \quad r=90 e .
\end{aligned}
$$

This is the periodic part of $E \phi$ after the secular term $e E=\frac{E}{K} u$ has been set aside, E denoting the complete E. I. II,

$$
E=E \frac{1}{2} \pi=\int^{\frac{1}{2} \pi} \Delta \phi \cdot d \phi
$$

The function $\mathrm{zn} u$, or $Z u$ in Jacobi's notation, or $E(r)$ in our notation, is calculated from the series,

$$
E r=Z u=\frac{\pi}{K} \sum_{m=1}^{\infty} \frac{\sin 2 m r}{\sinh m \pi \frac{K^{\prime}}{K}}=\frac{2 \pi}{K} \sum_{m=1}^{\infty}\left(q^{m}+q^{3 m}+q^{5 m}+\ldots .\right) \sin 2 m r .
$$

This completes the explanation of the twelve columns of the tables.

11.4. The Double Periodicity of the Elliptic Functions.

This can be visualised in pendulum motion if gravity is supposed reversed suddenly at B (Figure I) the end of a swing; as if by the addition of a weight to bring the centre of gravity above O, or by the movement of a weight, as in the metronome. The point P then oscillates on the arc $B E B^{\prime}$, and beats the elliptic function to the complementary modulus κ^{\prime}, as if in imaginary time, to imaginary argument $n t i=f K^{\prime} i$: and it reaches P^{\prime} on $A X$ produced, where $\tan A E P^{\prime}$ $=\tan A E B \cdot \mathrm{cn}\left(n t^{\prime} i, \kappa\right)$, or $\tan E A P^{\prime}=\tan E A B \cdot \mathrm{cn}\left(n t^{\prime}, \kappa^{\prime}\right)$; or with $\mathrm{nt}^{\prime}=v$, $D R^{\prime}=D B \cdot \mathrm{cn}\left(i v, \kappa^{\prime}\right), D R=D B \cdot \mathrm{cn}\left(v, \kappa^{\prime}\right)$, with $D R \cdot D R^{\prime}=D B^{2}, E P^{\prime}$ crossing $D B$ in R^{\prime}.

$$
\begin{aligned}
& \operatorname{cn}(i v, \kappa)=\frac{\mathrm{I}}{\operatorname{cn}\left(v, \kappa^{\prime}\right)} \\
& \operatorname{sn}(i v, \kappa)=\frac{i \operatorname{sn}\left(v, \kappa^{\prime}\right)}{\operatorname{cn}\left(v, \kappa^{\prime}\right)}=i \operatorname{tn}\left(v, \kappa^{\prime}\right) \\
& \operatorname{dn}(i v, \kappa)=\frac{\operatorname{dn}\left(v, \kappa^{\prime}\right)}{\operatorname{cn}\left(v, \kappa^{\prime}\right)}=\frac{1}{\operatorname{sn}\left(K^{\prime}-v, \kappa^{\prime}\right)}
\end{aligned}
$$

where K^{\prime} denotes the complementary (quarter) period to comodulus κ^{\prime}.
If m, m^{\prime} are any integers, positive or negative, including \circ,

$$
\begin{array}{ll}
\operatorname{sn}\left(u+4 m K+2 m^{\prime} i K^{\prime}\right) & =\operatorname{sn} u \\
\operatorname{cn}\left[u+4 m K+2 m^{\prime}\left(K+i K^{\prime}\right)\right] & =\operatorname{cn} u \\
\operatorname{dn}\left(u+2 m K+4 m^{\prime} i K^{\prime}\right) & =\operatorname{dn} u
\end{array}
$$

11.41. The Addition Theorem of the Elliptic Functions.

$$
\begin{aligned}
& \operatorname{sn}(u \pm v)=\frac{\operatorname{sn} u \operatorname{cn} v \operatorname{dn} v \pm \operatorname{sn} v \operatorname{cn} u \operatorname{dn} u}{\mathrm{I}-\kappa^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v} \\
& \operatorname{cn}(v \pm u)=\frac{\mathrm{cn} u \mathrm{cn} v \mp \operatorname{sn} u \operatorname{dn} u \operatorname{sn} v \operatorname{dn} v}{\mathrm{I}-\kappa^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v} \\
& \operatorname{dn}(v \pm u)=\frac{\operatorname{dn} u \operatorname{dn} v \mp \kappa^{2} \operatorname{sn} u \operatorname{cn} u \operatorname{sn} v \operatorname{cn} v}{\mathrm{I}-\kappa^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v}
\end{aligned}
$$

11.42. Coamplitude Formulas, with $v= \pm K$,

$$
\begin{array}{ll}
\operatorname{sn}(K-u)=\frac{\operatorname{cn} u}{\operatorname{dn} u}=\operatorname{sn}(K+u) & \\
\operatorname{cn}(K-u)=\frac{\kappa^{\prime} \operatorname{sn} u}{\operatorname{dn} u} & \operatorname{cn}(K+u)=-\frac{\kappa^{\prime} \operatorname{sn} u}{\operatorname{dn} u} \\
\operatorname{dn}(K-u)=\frac{\kappa^{\prime}}{\operatorname{dn} u}=\operatorname{dn}(K+u) & \\
\operatorname{tn}(K-u)=\frac{1}{\kappa^{\prime} \operatorname{tn} u} & \operatorname{tn}(K+u)=-\frac{}{\kappa^{\prime} \operatorname{tn} u}
\end{array}
$$

11.43. Legendre's Addition Formula for his E. I. II,

$$
E \phi=\int \Delta \phi \cdot d \phi=\int \operatorname{dn}^{2} u \cdot d u, \quad \phi=\int \operatorname{dn} u \cdot d u=\operatorname{am} u .
$$

$$
E \phi+E \psi-E \sigma=\kappa^{2} \sin \phi \sin \psi \sin \sigma, \psi=\mathrm{am} v, \sigma=\mathrm{am}(v+u)
$$

or, in Jacobi's notation,

$$
\mathrm{zn} u+\mathrm{zn} v-\mathrm{zn}(u+v)=\kappa^{2} \operatorname{sn} u \operatorname{sn} v \operatorname{sn}(v+u),
$$

the secular part cancelling.
Another form of the Addition Theorem for Legendre's E. I. II,

$$
E \sigma-E \theta-2 E \psi=\frac{-2 \kappa^{2} \sin \psi \cos \psi \Delta \psi \sin ^{2} \phi}{I-\kappa^{2} \sin ^{2} \phi \sin ^{2} \psi}, \theta=\mathrm{am}(v-u)
$$

or, in Jacobi's notation,

$$
\mathrm{zn}(v+u)+\mathrm{zn}(v-u)-2 \mathrm{zn} v=\frac{-2 \kappa^{2} \operatorname{sn} v \mathrm{cn} v \operatorname{dn} v \operatorname{sn}^{2} u}{\mathrm{I}-\kappa^{2} \operatorname{sn}^{2} u \mathrm{sn}^{2} v} .
$$

11.5. The Elliptic Integral of the Third Kind (E. I. III) is given by the next integration with respect to u, and introduces Jacobi's Theta Function, Θu, defined by,

$$
\begin{aligned}
& \frac{d \log \Theta u}{d u}=Z u=\operatorname{zn} u \\
& \frac{\Theta u}{\Theta_{o}}=\exp . \int_{0} z \mathrm{n} u \cdot d u .
\end{aligned}
$$

Integrating then with respect to u,

$$
\log \theta(v+u)-\log \theta(v-u)-2 u \mathrm{zn} v=\int_{0} \frac{-2 \kappa^{2} \mathrm{sn} v \mathrm{cn} v \mathrm{dn} v \mathrm{sn}^{2} u}{\mathrm{I}-\kappa^{2} \mathrm{sn}^{2} u \mathrm{sn}^{2} v} d u
$$

and this integral is Jacobi's standard form of the E. I. III, and is denoted by $-{ }_{2} \Pi(u, v)$; thus,

$$
\Pi(u, v)=\int \frac{\kappa^{2} \operatorname{sn} v \operatorname{cn} v \operatorname{dn} v \operatorname{sn}^{2} u}{\mathrm{I}-\kappa^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v} d u=u \operatorname{zn} v+\frac{1}{2} \log \frac{\Theta(v-u)}{\Theta(v+u)} .
$$

Jacobi's Eta Function, $\mathrm{H} v$, is defined by

$$
\frac{\mathrm{H} v}{\Theta v}=\sqrt{\kappa} \operatorname{sn} v,
$$

and then

$$
\frac{d \log \mathrm{H} v}{d v}=\frac{\mathrm{cn} v \mathrm{dn} v}{\mathrm{sn} v}+\mathrm{zn} v \text {, denoted by } \mathrm{zs} v \text {; }
$$

so that

$$
\begin{aligned}
\int_{0} \frac{\frac{\mathrm{cn} v \operatorname{dn} v}{\mathrm{sn} v} d u}{\kappa^{2} \mathrm{sn}^{2} u \mathrm{sn}^{2} v} & =u \frac{\mathrm{cn} v \operatorname{dn} v}{\operatorname{sn} v}+\Pi(u, v) \\
& =u \operatorname{zs} v+\frac{\mathrm{I}}{2} \log \frac{\Theta(v-u)}{\Theta(v+u)} \\
& =\frac{\mathrm{I}}{2} \log \frac{\Theta(v-u)}{\Theta(v+u)} e^{2 u \cdot \mathrm{zs} v}
\end{aligned}
$$

This gives Legendre's standard E. I. III,

$$
\int \frac{M}{I+n \sin ^{2} \phi} \frac{d \phi}{\Delta \phi}
$$

where we put $n=-\kappa^{2} \operatorname{sn}^{2} v=-\kappa^{2} \sin ^{2} \psi$,

$$
M^{2}=-\left(\mathrm{I}+\frac{\kappa^{2}}{n}\right)(\mathrm{I}+n)=\frac{\cos ^{2} \psi \Delta^{2} \psi}{\sin ^{2} \psi}=\frac{\mathrm{cn}^{2} v \mathrm{dn}^{2} v}{\operatorname{sn}^{2} v}
$$

the normalising multiplier, M.
The E. I. III arises in the dynamics of the gyroscope, top, spherical pendulum, and in Poinsot's herpolhode. It can be visualized in the solid angle of a slant cone, or in the perimeter of the reciprocal cone, a sphero-conic, or in the magnetic potential of the circular base.
11.51. We arrive here at the definitions of the functions in the tables. Jacobi's Θu and $\mathrm{H} u$ are normalised by the divisors Θo and HK , and with $r=90 e$,

$$
D(r) \text { denotes } \frac{\Theta e K}{\Theta K}, \quad A(r) \text { denotes } \frac{\mathrm{H} e K}{\mathrm{HK}}
$$

while $B(r)=A(90-r), C(r)=D(90-r)$, and $B(0)=A(90)=D(0)=C(90)$
$=\mathrm{I}, \mathrm{C}(\mathrm{o})=D(90)=\frac{\mathrm{I}}{\sqrt{\kappa}}$.
Then in the former definitions,

$$
\begin{aligned}
& \frac{A(r)}{D(r)}=\frac{A(90)}{D(90)} \text { sn } u=\sqrt{\kappa^{\prime}} \operatorname{sn} e K \\
& \frac{B(r)}{D(r)}=\frac{B(\mathrm{o})}{D(\circ)} \text { cn } u=\mathrm{cn} e K \\
& \frac{C(r)}{D(r)}=\frac{C(\mathrm{o})}{D(\mathrm{o})} \text { dn } u=\frac{\mathrm{dn} e K}{\sqrt{\kappa^{\prime}}}
\end{aligned}
$$

Then, with $u=e K, v=f K, r=90 e, s=9 \circ f$,

$$
\begin{aligned}
(u, v) & =e K \operatorname{zn} f K+\frac{\mathrm{I}}{2} \log \frac{\Theta(f-e) K}{\theta(f+e) K} \\
& =e K E(s)+\frac{\mathrm{I}}{2} \log \frac{D(s-r)}{D(s+r)} \\
\operatorname{zn} f K & =E(s), \quad \operatorname{zn}(\mathrm{I}-f) K=E(9 \circ-s)=G(s) .
\end{aligned}
$$

The Jacobian multiplication relations of his theta functions can then be rewritten

$$
\begin{aligned}
& D(r+s) D(r-s)=D^{2} r D^{2} s-\tan ^{2} \theta A^{2} r A^{2} s, \\
& A(r+s) A(r-s)=A^{2} r D^{2} s-D^{2} r A^{2} s \\
& B(r+s) B(r-s)=B^{2} r B^{2} s-A^{2} r A^{2} s
\end{aligned}
$$

But unfortunately for the physical applications the number s proves usually to be imaginary or complex, and Jacobi's expression is useless; Legendre calls this the circular form of the E. I. III, the logarithmic or hyperbolic form corresponding to real s. However, the complete E. I. III between the limits $0<\phi<\frac{1}{2} \pi$, or $\circ<u<K, \circ<e<$ I, can always be expressed by the E. I. I and II, as Legendre pointed out.
11.6. The standard forms are given above to which an elliptic integral must be reduced when the result is required in a numerical form taken from the Tables. But in a practical problem the integral arises in a general algebraical form, and theory shows that the result can always be made, by a suitable substitution, to depend on three differential elements, of the I, II, III kind,

$$
\begin{aligned}
& \text { I } \frac{d s}{\sqrt{S}} \\
& \text { II }(s-a) \frac{d s}{\sqrt{S}} \\
& \text { III } \frac{\text { I }}{(s-\sigma)} \frac{d s}{\sqrt{S}}
\end{aligned}
$$

where S is a cubic in the variable s which may be written, when resolved into three factors.

$$
S=4 \cdot s-s_{1} \cdot s-s_{2} \cdot s-s_{3}
$$

in the sequence $\propto>s_{1}>s_{2}>s_{3}>-\propto$, and normalised to a standard form of zero degree these differential elements are

$$
\begin{aligned}
& \text { I } \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{S}} \\
& \text { II } \frac{s-a}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}} \\
& \text { III } \frac{\frac{1}{2} \sqrt{\Sigma}}{s-\sigma} \frac{d s}{\sqrt{S}}
\end{aligned}
$$

Σ denoting the value of S when $s=\sigma$.
The relative positions of s and σ in the intervals of the sequence require preliminary consideration before introducing the Elliptic Functions and their notation.
11.7. For the E. I. I and its representation in a tabular form with

$$
\begin{array}{cl}
\kappa^{2}=\frac{s_{2}-s_{3}}{s_{1}-s_{3}}, & \kappa^{\prime 2}=\frac{s_{1}-s_{2}}{s_{1}-s_{3}} \\
K=\int_{s_{1}, s_{3}}^{\infty, s_{2}} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{S}}, & K^{\prime}=\int_{s_{2},-\infty}^{s_{1}, s_{3}} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{-S}},
\end{array}
$$

and utilizing the inverse notation, then in the first interval of the sequence,

$$
\begin{gathered}
\propto>s>s_{1} \\
e K=\int_{s}^{\infty} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{S}}=\mathrm{sn}^{-1} \sqrt{\frac{s_{1}-s_{3}}{s-s_{3}}}=\mathrm{cn}^{-1} \sqrt{\frac{s-s_{1}}{s-s_{3}}}=\mathrm{dn}^{-1} \sqrt{\frac{s-s_{2}}{s-s_{3}}} \\
(\mathrm{I}-e) K=\int_{s_{1}} \frac{s \sqrt{s_{1}-s_{3}} d s}{\sqrt{\bar{S}}}=\mathrm{sn}^{-1} \sqrt{\frac{s-s_{1}}{s-s_{2}}}=\mathrm{cn}^{-1} \sqrt{\frac{s_{1}-s_{2}}{s-s_{2}}}=\mathrm{dn}^{-1} \sqrt{\frac{s_{1}-s_{2} \cdot s-s_{3}}{s_{1}-s_{3} \cdot s-s_{2}}}
\end{gathered}
$$

indicating the substitutions,

$$
\frac{s_{1}-s_{3}}{s-s_{3}}=\sin ^{2} \phi=\operatorname{sn}^{2} e K, \quad \frac{s-s_{1}}{s-s_{2}}=\sin ^{2} \psi=\operatorname{sn}^{2}(\mathrm{I}-e) K
$$

In the next interval S is negative, and the comodulus κ^{\prime} is required.

$$
\begin{array}{r}
s_{1}>s>s_{2} \\
f K^{\prime}=\int^{s_{1}} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{-S}}=\mathrm{sn}^{-1} \sqrt{\frac{s_{1}-s}{s_{1}-s_{2}}}=\mathrm{cn}^{-1} \sqrt{\frac{s-s_{2}}{s_{1}-s_{2}}}=\mathrm{dn}^{-1} \sqrt{\frac{s-s_{3}}{s_{1}-s_{3}}} \\
(\mathrm{I}-f) K^{\prime}=\int_{s_{2}} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{-S}}=\mathrm{sn}^{-1} \sqrt{\frac{s_{1}-s_{3} \cdot s-s_{2}}{s_{1}-s_{2} \cdot s-s_{3}}}=\mathrm{cn}^{-1} \sqrt{\frac{s_{2}-s_{3} \cdot s_{1}-s}{s_{1}-s_{2} \cdot s-s_{1}}} \\
=\mathrm{dn}^{-1} \sqrt{\frac{s_{2}-s_{3}}{s-s_{3}}}
\end{array}
$$

S is positive again in the next interval, and the modulus is κ.

$$
\begin{gathered}
(\mathrm{I}-e) K=\int_{s^{2}>s>s_{3}}^{s_{2} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{S}}=\mathrm{sn}^{-1} \sqrt{\frac{s_{1}-s_{3} \cdot s_{2}-s}{s_{2}-s_{3} \cdot s_{1}-s}}=\mathrm{cn}^{-1} \sqrt{\frac{s_{1}-s_{2} \cdot s-s_{3}}{s_{2}-s_{3} \cdot s_{1}-s}}} \begin{array}{r}
=\mathrm{dn}^{-1} \sqrt{\frac{s_{1}-s_{2}}{s_{1}-s}} \\
e K
\end{array} \\
=\int_{s_{3}}^{s} \frac{s \sqrt{s_{1}-s_{3}} d s}{\sqrt{S}}=\mathrm{sn}^{-1} \sqrt{\frac{s-s_{3}}{s_{2}-s_{3}}}=\mathrm{cn}^{-1} \sqrt{\frac{s_{2}-s}{s_{2}-s_{3}}}=\mathrm{dn}^{-1} \sqrt{\frac{s_{1}-s}{s_{1}-s_{3}}}
\end{gathered}
$$

indicating the substitutions,

$$
\begin{gathered}
\frac{s_{1}-s_{2}}{s_{1}-s}=\Delta^{2} \psi=\mathrm{dn}^{2}(\mathrm{I}-e) K, \quad \frac{s-s_{3}}{s_{2}-s_{3}}=\sin ^{2} \phi=\mathrm{sn}^{2} e K \\
s=s_{2} \sin ^{2} \phi+s_{3} \cos ^{2} \phi
\end{gathered}
$$

S is negative again in the last interval, and the modulus κ^{\prime}.

$$
\begin{gathered}
s_{3}>s>-\infty \\
(\mathrm{I}-f) K^{\prime}=\int_{s}^{s_{3}} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{-S}}=\mathrm{sn}^{-1} \sqrt{\frac{s_{3}-s}{s_{2}-s}}=\mathrm{cn}^{-1} \sqrt{\frac{s_{2}-s_{3}}{s_{2}-s}}=\mathrm{dn}^{-1} \sqrt{\frac{s_{2}-s_{3} \cdot s_{1}-s}{s_{1}-s_{3} \cdot s_{2}-s}} \\
f K^{\prime}=\int_{-\infty}^{s} \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{-S}}=\mathrm{sn}^{-1} \sqrt{\frac{s_{1}-s_{3}}{s_{1}-s}}=\mathrm{cn}^{-1} \sqrt{\frac{s_{3}-s}{s_{1}-s}}=\mathrm{dn}^{-1} \sqrt{\frac{s_{2}-s}{s_{1}-s}}
\end{gathered}
$$

11.8. For the notation of the E. I. II and the various reductions, take the treatment given in the Trans. Am. Math. Soc., 1907, vol. 8, p. 450. The Jacobian Zeta Function and the Er,Gr of the Tables, are defined by the standard integral
$\int_{s_{3}}^{s} \frac{s_{1}-s}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\int_{0}^{\phi} \Delta \phi \cdot d \phi=E \phi=\int_{0}^{e} \operatorname{dn}^{2}(e K) \cdot d(e K)=E \operatorname{am} e K=e H+\mathrm{zn} e K$, or,

$$
\int_{s_{2}}^{\sigma} \frac{\sigma-s_{3}}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=\int_{0}^{f} \operatorname{dn}^{2}\left(f K^{\prime}\right) \cdot d\left(f K^{\prime}\right)=E \operatorname{am} f K^{\prime}=f H^{\prime}+\mathrm{zn} f K^{\prime},
$$

where zn is Jacobi's Zeta Function, and H, H^{\prime} the complete E. I. II to modulus κ, κ^{\prime}, defined by,

$$
\begin{aligned}
H & =\int_{0}^{\frac{\pi}{2}} \Delta(\phi, \kappa) d \phi=\int_{0}^{\mathrm{I}} \mathrm{dn}^{2}(e K) \cdot d(e K) \\
H^{\prime} & =\int_{0}^{\frac{\pi}{2}} \Delta\left(\phi, \kappa^{\prime}\right) d \phi=\int_{0}^{\mathrm{I}} \mathrm{dn}^{2}\left(f K^{\prime}\right) \cdot d\left(f K^{\prime}\right) .
\end{aligned}
$$

The function $\mathrm{zn} u$ is derived by logarithmic differentiation of Θu, zn $u=\frac{d \log \Theta u}{d u}$, or concisely,

$$
\Theta u=\exp . \int \mathrm{zn} u \cdot d u
$$

and a function zs u is derived similarly from

$$
\begin{aligned}
\operatorname{zs} u & =\frac{d \log H u}{d u} \\
& =\frac{d \log \theta u}{d u}+\frac{d \log \operatorname{sn} u}{d u} \\
& =\mathrm{zn} u+\frac{\mathrm{cn} u \operatorname{dn} u}{\operatorname{sn} u} .
\end{aligned}
$$

For the incomplete E. I. II in the regions,
and

$$
\infty>s>s_{1}>s_{2}>s>s_{3}
$$

$$
\mathrm{sn}^{2} e K=\frac{s_{1}-s_{3}}{s-s_{3}} \text { or } \frac{s-s_{3}}{s_{2}-s_{3}},
$$

$$
\begin{aligned}
& \int_{s}^{s_{1}} \frac{s-s_{1}}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\int_{s}^{s_{2}} \frac{s_{2}-s}{s-s_{3}} \frac{\sqrt{s-s_{3}}}{\sqrt{S}} d s=-(\mathrm{I}-e) H+\mathrm{zs} e K \\
& \int \frac{s-s_{2}}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\kappa^{2} \int \frac{s_{1}-s}{s-s_{3}} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{S}} d s=-(\mathrm{I}-e)\left(H-\kappa^{\prime 2} K\right)+\mathrm{zs} e K \\
& \int \frac{s-s_{3}}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\int \frac{s_{2}-s_{3}}{s-s_{3}} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{S}} d s=(\mathrm{I}-e)(K-H)+z \mathrm{~s} e K
\end{aligned}
$$

the integrals being ∞ at the upper limit, $s=\infty$, or at the lower limit, $s=s_{3}$ where $e=0$ and zs $e K=\infty$.

So also,

$$
\begin{aligned}
& \int_{s, s_{1}}^{\infty, s} \frac{s-s_{2}}{s-s_{3}} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{S}} d s=\int_{s_{3}, s}^{s_{,} s_{2}} \frac{s_{1}-s}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\begin{array}{l}
e H+\mathrm{zn} e K \\
(\mathrm{I}-e) H-\mathrm{zn} e K
\end{array} \\
& \int \frac{s-s_{1}}{s-s_{3}} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{S}} d s=\int \frac{s_{2}-s}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\begin{array}{l}
e\left(H-\kappa^{\prime 2} K\right)+\mathrm{zn} e K \\
(\mathrm{I}-e)\left(H-\kappa^{\prime 2} K\right)-\mathrm{zn} \mathrm{eK}
\end{array} \\
& \int \frac{s_{2}-s_{3}}{s-s_{3}} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{\bar{S}}} d s=\int \frac{s-s_{3}}{\sqrt{s_{1}-s_{3}}} \frac{d s}{\sqrt{S}}=\begin{array}{l}
e(K-H)-\mathrm{zn} e K \\
\left(\mathrm{I}-e^{\prime}(K-H)+\mathrm{zn} \mathrm{eK}\right.
\end{array}
\end{aligned}
$$

Similarly, for the variable σ in the regions
Σ negative, and

$$
s_{1}>\sigma>s_{2}>s_{3}>\sigma>-\infty
$$

$$
\begin{aligned}
& \operatorname{sn}^{2} f K^{\prime}=\frac{s_{1}-\sigma}{s_{1}-s_{2}} \text { or } \frac{s_{1}-s_{3}}{s_{1}-\sigma} \\
& \int_{\sigma, s_{2}}^{s_{1,} \sigma} \frac{s_{1}-\sigma}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=\int_{-\infty, \sigma}^{\sigma, s_{3}} \frac{s_{1}-s_{2}}{s_{1}-\sigma} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{-\Sigma}} d \sigma=\begin{array}{l}
f\left(K^{\prime}-H^{\prime}\right)-\mathrm{zn} f K^{\prime} \\
(\mathrm{I}-f)\left(K^{\prime}-H^{\prime}\right)+\mathrm{zn} f K^{\prime}
\end{array} \\
& \int \frac{\sigma-s_{2}}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=\int \frac{s_{3}-\sigma}{s_{1}-\sigma} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{-\Sigma}} d \sigma=\begin{array}{l}
f\left(H^{\prime}-\kappa^{\prime 2} K^{\prime}\right)+\mathrm{zn} f K^{\prime} \\
(\mathrm{I}-f)\left(H^{\prime}-\kappa^{\prime 2} K^{\prime}\right)-\mathrm{zn} f K^{\prime}
\end{array} \\
& \int \frac{\sigma-s_{3}}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=\int \frac{s_{2}-\sigma}{s_{1}-\sigma} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{-\Sigma}} d \sigma=\begin{array}{l}
f H^{\prime}+\mathrm{zn} f K^{\prime} \\
(\mathrm{I}-f) H^{\prime}-\mathrm{zn} f K^{\prime}
\end{array} \\
& \int_{s_{2}}^{\sigma_{s_{1}-s_{2}}} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{-\Sigma}} d \sigma=\int_{\sigma}^{s_{3}} \frac{s_{1}-\sigma}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=(\mathrm{I}-f)\left(K^{\prime}-H^{\prime}\right)+\text { zs } f K^{\prime} \\
& \kappa^{\prime 2} \int \frac{s_{3}-\sigma}{s_{1}-\sigma} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{-\Sigma}} d \sigma=\int \frac{s_{2}-\sigma}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=-(\mathrm{I}-f)\left(H^{\prime}-\kappa^{2} K^{\prime}\right)+\mathrm{zs} f K^{\prime} \\
& \int \frac{s_{2}-\sigma}{s_{1}-\sigma} \frac{\sqrt{s_{1}-s_{3}}}{\sqrt{-\Sigma}} d \sigma=\int \frac{s_{3}-\sigma}{\sqrt{s_{1}-s_{3}}} \frac{d \sigma}{\sqrt{-\Sigma}}=-(\mathrm{I}-f) H^{\prime}+z \mathrm{~s} f K^{\prime}
\end{aligned}
$$

these last three integrals being infinite at the upper limit, $\sigma=s_{1}$, or lower limit $\sigma=-\infty$, where $f=0$, zs $f K^{\prime}=\infty$.

Putting $e=\mathrm{I}$ or $f=\mathrm{I}$ any of these forms will give the complete E.I. II, noticing that $\mathrm{zn} K^{\prime}$ and zs K^{\prime} are zero.
11.9. In dealing practically with an E. I. III it is advisable to study it first in the algebraical form of Weierstrass,

$$
\int \frac{\frac{1}{2} \sqrt{\Sigma} d s}{(s-\sigma) \sqrt{S}}
$$

where $S=4 \cdot s-s_{1} \cdot s-s_{2} \cdot s-s_{3}, \Sigma$ the same function of σ, and begin by examining the sequence of the quantities $s, \sigma, s_{1}, s_{2}, s_{3}$

Then in the region

$$
s>s_{1}>s_{2}>\sigma>s_{3}
$$

put

$$
\begin{aligned}
& s-s_{3}=\frac{s_{1}-s_{3}}{\mathrm{sn}^{2} u}, \sigma-s_{3}=\left(s_{2}-s_{3}\right) \mathrm{sn}^{2} v, \kappa^{2}=\frac{s_{2}-s_{3}}{s_{1}-s_{3}} \\
& s-\sigma=\frac{s_{1}-s_{3}}{\operatorname{sn}^{2} u}\left(\mathrm{I}-\kappa^{2} \mathrm{sn}^{2} u \mathrm{sn}^{2} v\right), \frac{\sqrt{s_{1}-s_{3}} d s}{\sqrt{S}}=d u \\
& \sqrt{\Sigma}=\sqrt{s_{1}-s_{3}}\left(s_{2}-s_{3}\right) \mathrm{sn} v \mathrm{cn} v \operatorname{dn} v, \text { making } \\
& \int \frac{\frac{1}{2} \sqrt{\Sigma}}{s-\sigma} \frac{d s}{\sqrt{S}}=\int \frac{\kappa^{2} \operatorname{sn} v \mathrm{cn} v \operatorname{dn} v \mathrm{sn}^{2} u}{\mathrm{I}-\kappa^{2} \mathrm{sn}^{2} u \mathrm{sn}^{2} v} d u=\Pi(u, v) .
\end{aligned}
$$

But in the region,

$$
\begin{gathered}
\sigma>s_{1}>s_{2}>s>s_{3} \\
s-s_{3}=\left(s_{2}-s_{3}\right) \operatorname{sn}^{2} u, \sigma-s_{3}=\frac{s_{1}-s_{3}}{\mathrm{sn}^{2} v}, \frac{\mathrm{I}}{2} \sqrt{\Sigma}=\left(s_{1}-s_{3}\right)^{\frac{3}{2}} \frac{\mathrm{cn} v \mathrm{dn} v}{\mathrm{sn}^{3} v} \\
\sigma-s=\frac{s_{1}-s_{3}}{\mathrm{sn}^{2} v}\left(\mathrm{I}-\kappa^{2} \mathrm{sn}^{2} u \mathrm{sn}^{2} v\right)
\end{gathered}
$$

making,

$$
\int \frac{\frac{1}{2} \sqrt{\Sigma}}{\sigma-s} \frac{d s}{\sqrt{S}}=\int \frac{\frac{\mathrm{cn} v \mathrm{dn} v}{\mathrm{sn} v} d u}{\mathrm{I}-\kappa^{2} \operatorname{sn}^{2} u \mathrm{sn}^{2} v}=\Pi_{1}=\Pi(u, v)+u \frac{\mathrm{cn} v \mathrm{dn} v}{\operatorname{sn} v}
$$

In a dynamical application the sequence is usually

$$
\begin{aligned}
& s>s_{1}>\sigma>s_{2}>s>s_{3} \\
& s>s_{1}>s_{2}>s>s_{3}>\sigma
\end{aligned}
$$

making Σ negative, and the E. I. III is then called circular; the parameter v is then imaginary, and the expression by the Theta function.is illusory.

The complete E. I. III, however, was shown by Legendre to be tractable and falls into four classes, lettered $\left(l^{\prime}\right)\left(m^{\prime}\right)$, p. I3 $8,\left(i^{\prime}\right),\left(k^{\prime}\right)$, pp. I33, I34 (Fonctions elliptiques, I).

$$
\begin{aligned}
& s_{1}>\sigma>s_{2} \quad \operatorname{sn}^{2} f K^{\prime}=\frac{s_{1}-\sigma}{s_{1}-s_{2}} \\
& \mathrm{cn}^{2} f K^{\prime}=\frac{\sigma-s_{2}}{s_{1}-s_{2}} \\
& \operatorname{dn}^{2} f K^{\prime}=\frac{\sigma-s_{3}}{s_{1}-s_{3}}
\end{aligned}
$$

A.

$$
\infty>s>s_{1} \int_{s_{1}}^{\infty} \frac{\frac{1}{2} \sqrt{-\Sigma}}{s-\sigma} \frac{d s}{\sqrt{S}}=A\left(f K^{\prime}\right)=\frac{1}{2} \pi(\mathrm{I}-f)-K \mathrm{zn} f K^{\prime}
$$

B.

$$
\begin{gathered}
s_{2}>s>s_{3} \int_{s_{3}}^{s_{2} \frac{1}{2} \sqrt{-\Sigma} \frac{d s}{\sigma-s} \frac{\sqrt{S}}{\sigma}=B\left(f K^{\prime}\right)=\frac{1}{2} \pi f+K \mathrm{zn} f K^{\prime}} \begin{array}{c}
A+B=\frac{1}{2} \pi
\end{array} .
\end{gathered}
$$

$s_{3}>\sigma>-\infty$

$$
\begin{aligned}
\mathrm{sn}^{2} f K^{\prime} & =\frac{s_{1}-s_{3}}{s_{1}-\sigma} \\
\mathrm{cn}^{2} f K^{\prime} & =\frac{s_{3}-\sigma}{s_{1}-\sigma} \\
\mathrm{dn}^{2} f K^{\prime} & =\frac{s_{2}-\sigma}{s_{1}-\sigma}
\end{aligned}
$$

C.

$$
\infty>s>s_{1} \int_{s_{1}}^{\infty} \frac{\frac{1}{2} \sqrt{-\Sigma}}{s-\sigma} \frac{d s}{\sqrt{S}}=C\left(f K^{\prime}\right)=K \text { zs } f K^{\prime}-\frac{1}{2} \pi(\mathrm{r}-f)
$$

D.

$$
\begin{gathered}
s_{2}>s>s_{3} \int_{s_{3}}^{s_{2}} \frac{\frac{1}{2} \sqrt{-\Sigma}}{s-\sigma} \frac{d s}{\sqrt{S}}=D\left(f K^{\prime}\right)=K \mathrm{zs} f K^{\prime}+\frac{1}{2} \pi f \\
D-C=\frac{1}{2} \pi
\end{gathered}
$$

TABLES OF ELLIPTIC FUNCTIONS
 By Col. R. L. Hippisley

r	F ϕ	ϕ	E(r)	D (r)	A(r)
0	0.0000000000	$0^{\circ} 0^{\prime}$	0.0000000000	1.00000 00000	0.0000000000
1	0.01748 65792	10	0.0000664649	1.0000005812	0.0174523906
2	0.0349731585	20	0.0001328485	1.0000023240	0.0348994650
3	0.0524597377	30	0.0001990699	I. 0000052264	0.0523359088
4	0.0699463169	40	0.0002650480	I. 0000092847	0.0697564107
5	0.0874328962	5 I	0.0003307023	I. OOOOI 44942	0.0871556642
6	0.10491 94754	6	0.0003959525	1.00002 08483	0.10452 83693
7	0.12240 60546	7	0.0004607190	1.00002 83393	0.12186 92343
8	0.13989 26338	8	0.0005249226	1.00003 69582	0.13917 29770
9	0.157379213I	9	0.0005884849	I. 0000466945	0.15643 43264
10	0.17486 57923	10	$\begin{array}{lll}0.00065 & 13283\end{array}$	1.00005 75362	0.1736480247
I I	0.19235 23716	II	0.0007133760	I. 0000694702	0.19080 88283
12	0. 2098389508	12	0.0007745523	I. 0000824819	0.207915101
13	0.2273255300	13	0.0008347824	I. 0000965555	0.2249508603
14	0.2448121092	142	0.0008939929	I. OOOII 16738	0.2419216887
15	0.2622986885	$15 \quad 2$	0.00095 21II4	1.00012 78184	0.25881 88257
16	0.2797852677	162	0.0010090670	I. OOOI4 49696	0.2756371244
17	0.2972718469	172	0.0010647903	1.00016 31066	0.2923714618
18	0.31475 84262	182	0.001II 92132	I. OOOI 822072	0.3090167404
19	0.3322450054	192	0.0011722694	I. 0002022482	0.3255678900
20	0.3497315846	$20 \quad 2$	0.0012238941	1.0002232051	$0.3420198690{ }^{\circ}$
21	0.36721 81639	21.2	0.0012740244	1.00024 50525	0.3583676658
22	0.384704743 I	22.2	0.0013225992	1.00026 77636	0.3746063009
23	0.4021913223	232	0.00136 95594	1.0002913109	0.3907308277
24	0.4196779016	242	0.0014148476	I. 0003156657	0.4067363347
25	0.43716 44808	25 3	0.0014584087	1. 0003407982	0.42261 79464
26	0.45465 10600	263	0.0015001897	1.00036 66779	0.4383708251
27	0.4721376393	27 3	0.00154 01398	I. 0003932731	0.4539901723
28	0.4896242185	28 3	0.0015782103	I. 0004205516	0.4694712303
29	0.5071107977	293	0.00161 43549	I. 0004484801	0.4848092833
30	0.5245973770	303	0.0016485297	1.0004770246	0.4999996593
3 I	0.5420839562	3 I 3	0.0016806931	1.00050 61502	0.5150377311
32	0. 5595705354	323	0.0017108062	I. 0005358215	0.52991 89180
33	0.5770571147	33 3	0.0017388322	1.00056 60024	0.5446386870
34	0.59454 36939	343	0.0017647373	I. 0005966561	0.5591925543
35	0.6120302731	353	0.0017884901	1.00062 77451	0.5735760867
36	0.62951 68524	363	0.0018100617	1.00065 92318	0.5877849028
37	0.6470034316	37 3	0.0018294261	1.00069 10776	0.6018146744
38	0.66449 00.108	38	0.0018465599	I. 0007232438	0.61566 11280
39	0.6819765900	393	0.0018614423	1.00075 56912	0.6293200458
40	0.6994631693	403	0.0018740556	I. 0007883803	0.6427872670
41	0.71694 97485	41	0.0018843845	$1.00082 \quad 12712$	0.6560586895
42	0.73443 63278	424	0.0018924166	I. 0008543239	0.6691302706
43	0.75192 29070	434	0.0018981424	I. 0008874981	0.68199 80287
44	0. 7694094862	$44 \quad 4$	0.00190 15552	1.00092 07533	0.6946580439
45	7868960655	454	0.0019026510	1.00095 40492	0.7071064600
$90^{\circ} \mathrm{r}$	F ψ	ψ	$\mathrm{G}(\mathbf{r})$	C(r)	B(r)

B(r)	$\mathbf{C}(\mathbf{r})$	$\mathrm{G}(\mathrm{r})$	ψ	$\mathrm{F} \psi$	$90^{\circ} \mathrm{r}$
1. 0000000000	I. OOI90 80984	0.0000000000	$90^{\circ} \quad \mathrm{o}^{\prime}$	1. 5737921309	90
0.9998476949	1.00190 75172	0.0000663384	89 o	I. 5563055517	89
0.9993908259	1.00190 57743	0.0001325961	88 0	I. 5388189724	88
0.9986295323	1.00190 28720	0.0001986928	87 o	I. 5213323932	87
0.9975640458	I. 0018988136	0.000264548 I	86 o	I. 5038458140	86
0.9961946912	1.00189 36042	0.0003300820	$85 \quad$ I	I. $48635923+7$	85
0.9945218855	I. 0018872501	0.0003952149	84 I	I. 4688726555	8.
0.9925461382	1.0018797590	0.00045 98676	83	I. 4513860763	83
0.9902680513	I. 0018711401	0.0005239616	82	I. 4338994971	82
0.9876883186	1.00186 14039	0.0005874190	81	1.4164129178	81
0.9848077260	1.0018505621	0.0006501626	80	I. 3989263386	80
0.9816271510	1.0018386282	0.0007121163	79	I. 3814397593	79
0.9781475623	I. 0018256165	0.0007732046	78	1. 3639531801	78
0.9743700200	I. 001815429	0.0008333534	77	I. 3464666009	77
0.9702956747	I. 0017964246	0.0008924894	762	I. 3289800217	76
0.9659257675	1.00178 02800	0.0009505409	75	I. 3114934424	75
0.9612616296	1.00176 31288	0.0010074371	$74 \quad 2$	I. 2940068632	74
0.9563046817	I. 0017449918	0.0010631089	73	I. 2765202840	73
0.9510564338	1.0017258912	0.OOIII 74885	722	I. 2590337047	72
0.9455184846	1.00170 5^{8502}	0.0011705097	712	I.24I54 71255	71
0.9396925209	I. 0016848932	0.00122 21081	70	I. 2240605463	70
0.9335803176	I. OOI66 30459	0.0012722208	692	I. 2065739670	69
0.9271837364	I. $00164033+7$	0.0013207868	68	I. 1890873878	68
0.9205047258	I.00161 67874	0.0013677470	672	I. 1716008086	67
$0.9135+53203$	I. O0159 $2+327$	0.0014130440	663	I. 1541142293	66
0.9063076400	1.00156 73002	0.0014566228	653	1. 1366276501	65
0.8987938894	I. OOI54 14205	0.0014984301	643	I. II914 10709	64
0.8910063574	I. OOI51 48252	0.00153 84151	633	I. IOI65 44916	63
0.8829474161	I. OOI 4875467	0.0015765289	623	1.08416 79124	62
0.8746195204	I.0014596182	0.0016127250	613	1. 06668 13332	61
0.8660252071	1.0014310738	$0.0016+69592$	603	I. 0491947539	60
$0.85716709+1$	I. OO140 19481	0.0016791897	593	I. 0317081747	59
0.8480+78798	I.OOI37 22768	0.0017093771	583	I.O1422 I5955	58
0.8386703419	I.00134 20959	0.00173 74846	57 3	0.9967350162	57
0.8290373370	I. OOI3I I 4423	0.0017634776	563	0.9792484370	56
0.8191517995	I. OOI28 03532	0.0017873244	553	0.9617618578	55
0.8090167404	I. OOI24 88666	0.0018089958	543	0.9442752785	54
0.79863 52473	I. 0012170208	0.00182 84651	533	0.9267886993	53
0.7880104823	I. OOII8 48546	0.0018+57085	523	0.9093021201	52
0.77714 56818	1.00115 24072	0.0018607047	513	0.89181 55409	5 I
0.7660441556	I.OOIII 97181	0.0018734353	503	0.8743289616	50
0.7547092851	I.00108 68272	0.0018838846	493	0.85684 23824	49
0.743 I 445232	I. 0010537745	0.0018920395	483	0.83935 58031	48
0.7313533926	I. 0010206003	0.0018978900	473	0.8218692239	47
0.7193394850	I. 0009873450	0.0019014287	$46 \quad 4$	$0.80438 \quad 264+7$	46
0.7071064600	1. 0009540492	0.0019026510	454	0.7868960655	45
A(r)	D (r)	E(r)	ϕ	F ϕ	r

$\mathrm{K}=1.5828428043, \mathrm{~K}^{\prime}=3.153385252, \mathrm{E}=1.5588871966, \mathrm{E}^{\prime}=1.040114396$,

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	$\mathrm{D}(\mathrm{r})$	A(r)
o	0.0000000000	$0^{\circ} \mathrm{o}^{\prime}$	0.0000000000	1.0000000000	0.0000000000
1	0.0175871423		0.0002661187	1. 00000023404	0.0174521509
2	0.0351742845	2 I	0.00053 19095	1.00000 93587	0.0348989861
3	0.0527614268		0.0007970448	1.0000210463	0.0523351918
4	0.0703485691	4	0.0010611979	1.0000373890	0.0697554570
5	0.0879357113	$5 \quad 2$	0.0013240433	I. 00000883670	0.0871544758
6	o. 1055228536	63	0.0015852573	1.00008 39546	0.10452 69489
7	0.12310 99959	73	0.0018445182	1.00011 41206	0.12186 75849
8	0.14069 71382	84	0.0021015066	I. 0001488284	0.1391711019
9	0. 1582842804		0.00235 59064	1.00018 80356	0.15643 22298
IO	0.17587 14227	10. 5	0.00260 74044	1.0002316945	0.17364 57109
11	0.19345 85650	II 5	0.0028556913	1.0002797518	0.19080 63023
12	0.21104 57072	125	0.0031004619	1.0003321491	0.2079087771
13	0.2286328495	136	0.0033414153	1.00038 88224	0.2249479261
14	0.2462199918	146	0.0035782555	1.00044 97028	0.2419185595
15	0.26380 71340	157	0.00381 06920	1.00051 47160	0.2588155080
16	0.2813942763	167	0.00403 84394	1. 0005837829	0.2756336252
17	0.29898 14186	17	0.0042612186	1. 0006568193	0.2923677883
18	0.3165685609	188	0.0044787567	1.0007337362	0.3090129003
19	0.33415 57031	198	0.00469 07873	1.00081 44399	0.3255638912
20	-. 3517428454	208	0.0048970511	1.0008988322	0.34201 57197
21	0.36932 99877	219	0.0050972961	1.0009868100	0. 3583633745
22	0.3869171299	22.9	0.00529 12778	1.0010782664	0.37460 18764
23	0.4045042722	$23 \quad 9$	0.0054787596	1.00117 30898	0.3907262791
24	0.4220914145	$24 \quad 10$	0.00565 95131	1.0012711647	0.4067316711
25	0.4396785568	25 10	0.0058333185	1.0013723717	0.4226131771
26	0. 4572656990	26 Io	0.00599 99643	1.00147 65874	0.4383659597
27	0. 4748528413	27 II	0.00615 92485	1.00158 36848	0.45398 52206
28	0.4924399836		0.0063109780	I. 0016935336	0.4694662019
29	0.5100271258	29 II	0.0064549693	1. 0018059998	0.484804^{1881}
30	0.5276I 4268I	30 II	0.00659 10484	1.00192 09464	0. 4999945073
31	0.54520 14104	3112	0.0067190513	1.00203 82334	0.51503 25321
32	0.56278 85526	$32 \quad 12$	0.0068388242	1.00215 77178	0.52991 36820
33	0.58037 56949	3312	0.0069502232	1.00227 92542	0. 5446334239
34	0. 5979628372	$34 \quad 12$	0.00705 31150	1. 0024026944	0. 5591872740
35	0.61554 99795	$35 \quad 12$	0.0071473769	1.0025278880	0. 5735707990
36	0.6331371217	3613	0.0072328968	1. 0026546826	0.5877796173
37	0.6507242640	37 I3	0.0073095735	1. 0027829236	0.6018094008
38	0.6683114063	38 I3	0.0073773166	1.0029124548	0.61565 58756
39	0.68589 85485	39 13	0.0074360469	$1.0030+31183$	0.6293148239
40	0.70348 56908	$40 \quad 13$	0.00748 56962	1.0031747551	0.6427820847
41	0.7210728331	415	0.0075262073	1.00330 72046	0.6560535555
42	0. 7386599754	42 I 3	0.0075575345	1. 0034403056	0.6691251936
43	0.7562471176	4313	0.00757 96433	1.00357 38959	0.6819930169
44	0.7738342599	$44 \quad 13$	0.0075925102	1.0037078127	0.6946531055
45	0.79142 14022	$45 \quad 13$	0.00759 61235	1.0038+ 18928	0.7071016026
$90-\mathrm{r}$	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	$\mathrm{B}(\mathrm{r})$

Smithsonian Tables

B (r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	$\mathrm{F} \psi$	90-r
1.00000 00000	I. 0076837857	0.0000000000	$90^{\circ} \quad 0^{\prime}$	I. 5828428043	90
0.9998476907	I. 00768 I 4453	0.0002640908	89 o	I. 5652556621	89
0.9993908092	I. 0076744270	0.0005278635	88	I. 5476685198	88
0.9986294947	I. 0076627394	0.0007910004	87 I	I. 5300813775	87
0.9975639792	I. 0076463966	0.0010531846	862	I.51249 42353	86
0.9961945873	I. 0076254187	0.0013141001	$85 \quad 2$	I. 4949070930	85
0.99452 I 7362	I. 0075998311	0.0015734327	843	1.47731 99507	84
0.9925459357	1. 0075696650	0.0018308697	83	I. 4597328084	83
0.9902677878	1. 0075349572	0.0020861008	824	I. 4421456662	82
0.9876879866	I. 0074957500	0.0023388183	8 I 4	I. 4244585239	81
0.9848073181	1.00745 20912	0.0025887173	So 4	I. 40697 13816	80
0.98162 66600	I. 0074040338	0.0028354962	795	I. 3893842394	79
0.97814 69814	I. 0073516366	0.0030788572	78 5	I. 3717970971	78
0.9743693426	I. 0072949632	0.0033 I 85063	776	I. 3542099548	77
0.9702948945	1. 0072340828	0.00355 4I538	766	I. 33662 28125	76
0.9659248785	I. 0071690696	0.0037855150	757	1.31903 56703	75
0.9612606262	'1.00710 00027	0.0040123098	747	I. 3014485280	74
0.9563035586	I. 0070269663	0.0042342636	737	I. 28386 I3857	73
0.9510551861	I. 0069500494	0.0044511077	728	I. 2662742435	72
0.9455171076	I. 0068693457	0.0046625790	718	I. 2486871012	71
0.9396910107	I. 0067849535	0.0048684209	708	I. 2310999589	70
0.9335786703	I. 0066969756	0.0050683836	699	I. 2135128167	69
0.9271819488	I. 0066055192	0.0052622237	689	I. 19592 56744	68
0.9205027950	I. 0065106958	0.0054497055	679	I . 1783385321	67
0.9135432440	1.00641 26209	0.0056306006	66 10	I. 16075 13898	66
0.9063054160	1.0063114139	0.0058046884	65 10	I. 1431642476	65
0.8987915164	I. 0062071982	0.0059717561	64 IO	I. 1255771053	64
0.8910038343	I. 0061001007	0.006I3 15997	63 II	I. 1079899630	63
0.88294 47424	I. 0059902520	0.0062840232	62 II	I. 0904028208	62
0.8746I 6696I	I. 0058777858	0.0064288398	6 I II	I. 0728156785	61
0.86602 22325	I. 0057628392	0.0065658716	$60 \quad 12$	I. 0552285362	60
0.85716 39703	I. 0056455522	0.0066949498	5912	I. 0376413940	59
0.8480446080	I. 0055260678	0.0068159154	58 I2	I. 0200542517	58
0.8386669240	I. 0054045314	0.0069286187	57 I2	1.00246 71094	57
0.82903 37754	I. 0052810912	0.0070329201	56 I2	0.9848799671	56
0.81914 80969	I. 0051558975	0.0071286900	$55 \quad 12$	0.9672928249	55
0.80901 29003	I. 0050291030	0.0072158089	$54 \quad 13$	0.94970 56826	54
0.7986312733	I. 0049008620	0.0072941679	5313	0.932II 85403	53
0.7880063786	I. 0047713308	0.0073636683	52 13	0.91453 13981	52
0.77714 14532	I. 0046406672	0.0074242224	5113	0.89694 42558	5 I
0.7660398071	I. 0045090305	0.007475753 I	50 I3	0.87935 71135	50
0.75470 48222	I. 0043765809	0.00751 81941	49 I3	0.86176 99712	49
0.7431399518	I. 0042434799	0.0075514902	$48 \quad 13$	0.84418 28290	48
0.7313487191	I. 0041098897	0.0075755973	47 I3	0.82659 56867	47
0.7193347160	I. 0039759729	0.0075904823	$46 \quad 13$	0.80900 85444	46
0.7071016026	1.00384 18928	0.0075961235	$45 \quad 13$	0.79142 14022	45
A(\mathbf{r})	D (\mathbf{r})	E(r)	ϕ	F ϕ	r

$\mathrm{K}=1.5981420021, \quad \mathrm{~K}^{\prime}=\mathrm{K} \sqrt{3}=2.7689631454, \quad \mathrm{E}=1.5441504939, \quad \mathrm{E}^{\prime}=1.076405113$,

r	F ϕ	ϕ	$\mathrm{E}(\mathbf{r})$	D (r)	A(r)
0	0.0000000000	$0^{\circ} \quad 0^{\prime}$	0.0000000000	I. 0000000000	0.0000000000
I	0.0177571334	1 I	0.0005997806	I. 0000053258	0.0174510959
2	0.0355142667	22	0.0011988113	I. 0000212966	0.0348968785
3	0.05327 14001	33	0.0017963433	I. 0000478929	0.0523320359
4	0.0710285334	44	0.00239 I6296	I.00008 50825	0.0697512596
5	0.0887856668	55	0.0029839265	I.O0013 28I99	0.0871492460
6	0.10654 28002	66	0.0035724940	I.00019 10470	0.10452 06976
7	0.12429 99335	77	0.004I5 65975	I. 0002596929	O. 12186 03254
8	O.I4205 70669	88	0.0047355081	I. 0003386738	O.I3916 28498
9	O.I5981 42002	99	0.0053085039	I. 0004278937	O. I5642 30024
10	0.17757 13336	10 IO	0.0058748710	I. 0005272438	0. 1736355278
I I	0.19532 84669	II II	0.00643139044	I. 000636603 I	0.19079 51850
12	0.2130856003	1212	0.0069849088	I. 0007558383	0.2078967491
I3	0.2308427336	13 I3	0.0075271998	I. 0008848041	0.2249350127
14	0.2485998670	1414	0.0080601044	I. OOIO2 33434	0.2419047877
I 5	0.2663570004	15 I5	0.0085829622	I.OOII7 12875	0.2588009068
16	0.284II 4I337	16 I6	0.0090951263	I. O0132 8456I	0.27561 82249
17	0.30187 1267I	17 I7	0.0095959638	I. 00149.46577	0.29235 I62II
18	0.3196284004	18 I8	0.0100848569	I. O0166 96898	0.3089959997
19	0.3373855338	1918	0.0105612037	I. OOI 8533392	0.3255462922
20	0.3551426672	$20 \quad 19$	O.OIIO2 44I88	I. 0020453820	0.3419974584
2 I	0.3728998005	2120	O.OII47 39339	I. 0022455845	0.3583444886
22	0.3906569339	22 2I	O.OII90 91990	I. 0024537025	0.3745824043
23	0.4084140672	23 2I	0.0123296827	I. 0026694826	0.3907062603
24	0.4261712006	2422	0.0127348729	I. 0028926619	0.4067 I II462
25	0.4439283339	$25 \quad 23$	O.OI3I2 42775	I.003I2 29684	0.4225921874
26	0.4616854673	2624	O.OI349 7425I	I.00336 01217	0.4383445471
27	0.4794426006	2725	0.OI385 3865I	I. 0036038326	0.4539634276
28	0.4971997340	2825	O.OI4I9 31688	I. 0038538044	0.4694440717
29	0.5I495 68674	2925	O.OI45I 49297	I. 0041097324	0.48478 I7640
30	0.5327140007	$30 \quad 26$	O.OI48I 87635	I. 0043713049	$0.49997 \quad 18327$
3 I	0.55047 1134I	3126	O.OI5IO 43095	I. 0046382031	0.51500 96510
32	0.5682282674	$\begin{array}{ll}32 & 27\end{array}$	O.OI537 12298	I.00491 01019	0. 5298906380
33	0.5859854008	$33-27$	O.OI56I 92IO9	I.005I8 6670I	0.5446102607
34	0.6037425341	3428	O.OI58+79628	I. 0054675706	0.55916 40350
35	0.62149 96675	$35 \quad 28$	0.0160572204	I. 0057524612	0.5735475273
36	0.6392568009	$36 \quad 28$	0.01624 67429	I. 0060409949	0.5877563556
37	0.65701 39342	3729	0.0164163146	I. 0063328201	0.6017861912
38	0.6747710676	$38 \quad 29$	0.0165657446	I.00662 75813	0.6156327596
39	0.6925282009	3929	0.0166948676	I. 0069249193	0.62929 I842I
40	0.7102853343	$40 \quad 29$	0.0168035433	I. 0072244718	0.6427592769
41	0.7280424676	$4 \mathrm{I} \quad 30$	0.0168916569	I. 0075258740	0.6560309607
42	0.7457996010	4230	0.01695 9II9I	I. 0078287587	0.6691028494
43	0.76355 67344	4330	0.0170058662	I. 0081327567	0.6819709600
44	0.7813138677	4430	0.0170318597	I. 0084374977	0.69463 1371 I
45	0.79907 10011	4530	0.0170370869	I. $0087+26104$	0.7070802248
90-r	F ψ	ψ	$\mathrm{G}(\mathbf{r})$	C(r)	B (r)

-

$q=0.004333420509983, \quad \Theta 0=0.9913331597, \quad \mathrm{HK}=0.5131518035$

B(\mathbf{r})	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
1.00000 00000	1.01748 52237	0.0000000000	$90^{\circ} \quad \mathrm{o}^{\prime}$	1.59814 20021	90
0.9998476723	I. O174798979	$0.0005^{8} 94801$	89 I	I. 5803848688	89
0.9993907356	I. O1746 39271	0.00117 82606	882	I. 5626277354	88
0.9986293293	1.01743 73307	$0.0017656+24$	873	I. 5448706021	87
0.9975636857	I. O1740 01412	0.0023509281	864	I. 527 II 34687	86
0.9961941297	I. O1735 24037	0.0029334228	855	I. 5093563353	85
0.9945210792	I. OI729 41766	0.0035124342	846	I. 4915992020	84
0.9925450444	I. OI722 55307	$0.00408 \quad 72741$	837	I . 4738420686	83
0.9902666280	I.OI7I4 65496	0.0046572589	828	I. 4560849353	82
0.9876865251	I. O1705 73297	0.0052217102	8 I 9	I. 4383278019	81
0.9848055225	I.OI695 79795	0.0057799557	80 10	I. 4205706685	80
0.9816244990	I.OI684 86202	0.0063313300	79 II	I. 4028135352	79
0.9781444248	I.O1672 93849	0.0068751750	$78 \quad 12$	I. 3850564019	78
0.9743663613	I. O1660 04190	0.0074108412	77 I3	I. 3672992685	77
0.9702914608	1.01646 18796	0.00793 .76880	$76 \quad 14$	I. 3495421352	76
0.9659209661	I.O163I 39354	0.0084550845	. 75 I5	I. 3317850018	75
0.9612562102	I.OI6I5 67668	0.0089624102	$74 \quad 16$	I. 3140278684	74
0.9562986158	I.OI599 05651	0.0094590560	$\begin{array}{ll}73 & 17\end{array}$	I. 2962707351	73
0.9510496947	1.OI58155329	0.0099444245	$72 \quad 18$	I. 2785136017	72
0.9455110478	I. OI563 18834	0.0104179308	715	I. 2607564684	71
0.9396843642	I. OI 54398405	0.0108790033	$70 \quad 19$	I. 2429993350	70
0.9335714207	I. O1523 96380	0.0113270844	6920	I. 2252422016	69
0.9271740815	I. O1503 15198	0.0117616310	$68 \quad 20$	I. 2074850683	68
0.9204942975	I.OI48157396	0.0121821151	$67 \quad 21$	I. I8972 79349	67
0.9135341057	I. OI 45925602	0.0125880246	$66 \quad 22$	I. 1719708016	66
0.9062956284	I.OI436 22536	0.0129788640	65 23	I. I542I 36682	65
0.8987810728	I. OI 41251003	0.01335 41547	$64 \quad 23$	I. I3645 65348	64
0.8909927303	I. OI388 13892	0.01371 34359	$63 \quad 24$	I. II 86994015	63
0.8829329756	I. 0136314174	0.01405 62649	$62 \quad 25$	I. 10094 2268I	62
0.8746042661	I. O133754893	0.0143822180	$6 \mathrm{I} \quad 25$	I. 0831851348	61
0.8660091414	I.OI3II 39167	0.0146908906	$60 \quad 26$	I. 0654280014	60
0.8571502219	I. OI28+ 70184	0.01498 18982	5926	1.04767 08681	59
0.8480302085	I. 0125751195	0.01525 48767	$58 \quad 27$	I. O2991 37347	58
0.83865 188I7	I. 0122985512	0.01550 94825	$57 \quad 27$	I. O1215 66014	57
0.8290181005	I.OI201 76507	0.OI574 53939	$56 \quad 28$	0.9943994680	56
0.8191318020	I.OII73 27599	0.0159623105	$55 \quad 28$	0.9766423346	55
0.8089959997	I.OII44 42262	0.016I5 99545	$54 \quad 28$	0.9588852013	54
0.7986137836	I. OIII5 24009	0.0163380704	5329	0.9411280679	53
0.7879883184	1. O1085 76397	0.01649 64258	$52 \quad 29$	0.9233709346	52
0.7771228430	1.01056 03017	0.01663 48II9	51	0.9056138012	51
0.7660206691	1.01026 07491	0.0167530432	$50 \quad 29$	0.88785 66678	50
0.7546851808	1. 0099593468	0.01685 09584	$49 \quad 29$	0.8700995345	49
0.74311 98330	I. 0096564622	0.0169284205	$48 \quad 30$	0.85234 24011	48
0.7313281506	I. 0093524642	0.0169853170	$47 \quad 30$	0.83458 52678	47
0.7193137274	1.00904 77232	0.0170215600	$46 \quad 30$	0.81682 81344	46
0.7070802248	1.0087426104	0.0170370869	4530	0.79907 IOOII	45
A(r)	D (r)	E(r)	ϕ	F ϕ	r

I	F ϕ	ϕ	$\mathbf{E}(\mathbf{r})$	D (r)	A(r)
0	0.0000000000	$0^{\circ} \quad 0^{\prime}$	0.0000000000	1.0000000000	0.0000000000
1	0.0180002878	12	0.00106 89581	1.00000 96218	0.0174481883
2	0.0360005755	24	0.0021365522	I. 0000384757	0.0348910694
3	0.0540008633	36	0.0032014202	I. 0000865263	0.0523233377
4	0.07200 1151I	47	0.0042622042	1.00015 37152	0.0697396909
5	0.0900014388	59	0.0053175519	1. 0002399605	0.0871348313
6	0.10800 17266	6 II	0.0063661189	1. 0003451572	0. 1045034678
7	0.12600 20144	7 I3	0.0074065708	1.00046 91770	$0.1218+03169$
8	0.14400 2302I	8 I5	0.0084375848	1.00061 18689	0.13914 0105I
9	0.16200 25899	917	0.0094578515	1.0007730591	-. 1563975697
10	0.18000 28777	$10 \quad 19$	0.0104660772	1.0009525510	0.1736074610
II	0.19800 31655	II 20	0.01146 09855	I.OOII5 OI262	0.19076 45434
12	0.2160034532	$12 \quad 22$	0.0124413188	1.00136 55438	0.20786 35973
13	0.23400 37410	$13 \quad 24$	0.0134058406	I. 0015985414	0.2248994205
14	0.2520040288	$14 \quad 25$	0.01435 33370	I. 0018488351	0.2418668298
15	0.2700043165	$15 \quad 27$	0.OI528 26180	I. 0021161200	0.2587606626
16	0.2880046043	1628	0.0161925197	1.0024000704	0.2755757786
17	0.3060048921	1730	0.0170819057	1.00270 03405	0.2923070609
18	0.32400 51799	1832	0.0179496683	1.00301 65642	0.3089494182
19	0.3420054676	1933	0.0187947304	1. 0033483565	0.3254977855
20	0.3600057554	$20 \quad 35$	0.01961 60466	I. 0036953131	0.3419471266
2 I	0.37800 6043I	2136	0.0204126046	I. 0040570112	0.35829 24349
22	0.39600 63309	2237	0.0211834268	I. 0044330101	0.37452 87349
23	0.4140066187	2339	0.02192757 II	I. 0048228518	$0.39065 \quad 10844$
24	0.4320069064	2440	0.02264 4132I	1. 0052260614	0.4066545753
25	0.4500071942	25 41	0.0233322426	1. 0056421475	0.4225343354
26	0.4680074820	$26 \quad 42$	0.0239910740	1.00607 06033	0.4382855296
27	0.48600 .77697	$27 \quad 44$	0.02461 98378	1.00651 09067	0.45390 33618
28	0. $50400{ }^{\text { }} 80575$	$28 \quad 45$	0.0252177862	1.00696 25213	0.4693830761
29	0.52200 83453	2946	0.0257842130	1.00742 48968	0.4847199582
30	0. 5400086330	3046	0.0263 I 8454I	1.00789 74700	0.4999093370
31	-. 5580089208	3147	0.02681, 98888	I. 0083796651	0.5149465858
32	0. 5760092086	3248	0.0272879396	1.00887 08946	0.5298271240
33	0. 5940094963	3349	0.0277220732	I. 0093705600	0.5445464181
34	0.6120097841	3450	0.0281218009	I. 0098780525	0. 5590999835
35	0.6300100719	$35 \quad 50$	0.0284866791	I. O1039 27539	0.5734833858
36	0.64801 03597	36 5I	0.02881 .63091	I. OIO91 40371	0.5876922416
37	0.6660106474	37 5I	0.0291103382	I. OII44 12669	0.6017222208
38	0.6840109352	3852	0.0293684591	I. OII973801I	0.6155690470
39	0.7020112230	$39 \quad 52$	0.0295904103	I. O1251 09908	0.6292284994
40	0.7200115107	$40 \quad 53$	0.0297759763	I. O1305 21815	0.6426964140
4 I	0.7380117985	4 I 53	0.0299249874	I.OI359 67138	0.6559686845
42	0.7560120863	4253	0.0300373198	I.OI4I4 39245	0.6690412642
43	0.7740123740	4353	0.03011 28953	1.01469 31466	0.6819101665
44	0.79201 26618	4453	0.03015 168II	1.01524 37112	0.6945714668
45	0.8100I 29496	$45 \quad 53$	0.0301536896	1.OI579 49474	0.7070213033
90-r	F ψ	ψ	G(r)	C(r)	B(r)

TABLE $\theta=20^{\circ}$
267
$q=0.007774680416442, \quad Ө 0=0.9844506465, \quad \mathrm{HK}=0.5939185400$

B(r)	$\mathbf{C}(\mathbf{r})$	$G(r)$	ψ	F ψ	90-r
1.0000000000	I.O3I58 99246	0.0000000000	$90^{\circ} \quad 0^{\prime}$	1. 6200258991	90
0.9998476215	1.03158 03027	0.0010362474	892	I. 6020256113	89
0.9993905327	I.O3I55 14488	0.0020712902	884	I. 5840253236	88
0.9986288734	I.O3150 33980	0.0031039250	876	I. 5660250358	87
0.9975628767	I.03143 62088	0.0041329509	867	I. 5480247480	86
0.9961928686	1.03I34 99632	0.0051571704	859	I. 5300244603	85
0.9945I 92682	I.03124 47661	0.0061753910	84 II	I. 5120241725	84
0.9925425876	I.03II2 0745^{8}	0.0071864259	$83 \quad 13$	I. 4940238847	83
0.9902634315	I. 0309780534	0.0081890957	8215	I. 4760235970	82
0.9876824970	I. 0308168627	0.00918 22293	$8 \mathrm{I} \quad 16$	I. 4580233092	8 I
0.9848005736	1. 0306373701	0.01016 46651	$80 \quad 18$	1. 4400230214	80
0.9816185429	I. 0304397942	0.01113 52523	$79 \quad 20$	I. 4220227337	79
0.9781373781	1. 0302243759	0.0120928519	$78 \quad 22$	I. 4040224459	78
0.97435 81442	I. 0299913775	0.0130363381	$77 \quad 23$	1. 3860221581	77
0.9702819968	1. 0297410829	0.01396 45994	$76 \quad 25$	1.36802 18704	76
0.9659101827	1. 0294737972	0.0148765396	$75 \quad 27$	I. 3500215826	75
0.9612440390	I. 0291898458	0.0157710793	$74 \quad 28$	I. 3320212948	74
0.9562849924	I. 0288895748	0.0166471568	73 30	I. 3140210070	73
0.9510345595	I. 0285733501	0.0175037292	72 3I	1. 2960207193	72
0.9454943456	I. 0282415568	0.0183397739	71	I. 2780204315	71
0.9396660449	1. 0278945992	0.01915 42895	$70 \quad 34$	I. 26002 O1437	70
0.9335514391	I. 0275328994	0.0199462967	6936	I. 2420198560	69
0.9271523977	1. 0271569001	0.0207148399	$68 \quad 37$	I. 2240195682	68
0.9204708768	I. 0267670574	0.021458988 r	$67 \quad 38$	I. 2060192804	67
0.9135089187	I. 0263638468	0.0221778360	6640	I. I8801 89927	66
0.9062686515	1. 0259477596	0.0228705049	6541	I. 17001 87049	65
0.8987522880	I. 0255193029	0.02353 61442	$64 \quad 42$	I. I5201 84171	64
0.8909621252	I. 0250789985	0.0241739320	6343	I. I 340181294	63
0.8829005436	I. 0246273829	0.02478 .30767	6244	I. IIGOI 78416	62
0.8745700067	I. 0241650064	0.0253628172	6145	I. 0980175538	61
0.8659730595	I. 0236924323	0.02591 24248	6046	I. 0800172661	60
0.85711 23285	I. 0232102363	0.0264312037	5947	I. 0620169783	59
0.84799 05205	1. 0227190060	0.02691 84920	5848	1. O4401 66905	58
$\begin{array}{lll}0.83861 & 04218\end{array}$	I. O222I 93398	0.0273736626	5749	I. O2601 64028	57
0.82897 48973	I. 0217118465	0.02779 61243	5649	I. 00801 6ri50	56
0.8190868896	I. O2II9 7I444	0.0281853227	$55 \quad 50$	0.9900r 58272	55
0.8089494182	I. 0206758606	0.0285407409	54 5I	0.9720155395	54
0.79856 55784	I. 0201486302	0.02886 19001	53 51	0.9540152517	53
0.7879385407	I. O1961 60955	0.02914 83611	5252	0.9360149639	52
0.7770715491	I. 0190789054	0.02939 97245	5152	0.9180146761	5 I
0.7659679209	I. 0185377143	0.0296156313	$50 \quad 53$	0.90001 43884	50
0.7546310450	I. 0179931816	0.02979 57642	4953	0.88201 41006	49
0.7430643814	I. 0174459707	0.0299398477	4853	0.8640138129	48
0.7312714598	1.01689 67484	0.0300476489	$47 \quad 53$	0.84601 3525I	47
0.7192558784	1.01634 61837	0.03011 89783	$46 \quad 53$	0.82801 32373	46
0.7070213033	I. OI579 49474	0.0301536896	$45 \quad 53$	0.8100129496	45
A(r)	D (r)	E(r)	ϕ	F ϕ	r

Smithsonian Tables
$\mathrm{K}=1.6489952185, \quad \mathrm{~K}^{\prime}=2.3087867982, \quad \mathrm{E}=1.4981149284, \quad \mathrm{E}^{\prime}=1.1638279645$,

\mathbf{r}	F ϕ	ϕ	$\mathbf{E}(\mathrm{r})$	D (r)	A(r)
0	0.0000000000	$0^{\circ} \quad 0^{\prime}$	0.0000000000	1.0000000000	0.0000000000
I	0.0183221691	13	0.0016760815	I. OOOO1 53565	0.0174418591
2	$0.0366+43382$		0.0033499667	1. 0000614074	$0.0348784^{2}+5$
3	0.0549665073	39	0.00501 94629	1.00013 80964	0.0523044041
4	0.0732886764	$4 \quad 12$	0.0066823842	1.00024 53303	0.0697145088
5	0.09161 08455	$5 \quad 15$	0.00833 65551	1.00038 29783	0.0871034544
6	0.10993 30145	$6 \quad 18$	0.0099798139	I. 0005508728	0.1044659627
7	0.12825 51836	7 21	0.OII61 00163	I. 0007488092	0.12179 67635
8	o. 14657 73527	$8 \quad 24$	0.0132250382	1.00097 65463	0.13909 05958
9	0.16489 95218	926	0.0148227797	1.00123 38067	0.15634 22095
10	0.188322 16909	1029	0.01640 11677	1.00152 02770	O. 1735463669
II	0.2015438600	II 32	0.01795 81596	I. 0018356081	0.19069 78446
12	0.2198660291	1235	0.0194917458	I. 0021794159	0.2077914345
13	0.2381881982	1337	0.0209999533	I. 00255 12815	0.2248219454
14	0.2565103673	1440	0.0224808485	I. 0029507519	0.2417842052
15	0.27483 25364	1543	0.0239325396	I. 0033773404	0.2586730615
16	0.29315 47055	1645	0.0253531798	I. 0038305272	0. 2754833838
17	0.3II47 68746	1748	0.0267409700	1.00430 97603	0.2922100649
18	0.3297990437	1850	0.0280941609	I. 0048 I 44557	0.30884 80221
19	0.3481212128	$19 \quad 53$	0.0294110555	I. 0053439986	0.3253921991
20	0.36644 33819	$20 \quad 56$	0.0306900118	I. 0058977438	0.34183 75673
21	0.38476 55510	2 I	0.0319294445	I. 0064750167	0.3581791274
22	0.4030877201	2259	0.0331278272	1.0070751140	0.3744119107
23	0.4214098892	24 I	0.0342836945	I. 0076973046	0.3905309808
24	0.43973 28582	253	0.03539 56434	I. 0083408304	0.4065314352
25	0.4580542273	265	0.0364623352	I. 0090049074	0.4224084064
26	0.4763763964	$27 \quad 7$	0.0374824970	1.00968 87266	0.4381570635
27	0. 4946985655	289	0.0384549232	I. 0103914548	0.45377 26140
28	0.51302 07346	29 II	0.0393784764	I. OIIII 22358	0.4692503045
29	0.5313429037	$30 \quad 12$	0.0402520886	I.OII85 01916	0. 4845854231
30	0. 5496650728	$3 \mathrm{I} \quad 14$	0.0410747627	I. OI260 44231	0.4997732999
31	0.5679872419	32 I5	0.0418455726	I. OI337 40113	0.5148093092
32	0. 5863094110	3316	0.0425636643	I. OI4I5 80186	0. 5296888703
33	0.60463 15801	3418	0.0432282564	I. OI495 54899	0. 5444074492
34	0.6229537492	3519	0.0438386406	I. OI 57654535	0.55896 05600
35	0.6412759183	$36 \quad 20$	0.0443941821	I.OI658 69227	0.5733437662
36	0.65959 80874	37 21	0.0448943196	I. OI741 88967	0.58755 26819
37	0.6779202565	$38 \quad 22$	0.0453385655	I.OI826 03617	0.6015829737
38	0.6962424256	$39 \quad 23$	0.0457265058	I.OI9II 02927	0.6154303611
39	0.71456 45947	$40 \quad 23$	0.0460578000	I. OI996 76540	0.6290906189
40	0.73288 67638	4123	0.0463321809	1.0208314013	0.64255 95777
41	0.7512089328	$42 \quad 24$	0.0465494543	I. 0217004820	0.6558331255
42	0. 76953 IIO19	$43 \quad 24$	0.0467094981	I. 0225738374	0.6689072089
43	0.7878532710	$44 \quad 24$	0.0468122622	I. 0234504035	0.6817778347
44	0.80617 54401	$45 \quad 24$	0.0468577678	I. 0243291122	0.6944410704
45	0.82449 76092	$46 \quad 24$	0.0468461065	I. 0252088930	0.7068930463
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	$\mathrm{B}(\mathrm{r})$

[^1]$q=0.012294560527181, \quad Ө 0=0.975410924642, \quad \mathrm{HK}=0.666076159327$

B(r)	$\mathrm{C}(\mathrm{r})$	$\mathrm{G}(\mathrm{r})$	ψ	$\mathrm{F} \psi$	$90-\mathrm{r}$
1. 0000000000	I.0504I 79735	0.0000000000	$90^{\circ} \quad \mathrm{o}^{\prime}$	I. 6489952185	90
0.99984 75III	1.05040 26167	0.00159 57045	893	I. 6306730494	89
0.9993900912	1.05035 65652	0.0031896046	886	I. 6123508803	88
0.9986278812	I. 0502798750	0.0047798977	879	I. 5940287112	87
0.99756 III58	I. 0501726395	0.0063647840	8612	I. 575706542 I	86
0.9961901235	I. 0500349895	0.007942 .4686	$85: 15$	I. 5573843730	85
0.9945153263	I. 0498670926	0.00951 11627	$84 \quad 17$	I. 5390622039	84
0.9925372400	I. 0496691533	0.01106 90855	8320	I. 5207400348	83
0.99025 64734	I. 0494414129	0.01261 44653	8223	I. 5024178657	82
0.9876737287	I.04918 41489	0.0141455416	8I 26	I. 4840956966	8I
0.9847898010	1. 0488976746	0.01566 05663	$80 \quad 29$	I. 4657735275	80
0.9816055779	I. 0485823391	0.01715 78054	79 3I	I. 4474513584	79
0.9781220395	I. 0482385265	0.01863 55407	$78 \quad 34$	1.42912 91893	78
0.9743402576	I. 0478666559	0.0200920712	77	1.4108070202	77
0.97026 I3962	I. 0474671802	0.02152 57149	7639	I. 39248485 II	76
0.9658867101	I. 0470405862	0.0229348102	7542	1. 3741626821	75
0.9612175452	I. 0465873936	0.0243177177	$74 \quad 44$	I. 3558405130	74
0.9562553377	I. 0461081546	0.0256728218	7347	I.33751 83439	73
0.9510016139	I. $0+456034530$	0.0269985322	7249	I. 3191961748	72
0.9454579893	I . $0+450739038$	0.0282932857	7152	I. 30087.40057	71
0.9396261686	I. 044452 OI 522	0.02955 55477	$70 \quad 54$	I. 2825518366	70
0.9335079444	I. 0439428728	0.0307838140	6956	I. 2642296675	69
$0.92710-51976$	I. $0+433427690$	0.0319766123	$68 \quad 58$	I. 2459074984	68
0.9204198958	1.04272 05719	0.0331325038	68 o	I. 2275853293	67
0.9134540932	1.04207 70396	0.0342500853	672	I. 2092631602	66
0.9062099299	I. O+141 29561	0.0353279902	66.4	I. I9094 0991I	65
0.8986896309	1. 0407291305	0.0363648907	656	I. I7261 88220	64
0.89089 55058	1. 0400263960	0.0373594992	648	I . I5429 66529	63
0.8828299477	I. 0393056088	0.0383105700	63 10	I. I 359744838	62
0.8744954326	I. 0385676470	0.0392169009	62 II	I. II765 23147	61
0.8658945184	1. 0378134098	0.0400773349	6 I I3	I. 09933 OI 456	60
0.8570298444	I. 0370438161	0.0408907619	60 I4	1.08100 79765	59
0.8479041300	I. 0362598035	0.04165 61200	5916	1. 0626858075	58
0.83852 O1744	1. 0354623272	0.0423723976	58. 17	I. 0443636384	57
$\begin{array}{lll}0.82888 & 08549\end{array}$	I. 0346523588	0.0430386345	$57 \quad 18$	I. 0260414693	56
0.8189891269	1.03383 08852	0.04365 39236	56 19	1.00771 93002	55
0.8088480221	I. 0329989073	0.0442174127	5520	0.9893971311	54
0.7984606482	I.03215 74386	0.0447283056	5421	0.9710749620	53
0.7878301874	1.03130 75044	0.0451858637	53. 22	0.9527527929	52
0.7769598956	I. 03045 OI 401	0.0455894076	$52 \quad 22$	0.9344306238	51
0.76585 3IOI5	I. 0295863905	0.0459383183	5123	0.91610 84547	50
0.7545 I 32053	1.02871 73077	0.0462320386	$50 \quad 24$	0.89778 62856	49
0.7429436775	I. 0278439507	0.0464700744	4924	0.8794641165	48
0.7311480583	I. 0269673835	0.04665 19961	$48 \quad 24$	0.8611419474	47
0.7191299561	I. 026088674 I	0.0467774393	$47 \quad 24$	0.84281 97783	46
0.7068930463	1. 0252088930	0.04684 61065	- $46 \quad 24$	0.8244976092	45
A(r)	$\mathrm{D}(\mathrm{r})$	E(r)	. ϕ	F ϕ	r

$\mathrm{K}=1.6857503548, \quad \mathrm{~K}^{\prime}=2.1565156475, \quad \mathrm{E}=1.4674622093 \quad \mathrm{E}^{\prime}=1.211056028$,

r	F ϕ	ϕ	E(r)	D (r)	A(r)
0	0.0000000000	$0^{\circ} \mathrm{o}^{\prime}$	0.0000000000	1.0000000000	0.0000000000
1	0.0187305595		$0.002+248763$	1 1.00002 27125	0.0174298716
2	0.0374611190	29	0.0048464683	1.00009 08222	0.0348544751
3	0.0561916785	$3 \begin{array}{ll}3 & 13\end{array}$	0.0072614977	I . 0002042462	0.0522685438
4	$0.07+9222380$	$4 \quad 18$	0.0096666975	1. 00003628463	0.0696668140
5	0.0936527975	$5 \quad 22$	0.01205 88178	1.00056 64294	0.0870440267
6	0.1123833570	$6 \quad 26$	0.0144346319	1.00081 47472	o. 1043949285
7	o.13111 39165	$7 \quad 30$	0.0167909412	1. ooilo 74975	0.1217142736
8	0. $1498+44760$	835	0.0191245813	1. 0014443235	0. 1389968254
9	0.1685750355	939	0.0214324269	I. 0018248148	0. 1562373574
Io	0. 1873055950	10 43	0.0237113976	1. 0022485079	0. 1734306551
11	0.2060361545	1147	0.0259584626	1. 0027148868	o. 1905715175
12	0.2247667140	$12 \quad 51$	0.0281706459	1. 00032233830	0. 2076547584
13	0.2434972734	1355	0.0303450312	1. 0037733773	0.2246752081
14	0.2622278329	1459	$0.032+787664$	1. 0043641996	0.2416277146
15	0.28095 83924	16	0.0345690685	I. 0049951300	0.2585071454
16	0.2996889519	17	0.0366132272	1. 0056654000	0. 2753083886
17	0.3184195114	18 10	0.0386086097	1. 0063741929	0. 2920263549
18	0.3371500709	1914	0.0405526642	1.00712 06453	0.30865 59785
19	0.3558806304	$20 \quad 17$	0.0424429236	1. 0079038477	0.3251922190
20	0.37461 11899	21	0.0442770092	1.0087228461	0.3416300625
21	0.3933417494	$22 \quad 23$	0.0460526335	1. 0095766426	0. 3579645236
22	0.4120723089	$23 \quad 27$	0.0477676034	I. 0104641971	0. 3741906461
23	0.43080 28684	2430	0.0494198229	1.01138 44282	0.39030 35051
24	0.4495334279	2533	0.0510072958	1. 0123362150	0.4062982084
25	0.4682639874	2636	0.0525281275	1. 0133183978	0.42216 98975
26	0.48699 45469	$27 \quad 38$	0.0539805273	1. 0143297800	0.43791 37495
27	0. 5057251064	28 41	0.0553628100	1. 0153691295	0.4535249782
28	0.52+45 56659	2943	0.0566733976	1.0164351800	0.4689988358
29	0.54318 62254	$30 \quad 46$	0.0579108204	1.01752 66329	0.4843306142
30	0.56191 67849	3148	0.0590737181	I. OI 86421583	0.49951 56464
31	0.58064 73444	3250	0.0601608407	1. 0197803972	0.5145493080
32	0. 5993779039	$33 \quad 52$	0.0611710486	1.0209399629	0.5294270185
33	0.61810 84634	$34 \quad 54$	0.06210 33138	1.02211 94428	0.5441442428
34	0.6368390229	$35 \quad 55$	0.0629567191	1.0233173997	0. 5586964925
35	0.65556 95824	$36 \quad 56$	0.0637304587	1.0245323743	0. 5730793274
36	0.67430 01419	$37 \quad 58$	$0.0644^{2} 38375$	1. 0257628863	0. 5872883566
37	0.6930307014	$38 \quad 59$	0.0650362710	1. 0270074365	0.6013192403
38	0.7117612609	40	0.0655672843	I. 0282645087	0.6151676907
39	0.73049 18204	41	0.06601 65112	1.0295325714	0.6288294738
40	0.7492223799	42	0.0663836938	1.03081 00797	$0.64230 \quad 04103$
41	0.7679529394	43	0.0666686806	1.0320954771	0.6555763772
42	0.7866834989	44	0.0668714255	1. 0333871976	0.6686533089
43	0.805+1 40584	45	0.06699 19865	1. 0346836674	0.6815271988
44	0.82414 46179		0.0670305237	1.0359833070	0.6941941003
45	0.8428751774	473	0.0669872981	1.0372845330	0.7066501282
90	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	$\mathrm{B}(\mathrm{r})$

$q=0.017972387008967, \quad Ө 0=0.9640554346, \quad \mathrm{HK}=0.7325237222$

B(r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	$90-\mathrm{r}$
1.0000000000	I. 0745699318	0.0000000000	$90^{\circ} \quad 0^{\prime}$	I. 6857503548	90
0.9998473018	1.0745472183	0.0022568053	894	I. 6670197953	89
0.99938 92548	I. 0744791054	0.0045 1 11469	888	I. 6482892358	88
0.9986260018	1. 0743656761	0.0067605625	87 I3	I. 6295586763	87
0.9975577806	I.07420 70687	0.0090025936	86 I7	1.61082 81168	86
0.99618 49242	1. 0740034764	0.01123 47869	$85 \quad 21$	1. 5920975573	85
0.9945078603	1.07375 51471	0.OI345 46957	8425	I. 5733669978	84
0.9925271115	1.07346 23837	0.OI565 98823	$83 \quad 29$	I. 5546364383	83
0.9902432948	1.07312 55426	0.01784 79196	$82 \quad 33$	I. 5359058788	82
0.9876571218	1. 0727450344	0.02001 63924	8 I 38	I.51717 53193	81
0.9847693979	1.0723213226	0.0221628998	$80 \quad 42$	I. 4984447598	80
0.9815810224	I. 0718549236	0.0242850568	$79 \quad 46$	I. 4797142003	79
0.9780929880	1.07134 64055	0.0263804961	$78 \quad 49$	I. 4609836408	78
0.9743063806	1.07079 63881	0.0284468702	$77 \quad 53$	1. 4422530813	77
0.9702223787	1. 0702055414	0.0304818529	$76 \quad 57$	I. 4235225218	76
0.9658422530	I. 0695745853	0.0324831417	76 I	I. 40479 I9623	75
0.9611673661	I. 0689042887	0.0344484594	754	I. 3860614028	74
0.95619 91719	I.06819 54682	0.03637 55563	748	I. 3673308433	73
0.9509392151	I. 0674489874	0.0382622123	73 12	I. 3486002839	72
0.94538 91306	1. 0666657559	0.04010 62389	72 I5	1. 3298697244	71
0.9395506429	I. 0658467280	0.0419054809	718	I.3III3 91649	70
0.9334255657	1. 0649929016	$0.04365 \quad 78194$	$70 \quad 22$	I. 2924086054	69
0.9270158009	I.06410 53170	0.04536 II73I	6925	I. 2736780459	68
0.9203233381	I. 0631850556	0.04701 35012	, 6828	I. 2549474864	67
0.9133502539	I. 0622332387	0.0486128052	67 3I	I. 2362169269	66
0.9060987113	1.0612510260	0.0501571313	6634	I. 2174863674	65
0.89857 09587	1.0602396142	0.0516445728	6536	I. 19875 58079	64
0.8907693291	1. 0592002357	0.0530732725	6439	I. 18002 52484	63
0.8826962394	1.05813 41567	0.0544414248	63 4I	I. 16129 46889	62
0.8743541897	1.05704 26763	0.0557472783	6244	I. 1425641294	61
0.8657457620	1. 0559271242	0.0569891384	6146	1. 1238335699	60
0.8568736199	1. 0547888596	0.05816 53694	$60 \quad 48$	I. 1051030104	59
0.8477405068	I. 0536292695	0.0592743970	59. 50	I. 0863724509	58
0.83834 9246I	1. 0524497665	0.06031 47110	$58 \quad 52$	I. 06764 I8914	57
0.82870 27391	1.0512517878	0.0612848679	$57 \quad 54$	1.04891 13319	56
0.8188039648	1.0500367930	0.0621834927	5655	I. 0301807724	55
0.8086559785	I. 0488062525	0.06300 92824	$55 \quad 57$	I. O1145 02129	54
0:79826 19108	I. 04756 16953	0.0637610074	$54 \quad 58$	0.99271 96534	53
0.7876249668	I. 0463046080	0.0644375150	5359	0.9739890939	52
0.7767484245	I. 0450365320	0.0650377310	53 o	0.9552585344	51
0.7656356343	I. 0437590125	0.0655606627	52 I	0.9365279749	50
0.7542900174	I. 0424736057	0.0660054011	5 I 2	0.9177974154	49
0.7427150649	1.0411818779	0.06637 11230	503	0.89906 68559	48
0.7309143366	I. 0398854029	0.0666570938	493	0.8803362964	47
0.7188914599	1.03858 57601	0.0668626693	483	0.8616057369	46
0.70665 OI282	1.0372845330	0.0669872981	473	0.8428751774	45
A(r)	$\mathrm{D}(\mathrm{r})$	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

r	F ϕ	ϕ	$\mathbf{E}(\mathrm{r})$	D (r)	A(r)
0	0.0000000000	$0^{\circ} 0^{\prime}$	0.0000000000	1.0000000000	0.0000000000
I	0.0192360575	16	0.0033209329	1.0000319451	0.01740 91115
2	0.0384721150	212	0.0066371847	1.0001277415	0.0348129991
3	0.0577081725	318	0.0099440836	1.00028 72724	0.0522064403
4	0.0769442300	424	0.0132369759	I. 0005103436	0.0695842154
5	0.0961802875	$5 \quad 30$	0.01651 12357	1.00079 66833	0.0869411086
6	0.11541 63450	$6 \quad 36$	0.0197622733	I. 0011459427	0.1042719100
7	o. 1346524025	$7 \quad 42$	$0.0229855+46$	1.00155 76965	0.1215714162
8	0.1538884600	848	0.02617 65594	1. 0020314429	0.13883 44322
9	0.17312 45176	$9 \quad 54$	0.0293308900	I. 0025666050	0.15605 57726
10	0. 1923605751	110	$0.032+41797$	1.00316 25308	0.I7323 02632
11	0.21159 66326	125	0.0355121508	1.00381 84944	0.1903527418
12	0.2308326901	13 II	0.0385306122	I. 0045336968	0.2074180603
13	0.2500687476	1416	0.0414954668	1.00530 72668	0.2244210857
14	0.2693048051	I5 22	0.0444027192	I. 0061382620	0.2413567013
15	0.2885408626	$16 \quad 27$	0.0472484818	1. 0070256701	0.2582198088
16	0.3077769201	$17 \quad 32$	0.0500289819	1.0079684103	0.27500 53288
17	0.32701 29776	1837	0.0527405671	1.00896 53340	0.2917082026
18	0.3462490351	1942	0.0553797118	I.OIOOI 52268	0.3083233939
19	0.3654850926	$20 \quad 47$	0.0579430217	I.OIIII 68099	0.3248458897
20	0.38472 II501	$2 \mathrm{I} \quad 52$	0.0604272392	1. 0122687413	0.3412707019
21	0.4039572077	2256	0.0628292476	1.0134696177	0.3575928687
22	0.4231932652	24 0	0.0651460751	1.01471 79763	0.3738074559
23	0.4424293227	25 5	0.0673748988	I. OI601 22964	0.3899095585
24	0.46166 53802	269	0.0695130473	1.01735 10012	0.4058943019
25	0.4809014377	27 I3	0.0715580036	I. O1873 24599	0.42175 68435
26	0.5001374952	2816	0.0735074079	I. 0201549897	0.4374923737
27	0.5193735527	2920	0.0753590588	I. 0216168576	0.45309 61179
28	0.5386096102	$30 \quad 23$	0.0771109151	I.023II 62828	0.4685633375
29	0.5578456677	315	0.0787610969	I. 0246514386	0.4838893314
30	0.5770817252	3230	0.0803078862	1. 0262204548	0.4990694371
31	0.5963177827	$33 \quad 32$	0.0817497274	I. 02782 I4201	0.5140990330
32	0.6155538402	34. 35	0.0830852267	I. 0294523841	0.5289735386
33	0.6347898977	3537	0.08431 31523	I. O3III 13599	0.5436884170
34	0.6540259552	$36 \quad 40$	0.0854324331	I. 0327963263	0.55823 91754
35	0.6732620128	3742	0.0864421580	1.0345052308	$\begin{array}{lll}0.57262 & 13672\end{array}$
36	0.6924980703	$38 \quad 43$	0.087341574 I	1.0362359914	0.5868305928
37	0.7117341278	3945	0.0881300853	1. 0379864996	0.6008625017
38	0.7309701853	$40 \quad 46$	0.0888072502	I. 0397546228	0.6147127930
39	0.7502062428	$\begin{array}{ll}41 & 48\end{array}$	0.0893727798	I. 0415382068	0.6283772177
40	0.7694423003	4249	0.0898265352	1. 0433350787	0.6418515792
4 I	0.7886783578	$43 \quad 49$	0.09016 85246	I. 0451430495	0.6551317355
42	0.80791 44153	4450	0.0903989009	1. 0469599164	0.6682135999
43	0.8271504728	4550	0.09051 79579	I. 0487834660	0.6810931428
44	0.84638 65303	$46 \quad 51$	0.0905261280	I.05061 14765	0.6937663926
45	0.8656225878	47 51	0.0904239779	1. 0524417208	0.706229 .4378
90-r	$\mathrm{F} \psi$	ψ	$\mathrm{G}(\mathbf{r})$	C(r)	$\mathrm{B}(\mathrm{r})$

$q=0.024915062523981, \quad \Theta 0=0.9501706456, \quad \mathrm{HK}=0.7950876364$

$\mathrm{B}(\mathrm{r})$	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
1.00000 00000	I. 1048866859	0.0000000000	$90^{\circ} \quad 0^{\prime}$	1.73124 51757	90
0.9998469394	I. 1048547369	0.0030062320	896	1.71200 91181	89
0.9993878065	I. 1047589287	0.0060093218	88 12	1. 6927730606	88
0.9986227471	I. 1045993781	0.0090061288	87 17	1. 6735370031	87
0.9975520048	I. 1043762795	0.01199 35156	8623	1. 6543009456	86
0.9961759200	I. 1040899048	0.0149683495	$85 \quad 29$	I. 6350648881	85
0.9944949305	I. 1037406029	0.01792 75043	8435	I.6I582 88306	84
0.9925095707	I. 1033287996	0.0208678620	8340	I. 5965927731	83
0.9902204719	I. 1028549965	0.0237863141	8246	I. 5773567156	82
0.98762 .83615	I. 1023I 977 II	0.0266797640	8 I 5	I. 558120658 I	81
0.9847340633	I. IOI72 37756	0.0295451279	$80 \quad 57$	I. 5388846006	80
0.98I53 84966	I. IOIO6 77362	0.0323793372	80.2	I. 5196485431	79
0.9780426763	I . 1003524524	0.0351793404	798	I. 5004124856	78
0.9742477117	I. 0995787957	0.0379421046	$78 \quad 13$	I. 4811764281	77
0.9701548073	1. 0987477089	0.0406646178	77 19	I.46194 03706	76
0.9657652612	I. 0978602047	0.0433438907	$76 \quad 24$	1. 4427043130	75
0.9610804649	1.09691 73646	0.0459769592	$75 \quad 29$	I. 4234682555	74
0.9561019028	1.09592 03375	0.0485608861	$74 \quad 34$.	I. 4042321980	73
0.95083 II516	I. 0948703382	0.05109 .27637	$73 \quad 38$	I. 38499 61405	72
0.9452698796	I. 0937686463	0.0535697161	7243	I. 3657600830	71
0.93941 98461	1.09261 66042	0.0559889014	7148	I. 3465240255	70
0.9332829005	1.09141 56156	0.0583475147	$70 \quad 52$	I. 3272879680	69
0.9268609817	1.09016 71440	0.0606427902	6956	I. 3080519105	68
0.9201561173	1.08887 27107	0.0628720041	69 I	I.28881 58530	67
0.9131704228	1. 0875338930	0.0650324775	685	I. 2695797955	66
0.9059061007	I. 0861523221	0.0671215792	$67 \quad 9$	I. 2503437380	65
0.8983654396	I. 0847296815	0.0691367285	$66 \quad 12$	1.23110 76805	64
0.89055 08I35	1. 0832677048	0.0710753988	$65 \quad 16$	I. 2118716230	63
0.8824646805	1.08176 81732	0.0729351200	64 19	I. 19263 55655	62
0.8741095823	I. 0802329140	- 0.0747 I 34824	$63 \quad 23$	I. 17339 95080	61
0.86548 81427	1. 0786637978	0.0764081398	$62 \quad 26$	I. I5416 34504	60
0.8566030670	I. 0770627365	0.0780168127	6129	I. I3492 73929	59
0.84745 71408	I. 0754316809	0.0795372924	$60 \quad 31$	I. II569 13354	58
0.8380532290	1. 0737726184	0.0809674440	5934	I. 0964552779	57
0.8283942745	I. 0720875705	0.0823052102	$58 \quad 36$	1.07721 92204	56
0.8184832973	1.07037 85902	0.0835486152	$57 \quad 39$	1.05798 31629	55
0.8083233933	I. 0686477599	0.0846957684	5641	I. 0387471054	54
0.7979177333	I. 0668971884	0.08574 .48680	5543	1.0195I 10479	53
0.7872695615	I. 0651290086	0.0866942053	5444	I. 0002749904	52
0.7763821945	I. 0633453750	0.0875421680	5346	0.98103.89329	5 I
0.7652590201	1.06I5484606	0.0882872448	5248	0.9618028754	50
0.7539034961	I. 0597404548	0.0889280287	5149	0.94256 .68179	49
0.7423191490	1. 0579235605	0.0894632214	5049	0.9233307604	48
0.7305095727	I. 0560999913	0.0898916370	4950	0.9040947028	47
0.7184784273	1. 0542719690	0.0902122056	$48 \quad 50$	0.88485 86453	46
0.7062294378	1. 0524417208	0.0904239779	47 5I	0.8556225878	45
A(r)	D (r)	E(r)	ϕ	F ϕ	r

TABLE $\theta=35^{\circ}$
$q=0.02491506252$
,

[^2]| r | F ϕ | ϕ | E (r) | D (r) | A(r) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $0.0000000000 \cdot$ | $0^{\circ} \quad 0^{\prime}$ | 0.0000000000 | 1.00000000000 | 0.0000000000 |
| 1 | 0.01985 29904 | I 8 | 0.0043725767 | 1. 0000434107 | 0.01737 52657 |
| 2 | 0.0397059807 | 216 | 0.0087386910 | I. 0001735897 | 0.0347453796 |
| 3 | 0.0595589712 | $3 \quad 24$ | 0.0130918945 | 1.00039 03787 | 0.0521051913 |
| 4 | 0.0794119615 | $4 \quad 32$ | 0.01742 57681 | 1.00069 35136 | 0.06944 95525 |
| 5 | 0.0992649519 | 5 4I | 0.02173 39351 | I. OOIO8 26253 | 0.0867733185 |
| 6 | 0.11911 79423 | 649 | 0.0260100761 | I. OOI 5572398 | 0.10407 13496 |
| 7 | 0.13897 09327 | $7 \quad 57$ | 0.0302479420 | 1.00211 67791 | 0.12133 85117 |
| 8 | 0.15882 3923I | 95 | 0.0344413683 | 1.0027605620 | 0.13856 96780 |
| 9 | 0.1786769135 | 10 I3 | 0.0385842875 | 1.00348 78042 | O. 1557597300 |
| 10 | 0.19852 99039 | II 21 | 0.0426707422 | 1.0042976203 | 0. 1729035587 |
| II | 0.2183828943 | $12 \quad 28$ | 0.0466948973 | 1.00518 90239 | 0.18999 60657 |
| 12 | 0.2382358847 | .13 36 | $0.05065 \quad 10519$ | I.00616 09295 | 0.2070321648 |
| 13 | 0.258088875 I | 1443 | 0.0545336499 | 1.00721 21534 | 0.2240067828 |
| 14 | 0.27794 18655 | 15 51 | 0.0583372913 | I. 0083414154 | 0.2409148609 |
| 15 | 0.2977948558 | 1658 | 0.0620567422 | 1:00954 73402 | 0.2577513559 |
| 16 | 0.31764 78462 | 185 | 0.0656869435 | 1. 0108284592 | 0.2745112417 |
| 17 | 0.33750 08366 | $19 \quad 12$ | 0.0692230203 | 1. 0121832120 | 0.2911895099 |
| 18 | $0.35735 \quad 38270$ | 2018 | 0.0726602895 | 1. O1360 99487 | 0.3077811718 |
| 19 | 0.37720 68174 | $2 \mathrm{I} \quad 25$ | 0.0759942673 | I.OI5IO 69318 | $0.32428 \quad 12593$ |
| 20 | 0.3970598078 | 2231 | 0.0792206754 | I. O1667 23379 | 0.3406848260 |
| 21 | 0.4169127981 | $23 \quad 37$ | 0.0823354475 | I. O1830 42606 | 0.35698 69+91 |
| 22 | 0.43676 57885 | $24 \quad 42$ | 0.0853347336 | I. 0200007123 | 0.3731827300 |
| 23 | 0.45661 87789 | 2548 | 0.0882149046 | 1.02175 96267 | 0.3892672959 |
| 24 | 0.47647 17693 | $26 \quad 53$ | 0.0909725564 | I. 0235788616 | 0.4052358014 |
| 25 | 0.4963247597 | $27 \quad 59$ | 0.0936045123 | I. 0254562012 | 0.4210834293 |
| 26 | 0.5161777501 | 294 | 0.0961078252 | I. 0273893589 | 0.4368053924 |
| 27 | 0.5360307405 | 308 | 0.0984797792 | I. 0293759801 | 0.45239 69344 |
| 28 | 0.5558837309 | 3 I I3 | 0.10071 78905 | I. O3I4I 36450 | 0.4678533318 |
| 29 | 0.5757367212 | 32 17 | 0.10281 99075 | I. 0334998717 | 0.4831698948 |
| 30 | 0.5955897116 | $33 \quad 22$ | 0.10478 38101 | 1. 0356321191 | 0.4983419688 |
| 31 | 0.61544 27020 | $34 \quad 25$ | 0. 1066078092 | 1.03780 77899 | 0.5133649360 |
| 32 | 0.6352956924 | $35 \quad 28$ | o. 10829 03444 | 1.04002 42340 | 0.5282342166 |
| 33 | 0.65514 86828 | $36 \quad 31$ | 0. 1098300821 | 1. 0422787515 | 0.5429452702 |
| 34 | 0.6750016732 | $37 \quad 34$ | O.11122 59132 | I. 0445685961 | 0.5574935973 |
| 35 | 0.6948546636 | $38 \quad 37$ | 0.11247 69491 | I. 0468909786 | 0.5718747405 |
| 36 | 0.7147076540 | $39 \quad 39$ | 0.11358 25187 | 1. 0492430699 | 0.5860842864 |
| 37 | 0.73456 06443 | $40 \quad 41$ | O. II454 21645 | 1.05162 20047 | 0.60011 78665 |
| 38 | 0.7544 I 36347 | 41 | O.II535 56375 | I. 0540248851 | 0.6139711590 |
| 39 | 0.7742666251 | $42 \quad 44$ | 0.11602 28932 | I. 0564487839 | 0.6276398902 |
| 40 | 0.79411 96155 | $43 \quad 46$ | 0. 1165440861 | I. 058890748 I | 0.64III 98356 |
| 41 | 0.81397 26059 | $44 \quad 46$ | O.II691 95649 | 1.06134 78029 | $0.654+068220$ |
| 42 | 0.8338255963 | $45 \quad 47$ | 0.11714 98662 | 1.06381 69550 | 0.6674967282 |
| 43 | 0.8536785867 | $46 \quad 47$ | 0.11723 57096 | I. 0662951962 | 0.6803854871 |
| 44 | 0.8735315771 | $47 \quad 48$ | 0.1171779914 | I. 0687795074 | 0.6930690869 |
| 45 | 0.8933845674 | $4^{8} \quad 48$ | 0.11697 77784 | I. 0712668617 | 0.7055435725 |
| 90-r | F ψ | ψ | $\mathrm{G}(\mathrm{r})$ | C(r) | B(r) |

$q=0.033265256695577, \quad \Theta 0=0.9334719356, \quad \mathrm{HK}=0.8550825245$

B(r)
1.0000000000

$0.9998+63+87$
$0.9993854+5 \mathrm{I}$
$0.9986174+08$
$0.9975+2588 \mathrm{I}$
0.99616 12401
$0.994+7838506$
0.9924809734
o. 9901832628
0.9875814726
0.98467 64560 0.9814691652 o. 9779606509 $0.97+1520616$ $0.9700+46+32$
0.9656397386 0.9609387866 $0.9559+33213$ 0.9505549716 o. $9+50754604$
0.9392066032 0.9330503082 o. 9266085744 0.9198834913
0.9128772377
0.9055920807 0.8980303745
o. 8901945598
0.8820871618
0.8737107901
0.86506 81367 o. 8561619751
o. 84699 51593
o. 8375706220
o. 8278913739
0.81796 05020
o. 80778 11684
0.7973566091
0.78669 01322
0.7757^{81173}
0. 7646450133
0.7532733376
0.7416736742
$0.7298+96728$
0.7178050468
$0.7055+35725$

$\mathrm{C}(\mathrm{r})$	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
I. 14254 42177	0.00000 00000	$90^{\circ} 0^{\prime}$	1. 7867691349	90
1. 1 425007942	$0.003828+907$	89	I. 7669161445	89
1. 1 423705769	0.0076531872	$88 \quad 15$	1. 7470631541	88
I. I 121537243	0.0114702963	8723	1. 7272101637	87
1. I 418505008	0.0152760269	8630	1.70735 71733	86
1. 1. 414612760	0.01906 65913	$85 \quad 38$	1. 6875041829	85
I. 1 109865243	0.0228382057	$8+46$	I. 6676511926	84
I. 1. 404268243	0.0265870918	8353	1. 6477982022	83
I. 13978 28584	0.0303094781	83	1. $6279+52118$	82
I. 1390554113	0.0340016009	828	1. 6080922214	81
I. 1382+53698	0.0376597054	$81 \quad 16$	1. 5882392310	80
1.13735 37211	0.0412800477	$80 \quad 23$	I. 5683862406	79
I. 1363815521	0.0.488588958	79 30	I. 5485332502	78
I. 1353300476	0.0483925314	$\begin{array}{ll}78 & 37\end{array}$	I. 52868802598	77
1. 134+2004893	0.0518772514	$77 \quad 4+$	1.50882 72694	76
1.13299 42539	0.0553093702	$76 \quad 51$	1. 4889742791	75
1.1317128116	0.0586852206	$75 \quad 57$	I. 4691212887	$7+$
1.13035 $772{ }^{+2}$	0.0620011573	$75+$	1. 4492682983	73
I. 1289306433	0.06525 35577	7+ 10	1. 4294153079	72
I. 1274333082	0.0684388251	$\begin{array}{ll}73 & 17\end{array}$	1. 4095623175	71
1. 1258675438	0.0715533910	$\begin{array}{ll}72 & 23\end{array}$	1. 3897093271	70
1. 1242352584	0.0745937177	71	I. 3698563367	69
I. 1225384414	0.0775563011	$70 \quad 34$	1. 3500033463	68
1. 1207791607	$0.080+376736$	6940	1. 3301503560	67
I. 1189595604	0.0832344077	6845	I. 3102973656	66
1. 1170818582	0.0859431188	$67 \quad 51$	1. $290+443752$	65
1. 1151483422	0.08856	$66 \quad 56$	1. 2705913848	64
1. 1131613690	$0.091083171+$	66	I. 2507383944	63
I. 1111233599	0.0935079923	65	1. 2308854040	62
1. 1090367986	0.0958317573	$64 \quad 9$	1. 2110324136	61
1. 1069042279	0.09805 $135+5$		1.19117 94233	60
1.10472 82465	0.10016 37391		1. 1713264329	59
1. 1025115061	0.10216 59383	6121	1. $151+734425$	58
1. 1002567080	0.10405 50557	$60 \quad 25$	1. 1316204521	57
1. 0979665999	0.10582 82770	$59 \quad 28$	1. 1117674617	56
1.0956439724	0. 10748 28746	$58 \quad 32$	1. 0919144713	55
1.09329 16556	0.1090162132	57 3+	1. 0720614809	$5+$
1.09091 25160	0.11042 57553	$\begin{array}{lll}56 & 37\end{array}$	1. 0522084905	53
1. $088509+525$	0. 1117090668	$\begin{array}{ll}55 & 39\end{array}$	1.0323555001	52
1.08608 53932	0. 1128638228	$54 \quad 42$	1. 0125025098	51
1.0836432917	0.11388 78137	5344	0.9926495194	50
1.0811861237	0.1147789511	5245	0.9727965290	49
1.0787168830	0. 1155352736	5146	$0.9529+35386$	48
1. 0762385782	0. 1161549535	$50 \quad 46$	0.9330905482	47
1. 0737542288	0.11663 63025	$49 \quad 47$	0.9132375578	46
1.0712668617	0. 11697 7778 +	$4^{8} \quad 48$	0.89338 45674	45
D (r)	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

$\mathrm{K}=\mathrm{K}^{\prime}=1.8540746773, \quad \mathrm{E}=\mathrm{E}^{\prime}=1.3506438810$,

r	F ϕ	ϕ	E(r)	D (r)	A(r)
0	0.0000000000	$0^{\circ} 0^{\prime}$	0.0000000000	1.0000000000	0.0000000000
I	0.02060 08297	1 II	0.00559 22185	1.0000576114	0.0173223240
2	0.04120 16595	222	0.OIII7 56998	1.0002303752	0.0346396092
3	0.0618024892	$3 \quad 32$	0.0167417286	1.00051 80814	0.0519468175
4	0.0824033190	443	0 0222816343	1.00092 03796	0.0692389126
5	0.10300 41487	$5 \quad 54$	0.0277868124	I.00143 67802	0.0865108611
6	0.12360 49785	74	0.0332487460	I. 0020666547	0.10375 76329
7	0.14420 58082	$8 \quad 15$	0.0386590273	I. 0028092364	0.1209742023
8	o. 1648066380	925	0.0440093780	I. 0036636213	O.I3815 55494
9	0.18540 74677	$10 \quad 36$	0.0492916689	I. 0046287696	O. 1552966598
10	0. 2060082975	II 46	0.0544979400	I. 0057035065	0.17239 25270
II	0.22660 91272	1256	0.0596204166	I. 0068865237	0.18943 81524
12	0.2472099570	146	0.06465 I5306	I. 00817 63813	0. 2064285463
I3	0.2678107867	1515	0.0695839334	1.0095715091	0.22335 87294
14	0.2884I 16165	$16 \quad 25$	0.0744105129	1.0110702088	0.2402237330
15	0.30901 24462	1784	0.0791244078	I. OI267 06562	0.25701 86008
16	0.32961 32760	1843	0.0837190207	I.OI437 09030	0.2737383893
17	0.3502141057	$19 \quad 52$	0.0881880301	1.01616 88793	0.2903781691
18.	0.37081 49355	21 I	0.0925254012	1.01806 23965	0.3069330262
19	0.39141 57652	229	0.0967253955	I. 0200491494	0. 3233980622
20	0.41201 65950	2317	o. 1007825794	1.0221267193	0.3397683967
21	0.4326174247	$24 \quad 25$	o. 1046918308	I. 0242925769	0.3560391671
22	0.4532I 82545	2533	0. 1084483455	I. 0265440853	0.3722055308
23	0.47381 90842	2640	o. 11204 76417	I. 0288785035	0.38826 26656
24	0.49441 99139	$27 \quad 47$	o. II548 55630	I.03129 29893	0.4042057714
25	0.5150207437	$28 \quad 54$	0.11875 82813	I. 0337846028	0.4200300711
26	0.5356215734	300	o. 12186 22978	I. 0363503103	0.4357308120
27	0. 5562224032	316	O. 12479 44425	I. 0389869880	0.4513032670
28	0.5768232329	$\begin{array}{ll}32 & 12\end{array}$	o. 1275518736	I.04169 1425I	0.4667427359
29	0.5974240627	3317	0.1301320757	I. 0444603288	0.4820445468
30	0.6180248924	$34 \quad 22$	0.13253 28561	I. 0472903271	0.4972040572
31	0.6386257222	$35 \quad 27$	o. 13475 23413	1.05017 79739	0.5122I 66556
32	0.6592265519	$36 \quad 32$	0.13678 89725	I.053II 97528	0.5270777628
33	0.6798273817	$37 \quad 36$	o. 13864 14993	I.05611 20812	0.5417828334
34	0.7004282114	$38 \quad 39$	0.14030 89744	I. 0591513149	0.5563273569
35	0.7210290412	3943	0.14179 07457	I. 0622337524	0.5707068597
36	0.7416298709	4046	o. 1430864509	I. 0653556397	0.58491 69061
37	0.7622307007	4188	0.14419 60059	I. 0685131742	0.5989531001
38	0.7828315304	4251	0. 145 I I 96000	1.07170 25103	0.6128110868
39	0.80343 23602	4354	0. 1458576849	I. 0749197630	0.6264865539
40	0.82403 31899	$44 \quad 54$	0. 1464109671	I. 0781610137	0.6399752334
4 I	0.8446340197	4555	o. 14678 03964	I.08142 23139	0.6532729030
42	0.8652348494	$46 \quad 56$	o. 1469671583	I. 0846996910	0.66637. 53880
43	0.88583 56792	47. 57	o. 146972663I	I. 0879891523	0.6792785625
44	0.9064365089	$48 \quad 57$	o. 1467985365	I. 0912866907	0.6919783514
45	0.9270373387	$49 \quad 57$	- 0.14644 66094	I. 0945882886	0.7044707318
$90-\mathrm{r}$	$\mathrm{F} \psi$	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	B(r)

B(r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
I. 0000000000	I. 1892071150	0.0000000000	$90^{\circ} \quad 0^{\prime}$	1. 8540746773	90
0.9998454246	I. 1891494665	0.00470 60108	8910	1. 8334738476	89
0.99938 I7514	I. 1889765912	0.0094076502	8820	I. 8128730178	88
0.9986091406	I. 1886887000	0.OI410 05467	8730	I. 7922721881	87
0.9975278584	I. 1882861440	0.0187803289	8640	1.77167 13583	86
0.9961382775	1. 1877694140	0.0234426255	8549	1.75107 05286	85
0.9944408767	1. 18713 91403	0.0280830653	8459	1. 7304696988	84
0.9924362407	I. 18639 60914	0.0326972774	$8+9$	I. 7098688691	83
0.9901250593	I. I8554 II736	0.0372808916	8318	I. 6892680393	82
0.9875081276	I. 1845754293	0.0418295382	$82 \quad 28$	I. 6686672096	8 I
0.9845863450	I. 1835000363	0.04633 88487	8137	1. 6480663798	80
0.9813607151	I. I823I 63059	0.0508044575	$80 \quad 47$	I. 6274655501	79
0.9778323446	I. 18102 56817	0.0552219994	$79 \quad 56$	I. 6068647203	78
0.9740024430	I. 1796297376	0.05958 71139	795	I. 5862638906	77
0.9698723216	I. 17813 O1756	0.0638954439	$78 \quad 14$	I. 5656630608	76
0.9654433929	1. 17652 88244	0.0681426379	$77 \quad 23$	I. 54506223 II	75
0.9607171696	I. 17482 76366	0.0723243506	$76 \quad 32$	I. 52.446 I4013	74
0.9556952639	I. 17302 86866	0.076+3 62449	7540	I. 5038605716	73
0.9503793863	1. 17113 41680	0.0804739933	$74 \quad 48$	I. 4832597418	72
0.9447713447	1. $1691+63907$	0.0844332799	$73 \quad 57$	I. 4626589121	71
0.9388730433	I. 1670677783	0.0883098027	735	I. 4420580823	70
0.9326864814	I. 16490 08653	0.0920992756	$72 \quad 13$	I. 4214572526	69
0.9262137526	I. 1626+82937	0.0957974315	7120	I. 40085.64228	68
0.9194570430	I. 1603I 28097	0.0994000252	$70 \quad 27$	I. 380255593 I	67
0.9124186305	I. I 578972608	o. 1029028362	$69 \quad 34$	I. 35965.47634	66
0.90510 08831	I. 15540 45920	0. 1063016727	68 41	I. 3390539336	65
0.89750 62579	I. I 528378419	0. 1095923752	$67 \quad 48$	I. 3184531039	64
0.8896372995	I. 15020 OI 398	0. 11277 08206	$66 \quad 54$	I. 2978522741	63
0.8814966386	I. I4749 4701 I	O. II583 29266	66 o	1. 2772514444	62
0.8730869906	I. 1447248239	0.11877 46567	656	I. 2566506146	61
0.86441 II542	I. 14189 38846	0.12159 20252	64 II	1. 2360497849	60
0.8554720099	1. 13900 53339	$0.12+2811025$	6316	I. 2154489551	59
0.8462725182	I. I3606 26928	0.1268380211	62 21	I. 19484 81254	58
0.8368I 57184	I. I 330695480	0.12925 89815	6126	I. 17424 72956	57
0.8271047269	1. 1300295477	0.1315402588	6030	I. 15364 64659	56
0.81714 27355	I. $1269+63970$	0.1336782099	5934	1. 13304 56361	55
0.8069330099	I. 1238238537	o. 1356692789	$58 \quad 38$	I. 1124448064	54
0.7964788881	I. 12066 57231	0.13751 00077	$57 \quad 42$	1.09184 39766	53
0.7857837785	I. II747 $5^{8} 542$	o. 1391970407	5645	1.0712431469	52
0.7748511587	I. II 42581342	0.14072 71344	5547	1.0506423171	51
0.7636845735	I. IIIOI 64844	0.14209 71663	5450	1.03004 14874	50
0.7522876332	I. 1077548548	O.I4330 41415	$53 \quad 52$	I. 0094406576	49
0.7406640121	I. 10447 72199	0. 1443452037	5253	0.9888398279	48
0.7288174469	I. IOII8 75735	O. I452I 76436	5 I 55	0.9682389981	47
0.7167517348	I. 0978899237	0.14591 89078	$50 \quad 56$	0.9476381684	46
0.7044707318	I. 0945882886	0.14644 66094	$49 \quad 57$	0.9270373387	45
A(\mathbf{r})	$\mathrm{D}(\mathrm{r})$	E (r)	ϕ	F ϕ	r

$K=1.9355810960, \quad K^{\prime}=1.7867691349, \quad E=1.3055390943, \quad E^{\prime}=1.3931402485$,

r	F ϕ	ϕ	E(r)	D (r)	A(r)
0	0.0000000000	$\mathrm{o}^{\circ} \quad \mathrm{o}^{\prime}$	0.0000000000	1.0000000000	0.0000000000
1	0.0215064566	114	0.00699 85212	1.0000752700	0.0172417831
2	0.04301 29132	228	0.01398 53763	1.0003009884	0.03447 86990
3	0.06451 93699	341	0.0209489334	1. 0006768809	0.0517058810
4	0.0860258265	455	0.0278776288	1. 0012024903	0.0689184630
5	o. 1075322831		0.0347600006	1.00187 71775	0.08611 15805
6	0.12903 87397	$7 \quad 22$	$0.04158+2717$	1.00270 01222	0.10328 03705
7	o. 1505451963	$8 \quad 36$	0.04834 06320	1.0036703237	0.12041 99725
8	o. 1720516530	949	0.05501 6769.4	1. $00+77866023$	0.13752 55283
9	0.1935581096	II 3	0.0616024003	1.0060476005	o. 1545921831
10	0.2150645662	$12 \quad 16$	0.0680870479	1.0074517850	0.17161 50856
11	0.2365710228	$13 \quad 28$	0.07446 05194	1. 0089974482	0. 1885893888
12	0.2580774795	1441	0.0807129320	1.0106827105	0.20551 02505
13	0.2795839361	$15 \quad 53$	0.0868347367	1.01250 55225	0.2223728335
14	0.3010903927	176	0.0928167403	1. O1446 36673	0.2391723067
15	0.32259 68493	$18 \quad 18$	0.0986501256	1. 0165547635	0.2559038457
16	0.34410 33059	$19 \quad 29$	0. $10+3264694$	1.01877 62678	0.2725626330
17	0. 3656097626	$20 \quad 40$	o. 1098377593	1. 0211254784	0.2891438591
18	0.38711 62192	2151	0.11517 64068	1. 0235995379	0. 3056427234
19	0. 4086226758		0.12033 52604	1. 0261954370	0. 3220544344
20	0.4301291324	$24 \quad 13$	0. 1253076146	1.02891 00179	0. 3383742110
21	0.45163 55881	$25 \quad 22$	0.13008 72182	1.0317399787	0.3545972832
22	0.47314 20457	26 31	o. 1346682799	1. 0346818764	0.37071 88930
23	0.4946485023	$27 \quad 41$	o. $139045+724$	1. 0377321323	0.38673 42953
${ }^{2} 4$	0.5161549589	$28 \quad 50$	0.14321 39340	I. 0408870352	0.40263 87589
25	0.53766 14155	$29 \quad 59$	0.14716 92687	I. 0441427466	0.41842 75678
26	0.55916 78722	3 I 6	0. $1509075+43$	I. 0474953052	0.4340960218
27	0. 5806743288	$32 \quad 14$	o. 1544252892	1.05094 06315	0. 4496394381
28	0.60218 07854	33 21	o. $157719+871$	I. 0544745329	0.4650531522
29	0.6236872420	$3+29$	0.16078 75703	1.0580927090	0.4803325191
30	0.64519 36987	$35 \quad 36$	0. 1636274123	1.06179 07561	0. 4954729148
31	0.66670 O1553	$36 \quad 41$	0. 1662373178	1.06556 41737	0.51046 97376
32	0.68820 66119	3746	0.16861 60131	1.06940 83686	0.52531 84091
33	0.7097130685	3851	0.1707626341	1. 0733186617	0. 5400143761
34	0.7312195251	$39 \quad 56$	0.1726767142	1. 0772902929	0.55455 31119
35	0.7527259818	41 I	0.17435 81713	1.08131 84270	0. 56893 O1177
36	0.77423 24384		0. 1758072936	1.0853981601	0.58314 09242
37	0.79573 88950		o. 1770247258	1. 0895245247	0.59718 10935
38	0.81724 53516	449	0.17801 14536	I . 0936924965	0.6110462201
39	0.83875 18083	$45 \quad 12$	0.17876 87890	1.0978970001	0.6247319335
40	0.86025 82649	$46 \quad 15$	o. 1792983544	1. 1021329153	0.6382338991
41	0.88176 47215	$47 \quad 15$	o. 1796020675	1. 1063950831	0.6515478204
42	0.9032711781	$48 \quad 16$	0. 1796821252	I. 1106783124	0.6646694406
43	0.92477 76347	4916	o. 1795409878	1.11497 73861	0.6775945449
44	0.9462840914	$50 \quad 17$	0.17918 13641	I. 1192870673	0.6903189618
45	0.9677905480	$51 \quad 17$	0.17860 61952.	1.12360 21058	0.70283 85652
$90-\mathrm{r}$	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathbf{r})$	B(r)

Smithsonian Tables
$q=0.055019933698829, \quad Ө 0=0.8899784604, \quad \mathrm{HK}=0.9715669451$

B (r)	C(r)	$G(r)$	ψ	F ψ	90-r
I. 0000000000	I. 2472865857	0.0000000000	$90^{\circ} \quad 0^{\prime}$	I. 9355810960	90
$0.9998+40186$	I. 2472112154	0.00561 92362	$89 \quad 12$	1.91407 46394	89
0.99937 61319	I. 2469851964	O.OII23 3648	8825	I. 8925681828	88
0.9985965127	I. 2466088048	0.01683 84106	8737	I. 8710617261	87
0.9975054487	I. 2460824999	0.0224289646	8650	I. 8495552695	86
0.9961033424	I. $24540 \quad 69243$	0.0279996670	862	I. 8280488 I 29	85
0.9943907108	I. $24+45829027$	0.0335464884	$85 \quad 14$	- I. $8065+23563$	84
0.99236 81849	1. $2+3614410$	0.0390643123	$8+26$	I. 7850358997	83
0.9900365093	I. 2424937250	0.04454 82835	8339	I. 7635294430	82
0.9873965416	I. 2412311192	0.0499935367	825 I	I. 7420229864	81
0.9844492517	I. 239825164^{8}	0.05539 5196I	823	I. 7205165298	80
0.9811957210	I. 2382775779	$0.0607+83740$	8154	I. 6990100732	79
0.9776371417	I. 2365902476	0.0660481700	8026	I. 6775036165	78
0.9737748160	I. 2347652334	0.0712896708	$79 \quad 37$	I. 6559971599	77
0.96961 OI546	I. 2328047629	0.0764679497	7849	I. $63+4907033$	76
0.9651446762	I. 2307112287	0.0815780662	78 0	I. 6129842467	75
0.9603800059	I. 2284871860	0.0866150665	77 10	I. 5914777.901	74
0.9553178745	I. 2261353491	0.09I57 39836	76 2 I	I. 5699713334	73
0.94996 OII 67	I. 2236585882	0.0964498379	75 3I	I. 5484648768	72
0.9443086698	I. 2210599257	0. IOI23 76383	7442	I . 5269584202	71
0.9383655727	I. $2183+25328$	0. IO593 23833	7352	I. 50545 I9636	70
0.932 I 329639	I. 2155097252	O.IIO52 90627	73 I	I. 4839455069	69
0.9256130802	I. 2125649596	O.II5O2 26595	72 I I	I. 4624390503	68
0.9188082552	I. 2095I 18289	O. II940 8152	7 I 20	I. 4409325937	67
0.9117209173	I. 2063540582	O. 12368 05174	$70 \quad 30$	I. 4194261371	66
0.9043535883	I. 2030954999	0.12783 47335	6939	I. 3979 I 96805	65
0.8967088815	I. 19974 O1294	O.I3I86 57834	$68 \quad 47$	I. 3764 I 32238	64
0.8887894998	I. I9629 20396	O.I3576 86595	6755	I. 3549067672	63
0.8805982341	I. I9275 54368	O.I3953 83674	672	I. 3334003106	62
0.8721379612	I. I8913 46345	O.I43I6 993I4	66 IO	I. 3118938540	61
0.8634116420	I. I 854340490	0.14665 83999	6518	I. 2903873973	60
0.8544223195	I. 1816581935	O.14999 88516	64 24	I. 2688809407	59
0.84517 31166	I. I7781 16727	0.1531864017	6330	I. 247374484 I	58
0.8356672345	I. I7389 91774	-. I562I 62095	6236	I. 2258680275	57
0.8259079506	I. 16992 54783	O. I5908 34859	6 I 42	I. 20436 I5709	56
0.8I589 86I6I	I.I6589 54205	O. 16I78 35017	60. 4^{8}	I. 18285 51142	55
0.8056426543	I. I6I8I 39175	O. I643I I5964	$59 \quad 52$	I. I6134 86576	54
0.79514 35583	I. I 576859453	0.I6666 31878	5856	I. I $398+22010$	53
0.7844048891	I. I5351 6536I	O. I6883 37818	58 -	I . II833 57444	52
0.7734302735	I. I4931 07723	O.I7081 89832	57 4	I. 0968292877	5 I
0.7622234019	I. I 450737802	0.1726I 45069	568	I. 07532283 II	50
0.7507880264	I. I 408107240	O.1742 1 61892	55 10	I.O5381 63745	49
0.7391279584	I. 13652 67992	0.17562 00006	$54 \quad 12$	I. 0323099179	48
0.7272470671	1.13222 72263	O.I7682 20583	5313	I. OIO80 3+613	47
0.7151492767	1. 1279172446	O.I7781 86395	52 I 5	.0.98929 70046	46
0.7028385652	I. 12360 21058	0.1786061952	$5 \mathrm{I} \quad 17$	0.9677905480	45
A(r)	D (r)	$\mathbf{E}(\mathbf{r})$	ϕ	$\mathbf{F} \phi$	r

$K=2.0347153122, \quad K^{\prime}=1.7312451757, \quad E=1.2586796248, \quad E^{\prime}=1.4322909693$,

r	F ϕ	ϕ	E(r)	D (r)	A(r)
0	0.0000000000	$0^{\circ} \quad 0^{\prime}$	0.0000000000	1.0000000000	0.0000000000
1	0.0226079479	18	0.0086200346	1.00009 74600	0.0171213223
2	0.04521 58958	235	0.0172245749	1.0003897217	0.0342380342
3	0.0678238437	353	0.0257981795	1. 0008764305	0.0513455249
4	0.0904317916	510	0.0343255123	1.00155 69957	0.0684391832
5	O.11303 97395	$6 \quad 28$	0.0427913942	1. 0024305914	0.0855143971
6	O. 1356476875	745	0.05118.08539	1.00349 61575	0.10256 65538
7	o. 1582556354	92	0.0594791769	1.00475 24006	0.11959 10390
8	0. 1808635833	$10 \quad 19$	0.0676719530	I. 0061977962	0. 1365832373
9	0.20347 15312	II 36	0.0757451216	I. 0078305901	0.1535385318
10	0.2260794791	$12 \quad 52$	0.0836850144	1. 0096488003	0.17045 23039
II	$0.24868 / 74270$	149	0.0914783960	I. O1165 02201	0.18731 99332
12	0.2712953749	1525	0.0991125013	I. 0138324199	0.2041367975
13	0.2939033229	1640	0.10657 50694	I. O1619 27508	0.2208982730
14	0.3165I 12708	$17 \quad 56$	O.II38543755	I. 0187283473	0.2375997340
15	0.33911 92187	19 II	0. 1209392580	1.02143 61311	0.2542365532
16	0.3617271666	2025	0.12781 91435	1. 0243128147	0.2708041017
17	0.3843351145	2140	0.1344840670	I. 0273549050	0.28729 77496
18	0.4069430624	2254	0.14092 46901	1.03055 87080	0.3037128656
19	0.4295510103	$24 \quad 7$	0.14713 23140	1. 0339203331	0.3200448178
20	0.4521589583	- 2520	O. 1530988906	1. 0374356974	0.33628 89743
21	0.4747669062	2633	0.15881 70288	1.04110 05314	0.3524407031
22	0.4973748541	2745	0.16427 99989	I. 0449103831	0.36849 53729
23	0.5199828020	$28 \quad 56$	0.16948 17327	1. 0488606244	0. 3844483538
24	0.5425907499	308	0.17441 68208	I. 0529464558	0.4002950181
25	0.5651986978	$3 \mathrm{I} \quad 18$	0. 1790805075	1.05716 29130	0.4160307408
26	0. 5878066457	$32 \quad 28$	0.18346 86827	I. 0615048720	0.4316509003
27	0.61041 45937	$33 \quad 38$	0.18757 78710	I. 0659670560	0.4471508801
28	0.6330225418	3446	0.19140 52188	I. 0705440415	0.4625360691
29	0.6556304895	3555	0. 1949484794	1. 0752302647	0.4777718627
30	0.6782384374	$37 \quad 3$	0.19820 59959	I. 0800200285	0. 4928836645
31	0.7008463853	38 10	0.20117 66827	1.08490 75092	0. 5078568872
32	0.7234543332	3916	0.2038600053	I. 0898867634	0. 5226869541
33	0.7460622811	$40 \quad 23$	0.2062559591	1. 0949517358	0.5373693004
34	0.7686702290	4128	0.20836 50468	I. IO009 62656	0.55189 93747
35	0.7912781769	4233	0.21018 82554	I. 1053140947	0. 5662726408
36	0.81388 61249	$43 \cdot 38$	0.2117270324	I. IIO59 88749	0.58048 45794
37	0.8364940728	44 4I	0.2129832611	I. II594 41760	0.5945306894
38	0.8591020207	4545	0.2139592364	I. 12134 34929	0.6084064905
39	0.88170 99686	$46 \quad 48$	0.2146576400	I. 1267902542	0.6221075244
40	0.9043I 79165	4750	0.2150815155	I . I 322778297	0.6356293571
4 I	0.9269258644	48 5I	0.2152342440	I . I377995386	0.6489675812
42	0.9495338123	4953	0.21511 95200	I. I 433486579	0.6621178175
43	0.9721417602	$50 \cdot 53$	0.2147413276	I. 1489184299	0.6750757177
44	0.99474 97081	5153	0.2141039170	1. 1545020711	0.6878369663
45	1. O1735 76561	5252	0.21321 17818	I. 1600927802	0.7003972833
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	B(r)

$\mathrm{B}(\mathrm{r})$	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	$\mathrm{F} \psi$	$90-\mathrm{r}$
1. 0000000000	I. 3203964540	0.0000000000	$90^{\circ} \quad \mathrm{o}^{\prime}$	2.0347153122	90
0.99984 I9I55	I. 3202987371	0.0065466917	89 I5	2.0121073643	89
0.9993677261	I. 3200057060	0.01308 82806	88 31	I. 9894994164	88
0.9985776238	1.31951 77192	0.01961 96606	8746	I. 96689 14685	87
0.9974719280	I. 3188353734	0.02613 57182	87 I	1. 9442835205	86
0.99605 1086I	I. 3179595033	0.0326313295	$86 \quad 17$	1.9216755726	85
0.9943156720	1.31689 11801	0.03910 13564	8532	I. 8990676247	84
0.9922663864	I. 3156317106	0.04554 06434	8447	I. 8764596768	83
0.9899040553	I. $31418263+9$	0.0519+40144	842	I. 8538517289	82
0.9872296302	1. 3125457253	0.0583062693	$83 \quad 17$	I. 8312437810	81
0.98424 41861	I. 3107229838	0.06462 21812	$82 \quad 32$	I. 808635833 I	80
0.9809489213	I. 3087166392	0.07088 64934	8 I 46	1. 7860278851	79
0.97734 51558	I. 3065291449	0.0770939167	81 I	1.7634199372	78
0.9734343300	I. $30+1631759$	0.0832391270	80 I5	1.74081 19893	77
0.9692180039	I. 3016216250	0.0893167629	$79 \quad 29$	1.7182040414	76
0.9646978546	I. 2989075994	0.0953214240	$78 \quad 43$	I. 6955960935	75
0.9598756758	I. 2960244173	O. 10124 76688	$77 \quad 56$	1. 6729881456	74
0.9547533753	I. 2929756032	0.10709 00133	$77 \quad 10$	1. 6503801977	73
0.9493329736	I. 28976488 +0	O. II284 29301	$76 \quad 23$	1. 6277722497	72
0.9436166021	I. 28639618.40	0.11850 08473	$75 \quad 35$	I. 6051643018	71
0.9376065006	I. 2828736204	0.1240581487	$74 \quad 48$	I. 5825563539	70
0.9313050161	1. 2792014980	0.12950 91731	74 o	I. 5599484060	69
0.9247145998	1. 2753843041	0. 1348482153	7312	I. 5373404581	68
0.9178378055	I. 2714267027	0. 14006 95267	$\begin{array}{ll}72 & 23\end{array}$	I. 5147325102	67
0.9106772870	I. 2673335291	0.14516 73172	7 I 35	I. 4921245623	66
0.90323 57961	1.26310 97835	0.15013 57566	$70 \quad 46$	I. 4695166144	65
0.89551 61797	I. 2587606253	-. 1549689777	6956	I. 4469086665	64
0.88752 13778	I. 2542913663	0. 1596610790	697	I. 4243007185	63
0.8792544206	I. 2497074646	o. 1642061290	6816	I. 4016927706	62
0.87071 84265	I. 2450145176	0. 16859 81701	$67 \quad 26$	I. 3790848227	61
0.8619165988	I. 2402 I 82552	0.17283 12244	6635	I. 3564768748	60
0.8528522237	I. 2353245329	o. 17689 92991	6543	I. 3338689269	59
0.84352 86672	I. 2303393242	0.18079 63935	64 5I	I. 3112609790	58
0.83394 93726	I. 2252687137	0.1845I 65064	6359	1. 2886530311	57
0.82411 78578	I. 2201188895	o. 18805 36444	636	1. 2660450832	56
0.8140377126	I. 2148961356	0.19140 18312	6212	I. 2434371353	55
0.8037125960	I. 2096068240	o. 1945551177	619	I. 2208291873	54
0.7931462334	I. 2042574072	o. 1975075927	$60 \quad 24$	I. 1982212394	53
0.7823424136	I. 1988544102	0. 2002533955	5930	I. 17561 32915	52
0.7713049868	I. 1934044225	o. 2027867279	5835	I. 1530053436	51
0.7600378612	I. 1879140899	0.20510 18688	$57 \quad 39$	I. 13039 73957	50
0.7485450007	I. 1823901066	0.20719 31885	5642	I. 1077894478	49
0.7368304220	I. 1768392068	0.20905 51650	5546	I. 0851814999	48
0.72489 81922	I. 17126 81567	0.21068 24001	5448	I. 0625735519	47
0.7127524260	I. 1656837461	0. 2120696376	5350	1. 0399656041	46
0.7003972833	I. 1600927802	0.2132117818	$52 \quad 52$	1.01735 76561	45
A(r)	D (r)	E(r)	ϕ	F ϕ	r

r	F ϕ	ϕ	E(r)	D (r)	A(r)
o	0.0000000000	$\mathrm{o}^{\circ} \mathrm{o}^{\prime}$	0.0000000000	1.0000000000	0.0000000000
1	0.0239612850	122	0.0105021636	1.0001258452	0.01694 24822
2	0.0479225699	245	0.0209836904	1.0005032288	0.0338807351
3	0.0718838549		0.0314240274	1. OOII3 16945	0.0508105279
4	$0.0958+51399$	$5 \quad 29$	0.0418027880	1.0020104822	0.0677276275
5	0.11980 64248	51	0.0520998337	1.00313 85295	0.0846277970
6	0.1437677098	$8 \quad 13$	0.0622953533	1.00451 44723	0.10150 67944
7	0.16772 89948	935	0.0723699392	1. 0061366468	0.1183603717
8	0.19169 02798	1056	0.0823046606	1.0080030911	0.1351842734
9	0.2156515647	$12 \quad 17$	0.0920811326	1. OIOII 15480	0.1519742358
10	0.2396128497	$13 \quad 38$	0. 1016815801	1. 0124594672	0.16872 59855
11	0.2635741347	1458	0.11108 88976	1. 0150440088	0.18543 52386
12	0.2875354197	16 18	0.12028 67034	1.0178620463	0.2020976999
13	0.3114967046	$\begin{array}{ll}17 & 38\end{array}$	0.12925 93879	1.02091 01701	0.2187090619
14	0.3354579896	$18 \quad 57$	0.13799 21563	1.0241846923	0.2352650037
15	0.35941 92746	$20 \quad 16$	o. 1464710652	1.0276816504	0.2517611911
16	0.38338 05595	2135	0. 1546830530	1.03139 68120	0.2681932750
17	0.40734 18445	22.53	0.16261 59647	1. 0353256803	0.2845568916
18	0.4313031295	24^{-10}	0. 1702585702	1. 0394634991	0. 3008476617
19	0.4552644145	$25 \quad 26$	0. 1776005773	1. 0438052583	0.3170611903
20	0.4792256994	$26 \quad 42$	0.18463 26382	1.0483457003	0.33319 30665
21	0.50318 69844	$27 \quad 58$	0.19134 63517	1.0530793260	0. 3492388634
22°	0.5271482694	$\begin{array}{ll}29 & 13\end{array}$	0. 1977342593	1.05800 04010	0.3651941381
23	-.55110 95544	$30 \quad 27$	0. 203789837 I	1. 0631029632	0.3810544318
24	0.57507 08393	31.41	0. 2095074827	1. 0683808291	0.39681 52701
25	0. 5990321243	3254	0.2148824988	1.0738276019	0.4124721633
26	0.6229934093	$34 \quad 7$	0.2199110718	1.0794366784	0.4280206069
27	0.6469546942	$35 \quad 18$	0.22459 02484	1.08520 12575	0.4434560826
28	0.6709159792	$\begin{array}{ll}36 & 29\end{array}$	0.22891 79082	I. 0911143480	0.4587740585
29	0.6948772642	$37 \quad 39$	0.2328927342	1. 0971687771	0.4739699905
30	0.71883 85492	$38 \quad 49$	0.2365141807	1. 1033571989	0.4890393230
31	0.7427998341	$39 \quad 58$	0.2397824399	1. 1096721031	0. 5039774905
32	0.7667611191	41	0.2426984060	I. 1161058243	0. 5187799184
33	0.7907224041	$42 \quad 13$	0.2452636394	1. 1226505510	0. 5334420249
34	0.8146836890	4320	0.24748 03283	1. 1292983350	o. 5479592224
35	0.83864 49740	$44 \quad 26$	0.2493512513	1.13604 11010	0. 5623269191
36	0.8626062590	$45 \quad 31$	0.2508797387	1. 1428706563	0. 5765405212
37	0.88656 75440	$46 \quad 35$	0. 2520696336	1. 1497787007	-. 5905954347
38	0.9105288289	$47 \quad 39$	0.2529252540	1. 1567568364	0.6044870673
39	0.93449 O1I39	$48 \quad 42$	0.25345 13545	1. 16379 65783	0.6182108313
40	0.95845 13989	4944	0.25365 30884	1. 1708893642	0.6317621451
41	0.9824126838	5045	0.25353 59713	1. 1780265652	0.6451364364
42	1. 0063739688	5I 46	0.25310 58450	I. 1851994959	0.6583291446
43	1. 0303352538	5246	0. 2523688429	1. 1923994253	0.6713357232
44	1.05429 65388	5345	0.2513313558	I. 1996175873	0.6841516433
45	1. 0782578237	5444	0.2500000000	1. 2068451910	0.6967723959
$90-\mathrm{r}$	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	$\mathrm{B}(\mathrm{r})$

$q=0.085795733702195, \quad Ө 0=0.8285168980, \quad \mathrm{HK}=1.0903895588$

B(r)	C(r)	G(r)	ψ	$\mathrm{F} \psi$.	90-r
1.00000 00000	1.4142I 35624	0.0000000000	$90^{\circ} \quad 0^{\prime}$	2. 1565I 56475	90
0.9998387925	1.41408 70799	0.0074645017	89 19	2.1325543625	89
0.9993552434	I. 4137077878	0.0149238646	$88 \quad 38$	2 . 1085930775	88
0.9985495732	1.4130761515	0.0223729430	$87 \quad 57$	2.0846317926	87
0.99742 21491	I. 4121929466	0.02980 65777	$87 \quad 16$	2.0606705076	86
0.9959734843	1.41105 92570	0.03721 95889	8635	2.0367092226	85
0.9942042378	I. 4096764744	0.04460 67701	8553	2.0127479377	84
0.9921152135	I. 4080462958	0.0519628815	85 II	1.98878 66527	83
0.9897073588	I. 4061707222	0.0592826440	84. 29	I. 96482.53677	82
$0.98698 \quad 17641$	I. 4040520551	0.0665607336	$83 \quad 47$	I. 9408640827	8 I
0.9839396610	I. 4016928947	0.0737917757	835	1.91690 27978	80
0.9805824210	I. 39909 61356	0.0809703401	8223	I. 89294 I5128	79
0.9769115541	I. 3962649639	0.0880909364	8 I 41	I. 8689802278	78
0.9729287065	I. 393202853 I	0.0951480095	$80 \quad 58$	I. 8450189429	77
0.9686356591	I. 3899 I 35592	0.10213 59353	80 I5	I. 8210576579	76
0.9640343250	I. 38640 III69	0.1090490175	$79 \quad 32$	1. 7970963729	75
0.9591267478	I. 3826698339	O. II588 14840	$78 \quad 49$	I. 7731350879	74
0.9539150985	I. 3787242853	0. 1226274837	78 -	I. 7491738030	73
0.9484016738	I. 3745693090	0. 1292810844	$77 \quad 21$	I. 7252125180	72
0.9425888926	I. 3702099983	0.13583 62697	$76 \quad 37$	1. 7012512330	71
0.9364792941	I. $36565 \quad 16965$	0.14228 69378	$75 \quad 53$	I. 6772899480	70
0.9300755342	I. 3608999899	0.14862 68991	758	I. 653328663 I	69
0.9233803829	I. 3559607006	0.1548498749	$74 \quad 23$	I. 6293673781	68
0.9163967210	I. 3508398797	0.1609494967	$\begin{array}{ll}73 & 37\end{array}$	I. 6054060931	67
0.9091275372	I. 3455437995	0.1669193054	72 5I	I. 5814448082	66
0.9015759245	I . 3400789457	0.17275 27505	725	I. 5574835232	65
0.8937450771	I. 33445 20094	o. 17844 31913	7 I 18	I. 5335222382	64
0.8856382868	1. 3286698789	o. 1839838964	$70 \quad 30$	I. 5095609532	63
0.8772589396	I. 3227396308	o. 1893680462	$69 \quad 42$	I. 4855996683	62
0.8686105122	I. 3166685215	o. 1945887340	$68 \quad 54$	I. 4616383833	61
0.8596965682	I. 3104639783	0. 19963 89691	685	I. 4376770983	60
0.8505207549	I. $30+1335898$	0.2045 1 16802	67 16	1.4137158134	59
0.84108 67990	1. 2976850969	o. 2091997204	$66 \quad 26$	I. 3897545284	58
0.8313985036	I. 2911263832	0.2136958722	$65 \quad 36$	I. 3657932434	57
0.8214597438	I. 2844654650	0.21799 28546	6445	I. 3418319584	56
0.8112744636	I. 2777104815	0. 2220833313	$63 \quad 53$	I. 3178706735	55
0.8008466719	1. 2708696850	0.2259599196	63 I	I. 2939093885	54
0.7901804386	1. 2639514305	0.2296152018	629	I. 2699481035	53
0.7792798915	I. 2569641655	0.23304 17372	61.15	I. 2459868185	52
0.768 I 492 I 20	I. 2499164194	0.23623 2076I	$60 \quad 21$	I. 2220255336	51
0.7567926317	I. 2428 I 67937	0.2391787758	$59 \quad 27$	I. 1980642486	50
0.7452 1 44290	I. 2356739504	0.2418744177	$58 \quad 32$	I. 1741029636	49
0.73341 89253	I. 2284966025	0.24431 16265	$57 \quad 36$	I. 15014 16787	48
0.7214104816	I. 2212935025	0. 2464830908	5639	I. 1261803937	47
0.7091934952	1. 2140734320	0.24838 15864	5542	I. 1022191087	46
0.6967723959	I. 2068451910	0.2500000000	$54 \quad 44$	1. 0782578237	45
A(r)	D (r)	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

$K=2.3087867982, \quad K^{\prime}=1.6489952185, \quad E=1.1638279645, \quad E^{\prime}=1.4981149284$,

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	D (r)	A(r)
o	0.0000000000	$\mathrm{o}^{\circ} \quad \mathrm{o}^{\prime}$	0.0000000000	1.0000000000	0.0000000000
1	0.0256531866	128	0.0127171437	1.0001631607	0.0166762945
2	0.0513063733	256	0.02540 65870	I . 00006524464	0.0333489266
3	0.0769595599	$4 \quad 24$	0.0380407622	I . ool +672698	0.05001 42309
4	0.10261 27466	$5 \quad 52$	0.0505923651	I. 0026066524	0.06666 85367
5	0. 1282659332	720	0.0630344839	I. 0040692257	0.08330 81651
6	0.1539191199	847	$0.0753+07235$	1. 0058532333	0.0999294260
7	0. 1795723085	$10 \quad 14$	0.0874853252	1. 0079565320	0.11652 86159
8	0. 2052254932	114	0.0994432800	1. 0103765954	0.13310 20150
9	0.2308786798	138	0.1111904341	I. 0131105159	o. 1496458850
10	0.2565318665	1434	0. 1227035875	1. 0161550083	0.16615 64662
11	0.28218 50531	16 o	0.13396 05824	1.01950 64139	0.18262 99754
12	0. 3078382398	$17 \quad 25$	0. 1449403827	I. 0231607042	0. 1990626038
13	0.33349 14264	1850	o. 1556231436	I. 0271134860	0.2154505144
14	0.35914 46131	$20 \quad 14$	0.16599 02705	1.0313600060	0.2317898405
15	0. 3847977997	$21 \quad 38$	0. 1760244678	1.03589 51569	. 0.2480766833
16	0.4104509864	23 I	o. 1857097766	1.04071 34825	0.2643071105
17	0.43610 41730	$24 \quad 23$	0.19503 16024	I. 0458091848	0.2804771545
18	0. 4617573596	2544	0.2039767323	1.0511761304	0.29658 28110
19	0.4874105463	$27 \quad 4$	0.2125333427	'1.05680 78572	0.3126000376
20	0.5130637329	$28 \quad 24$	0.2206909968	1. 0626975825	0.3285847528
21	0. 5387169196	2943	0. 2284406338	1. 0688382109	0.3444728350
22	0. $56+3701062$	31	0.23577 45496	1.0752223418	0.3602801217
23	0.59002 32929	$32 \quad 19$	0.2426863696	$1.0818+22789$	0.3760024088
24	0.6156764795	$33 \quad 36$	0.24917 10151	1.0886900386	0.3916354503
25	0.6413296662	$34 \quad 52$	0.2552246626	1. 0957573598	0.4071749584
26	$0.66698 \quad 28528$		0. $2608+46988$	1.10303 57129	0.4226166028
27	0.6926360395	$37 \quad 21$	0. 2660296698	1.11051 63106	0.4379560117
28	0.7182892261	$38 \quad 34$	0.2707792271	1.11819 01175	0.4531887717
29	0.7439424127	$39 \quad 46$	0.2750940704	1.1260478613	0.4683104285
30	- 0.7695955994	$40 \quad 58$	0.27897 58872	1. 1340800433	0.48331 64880
31	0.7952487860		$0.2824^{2} 72920$	I. I 422769496	$0.49820 \quad 24170$
32	0.8209019727	$43 \quad 18$	0.28545 17629	1. 1506286634	0.5129636449
33	0.8465551593	$44 \quad 26$	0.28805 35786	1. 1591250752	-. 5275955647
34	0.8722083460	$45 \quad 34$	0.2902377551	1. 1677558964	0. 5420935352
35	0.89786 15326	$46 \quad 41$	0.2920099830	1.1765106705	0.55645 28823
36	0.9235147193	$47 \quad 47$	0.29337 65659	1. 1853787860	0.57066 89018
37	0.9491679059	$48 \quad 52$	0.29+34 43597	I. 1943+94887	0.58473 68614
38	0.9748210926	4956	0.29+92 07141	1.20341 18951	0. 5986520033
39	I. 0004742792	$50 \quad 59$	0.29511 34159	1. 2125550050	0.6124095465
40	I. 0261274659	52	0.2949306347	1.22176 77148	0.6260046907
41	I. 0517806525	53	0.2943808705	1.23103 88308	0.6394326185
42	1. 0774338392	54	0.2934729047	1. 2403570830	0.6526884992
43	I. 1030870258	55	0.29221 57532	I. 2497111383	0.6657674922
44	I. 1287402125		0.29061 86227	I. 2590896145	0. 6786647507
45	I. 1543933991	$56 \quad 58$	0.2886908691	I. 2684810938	0.6913754254
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	B(r)

Smithsonian Tables

TABLE $\theta=65^{\circ}$
$q=0.106054020185994, \quad Ө 0=0.7881449667, \quad H K=1.1541701350$

B(r)	C(r)	$\mathbf{G}(\mathbf{r})$	ψ	F ψ	90-r
1. 0000000000	1. 5382462687	0.0000000000	$90^{\circ} \quad \mathrm{o}^{\prime}$	2.3087867982	90
0.9998341412	I. 53808 I 5440	0.00834 87781	$88 \quad 23$	2.28313 36115	89
0.9993366526	1. 5375875740	0.0166926008	8846	2.2574804249	88
0.9985077970	I. 5367649688	0.0250265041	889	2.2318272382	87
0.9973480125	I. 5356 I 47447	0.0333455075	8732	2.2061740516	86
0.9958579109	I. 5341383232	0.0416446052	$86 \quad 54$	2.18052 08649	85
0.9940382778	I. 532337528 I	0.04991 87582	86 I6	2.15486 76783	84
0.9918900707	I. 5302145843	0.05816 28855	8538	2.12921 44916	83
0.9894144182	1. 5277721140	0.06637 18564	85 o	2.1035613050	82
0.9866126176	1.52501 31340	0.0745404819	8422	2.0779081184	8 I
0.98348 61339	I. 5219410514	0.0826635068	$83 \quad 44$	2.0522549317	80
0.9800365970	I. 5185596596	0.0907356016	836	2.0266017451	79
0.9762657996	I. 5148731329	0.09875 13547	$82 \quad 27$	$2.0009+85584$	78
0.9721756947	I. 5108860218	o. 10670 52642	8 I 48	1.97529 53718	77
0.9677683924	I. 5066032466	O. II459 17308	8 I 9	I. 9496421851	76
0.9630461576	I. 5020300916	0.12240 50500	8030	I. 9239889985	75
0.9580114060	I. 4971721977	O.I3013 94047	79 50	I. 8983358118	74
0.9526667013	I. 4920355559	O. 1377888583	79 10	I. 8726826251	73
0.9470147511	I. 4866264993	o. 1453473477	$78 \quad 30$	I. 8470294385	72
0.9410584035	I. 4809516947	0.15280 86769	$77 \quad 49$	I. 8213762519	71
0.9348006429	I. 4750181348	0.16016 65105	$77 \quad 8$	1. 7957230652	70
0.9282445859	I. 46883 31288	O. 16741 43683	$76 \quad 26$	I. 7700698786	69
0.9213934772	I. 4624042933	0.17454 56190	7544	1.74441 66919	68
0.9142506851	I. 4557395424	0.18155 34763	$75 \quad 2$	1. 7187635053	67
0.9068196968	I. 4488470781	0.18843 09933	$74 \quad 19$	I. 693 II 03I86	66
0.89910 41140	1. 4417353793	0.19517 10594	$73 \quad 36$	I. 6674571320	65
0.89110 76479	I. 4344131916	0.2017663966	7252	I. 6418039453	64
0.88283 4II44	1. 4268895162	0.2082095570	728	I.6161507587	63
0.8742874294	I.41917 35981	0.21449 29211	71	I. 5904975721	62
0.8654716034	1.4112749149	0.2206086968	$70 \quad 37$	I. 5648443854	61
0.85639 07366	I. 4032031647	0.22654 89197	6951	I. 53919 I1988	60
0.84704 90138	I. 3949682541	0.23230 54536	694	I. 5135380121	59
0.83745 06991	I. 3865802852	0.2378699932	$68 \quad 17$	I. 4878848255	58
0.82760 01310	I. 3780495440	0.24323 40676	$67 \quad 29$	I. 4622316388	57
0.81750 17168	I. 3693864865	0. 2483890447	66 4I	I. 4365784522	56
0.8071599276	I. 3606017261	0.25332 61379	$65 \quad 52$	I. 4109252655	55
0.7965792934	I.35170 60205	0.25803 64133	$65 \quad 2$	I. 3852720789	54
0.78576 43973	I.34271 02582	0.2625I 08001	64 II	I. 3596188922	53
0.77471 98708	I. 3336254449	0. 26674 01012	6320	I. 3339657055	52
0.7634503889	I. 3244626900	0.2707150065	$62 \quad 28$	I. 3083125189	51
0.7519606646	1.3152331927	0.2744261086	6135	I. 2826593322	50
0.74025 54443	I. 3059482284	0.2778639198	$60 \quad 41$	I. 2570061456	49
0.7283395027	I. 2966191348	0.28IOI 88920	5946	I. 2313529589	48
0.7162176383	I. 2872572976	0. 28388 I 4388	58 5I	I. 2056997723	47
0.7038946686	1. 2778741372	0.28644 19600	5755	I. 18004 65856	46
0.6913754254	I. 2684810938	0.288690869 I	$56 \quad 58$	I. I 543933991	45
A(r)	D (r)	E(r)	ϕ	F ϕ	r

$K=2.5045500790, \quad K^{\prime}=1.6200258991, \quad E=1.1183777380, \quad E^{\prime}=1.5237992053$,

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	D (r)	A(r)
0	0.0000000000	$0^{\circ} \mathrm{o}^{\prime}$	0.00000 00000	1. 0000000000	0.0000000000
1	0.0278283342	I 36	0.01539 55735	1. 0002142837	0.0162742346
2	0.05565 66684		0.0307531429	1. 0008568806	0.0325456619
3	0.083+8 50026	$4 \quad 47$	0.0460349252	1.0019270294	0.04881 14698
4	0.11131 33368		0.0612035769	1.0034234614	0.0650688358
5	o. 13914 16710	$7 \quad 57$	0.0762224069	I. 0053444028	0.0813149227
6	0. 1669700053	932	0.0910555815	I. 0076875763	0.0975468734
7	o. 1947983395	11	0.10566 83193	1. 0104502032	0.11376 18057
8	0. 2226266737	$12+0$	0. 1200270732	I . 0136290072	0. 1299568083
9	0.25045 50079	14	0.13409 96984	1.0172202172	0.1461289355
10	0. 2782833421	$15 \quad 46$	0.1478556040	1.0212195717	0. 1622752029
11	0.30611 16763	178	0.16126 58874	1.0256223237	0. 1783925828
12	0.33394 00105	$18 \quad 50$	0. 1743034501	1. 0304232454	0. 1944780006
13	o. 3617683447	$20 \quad 20$	0.1869430948	I. 0356166341	0.2105283297
14	0. 3895966790	2150	0.1991616028	1.04119 63185	0.2265403885
15	0.41742 50132	2320	0.2109377918	1. 0471556657	0.2425109363
16	o. +452533474	$2+\quad 48$	0.2222525549	1. 0534875877	0.2584366697
17	0.47308 16816	$26 \quad 16$	0.23308 88806	1. 0601845500	0.2743142196
18	0.50091 00158	$27 \quad 42$	0.24343 18557	1. 0672385795	0.29014 O1480
19	0.52873 83500	298	0.2532686498	1. 0746412734	0.3059109453
20	0. 5565666842	$30 \quad 32$	0.26258 84862	1. 0823838086	0.3216230277
21	0. $58+3950184$	3156	0.2713825968	1.0904569513	0.3372727349
22	0.6122233526	3318	0. 2796441653	1.0988510673	0.35285 63285
23	0.6400516869	$3+40$	0.28736 82581	1. 107555^{61330}	0.3683699898
24	0.66788002 II	36 o	0.2945517462	1. 1165617464	0.3838098186
25	0.6957083553	$37 \quad 19$	0.3011932185	1.12585 71388	0.3991718323
26	0.7235366895	$38 \quad 37$	0.3072928884	1. 1354311869	0.4144519649
27	0.75136 50237	$39 \quad 54$	0.31285 24953	1. 1452724256	0.4296460668
28	0.77919 33579	4110	0.3178752022	1. 1553690607	0. 4447499043
29	0.8070216921	$42 \quad 24$	0.3223654911	1. 1657089825	0.4597591601
30.	0.83485 00263	$43 \quad 38$	0. 3263290569	1. 1762797795	0. 4746694339
31	0.8626783605	$44 \quad 50$	0.32977 27014.	1. 1870687529	0.4894762428
32	0.89050 66948	46	0.33270 42283	1. 1980629307	0.5041750229
33	0.9183350290	47 II	0.33513 23398	1.2092490830	0.5187611309
34	$0.9+61633632$	4820	0.33706 65364	1.2206137375	0.53322 98456
35	o. 9739916974	$49 \quad 27$	0.33851 70194	1.2321431946	0. 5475763701
36	1. 0018200316	$50 \quad 34$	0.33949 45975	1. $2438235+38$	0.5617958348
37	I. 0296483658	$\begin{array}{lll}51 & 39\end{array}$	0.34001 05978	I. 2556406798	0.5758832996
38	1. 0574767000	$\begin{array}{ll}52 & 43\end{array}$	0.3400767814	1. 2675803194	0.5898337576
39	1. 0853050342	$53 \quad 46$	0.33970 52640.	1. 2796280178	0.6036421381
40	I. 11313 33684	$54 \quad 48$	0.3389084414	1. 2917691861	0.6173033109
41	I. 1409617027	5549	0.3376989203	1. 3039891085	0.6308120897
42	I . 1687900369	5648	0.3360894543	1. 3162729599	0.6441632373
43	1. 1966183711		0.33409 2885I	1. 3286058237	0.6573514695
44	I. 2244467053	5844	0.3317220892	I. 3409727096	0.6703714605
45	1.2522750395	59 4I	0. 3289899283	1. 3533585717	0.6832178479
$90-\mathrm{r}$	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	$\mathrm{B}(\mathrm{r})$

$q=0.131061824499858, \quad$ O $0=0.7384664407, \quad \mathrm{HK}=1.2240462555$

B(r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
1.00000 00000	I.70991 35651	0.0000000000	$90^{\circ} \quad 0^{\prime}$	2.5045500790	90
0.9998271058	I. 7096953883	0.0091703805	$89 \quad 27$	2.4767217448	89
0.9993085325	I. 7090411308	0.0183363062	8855	2.4488934106	88
0.9984446074	1. 7079516110	$0.027+933119$	8822	2.4210650764	87
0.9972358755	I. 7064281917	0.0366369110	8749	2.3932367422	86
0.9956830984	1. 7044727784	0.0457625853	8716	2.3654084079	85
0.9937872533	I. 7020878163	0.0548657745	8643	2.33758 00737	84
0.9915495309	I. 6992762875	0.0639418650	8610	2.30975 17395	83
0.9889713334	I. $6960+17067$	0.07298 61798	$85 \quad 36$	2.2819234053	82
0.9860542725	I. 692388 II 68	0.0819939678	853	2.25409507 II	8 I
0.98280 OI661	I. 688320083 I	0.0909603928	8429	2.2262667369	80
0.9792110356	I. 6838426872	0.0998805231	8355	2. 19843 84027	79
0.9752891023	I. 6789615207	0. $1087+93206$	8321	2.1706100685	78
0.9710367835	I. 6736826771	o. II756 16303	8246	2. 14278 17343	77
0.9664566885	I. $6680127+39$	0.12631 21691	8212	2. 11495 34000	76
0.9615516144	I. 6619587940	-. 13499 55158	8 I 37	2.0871250658	75
0.9563245409	I. 6555283761	-. $1+36060995$	8 I I	2.0592967316	74
0.9507786259	I. 6487295046	O.I5213 81898	$80 \quad 25$	2.03 I 4683974	73
0.9449171996	I. 6415706491	O. 1605858855	$79+9$	2.0036400632	72
0.9387437597	I. 6340607230	0.1689+310+4	$79 \quad 13$	I. 9758117290	71
0.9322619647	I. 6262090720	O. 1772035729	$78 \quad 36$	I. 9479833948	70
0.9254756289	I. 6180254615	0.18536 08158	$77 \quad 58$	I.92015 50606	69
0.9183887155	I. 6095200637	0. 1934081461	$77 \quad 20$	I. 8923267264	68
0.9110053304	I. $6007034+45$	0.20133 86551	$76 \quad 42$	I. 864498392 I	67
0.9033297156	I. 5915865494	0.2091+52034	763	I. 8366700579	66
0.8953662423	I. 5821806891	0.2168204110	$75 \quad 23$	I. 8088417237	65
0.88711 94043	I. 5724975252	0. $22+3566494$	$74 \quad 43$	1.78101 33895	64
0.8785938106	I. $5625+905+4$	0.23174 60328	$7+2$	I. 7531850553	63
0.8697941783	I. 5523475933	0. 2389804 III	7321	I. 72535672 II	62
0.8607253257	I. 5419057623	0.2460513624	$72 \quad 39$	I. 6975283869	61
0.8513921644	I. 5312364694	0. 2529501875	7 I 56	I. 6697000527	60
$0.8+17996923$	I. 5203528933	0. 2596679043	7113	I. 6418717185	59
0.83195 29861	I. 5092684668	0.26619 524 44	$70 \quad 29$	I. $61+0+33842$	58
0.8218571938	I. 4979968595	0.2725226492	6944	I. 5862 I 50500	57
0.8115175269	I. 48655 I 960 I	$0.2786+02697$	6859	I. 5583867158	56
0.8009392537	1. 4749478592	0. 2845379654	$68 \quad 12$	I. 5305583816	55
0.7901276914	1.46319 88308	0.29020 53069	$67 \quad 25$	I. $5027300+74$	54
0.77908 81986	I.45131 93148	0.29563 15786	$66 \quad 37$	I. 47490 17132	53
0.7678261683	I. 4393238985	0.30080 57852	654^{8}	I. $4+70733790$	52
0.7563470207	I. 4272272983	0.30571 66593	$64 \quad 59$	I. 4192450448	5 I
0.74465 61957	I. $4150443+13$	0. 3103526720	$6+8$	I. 3914167106	50
0.7327591466	I. $4027899+70$	0.31470 20462	$63 \quad 17$	I. 3635883763	49
0.7206613327	I. 3904791083	0.31875 27727	$62 \quad 24$	I. 3357600421	48
0.7083682126	I. 3781268735	0.3224926298	6131	1. 3079317079	47
0.6958852382	I. 3657483271	0.32590 92064	$60 \quad 36$	I. 2801033737	46
0.6832 I 78479	1. 3533585717	0. 3289899283	$59 \quad 41$	I. 2522750395	45
A(r)	$\mathrm{D}(\mathbf{r})$	E(r)	ϕ	F ϕ	r

$K=2.7680631454=K^{\prime} \sqrt{3}, \quad K^{\prime}=1.5981420021, \quad E=1.076405113, \quad E^{\prime}=1.5441504969$,

r	F ϕ	ϕ	E(r)	D (r)	A (r
0	0.0000000000	$0^{\circ} \quad 0^{\prime}$	0.0000000000	1.0000000000	0.0000000000
1	0.0307562572	I 46	0.0187871553	I. 0002890226	0.01564 67728
2	0.0615125143	$3 \quad 37$	0.03752 O1201	1.00115 57568	0.03129207 II
3	0.0922687715	$5 \quad 17$	0.0561450985	1.00259 92025	0.0469344040
4	0.12302 50287	72	0.0746090790	I.00461 76935	0.0625722754
5	0. 1537812859	$8 \quad 47$	0.0928602109	I. 0072088997	0.0782041558
6	-.18453 75430	1031	0.11084 81632	I. 0103698288	0.0938284843
7	0.2152938002	12 I5	0.12852 44620	I. O1409 68295	0.10944 36574
8	0.2460500574	1358	O. 1458427986	I. O1838 55946	0.12504 80220
9	0.2768063145	1540	0.1627593073	I. 02323 I1658	0.14063 98665
10	0.3075625717	$17 \quad 22$	0.17923 28093	1. 0286279374	0.15621 74137
I I	0.3383I 88289	193	0.19522 50184	I. 0345696626	0.1717788130
12	0.3690750860	$20 \quad 43$	0.2107007095	I. 0410494593	0.18732 21327
13	0.39983 13432	$22 \quad 22$	0.2256278479	I. 0480598163	0.2028453538
I 4	0.4305876004	$23 \quad 59$	0.2399776797	1.05559 26010	0.2183463622
15	0.4613438576	$25 \quad 36$	0.2537247838	1. 0636390673	0.2338229430
16	0.49210 O1147	$27 \quad 12$	0.2668470884	1.0721898642	0.2492727739
17	0.52285 63719	2846	0.2793258519	1.08123 50446	0.2646934194
18	0.55361 26291	$30 \quad 19$	0.29114 56129	1. 0907640755	0.2800823255
19	0.5843688862	3 I 50	0.30229 41110	I. 1007658484	0.29543 68145
20	0.6151251434	33 21	0.3127621816	I. III22 86903	0.3107540803
21	0.6458814006	3450	0.3225436297	I.I2214 03756	0.3260311842
22	0.6766376577	3617	0.3316350828	I. I3348 81382	0.3412650509
23	0.7073939149	3743	0.3400358309	I. I 452586847	0.3564524653
24	0.73815 01721	398	0.3477476532	I. 1574382078	0.3715900694
25	0.7689064293	4031	0.35477 46364	I. 1700124008	0.3866743599
26	0.7996626864	415	0.36112 29881	I. 1829664722	0.4017016862
27	0.8304189436	$43 \quad 12$	$\begin{array}{lll}0.36680 & 08467\end{array}$	I. 1962851612	0.4166682489
28	0.8611752008	44 3I	0.3718180918	I. 2099527538	0.4315700988
29	0.8919314579	4548	0.3761861563	I. 2239530995	0.4464031361
30	0.9226877151	473	0.37991 78428	1. 2382696285	0.4611631110
31	0.9534439723	48 I 8	0.3830271460	I. 2528853692	0.4758456238
32	0.9842002294	4930	0.38552 90817	I. 2677829672	0.4904461259
33	I. O1495 64866	$50+1$	0.38743 95246	I. 2829447038	0.5049599214
34	1.04571 27438	5151	0.3887750552	I. 2983525154	0.5193821695
35	1. 0764690010	5259	0.38955 28I59	I. 3139880140	0. 5337078866
36	1. 1072252581	545	0.3897903785	I. 3298325072	0.5479319494
37	I. 13798 15153	55 10	0.3895056204	I. 3458670195	0.5620490989
38	I. 16873 77725	5614	0.38871 66125	I. 3620723140	0.5760539442
39	I. 1994940296	5716	0.3874415171	I. 3784289138	0.5899409669
40	1. 2302502868	$\begin{array}{ll}58 & 17\end{array}$	0.38569 84955	I.39491 71251	0.6037045267
41	I. 2610065440	$59 \quad 17$	0.3835056260	I.4115170596	0.6173388663
42	1.29176 28011	1015	$0.38088 \quad 08305$	I. 4282086579	0.6308381179
43	I. 3225190583	6112	0.37784 18107	I. 44497 17132	0.6441963092
44	I. 3532753155	628	0.3744059923	I. 4617858952	0.6574073705
45	1.38403 15727	632	0.3705904774	1. 4786307747	0.67046 51423
$90-\mathrm{r}$	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	B(r)

TABLE $\theta=75^{\circ}$
$q=0.163033534821580, \quad Ө 0=0.6753457533, \quad \mathrm{HK}=1.3046678096$

B(r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	$90-\mathrm{r}$
1. 0000000000	I. 9656305108	0.0000000000	$90^{\circ} \quad 0^{\prime}$	2.7680631454	90
0.9998160886	1.96533 12951	0.0098991720	8933	2.7373068882	89
0.9992644975	1. 9644340309	0.01979 47043	895	2.7065506310	88
0.9983456552	1. 9629398674	0.0296829453	$88 \quad 38$	2.6757943738	87
0.9970602753	I. 9608507176	0.03956 .02195	88 10	2.64503 81167	86
0.9954093546	I.95816 9256I	0.04942 28154	8743	2.6142818595	85
0.9933941714	I. 9548989147	0.0592669738	87 I5	2.5835256023	84
0.99101 62829	1.9510438778	0.0690888752	8647	2.55276 9345I	83
0.9882775221	I. 9466090763	0.0788846278	8619	2.5220130880	82
0.9851799940	1.9416001803	0.0886502550	85 5I	2.4912568308	8 I
0.9817260720	1. 9360235909	$0.09838 \quad 16828$	$85 \quad 22$	2.4605005736	80
0.9779183923	I. 9298864309	O. 1080747268	8454	2.4297443165	79
0.9737598498	I.92319 65349	O. II772 50798	8425	2.3989880593	78
0.9692535914	I. 9159624373	0. 1273282981	8355	2.36823 18021	77
0.9644030106	I.90819 33609	0.1368797883	8326	2.3374755450	76
0.9592117405	I. 8998992030	0.1463747936	$82 \quad 56$	2.3067192878	75
0.9536836468	I. 8910905214	o. I5580 83802	8225	2.2759630306	74
0.9478228200	1.88177 85195	o. 16517 54225	8 I 55	2.2452067734	73
0.9416335686	I.8719750301	o. I7447 05894	81	2.2144505163	72
0.9351204092	+1.86169 24991	0.18368 83293	8052	2.1836942591	71
0.9282880593	I. 8,9439670	0.19282 28550	$80 \quad 20$	2.1529380019	70
0.9211414274	I. 0,597430516	0.2018681293	7948	2.12218 17448	69
0.9136856040	I. 82810 39279	0.21081 78488	79 I5	2.0914254876	68
0.905925852 I	I. 8160413089	0.21966.54291	78 4I	2.0606692304	67
0.89786 75972	I. 8035704247	0.22840 39887	$78 \quad 7$	2.0299129733	66
0.8895I 64174	1.79070 70015	0.23702 63334	$77 \quad 32$	I.9991567161	65
0.8808780328	I. 7774672401	- 0.2455249406	7656	I. 9684004589	64
0.8719582952	1. 7638677929	0.25389 19433	$76 \quad 20$	I. 9376442017	63
0.8627631773	I. 7499257419	0.262II 91147	7543	I. 9068879446	62
0.8532987622	1.73565 85746	0.2701978524	756	I. 8761316874	61
$\begin{array}{ll}0.84357 & 12322\end{array}$	1.7210841609	0.2781191636	$74 \quad 27$	I. 8453754302	60
0.83358 68580	1. 7062207286	0.28587 36500	7348	I. 8146191731	59
0.82335 19876	I. 6910868389	0.2934514936	738	I. 7838629159	58
0.8128730353	I. 67570 13618	0.30084 24433	$72 \quad 28$	I. 7531066587	57
0.8021564710	I. 6600834507	0.3080358026	7146	I. 7223504016	56
0.79120 88085	I. 6442525175	0.31502 04176	71	I. 6915941444	55
0.7800365955	I. 6282282065	0.3217846673	$70 \quad 20$	I. 6608378872	54
0.7686464021	I. 6120303692	0.3283I 64547	6936	I. 6300816300	53
0.7570448103	I. 5956790385	0.3346032006	68 50	I. 5993253729	52
0.7452384036	I. 5791944025	-0.34063 18384	68 4	I. 56856 91157	5 I
0.7332337566	I. 5625967789	0.3463888130	$67 \quad 16$	I. 5378 I 28585	50
0.7210374248	I. 5459065890	0.3518600808	$66 \quad 28$	I. 5070566014	49
0.70865 59347	I. 5291443320	0.35703 III48	$65 \quad 38$	I. 4763003442	48
0.6960957739	I. 5123305588	0.36I88 69II5	$64 \cdot 47$	I. 4455440870	47
0.6833633823	I. $49548 \quad 58469$	0.3664I 20039	6355	1.4147878299	46
0.6704651423	I. 4786307744	0.3705904774	$63 \quad 2$	1.38403 15727	45
A(r)	D (r)	E(r)	ϕ	F ϕ	r

Smithsonian Tables
$K=3.1533852519, \quad K^{\prime}=1.5828428043, \quad E=1.0401143957, \quad E^{\prime}=1.5588871966$,

r	F ϕ	ϕ	$\mathbf{E}(\mathbf{r})$	D (r)	A(r)
0	0.0000000000	$0^{\circ} \quad 0^{\prime}$	0.0000000000	1.0000000000	0.0000000000
1	0.0350376139	20	0.0234668886	1.0004113182	0.01460 06854
2	0.0700752278	4 I	0.0468505457	I. 0016448264	0.0292020956
3	0.10511 28417	6 I	0.0700685417	1.00369 91860	0.0438049412
4	0.1401504556	8 o	0.0930400333	I. 0065721668	0.0584099043
5	-.1751880695	$9 \quad 59$	0.11568 65173	I. 0102606485	0.0730176251
6	0.2102256835	II 58	0.13793 25365	I. 0147606225	0.0876286871
7	0.24526 32974	1355	o. 1597063263	I. 0200671948	0. 1022436040
8	0.2803009113	$15 \quad 52$	0.18094 03901	I. 0261745886	0.11686 28061
9	0.31533 85252	1747	0.2015719949	I. 0330761484	0.13148 66263
10	0.3503761391	19 4I	0.2215435813	I. 0407643440	0.1461152882
11	0.38541 37530	2134	0.2408030831	I. 0492307759	0.16074 88922
12	0.4204513669	2326	0.2593041559	I. 0584661800	0.17538 74040
13	0. 4554889808	2516	0.27700 63163	I. 0684604345	0.19003 06422
I 4	0.4905265947	$27 \quad 4$	0.2938749943	I. 0792025667	0.2046782669
15	0. 5255642086	28 51	0. 3098815035	1. 0906807598	0.2193297686
16	0. 5606018226	3036	0. 3250029380	I. 1028823622	0.2339844577
17	0. 5956394365	3220	0.3392220017	I . II579 38955	0.2486414540
18	0.6306770504	34 I	0.3525267798	I. 1294010647	0.2632996779
19	0.66571 46643	3541	0.36491 04618	1. 1436887684	0.2779578408
20	0.7007522782	$37 \quad 18$	0.3763710249	I. 15864 IIIOI	0.2926144375
21	0.7357898921	$38 \quad 54$	0.3869108879	1. 1742414105	0.3072677376
22	0:77082 75060	4028	0.3965365430	I. 1904722196	0.3219157797
23	0.8058651199	4 I 59	0.4052581757	I. 2073153312	0.3365563638
24	0.8409027338	$43 \quad 29$	0.4130892784	1.2247517970	0.3511870467
25	0.8759403477	$44 \quad 56$	0.4200462655	1. 24276 19421	$0.36580 \quad 51367$
26	0.9109779617	$46 \quad 22$	0.4261480965	I. 2613253814	0.3804076896
27	0.94601 55756	$47 \quad 45$	0.4314159095	I. 2804210369	0.3949915050
28	0.9810531895	497	0.4358726721	I. 3000271557	0.40955 31244
29	I.01609 08034	5026	0.4395428505	I. 3201213294	0.4240888287
30	1.05112 84173	5144	0.4424521005	I. 3406805139	0.4385946375
31	I. 0861660312	5259	0.4446269813	I. 3616810508	0.4530663090
32	I. 1212036451	$54 \quad 12$	0.446094693 I	I. 3830986893	0.4674993405
33	I. I5624 12590	$55 \quad 24$	0.4468828394	I. 4049086089	0.4818889699
34	I. 1912788729	5633	0.4470192128	I. 4270854443	0. 49623 O1775
35	I. 2263164868	57 4I	0.4465316053	I. 4496033094	0.5105176900
36	I. 2613541008	$58 \quad 47$	0.4454476404	I. 472435824 I	0. 5247459832
37	I. 2963917147	59 5I	0. 4437946284	I. 4955561410	0. 5389092878
38	1.3314293286	$60 \quad 53$	0.44159 94403	I. 5189369731	0.55300 15938
39	1. 3664669425	6154	0.4388884024	I. 5425506233	0.56701 66575
40	I. 4015045564	6253	0. 4356872080	I. 5663690138	0. 5809480084
41	I. 4365421703	63 50	0.4320208450	I. 5903637173	0. 5947889567
42	I. 4715797842	6445	0.42791 35381	I. 6145059885	0.6085326019
43	I. 5066173981	6539	0.4233887053	1. 6387667967	0.6221718423
44	I. 5416550120	6632	0.4184689243	I. 663 II 68595	0.6356993846
45	I. 5766926259	$67 \quad 23$	0.4131759112	I. 6875266770	0.64910 77548
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	$\mathrm{B}(\mathrm{r})$

SMITHSONIAN TABLES
$q=0.206609755200965, \quad Ө 0=0.590423578356, \quad H K=1.406061468420$

B(r)	C (r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
1.0000000000	$2.39974 \quad 38370$	0.0000000000	$90^{\circ} \quad 0^{\prime}$	3.15338 52519	90
0.9997975549	2.3993024464	0.01049 98939	8939	3.1183476380	89
0.9991904200	2.3979788675	0.0209972691	$89 \quad 18$	3.0833100241	88
0.99817 91961	2.3957748778	0.0314895952	$88 \quad 57$	3.0482724102	87
0.9967648832	$2.392693+364$	$0.04197+3187$	8836	3.0132347963	86
0.9949488778	2.3887386793	0.0524488508	88 I5	2.9781971823	85
0.9927329703	2.3839159122	0.06291 05559	87 54	2.9431595684	84
0.9901193406	2.3782316019	0.0733567394	8732	2.9081219545	83
0.9871105534	2.3716933654	0.0837846353	87 II	2.8730843406	82
0.9837095524	2.3643099572	0.0941913935	8649	2.8380467267	8 I
0.9799196536	2.3560912550	O. 10457 40674	$86 \quad 27$	2.8030091128	80
0.9757445380	$2.3470+82+31$	O.II492 96001	864	2.7679714989	79
0.9711882434	2.3371929943	0.12525 48110	8542	2.7329338850	78
0.9662551552	2.3265386504	0.13554 63814	$85 \quad 19$	2.6978962711	77
0.9609499971	2.3150994002	0.14580 08404	8456	2.6628586572	76
0.9552778200	2.3028904563	0. 1560145490	$8+32$	$2.62782 \quad 10432$	75
0.9492439913	2.2899280308	0. 1661836848	$8+8$	2.5927834293	74
0.9428541832	2.2762293087	0. 1763042256	8344	2.557745^{8154}	73
0.936II 43595	2.2618124201	0.18637 19320	8319	2.5227082015	72
0.9290307633	2.2466964112	0. 1963823298	8254	2.4876705876	71
0.9216099031	2.2309012139	0.2063306915	8228	2.4526329137	70
0.91385 85385	2.2144476139	0.2162120167	82 I	2.4175953578	69
0.9057836660	2.1973572184	0.2260210124	8135	2.3825577459	68
0.8973925035	2.17965 242I4	0.23575 20713	8 I 7	2.34752 OI 320	67
0.88869 24749	2.16135 63692	0. 2453992508	$80 \quad 39$	2.3124825181	66
0.87969 11946	2.14249 29245	0.2549562494	$80 \quad 10$	2.2774449041	65
0.8703964511	2.1230866296	0.2644I 63838	79 4I	2.2424072902	64
0.8608161906	2.10316 26690	0.2737725638	79 II	2.2073696763	63
0.8509585006	2.0827468307	0.28301 72673	7840	2.1723320624	62
0.84083 I 5928	2.0618654682	0.2921425142	788	2.1372944485	61
0.8304437863	$2.0405+54606$	0.30113 98388	$77 \quad 35$	2.1022568346	60
0.81980 34906	2.0188141730	0.31000 02630	$77 \quad 2$	2.0672192207	59
0.8089191886	I. 9966994165	0.3187142670	$76 \quad 28$	2.0321816068	58
0.79779 94194	I. 9742294075	0.32727 17611	$75 \quad 52$	1.99714 39929	57
0.78645 27612	I.95143 27275	0.3356620561	7516	1.96210 63790	56
0.77488 78149	1. 9283382823	0.34387 38337	$74 \quad 39$	I. 9270687650	55
0.7631131867	I. 90497 52611	0.35189 51171	$7+\quad 1$	I. 8920311511	54
0.75113 74717	I.8813730959	0.3597132414	73 21	I. 8569935372	53
0.73896 92379	I. 85756 I 42 IO	0.36731 48250	72 4I	I. 8219559233	52
0.72661 70097	I. 8335700328	o. 3746857413	7 I 59	I. 7869183094	51
0.7140892524	I. 8094288493	0.38181 10919	7116	1.75188 06955	50
0.7013943563	1.7851678703	0.3886751812	$70 \quad 32$	I. 7168430816	49
0.6885406225	1.76081 71386	0.39526 I4938	6947	I. 6818054677	48
0.6755362475	I. 7364067003	0.40155 26735	69 o	I. 6467678538	47
0.6623893095	I.71196 65668	0.4075305071	$68 \quad 12$	I. 6117302399	46
0.6491077548	I. 6875266770	0.4131759112	$67 \quad 23$	I. 5766926259	45
A(\mathbf{r})	D (\mathbf{r})	$\mathbf{E}(\mathbf{r})$	ϕ	F ϕ	r

$K=3.2553029421, \quad K^{\prime}=1.5805409339, \quad E=1.033789462, \quad E^{\prime}=1.5611417453$,

r	F ϕ	ϕ	E(r)	D (r)	A(r)
0	0.0000000000	$0^{\circ} \mathrm{O}^{\prime}$	0.0000000000	1.00000 00000	0.0000000000
1	0.0361700327	24	0.0246681037	1.00044 63617	0.OI 43061216
2	0.0723400654	48	0.0492441210	I. 0017849728	0.02861 35824
3	0.1085100981	$6 \quad 12$	0.0736369132	1.00401 44114	0.0429237056
4	0.14468 01308	816	0.0977572158	1.00713 23089	0.0572377835
5	0.18085 01635	$10 \quad 18$	0.1215I 85252	I. OIII3 53504	0.0715570609
6	0.2170201961	1220	o. 1448379258	I. O1601 92772	0.0858827206
7	0.2531902288	142 l	0. 1676368426	I. 0217788885	0.10021 58677
8	0.2893602615	162 I	0.1898+17049	I. 0284080440	O.II455 75144
9	0.3255302942	1820	0.2113845101	I. 0358996677	0. 1289085656
10	0.3617003269	2018	0.2322032821	I. 04424 57511	0.I4326 98042
II	0.3978703596	22 14	0.2522+24183	I. 0534373577	0.15764 18767
12	0.4340403923	$2+8$	0.27145 29257	I. 0634646282	0. 1720252803
13	0.470210 .4250	26 I	0.28979 25485	I. 0743 I 67854	0.18642 03484
14	0.5063804577	$27 \quad 53$	0.30722 57913	I. 0859821410	0.2008272392
15	0.5425504904	2942	0.3237238467	I. 0984481017	0.2152459210
16	0.5787205230	$31 \quad 29$	0.3392644357	I. III70 II775	0.2296761638
17	0.6148905557	3315	0.3538315704	I. 1257269891	0.24411 75248
18	0.65106 05884	$3+58$	0.36741 52534	I. 1405102773	0.2585693397
19	0.6872306211	3640	0.38001 11223	I. 15603 49127	0.2730307120
20	0.7234006538	3819	0.39162 00536	I. 1722839058	0.2875005037
21	0.75957 06865	3956	0.4022 47358	I. 1892394189	0.3019773269
22	0:79574 07192	4132	0.4119042239	I. 2068827779	0.3164595358
23	0.8319107519	$43 \quad 4$	0.42060 34838	I. 2251944855	0.3309452195
24	0.8680807846	$44 \quad 35$	-. 4283629362	I. 2441542355	0. 3454321958
25	0.9042508173	$46 \quad 4$	0.4352030077	I. 2637409274	0.3599180053
26	0.9404208500	4730	0.4411466947	I. 2839326825	0.3743999070
27	0.9765908826	48 5t	0.4462 1 91466	I. 3047068611	0.3888748743
28	1.01276 09153	5016	0.4504472717	I. 3260400803	0.4033395918
29	I. 0489309480	5136	0. 4538593683	1. 3479082334	0.4177904532
30	I. $08510 \quad 09807$	5254	0. 45648478.48	I. 3702865097	0.4322235599
3 I	I. 1212710134	$54 \quad 9$	0.45835 36084	I. 3931494160	0.4466347209
32	I. 15744 10461	$55 \quad 23$	0. 459496383 I	I. 4164707992	0.46101 94525
33	1.19361 10788	56	0.45994 $3^{88} 81$	1. 4402238696	0.4753729805
34	1. 22978 IIII5	5743	0.4597267648	I. 4643812257	0.4896902419
35	1. 26595 11442	58 51	0.4588756209	1.48891 48802	0.5039658883
36	1.30212 11769	5956	0.45742 05619	I. 5137962870	0.51819 42896
37	1.33829 12095	6 I 0	0.45539 11968	I. 5389963693	0.53236 95393
38	1. 3744612422	$62 \quad 2$	0.45281 64872	I. 5644855491	0.5464854602
39	1.4106312749	63 I	0. 4497246468	I. 5902337776	0.5605356107
40	I. 4468013076	64 0	$0.4461+30615$	I. 6162105676	0.5745132929
41	1. 4829713403	$6+56$	0.44209 82256	1. 6423850248	0. 5884 I I 5607
42	1.51914 13730	65 51	0.43761 56944	I. 6687258833	0.6022232286
43	I. 5553 I 14057	6644	0. 4327200503	I. 69520 I 5399	0.6159408825
44	I.59148 14384	6735	0. $42743+8807$	1.7217800903	0.6295568896
45	1.62765 14711	$68 \quad 25$	0.4217827675	1.7484293662	0.6430634108
$90-\mathrm{r}$	$\mathrm{F} \psi$	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	$B(r)$

Smithsonian Tables

TABLE $\theta=81^{\circ}$

$q=0.217548949699726, \quad Ө 0=0.5693797108, \quad H K=1.4306906219$

B (r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
1. 0000000000	2.52833 O125I	0.0000000000	$90^{\circ} \quad \mathrm{o}^{\prime}$	3.255302942 I	90
0.9997922836	2.5278454320	0.0106010292	89 4I	3.2191329095	89
0.99916 93515	2.5263920136	0.02119 97963	89 2I	3.1829628768	88
0.99813 18540	2.5239718509	0.0317940278	892	3 . 14679 28441	87
$0.99668 \quad 08734$	2.5205882420	0.04238 I 4278	8842	3.1IO62 28II4	86
0.9948179213	2.5162457960	0.05295 96662	8822	3.0744527787	85
0.9925449353	2.5109504254	0.06352 63677	882	3.0382827460	84
0.9898642745	2.5047093354	0.0740790993	$87 \quad 42$	3.0021127133	83
0.9867787139	2.49753 10120	0.0846I 53590	8722	2.9659426806	82
0.9832914382	2.489 .4252067	0.0951325631	872	2.9297726479	81
0.9794060344	2.4804029203	0. 1056280337	86 4I	2.8936026152	80
0.9751264836	2.4704763835	o. II609 89854	8620	2.8574325825	79
0.9704571520	2.4596590364	0.12654 25123	$85 \quad 59$	2.8212625499	78
0.9654027806	2.447965505 I	o. I3695 55734	8538	2.7850925172	77
0.9599684748	2.4354115773	-. 14733 49785	8516	2.7489224845	76
0.9541596925	2.4220141749	0.15767 73727	8454	2.7127524518	75
0.9479822318	2.4077913262	O. 1679792208	8432	2.6765824191	74
0.9414422181	2.3927621349	0.1782367907	849	2.6404123864	73
0.9345460898	2.3769467487	o. 1884461360	8345	2.6042423537	72
0.9273005843	2.3603663252	0. 1986030778	8321	2.5680723210	71
0.9197127230	2.3430429976	0.20870 31860	8257	2.53190 22883	70
0.9117897950	2.3249998377	0.2187417592	8232	2.4957322556	69
0.9035393417	2.3062608184	0.2287138038	827	2.4595622230	68
-.89496 91397	2.2868507750	0.2386140125	8I 4I	2.4233921903	67
0.8860871836	2.2667953647	0.2484367407	81 14	2.3872221576	66
0.8769016690	2.2461210260	0.2581759833	$80 \quad 47$	2.3510521249	65
0.86742 09743	2.2248549364	0.26782 53494	$80 \quad 19$	2.3148820922	64
0.85765 36425	2.2030249697	0.2773780358	$79 \quad 50$	2.2787120595	63
0.84760 83633	2.1806596524	0.2868268004	79 20	2.2425420268	62
0.83729 3954 I	2.15778 81197	0.2961639332	$78 \quad 50$	2.2063719941	61
0.82671 93416	2.1344400706	0.3053812272	$78 \quad 19$	2. 1702019614	60
0.8158935429	2.1106457227	0.3144699478	$77 \quad 47$	2.1340319287	59
0.80482 56467	2.0864357672	0.32342 08014	$77 \quad 14$	2.0978618960	58
0.7935247945	2.0618413229	0.3322239026	$76 \quad 40$	2.0616918634	57
0.7820001623	2.0368938902	0.3408687415	765	2.0255218307	56
0.7702609411	2.0116253056	0.34934 41494	$75 \quad 29$	I. 9893517980	55
0.7583163194	1. 9860676958	0.35763 82644	$74 \quad 53$	I.95318 17653	54
0.7461754642	I. 9602534320	0.3657384971	7414	I.91701 17326	53
0.7338475039	I. 9342 I 50843	0.3736314953	$73 \quad 35$	I.88084 16999	52
0.7213415096	I. 907985377 I	0.3813031100	7255	I. 8446716672	51
0.70866 64787	1.88159 71433	0.3887383616	$72 \quad 13$	I. 8085016345	50
0.69583 13178	I. 8550832817	0. 39592 I4068	7130	1. 7723316018	49
0.6828448256	I. 8284767117	0.4028355079	$70 \quad 46$	I.73616 15691	48
0.66971 56781	1.80181 03311	0.4094630040	70 I	I. 6999915365	47
0.6564524120	I.77511 69734	0.4157852846	$69 \quad 14$	I. 6638215038	46
0.6430634108	I. 7484293662	0.42178 27675	$68 \quad 25$	I. 62765147 II	45
A(r)	D (\mathbf{r})	E(r)	ϕ	F ϕ	r

r	F ϕ	ϕ	E (r)	D (r)	A(\mathbf{r})
o	0.0000000000	$0^{\circ} \mathrm{o}^{\prime}$	0.0000000000	1.00000 00000	0.0000000000
1	0.037+4 29781		0.02600 53438	1.0004871379	0.0139687846
2	0.07488 59561	$4 \quad 17$	0.0519080180	1.0019480481	0.0279396081
3	0.1123289342	$6 \quad 26$	0.0776064875	1. 0043812208	0.0419144920
4	0.14977 19123	835	o. 1030014601	1. 0077841400	$0.055^{89} 54231$
5	0.18721 48904	1040	0. 1279969416	1. 0121532844	0.0698843359
6	0.2246578684	1246	0.1525012188	1.01748 41292	0.0838830956
7	0.26210 08465	$14 \quad 51$	0. 1764277402	1.0237711470	0.0978934813
8	0.2995+38246	1655	0. 1996958914	1.0310078103	0.11191 71690
9	0.33698 68027	$18 \quad 58$	0.2222316400	1.03918 65941	0.12595 57152
10	0. 3744297807	$20 \quad 59$	0.2439680481	1.0482989781	0.1400105412
11	0.4118727588	$22 \quad 58$	0. 2648456468	1.0583354510	0.15408 29167
12	0.44931 57369	$24 \quad 56$	0.28481 26740	1.0692855135	0.16817 39451
13	0.4867587150	$26 \quad 52$	0.3038251779	1.0811376835	0.1822845483
14	0. 5242016930	$28 \quad 46$	0.3218469961	1.0938795005	o.19641 54524
15	0. 5616446711	$30 \quad 38$	0.33884 96193	1.1074975312	0.2105671740
16	0. 5990876492	$32 \quad 28$	0.35481 19530	1.1219773762	0.2247400071
17	0.6365306273	$34 \quad 16$	0.36971 99918	1. 1373036763	0.2389340100
18	0.6739736053	36	0.38356 64197	1. 1534601207	0.2531489941
19	0.71141 65834	$37 \quad 46$	0.39635 O1 539	1. 1704294549	0.2673845123
20	0.74885 95615	$39 \quad 27$	0.4080758450	1.18819 34902	0.2816398484
21	0.7863025396	41	0.4187533497	1. 20673 31139	0.2959140077
22	0.82374 55176	$42 \quad 42$	0. 4283971871	1.2260282998	0.3102057076
23	0.86118 84957	$44 \quad 16$	0. 4370259916	1.2460581209	0.3245133701
24	0.8986314738	$45 \quad 48$	0.4446619725	1.2668007616	0.3388351142
25	0.9360744519	$47 \quad 18$	0.4513303888	1. 2882335321	0.35316 87494
26	0.9735174299	$48 \quad 45$	0. 45705,90462	1.3103328836	0.36751 17704
27	1.01096 04080		0.4618778212	1. 3330744242	0.3818613526
28	1.04840 33861	5132	-0.4658182181	1. 3564329365	0. 3962143484
29	1.08584 63641	$\begin{array}{lll}52 & 52\end{array}$	0.46891 29597	1.38038 23962	0.4105672843
30	1.12328 93422	54 10	0.47119 56148	1. 4048959917	0.42491 63594
31	1.1607323203	55	0. 4727002620	1. 4299461457	0. 4392574448
32	1.19817 52984	$\begin{array}{lll}56 & 39\end{array}$	0. 4734611908	1. 4555045373	0.4535860835
33	1.2356182764	5750	0.47351 26377	1.48154 21259	0.46789 74917
34	1.2730612545	59 -	0.4728885574	1.50802 91764	0.48218 65611
35	1.31050 42326	$60 \quad 7$	0.47162 24256	1. 5349352855	0.4964478621
36	1.34794 72107		0. 4697470729	1. 5622294100	0.51067 56480
37	1. 3853901887		0. 4672945464	1.5898798960	0. 5248638600
38	1.4228331668	$63 \quad 16$	0. 4642959969	1.6178545092	o. 5390061335
39	1.46027 61449	$\begin{array}{ll}64 & 15\end{array}$	0.4607815892	1.6461204680	o. 553095^{8052}
40	1.4977191230	$\begin{array}{ll}65 & 12\end{array}$	0.4567804338	1. 6746444762	0.56712 59210
41	1. 5351621010	66	0.45232 05363	1.7033927583	o. 5810892454
42	1.57260 50791	67 I	0. 4474287637	1. 7323310960	0. 5949782708
43	1.6100480572	$67 \quad 53$	0.4421308242	1.76142 48657	0.6087852287
44	1. 6474910353	$68 \quad 44$	0.43645 12599	1. 7906390777	0.6225021016
45	1. 6849340133	$69 \quad 32$	0.4304134495	1.81993 84164	0.6361206349
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	B(r)

$q=0.229567159881194, \quad \Theta 0=0.5464169465, \quad \mathrm{HK}=1.4575481002$

B(r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
I. 0000000000	2.6805403437	0.0000000000	$90^{\circ} \mathrm{o}^{\prime}$	$3 \cdot 3698680267$	90
0.9997862112	$2.68000 \quad 36787$	0.01069 49135	$89 \quad 42$	$3 \cdot 3324250486$	89
0.9991450809	2.6783944283	0.0213878301	8924	3.2949820705	88
0.9980773170	2.6757148255	0.0320767423	896	3.2575390925	87
0.9965840972	2.6719685860	0.0427596209	8848	3.22009 6II44	86
0.9946670666	2.6671609043	0.0534344040	8830	3.1826531363	85
0.9923283334	2.6612984418	0.06409 89867	88 12	3.1452I OI582	84
0.9895704645	2.6543893156	0.07475 12085	87	3.10776 71802	83
0.9863964786	2.6464430842	0.0853888428	8735	3.070324202 I	82
0.9828098400	2.6374707296	0.09600 95847	$87 \quad 16$	3.0328812240	81
0.9788 I 44497	2.6274846381	o. 1066110385	$86 \quad 57$	2.9954382459	80
$0.9744^{1} 46367$	2.6164985778	O.II719 07054	8637	2.9579952679	79
0.9696151474	2.6045276741	O. 1277459701	86 I 8	2.9205522898	78
0.96442 II 348	2.59158 83828	o. I3827 40870	$85 \quad 58$	2.8831093117	77
0.9588381466	2.5776984606	o. 1487721662	$85 \quad 38$	2.8456663336	76
0.9528721117	2.5628769342	o. 15923 71580	8517	2.8082233556	75
0.9465293269	2.54714 40664	O. 16966 58376	8456	2.77078 03775	74
0.9398164421	2.5305213208	O. 1800547885	8435	2.7333373994	73
0.9327404449	2.5130313248	o. 19040 03849	8413	2. 6958944213	72
0.9253086446	2.4946978294	0. 2006987739	83 5I	2.6584514433	71
0.9175286553	2.4755456695	0.21094 58556	$83 \quad 28$	2.6210084652	70
0.9094083786	2. 4556007207	0.22II3 72633	835	2.58356 54871	69
0.9009559853	2.43488 98556	0.23126 83422	8241	2.54612 25090	68
0.8921798975	2.4134408985	0.24133 41265	82 I6	2.50867 95310	67
0.88308 87690	2.3912825787	0.25I3293I57	8 I 51	2.47123 65529	66
0.87369 I4660	2.3684444831	0.26124 82501	8 I 25	2.4337935748	65
0.8639970475	2.34495 70070	0.2710848837	80	2.39635 05967	64
0.85401 47452	2.3208513053	0.2808327574	$80 \quad 32$	2.3589076187	63
0.84375 39427	2.2961592414	0.2904849692	$80 \quad 4$	2.3214646406	62
0.83322 41555	2.2709133365	0.3000341444	$79 \quad 35$	2.2840216625	6 I
0.8224350100	2.2451467182	0.3094724031	795	2.2465786844	60
0.81139 62227	2.2188930687	0.31879 13276	$78 \quad 35$	2.2091357064	59
0.80011 75795	2.19218 65719	0.32798 19272	$78 \quad 4$	2.17169 27283	58
0.7886089149	2. 16506 I862 I	0.33703 46027	$77 \quad 31$	2.13424 97502	57
0.77688 0091I	2. 1375539706	0.34593 91087	$76 \quad 58$	2.0968067721	56
0.76494 09778	2. 1096982742	0.35468 45152	$76 \quad 23$	2.0593637941	55
0.7528014315	2.0815304423	0.3632591686	$75 \quad 48$	2.0219208160	54
0.7404712755	2.0530863856	0.37.165 06505	75 II	1. 9844778379	53
0.7279602805	2.0244022044	0.3798457377	74	I. 9470348599	52
0.7152781443	I.9955I 41373	0.3878303601	7355	I. 90959 18818	51
0.7024344736	1. 9664585115	0.3955895596	7314	I. 8721489037	50
0.6894387648	I. 9372716923	0.4031074491	7233	I. 8347059256	49
0.6763003866	I. 9079900345	0.4103671725	7150	I. 7972629476	48
0.66302 85617	I. 8786498345	0.41735 08655	716	I. 7598199695	47
0.64963 23506	I. 8492872824	0.4240396200	$70 \quad 20$	I. 7223769914	46
0.6361206349	I. 8199384164	0.4304 I 34495	$69 \quad 32$	1. 6849340133	45
A(r)	D (r)	E(r)	ϕ	F ϕ	r

$K=3.5004224992, \quad K^{\prime}=1.5766779816, \quad E=1.022312588, \quad E^{\prime}=1.5649475630$,

r	F ϕ	ϕ	$\mathrm{E}(\mathrm{r})$	D (r)	A(r)
0	0.0000000000	$0^{\circ} \quad 0^{\prime}$	0.0000000000	1.00000 00000	0.0000000000
I	0.0388935833	214	0.0275152459	1.00053 54142	0.0135781428
2	0.0777871666	427	0.0549149171	1.0021411230	0.0271591294
3	0.11668 07500	640	0.0820848196	I. 0048155243	0.0407457840
4	-. 1555743333	853	0.10891 34862	I. 0085559486	0.0543408922
5	0.1944679166	114	o. I3529 3453I	1. OI335 86590	0.06794 .71815
6	0.23336 14999	1315	o. I6II2 24388	1.01921 88518	0.0815673027
7	0.2722550833	$15 \quad 25$	O. 1863043989	1.02613 06577	0.0952038101
8	0.3111486666	1733	0.2107504315	1.0340871422	0.10885 91438
9	0.3500+ 22499	1940	0.2343795237	1,04308 03072	0.12253 56111
10	0.3889358332	2145	0.2571191248	1.05310 10924	0.13623 53681
II	0.4278294166	2348	0.2789055463	I. 0641393774	0. 1499604030
12	0.4667229999	$25 \quad 50$	0.2996841874	I. 0761839836	o. 16371 25182
13	0.50561 65832	$27 \quad 50$	0.3194095974	I. 0892226769	o. I7749 33I4I
14	0.5445I 01665	$29 \quad 47$	0.3380453836	I. 1032421710	0.19130 41733
15	0.5834037499	3142	0.35556 39822	I. 1182281308	0.20514 62446
16	0.6222973332	$33 \quad 35$	0.37194 63079	I. 1341651764	0.2190204287
17	0.6611909165	$35 \quad 26$	0.38718 13038	I. I5IO3 68883	0.2329273637
18	0.7000844998	37 14	0.4012654102	I. I6882 58124	0.2468674120
19	0.7389780832	3859	0.4142019722	I. 1875134668	0.2608406476
20	0.7778716665	$40 \quad 42$	0. 4260006064	I. 2070803483	0.2748468440
21	0.8167652498	$42 \quad 23$	0. 4366765427	I. 2275059404	0.2888854637
22	0.8556588331	44 I	0.44624 99581	I. 2487687226	0.3029556475
23	0.8945524165	$45 \quad 37$	0.45474 53170	I. 2708461798	0.3170562057
24	0.9334459998	4710	0.4621907281	I. 2937148135	0.3311856095
25	0.9723395831	4840	0.46861 73287	1.31735 O1537	0.34534 19839
26	I. O1123 31664	508	0.4740587042	I. 3417267728	0.3595231012
27	1.05012 67498	5133	0.47855 03463	I. 3668 I 82994	0.3737263757
28	I. 0890203331	5256	0.4821291569	I. 3925974348	0.3879488593
29	I. 12791 39164	$54 \quad 17$	0.4848329959	I. 4190359703	0.4021872381
30	I. I6680 74997	5535	$0.48670 \quad 02770$	I. 4461048057	0.4164378306
31	I. 2057010830	56 50	0.48776 96093	I. 4737739701	0.4306965861
32	I. 2445946664	584	0.4880794838	I. 5020126433	0. 4449590849
33	I. 2834882497	59 I4	0.4876680032	I. 5307891792	0.4592205390
34	I. 3223818330	$60 \quad 23$	0.4865726520	I. 5600711317	0.47347 57948
35	1.36127 54163	6130	0.48483 01039	I. 5898252804	0.48771 93356
36	1.40016 89997	6234	0.48247 60647	I. 6200176598	0.5019452865
37	1. 4390625830	6336	0.47954 51456	I. 6506135895	0.5161474196
38	I. 4779561663	6436	0.47607 07644	I. 6815777058	0.5303I .91603
39	I. 5168497496	$65 \quad 35$	0.47208 50753	I. 7128739955	0. 5444535952
40	1. 5557433330	66 3I	0.46761 89121	I. 7444658318	0.5585434803
41	I. 5946369163	$67 \quad 25$	0.46270 17621	I. 7763160110	0.57258 125II
42	I. 6335304996	68 18	0.45736 17475	I. 8083867918	0.5865590333
43	I. 6724240829	$69 \quad 9$	0.45162 56249	I. 8406399362	0.60046 86540
44	1.71131 76663	6958	0.44551 87962	I. 8730367513	0.6143016549
45	1.75021 12496	$70 \quad 45$	0.4390653283	1. 9055381344	0.6280493057
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	B(r)

Smithsonian Tables

TABLE $\theta=83^{\circ}$
$q=0.242912974306665, \quad Ө 0=0.5211317465, \quad \mathrm{HK}=1.4872214813$

B(r)	$\mathrm{C}(\mathrm{r})$	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
1. 0000000000	2.8645259727	0.0000000000	$90^{\circ} \quad \mathrm{o}^{\prime}$	$3 \cdot 5004224992$	90
0.9997791249	2.8639254580	0.0107810889	8944	3.4615289158	89
0.9991167583	2.8621247652	0.02I56 04536	$89 \quad 27$	3.4226353325	88
0.99801 36755	2.85912 6446I	0.0323363597	89 II	$3 \cdot 3837417492$	87
0.9964711670	2.8549347485	0.0431070526	8855	3.3448481659	86
0.9944910345	2.8495556077	0.0538707471	$88 \quad 38$	$3 \cdot 3059545826$	85
0.9920755874	2.84299 66356	0.0646256168	88 2I	3.2670609992	84
0.9892276367	2.8352671062	0.0753697836	885	3.2281674159	83
0.9859504884	2.8263779377	0.08610 13069	8748	3.1892738326	82
0.9822479350	2.8163416722	0.09681 81718	8730	3.15038 02493	8 I
0.9781242473	$2.80517 \quad 24517$	0.10751 82779	8713	3.III48 66659	80
$0.9735^{8} 41628$	2.7928859919	0.11819 94268	8655	3.0725930826	79
0.9686328755	2.77949 95523	0.12885 93097	8637	3.0336994993	78
0.9632760226	2.7650319042	o. 13949 54938	86 I9	2.9948059160	77
0.95751 967II	2.7495032957	0.15010 54088	86 I	2.9559123326	76
0.9513703036	2.7329354142	0. 1606863318	8542	2.9170187493	75
0.9448348022	2.71535 13465	0.17123 53724	$85 \quad 23$	2.8781251660	74
0.9379204329	2.6967755363	o. I8I74 94560	853	2.8392315827	73
0.9306348276	2.6772337397	0.19222 53067	8443	2.8003379993	72
0.9229859663	2.6567529786	0.20265 94294	8422	2.7614444160	71
0.9149821585	2.6353614921	0.2130480901	84 I	2.7225508327	70
0.9066320234	2.6130886858	0.22338 72956	8339	2.6836572494	69
$0.8979+44698$	2.5899650797	0. 2336727719	$83 \quad 17$	2.6447636660	68
0.8889286753	2.5660222548	O. 2438999414	8254	2.6058700827	67
0.87959 40653	$2 \cdot 5412927973$	0.25406 3898I	8231	2.56697 64994	66
0.8699502909	2.51581 02430	0.2641593822	827	2.52808 29161	65
0.8600072069	2.4896090190	0.27418 07525	8142	2.4891893327	64
0.8497748495	2.46272 43859	0.28412 19576	8 I I6	2.4502957494	63
0.8392634134	2.43519 23782	0. 2939765053	$80 \quad 50$	2.4114021661	62
0.8284832287	2.4070497447	0. 3037374301	$80 \quad 23$	2.3725085828	61
0.81744 47382	$2.37833 \quad 38874$	0.3133972593	$79 \quad 55$	2.3336149994	60
0.8061584738	2.3490828015	0.3229479773	7926	2.2947214161	59
0.7946350337	2.3193350143	0.33238 09873	$78 \quad 56$	2.2558278328	58
0.7828850590	2.28912 95239	0.34168 70724	$78 \quad 26$	2.2169342495	57
0.77091 92109	2.2585057383	0.35085 63539	77 54	2.1780406662	56
0.75874 81476	2.2275034151	0. 3598782486	77 21	2.1391470828	55
0.7463825018	2. 19616 26008	0.36874 14237	$76 \quad 47$	2.1002534995	54
0.7338328587	2. 16452 35708	0. 3774337507	$76 \quad 12$	2.0613599162	53
0.72110 97334	2. 13262 67708	0.38594 22578	$75 \quad 36$	2.0224663329	52
0.7082235503	2. 1005I 27578	0.39425 30813	$74 \quad 58$	I. 9835727495	5 I
0.6951846210	2.06822 21426	0.4023514155	$74 \quad 20$	I. 9446791662	50
0.6820031247	2.0357955331	0.4102214630	7340	I. 9057855829	49
0.6686890878	2.0032734790	0.4178463843	7258	I. 8668919996	48
0.6552523646	1. 9706964170	0.4252082479	72 16	I. 8279984162	47
0.6417026188	1.93810 46179	0.4322879822	7131	I. 7891048329	46
0.6280493057	I. 9055381344	0.4390653283	$70 \quad 45$	1.75021 12496	45
A (r)	D (r)	E(r)	ϕ	F ϕ	r

$\mathrm{K}=3.6518559695, \quad \mathrm{~K}^{\prime}=1.5751136078, \quad \mathrm{E}=1.017236918, \quad \mathrm{E}^{\prime}=1.5664967878$,

r	F ϕ	ϕ	E (r)	D (r)	A(r)
0	0.0000000000	$\mathrm{o}^{\circ} \mathrm{o}^{\prime}$	0.0000000000	1.00000 00000	0.0000000000
1	0.04057 61774		0.0292515342	1.00059 38572	0.01311 92586
2	0.0811523549	429	0.0583713484	1. 0023748641	0.0262422974
3	o. 1217285323	655	0.0872294380	I. 00534113262	0.0393728749
4	0. 1623047098	916	0.11569 91812	I. 0094904192	0.0525147063
5	0. 2028808872	1133	0.14365 89152	I. OI 48181886	0.0656714426
6	0.2434570646	1349	0.17099 33783	1.02131 95491	0.0788466485
7	0.28403 3242 I	16	o. 1975949853	1. 02898882841	0.0920437819
8	0.32460 94195	$18 \quad 17$	0.2233649075	1.0378170450	o. 1052661731
9	0.36518 55969	$20 \quad 29$	0.2482139381	1. 0477973504	0.1185170041
10	0.40576 17744	$22 \quad 39$	0.2720631341	1.05891 95857	-. 1317992889
II	0.44633 79518	$24 \quad 46$	0.2948442309	1.0711730024	0.14511 58534
12	0.4869141293	$26 \quad 52$	0.3164998365	1. 0845457174	0. 1584693168
13	0. 5274903067	$28 \quad 56$	0.3369834175	1. 0990247131	0.1718620726
14	0.56805 64841	$30 \quad 58$	0.3562590959	1. 1145958374	0.18529 627II
15	0.60864 26616	3255	0.37430 12782	1.13124 38038	0. 1987738016
16	0.64921 88390	34 51	0.3910941430	1.14895 21925	0.2122962758
17	0.68979 50165	3644	0.4066310147	1. 1677034514	0.2258650123
18	0.7303711939	$38 \quad 36$	0.420913648 I	I. 1874788983	0.2394810211
19	0.7709473713	$40 \quad 24$	0.4339514533	1.2082587235	0.2531449894
20	0.81152 35488	42	0.4457606829	1. 2300219929	0.2668572683
21	0.85209 97262	43 51	0.4563636044	I. 2527466524	0.2806178600
22	0.89267 59037	$45 \quad 31$	0.4657876783	1.2764095335	0.2944264067
23	0.9332520811	47	0. 4740647564	I. 30098 83590	0. 3082821794
24	0.9738282585	$48 \quad 42$	0.4812303147	1.32645 17509	0. 3221840690
25	I. OI 44044360	5013	0.4873227312	I. 3527792393	0.33613 05773
26	1. 0549806134	51.42	0.4923826159	1. 3799412721	0.35011 98097
27	1.0955567908	53	0.4964521966	I. 4079092268	0.36414 94689
28	1. I3613 29683	54 31	0. 4995747663	I. 4366534239	0.37821 68497
29	1. 1767091457	55 51	0.5017941897	1.4661431412	0.39231 88350
30	1. 2172853232	57	0.50315 44701	1. 4963466307	0.40645 18927
31	1.2578615006	$\begin{array}{ll}58 & 25\end{array}$	0.5036993739	1. 5272311369	0.4206120743
32	1. 2984376780	59. 38	0.5034721104	I. 5587629167	0.4347950141
33	1.33901 38555	$\begin{array}{lll}60 & 48\end{array}$	0.50251 50624	1. 5909072622	0.4489959303
34	I. 3795900329	6156	0.5008695651	1. 6236285241	0.4632096265
35	1. 4201662104	63	0.49857 57270	1. 6568901387	0.47743 04952
36	1. 4607423878	64	0.4956722903	1. 6906546558	0.4916525218
37	1. 5013185652	65	0.49219 65260	1. 7248837696	0. 5058692908
38	I. 5418947427	66	0. 4881841583	1.75953 83514	0. 5200739919
39	I. 58247 O9201	67	0.4836693168	1. 7945784847	0. 5342594285
40	1. 6230470975	$67 \quad 58$	0.47868 45099	I. 8299635024	0.54841 80268
4 I	1. 6636232750	68 51	0.4732606189	1. 8656520265	0. 5625418461
42	1. 7041994524	$69 \quad 42$	0. 4674269071	I. 9016020099	0. 5766225903
43	1. 7447756299	$70 \quad 31$	0. 4612110428	1.9377707807	0.5906516209
44	1.78535 18073	71	0.4546391336	1.9741150881	0.6046199704
45	1. 8259279847	725	0. 4477357684	2.0105911517	0.6185183573
90-r	F ψ	ψ	G(r)	$\mathbf{C}(\mathbf{r})$	B(r)

$q=0.257940195766337, \quad Ө 0=0.4929628191, \quad \mathrm{HK}=1.5205617314$

B(r)	$\mathbf{C}(\mathbf{r})$	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
1. 0000000000	3.0930199213	0.0000000000	$90^{\circ} \quad 0^{\prime}$	3.6518559695	90
0.9997707150	3.0923385676	0.0108590483	8945	3.6112797920	89
0.9990831458	3.0902954977	0.0217166503	8931	3.5707036146	88
0.99793 81489	3.0868936827	0.0325713506	8916	3.5301274372	87
0.9963371496	3.0821380679	0.04342 16747	89 I	3.4895512597	86
0.9942821381	3.0760355627	0.0542661204	$88 \quad 47$	3.4489750823	85
0.9917756649	3.0685950269	$0.06510 \quad 31473$	$88 \quad 32$	3.4083989048	84
0.9888208340	3.0598272527	0.0759311673	$88 \quad 17$	$3 \cdot 3678227274$	83
$0.985+212955$	$3.0497449+3 \mathrm{I}$	0.0867+ 85345	$88 \quad 2$	$3 \cdot 3272465500$	82
0.9815812363	3.0383626866	0.09755 35344	8746	3.2866703725	8 I
0.9773053698	3.0256969280	0. 1083443731	8730	3.24609 41951	80
0.97259 89240	3.01176 59358	0.11911 91660	87	3.20551 80177	79
0.9674676286	2.9965897659	O. 12987 59255	8658	3. 16494 18402	78
0.9619177007	2.9801902223	o. 14061 25487	8642	3.12436 56628	77
0.9559558299	2.9625908137	O. 15132 68040	8625	3.0837894853	76
0.9495891609	2.9438167083	0.16201 63172	868	3.0432 I 33079	75
0.9428252769	2.9238946843	0.1726785562	$85 \quad 50$	3.0026371305	74
0.9356721802	2.9028530783	0.18331 08161	8532	2.9620609530	73
0.9281382732	2.8807217308	0. 19391 02013	$85 \quad 14$	2.9214847756	72
0.9202323376	2.8575319293	0.20447 36088	8455	2.880908598 I	71
0.9119635133	2.8333163492	0.2149977081	8436	2.8403324207	70
0.9033412763	2.8081089917	0.2254789218	$8+16$	$2.7997562+33$	69
0.89437 54154	$2.7819+51210$	0.2359134034	8355	2.7591800658	68
0.8850760096	$2.75+86$ I 1988	0.2+629 70143	$83 \quad 34$	2.7186038884	67
0.87545 34034	2.72689 48173	0.25662 52995	$83 \quad 13$	2.6780277109	66
0.8655I 81826	2.6980846313	0. 2668934606	8251	2.6374515335	65
0.85528 II491	2.6684702880	0.27709 63287	8228	2.5968753561	64
0.84475 32958	2.6380923575	0. 2872283335	824	2.5562991786	63
0.8339457809	2.6069922604	0. 2972834722	8 I 39	2.5157230012	62
0.8228699019	2.5752 I 21966	0.30725 52753	$8 \mathrm{I} \quad 14$	2.4751468238	6 I
0.81153 70701	$2 \cdot 5427950725$	0.3171367705	$80 \quad 48$	2.4345706463	60
0. 7999587840	$2 \cdot 50978+4281$	0. 3269204449	$80 \quad 21$	2.3939944689	59
0.7881466036	2. $47622+3648$	0.33659 82039	$79 \quad 53$	$2.353+182914$	58
0.7761121247	2. $4+21594723$	0.34616 13287	$79 \quad 24$	2.3128421140	57
0.76386 69524	2. 4076347564	0. 3556004313	78 54	2.2722659366	56
0.7514226764	2.3726955671	0. 3649054063	$78 \quad 23$	2.2316897591	55
0.73879 0845I	2.3373875276	0.37406 53814	$77 \quad 51$	2.19111 35817	54
0.7259829409	2.30175 64635	0.3830686651	77 I8	2. 1505374042	53
0.71301 03561	$2.2658+83337$	0.39190 26919	$76 \quad 44$	2.1099612268	52
0.6998843682	2.2297091619	0.4005539659	768	2.0693850494	5 I
0.68661 61172	2. 19338 49695	0.4090080023	75 31	$2.02880 \quad 88719$	50
0.6732165825	2.15692 17102	0.4172492673	$74 \quad 53$	I. 9882326945	49
0.6596965607	2.1203652053	0.42526 11165	$74 \quad 13$	I. 9476565171	48
0.6460666446	2.0837610820	0.4330257335	$\begin{array}{ll}73 & 32\end{array}$	1. 9070803396	47
0.6323372022	2.04715 47117	0.44052 40667	7249	I. 8665041622	46
0.61851 83573	2.01059 11517	0.44773 57684	725	1. 8259279847	45
A(\mathbf{r})	$\mathrm{D}(\mathrm{r})$	$\mathbf{E}(\mathbf{r})$	ϕ	F ϕ	r

Smithsonian Tables
$K=3.8317419998, \quad K^{\prime}=1.5737921309, \quad E=1.0126635062, \quad E^{\prime}=1.5678090740$,

r	F ϕ	ϕ	$\mathrm{E}(\mathbf{r})$	$\mathrm{D}(\mathrm{r})$	A(r)
0	0.0000000000	$0^{\circ} \quad \mathrm{o}^{\prime}$	0.0000000000	1.0000000000	0.0000000000
1	0.04257 49111	226	0.0312975841	1.00066 67396	0.0125698450
2	0.0851498222	$4 \quad 52$	0.0624425476	1. 0026663652	0.0251445765
3	0.12772 47333	718	0.09328 44601	1. 0059970974	0.0377290570
4	0. 1702996444	943	o. 1236772052	1. 0106559692	0.0503281006
5	0. 2128745555	12	o. 1534809749	1. 0166388247	0.06294 64495
6	0.2554494667	$14 \quad 29$	o. 1825640780	1. 0239403165	0.0755887497
7	0. 2980243778	1650	0. 2108045154	1. 0325539030	0.0882595281
8	o. 3405992889		0.2380912866	1. 0424718453	o. 1009631685
9	0.38317 42000	2126	0.2643254039	1.0536852030	0. 1137038895
Io	0.42574 91III	$23 \quad 42$	0.2894206026	1.06618 38299	o. 1264857214
II	0. 4683240222	$25 \quad 55$	0.31330 37505	1. 0799563700	o. 1393124846
12	o. 5108989333	28	0.33591 49667	1. 0949902519	0. 1521877682
13	o. 5534738444	3013	o. 3572074739	I. 1712716844	0.16511 49087
14	0. 5960487555	$32 \quad 18$	0.3771472117	1. 1287856513	0.17809 69700
15	0.6386236666		0. 3957122464	1.1475159063	o.19113 67239
16	0.68119 85777	$36 \quad 20$	0.4128920138	I. 1674449685	0.2042366315
17	0.7237734889	3817	0. 4286864336	1.18855 41178	0.2173988246
18	0.7663484000	40 II	0.4431049337	1.2108233907	0.2306250891
19	0.80892 331II	42	0.4561654173	1.2342315771	0.2439168485
20	0.85149 82222	$43 \quad 49$	0. 4678932075	1.25875 62174	0.2572751484
21	0.8940731333	$45 \quad 33$	0.47831 99952	1.2843736007	0.2707006428
22	0.93664 80444	47 I	0. 4874828142	I. 3110587634	0.2841935800
23	0.9792229555	4853	0.4954230625	1. 3387854900	0.2977537910
24	1.02179 78666	$50 \quad 28$	0.50218 55842	1. 3675263142	0.3113806778
25	1. 0643727777	52	0.5078178217	I. 3972525218	0.3250732040
26	1. 1069476888	5329	0.5123690454	1. 4279341552	0.33882 98857
27	I. 1495225999	$54 \quad 56$	0.5158896635	I. 45954 00195	0.3526487839
28	1. 1920975110	56	0.5184306138	I. 4920376904	0. 3665274982
29	1. 2346724222	$57 \quad 39$	0. 5200428338	1. 5253935243	0.3804631619
30	1.2772473333	5859	0. 5207768087	1. 5595726706	$0.39445 \quad 24378$
3 I	1.31982 22444	$60 \quad 12$	0.5206821896	I. 5945390851	0.4084915164
32	I. 3623971555	6124	0.51980 74799	1. 6302555479	0.42257. 61140
33	1. 4049720666	$62 \quad 34$	0.51819 97811	1. 6666836814	0.43670 14735
34	1. 4475469777	63 41	0.51590 45944	1. 7037839728	0.4508623658
35	1.49012 18888	6446	0.5129656697	1.7415157980	0.4650530926
36	I. 5326967999	6548	0. 5094248984	1. 7798374487	0.4792674909
37	1.57527 17110	6648	0.5053222421	1.81870 61627	0.4934989386
38	1. 6178466221	67,46	0.50069 56936	I. 8580781564	0.50774 03615
39	1. 6604215332	68 '41	0.49558 12646	1. 8979086607	0.52198 42419
40	1. 7029964444	$69 \quad 35$	0.49001 29952	1.93815 19599	0.53622 26281
41	1.74557 13555	$70 \quad 26$	0.4840229824	1.9787614331	0.5504471457
42	I. 7881462666	71	0.4776414227	2.0196895998	0. 5646490099
43	1. 8307211777		0.4708966670	2.0608881669	0.57881 90394
44	1.8732960888	7249	0.4638152836	2.10230 80805	0.5929476712
45	1.9158709999	$73 \quad 33$	0.45642 21286	2.14389 95792	0.60702 49768
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	B(r)

$q=0.275179804873563, \quad \Theta 0=0.4610905222, \quad \mathrm{HK}=1.5588714533$

$\mathrm{B}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	G(r)	ψ	F ψ	90-r
1. 0000000000	$3 \cdot 3872870037$	0.0000000000	$90^{\circ} \mathrm{o}^{\prime}$	3.8317419998	90
0.9997605041	3.3864990904	0.01092 82185	8947	3.7891670887	89
0.9990423353	3.3841365337	0.02185 52713	8934	3.7465921776	88
0.9978464504	3.3802028815	0.03277 99847	$89 \quad 22$	3.70401 72665	87
0.9961744409	3.3747040379	0.04370 11679	899	3.6614423554	86
0.9940285290	3.3676482512	0.0546176051	8856	3.6188674443	85
0.9914115622	3.3590460961	0.0655280467	8843	$3 \cdot 5762925331$	84
0.9883270058	3.3489104507	0.0764312000	$88 \quad 29$	3.53371 76220	83
0.9847789335	3.33725 64694	0.0873257205	88 16	3.4911427109	82
0.9807720177	3.3241015504	0.0982102023	882	3.4485677998	8I
0.9763115168	3.3094652989	0.10908 31677	8749	$3 \cdot 4059928887$	80
0.9714032619	3.2933694854	0.11994 30573	8735	$3 \cdot 3634179776$	79
0.9660536420	3.2758379999	0.13078 82183	8720	$3 \cdot 3208430665$	78
0.9602695874	3.2568968018	0.14161 68937	876	3.2782681554	77
0.9540585520	3.2365738654	0.1524272092	86 51	3.2356932443	76
0.9474284947	3.2148991220	0.16321 71605	86	3.19311 83332	75
0.9403878585	3.19190 43978	0. 1739845990	8620	3.15054 3422 I	74
0.9329455499	3.16762 33486	0.18472 72171	864	3.10796 85109	73
0.9251109158	3.14209 13909	0.19544 25321	8548	3.0653935998	72
0.9168937204	3.11534 56304	0. 2061278689	85 31	3.02281 86887	71
0.9083041205	3.0874247870	0.21678 03419	85	2.9802437776	70
0.8993526403	3.0583691177	0.22739 68349	8455	2.93766 88665	69
0.8900501452	3.0282203368	0. 2379739802	8437	2.8950939554	68
0.8804078152	2.9970215345	0.24850 81357	8418	2.8525190443	67
0.8704371170	2.9648170925	0.2589953603	$83 \quad 58$	2.8099441332	66
0.8601497763	2.9316525995	0. 26943138876	$83 \quad 38$	2.7673692221	65
0.8495577491	2.8975747641	0.27981 15977	8317	2.7247943110	64
0.8386731932	2.8626313272	0.2901309871	8255	2.6822193999	63
0.82750 84383	2.8268709732	-. 3003841353	8233	2.6396444888	62
0.8160759576	$2.7903432+1{ }^{12}$	0.31056 51708	82 10	$2 \cdot 5970695776$	61
0.8043883372	2.7530984351	0. 3206677330	8 I 46	2.55449 46665	60
0.7924582474	2.7151875345	0.3306849323		2.5119197554	59
0.7802984129	2.6766621047	0. 3406093073	80	2.4693448443	58
0.7679215834	2.6375742081	0. 3504327789	80	2.4267699332	57
0.7553405043	2.59797 63158	0. 3601466018	80	2.3841950221	56
0.7425678883	2.55792 12198	0.36974 13124.	79 31	2.34162 O1110	55
0.7296163864	2.5174619471	0. 3792066740	$79 \quad 2$	2.2990451999	54
0.7164985603	2.4766516742	0.38853 16185	$78 \quad 30$	2.2564702888	53
0.7032268545	2.4355436438	0. 3977041848	$77 \quad 58$	2.2138953777	52
0.6898135699	2.3941910827	0.4067114546	$77 \quad 24$	2.1713204666	51
0.6762708370	2.3526471220	0.4155394843	$76 \quad 50$	2.12874 55554	50
0.6626105910	2.3109647190	0.42417 32345	76	2.0861706443	49
0.6488445467	2.2691965819	0.43259 64967	75 35	2.04359 57332	48
0.6349841750	2.2273950955	0.4407918172	$74 \quad 56$	2.0010208221	47
0.6210406800	2.18561 22515	0.4487404204	$74 \quad 16$	I. 9584459110	46
0.6070249768	2.1438995792	0.45642 21286	73	1.9158709999	45
$\mathrm{A}(\mathrm{r})$	D (r)	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

$\mathrm{K}=4.0527581695, \quad \mathrm{~K}^{\prime}=1.5727124350, \quad \mathrm{E}=1.0086479569, \quad \mathrm{E}^{\prime}=1.5688837196$,

r	F ϕ	ϕ	$\mathbf{E}(\mathbf{r})$	D (r)	A(r)
0	0.0000000000	$0^{\circ} \quad 0^{\prime}$	0.0000000000	1. 0000000000	0.0000000000
1	0.0450306463	235	0.0337936823	1. 0007614948	0.0118942847
2	0.0900612927	59	0.06740 53633	I. 0030453671	0.0237947903
3	0.13509 19390	743	0. 1006584494	1. 0068497794	0.0357077106
4	0.18012 $25^{8} 53$	$10 \quad 16$	0. 1333800630	1. 0121716668	0.04763 91855
5	0.2251532316	1248	0.16540 61602	1.OI900 67332	0.0595952742
6	0.2701838780	1518	0.19658 33739	I. 0273494459	0.0715819286
7	0.31521 45243	1746	0.2267710168	I. 0371930291	0.0836049670
8	0.3602451706	$20 \quad 13$	0.2558426948	I. 0485294558	0.0956700478
9	0.4052758170	$22 \quad 37$	0.283687502 I	1. 0613494387	0. 1077826441
10	0.4503064633	$24 \quad 58$	0.3102107894	I. 0756424197	0.1199480182
1 I	0.4953371096	$27 \quad 18$	0.33533 45137	1.09139 65585	0.1321711972
12	0.5403677559	2934	0.3589971966	I. 1085987206	0.14445 69485
13	0.5853984023	3 I 47	0.38115 35291	I. 1272344637	0. I5680 97563
14	0.6304290486	$33 \quad 57$	$0.40177 \quad 36714$	I. 1472880243	0. 1692337988
15	0.6754596949	364	0.42084 23033	I. 1687423039	0.18173 29260
16	0.7204903413	$38 \quad 8$	0.43835 74800	I. 1915788539	0.19431 06384
17	0.7655209876	408	0.4543293515	I. 2157778616	0.2069700661
18	0.8105516339	425	0.4687787966	1.2413181358	0.21971 39498
19	0.85558 22802	$43 \quad 58$	0.4817360209	I. 2681770925	0.2325446217
20	0.9006129266	$45 \quad 53$	0.49323 91602	I. 2963307415	0.2454639877
21	0.9456435729	4735	0.5033329227	I. 3257536734	0.2584735115
22	0.9906742192	$49 \quad 18$	0.5120672988	I. 3564190478	0.2715741984
23	I. 0357048656	$50 \quad 57$	0.51949 63591	I. 3882985826	0.28476 658II
24	I. 0807355119	5233	0.5256771528	I. 4213625446	0.298050707 I
25	I. 12576.61582	546	0.53066 87177	I. 4555797413	0.31142 6126I
26	I. I7079 68045	55	0.53453 12033	I. 4909 I 75157	0.3248918800
27	1.21582 74509	572	0.53732 51072	1. 5273417416	0.33844 64932
28	1. 2608580972	$58 \quad 25$	0.53911 06227	I. 5648168225	0.3520879650
29	I. 3058887435	5945	0.5399470893	.1.60330 56919	0.3658137630
30	I.35091 93898	612	0. 5398925408	I. 6427698172	$0.37962 \quad 08180$
31	I. 3959500362	6216	0.539003342 I	I. 6831692055	0.3935055205
32	I. 4409806825	$63 \quad 28$	0.5373339051	I. 7244624133	0.4074637182
33	I. 48601 I 3288	6436	0.53493 64751	I. 7666065590	0.4214907161
34	I. 5310419752	6542	0.5318609786	I. 8095573388	0.43558 12766
35	I. 5760726215	$66 \quad 45$	0.52815 49246	I. 8532690463	0. 4497296226
36	1. 6211032678	$67 \quad 46$	0.52386 33506	1. 8976945959	0.4639294409
37	I. 6661339141	6844	0.51902 88062	I. 9427855494	0.47817 788881
38	I. 7111645605	6940	0.51369 13678	I. 9884921476	0.49245 55978
39	1.75619 52068	$70 \quad 33$	0.50788 86793	2.0347633449	0.5067666888
40	1.80122 5853 I	$7 \mathrm{I} \quad 25$	0.5016560117	2.0815468491	0.52109 87757
41	I. 8462564995	$72 \quad 14$	0.4950263387	2.1287891642	$0.535+429804$
42	I. 8912871458	$73 \quad 2$	0. 4880304242	2.17643 56384	0.54978 $99+55$
43	I. 9363177921	$\begin{array}{ll}73 & 47\end{array}$	0.4806969176	$2.22+4305163$	$0.5641298+91$
44	1.98134 84385	74 3I	0.4730524550	2.2727169945	$0.578+5 \quad 24208$
45	2.0263790848	$75 \quad 12$	0.46512 17631	2.3212372832	0.5927469597
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	C(r)	B (r)

TABLE $\theta=86^{\circ}$
$q=0.295488385558687, \quad Ө 0=0.4242361430, \quad \mathrm{HK}=1.6043008048$

B (r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	$\mathrm{F} \psi$	90-r
1.0000000000	3.7862365254	0.0000000000	$90^{\circ} \quad 0^{\prime}$	4.0527581695	90
0.99974 76964	3.78529 99318	0.01098 79345	8949	4.0077275232	89
0.99899 II 477	3.78249 16163	0.0219749829	8938	3.9626968769	88
0.99773 14382	3.7778159714	0.0329602520	8928	3.9176662306	87
0.99597 03726	3.7712803065	0.04394 28343	89. 17	3.8726355842	86
0.99371 04703	$3 \cdot 7628948312$	0.0549218007	896	3.8276049379	85
0.9909549588	3.7526726317	0.0658961931	8854	3.7825742916	84
0.9877077652	$3 \cdot 7406296405$	0.0768650165	8843	3.73754 36452	83
0.9839735058	3.7267846000	0.0878272314	8832	3.69251 29989	82
0.9797574732	3.7111590191	0.0987817452	88 20	3.6474823526	81
0.9750656227	3.6937771248	0. 1097274034	$88 \quad 8$	3.6024517063	80
0.96990 45558	3.6746658061	0. 1206629807	$87 \quad 56$	$3 \cdot 5574210599$	79
0.9642815032	3.6538545535	o.1315871709	8744	$3 \cdot 5123904136$	78
0.95820 43054	3.6313753926	o. 1424985767	$87 \quad 32$	3.4673597673	77
0.95168 I3914	3.60726 28II4	O.I5339 56986	87 19	3.4223291209	76
0.94472 17573	$3 \cdot 5815536840$	0.16427 69227	875	3.3772984746	75
0.93733 49419	3.5542871880	0.17514 05085	8652	3.3322678283	74
0.92953 10017	$3 \cdot 5255047184$	0. 1859845746	8638	3.2872371820	73
0.9213204850	$3.4952+97967$	o. 1968070842	$86 \quad 24$	3.2422065356	72
0.9127144039	3.4635679762	0.2076058292	869	3.19717 58893	71
0.9037242062	3.4305067437	0.21837 84126	$85 \quad 54$	3.15214 52430	70
0.89436 17453	$3 \cdot 3961154178$	0.2291222300	8538	3.10711 45967	69
0.88463 92502	$3 \cdot 3604450445$	0.2398344495	$85 \quad 22$	3.0620839503	68
0.8745692937	$3 \cdot 3235482896$	0.25051 19896	855	3.01705 33040	67
0.86416 47610	3.2854793300	0.26115 14957	8448	2.9720226577	66
0.85343 88167	3.2462937417	0.2717493142	$8+30$	2.9269920113	65
0.8424048716	3.2060483874	0.2823014649	84 I I	2.8819613650	64
0.83107 65499	3.16480 13024	0.2928036106	$83 \quad 52$	2.8369307187	63
0.81946 76545	3.12261 15798	0.3032510250	$83 \quad 32$	2.7919000724	62
0.80759 21336	3.07953 9255I	0.31363 85568	83 II	2.7468694260	61
0. 7954640466	3.0356451912	0.3239605923	8249	2.7018387797	60
0.7830975297	2.9909909630	0.3342 I IOI35	8226	2.6568081334	59
0.77050 67624	2.9456387432	0.3443831544	823	2.6117774870	58
0.75770 59335	2.8996511884	0.3544697527	8139	2.56674684 .07	57
0.74470 92077	2.8530913269	0.3644628984	8 I I3	2.52171 61944	56
0.73153 06927	2.8060224483	0.37435 39786	$80 \quad 47$	2.4766855480	55
0.71818 44065	2.7585079940	0.38413 36176	$80 \quad 19$	2.43165 49017	54
0. 7046842455	2.7106114508	0.39379 16142	79 50	2.38662 42554	53
0.6910439537	2.6623962465	0.40331 68729	$79 \quad 20$	2.34159 36091	52
0.6772770914	2.6139256481	0.4126973321	$78 \quad 49$	2.2965629627	51
0. 6633970061	2.5652626633	0.42191 98869	$78 \quad 17$	2.2515323164	50
0.64941 68038	2.5164699446	0.4309703076	$77 \quad 43$	2.2065016701	49
0.6353493209	2.4676096971	0.43983 31542	778	2. 16147 10238	48
0.62120 70978	2.4187435896	0.44849 16855	76 31	2.11644 03774	47
0.60700 23531	2.3699326700	0.45692 77651	$75 \quad 52$	2.0714097311	46
0. 5927469597	2.3212372832	0.4651217631	$75 \quad 12$	2.0263790848	45
A(r)	D (r)	E(r)	ϕ	F ϕ	r

$\mathrm{K}=4.3386539760, \quad \mathrm{~K}^{\prime}=1.5718736105, \quad \mathrm{E}=1.0052585872, \quad \mathrm{E}^{\prime}=1.5697201504$,

r	F ϕ	ϕ	E(r)	D (r)	A(r)
0	0.0000000000	$0^{\circ} \quad 0^{\prime}$	0.0000000000	1.00000 00000	0.0000000000
1	0.04820 72664	246	0.03700 05198	1.00089 26934	0.01102 97158
2	0.0964145328	$5 \quad 31$	0.0737786246	I. 0035701695	0.0220673089
3	o. 14462 17992	8 I5	O.IIOII 59944	I. 0080306141	0.0331206260
4	0.1928290656	IO. 59	0.14580 23384	I. O1427 09982	0.0441974541
5	0.2410363320	13 4I	0.18063 90239	1.0222870707	0.0553054893
6	0.2892435984	16 2I	0.2144422668	1.0320733471	0.0664523081
7	0. 3374508648	1859	0. 2470457854	I. 0436230963	0.0776453371
8	0.38565 81312	2134	0.27830 28485	I. 0569283239	0.0888918239
9	0.43386 53976	$24 \quad 7$	0.3080876822	I.0719797531	0.10019 88085
10	0.4820726640	$26 \quad 37$	0.33629 62369	1. 0887668032	0.1115730946
II	0.5302799304	293	0.36284 63422	I. 1072775652	0.1230212218
12	0.5784871968	3127	0.3876773064	I. 1274987762	O.I3454 94383
13	0.6266944632	3346	0.4107490335	I. I 494157909	0.14616 36738
14	0.6749017296	$36 \quad 2$	0.4320407437	I. I7301 25520	0.15786 95139
15	0.7231089960	$38 \quad 14$	0.45I54 93887	1. 1982715591	0.1696721746
16	0.77131 62624	$40 \quad 23$	0.46928 78534	1. 2251738362	0.18157 64776
17	0.8195235288	$42 \quad 27$	0.4852830289	I. 2536988987	0.19358 68272
18	0.8677307952	4428	0. 4995738349	1.2838247193	0.2057071870
19	0.91593 80616	$46 \quad 24$	0.5122092565	I. 3155276945	0.2179410587
20	0.9641453280	48 I6	0.52324 64512	1. 3487826100	0.2302914612
21	1.O1235 25944	505	0. 5327489656	1. 3835626077	0.24276 09III
22	I. 0605598608	5 I 50	0. 5407850933	1.4198391529	0.2553514044
23	I. 1087671272	5330	o. 5474263924	1. 4575820021	0.26806 43994
24	I. I 569743936	557	0.5527463730	I. 4967591734	0.2809008008
25	1. 2051816600	5640	0.55681 93566	I. 5373369175	0.2938609452
26	I. 2533889264	58 IO	0.5597195044	I. 5792796919	0.3069445879
27	I.30159 61928	5936	0. 5615200057	1.6225501370	0.3201508913
28	I. 3498034592	6058	0.56229 24153	1.66710 90551	0.33347 84147
29	I. 3980107256	$62 \quad 17$	0.56210 61265	1.7129153925	0.3469251057
30	I. 4462179920	$63 \quad 33$	0.56102 79658	I. 7599262260	0.3604882928
31	I. 4944252584	6446	0.55912 18929	1.80809 67519	0.37416 46804
32	I. 5426325248	6555	0.55644 87947	I. 8573802804	0.3879503444
33	I. 5908397912	$67 \quad 2$	0.5530663561	1.9077282336	0.4018407305
34	I. 6390470676	686	0. 5490289975	I. 9590901488	0.4158306538
35	I. 6872543240	697	0.54438 7866I	2.0114136867	0.42991 42995
36	I. 7354615904	705	0.53919 08711	2.0646446451	0.44408 52267
37	1. 7836688568	71	-. 5334827539	2.11872 69773	0.45833 63730
38	I. 8318761232	7 I 54	0.5273051847	2.17360 28173	0.4726600609
39	1. 8800833896	7245	0.5206968791	2.2292125107	0.4870480065
40	1. 9282906560	$73 \quad 34$	0.5136937297	2.2854946508	0.5014913298
41	1.97649 79224	7420	0.50632 89466	2.3423861220	0.5159805665
42	2.0247051888	75 5	.0.49863 32034	2.3998221493	0.53050 56822
43	2.0729124552	7547	0.4906347860	2.4577363538	0.54505 60878
44	2.12III 97216	$76 \quad 58$	0.48235 974II	2.5160608149	0.5596206569
45	2.16932 69880	$77 \quad 7$	0.4738320219	2.57472 61393	0.57418 77451
90-r	F ψ	ψ	G(r)	C(r)	$\mathrm{B}(\mathrm{r})$

Smithsonian Tables
$q=0.320400337134867, \quad Ө 0=0.3802048484, \quad \mathrm{HK}=1.6608093153$

B(r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
1. 0000000000	4.37119 23556	0.0000000000	$90^{\circ} \quad 0^{\prime}$	$4 \cdot 3386539760$	90
0.9997308085	4.3700295871	0.01103 73956	8951	4.2904467096	89
0.9989236540	4.3665432014	0.0220741777	8943	4.2422394432	88
0.9975797949	$4 \cdot 3607389539$	0.0331097273	8934	4.19403 21768	87
0.9957013248	4.3526264203	0.04414 34137	8925	4.14582 49104	86
0.99329 II666	4.3422I 89731	0.0551745893	8916	4.0976176440	85
0.9903530638	4.32953 37471	0.0662025830	897	4.0494103776	84
0.9868915704	4.31459 15972	0.0772266944	$88 \quad 58$	4.0012031112	83
0.9829120378	4.2974170454	0.0882461873	8849	3.9529958448	82
0.9784205999	4.2780382196	0.0992602826	8839	3.9047885784	8I
0.9734241557	4.2564867836	0.11026 81515	8830	3.8565813120	80
0.9679303503	4.2327978580	0.12126 89076	8820	3.8083740456	79
0.9619475529	4.2070099336	0.13226 15989	88 IO	3.76016 67792	78
0.9554848341	4.17916 47765	O.1432451989	88 o	3.71195 95128	77
0.9485519406	4.14930 73254	O.I542185972	8749	3.6637522464	76
0.9411592676	4.11748 55826	0.16518 05896	$87 \quad 38$	3.6155449800	75
0.9333178308	4.0837504971	O.17612 98666	$87 \quad 27$	$3 \cdot 5673377136$	74
0.9250392359	4.0481558427	0. 1870650017	8716	$3 \cdot 5191304472$	73
0.9163356463	4.01075 80891	O. 1979844386	874	3.4709231808	72
0.9072 I 97509	3.9716162682	0. 2088864763	86 5I	3.4227159144	71
0.8977047288	3.9307918356	0.21976 92546	86	3.37450 86480	70
0.8878042140	3.8883485274	0. 2306307363	$86 \quad 25$	3.3263013816	69
0.87753 22590	3.8443522135	0.24I4686896	86 II	3.2780941152	68
0.8669032971	3.7988707472	0.25228 06673	$85 \quad 57$	3.2298868488	67
0.8559321039	3.7519738123	0.2630639853	8542	3.1816795824	66
0.84463 37589	3.7037327678	0.27381 56982	$85 \quad 27$	3.1334723160	65
0.8330236055	3.6542204910	0. 2845325731	85 II	3.0852650496	64
0.8211172113	3.6035112193	0.29521 106IO	8454	3.0370577832	63
0.8089303281	$3 \cdot 5516803915$	0.30584 72655	8437	2.9888505168	62
0.7964788516	$3.49880 \quad 44891$	0.3164369081	$84 \quad 19$	2.9406432504	61
0. 7837787810	3.4449608773	0.32697 5291I	84 o	$2.892+359840$	60
0.7708461787	3.3902276481	0. 3374572566	8340	2.8442287176	59
0.7576971307	3.3346834641	0.3478771421	8319	2.79602 I 4512	58
0.7443477069	3.2784074042	0.35822 87319	8257	2.74781 41848	57
0.7308139218	3.2214788118	0. 3685052042	8235	2.6996069184	56
0.71711 16962	3.16397 71463	0. 3786990740	82 II	2.6513996520	55
0.7032568193	3.1059818371	0.3888021304	8147	2.6031923856	54
0.6892649116	3.0475721420	0. 3988053693	8 I 2I	2.55498 51192	53
0.6751513887	2.9888270090	0. 4086989202	$80 \quad 54$	2.5067778528	52
0.6609314267	2.9298249435	0.41847 19672	8026	2.4585705864	51
0.64661 99275	2.8706438790	0.42811 26638	$79 \quad 56$	2.4103633200	50
0.6322314865	2.8113610542	0.4376080415	$79 \quad 25$	2.36215 60536	49
0.6177803606	2.7520528945	0.44694 39III	$78 \quad 53$	2.3139487872	48
$0.60328 \quad 04384$	2.6927948995	0.45610 47583	78 I9	2.2657415208	47
0.5887452 IIO	2.6336615364	0.4650736311	$77 \quad 44$	2.2175342544	46
0.5741877451	2.5747261393	0.47383 20219	$77 \quad 7$	2.16932 69880	45
A(r)	D (r)	E(r)	ϕ	F ϕ	r

Smithsonian Tables
$K=4.7427172653, \quad K^{\prime}=1.5712749524, \quad E=1.0025840855, \quad E^{\prime}=1.5703179199$,

r	F ϕ	ϕ	E (r)	D (r)	A(\mathbf{r})
o	0.0000000000	$0^{\circ} \quad \mathrm{o}^{\prime}$	0.0000000000	1.0000000000	0.0000000000
1	0.05269 68585	3 I	0.04150 83698	1.0010949202	0.00984 61866
2	o. 1053937170		0.0827260369	I. 0043791719	0.01970 23988
3	o. 1580905755		0.12336 86879	1.00985 12249	0. 0295786287
4	0.2107874340	II 59	0.1631644916	1.01750 85180	0.0394848012
5	0. 2634842925	$14 \quad 56$	0.2018596235	1. 0273474434	0.04943 07415
6	0.3161811510	1749	0. 2392229917	I. 0393633238	0.0594261408
7	0. 3688780095	$20 \quad 40$	0. 2750499964	1. 0535503843	0.0694805245
8	0.4215748680	$23 \quad 28$	0.30916 52198	1.06990 17180	0.0796032187
9	0.47427 17265	$26 \quad 13$	0.3414240166	I. 0884092458	0.0898033181
10	0. 5269685850	$28 \quad 53$	0.37171 30376	1. 1090636709	0. 1000896542
11	0. 5796654435	3130	0. 3999497772	1.13185 44282	0. 1104707636
12	0.6323623020	342	0.4260812751	1. 15676.96284	0.12095 48573
13	0.6850591605	$36 \quad 30$	0. 4500821300	I. 1837959985	0.13154 97896
14	0.7377560190	$38 \quad 53$	0.47195 19964	1.2129188175	0.1422630292
15	0.79045 28775	4112	0.49171 27333	1.24412.18489	-. 1531016293
16	0.84314 97360	$43 \quad 26$	0.50940 53625	1. 2773872698	0.1640721997
17	0.89584 65946	$45 \quad 35$	0. 5250869758	I. 3126955975	0.17518 08788
18	0.94854 3453I	$47 \quad 40$	0. 5388277072	I. 3500256142	0.1864333074
19	1.0012403116	4940	0.55070 78595	I. 3893542896	0. 1978346027
20	1.0539371701	5134	o.56081 52531	1. 4306567027	0.2093893338
21	I. 1066340286	$53 \quad 25$	0. 5692428378	1. 4739059633	0.2211014976
22	1.15933 08871	55 11	0. 5760865921	1.51907.31337	0.2329744971
23	1. 2120277456	$56 \quad 52$	0.58144 37172	1.56612 71505	0.2450111193
24	I. 2647246041	$58 \quad 29$	0.58541 11188	I. 6150347485	0.2572135159
25	1. 3174214626	60	0. 5880841618	1.6657603865	0.2695831846
26	1.37011 83211	$61 \quad 31$	0. 5895556773	1.7182661750	0.2821209517
27	1.4228151796	$62 \quad 55$	0.5899151945	1.77251 18082	0.2948269565
28	1.47551 20381	$64 \quad 16$	0.58924 83721	I. 82845.44989	0.30770 06377
29	1. 5282088966	$65 \quad 33$	0.5876366017	1. 8860489185	0.3207407202
30	1. 5809057551	6646	0.58515 67551	1.9452471416	0.3339452050
31	1.6336026136	$67 \quad 56$	0.5818810541	2.00599 85969	0.3473113599
32	1. 6862994721	693	0.5778770364	2.0682500238	0.3608357125
33	1.73899 63306	706	0.57320 76019	2.1319454360	0.3745140449
34	1.79169 31891	7 I	0.56793 11188	2. 1970260925	0.3883413902
35	I. 8443900476	724	0.56210 15757	2.2634304764	0.4023120314
36	I. 8970869061	$72 \quad 59$	0. 5557687678	2.3310942822	0.4164195021
37	1. 9497837646	73 51	-. 5489785058	2.39995 .04116	0.4306565890
38	2.0024806231	$74 \quad 41$	0.54177 28388	2.4699289791	0.4450153371
39	2.0551774816		0.53419 02851	2.5409573266	0.4594870563
40	2. 1078743401	$\begin{array}{ll}76 & 12\end{array}$	0. 5262660647	2.6129600482	0. 4740623311
41	2. 1605711986	$76 \quad 55$	0.51803 23296	2.6858590255	0.4887310316
42	2.2132680571	$77 \quad 35$	0.5095I 83887	2.7595734731	0. 5034823272
43	2.2659649156	$\begin{array}{ll}78 & 14 \\ 78 & 50\end{array}$	0. 5007509241	2.8340199954	O. 5183047025
44	2.3186617741	$78 \quad 50$	0.49175 41985	2.9091126530	-.53318 59750
45	2.3713586326	$\begin{array}{ll}79 & 25\end{array}$	0.4825502516	2.9847630422	0.54811 33155
90-r	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	B(r)

Smithsonian Tables
$q=0.353165648296037, \quad \Theta 0=0.3246110213, \quad \mathrm{HK}=1.7370861537$

B (r)	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	F ψ	90-r
I. 0000000000	5.3529158734	0.0000000000	$90^{\circ} \quad 0^{\prime}$	4.7427172653	90
0.9997065254	$5.35135 \quad 39870$	0.01107 55804	8954	4.6900204068	89
0.9988266090	5.34667 I I 120	0.0221508037	$89 \quad 47$	4.6373235483	88
0.99736 I77II	5.3388755928	0.0332253090	$89 \quad 41$	4.5846266898	87
0.9953I 4540I	5.32798 I3106	0.0442987274	8935	$4 \cdot 5319298313$	86
0.9926884456	5.3140076445	0.0553706778	8928	4.4792329728	85
0.9894880069	5.2969794165	0.0664407630	8921	4.42653 6II43	84
0.9857187199	5.2769268222	0.0775085650	89 I5	4.3738392558	83
0.9813870401	5.2538853459	0.0885736405	898	4.32II4 23973	82
0.9765003636	5.2278956618	0.0996355161	89 I	4.2684455388	8I
0.9710670046	5.19900 35203	0. I1069 36828	$88 \quad 54$	4.2157486803	80
0.9650961704	5.16725 962I4	O. I2I74 75905	8846	4.16305 18218	79
0.9585979343	5.13271 94744	0.13279 66420	8839	4.1103549633	78
0.9515832050	5.0954432457	O. 14384 OI 862	88 3I	4.0576581048	77
0.9440636948	5.0554955939	0.15487 75112	$88 \quad 23$	4.0049612463	76
$0.93605 \quad 18846$	5.OI294 54947	0. 1659078361	88 I 5	3.9522643878	75
0.9275609875	4.9678660538	0.17693 03026	886	3.8995675293	74
0.9186049094	4.92033 43119	0.18794 39654	8758	3.8468706707	73
0.9091982095	4.8704310392	0.19894 77822	8748	3.7941788122	72
0.8993560570	4.8182405226	0.20994 06015	8739	3.7414769537	71
0.88909 41880	4.7638503454	0.22092 II 507	8729	3.6887800952	70
0.87842 8860t	$4.70735 \quad 11607$	0.23I8880216	87 I 8	$3.63608 \quad 32367$	69
0.867376807 I	4.6488364589	0. 2428396552	878	$3 \cdot 5833863782$	68
0.8559551894	$4.58840 \quad 23314$	0.2537743247	8656	$3 \cdot 5306895197$	67
0.84418 I5481	4.5261472300	0.26469 OII66	8645	3.4779926612	66
0.832073755^{2}	4.4621717234	0. 2755849098	8632	3.4252958027	65
0.8I964 99644	4.3965782526	0.28645 63526	$86 \quad 19$	3.3725989442	64
0.8069285610	$4.32947 \quad 08849$	0.29730 18370	866	3.3199020857	63
0.79392 81128	4.2609550677	0.308II 847II	$85 \quad 52$	$3.26720 \quad 52272$	62
0.7806673195	4.19113 73836	0.31890 30470	$85 \quad 37$	3.2145083687	61
0.7671649636	4.12012 53075	0.3296520072	85 2I	3.16181515102	60
0.7534398604	4.0480269653	0.3403614062	855	3.1091I 46517	59
0.7395108099	3.9749508972	0.35102 68681	8448	3.0564177932	58
0.7253965478	3.9010058247	0.3616435409	8429	3.0037209347	57
0.7IIII 56987	3.8263004227	0.3722060448	8410	2.9510240762	56
0.69668672)1	3.7509430973	0.3827084160	835 I	2.8983272177	55
0.6821279026	3.6750417706	0.393I4 40446	$83 \quad 30$	2.8456303592	54
0.6674572351	$3.59870 \quad 36716$	0.4035056060	838	2.7929335007	53
0.6526924519	3.5220351359	0.4137849862	8244	2.74023 66422	52
0.6378509470	3.4451414133	0.4239731992	8220	2.6875397837	5 I
0.6229497425	$3 \cdot 3681264840$	0.4340602965	8I 55	2.6348429252	50
0.6080054504	3.2910928843	0.4440352686	8 I 28	2. 5821460667	49
0.5930342368	3.21414 I542I	0.4538859368	$80 \quad 59$	2.52944 92081	48
0.5780517864	3.13737 16225	0.46359 88357	8029	2.47675 23496	47
$0.56307 \quad 32704$	$3.06088 \quad 03834$	0.473159085 I	$79 \quad 58$	2.4240554911	46
0.548II 33155	2.9847630422	0.4825502516	$79 \quad 25$	2.3713586326	45
A(r)	D (r)	$E(r)$	ϕ	$\mathbf{F} \phi$	r

$K=5.4349098296, \quad K^{\prime}=1.5709159581, \quad E=1.0007515777, \quad E^{\prime}=1.5706767091$,

r	F ϕ	ϕ	E (r)	$\mathrm{D}(\mathrm{r})$	A(r)
o	0.0000000000	$0^{\circ} \mathrm{o}^{\prime}$	0.0000000000	1.0000000000	0.0000000000
1	0.0603878870	$\begin{array}{ll}3 & 27\end{array}$	0.0491951488	1. 0014876066	0.0079798676
2	0.12077 57740	654	0.0979531901	1. 0059504088	0.0159727570
3	0.18116 36610	10 19	o. 1458495983	1. 0133883449	0.0239916544
4	0.2415515480	I3 42	0. 1924842494	1. 0238012862	0.0320494760
5	0. 3019394350	17	0.2374917959	1. 0371889963	0.0401590322
6	0.3623273220	$20 \quad 19$	0.2805500559	1. 0535510766	0.0483329925
7	0.42271 52090	$23 \quad 32$	0.3213860670	1. 0728868948	0.0565838508
8	0.4831030960	$26 \quad 40$	0.35977 96610	1.09519 55002	0.0649238899
9	0. 5434909830	2943	0.39556 46136	1. 1204755228	0.0733651472
10	0.6038788700	3240	0. 4286275917	1. 1487250597	0.08191 93794
II	0.66426 67569	$35 \quad 32$	0.4589052450	1. 1799415472	0.0905980283
12	0.7246546439	$38 \quad 18$	0.4863798590	1. 2141216208	0.0994121860
13	$0.7850+25309$	$40 \quad 58$	0.51107 40138	1. 2512609628	0.10837 25614
14	0.84543 04179	$43 \quad 32$	0.53304 46717	1.29135 41391	0. 1174894454
15	0.9058183049	$45 \quad 59$	0. 5523770723	1. 3343944250	0. 1267726784
16	0.9662061919	$48 \quad 20$	0.5691787466	1.3803736227	0.13623 16162
17	1. 0265940789	5035	0. 5835738857	1.42928 18693	0. 1458750978
18	1. 0869819659	5244	0. 5956982320	1.48110 74384	0.15571 14129
19	I. 1473698529	$54 \quad 47$	0.60569 4585 I	I. 5358365353	0. 1657482707
20	1.2077577399	5643	0.61370 89715	1. 5934530865	0. 1759927682
21	1.26814 56269	58	0.6198874725	1. 6539385266	0. 1864513603
22	1. 3285335139	$60 \quad 20$	0.6243736797	1. 7172715815	0.1971298307
23	1.3889214009	62	0.6273067243	1. 7834280514	0.2080332624
24	1. 4493092879	$63 \quad 35$	0.62881 98144	1.8523805926	0.2191660113
25	I. 5096971749	655	0.6290392100	1.9240985022	0.2305316788
26	1. 5700850619	6630	0.62808 35657	1.99854 75042	0.2421330872
27	1. 6304729489	67 51	0. 6260635735	2.0756895405	0.2539722556
28	1.6908608359	69	0.6230818462	2. 1554825676	0.2660503772
29	1.7512487229	$70 \quad 19$	0.6192329878	2.2378803597	0.2783677989
30	1.81163 66099	$\begin{array}{ll}71 & 27\end{array}$	0.6146038040	2.3228323203	0. 2909240017
31	I. 8720244969	$72 \quad 31$	0.6092736149	2.4102833038	0.3037175832
32	1.9324123839	$\begin{array}{ll}73 & 32\end{array}$	0.60331 46378	2.5001734479	0.31674 62424
33	1.9928002709	$7+\quad 29$	0. 5967924144	2.5924380185	0.3300067656
34	2.0531881579	$75 \quad 23$	0. 5897662623	2.6870072681	0.3434950157
35	2.1135760449	7614	0.5822897341	2.7838063098	0.35720 59222
36	2.1739639318		0.57441 10737	2.8827550068	0.3711334754
37	2.2343518188	$77 \quad 48$	0. 5661736598	2.9837678796	0.3852707211
38	2.2947397058	78 31	o. 5576164315	3.0867540315	0. 3996097596
39	2.3551275928	79 II	0. 5487742910	3.19161 70942	0.4141417461
40	2.4155154798	7949	0. 5396784809	3.2982551932	0. 4288568946
41	2.4759033668	$80 \quad 25$	0. 5303569362	3.4065609346	0.4437444843
42	2.5362912538	8058	0.5208346089	3.5164214148	0. 4587928694
43	2.5966791408	8130	0.5111337664	3.6277182525	0.4739894906
44	2.6570670278	82	0.50127 42646	3.7403276441	0.4893208915
45	2.7174549148	$82 \quad 28$	0.49127 37968	3.8541204436	0.5047727366
$90-\mathrm{r}$	F ψ	ψ	$\mathrm{G}(\mathrm{r})$	$\mathrm{C}(\mathrm{r})$	$\mathrm{B}(\mathrm{r})$

$\mathrm{B}(\mathrm{r})$	C(r)	$\mathrm{G}(\mathrm{r})$	ψ	$\mathbf{F} \psi$	$90-\mathrm{r}$
1.0000000000	7.5695897180	0.0000000000	$90^{\circ} \quad \mathrm{o}^{\prime}$	5.4349098296	90
0.9996643156	$7 \cdot 5670529325$	0.01110 10463	8956	5.3745219426	89
$0.99865793+3$	7.5594477064	0.0222019579	8953	5.3141340556	88
0.9969828696	7.5467894142	0.0333025985	8949	5.2537461686	87
0.9946424694	7.5291036233	0.04440 28272	8945	5.19335 82816	86
0.9916414052	$7 \cdot 5064260102$	0.0555024979	8942	5.13297 03946	85
0.9879856557	$7.4788022+28$	0.06660 14556	8938	5.0725825077	84
$0.98368 \quad 24869$	7.4462878301	0.0776995354	8934	5.01219 46207	83
0.978740 .4272	$7 \cdot 4089+79407$	0.0887965593	8930	4.9518067337	82
0.9731692390	7.3668571893	0.0998923340	8926	4.8914188467	81
0.9669798856	$7 \cdot 3200993943$	0.11098 66481	8922	4.8310309597	80
0.9601844944	7.2687673054	0. 1220792686	$89 \quad 17$	4.7706430727	79
0.9527963165	7.2129623044	0.13316 99380	$89 \quad 13$	$4.71025 \quad 51857$	78
0.9448296828	7.1527940797	O. 1442583704	898	4.6498672987	77
0.9362999559	7.0883802759	O. I5534 42469	893	$4 \cdot 58947$ 94117	76
0.9272234802	$7.0198+61207$	O. 1664272118	8858	4.5290915247	75
0.9176175278	6.9473240301	O. 1775068667	8853	4.46870	74
0.9075002426	6.8709531948	0. 1885827648	8847	4.4083157507	73
0.8968905812	6.7908791481	O. 1996544048	88 4I	4.3479278637	72
0.88580 82522	6.7072533191	0.2107212232	8835	4.2875399767	71
0.8742736532	6.6202325717	0.2217825863	8829	$4.22715 \quad 20897$	70
0.8623078063	6.5299787323	0.2328377807	8822	4.1667642027	69
0.8499322921	6.4366581080	0.2438860035	88 I5	4.1063763157	68
0.8371691826	6.3404409975	0. 2549263501	887	4.0459884287	67
0. 8240409732	6.2415011966	0.26595 78012	8759	3.9856005417	66
0.8105705141	6.1400155012	0.2769792084	87 51	3.9252126547	65
0.79678 09414	6.0361632083	0. 2879892768	8742	3.8648247677	64
0.78269 56083	5.9301256192	0.29898 6547 I	8733	3.8044368807	63
0.7683380165	5.8220855452	0.30996 93739	8723	3.7440489937	62
0.75373 17477	5.71222 68183	0.3209359022	8712	3.6836611067	61
0.7389003962	5.6007338100	0.3318840408	87 I	3.6232732197	60
0.7238675024	5.48779 09576	0.34281 14317	8650	3.5628853328	59
0.70865 64877	$5 \cdot 3735^{8} 23026$	0.3537I 54168	$86 \quad 37$	3.5024974458	58
0.6932905904	5.2582910413	0.3645929992	86	3.44210 95588	57
0.6777928032	5.14209 90885	0.3754408012	8610	3.3817216718	56
0.6621858136	5.02518 66588	0.386255015	$85 \quad 55$	$3 \cdot 32133137848$	55
0.6464919448	4.9077318631	0.39703 13507	8540	3.2609458978	54
0.6307330999	4.7899103252	0.4077649715	$85 \quad 23$	3.2005580108	53
0.6149307081	4.6718948167	0.4184504298	856	3.14017 OI238	52
0. 5991056732	4.5538549133	0.42908 15883	$84 \quad 47$	3.0797822368°	51
0.58327 83254	4.4359566732	$0.43965 \quad 15347$	84.27	3.0193943498	50
0. 5674683750	4.3183623371	0.4501524856	846	2.9590064628	49
0.55I69 48696	4.201230052 I	0.4605756791	8344	2.8986185758	48
0. 53597 6I539	4.0847136196	0.47091 12546	8320	2.8382306888	47
0.52032 98326	3.9689622668	0.48114 81189	8255	2.7778428018	46
0. 5047727366	3.8541204436	0.4912737968	$82 \quad 28$	2.7174549148	45
A(r)	D (r)	$\mathrm{E}(\mathrm{r})$	ϕ	F ϕ	r

.

, -

INDEX

The numbers refer to pages.

A PAGE
PAGE
Absolute convergence 109
Addition formulas, Elliptic Functions 250
Algebraic equations 2
Algebraic identities I
Alternating series 110
Archimedes, spiral of 52
Area of polygon 36
Arithmetical progressions 26
Asymptotes to plane curves 40
Axial vector. 95
B
Ber and Bei functions 204
Bernoullian numbers 25
polynomial 140
Bessel functions 196
addition formula 199
multiplication formula 199
references. 213
Bessel-Clifford differential equation 205
Beta functions 132
Binomial coefficients. 19
Binormal 59
Biquadratic equations 10
Bromwich's expansion theorem 212
C
Cassinoid 53
Catenary 52
Cauchy's test. 109
Center of curvature, plane curves 39
surfaces 56
Change of variables in multiple inte- grals 17
Characteristic of surface 56
Chord of curvature, plane curves 39
Circle of curvature 39
Circular functions, see TrigonometryCissoid.53
Clairaut's differential equation 166
Coefficients, binomial 19
Combinations 17
Comparison test 109
E PAGE
Ellipse 46
Ellipsoidal coordinates 102
Elliptic cylinder coordinates 104
Elliptic integrals, first kind. 245
second kind 248
third kind. 251
Elliptic integral expansions 135, 195
Envelope 40
Envelope of surfaces 56
Epicycloid. 52
Equations, algebraic 2
transcendental, roots of 84
Equiangular spiral. 53
Eta functions. 251
Euler's constant 27
summation formula 25
transformation formula 113
theorem for homogeneous functions 157
Eulerian angles 32
Evolute. 39
Exact differential equations 163, 177
Expansion of determinants. 13
Expansion theorem, Bromwich's 212
Heaviside's 212
F
Finite differences and sums 20
Finite products of circular functions 84
Finite series, special 26
Fourier's series 136
Fresnel's integrals. 134
Functional determinants. 16
G
Gamma function 13I
Gauss's II function ${ }^{1} 33$
theorem 95
Geometrical progressions 26
Gradient of vector. 93
Graeffe's method. 8
Green's theorem 95
Gregory's series 122
Gudermannian 76
H
Harmonical progressions. 26
Harmonics, zonal 191
Heaviside's operational methods 210
expansion theorem 212
Helical coordinates. 106
Hessian. 16
page
Homogeneous differential equations 162, 166, 177
Homogeneous linear equations 15
Horner's method 7
l'Hospital's rule. 145
Hyperbola 48
Hyperbolic functions 71
spiral 52
Hypergeometric differential equation 209
series 209
Hypergeometric function, confluent 185
Hypocycloid 52

I

Identities, algebraic I
Implicit functions, derivatives of 161
Indeterminate forms 145
Indicial equation 174
Infinite products 130
series 109
Integrating factors 163
Interpolation formula, Newton's 22
Intrinsic equation of plane curves. 44
Involute of plane curves. 39
J
Jacobian 16
K
Ker and Kei functions 205
Kummer's transformation. II4
L
Lagrange's theorem 112
Laplace's integrals. 193
Latus rectum, ellipse 48
hyperbola 49
parabola 46
Leclert's transformation 115
Legendre's equation 191
Leibnitz's theorem. 157
Lemniscate. 53
Limiting values of products. 152
sums. 151
Linear equations 15
Linear vector function 96
Lituus 53
Logarithmic spiral 53
M
Maclaurin's theorem II2
Markoff's transformation formula. 113
PAGE
152 Maxima and minima 152
Mehler's integrals. 193
Minor of determinant I4
Multinomial theorem 120
Multiplication of determinants 12
Multiple roots of algebraic equations 5
N
Neoid 53
Neumann's expansion, zonal har- monics 194
Newton's interpolation formula 22
method for roots of equations 7
theorem on roots of algebraic equa- tions 2
Normal to plane curves 36
Numbers, Bernoulli's 140
Euler's 141
Numerical series 140
Numerical solution of differential equa- tions. 220
0
Oblate spheroidal coordinates 107
Operational methods 210
Orthogonal curvilinear coordinates 100
P
II function, Gauss's I33
Parabola 45
Parabolic coordinates 107
Parabolic cylinder coordinates 105
Parabolic spiral 53
Parallelepipedon, volume of 92
Partial fractions 20
Particular integral 167
Pedal curves 10
Pendulum 247
Permutations and combinations 17
Plane. 53
Plane curves 36
polar coordinates 4I
Plane geometry 34
Points of inflexion 39, 42
Polar coordinates 32, IOI
Plane curves 41
Polar subtangent 37
subnormal 37
normal 37
tangent 37
Polar vector 95
Polynomial 2
Bernoullian 25
series II9
Principal normal to space curves 58
Products, finite of circular functions 84
limiting values of 152
of two series. 110
Progressions 26
Prolate spheroidal coordinates 107
Q
Quadratic equations 9
Quadriplanar coordinates 33
R
Raabe's test 109
Radius of curvature, plane curves 38, 42
space curves. 58
surfaces 55
Radius of torsion 59
Reciprocal determinants 14
Resolution into partial fractions 20
Reversion of series 116
Rodrigues' formula 193
Roots of algebraic equations. 2
transcendental equations 84
Rot 93
Routh's rule 6
S
Scalar product 91
Schlomilch's expansion, Bessel func- tions 201
Series, finite, circular functions 8I
infinite 109
special finite 26
numerical 140
of Bessel functions 201
hypergeometric 209
of zonal harmonics. 194
Simpson's method 221
Singular points. 4I
Skew determinants 14
Skew-symmetrical determinants I5
Solid geometry 53
Space curves 57
Spherical polar coordinates IOI
Spherical triangles 78
Spheroidal coordinates. 127
Spiral of Archimedes 52
Stirling's formula 28
PAGE
95
Stokes's theorem
Sturm's theorem.
Subnormal 36
Subtangent 36
Sums, limiting values of 151
Summation formula, Euler's 25
Surfaces 55
Symbolic form of infinite series 112
Symbolic methods in differential equa- tions 173
Symmetrical determinants 14
Symmetric functions of roots of algebraic equations 2
T
Tables, binomial coefficients 20
hyperbolic functions 72
trigonometric functions 62
Tangent to plane curves. 36
Taylor's theorem III
Theta function 248, 251
Toroidal coordinates 108
Tractrix 53
Transcendental equations, roots of 84
Transformation of coordinates 29
determinants 12

SMITHSONIAN MISCELLANEOUS COLLECTIONS

 VOLUME 74, NUMBER 2
NEW TIMALINE BIRDS FROM THE EAST INDIES

BY
HARRY C. OBERHOLSER

(Publication 2674)

CITY OF WASHINGTON

PUBLISHED BY THE SMITHSONIAN INSTITUTION
SEPTEMBER 27, 1922

さhe Eord Cbaftimore (ゆrese

BALTMMORE, MD. ${ }^{\prime}$ U. S. A.

NEW TIMALINE BIRDS FROAI THE EAST INDIES

Br HARRY C. OBERHOLSER

Various investigations in the ornithological collection of the United States National Museum have resulted in the discovery of a number of undescribed forms. These birds are chiefly the result of Dr. W. L. Abbott's indefatigable collecting activity, and are mostly from the East Indies and the Malay Peninsula, with a few from outlying localities. Those described in the present pamphlet belong to the family Timaliidae.

All measurements are in millimeters, and have been taken as explained in the author's previous papers. Names of colors are based on Mr. Robert Ridgway's recently published " Color Standards and Color Nomenclature."

Furthermore, the writer's thanks are, as always, due Dr. Charles W. Richmond for numerous courtesies.

ALCIPPORNIS, nom. nov.

Type.-Alcippe cinerea Blyth nee Eyton ($=$ Hyloterpe brumneicauda Salvadori. ${ }^{1}$)

The above proposed name is intended to apply to the group commonly known as Alcippe, but which is now found to be without a tenable generic designation. This genus was first instituted by Blyth in 1844° by whom the following species were then included:

```
"Alcippe cinerea? (Eyton)"
Trichastoma affine Blyth
Timalia poioicephala Jerdon
Brachypteryx atriceps Jerdon
? Brachyptery.t scpiaria Horsfield
? Brachyptery. F bicolor Lesson
```

No type was originally designated, nor is any species to be considered type by tautonymy. The first legitimate type designation that I have been able to find is that of Gray, in $1846,{ }^{3}$ who selected Trichastoma affine Blyth, which is now a member of the genus Horizillas Oberholser ($=$ Malacopteron Eyton). This means that Hori-

[^3]zillas (olim Malacopteron) must now be called Alcippe Blyth, unfortunate as this transfer of name may be found to be. For Alcippe Auct. nec Blyth the name Alcippornis, ${ }^{1}$ nom. nov., may be used. The following species and subspecies are referable to this genus:

```
.Alcippornis nepalensis nepalensis (Hodgson)
Alcippornis nepalcnsis fratercula (Rippon)
Alcippornis nepalcnsis yunnancusis (Harington)
Alcippornis peraccnsis (Sharpe)
Alcippornis hueti (David)
Alcippornis morrisonia (Swinhoe)
Alcippornis poioicephala poioicephala' (Jerdon)
Alcippornis poioicephala phayrci (Blyth)
Alcippornis poioicephala brucci (Hume)
Alcippornis poioicephala haringtoniae (Hartert)
Alcippornis poioicephala magnirostris (Walden)
Alcippornis poioiccphala davisoni (Harington)
Alcippornis pyrrhoptera (Bonaparte)
Alcippornis brunncicauda brunncicauda (Salvadori)
Alcippornis brunncicauda hypocneca (Oberholser)
Alcippornis brunncicauda criphaca Oberholser
Alcippornis davidi (Styan)
```


ALCIPPORNIS BRUNNEICAUDA ERIPHAEA, subsp. nov.

Subspecific characters.-Similar to Alcippornis brunneicauda brunneicauda from Sumatra and the Malay Peninsula, but upper parts much more rufescent, posteriorly brighter, the pileum not grayish, but brown; lower surface darker, duller, and much more rufescent (less grayish), particularly on sides, flanks, and throat.

Description.-Type, adult male, No. 178218, U. S. Nat. Mus.: Liang Koeboeng (Grot), Borneo, March 25, 1894 ; Dr. J. Büttikofer. Pileum between olive brown and hair brown; back and scapulars, rather rufescent saccardo's umber; rump similar, but verging more toward the cinnamon brown of the upper tail-coverts; tail between prout's brown and mummy brown, the outer edgings of basal portion of rectrices argus brown; wings fuscous, the outer edgings of quills cinnamon brown, of coverts buffy brown; sides of head grayish drab; sides of neck rather brownish mouse gray; chin, throat, and upper breast, between tilleul buff and drab gray ; sides of breast drab; sides of body similar, but tinged with buffy; flanks and crissum, dull grayish cream buff ; lower breast and abdomen, dull buffy white ; under wingcoverts and axillars cream white, the latter posteriorly a little mixed with drab; iris blue-gray ; bill horn color; feet purplish gray.

[^4]Measurements of type.-Wing, 70.5 mm .; tail, 57.5 ; exposed culmen, II ; height of bill at base, 4.5 ; tarsus, 19.5 ; middle toe without claw, II. 5 .

The very brownish pileum and cervix and the brownish anterior lower parts give this very well-characterized race the appearance of a distinct species. It differs from Alcippornis brumneicauda hypocneca of the Batu Islands, western Sumatra, in larger size, more brownish (less grayish) head and nape; more rufescent back and rump ; darker, duller, and more rufescent lower parts.

This species has always been called Alcippe cincrea Blyth. The necessity for a change of its generic name has already been discussed above; but the readjustment of its specific designation also needs explanation. Blyth's name Alcippe cinerea ${ }^{1}$ was originally used not as a new specific designation, but to indicate a doubtful reference of the bird that he had in hand and described (i. c., the Alcippe cinerea of subsequent authors), to the Malacopteron cinereus of Eyton. ${ }^{2}$ It of course cannot, under such circumstances, be used for Blyth's species.

There are, however, two tenable names for this bird, not usually cited in its synonymy. The Napothera phaionota of Sharpe, ${ }^{3}$ is a manuscript name of Kuhl's, found on a specimen in the Leyden Museum, of which Sharpe gives no description, but which he states " is identical with Alcippe cinerca Blyth." This is thus virtually a naming of the bird described as Alcippe cincrea by Blyth.
A still earlier name is Hyloterpe brunneicauda Salvadori," hitherto treated as though belonging to a form of Muscitrca grisola or a closely allied species. The brown tail, fuscous bill, and wing of 72 mm . show clearly, however, that it belongs rather to the species commonly known as Alcippe cinerca. In view of the above facts this species should now stand as Alcippornis brumncicauda. The forms at present recognized are:

Alcippornis brunneicauda brunneicauda (Salvadori)
Alcippornis brunneicauda hypocneca (Oberholser)
Alcippornis brunneicauda criphaea Oberholser

MIXORNIS GULARIS CHERSONESOPHILA, subsp. nov.

Subspecific characters.-Similar to Mirornis gularis connectens, from southern Tenasserim, but larger; upper parts darker; flanks

[^5]rather more deeply colored; and with the streaks on the throat much broader.

Description.-Type, adult male, No. 160543, U. S. Nat. Mus.; Trang, Lower Siam, February 14, 1897 ; Dr. W. L. Abbott. Crown and forehead chestnut, the latter slightly mixed with dark grayish; rest of upper surface between medal bronze and citrine, but upper tail-coverts between mummy brown and dresden brown; tail between prout's brown and mummy brown, with numerous shadowy darker bars, but the basal portion of the outer pairs of rectrices margined interiorly with rather pale brownish, and the rectrices edged basally on outer webs with brown between mummy brown and dresden brown; wings fuscous, the edgings of quills and superior coverts cinnamon brown ; lores dusky ; a narrow supra-loral stripe, extending to the posterior edge of the eye, citron yellow with obscure streaks of dusky ; cheeks light yellowish olive, streaked obscurely with olivaceous; posterior sides of head and sides of neck, light citrine drab; lower surface citron yellow, paler posteriorly and shaded with gray on jugulum, the throat and jugulum streaked with brownish black; sides, flanks, and crissum, light citrine drab; lining of wing massicot yellow; " upper mandible dark leaden; lower mandible leaden blue; feet fleshy brown tinged with green."

Measurements of type.-Wing, 59.5 mm . ; tail, 53 ; exposed culmen, 14 ; tarsus, 19.

This new subspecies, though intermediate between Mixornis gularis connectens of southern Tenasserim and Mixornis gularis pileata of Singapore, is yet sufficiently different to be worthy of recognition by name.

MIXORNIS GULARIS ARCHIPELAGICA, subsp. nov.

Subspecific characters.-Similar to Mixornis gularis chersonesophila, from Trang, Lower Siam, but upper parts much paler and more grayish (less rufescent) ; sides and flanks lighter; streaks on anterior lower parts much narrower.

Type.-No. I7321., 'U. S. Nat. Mus.; Domel Island, Mergui Archipelago, February 27, 1900 ; Dr. W. L. Abboit.

Measurcments of type.-Wing, 61 mm . ; tail, 54.5 ; exposed culmen, I3.5; tarsus, 18.

This race, which is apparently confined to the islands of the Mergui Archipelago, differs from Mixornis gularis connectens of the northern Malay Peninsula and Tenasserim (type locality, 10° North Latitude) in its larger size, lighter, much more grayish upper parts, and rather paler flanks.

MIXORNIS GULARIS INVETERATA, subsp. nov.

Subspecific characters.-Similar to Mixornis gularis connectens, but larger; paler and less rufescent (more grayish) above.

Type.-No. 2490zo, U. S. Nat. Mus.; Koh Kut Island, southeastern Siam, December 25, 1914 ; C. Boden Kloss. "Iris, yellow; upper mandible black ; lower mandible plumbeous blue ; feet greenish ochre."

Measurements of type.-Wing, 60.5 mm . ; tail, 55 ; exposed culmen, 13 ; tarsus, 19; middle toe without claw, 13.5 .

This race has been included with Mixornis gularis connectens, but comparison shows it separable on the above given characters. It resembles Mixornis gularis chersonesophila, from the southern and central Malay Peninsula, but differs in its paler, less rufescent (more grayish) upper parts, and somewhat narrower streaking on the anterior lower surface.

MIXORNIS GULARIS VERSURICOLA, subsp. nov.

Subspecific characters.-Resembling Mixornis gularis invetcrata from Koh Kut Island, southeastern Siam, but smaller; upper parts darker and somewhat more rufescent (less grayish) ; and streaks on the anterior lower parts averaging heavier.

Type.-Adult male, No. 278480 , U. S. Nat. Mus.; Da Bau, Southern Annam, March 22, 1918 ; C. Boden Kloss. " Iris pale yellow; maxilla black; mandible plumbeous; feet ochreous brown."

Measurements of type.-Wing, 56.5 mm . ; tail, 49.5 ; exposed culmen, 13.5 ; tarsus, 21 ; middle toe without claw, 12.5.

This new race differs from Mixornis gularis connectens in its more heavily streaked anterior lower parts, darker, more grayish sides and flanks, somewhat darker upper parts, and rather larger size.

Some years ago the present writer called attention ${ }^{1}$ to the preoccupation and consequent invalidity of the name Motacilla gularis Raffles. ${ }^{2}$ This was done on the supposition that Motacilla gularis Raffles was the earliest published technical name for the species up to that time commonly called Mixornis gularis, and its name was accordingly changed to Mixornis pileata Blyth. A recent examination, however, of Horsfield's " Researches in Java " ${ }^{3}$ brought to light the fact that Horsfield, in describing this bird as Timalia gularis * (taking

[^6]the specific name from Notacilla gularis in the manuscript of Raffles' paper about to be published in the Transactions of the Linnaean Society of London ${ }^{1}$), anticipated Raffles' name, because the part of "Researches in Java" containing the description and plate of Timalia gularis appeared in February, 1822, in advance of that part of the Transactions of the Linnean Society containing this portion of Raffles' article, which followed in November or December, 1822. The specific name gularis must, therefore, be credited to Horsfield instead of to Raffles; and since Timalia gularis Horsfield is not preoccupied by Motacilla gularis Gmelin,' as is Motacilla gularis Raffles, nor found otherwise untenable, it must be continued in use for the species.

MIXORNIS BORNENSIS RUFICOMA, subsp. nov.

Subspecific characters.-Similar to Mixornis bornensis bornensis, but paler, and usually more reddish brown above, especially on the pileum; and with the streaks on the anterior lower parts averaging narrower.
Description--Type, adult male, No. 180591, U. S. Nat. Mus.; Tanjong Tedong, Banka Island, June 4, 1904; Dr. W. L. Abbott. Forehead deep mouse gray, the shafts of the feathers blackish; crown and occiput between chestnut and auburn ; rest of upper parts between auburn and amber brown, but upper tail-coverts auburn; tail between fuscous and sepia, but the outer edges of basal portion of rectrices auburn; wings fuscous, the inner margins of the quills basally tilleul buff, the outer edgings of quills and coverts auburn ; eyering, lores, and subocular region deep mouse gray; posterior sides of head between chestnut and auburn; sides of neck like the back; chin and throat, creamy white, streaked with brownish black; middle of breast and of abdomen barium yellow, the former broadly, the latter very narrowly, streaked with reddish brown and olivaceous; sides and flanks, grayish olive, obscurely streaked with darker ; crissum grayish olive, the centers of the feathers darker and brownish; lining of wing pale ivory yellow.

Measurements of type.-Wing, 61 mm.; tail, 56; exposed culmen, 14.5; tarsus, 19.

MIXORNIS BORNENSIS PONTIA, subsp. nov.

Subspecific characters.-Resembling Mixornis bornensis bornensis, but with the streaks on the lower parts much narrower.

[^7]Type.-Adult female, No. ${ }^{18} \mathrm{I}_{53}$ 8, U. S. Nat. Mus., Pulo Laut, off southeastern Borneo, December 18, igo7 ; Dr. W. L. Abbott.

Measurements of type.-Wing, 62.5 mm . ; tail, 57 ; exposed culmen, 13; tarsus, 20.5 .

This race may be distinguished from Mixornis bornensis ruficoma, of Banka Island, by its darker, duller, less rufescent (more sooty) upper surface, paler lower parts, and narrower streaks on the throat and breast. It is apparently confined to Pulo Laut.

STACHYRIS NIGRICEPS DIPORA, subsp. nov.

Subspecific characters.-Resembling Stachyris nigriceps nigriceps, from Nepal, but bill stouter; lower parts paler; and upper surface lighter, more grayish.

Description.-Type, adult male, No. 169865, U. S. Nat. Mus.; Khaw Sai Dow, Trang, Lower Siam, February 2, 1899 ; Dr. W. L. Abbott. Pileum fuscous black, conspicuously streaked with dull white ; remainder of upper parts between brownish olive and light brownish olive, the rump and upper tail-coverts a little paler; tail olive brown, the outer edges of the rectrices somewhat more rufescent; wings fuscous, but the outer edgings of quills and coverts like the back; lores mouse gray; auriculars and subauricular region tawny olive ; sides of neck like the back; chin pale mouse gray ; upper throat mouse gray, with on each side a dull white spot, all bordered laterally and posteriorly by a line of chaetura drab ; remainder of lower surface light buckthorn brown, but paler on abdomen, and shading to isabella color on flanks and crissum; lining of wing dull warm buff mixed with light brownish gray ; "upper mandible black; lower mandible dark horny bluish."
Measurements of type.-Wing, 59 mm . ; tail, 51.5 ; exposed culmen, 15 ; height of bill at base, 6 ; tarsus, 21 ; middle toe without claw, 13 .
This subspecies may be distinguished from Stachyris nigriceps davisoni by its lighter, less tawny (more grayish) upper and lower parts, and less rufescent edges of the secondaries. From Stachyris nigriceps coltarti it is readily separable by its pale throat alone.

CYANODERMA ERYTHROPTERA ERIPELLA, subsp. nov.

Subspecific characters.-Similar to Cyanoderma crythroptera crythroptera, from Singapore, but upper surface decidedly darker; anterior lower parts darker, more blackish; posterior lower parts darker and more dingy.
Description.-Type, adult male, No. 18130ı, U. S. Nat. Mus.; Upper Siak River, northeastern Sumatra, November 23, 1906; Dr.
W. L. Abbott. Sinciput dark neutral gray; remaining upper parts rather light and somewhat reddish argus brown, but the upper tailcoverts chestnut; tail bister, the basal portion of outer edges of rectrices chestnut; wings fuscous, but tertials bister, the outer edges of all the quills chestnut, the superior wing-coverts burnt sienna; sides of head and of neck, with chin, throat, and jugulum, dark neutral gray ; breast and sides of body neutral gray, posteriorly washed with pale isabella color ; abdomen pale isabella color tinged with grayish; crissum isabella color; lining of wing pinkish buff ; " orbital skin cobalt; gular skin pale turquoise."

Measurements of type.-Wing, 60 mm . ; tail, 50.5 ; exposed culmen, I3.5; height of bill at base, 5.5 ; tarsus, 19; middle toe without claw, II.5.

CYANODERMA ERYTHROPTERA APEGA, subsp. nov.

Subspecific characters.-Similar to Cyanoderma erythroptera cripella, from Sumatra, but with wing and tail shorter; crown nearly all plain slate color; rest of upper parts of a lighter, brighter ferruginous; throat and breast somewhat lighter ; posterior lower surface darker and duller.

Type.-Adult male, No. I80588, U. S. Nat. Mus.; Tanjong Tedong, Banka Island (southeast of Sumatra), June 3, 1904; Dr. W. L. Abbott.

Measurements of type.—Wing, 57 mm . ; tail, 44.5 ; exposed culmen, 14, height of bill at base, 6; tarsus, 19; middle toe without claw, I3.

The original description of Cyanoderma erythroptera ${ }^{1}$ was based on the bird from Singapore, and it therefore must be applied to the race inhabiting the Malay Peninsula. Synonymous are Timalia pyrrhophaea Hartlaub, ${ }^{2}$ Brachyptery.r acutirostris Eyton," and Timalia pyrrhoptera Bonaparte.*

The generic name Cyanoderma is commonly used as of neuter gender, and as such was originally proposed, but being a compound appellative, can be only masculine or feminine. Its first usage as either of these genders was feminine by Hume and Davis, ${ }^{5}$ and as such it thus should therefore remain.

[^8]
ANUROPSIS MALACCENSIS DRYMODRAMA, subsp. nov.

Subspecific characters.-Similar to Amuropsis malaccensis malaccensis from the southern Malay Peninsula, but upper surface very much darker, and lower parts brighter.

Description.-Type, adult male, No. i8ı304, U. S. Nat. Mus.; Sungei Mandau, eastern Sumatra, November 29, 1906; Dr. W. L. Abbott. Upper surface brussels brown, but the head darker, with blackish shaft stripes, the extreme anterior portion of forehead dull grayish, the upper tail-coverts between auburn and chestnut; tail between mars brown and prout's brown, the broad outer edges of the rectrices basally like the upper tail-coverts; wings fuscous, the edgings of quills and coverts brussels brown, but the lesser coverts lighter and more grayish; lores between smoke gray and pale mouse gray; superciliary stripe, suborbital region, and sides of head except auriculars, deep mouse gray; auriculars dark mouse gray, but inferiorly blackish mouse gray merging into a blackish rictal streak; sides of neck like the cervix, but more grayish inferiorly; lower parts white, but jugulum, sides of breast and of body, together with flanks, crissum, under wing-coverts and axillars, cinnamon buff, paler and duller on jugulum and sides of breast, the sides of breast and of jugulum a little washed with brownish gray.

Measurements of type.-Wing, 69 mm . ; tail, 37 ; exposed culmen, I5; tarsus 28.

This well-marked race seems to be confined to the mainland of Sumatra, since birds from the adjacent islands belong to different subspecies.

ANUROPSIS MALACCENSIS DRIOPHILA, subsp. nov.

Subspecific characters.-Similar to Anuropsis malaccensis malaccensis, but paler above and below.

Type.-Adult male, No. 169877, U. S. Nat. Mus. ; Khaw Sai Dow, Trang, Lower Siam, February 19, 1899 ; Dr. W. L. Abbott.

Measurements of type.-Wing, 67.5 mm . ; tail, 35 ; exposed culmen, 16 ; tarsus, 28.

This is the palest of all the forms of the species. It differs from the Sumatra bird above described as Anuropsis malaccensis drymodrama, much as does Anuropsis malacconsis malaccensis, but even more decidedly. It apparently extends geographically no farther south than Lower Siam, for birds from Pahang, though somewhat intermediate, belong with the Malaccan race.

ANUROPSIS MALACCENSIS DOCIMA, subsp. nov.

Subspecific characters.-Resembling Anuropsis malaccensis drymodrana, from Sumatra, but upper parts, including the wings, much less rufescent (more slaty brown), and rather darker ; sides of head darker ; the ochraceous of sides and flanks much deeper and brighter.

Type.-Adult female, No. 180584 , U. S. Nat. Mus.; Tanjong Tedong, Banka Island (southeastern Sumatra), June 1, 1904; Dr. W. L. Abbott.

Measurements of type.-Wing, 61.5 mm. ; tail, 26.5 ; exposed culmen, 14 ; tarsus, 28.

This race is very different from all the other forms of Anuropsis malacconsis in its much more slaty (less rufescent) upper parts, being in this respect more like the Bornean bird than like any o.her.

DRYMOCATAPHUS NIGROCAPITATUS NYCTILAMPIS, subsp. nov.

Subspecific characters.--Similar to Drymocataplus nigrocapitatus nigrocapitatus from the Malay Peninsula, but with the upper parts darker and duller.

Description.-Type, adult male (?), No. I80572, U. S. Nat. Mus.; Bukit Parmassang, Banka Island, June 15, 1904; Dr. W. L. Abbott. Pileum dull black; cervix, back, and scapulars, mars brown; rump and upper tail-coverts, auburn ; inner webs of rectrices blackish mars brown, their outer webs mars brown; wings sepia, the exposed portions when closed mars brown ; bend of wing russet ; sides of head, including lores, deep mouse gray, streaked obscurely with black and finely with whitish, similar whitish streaks forming a fairly welldefined superciliary stripe; sides of neck like the back; chin and throat, white; jugulum, breast, and middle of abdomen, between tawny and ochraceous tawny ; sides of body, flanks, crissum, and lining of wing, between russet and prout's brown.

Measurenents of type.-Wing, 68 mm .; tail, 52.5 ; exposed culmen, I5.5; tarsus, i9; middle toe without claw, I6.5.

Representatives of Drymocataphus nigrocapitatus from Sumatra belong also to this new subspecies.

All the synonyms of Drymocataphts nigrocapitatus known to the writer belong under the typical race, so the Banka bird is apparently unnamed. These names, including that of the typical form. are:

Brachypteryx nigrocapitata Eyton; ${ }^{1}$ Bessethera barbata Cabanis; ${ }^{2}$ and Turdirostris nigrocapistratus Bonaparte. ${ }^{3}$

MALACOCINCLA ABBOTTI ERITORA, subsp. nov.

Subspecific characters.-Similar to Malacocincla abbotti bazecana Oberholser, ${ }^{4}$ but upper surface darker, more rufescent (less grayish) ; sides of head and neck less grayish; lower parts darker and duller, the flanks, with sides of breast and of body, much more strongly tinged with dull buffy brown; crissum duller.

Description.-Type, adult male, No. 180586, U. S. Nat. Mus.; Buding Bay, Billi on Island, August 6, 1904; Dr. W. L. Abbott. Upper surface between brownish olive and olive brown, becoming somewhat darker on the pileum (where the feathers have pale buffy shaft streaks), and slightly more rufescent on the rump ; upper tailcoverts cinnamon brown; rectrices sepia; primaries, secondaries, and primary coverts, brown, between olive brown and fuscous, their outer webs, together with both webs of tertials, greater, median, and lesser wing-coverts, brown like the back; lores and superciliary stripe, between mouse gray and deep mouse gray, mixed more or less with pale mouse gray; rest of sides of head and of neck buffy brown, the auriculars somewhat streaked with the brown of the back, and with narrow, inconspicuous shaft markings of pale buffy; chin and throat, grayish white, the latter buffy grayish on its sides; upper breast dull light pinkish buff ; lower breast dull cream color, deepening on lower abdomen into pale ochraceous buff ; crissum clay color ; sides of breast, sides of body, together with flanks and thighs, buffy brown; lining of wing light pinkish cinnamon, somewhat mixed with light brownish; inner margins of outer secondaries and inner primaries dull vinaceous buff ; " iris pale reddish brown; upper mandible dark horn brown ; lower mandible leaden ; feet pale purplish fleshy."

Measurcments of type.-Wing, 74 mm . ; tail, 49 ; exposed culmen, 18; tarsus, 26.5 ; middle toe without claw, 16.

[^9]With this addition there are now six races of Malacocincla abbotti:

1. Malacocincla abbotti abbotti Blyth.-Nepal and Assam to Tenasserim.
2. Malacocincla abbotti olivacea (Strickland).-Malay Peninsula.
3. Malacocincla abbotti sirensis Oberholser.-Pulo Mata Siri, Java Sea.
4. Malacocincla abbotti büttikoferi Finsch.-Bornco.
5. Malacocincla abbotti critora Oberholser.-Billiton Island.
6. Malacocincla abbotti baweana Oberholser.-Bawean Island, Java Sea.

AETHOSTOMA ROSTRATA AETHALEA, subsp. nov.

Subspecific characters.-Similar to Aethostoma rostrata bu.vtoni, ${ }^{1}$ of southern Sumatra, but less rufescent (more sooty) and somewhat darker above; and with the crissum a little more buffy.

Description.-Type, adult male, No. i8o268, U. S. Nat. Mus. ; Pulo Karimon Anak, eastern Sumatra, June 3, Igo3; Dr. W. L. Abbott. Upper parts between prout's brown and mummy brown, becoming somewhat more rufescent on the rump and upper tail-coverts, the longest feathers of the latter, chestnut; tail dark bister, the outer edges except at tips broadly chestnut; wings between olive brown and clove brown, but the outer webs of the quills and edgings of the superior wing-coverts, mars brown, and the lesser coverts like the back ; inner edges of basal portion of quills dull tilleul buff; lores light buff ; rest of sides of head light buffy grayish; sides of neck like the back; lower parts white, the sides of breast and of body, and the flanks, washed with light grayish; crissum pale warm buff ; thighs buffy brown ; lining of wing dull pinkish buff ; "iris clear brown."

Measurements of type.-Wing, 75.5 mm . ; tail, 53.5 ; exposed culmen, 17 ; height of bill at base, 5 ; tarsus, 26 ; middle toe without claw, 16.5.

Although this new race is apparently confined to Pulo Karimon Anak, off the eastern coast of Sumatra, it seems to be different from Acthostoma rostrata buxtoni, with which we consider, at least for the present, the bird from the not far removed Great Karimon Island and the neighboring coast of Sumatra to belong.

AETHOSTOMA ROSTRATA PAGANICA, subsp. nov.

Subspecific characters.-Similar to Acthostoma rostrata aethalea, from Pulo Karimon Anak, but smaller; upper parts, flanks, and particularly the sides of head, darker.

[^10]Type.-Adult male, No. i8ızo8, U. S. Nat. Mus.; Upper Siak River, eastern Suma¿ra, November 21, 1906; Dr. W. L. Abbott.

Mcasurements of type.-Wing, 69 mm . ; tail, 5 I ; exposed culmen, I7; height of bill at base, 5 ; tarsus, 26 ; middle toe without claw, i6.

This race from northeastern Sumatra differs from Acthostoma rostrata buxtoni from southern Sumatra as from Aethostoma rostrata aethalea, though not quite so decidedly.

With the above additions the recognizable subspecies of Aethostoma rostrata are as follows:

1. Aethostoma rostrata rostrata (Blyth).--Singapore Island.
2. Aethostoma rostrata leucogastris (Davison).-Southern Malay Peninsula to Tenasserim.
3. Aethostoma rostrata acthalca Oberholser.-Pulo Karimon Anak, eastern Sumatra.
4. Acthostoma rostrata paganica Oberholser.-Northeastern Sumatra.
5. Aethostoma rostrata buxtoni (Tweeddale).--Southern Sumatra.
6. Aethostoma rostrata macroptera (Salvadori).-Borneo.

The generic term Aethostoma Sharpe, though treated by its original proposer as of netuter gender, is not properly so used. Being a compound appellative, it must be either masculine or feminine ; and, in view of the feminine form of its ending, is probably better used as of this gender.
,

REMAINS OF MAMMALS FROM CAVES IN THE REPUBLIC OF HAITI

BY
GERRIT S. MILLER, Jr.

(Publication 2707)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
OCTOBER 16, 1922

Ege Eord 追aftimore (Dress
baltimore, yd., d. s. a.

REMAINS OF MAMMALS FROM CAVES IN THE REPUBLIC OF HAITI

By GERRIT S. Miller, Jr.

On March 4 and 5, 1921, Mr. J. S. Brown and Mr. W. S. Burbank, while engaged in geological surveys for the Republic of Haiti, under the direction of the U. S. Geological Survey, examined two caves at the northwest end of the Republic of Haiti. Their object was not to undertake a thorough exploration of the deposits on the cave floors but merely to determine whether or not these deposits contained the remains of mammals representing a fauna older than that which has been found in the kitchen middens of the Dominican Republic. ${ }^{1}$ Such older faunas are known in Cuba, Porto Rico and Jamaica, but none has hitherto been recorded from the island of Haiti. The bones obtained by Mr. Brown and Mr. Burbank have been submitted to me for examination and report.

Concerning the caves Mr. Brown writes:
The caves from which these bones were taken are located on the slopes of the mountains north of the northwest end of the central plain of Haiti, northeast of the town of St. Michel de l'Atalye, commonly known as St. Michel, and northwest of the large American-owned plantation, managed by Mr. H. P. Davis and commonly known to Americans as the Davis Plantation. By the Haitians this plantation is called l'Atalye. The distance from the caves to the coast in an air line is about 40 kilometers.
The larger cave is about 3 or 4 kilometers northeast of St. Michel and an equal distance northwest of the Davis Plantation. Its altitude is about 600 meters above sea-level, nearly 200 meters above the central plain. It is one of a large number of caves evidently formed at a fairly remote period when hydrologic conditions differed considerably from those obtaining at present. Many of the caves including the one here referred to are located high on the mountain slope without any apparent relation to present drainage, either surface or subterranean. The caves are dry, there is little evidence of active solution, and they are apparently being filled with residual clay, rain-wash, and general cave breccia material. Many of them contain a thick floor cover of guano left by the thousands of bats that now inhabit or recently have inhabited the caves. The large cave mentioned above is about 40 meters in length, and from to to 20 meters in width and height and contains several large columns formed by the juncture of stalactites and stalagmites. It has two large openings separated by a pillar, and a third small opening on the

[^11]sloping hillside, which afford entrance nearly on the plane of the floor. Near the rear there is also an opening or skylight, about 5 meters in diameter, to the surface, through which long hanging roots of the figuier tree grow down into the cave. Rocks and surface wash falling down the skylight have made a small cone of coarse debris beneath it. The cave is the scene of occasional Voodoo ceremonies and contains a few sacred offerings of porcelain ware, food, and money left by the Haitians. Near the center of the cave in the middle of one of the largest open spaces an excavation 1.6 meters deep was made. The hole was a little more than a meter in diameter. Only firm, dry, reddish dirt with a rather granular appearance was encountered. There was very little guano and no bones whatever, the rock floor of the cave appears to be very deep down here, and was not approached by this pit. Another hole was made very near the extreme rear end of the cave about I meter from the wall and 5 meters from the cone of debris beneath the skylight. This hole was about a meter in diameter and less than a meter in depth ($21 / 2$ feet). The material was full of rocks and boulders and hard to excavate. Near the surface a living root of a tree, 15 centimeters in diameters was encountered and the hole was dug partly around it. From very near the surface downwards the hole yielded bones of a small rodent, and about half a meter below the surface a larger vertebrate bone was found.

The smaller cave is located about 2 kilometers northnorthwest of the Davis Plantation and perhaps 3 kilometers east of the larger cave. It is on the south side of a deep dry ravine. The present opening of the cave is somewhat spherical in shape and its diameter is about 30 meters. The roof is arched, all in one chamber, and the floor is convex, the rear half being nearly bare rock, partly covered by a few inches of guano left by bats. The mouth, still large but originally much larger, is choked by a great pile of debris from the cliff that rises above it. This debris has rolled inward as well as outward, covering the floor of the front part of the cave. The excavation here was made at the lowest part of the cave, adjacent to one of the steep vertical rock walls, following down the wall for 1.6 meters. The hole was about $\mathrm{I}^{1 / 2}$ meters in diameter. At the bottom the rock wall sloped inward rapidly and when excavation was stopped the entire bottom of the hole was on rock. The material excavated was about 50 to 60 percent loose stones, with just enough dirt and guano to fill the space between. The upper half meter of this hole yielded no bones whatever, as the material was apparently debris recently slumped in. Below the half meter mark small rodent bones appeared in increasing numbers all the way to the bottom, many resting on the rock floor. At a depth of almost a meter several larger bones were found in undisturbed material, and near the bottom imperfect slivers of a longer bone apparently nearly replaced by calcareous material. In both caves the bones of the small rodents were abundant and many duplicate fragments were rejected. The larger bones, however, are rare, and thorough examination probably would be necessary to secure a satisfactory collection.

In addition to various fragments too imperfect to permit of exact determination the collection includes remains of the following mammals.

RODENTS

ISOLOBODON PORTORICENCIS ALLEN

Large cave: Mandibles, 3 (2 right, I left). Probably referable to this species are 2 femora (I right, I left), I broken innominate, 3 upper incisors and 6 lower incisors.

Smaller cave: Mandibles, 9 (2 right, 7 left). Probably referable to this species are several fragments of long bones, 6 broken innominates, 2 broken scapulæ, a few phalanges, 5 upper incisors, 9 lower incisors.

APHÆTREUS gen, nov. (Echimyidæ)

Type.-Aphætreus montanus sp. nov.
Characters.-Mandible and its teeth resembling those of Isolobodon or Plagiodontia. Mandibular cheekteeth prismatic, growing from persistent pulps, their essential structure as in the two related genera but the entire toothrow appearing as if compressed antero-posteriorly with the result that the dentine and cement spaces are narrowed, the enamel plates are brought closer together, and the crown of each tooth becomes obviously wider than long instead of apparently longer than wide ; inner reentrant angle confluent with postero-external angle, so that the enamel pattern is made to consist of an anterior Y and a posterior I completely isolated from each other by a band of cement ; m_{3} nearly as large as m_{2}.

Remarks.-While the general features of the mandible and teeth indicate that Aphætreus is allied to Plagiodontia and Isolobodon the exact relationship of the genus cannot be determined until the maxillary teeth are known. The increased width and compact structure of the crowns, the large size of m_{3}, the narrowness of the dentine and cement plates, and the division of the enamel pattern into two separate parts are all specialized features as compared with the conditions found in the two better known genera. All but the last could have been derived with equal facility from a structure similar to that occurring in either genus; the peculiarity of the enamel pattern, however, appears to have come from a type resembling Isolobodon rather than Plagiodontia. In these genera the maxillary teeth differ strikingly from each other but the mandibular teeth are scarcely distinguishable except by the relative depths of the inner and outer reentrant angles. The outer angle in Plagiodontia, extends across about one-third of the width of the crown, so that it meets the much longer posterior reentrant from the inner side at a point conspicuously ectad to the middle of the crown. In Isolobodon, however, it extends more than half way across, so that its length is greater than that of the corresponding inner angle ; the point of meeting is there-
fore entad to the middle of the crown. In Aphætreus the two opposed reentrants have joined so as to isolate the posterior segment of the enamel pattern, but there is a slight narrowing of the cement band and a bending toward each other of the enamel plates in the region where the points of the reentrants touch in Isolobodon. Nothing of the kind occurs at the level where contact takes place in Plagiodontia. Another feature which suggests Isolobodon is the character of the cement surfaces exposed on the sides of the teeth. In Plagiodontia these surfaces are irregularly and minutely pitted; in Isolobodon and Aphætrous they are transversely ridged.

Division of the enamel pattern of the lower cheekteeth into the elements seen in Aphætrous is unusual; but it occurs in various Hystricoid genera which are not necessarily near allies of the present genus or of each other, as Chinchilla, Dactylomys, Amblyrhiza and some species of Echimy's.

APHETREUS MONTANUS sp. nov.

Type.-Mandible with full set of cheekteeth, No. 10733 U. S. National Museum. Collected in the larger of the two caves northeast of St. Michel de l'Atalye, northwest end of the Central Plain, Republic of Haiti, by J. S. Brown and W. S. Burbank.
Measurements.-Type: from sigmoid notch to upper border of alveolus of incisor, $45+\mathrm{mm}$. (alveolus slightly imperfect) ; depth at middle of $m_{3}, 6.4$; diastema, 1 I + ; mandibular toothrow (alveoli), 20.0; mandibular toothrow (crowns), 20 ; crown of first lower molar, $4.2 \times 5.2(5.2 \times 5.0) ;{ }^{1}$ crown of second lower molar, 4.4×5.4 ($4.8 \times$ 4.8) ; crown of third lower molar, 4.8×4.8 (4.0×3.8).

Specimens examined.-Large cave: Mandibles, 2 (right), one with complete set of cheekteeth the other (No. 10734) lacking $p m_{4}$ and m_{1}. Perhaps referable to this species are 2 femora, larger than those supposed to, represent Isolobodon.

ITHYDONTIA gen. nov. (Echimyidæ)

Type.-Ithydontia levir sp. nov.
Characters.-General structure of lower molars as in Isolobodon and Plagiodontia, but shaft of tooth more compressed antero-posteriorly, and reentrant angle of outer side extending directly inward, without backward slant, its extremity coming in contact with anterior instead of posterior reentrant angle of inner side. Cement transversely ridged on exposed surface of shaft as in Isolobodon.

[^12]Remarks.-Though this genus is based on two isolated teeth only its characters appear to be well defined. The curvature of the shaft and the position of the worn surface of the crown on the summit of the shaft exactly coincide with these features in the first and second lower molars of Isolobodon. Oriented according to them the teeth in the two genera show no obvious points of difference except that the longitudinal ridges on the inner side of the shaft are wider in Isolobodon. The enamel pattern, however, has the peculiar characters that have been described. As in Isolobodon the anterior reentrant fold is the longer of the two on the inner side, but instead of curving rapidly forward so as to come almost or quite in contact with the enamel of the anterior wall of the shaft, it extends obliquely inward and backward, meeting the tip of the outer reentrant at a point not far ectad to the middle of the crown. The posteroexternal fold is directed almost straight inward, without the forward curve which the same fold shows in Isolobodon.

That these peculiarities are not a mere abnormal individual development of Isolobodon seems sufficiently indicated by their similarity in two teeth from opposite sides and from different individuals, as well as by the absence of tendencies of a similar kind in the 34 jaws which contain teeth among our series of Isolobodon remains.

ITHYDONTIA LEVIR sp. nov.

Type.-A right mandibular tooth probably m_{1} or m_{2}, No. 10735 U. S. National Museum. Collected in the larger of the two caves northeast of St. Michel de l'Atalye, northwest end of the central Plain of Haiti, by J. S. Brown and W. S. Burbank.

Characters.-An animal about the size of Isolobodon portoricensis Allen; shaft of lower molar, type (right), $2.8 \times 4.0 \mathrm{~mm}$., second specimen (left) 3.0×4.6.

Specimens cramined.-Two lower molars (one right, one left), both from the larger cave. One (the type) was found loose among the small miscellaneous bones, the other was imbedded, near a broken mandible of Isolobodon, in a small mass of matrix adhering to the dorsal vertebra of the ground sloth. The second specimen (No. 10736) represents an older individual than the type.

BROTOMYS VORATUS Miller (?)

Larger cave: Three femora (2 right, I left).
Smaller cave: A right upper incisor, and three imperfect humeri.
In the absence of skulls and cheekteeth the identification of Broto$m y s$ among the remains collected in the caves is uncertain. The
femora and humeri resemble specimens from the kitchen middens of San Pedro de Macoris, Dominican Republic, the only locality at which the species has hitherto been found. The incisor is smaller than the corresponding tooth of the type, but it shows no obvious peculiarities in structure. It is not the tooth of an introduced rat.

GROUND SLOTH

MEGALOCUUS? sp?

Larger cave: One nearly perfect caudal vertebra, and one imperfect vertebra probably a dorsal; also a fragment which appears to be the proximal end of the radius of a young animal.

Smaller cave: Two imperfect caudal vertebre. The proximal end and a fragment of the shaft of a rib may have come from the same individual.

The animal appears to be about the size of the Porto Rican Acratocnus, but the caudal vertebre differ in so many details of ${ }^{`}$ form from corresponding bones lent me by the American Museum of Natural History through Dr. Matthew and Mr. Lang that there is little probability of generic identity between the two sloths. Dr. Matthew has kindly examined the vertebra from the larger cave. He regards it as representing an animal nearly related to Megalocnus of Cuba, though not certainly a member of the same genus. Measurements: Largest caudal vertebra (from larger cave), probably about the sixth of the series (No. 10740) ; length of centrum, 18 mm .; anterior face of centrum, 19×16; posterior face of centrum, $20.5 \times$ 15.5 ; neural canal, 6.5×4.4; greatest width from tip to tip of transverse processes, 46 ; width of transverse process at middle, 12 ; depth including posterior zygapophysis, 27. Dorsal vertebra (No. 10739); centrum, 24×19; neural canal, 23.6×15.

MAN

Smaller cave: The head of a left human femur (No. 10743) was found at a depth of about a meter in undisturbed material associated with the caudal vertebre of the Ground Sloth and the rib which I suppose to represent the same animal. Its substance is lighter and less infiltrated with mineral matter than the sloth bones. From the same excavation was taken a small fragment of chipped stone (chert) which Dr. Walter Hough has identified as an artifact. The exact level at which this was found was not noted.

UNIDENTIFIED MAMMALS

Smaller cave: Three fragments from a foot (No. 10744) and one piece of a large bone (No. 10745) represent mammals that I have been unable to identify.

The parts of the foot are a broken metapodial and two basal phalangeal extremities, probably the opposite ends of one bone. The piece of metapodial measures: Length 56 mm ., greatest diameter of imperfect head about 10.5 , least diameter of shaft 5.4. Phalanx: width at base, II.O; height at base (median), IO.0; width of distal extremity, 9.2 ; depth of distal extremity at middle 4.6 , at side 5.4 ; width of shaft 10 mm . behind extremity, $6 \pm$. In size and form the bones have some resemblances to the corresponding parts in man, seal, and capybara; but the differences from all three are such as to preclude identity. It seems not improbable that they represent a large unknown rodent.

The fragment of large bone is 110 mm . long, 45 mm . wide and 19 mm . thick. In general form it is not unlike a section from the rib of a small finback whale in the region of greatest curvature near the head, but its structure is obviously that of the bone of a land mammal. There is an inner area of loose spongy tissue and an outer dense wall from which, at the broken edges, the spongy material flakes along definite planes of cleavage. The wall varies in thickness from 2.5 to 6 mm . This structure, as well as the condition of the bone, is essentially as in the rib of the small ground sloth from the same cave. A suggestion of ground sloth is also found in the form of the fragment when viewed from the broader side; the general outline is then somewhat like the median portion of the femur of Acratocnus in Anthony's figure 2 of plate 73 (Mem. Am. Mus. Nat. Hist., N. S., vol. 2, 1918), though the size indicates an animal much larger than the Porto Rican sloth. The fragment is, however, actually as well as relatively narrower in its lesser diameter, while its surface is smoother and less marked by muscle attachments than that of the femur of Acratocnus. While it seems evident that this bone represents a land mammal, perhaps a ground sloth, larger than any known member of the Haitian fauna it is not possible at present to form any clear idea as to what this animal may have been.

OBSERVATIONS ON THE FAUNA REPRESENTED IN THE CAVES

The known indigenous land mammals of the Island of Haiti, bats and Solenodon excepted, have been, up to the present time, the three Hystricoid rodents Plagiodontia, Isolobodon and Brotomy's, each represented by a single species. The first was living in the early part of the nineteenth century, but recent attempts to find it alive
have failed. It has no known very near relative on any other island. The other genera are known from skeletal remains only; Isolobodon has been collected in Porto Rico and on two of the Virgin Islands; Brotomy's has not been found elsewhere than on Haiti, but there is a nearly related genus in the cave deposits of Cuba. That all three of these animals were used as food by pre-Columbian man is clearly shown by the frequency with which their bones occur in kitchen midden deposits. One of them, Isolobodon, is the most abundant mammal among the specimens collected by Mr. Brown and Mr. Burbank, while another, Brotomys, is probably represented. That the caves were used by early man is indicated by the presence of the chert artifact and perhaps also by the occurrence of the human femur. The deposits in the caves have, however, none of the features commonly seen in heaps of human refuse, such as bits of broken pottery, and an abundance of remains other than mammalian. The considerable distance (about 40 kilometers) from the coast is a further reason for regarding the deposits as not to any important degree human in origin. Moreover, Mr. Brown tells me that he particularly considered the possibility of such origin, but that the evidence all appeared to show that the deposits were the work of natural agencies. It therefore seems reasonable to assume that the assembling of the mammalian remains owes little if anything to the influence of man. Probably the rodents whose bones Mr. Brown found to be so abundant at all levels except in the superficial deposits were carried in for food by the giant extinct owl described by Dr. Wetmore in his report on the birds from the caves. ${ }^{1}$

While the cave fauna includes two of the mammals known from the kitchen middens of the Dominican Republic it also includes two genera of rodents, a small ground sloth, two large unidentified mammals and an extinct owl that have not been found in these obviously recent deposits. The two rodents have no known near relatives on other islands, but the ground sloth is allied to genera previously discovered in Cuba and Porto Rico. The former presence on other islands of an owl resembling in size at least the one now discovered in the extinct fauna of Haiti is indicated by the abundance in Cuban and Porto Rican caves of the remains of rodents too large to have been carried there by such owls as are now living. There seems no reason to doubt that the life represented by the remains from these two Haitian caves formed part of the same older, perhaps Pleistocene, vertebrate fauna whose presence on the other islands of the Greater Antilles has recently become known.

[^13]
SMITHSONIAN MISCELLANEOUS COLLECTIONS

VOLUME 74, NUMBER 4

REMAINS OF BIRDS FROM CAVES IN THE REPUBLIC OF HAITI

BY
ALEXANDER WETMORE
Biological Survey, U. S. Department of Agriculture

(Publication 2708)

CITY OF WASHINGTON

PUBLISHED BY THE SMITHSONIAN INSTITUTION
OCTOBER 171922
baltimore, m., d. s. a.

REMAINS OF BIRDS FROM CAVES IN THE REPUBLIC OF HAITI

By ALEXANDER WETMORE,
Biological Survey, U. S. Department of Agriculture

In a small collection of bones, mainly of mammals, secured in two caves in the Republic of Haiti by Mr. J. S. Brown and Mr. W. S. Burbank, during geological studies under direction of the U. S. Geological Survey for the Republic of Haiti, are a few bones of birds that have been placed in my hands for study by Mr. Gerrit S. Miller, Jr. The caves from which the bones were taken, according to information supplied by Mr. Brown, are on the slopes of the mountains northeast of St. Michel de l'Atalye, and in a direct line are about forty kilometers from the coast. Two caverns were visited on March 4 and 5, 1921, and small collections made to determine whether more extended explorations were advisable. The larger of the caves under discussion lay between three and four kilometers from St. Michel at an altitude of about 600 meters above sea level. An excavation near the rear of the cave to a depth of less than a meter through reddish dirt containing many rocks yielded a number of bones. Additional material was collected from a smaller cave on the side of a deep, dry ravine about three kilometers east of the first site. Near the rear wall in this cavern a pit dug to a depth of 1.6 meters through a layer of stones, bat guano and earth yielded bones below a depth of half a meter. For more detailed information regarding these sites reference is made to the paper by Mr. Gerrit S. Miller, Jr., ${ }^{1}$ in which descriptions of the mammal remains are given. The few bones of birds secured include only four species, three obviously recent and the fourth a remarkable owl whose existence has been wholly unsuspected. The latter is an indication of an extinct avifauna that with exploration may perhaps yield even stranger species. Study of extensive collections from caves in Porto Rico revealed seven species of birds not previously known from the island, six of them new to science and the seventh a species of rail described originally from kitchen midden deposits

[^14][^15]in St. Thomas and St. Croix. ${ }^{2}$ All of these apparently are now extinct, though one, a whippoorwill, is represented by a skin in the Field Museum.

Proper identification of the specimens discussed below has been possible only through the fine series of bird skeletons collected by Dr. W. L. Abbott during his explorations in Haiti.

COLUMBIDæ

CHÆMEPELIA PASSERINA (Linnæus)

A left humerus, entire save for the distal end, from the larger cave does not differ from that of a modern ground-dove.

CUCULIDÆ

CROTOPHAGA ANI Linnæus
A left humerus was secured in the smaller cave. As this bone is obviously modern this record has no bearing on the supposition that the spread of the ani through the Antilles has taken place during recent times.

TYTONIDE
 TYTO OSTOLOGA sp. nov.

Characters.-Similar to Tyto perlata (Lichtenstein) but much larger (head of metatarsus one and one-half times as broad).

FIG. I

Fig. 2

Description.-Type, U. S. Nat. Mus., Cat. No. Io746, proximal end of left metatarsus, from a large cave northeast of St. Michel de 1'Atalye, Republic of Haiti, collected March 4-5, 1921, by J. S. Brown, and W. S. Burbank.

Metatarsus with inner glenoid facet (fig. I) more extensive, somewhat more excavated than outer, irregularly quadrangular in outline, sloping toward rear, with posterior margin indented by outer margin of posterior semilunar groove; outer facet slightly more

[^16]elevated than inner, intercondylar tubercle broad, elevated inner side at anterior margin straight, outer side rounded, summit obliquely truncated toward outer side, sloping broadly in rounded outline posteriorly to terminate at the margin of the posterior semilunar sulcus so that it entirely separates the two glenoid surfaces ; anterior surface (fig. 2) excavated deeply and abruptly beneath the median tubercle, where there is a slight overhang, anterior end of groove in outline elliptical, with outer side more abruptly delimited, and inner with wall more sloping ; tubercle for tibialis anticus elongate, elliptical, slightly elevated, somewhat roughened ; the two superior foramina slightly nearer to upper end of this tubercle than to proximal end of anterior groove, the outer foramen very slightly higher than the inner, and nearer the median line; both foramina small, placed in floor of anterior groove ; inner margin of bone below head with a sharp ridge marking a tendinal attachment, inclined inward to form an overhang over the margin of the anterior groove; anterior semilunar groove only slightly indicated ; posterior semilunar groove broad and deeply cut, slightly deeper at outer side ; external head of talon triangular in lateral outline, with tip rounded, slight in size; internal head of talon somewhat broken at margin and below but much more extensive than the external division, forming a plate-like projection, concave on outer face, sloping outward to join anterior margin at a clean cut angle; outer superior foramen opening in posterior sulcus below and slightly within internal head of talon; inner superior foramen opening on outer face of outer head of talon not far from its center.

Measurements.-(Of type) lateral diameter of head at proximal end 17.5 mm .; greatest width of anterior groove 9.5 mm ., anteroposterior thickness through external head of talon in mm.

Range.-Known only from large cave between three and four kilometers northeast of St. Michel de l'Atalye, Republic of Haiti. (Extinct.)
Remarks.-In addition to the head of the metatarsus described as type this huge barn owl is represented in the bones from this same cave by second and fourth metatarsal trochlea (Cat. No. 10747), that in all probability formed part of the metatarsus described as the type, and by the distal end of a right radius. These fragments are similar in outline to those in the common barn owl (Tyto perlata) but, like the head of the metatarsus, are comparatively speaking of gigantic size. The fourth trochlea is 13.5 mm . in width from the external sulcus to its free end. The second trochlea measures II. 7 mm . from the internal sulcus to its posterior end. The expanded end of the radius is 9 mm . broad.

In a series of six specimens of the common barn owl (Tyto perlata) the width of the proximal end of the metatarsus varies from 10.5 to 11.8 mm . and the length (measured from the top of the intercondylar tubercle to the lower margin of the third trochlea) from 70.0 to 82.0 mm . In Tyto glaucops these measurements are respectively 10.0 mm . and 64.0 mm . and in T. bargei 8.0 mm . and 5.6 mm . On this basis the tarsus in Tyto ostologa should have measured in the neighborhood of 120 mm . in length. The head of the tarsus is as robust as in a large snowy owl and was of course much longer.

Though T. ostologa may have possessed structural peculiarities of which we know nothing, the fragments at hand are so similar in conformation to the corresponding bones in Tyto perlata that there has been no hesitancy in placing the species in the genus Tyto. ${ }^{3}$ It is much larger than any previously described in this group and so adds another remarkable form to those previously known from Haiti. As a natural corollary to the occurrence of ostologa in this cave we may suppose that the large rodents, described by Mr. Miller from the same deposits, formed the prey of this owl, so that we are indebted to the owl for the formation of the bone deposits. These may be considered as remains from pellets regurgitated by the bird, as similar formations of smaller mammalian remains in Porto Rico are attributed to the activities of Tyto cavatica Wetmore (extinct) and Gymnasio mudipes (Daudin). It may be remarked that Tyto glaucops, the modern barn owl of Haiti, is smaller than T. perlata.

TYRANNIDÆ

TOLMARCHUS GABBII (Lawrence)

A left humerus was secured in the smaller cave.

[^17]
EXPLORATIONS AND FIELD-WORK OF THE SMITHSONIAN INSTITUTION
 IN 1922

(Publication 2711)

GITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION

Ebe Eord dibaftimore (Dress

BALTIMORE, MD., G. S. A.

CONTENTS

PAGE
Introduction I
Geological Explorations in the Canadian Rockies (Dr. Charles D. Wal- cott) I
Paleontological Field-Work in the United States (Dr. R. S. Bassler) 24
Astrophysical Field-Work in California, Arizona, and Chile (Dr. C. G. Abbot) 27
Expedition to Examine the North Pacific Fur Seal Islands (Dr. Leon- hard Stejneger) 30
Explorations in Australia and China (Mr. Charles M. Hoy) 41
Biological Explorations in Southeastern China (Mr. A. de C. Sowerby) 4^{2}
Heredity Experiments in the Tortugas (Dr. Paul Bartsch) 45
Collecting Trip to Jamaica (Mr. John B. Henderson) $5+$
The Mulford Biological Exploration (Dr. W. M. Mann) 54
Botanical Exploration of the Dominican Republic (Dr. W. L. Abbott) 62
Botanical Exploration in Central America (Mr. Paul C. Standley) 63
Botanical Exploration in Colombia (Mr. Ellsworth P. Killip) 70
Visit to European Herbaria (Mrs. Agnes Chase) 80
Recent Discoveries of Ancient Man in Europe (Dr. Aleš Hrdlička) 82
Meeting of International Congress of Americanists in Brazil (Drs. Hough and Hrdlička) 85
Exploration of the Paleolithic Reginns of France and Spain (Mr. M. W. Stirling) 87
Archeological Field-Work on the Mesa Verde National Park, Colorado (Dr. J. Walter Fewkes) 89
Observations Among the Ancient Indian Monuments of Southeastern Alaska (Dr. T. T. Waterman) II5
Archeological Investigations at Pueblo Bonito (Mr. Neil M. Judd) 134
Investigation of Prehistoric Quarries and Workshops in Pennsylvania (Mr. John L. Baer) 143
Investigations Among the Algonquian Indians (Dr. Truman Michelson) 146
Field-Work Among the Yuma, Cocopa and Yaqui Indians (Miss Frances Densmore) 147

EXPLORATIONS AND FIELD-WORK OF THE SMITHSONIAN INSTITUTION IN 1922

INTRODUCTION

The present pamphlet, describing briefly the various explorations and field expeditions initiated, or cooperated in by the Smithsonian Institution and its branches, serves as an announcement of the results obtained, many of the investigations being later described more fully in other publications of the Institution. The collections resulting from many of these expeditions are shown to the public in the National Museum.

Scientific exploration has always been an important phase of the Institution's work in the " increase and diffusion of knowledge " and during the 76 years of its existence practically every part of the globe has been visited by Smithsonian field parties and our knowledge of the regions increased. There will always be important work in the nature of scientific exploration to be done, and had the Institution the means at its command, more extended investigations of great value to science and interest to the layman could be undertaken.

GEOLOGICAL EXPLORATIONS IN THE CANADIAN ROCKIES
Secretary Charles D. Walcott continued explorations in the Canadian Rockies for evidence bearing on the pre-Devonian formations north of Bow Valley, Alberta, and south along the new Banff-Windermere motor road, which passes from the Bow Valley over Vermilion Pass and down the Vermilion River Canyon to the Kootenay River and thence over Sinclair Pass to the broad Columbia River Valley north of Lake Windermere in British Columbia.

The first half of the season was unfavorable owing to dense forest fire smoke and inefficient trail men, but the latter part of August and all of September fine weather and capable men enabled the party to push the work vigorously. A fine section of pre-Devonian strata was studied and measured in the upper part of Douglas Lake Canyon Valley, and many fine photographs taken (figs. 3-12). This beautiful valley is only 12 to I 5 miles (19.3 to 24 km .) in a direct line east and northeast of Lake Louise Station on the Canadian Pacific Railway,

[^18]

[^19]

[^20]
Fig. 6.-Lower ice fall of Bonnet glacier with radial series of crevasse and above, on right, columnar crystallization Locality: Same as figure 4. (Mr. and Mrs. C. D. Waicott, 1922.)

The cliffs are formed of
Fig. 7.-Cliffs south of Mount St. Bride (10,875 feet, $3,262 \mathrm{~m}$.) with two branches of Trifid glacier.
Devonian limestones above with the 1 ans Mrs. C. D. Walcott, 1922.)
but as far as known it had not been visited, except by trappers long ago, until the summer of I921 when Walter D. Wilcox and A. L. Castle camped in it and photographed some of its more striking features. Wilcox called it the " Valley of the Hidden Lakes," ${ }^{1}$ but for geologic description and reference " Douglas Canyon" is more simple.

Mount Douglas (Io,6I5 ft., 3,018 m., figs. 2 and 3) towers for 4,500 feet ($1,371.60 \mathrm{~m}$.) above the canyon bottom, and Lake Douglas

Fig. 8.-Lake Gwendolyn, the gem of the upland valley, with Bomet glacier and the northwest cliffs of Bonnet Mountain.
Locality: The lake is about 12.5 miles (20 km .) east-northeast of Lake Louise Station on the Canadian Pacific Railway, Alberta, Canada, and 7,500 feet ($2,250 \mathrm{~m}$.) above sea level. (Mr. and Mrs. C. D. Walcott, 1922.)
(fig. i) fills the ancient pre-glacial channel for two miles or more. This superb canyon valley with its forests, lakes, glaciers and mountain walls and peaks (figs. I, 3-10) should be opened up to the mountain tourist who has the energy to ride along a fine Rocky Mountains Park trail (fig. 12) from Lake Louise Station up the Pipestone and Little Pipestone rivers to the upper section of the Red Deer River, or from the Station by the way of Lakes Ptarmigan and Baker to the Red Deer camp and thence to Douglas Lake and Canyon Valley.

[^21]

Fig. IO.-Lake Gwendolyn and glacier with moraine above. Halstead Pass, on the left, is at the head of the Panther River
drainage, and Cascade divide is above a branch of Cascade River. (See fig. 7.)
D. Walcott,

The trail into Douglas Lake from the Red Deer River is not cut out for three miles, but io pack horses were led through the forest on a mountain slope without difficulty. This part of the trail should be opened up by the Rocky Mountains Park service and made part of the Pipestone-Red Deer-Ptarmigan circuit.

Fig. II.-Limestone rock fall from mountain side on right of picture. The horses and riders indicate the size of the blocks.
Locality: Douglas Lake canyon about 1.5 miles (2.4 km .) above Lake Douglas and about 13 miles (20.8 km .) east-northeast of Lake Louise Station on the Canadian Pacific Railway, Alberta, Canada. (Mr. and Mrs. C. D. Walcott, 1922.)

Game is abundant. The party saw i44 mountain goats, many black tail deer, and marmots on the Alpine slopes of Douglas Canyon (figs. 7 and io), and at the head of the Red Deer-Pipestone divide, mountain sheep.
The measured geologic section was from the base of the Devonian above Lake Gwendolyn across the canyon to the deep cirque below Halstead Pass where the great Lyell limestone forms the crest of
the ridge. (See fig. io.) The section includes the Ozarkian Mons formation down to the Lyell formation of the Upper Cambrian. ${ }^{1}$

A short visit was made to Glacier, B. C., where Mrs. Walcott measured the recession of Illecillewaet glacier, which she began to record in 1887. The recession the past four years has been at the rate of 112.5 feet (34.29 m .) per year, and all of the lower rock slopes are now free from ice. (See figs. I3 and I4.)

Fig. 12.-Rocky Mountains Park trail on north side of head of Red Deer River, en route from Lake Louise to Douglas Lake canyon.

Locality: Same as figure 2.
On our way south from the Bow Valley no stops were made for photography or geologic study until camp was made on the Kootenay River about six miles (9.6 km .) below the mouth of the Vermilion River. The Kootenay Valley is deep and broad, with the high ridges of the Mitchell Range on the east and the Brisco Range on the west. (Figs. 15 and 16.) In places the old river terraces extend for miles along the river with a varying width. This greatly facilitated the

[^22]

Fig. 13.-Photograph of Illecillewaet glacier taken in i898, for comparison with one taken 24 years later in August, 1922. In this photograph the bare space between the glacier and the dark bushes represents the recession of the ice between 1887 and 1898 .
Locality: Two miles (3.2 km .) south of Glacier House, British Columbia, Canada. (George and William Vaux, i898.)

Fig. 14.-Remnant of Illecillewaet glacier photographed in August, 1922. Locality: Same as figure I3. (Mrs. C. D. Walcott, 1922.)

 motor road, about 8 miles (
building of the motor road, as long, level and straight sections were readily surveyed and fine gravel was at hand for surfacing the road bed.

Fig. 17.-Illustrating a thrust fault. The bedded limestones have been dragged and bent upward on the west (left) side of fault, the plane of which slopes northeast at about 45°. The thin layers of limestone above the thick strong layer which slid over the limestones beneath are broken and crowded against the massive bed on the upper side of the fault.
Locality: North side of the Banff-Windermere motor road about onelalf mile (.8 km .) below Radium Hot Springs, Sinclair Canyon, British Columbia, Canada. (Mr. and Mrs. C. D. Walcott, 1922.)

Note face in upper left corner.
A view in the forest section of the Kootenay Valley is shown by figure 20 , and a more difficult section for road building by figures

15 and 16. The motor road is a fine public work and opens up for pleasure and business direct connection through the main ranges of the Rockies between the Bow and Columbia River valleys.

The limestones and shales of both ranges are upturned and sheared and faulted so as to make it very difficult, without detailed areal maps and unlimited time, to work out the structure and the complete stratigraphic succession of the various formations. (See fig. 17.)

Fig. I8.-West slope of Stanford range south of Sinclair Pass, with white quartzite band at base of Silurian limestones. About six miles (9.6 km .) above Radium Hot Springs, British Columbia, Canada. (Mr. and Mrs. C. D. Walcott, 1922.)

The Silurian limestones, with their fossil coral beds above the white quartzite of the Richmond transgression (see fig. 18) were found in the upper portion of Sinclair Canyon, and not far away black shales full of Silurian graptolites (fig. 19). Lower down the canyon thin bedded gray limestones yielded fossils of the Mons ${ }^{1}$ formation not unlike those so abundant at the head of Clearwater Canyon, 73 miles (117.4 km .) to the north, and Glacier Lake, 94.6 miles (152.21 km .)

[^23]north. It is evident that in the ancient and narrow Cordilleran Sea that extended from the Arctic Ocean 2,000 miles ($3,2 \mathrm{I} 8 \mathrm{~km}$.) or more south between the coast ranges of the time and the uplands of the central portion of the North American continent, there was a similarity of Lower Paleozoic marine life along the shores and in its shallow waters. Evidences of this and of strong currents and persistent wave action occur all the way from central Nevada to Mount

Fig. 19.-Graptolites that flourished on the muddy bed of the sea in Silurian time. The coiled form Monograptus convolutus Hisinger is found both in Europe and America. The straight form is very abundant in some of the partings of the shale.

Locality: Sinclair Canyon about 3.25 miles (5.2 km .) above Radium Hot Springs, in cliff on south side of Banff-Windermere motor road, British Columbia, Canada.

Robson in British Columbia. The record of the marine life and deposits of mud and sand is most complete, and it has been great sport running down the various clews that have been encountered from time to time.

The lower Sinclair Canyon opens out into the Columbia River Valley through a narrow canyon eroded in the upturned and faulted limestones. Some conception of the character of the canyon may be obtained from figures 21-23.

Fig. 20.-Looking south through the mere motor road. Locality: About 9 miles (14.4 km .) Columbia, Canada. (Mr. and Mrs. C. D. Walcott, 1922.)

Fig. 22.- A view of the sky from the Banff-Windermere motor road near the
entrance to the canyon from the Columbia River Valley. See figure 21 .

Fig. 24.-A beautiful cluster of white saxifrage in a sheltered spot among limestone boulders.

Locality: South branch of the headwaters of Clearwater River, 22 miles (35.2 km .) north of Lake Louise Station on the Canadian Pacific Railway. Alberta, Canada. (Mrs. C. D. Walcott, 1922.)

Fig. 25.-A group of white heather, Bryanthlts, growing on limestone soil.
Locality: Near head of Red Deer River 10.5 miles (16.8 km .) northeast of Lake Louise Station on the Canadian Pacific Railway, Alberta, Canada. (Mrs. C. D. Walcott, 1922.)

Fig. 26.-Purple gentian growing on a south slope of a limestone ridge at Locality: Same as figure 25 . (Mrs. C. D. Walcott, 1922.)

Fig. 27.-A fine plant of Zigadenas growing on a slope of limestone débris. Locality: Same as figure 25. (Mrs. C. D. Walcott, 1922.)

Fig. 28.-Mrs. Walcott sketching a wild flower in water colors on a frosty morning in camp. The camp fire kept the open tent warm and comfortable. Locality: Vermilion River canyon between the Banff-Windermere motor road and the river, British Columbia, Canada. (C. D. Walcott, 1922.)

Fig. 29.-Getting acquainted with a young broncho. Baby Nancy and her mistress at Hillsdale camp, Bow Valley, Alberta, Canada. (C. D. Walcott, I922.)

The living evidence of the heat developed by the upturning and compression of the strata under the eastward thrust of the massive Selkirk Mountains is that of Radium Hot Springs in Sinclair Canyon, and Fairmont Hot Springs, 15 miles (24 km .) or more to the south.

During the summer Mrs. Walcott sketched in water colors 24 species of wild flowers, or their fruit, that were new to her collection now on exhibition in the great hall of the Smithsonian building. Some of her photographs of wild flowers are shown by figures 24-27, and sketching in camp by figure 28 .

The party at the end of the season camped on the eastern side of the Columbia River Valley at Radium Hot Springs postoffice, where the veteran prospector, John A. McCullough, has made his home for many years. He and Mrs. McCullough were most courteous and obliging to the party which then consisted of the Secretary and Mrs. Walcott, Arthur Brown, Paul J. Stevens, packer, and William Baptie, camp assistant.

Familiar scenes in connection with the life on the trail are illustrated by figure 29 .

The Commissioner of the Canadian National Parks, Hon. J. B. Harkin, and the members of the Parks service in the field, especially Chief Inspector Sibbald and Chief Game Warden John R. Warren, were most helpful, also the officials and employees of the Canadian Pacific Railway.

Paleontological field-work in the united states

Dr. R. S. Bassler, curator, division of paleontology, U. S. National Museum, working in collaboration with the State Survey, was in the field six weeks in June and July, in a continuation of stratigraphic and paleontologic studies begun a year earlier in the Central Basin of Tennessee. This work is so extensive that a number of seasons of field-work will be necessary for its completion. In 1921 the study and mapping of the Franklin quadrangle, an area of about 250 square miles, just south of Nashville, was well advanced but so many new stratigraphic problems arose that the State Geologist, Mr. Wilbur A. Nelson, suggested the field season of 1922 be devoted to the further study of the Franklin quadrangle and to stratigraphic studies in contiguous areas. Accordingly, the mapping of the Franklin quadrangle was completed and data secured for the preparation of a geological report upon the area, to be published by the State. Stratigraphic studies were then undertaken in the adjacent contiguous
areas and some of the classic geologic sections of Central Tennessee were visited and studied in detail. Dr. E. O. Ulrich, associate in paleontology in the National Museum, joined in this work on account of his life-long interest in the stratigraphy of Central Tennessee, and with the aid of his assistant, Mr. R. D. Mesler of the U. S. Geological Survey, numerous detailed sections and about a ton of carefully selected fossils were secured for the National Museum.

The classic section at Nashville, Tennessee, in which the proper delimitation of the formations has long been in dispute, was studied

Fig. 30.-Section at Nashville, Tennessee, illustrating sequence of Ordovician formations. (Photograph by Bassler.)
with especial care and ample collections of fossils were secured to verify the stratigraphic results.

The deep sea origin of all limestones has long been taught in spite of the trend of evidence that many limestone formations were laid down in shallow seas. The shallow water origin of limestone is well illustrated in the section of Ordovician strata exposed near the blind asylum at Nashville which has been studied by several generations of geologists. At the base of this section, as shown in figure 30 , is the Hermitage formation which was evidently formed along
ancient shore lines because it is composed of beach worn fragments of shells and other fossils. Above this comes the Bigby limestone, the source of much of the Tennessee brown phosphate and which also is made up almost entirely of the comminuted remains of fossils. Next is the Dove limestone, an almost pure, dove-colored, lithographiclike limestone which shows its shallow water origin in the worm tubes penetrating it and its sun-cracked upper surface. A slab of this limestone a foot thick, as shown in figure 3 I and now on

Fig. 3I.-Stratum of dove limestone showing sun-cracked upper surface and penetrating worm tubes, indicative of shallow water origin. (Photograph by Bassler.)
exhibition in the National Museum, well illustrates the polygonal upper surface and the penetrating worm tubes, both features indicative of the origin of the rock on old mud flats which were periodically above water and thus became sun cracked. The succeeding Ward limestone is of the more typical blue variety but here the rock is filled with millions of fossil shells which under the influence of weathering are changed to silica and are left free in great numbers in the soil. This section is only a portion of the entire geological sequence at Nashville but it well illustrates the various types of limestone outcropping throughout the Central Basin.

ASTROPHYSICAL FIELD-WORK IN CALIFORNIA, ARIZONA,
AND CHILE
The Astrophysical Observatory of the Institution did some notable work at Mount Wilson on the spectra of the sun and stars. Some discrepancy had appeared between the work of 1920 and the early work of the observatory prior to igIo on the distribution of energy in the sun's spectrum as it is outside the atmosphere. It appeared necessary to go over this ground again, as the result is used in everyday work at the two field stations in Chile and Arizona, in computing the solar constant of radiation, so the work was repeated by Messrs. Abbot and Aldrich with as much variety in conditions as was possible. The results of the different experiments were in close accord, and in accord with the work of 1920, so that the new determination is now going into effect in the computations in Arizona and Chile.

At the invitation of Director Hale, of the Mount Wilson Observatory, Messrs. Abbot and Aldrich employed the great hundred-inch telescope there in connection with a special vacuum bolometer and galvanometer designed and constructed at Washington in order to measure the heat in the spectrum of the brighter stars. In other words, they attempted to investigate the distribution of radiation in the stellar spectra with the bolometer as they have long done with regard to the spectrum of the sun. When one thinks of taking the light of a star, which looks like a firefly up in the sky, separating it out into a long spectrum, and observing the heat in the different parts of the spectrum, it seems a practical impossibility. Nevertheless, the observers succeeded in doing this for ten of the brighter stars, and they also observed the sun's spectrum with the same apparatus. In this way it was possible to represent the distribution of radiant energy in the different types of stars from the bluest to the reddest ones, and to know the displacement of the maximum of energy from shorter to longer wave-lengths as the color of the stars tended more and more towards the red.

The outlook for further investigations of this kind is hopeful, and it will have a notable value in the estimation of the temperatures of the stars and the study of stellar evolution.

The two field stations at Mount Harqua Hala, Arizona, and Mount Montezuma, Chile, are continued in operation. The station on Mount Harqua Hala, under the direction of Mr. Moore, has been much improved during the year. Owing to the driving rains and high winds, it proved necessary to sheathe the adobe building there with galva-
nized iron. At the same time all cracks for the entrance of wind, snow, and noxious insects and animals were closed. A small building was erected to house the tools and electrical appliances used for charging storage batteries and other purposes, and in this was arranged a shower bath ingeniously contrived to give a continuous shower as long as desired with only about a gallon of water. Cement water reservoirs for collecting and preserving the rain and snow water from the roofs have been constructed, with a total storage

Fig. 32.-Mount Harqua Hala Solar Observing Station, Arizona.
capacity of about two thousand gallons. A small porch was attached to the dwelling quarters and the rooms have been neatly painted and curtained. A " listening in" wireless outfit has been erected, and a so-called "Kelvinator" or sulphur dioxid refrigerating device for keeping provisions and cooling water for drinking purposes has been installed.
The observatory owns a Ford truck which is kept in a small garage built at the foot of the trail, and weekly mail and supply service is maintained from Wenden to the mountain top. A telephone line is just being erected to connect from Wenden to the observing station.

The cost of these various improvements, which have made living on the mountain very much more comfortable, has been borne by funds provided for the purpose by Mr. John A. Roebling, of New Jersey, to whom the Institution is greatly indebted for his generous interest in its solar radiation program.

A notable case of fluctuation in the solar radiation has recently been reported from the Arizona station. A fall of 5 per cent in the solar heat occurred, beginning about the 15 th of October and

Fig. 33.-Mount Harqua Hala and garage at foot, Arizona.
reaching its minimum on the 21 st, and then quickly recovering to the normal by the 25 th. By inquiry at the U. S. Naval Observatory, it is learned that a very notable new group of sun spots was formed, the first indications appearing about the 17 th of October and the group reaching great dimensions by the 21 st when it neared the limb of the sun and shortly disappeared over the edge, due to the solar rotation. This occurrence is nearly parallel to that of March, 1920, when a similar great drop in the solar heat occurred and a very extraordinary sun-spot group passed over the sun.

The Department of Commerce wishing to obtain exact information as to the status of the fur seal herd on the Russian seal islands, situated off the coast of Kamchatka and known as the Komandorski or Commander Islands, with special reference to the effect of the treaty of I9II entered into by the United States, Russia, Japan and Great Britain for the protection of the fur seals in the North Pacific Ocean, requested the detail of the head curator of biology of the Museum, Dr. Leonhard Stejneger, to accompany an expedition to Alaska and adjacent regions during the summer of 1922. The expedition, under the immediate leadership of Assistant Secretary of Commerce C. H. Houston, was primarily organized for the purpose of studying the conditions of the fisheries of Alaska as well as the other economic and commercial problems of that territory in so far as they are included in the activities of the Department of Commerce. Among others it included Mr. W. T. Bower, Bureau of Fisheries, Assistant in charge of Alaska, and Dr. Alfred H. Brooks, U. S. Geological Survey, in charge of Alaskan Geology. Capt. C. E. Lindquist was engaged as special assistant to Dr. Stejneger.

The expedition left Seattle, Washington, in the U. S. Coast Guard Cutter Mojave, Lieut. Comm. H. G. Hamlet commanding, on June 20, 1922, and proceeded by the inside passage to southern Alaska, making short stops at various places for inspection of canneries, hatcheries, factories, mines, etc. At Juneau, an excursion to Mendenhall glacier was undertaken. On June 27, Cape St. Elias, the " landfall" of Bering in I74I, was rounded, and the Mojave stopped at Cordova, the principal town in Prince William Sound. From here Mr. Huston and a small party went overland to Fairbanks, returning by the recently opened Central Alaska Railroad to Seward, where they again boarded the Mojave on July 4. The stay of the cutter at Cordova was taken advantage of by Stejneger and Lindquist to arrange a visit to Kayak Island. The Russian commander, Vitus Bering, in May, 174I, left Petropaulski, Kamchatka, on board the St. Peter under orders to sail eastward until discovering America. After a stormy voyage a cape with high land beyond was clearly made out on July 16, old style, and on July 20 the St. Peter came to anchor off an island which is now known as Kayak Island. Steller, who accompanied the expedition as a naturalist, was only allowed to go with the crew sent ashore in a boat to fill the empty water casks at a small creek on the western shore of the island. Accompanied by

Fig. 34.-U. S. C. G. C. Mojave in Dutch Harbor, Alaska. (Photograph by L. Stejneger.)

Fig. 35.-Steller's landing place, Kayak Island, Alaska. (Photograph by L. Stejneger.)
his cossack, he explored as much of the island as he could during the short stay of about 6 hours, collecting plants, birds and other natural history objects. This was the first landing of a scientific man in Alaska for the purpose of making observations and collections.

The principal object of the trip to Kayak Island was to verify Steller's description, to locate the place where he made his celebrated landing and where the water was obtained, and to make such collections of natural history objects as circumstances would allow. Passage for the $50-$ mile trip to Katalla was secured on the motor boat Pioneer. Leaving Cordova at 2 a. m. on June 29, it did not reach Katalla until 9.30 p. m. owing to its grounding at ebb tide on the extensive mudflats at the mouth of Copper River. Another motor boat was hired at Katalla, but it was not possible to leave until the following day, so that Kayak Island was not reached until $6.15 \mathrm{p} . \mathrm{m}$. A landing was effected at the mouth of a creek which, from Steller's description, can be none other than the one at which Bering's crew took in water. Owing to the fast failing daylight, the party at once set out along the beach in the direction of the mainland for the distant hill described by Steller, but came to an abrupt halt after a laborious walk of about two miles along the bouldery beach at a comparatively recent fall of huge blocks of conglomerate rock among which the ocean waves were breaking so furiously as to stop further progress. The remaining few moments before darkness set in were utilized in collecting a few plants accessible along the beach at the foot of the precipitous cliffs which prevented access into the interior of the island. Returning, Cordova was reached at $4 \mathrm{p} . \mathrm{m}$.

The fair weather which had favored the expedition hitherto changed to fog and rain after leaving Seward. Passing through Shelikof Strait opposite Katmai, a glimpse was had of the mountains on Kodiak Island still white, as if covered with snow, from the ash deposited during the eruption of the Katmai volcano in 1912. The passage through Unimak Pass was successfully accomplished in spite of the heavy fog on July io, and the Mojave anchored off the Akutan Whaling Station which was visited. Two finback whales were stripped of their blubber during the inspection. Arriving at Unalaska at 3.30 p. m. the outfit and baggage of Stejneger and Lindquist were at once transferred to the U. S. Coast Guard Cutter Algonquin which was lying ready to take Secretary Huston and Mr. Bower to the Pribilof Islands for an inspection of the fur seal rookeries there, leaving Unalaska the same evening.

Fig. 36.-Whaling station, Akutan, Alaska. (Photograph by L. Stejneger.)

Fig. 37.-Carcass of fin back whale, whaling station, Akutan, Alaska.
(Photograph by L. Stejneger.)

The visit to the Pribilofs was favored with cool cloudy weather which showed up the rookeries to the best advantage. The increase in the number of seals on the beaches, a result of the elimination of pelagic sealing by the treaty of 19II between the United States, Great Britain, Japan and Russia, was very remarkable, notwithstanding the handicap of the excessive increase of superfluous and therefore disturbing young males due to unfortunate legislation which stopped land killing for five years following the signing of the treaty. By drastic measures the proper numerical ratio between the sexes has almost been accomplished by now, and a complete restitution of the fur seal herd to its former maximum is confidently predicted for the not distant future, if pelagic sealing is not resumed. An improved method in stripping the skin from the body of the dead seal and subsequent cleaning of the skin was being tried out for the first time on an extensive scale and was shown to be a great improvement on the old method. Greatly improved methods were also observed in the handling of the blue foxes. The air of prosperity and progressiveness pervading the whole establishment as compared with conditions 25 years ago was very notable, bearing testimony to the efficiency of the management of the islands by the Bureau of Fisheries.

The Algonquin with Stejneger and Lindquist on board returned to Unalaska to fill up with fuel oil preparatory to the trip to the Commander Islands, a distance of approximately I, ioo miles. At Dutch Harbor, while the vessel was taking in oil, the opportunity was taken advantage of to examine the small group of Sitka spruce planted there nearly 100 years ago by the Russian Admiral Lütke while visiting the island in the corvette Seniavin. A fire during the summer of 1896 came very near destroying the stand, but timely aid saved most of the trees. The little isolated grove, the only one west of Kodiak Island, showed the effects of the fire. There are now i5 trees left, all looking healthy, the foliage being dense and dark, and the lower branches sweeping the ground. The south side of the trees was covered with blossoms and last year's cones, but no seedlings were seen anywhere. Among the large trees, however, there were a couple of saplings about io feet high, which had been smothered to death, but which show that fertile seeds have been produced occasionally. The largest tree was measured and found to be 8 feet in circumference 3 feet from the ground. About a foot higher it divides into three distinct trunks.

The Commander or Komandorski Islands were reached on July 24. These islands form the most western group of the Aleutian Chain.

Fig. 38.-Wharf at Unalaska. (Photograph by L. Stejneger.)

Fig. 39.-Dutch Harbor, Alaska, U. S. C. G. C. Algonquin taking in oil. (Photograph by L. Stejneger.)

It consists of the two islands, Bering and Copper, situated about ion miles east of Kamchatka. They belong to Russia and at the time of the visit were controlled by the Vladivostock government under Miliukof. The conditions of the inhabitants were found to be better than expected. Perfect order was maintained, no foreign traders or disturbers were present, and the people, though reduced both in number and resources, were not starving thanks to the abundance of fish and the cargo of necessities which had been sent them in exchange for the furs of the past season. They were lacking, however, in clothing, shoes and fuel. The party on the Algonquin was received with open arms, especially as the officers and crew of the

Fig. 40.-Grove of Sitka spruce, Dutch Harbor, Alaska. (Photograph by L. Stejneger.)
cutter supplemented the scanty stores of the communities with generous donations of necessities and a few luxuries. Immediately after landing the baggage and outfit of the expedition, the Algonquin left for Unalaska.

The first important business was the examination of the only remaining fur seal rookery on Bering Island. The South Rookery had long since ceased to exist, and the great North Rookery, one of the most important on the islands had been greatly reduced. The actual state of affairs was found to be much worse than anticipated. At his last visit to this rookery which he had studied and mapped in 1882, 1883, 1895, 1896 and 1897, Stejneger had estimated the number of breeding seals located there to be about 30,000. On July 28, 1922.

Fig. 4I.-Preobrazhenski village, Copper Island. (Photograph by L. Stejneger.)

FIG. 42.-Nikolski village, Bering Island. (Photograph by L. Stejneger.)
there were scarcely 2,000 left. Regular killing had been stopped and for the present the Komandorski seal herd is non-productive.

The weather which had been stormy and foggy now settled down to a continuous fog and rain which interfered greatly both with observations and collecting. The latter was confined mostly to insects and plants. An interesting addition to the flora of the Commander group was the finding of Cypripedium guttatum, apparently confined to a single locality on Bering Island on a hillside south of the great swamp back of the Nikolski village.

On August 8, the first clear day for weeks, the Mojave arrived and after staying a couple of hours proceeded with the completed

Fig. 43.-Harbor of Petropaulski, Kamchatka. (Photograph by L. Stejneger.)
party to Petropaulski, the capital of Kamchatka. The delay had been caused by the necessity of the Mojave returning from Anadir to Unalaska for fuel oil.

At Petropaulski the town was found to be in the possession of the " whites," i.e., the officials of the Vladivostock government supported by an "army " of about 50 men, while the "reds," i. e., the portion of the male population recognizing the authority of the Far Eastern Republic, were holding the hills about four miles out. Two days were spent here examining into the conditions and gathering statistics of various kinds. A member of the Swedish Scientific Kamchatka Expedition which has been collecting natural history objects for the National Museum in Stockholm for a couple of years, Dr. René

Malaise, a well-known entomologist, was met here and some of his interesting collections were examined.

The next objective of the Mojave expedition was an inspection of the Japanese fur seal island off the eastern coast of Sakhalin in Okhotsk Sea, usually known as Robben Island.

On August I3, the Mojave passed the Kuril chain through Amphitrite Strait but on account of fog did not anchor off Robben Island until the 15 th in the evening. The party was there met by three Japanese officials of the Karafuto provincial government who with the greatest liberality placed all the desired information and statistics at the disposition of the American investigators. Robben Island is

Fig. 44.-Robben Island, Okhotsk Sea. Part of fur-seal rookery. Breeding place of innumerable murres. (Photograph by L. Stejneger.)
a small, elongated, flat-topped rock, nowhere higher than 50 feet, only 1,200 feet long and less than 120 feet wide, surrounded by a narrow gravelly beach 30 to 120 feet wide, on which the rookery is located. A couple of low houses for the sealing crew, which is stationed here during the summer season, are located on the western slope. When Stejneger visited and photographed the rookery in 1896 the seals occupied a small spot on the east side. Since the Japanese took over the island from the Russians in 1905, the number of fur seals has gradually increased until now the animals not only occupy the entire eastern beach but are extending the rookery at both ends on to the west side of the island. The Japanese have closely followed the methods employed in managing the American seal herd on the Pribilof Islands, and the result has been equally gratifying. The history of the sealing
industry on this rock is most instructive as it proves in the most convincing manner that " protection does protect." After examining and photographing the rookery the party was entertained by the Japanese Commissioners with refreshments in a large tent erected for the occasion.

From Robben Island the Mojave proceeded to Hakodate, Japan, where additional important information relating to the Russian fur seal islands was obtained from Mr. Koltanovski of Vladivostock, who was on his way to the Commander Islands with a staff of assistants to assume charge of the fisheries there during the coming winter. In

Fig. 45.-Members of the expedition at Robben Island. (Photograph by L. Stejneger.)
r. E. Takamuku, Chief of Fisheries Section, Karafuto Government.
2. W. T. Bower, U. S. Bureau of Fisheries,
3. C. H. Huston, Assistant Secretary of Commerce.
4. L. Stejneger, U. S. National Museum.
5. S. Okamoto, Otomari, Karafuto.
6. K. Fujita, Karafuto Middle School.
7. C. E. Lindquist, Oakland, Calif.
8. A. H. Brooks, U. S. Geological Survey.

Yokohama, the next stopping place, an interview with Col. Sokolnikof, who had been administrator of the Russian fur seal islands for ten years, was productive of valuable information, as was also a visit to the Imperial Fisheries Bureau in Tokyo, thanks to the kind assistance of Prof. K. Kishinouye of the Imperial University: Mr. K. Ishino, the fur seal expert of the bureau, was kind enough to allow inspection of a series of photographs which he had taken during the
trip to the Commander Islands in 1915 and 1916. An interesting. excursion was also undertaken to the Biological Station at Misaki, but as the season had not opened yet, only the buildings and the apparatus of the station could be examined.

Messrs. Stejneger and Lindquist having now completed the task of inspecting the fur seal rookeries, left the Mojave in Yokohama and took passage in the President Jefferson sailing for Seattle, Washington, on September 2. Dr. Alfred H. Brooks returned in the same steamer.

EXPLORATIONS IN AUSTRALIA AND CHINA

Through the generosity of Dr. IV. L. Abbott, Mr. Charles M. Hoy continued his work of collecting specimens of the very interesting fauna of Australia. The work was terminated during the winter and Mr. Hoy returned to the United States in May, 1922. The results of this expedition are of especial value for two reasons: First, the Australian fauna has heretofore been but scantily represented in the National Museum, and, second, the remarkable fauna of that continent is being rapidly exterminated over large areas. The specimens received during the year bring the total up to 1,179 mammals, including series of skeletal and embryological material; 928 birds. with 41 additional examples in alcohol, and smaller collections of reptiles, amphibians, insects, marine specimens, etc. The accompanying photograph (fig. 46) shows part of an exhibition case in the National Museum with mounted specimens mostly from the Hoy collection.

This expedition has been so important that the main features of its history may now be appropriately recapitulated. Doctor Abbott arranged early in 1919 to send Mr. Hoy to Australia. Departure from San Francisco took place early in May and collecting was begun at Wandanian, New South Wales, on June 19. From this time until the middle of January, 1922 Mr. Hoy was constantly in the field. The regions visited were as follows: New South Wales (June to December, 1919), South Australia, including Kangaroo Island (December, I919, to the end of March, 1920), West Australia (May to September, 1920), Northern Territory (October to end of November, 1920), New South Wales (January and February, 1921), Tasmania (April to June, 1921), northern Queensland (July, 1921, to January, 1922). As the main object of the expedition was not to visit the unexplored portions of Australia but rather to secure material from regions where settlement of the country is producing rapid
change in the fauna, travel was of the ordinary kind, by boat, rail and wagon road. Tent life was an important element in the living conditions, and at times it was rendered difficult by the heavy rains which in some districts broke a long-continued drought just at the time of Mr. Hoy's arrival. Detailed accounts of the work, with photographs of many of the animals collected, and with passages from Mr. Hoy's letters have been published in previous numbers of this series of Exploration pamphlets (Smithsonian Misc. Coll., vol. 72, No. I, pp. 28-32 ; vol. 72, No. 6, pp. 39-43).

Fig. 46.-Part of exhibition case in National Museum showing some of the kangaroos collected by Mr. Hoy in Australia.

Dr. Abbott's unfailing interest in the national collections is shown by the fact that he has now arranged to send Hoy to China for the purpose of obtaining vertebrates from certain especially important localities in the Yang-tze valley, a region with which Hoy has been familiar for many years. Departure for the field took place on December 15, 1922.

> Gerrit S. Miller, Jr.

BIOLOGICAL EXPLORATIONS IN SOUTHEASTERN CHINA

In the summer of 1921 Mr. A. de C. Sowerby returned to China to continue the work of exploration interrupted by the war. This work, which is made possible by the generosity of Mr. Robert S. Clark of New York, will now be carried on in the region south of the Yangtze, and the zoological results will come to the National

Museum. While it is too soon for any full report on the explorations in which Mr. Sowerby is engaged, the following passages from a letter dated December I, 1921, give some idea of the conditions under which the work is being done.

> In the Interior of Fukien Province, S. E. China, December r, i92i.

Here I am over 200 miles from the coast up a tributary of the Min River, right at the back of beyond of the province, as you might say. I couldn't sit idle in Shanghai, so I decided to have a shot at this province. I took steamer to Foochow and was very fortunate in meeting a young American named Carroll, engaged in the lumber business, who was on his way to the very spot I had decided to visit, and he offered me the hospitality of his boat-an adapted river-boat, shallow draft, but comfortable-and his pleasant company. Naturally I accepted, and so here I am. We went away up a side stream, too small for boat traffic-to a spot in the back hills-or mountains, about 5,000 feet-where his company is opening up a forest, and there we camped a week, scouring the whole neighborhood, and having a few good hard tries for serows. Though we failed to get anything big, I did pretty well with small mammals. Next we came back to the main stream, where I am camped, while he has gone on up stream to transact some business. He expects to return here to-morrow or the next day, when we will go down stream to a place where a couple of tigers have been killing a lot of people, and see if we can't get a shot at them. Then on back to Foochow, whence I shall return to Shanghai for Christmas. After that I have fixed up with a party to go up the Yangtze as far as Wuhu, then inland to a place called Ning-kuo-fu, taking in some forested country on the way in the hopes of getting some Ccrous kopschii, across the divide into Chekiang Province and down some stream tor Hangchow. The other fellows are out for sport pure and simple, but I shall have time to do some collecting. So you see I am panning out pretty well. I shall come back to this province again as soon as possible, as it is simply full of stuff. The only trouble is that the cover is so dense that trapping and shooting are extremely difficult. I already have a collection of 94 mammals-including 14 species-some interesting birds, fish, frogs, etc. The rats are a puzzle. As far as I can make out I have five different species of Epimys.
I have met Caldwell, the man who saw the famous " Blue tiger," and he tells me it was of such a color that he thought it was a chinaman in his blue coat in the brush. But he had a good enough view of the
animal to be perfectly certain of what it was. And the only reason why he did not shoot it was that it was just above two boys who were working in a field, and had he shot it it must have fallen on top of them. Indeed, it was actually stalking them when he saw it. Yen-ping-fu is a wonderful animal centre. Caldwell got a tufted muntjac and a leopard just back of his compound, and wild cats, palm-civets and what not actually in it.

This is very, very beautiful country. I have never seen anything quite like it. The whole country is hilly and mountainous, and covered with heavy underbrush, and woods of spruce, pine, and deciduous trees. The rivers and streams are clear as crystal, studded with rock, and exquisitely beautiful. The underbrush is a terror to get through by reason of its denseness and the sword-grass that occurs everywhere and cuts like a razor. I like the people, and find them very friendly. At this moment I am camped in the local temple of a small village, my things spread all over the place. I am the centre of interest for the whole countryside. People come and burn incense and chin chin joss, and then stop to look at me and have a good chin wag. It doesn't seem to worry them that I have dead rats on the altar. And the small boys bring me in rats, and mice, and shrews. and bats. Truly they are a most remarkable people. And there have been ever so many cases of murdered missionaries in the province in bygone days. I don't believe these people are pure Chinese. Some of them have most remarkably bushman-like faces. They say that there are real aborigines in the province, and the natives call them dog-faced men

By the way, there was a tiger reported here this afternoon! One man came in and said he saw it take a chicken. And there isn't any door to this temple. What would you do under the circumstances? All the tigers in this province are man-eaters! I have made plans to try conclusions with this particular fellow to-morrow-but he may assume the offensive first. Don't think me an alarmist. I'm not. I'm merely telling you the cold truth about things. The other day when we were on our way up here we pulled up for the night beside a village. And all along the shore were the fresh tracks of two tigers. There was a lovely stretch of white sand, and it was bright moonlight, and so I kept the cabin window open and my rifle handy and I'll swear I woke up every 20 minutes and had a look out of the window. Next day we heard that 15 people had been killed by tigers in the neighborhood during the past month or so.

HEREDITY ENPERIMENTS IN THE TORTUGAS

Dr. Paul Bartsch, curator, division of mollusks in the Museum, has continued his heredity studies, for which mollusks of the genus Cerion are used as a basis. He visited the various colonies transplanted to the Florida Keys from the Bahamas, Curacao, and Porto Rico and made a careful study of the new generations which have arrived since last year. He reports a loss of all the material which was placed in cages last year for the purpose of studying the crossing products of selected pairs. A little experimenting led him to believe that this loss was due to the fact that the fine screen Monel wire used for the cages, which not only covered the sides but also tops of these structures, prevented dew formation on the vegetation in the inside of the cages and thus inhibited the moisture required by these organisms. A heavy dew forms at the Tortugas during the night, the time during which Cerions are actively foraging for food, which is largely gained by plowing immediately below the surface for fungal mycelial threads. It is more than likely that the lack of dew also prevented the proper formation of mycelia in the area enclosed by the wire meshes and the Cerions may therefore not only have been famished for want of water, but likewise starved.

Dr. Bartsch believes that these were the controlling factors for he found that by placing a piece of Monel wire over a board at some little distance from the board and leaving a portion of the same board uncovered, the part over which the wire was stretched was found dry in the morning, while the uncovered portion was duly covered with moisture. To overcome this all the tops of the cages were removed and a narrow fringe of wire, turned down at the distal edge, was placed around each to prevent the Cerions from escaping. The cages were then stocked with the same elements used a year ago.

Two additional cages were built. The sides and top of one were covered with paraffine treated cheesecloth and in the other the sides only were covered with this material. In these, specimens were placed in order to make sure that the contentions expressed above were the active factors in the killing off of last year's material, and that the attaching of the Cerions to the wire mesh of the sides of the cages, which become decidedly warm when the sun shines upon them, was not responsible.

The Newfound Harbor hybrid colony was found flourishing. A lot of dead specimens was brought to Washington for record.

Two new mixed colonies were established, consisting of 500 Florida grown specimens of Cerion viarcgis Bartsch taken from Colony E,

Loggerhead Key, and 500 Cerion incanm Binney from Key West. It is hoped that these two colonies will reproduce the conditions existing in the hybrid colony on Newfound Harbor Key. It was deemed wise to establish these colonies so that in the event a fire should sweep over the Newfound Harbor colonies the experiments might be continued in these additional places. The first of these colonies was placed on the east end of Man Key in a small, low meadow, which suggested the conditions in which the hybrid colony on Newfound Harbor Key is existing. The other colony was established on the north end of the little key east of Man Key, which may be called Boy Key.

Five hundred each of Cerion viaregis, Cerion casablancae and Cerion incamum were sent to Dr. Montague Cooke at Honolulu for colonization in the Hawaiian Islands.

Thanks to the good offices of the Navy Department, Dr. Bartsch was granted the use of a seaplane for a week. This was under the command of Lieut. Noel Davis and Lieut. L. F. Noble. By means of this plane Dr. Bartsch was able to fly at low altitude over all the keys between Miami, and the Tortugas and West Cape Sable and the eastern fringe of islands. During past years he had spent as much time as was available in the exploration of the Florida Keys, for the native Cerion incanum in order to establish the present extent of the colonies and to note what variation might exist in the members thereof. These colonies are usually found in the grassy plots on the inside of the keys and frequently in small grassy plots, which are difficult to discover as one approaches these mangrove fringed islands by water. To discover such colonies has usually meant cutting through the mangrove fringe to reach the interior. and there was danger of missing the smaller grassy plots. Flying over these keys made it easily possible to see all favorable places and to mark them on the charts. This will now permit a direct attack upon the places in question and determine positively the extent of existing colonies. Dr. Bartsch feels that at least a year of solid work was saved by the four days during which these explorations were made, to say nothing about saving an endless amount of punishment by mosquitoes which usually infest these mangrove fringed islands.

This aerial survey of the Bay of Florida also adduced the fact that the milky condition of that stretch of water which has obtained for some time and was probably responsible for the killing off of the greatest part of the marine flora and fauna of the region, has subsided, a state of affairs also noted in the Bahamas last year. It was found that the water was clear everywhere and that the channels as

Fig. 47-A great white heron at Newfound Harbor Key. This is the younger brother or sister of the two now in the National Zoological Park, sent there by Dr. Bartsch in 1920 and 1921.

Fiti. 48.-A photograph of Bird Key taken from the seaplane, showing the warden's honse before removal and the scanty

Fig. 49:-Upper figure showing the wave undermined condition of the warden's house on Bird Key before removal. Niddle figure, the new location of the warden's house in the midst of the tern colony. Lower figure, Mr. Bethel, the warden, and his home in the new location.
well as the shallow flats were being repeopled by plants and animals. It will be interesting to note what, if any, change in the flora or fauna may ensue ; that is, to what extent an additional West Indian element may be injected into the lower Florida reaches. The partial stamping out of the old fauna without serious physiographic or oceanographic changes in the region as far as physical features are apparently concerned is a rather interesting phenomenon and the re-establishment of a new flora and fauna will be equally noteworthy.

As heretofore, careful notes on the birds observed on the various keys visited were kept. One of the remarkable things resulting from the use of the seaplane was the finding of several colonies of the great white heron (Ardea occidentalis) which in previous years had been found breeding singly in the mangrove bushes. Two colonies of at least fifty each were found and several other colonies of lesser number. A photograph of a young of this year is shown in figure 47.

During Dr. Bartsch's stay at the Tortugas, the Navy Department, at the request of the U. S. Biological Survey, moved the warden's house on Bird Key. This necessitated the removal of a large number of eggs of the breeding terns which were on the point of hatching. Dr. Bartsch staked out the place to be invaded and removed all these eggs, giving the terns breeding in the area adjacent to the marked place each an additional egg, which all the birds accepted without protest. In this way, 2,420 foster parents were established and it is hoped many young sooty terns saved. Of the nests destroyed, only eight contained two eggs. All the others had one only. Figure 48 shows a photograph taken of Bird Key from the seaplane, by Dr. Bartsch, and figure 49 shows the old and new location of the warden's house.

There were but seven nests of the noddy tern in this region. The noddy tern on Bird Key is disappearing rapidly. Dr. Bartsch does not believe that there are Soo birds there at the present time. This is largely due to the fact that the vegetation was destroyed almost wholly by a hurricane a few years ago, and no serious efforts have been made to replace it. Unless some relief is found in this matter, both the sooty and noddy will undoubtedly become decidedly diminished in numbers because the young birds will not find the shade essential to their protection. It is again suggested, as heretofore, that a row of Australian pines and coconut trees be planted all around Bird Key, preferably alternately, and that the pines be kept topped so that they will become bushy and furnish a nesting site for the noddies. These trees grow very rapidly and should, in a very little while, furnish adequate home sites for the noddy tern. At the present time

Fig. 50.-Near view of two noddies on their tree nests, on Bird Key, taken five years ago.

Firc. 5 I .-This illustration shows transition stages from the tree breeding habit to the sand breeding stage depicted on the next plate. The upper figure shows a nest of dead twigs placed on the ground. The middle figure shows a number of nests placed among debris and rubbish on the site of the blown down house, while the lower figure shows an egg placed on a board.

Fig. 52.-The upper figure showing the noddy terns breeding on the bare flooring, the major remaining portion of the structure of the blown down house. The middle picture shows a noddy and her egg on the bare sand, and the lower figure shows another pair in a similar location.
the noddy terns, which are tree and bush building birds, are making their homes in clumps of grass wherever these are available, or on old boards or even in bare sand. Their habits in the last io years have changed on this key almost completely, resulting in the shrinking of the colony from about 4,000 birds, as estimated by Dr. Watson, to about 8oo, Dr. Bartsch's estimate, at present. Figures 50, 5I, and 52 show the changes that have taken place. The photograph of figure 50 was taken five years ago ; the other two this year.

Another interesting observation made on birds was the large number of thrushes found, chiefly on Garden Key. These included the veery, the olive back, the hermit, Alice's and Bicnell's thrush, all rather emaciated. Evidently the place did not furnish adequate food for them. It was interesting to see these birds mingle with the colony of exceedingly active white rumped sand pipers, which frequented the outer sandy beach of Garden Key, and to watch them chase sand fleas on the beach for food.

COLLECTING TRIP TO JAMAICA

In February, 1922, Mr. John B. Henderson, a Regent of the Smithsonian Institution, desiring living specimens of Antillean Zonitid and Thysanophoroid landshells for anatomical study in connection with a monograph on these groups in preparation, proceeded to Jamaica to collect them. He made trips to Bog Walk on the Rio Cobre River, to Holly Mount on the summit of Mount Diablo, to Momague and to Brownstown in the Province of St. Anns. From the latter point he proceeded to St. Acre to complete for the Museum its series of fossil land shells occurring there in a Pleistocene deposit. From Brownstown he continued along the north coast to St. Anns Bay, collecting at numerous stations. A final trip was made to Morant Bay along the southeast coast. Although the time spent in the island was only a fortnight, the results were most satisfactory. About 40 species of land mollusks were expanded and preserved for study and as many more were collected for their shells only. Mr. Henderson also visited Panama for the purpose of learning the possibilities of obtaining suitable craft from the Canal Zone authorities for contemplated future dredging operations at Colon and Panama.

THE MULFORD BIOLOGICAL EXPLORATION

The National Museum has received the zoological material, other than reptiles, batrachians and fishes, collected by the Mulford Biological Exploration of the Amazon Basin, an expedition financed by
the H. K. Mulford Co. of Philadelphia. The party consisted of Dr. H. H. Rusby, of the College of Pharmacy of Columbia University, director and botanist, W. M. Mann, assistant custodian of hymenoptera, National Museum, assistant director, N. E. Pearson of the University of Indiana, ichthyologist, O. E. White of the Brooklyn Botanic Garden, botanist, G. Schultz McCarty and two Bolivian students, Manuel Lopez and Martin Cardenas, who were detailed by

Fig. 53.-Start of mule train, La Paz, Bolivia. (Photograph by N. E. Pearson.)
the Bolivian Government to study entomology and botany with the expedition members, and was accompanied by Mr. Gordan MacCreagh and J. Duval Brown, moving picture photographers, representing the Amazon Film Company.
The expedition left New York on June I, ig2 I, and proceeded to Arica, Chile, and from there to La Paz, Bolivia, where arrangements were made for transportation across the mountains. At Pongo
de Quime (Alt. 11.500 ft .) above the timber line, a stop was made for several days and considerable zoological material gathered. From here to Espia the journey was by mule train. Espia is a spot at the junction of the Megilla and La Paz rivers which form the Rio Bopi. In August it was exceedingly dry and not very productive of specimens.

Fig. 54.-Nest of Hoatzin, Little Rio Negro, Bolivia. (Photograph by Mann.)

Mositana Indians at their village down the river built balsas or rafts and towed them up to where the party waited and the members floated down the Bopi into the Rio Beni and to Huachi, a small settiement, and remained in this vicinity for over a month, with several excursions to nearby regions, as Covendo where the mission is located, and up the Cochabamba River to Santa Helena, a locality visited

Fig. 55.-Loading a balsa, Rio Bopi, Bolivia. (Photograph by N. E. Pearson.)

Fig. 56.-Camp of Balseros (raft men), Mositana Indians, Rio Bopi, Bolivia. (Photograph by N. E. Pearson.)

Fig. 57.-Young tapir, Rio Beni, Bolivia. (Photograph by N. E. Pearson.)

Fig. 58.-Mósitana Indian girl at loom, Covendo, Bolivia. (Photograph by Mann.)
rarely by the Indians on hunting trips. This hilly, forested country was rich in animal life and large collections were made.

From Huachi the Beni was descended to Rurrenabaque, a short distance above the head of navigation on the Rio Beni, and over three months spent in this vicinity, with side trips across the pampa to Lake Rocagua, and to Tumupasa, a small village situated at the very edge of the Amazon Valley, and to Ixiamas, an isolated pampa region beyond Tumupasa.

Dr. Rusby, director of the expedition was compelled to return to the United States from Rurrenabaque, because of bad health. The

Fig. 59.-Church music, Ixiamas, Bolivia. (Photograph by Mann.)
party under Dr. Mann then went down river to Riberalta and afterward returned as far as the Little Rio Negro, where they spent several days collecting, and making short trips in the vicinity of Cavinas and up the Rio Madidi. In the region near the Lower Madidi several villages of Gorai Indians were visited and a small lot of ethnological material gathered.

A final stop was made at Ivon, at the mouth of the river of that name. Then the party proceeded to Cachuela Esperanza and from there to the Madeira-Mamore Railroad in Brazil where steamer was taken for Manaos and to New York.

The collection of living animals made by Dr. Mann on this expedition reached the National Zoological Park on April I5, 1922. In

Fig. 60.-Wasp nest made of clay, Rio Beni, Bolivia. Suspended from branch of tree over water.

Fig. 6r.-Wasp nests made of carton or paper-like substance, Rio Beni, Bolivia.
addition to a few specimens lost from the effects of the journey the collection included 15 mammals, 50 birds, and if reptiles that arrived in perfect condition. Among these are a number of very rare species never before exhibited in the Zoological Park. The red-faced spider monkey, black-headed woolly monkey, pale capuchin, choliba screech owl, Bolivian penelope, short-tailed parrot, Maximilian's parrot, blueheaded parrot, Cassin's macaw, golden-crowned paroquet, Weddell's paroquet, orange-crowned paroquet, and golden-winged paroquet are new to the collection. These and other rarities are mostly from Rio Beni, Bolivia, and the upper Rio Madeira, Brazil, localities from which animals seldom find their way into collections. Of special interest also are such rare birds as the festive parrot, Amazonian cacique, and white-backed trumpeter, and a number of reptiles. Very few collections containing so many rare species in such perfect condition have ever been received at the National Zooiogical Park.

The collection of insects secured by Dr. Mann was one of the largest single accessions ever received in the Division of Insects of the National Museum, estiniated at 100,000 specimens. Only a small part has yet been examined. Some rare wasps' nests, made of carton and clay, were brought back in perfect condition. Ants received especial attention, and many biological observations were made upon them.

BOTANICAL EXPLORATION OF THE DOMINICAN REPUBLIC

Dr. W. L. Abbott spent the winter and spring of 1922 in further botanical exploration of the Dominican Republic, and was able not only to rework much of the region about Samaná Bay, but to make a thorough investigation of the entire southern portion of the Province of Barahona, as well as the cordillera north of San Francisco de Macorís. In the Province of Barahona he visited Barahona City, Paradis, Trujín, Enriquillo (Petit Trou), Los Patos, Polo, Maniel Viejo, and Cabral. The first four are small villages on or near the seacoast, south of Barahona City. The land here is for the most part low, rocky, and semiarid, except in the immediate vicinity of occasional springs and streams, but rises rapidly toward the interior to the Bahoruco Mountains. As the rock is limestone, caves and underground streams are frequent. One cave in particular, situated near Los Patos, is regarded by Dr. Abbott as promising valuable results to the ethnologist. Trujin, the most southern station reached on this trip, is on a large salt lagoon. Herman's coffee plantation, about 1,500 feet above Paradis, is of interest as being the source of earlier botanical collections by von Tuerckheim and by Fuertes.

Polo, a small settlement in the mountain region west of Barahona City, is situated on the edge of a long flat valley about one mile wide, evidently at one time the bottom of a lake. Just east of this village the Loma de Cielo rises to a height of 4,200 feet, while four miles northeast of Polo the Loma la Haut reaches an elevation of 4,500 feet. The former is covered with wet forests, while the timber of the latter is rather poor, having suffered from both the hurricane of 1905 and numerous recent forest fires. Forest fires have almost entirely destroyed the pine forests about Maniel Viejo, south of Polo, leaving nothing but dry scrubby thickets and bare slopes.

Exploration in the region of San Francisco de Macoris was confined to the vicinity of Lo Bracito, a small village on the southern slopes of Quita Espuela. These slopes are covered by humid thickets and forests, having, in fact, a reputation of being one of the wettest spots in the Dominican Republic and consequently affording a flora rich in ferns and mosses.

A collection of over 3,000 plants was procured, nearly 50 per cent of which are cryptogams. Many of the flowering plants collected represent shrubs and timber trees that are likely to prove of great interest.

Although the results of this expedition were chiefly botanical, Dr. Abbott collected also in other branches of natural history, his collections including specimens of mammals, birds, reptiles, fish, land shells, insects, and earthworms, as well as a small assortment of archeological material.

BOTANICAL EXPLORATION IN CENTRAL AMIERICA

Botanical exploration in Central America during 1921 and 1922 was made possible by the cooperation of the Gray Herbarium of Harvard University, the New York Botanical Garden, Mr. Oakes Ames, the U. S. Department of Agriculture, and the National Museum. It was undertaken in order to obtain material for use in the preparation of a flora of Central America and Panama, which is now under way. Mr. Paul C. Standley left Washington in December, 1921, going by way of New Orleans to Guatemala, and directly to the Republic of Salvador.

Salvador, although the smallest of the Central American republics, has been the least known botanically, and previously hardly any collecting had been done there. With the fullest assistance of the Salvadorean Department of Agriculture, especially that furnished by Dr. Salvador Calderón, it was possible to make extensive collections

Fig. 62.-Scene near San Salvador, the Cerro de San Jacinto in the distance. The hills are composed wholly of volcanic ash.

Fig. 63.-Amate or wild fig tree (Ficus sp.) in San Salvador.
of plants in widely separated localities, covering nearly all parts of the country. All except three of the I4 departments were visited, and collecting was carried on in most of them. Five months were spent in the work, and 4,600 numbers, represented by about 15,000 specimens of plants, were obtained. The central and western parts of the country are densely populated and intensively cultivated, the moun-

Fig. 64.-Eruption from the secondary crater of the volcano of San Salvador in 1917. (Photograph by Dr. V. M. Huezo.)
tains being given over to the culture of coffee, which is often planted up to the very summits of the highest volcanoes. On this account, most of the natural vegetation has been destroyed, and conditions are not so favorable for botanical work as in the other Central American countries. There are forests still remaining on some of the volcanoes, and in the mountain chain known as the Sierra de Apaneca, which lies close to the Guatemalan frontier, and here it is possibie
to get some idea of the former state of the vegetation. In eastern Salvador there are extensive areas still uncultivated, but this land lies at a low altitude, where the flora is less interesting than at higher elevations. The highest mountains, it should be noted, are much lower than those of the neighboring countries, the largest of the Salvadorean volcanoes attaining an elevation of less than 2,500 meters. All the mountains are of comparatively recent volcanic origin,

Fig. 65.-Giant Ceiba tree in the city of San Salvador.
and several of the volcanoes are still active, an eruption of the volcano of San Salvador having wrecked the capital in 1917.

It is expected that there will be prepared for publication in Salvador a list of the species of plants obtained by this expedition, including also those collected by the Salvadorean Department of Agriculture, which is actively engaged in botanical exploration. Thus far only a small part of the collections has been studied critically, but it is already evident that a considerable number of undescribed plants is
contained in them, besides many that are rare and little known. The flora of Salvador is essentially like that of the Pacific slope of Guatemala (which likewise has been but imperfectly investigated), but it is of great interest to find here many species that heretofore have not been known to extend north of Costa Rica and Panama.

Particular attention was devoted to securing the vernacular names employed in Salvador, and many hundreds were obtained. A part

Fig. 66.-Gathering Salvadorean balsam in forests of the Balsam Coast. (Photograph by Dr. V. H. Huezo.)
of the country was occupied before the Spanish conquest by people who spoke a dialect of the Nahuatl language, the idiom spoken also by the inhabitants of the Valley of Mexico, although not or scarcely known in the intervening territory of Guatemaia. A large part of the names now used here for plants are of Nahuatl origin, some of them being the same as those employed in Mexico, while others are quite different. Besides these philological notes, much information
was secured regarding economic applications of the plants of the country. Salvador is especially rich in valuable cabinet woods, a remarkably large number of plants with fruits or other parts that are edible occur, and hundreds, probably, of the native plants are employed by the country people because of real or supposed medicinal properties. The most interesting of all the native plants is the balsam

Fig. 67.-Basaltic formation in the Department of La Libertad, Salvador.
tree (Toluifcra percirac), from whose sap is secured the article known as Salvadorean balsam or sometimes, erroneously, as balsam of Peru, because of the former belief that it came from Peru. A1though this tree is widely distributed in tropical America, the balsam is gathered almost exclusively in Salvador, and in a limited portion of the country, known as the Balsam Coast. Other noteworthy trees are the giant ceibas and the amates (Ficus spp.) or wild figs, which are sometimes called the "national tree" of Salvador. They are

Fig. 68.-Coconut trees in a Salvadorean finca.

Fig. 69.-Coast of Salvador, in the Department of La Libertad. The rocks are mostly of recent volcanic origin. (Photograph by Dr. V. M. Huezo.)
common and characteristic features of the landscape, and almost every country dwelling has its particular amate tree.

Mr. Standley left Salvador early in May and proceeded to the north coast of Guatemala, where superior facilities for work were furnished through the kindness of the United Fruit Company. About three weeks were spent at Quiriguá, a locality long famous archeologically because of the ruins of an ancient Mayan city which are located here. Over a thousand numbers of plants were collected, chiefly trees and shrubs, many of them of great interest. The most conspicuous feature of the vegetation of this part of Guatemala is the enormous plantations of bananas which are grown to supply the markets of the United States. Adjoining these plantations are boundless areas of swamp and hilly woodland which remain in their natural condition. Especially noteworthy are the "pine ridges," low hills covered with scattering pine trees and occasional groups of the cohune palm. The vegetation on these hills is strikingly like that of the Everglades region of southern Florida, and the whole country looks about as Florida might if it were crumpled up into hills, instead of being almost perfectly level.

After leaving Quiriguá, about a week was spent in collecting at Puerto Barrios, on the north coast of Guatemala. The land here is nearly all swampy, but at this time of the year (early June), at the end of the dry season, it was possible to walk about in the swamps and gather plants that at other seasons of the year are inaccessible.

Altogether six months were spent in Salvador and Guatemala, and a collection of over 6,000 numbers of plants was obtained, which will add materially to previous knowledge concerning the Central American flora. The data concerning distribution and the notes upon vernacular names and economic applications will contribute greatly to the completeness of the flora of Central America which it is proposed to publish.

BOTANICAL EXPLORATION IN COLOMBIA

Between the months of April and October, 1922, Dr. Francis W. Pennell, curator of the herbarium of the Philadelphia Academy of Natural Sciences, and Ellsworth P. Killip, of the Division of Plants, National Museum, carried on botanical exploration in the Republic of Colombia. The expedition was organized by the New York Botanical Garden, the Gray Herbarium of Harvard University, the Philadelphia Academy of Natural Sciences, and the National Museum as part of a general plan, adopted in i918, for botanical research in northern South America. Financial assistance was given also by Mr. Oakes

Fig. 70.-Arid valley of the Dagua River, Colombia. The transition from a luxuriant rain-forest to this dry "pocket" is very abrupt. (Photograph by T. E. Hazen.)

Fig. 7r.-View to the north from La Cumbre, in the Western Cordillera, Colombia. The wooded valleys are filled with orchids. (Photograph by T. E. Hazen.)

Ames. Mrs. Pennell accompanied her husband, returning in July, and Dr. Tracy E. Hazen, of the Biological Department of Columbia University, was a member of the party from July to September, giving special attention to photography.

Fig. 72.-Dense forest at La Cumbre, Colombia. Plants of the Tropical Zone here mingle with the subtropical vegetation.

The Republic of Colombia occupies the northwestern corner of the continent of South America, facing both the Caribbean Sea and the Pacific Ocean. The Andes Mountain chain, extending northward in practically a single range from its origin in southern Chile, divides
at the southern boundary of Colombia into three branches, known as the Western, Central, and Eastern cordilleras. Between the Western and the Central cordilleras lies the valley of the Canca River; between the Central and the Eastern, the Magdalena River. On the present trip it was possible to visit only the Western and Central cordilleras, the Cauca Valley, the city of Bogotá in the Eastern Cordillera, and one or two localities on the Pacific slope. The expedition entered the country at Buenaventura, the principal seaport on the Pacific, and at once established headquarters at the village of La Cumbre, in the Western Cordillera, for the purpose of studying the vegetation of the central part of this range. Descending to the

Fig. 73.-View from the summit of the Western Cordillera toward the Pacific slope, Colombia. The peaks are more angular than noted in other regions.
city of Cali the party proceeded up the Cauca Valley to Popayán, the southern portions of both the Central and the Western cordilleras being explored from this point. Subsequently trips were made to Salento, in the northern part of the Central range, and to Ibague and Bogotá, material being collected at historic localities along the Quindiu Trail. Dr. Pennell sailed from the north coast, after exploring the northern portion of the Western Cordillera, Dr. Hazen and Mr. Killip returning by way of Buenaventura and the Panama Canal. Approximately 7,200 numbers were collected, sufficient material being secured to make nearly equal sets for each of the institutions associated in the expedition. Particular attention was paid to orchids, a group in which Mr. Ames is especially interested. To dry these specimens
required the use of artificial heat, the plants being put between driers and corrugated boards, bound tightly in packages, and placed over a charcoal-burning heater.

As might be expected from its physiography, the vegetation of Colombia is extremely diverse. Within a few miles may occur a luxuriant tropical flora, the more open woods of the temperate zone. and the low alpine growth familiar on our American mountain tops. Again, as in the Dagua Valley, one may ride through a dense rainforest, filled with ferns, mosses, and aroids, to emerge suddenly in an arid, desert-like region where cacti and acacias are the conspicuous plants.

Fig. 74.-Crest of the Western Cordillera at El Derrumbo, 9,500 feet altitude, Colombia. Here occurs the stunted growth of the temperate zone.

Since Colombia lies between the first and eleventh parallels, the development of its vegetation is little influenced by latitude. The controlling factors are altitude and precipitation, the rainfall ranging from 400 inches a year to almost perpetual dryness. Four zones of plant life may be recognized, the limits being approximately as follows: Tropical, from sea-level to 5,000 feet; Subtropical, from 5,000 to 9,000 feet; Temperate, from 9,000 to 12,000 feet; Páramo, above 12,000 feet. The tropical forests are very dense; giant-leaved aroids, bromeliads, and heliconias are most abundant; everywhere are palms and bamboos. In the subtropical forests orchids become more common, many of them being of great beauty; tree trunks are densely

Fig. 75.-Raft-building on the Cauca River, Colombia. The ever-present bamboos and palms supply the material needed.

Fig. 76.-Crossing the Vieja River, a tributary of the Cauca, Colombia. As there is no bridge at this point, cargo must be removed from the mules and transported in native dug-out canoes.

Fig. 77.-Village of Salento, in the Central Cordillera, Colombia. Through this town passes the historic Quindiu Trail, reaching from Cartago to Ibagué.

Fig. 78.- Upper valley of the Quindiu River, Colombia. The forest iand is being cleared out for pasture. (Photograph by T. E. Hazen.)
covered with mosses, hepaticae, and ferns. In this zone occasionally occur oak forests, recalling vividly our northern woods, and blackberries are to be found. The Temperate Zone is a region of smallleaved, usually dwarfed trees, of blueberries and other ericaceous shrubs, and of open hillsides, where geraniums and Andean genera of the rose family are numerous. The Páramo is the bleak open country between timberline and the snows. Here flourish densely woolly espeletias, bizarre senecios, and many other brilliantly flowered herbaceous plants.

Travel in Colombia is by railroad, by boat, and by horse or mule. Railroad construction has necessarily been slow, no road having yet been built over the Central Cordillera, while only a single line crosses the Western Range. In the Cauca Valley construction is being pushed, though only a small portion of the line has been completed. Boat travel is fairly satisfactory, and the scenery along many of the streams is very picturesque. The Cauca, navigable for good-sized steamers between Cali and Puerto Caldas, winds its way down a broad valley, in the main keeping to the western side, the banks lined with palms and bamboos. On one hand are the hills of the Western Cordillera ; on the other, the higher mountains of the Central range. But to the botanist travel by horse or mule, though slower, is far preferable, since it affords opportunity to collect thoroughly in specially favorable places. So inadequately known is the flora of Colombia that even along the regular routes of travel many species are found that are either new, unrepresented in American herbaria, or known only from specimens preserved in European collections.

The Colombians are of Spanish descent and are mostly well educated, many of them having studied in American and European universities. Even among the lower classes illiteracy was rarely met with. The Indians, found chiefly in the mountainous regions of the interior, seem to be peaceful and industrious. No "wild savages" were seen, although members of the expedition reached remote corners of the country. Indian women delight in gay colors, a blue waist and a scarlet dress being a particularly favorite combination; the men dress more somberly and more scantily, often wearing mereiy a black smock reaching barely to their knees. The negroes are confined mainly to the coastal strips and to the warmer parts of the main valleys.

Perhaps the most lasting impression one brings back from Colombia is that of the unaffected friendliness of the people. Everyone, from

Fig. 79.-Upper valley of the Quindiu River, Colombia. Part of the forest has been supplanted by pastures. The palm is Ceroxylon andicola, or a closely related species.

Fig. 80.-Páramo above Bogotá, Colombia. From this lake arises one of the important tributaries of the Orinoco River.
the highest official to the lowliest peon, showed marked courtesy and hospitality to the members of the expedition. Customs officials made entrance into the country easy ; railroad men were most helpful in

Fig. 8r.-Apparatus for drying specimens. The bundle of plants rests upon two poles. From this, cloth is draped about the charcoal-burning heater, being lined with woven wire to prevent its being blown into the fire.
every way; landowners continually were placing their haciendas at the disposal of the party. Much of the success of the expedition was due to this universal spirit of friendly cooperation.

VISIT TO EUROPEAN HERBARIA

Mrs. Agnes Chase, assistant custodian of the Grass Herbarium, National Museum, visited several of the larger herbaria in Europe during 1922 for the purpose of studying the grass collections. Five weeks were spent in Vienna. The herbarium of Professor Eduard Hackel, whose work on the genera of grasses in Engler \& Prantl's Pflanzenfamilien is the accepted one in current use, is deposited in the Naturhistorisches Staatsmuseum, Vienna. Professor Hackel has described about $\mathrm{I}, 200$ species from all parts of the world, probably half of them from South America. The types of all but about 50 were found. Most of the missing types were found later in the herbaria whence he had borrowed material. Besides this collection, of greatest importance to American agrostology, the Vienna herbarium was found to contain many American types of Weddell, Philippi, Doell, and Mez, as well as classic collections such as Lechler's plants of Chile, D'Orbigny's from the Andes. Mandon's from Bolivia, and Spruce's from the Amazon, upon which many species are based.

A visit was made to Prof. Hackel at Attersee in western Austria, and important but unrecorded items in the recent history of agrostology were secured.

In Munich were found the types of Nees's Flora Brasiliensis, a few of Doell's and several of Mez's. At the Museo e Laboratorio di Botanica in Florence, Italy, types of Poiret, Poiteau, and Bosc were studied. Poiret was the author of the grasses in the supplement to Lamarck's Encyclopedia. His descriptions, like Lamarck's, are indefinite. It was necessary to see his plants to be certain of his species. Poiteau botanized in Santo Domingo in the latter part of the I8th century, and made a brief visit to the United States. Bosc was a friend of Michaux, and came to Charleston in 1798, where Michaux had established a propagating garden. During the next two years he collected in the Carolinas. In Pisa there is a small but very important collection, that of Joseph Raddi, whose Agrostografia Brasiliensis, published in 1823, is the earliest work devoted to South American grasses. These were collected by Raddi himself in $\mathrm{I}_{1} \mathrm{I}_{7}-\mathrm{I} 8$. The Agrostografia contains 64 species of grasses, of which 33 are de scribed as new. A number of these had never been identified. The specimens were found to be unusually ample and well preserved, and photographs were obtained of them. (Fig. 82.)

Ten days were spent at the Delessert Herbarium at Geneva. This herbarium contains, besides full series of the more recent collections, several old herbaria. Of great importance to the agrostologist is
the herbarium of Palisot de Beauvois, whose small volume " Essai d' une nouvelle Agrostographie," published in I 8 I2, has caused much trouble for the agrostologist, because of his misunderstanding of the structure of grasses. An examination of his specimens, fragmentary though they are, cleared up many difficulties. At Delessert a number

Fig. 82.-Raddia brasilicnsis, named by Bertoloni for Joseph Raddi in a preliminary paper. Raddi himself referred the species to Olyra and gave it a new species name. It is recognized today as Raddia brasilicnsis.
of grasses collected by Rafinesque in the Linited States were also found. Types of Nees, Schrader, Kunth, Willdenow, Sprengel, Link, Pilger, and Mez were studied at the herbarium of the Botanical Garden, Berlin.

Visits were made to the Rijks Herbarimm at Leiden, and to the herbarium of the Jardin Botanique d' l'Etat at Brussels.

Two very profitable weeks were spent at the herbarium of the Paris Museum. In this institution the Lamarck Herbarium and that of Michaux are segregated. Dr. A. S. Hitchcock had studied these collections in 1907. Mrs. Chase made drawings and took some additional photographs. The Paris Herbarium is exceedingly rich in early American collections, such as those of Humboldt and Bonpland, Poiteau, Gaudichaud, Bourgeau, and D'Urville. The Fournier Herbarium, the basis of Fournier's Mexicanas Plantas, was of very great interest.

An important early paper on American species of Paspalum was by LeConte, 1820, an American of French descent. His herbarium is deposited in the Academy of Sciences, Philadelphia. When the collection there was studied a few years ago some of his species were not represented. Dr. Asa Gray, in a biographical note on LeConte, states that LeConte took his collection with him on a visit to France and that he was very generous in allowing his friends to have specimens. It was a great satisfaction to find the missing LeConte specimens in the Paris Herbarium.

Two weeks were spent in London, studying the grasses in the Kew Herbarium and in the herbarium of the British Museum. Both of these herbaria contain much that is of greatest importance to-American agrostology.

Botanizing in herbaria does not afford the same pleasure as does botanizing in the field, but it is not without its thrills of discovery. Current concepts of several species were found to be erroneous; that is, our ideas were those of later authors instead of those of the original ones.

RECENT DISCOVERIES OF ANCIENT MAN IN EUROPE

Under a grant from the Joseph Henry Fund of the National Academy of Sciences, and upon the conclusion of his work as chairman of the American Delegation to the XX International Congress of Americanists at Rio de Janeiro, Dr. Aleš Hrdlička proceeded to Europe to examine the more recent discoveries of skeletal remains of early man and several of the most important sites where these discoveries have been made.

In this quest Dr. Hrdlička visited Spain, France, Germany, Moravia and England. The important specimens studied included the jaw of Bañolas in Spain; the La Quina site and specimens in southern France; the La Ferrassie skeletons, now beautifully restored, in Paris; the Obercassel finds in Bonn; the Ehringsdorf discoveries and site
at Weimar and at Ehringsdorf ; the Taubach site near a village of that name, with the specimens at Jena; and the principal Předmost skeletons now preserved in the Provincial Museum at Brno, as well as the site of these important discoveries at Predmost (in northern Moravia) itself. In addition to these, thanks to the courtesy of Dr.

Fig. 83.-Side view of the reconstructed La Quina skull.
Smith Woodward, Dr. Hrdlička was enabled to submit to a thorough study the Piltdown remains at the British Museum of Natural History, and to see there the originals of the Boskop skull as well as the highly interesting Rhodesian skull and parts of skeleton, from South Africa. He was finally once more able to see, at the Royal College of Surgeons, London, the originals of the Galley Hill and Ipswich skeletal remains.

IIG. St.-Top view of a cast of the intracranial cavity of the La Quina skull, showing the shape of the brain. The brain, compared with modern specimens, is small and especially low.

The examination of the specimens and the visits to the sites where most of them were discovered, produced a deep impression on the one hand of the growing importance as well as complexity of the whole subject, and on the other of the vast amount of the deposits in western and central Europe bearing remains of early man and giving great promise for the future. It was also once more forcibly impressed upon the mind of the observer how much more satisfactory is the handling of the original specimens than of even the best made casts.

So far as the scientific results of the trip are concerned, Dr. Hrdlička feels confident that he was able to reach a definite conclusion and position as to the human nature of the Piltdown jaw ; to satisfy himself on the more or less intermediary nature, between Neanderthal and the present type of man, of the Obercassel, the Predmost and some other crania; and to see the admirable restorations of both the La Ferrassie and the very important La Quina discoveries, the latter including the highly interesting and, so far as ancient remains of man are concerned, unique specimen of a well-preserved skull of a child.

Plaster casts of nearly all the important specimens not yet represented in the U. S. National Museum were obtained for the Institution.

MEETING•OF INTERNATIONAL CONGRESS OF AMERICANISTS IN BRAZIL

The twentieth meeting of the International Congress of Americanists at Rio de Janeiro, Brazil, was attended by Dr. Walter Hough and Dr. Aleš Hrdlička, who were delegated by the Department of State and the Smithsonian Institution. Through the aid of the Carnegie Endowment for International Peace means were supplied for the journey of these delegates. A successful mecting of the Congress is reported, the effect of which on the promotion of anthropological science in Brazil is believed by the delegates to be important. While there was not time to travel in Brazil more than in the environs of Rio, it was interesting to view the resources of the capital as an index to the progress of the country. In this center there is a historical department, a national library, a national museum, fine arts institution, botanic garden, athletic club, and all the activities relating to engineering, sanitation, commerce, etc., reflecting modern conditions. There is seen a tendency at present to lay more stress on historical researches than on science, but the nucleus is here to be developed in such a way as the future affords. In some lines science is being adcquately treated as in General Rondon's work among the Indians,

which has resulted in the gathering of important collections and in the publication of valuable ethnological studies, especially by General Rondon's assistant, Dr. E. Roquette-Pinto.

EXPLORATION OF THE PALEOLITHIC REGIONS OF FRANCE AND SPAIN

During the month of September, 1922, Mr. M. W. Stirling, aid in the Division of Ethnology, National Museum, in the company of of Mr. P. J. Patton, a student in the University of Paris, explored the paleolithic regions of southern France and northern Spain. All of the important sites where remains of ancient man have been discovered were visited, and in addition a great many caves unknown to science were entered.
The idea has become prevalent in America that this region has been practically exhausted archeologically. Although the previous existence of paleolithic man in this locality has been known for half a century, it may be truly said that the work of exploration has hardly begun.

The habitations of the Stone Age are closely linked with the limestone formation which overlies large areas in this part of Europe. These may be said to fall into two classes, i. e., rock shelters and caverns. The former are undercuts in the limestone, made by the rivers during the early Pleistocene or late Pliocene. A general elevation of the land has caused the streams to deepen their channels, thus leaving the undercuts well above the surface of the water. These were utilized as dwelling places by paleolithic man and in many instances were artificially modified. There are literally miles of relic bearing deposits of this class that have not yet been touched. The possibilities in this field are very great.

The caverns of the Dordogne region are for the most part comparatively small, while those in the department of Ariege are immense caves of a most spectacular nature. Of the former class are the grottoes of Font du Gaume, Combarelles, La Mouthe, Marsoulas, Montesquieu, and others. Of the latter class are the immense caves in the neighborhood of Foix, as for example, Salignac, Ussat, and Niaux. The tunnel of Mas d'Azil is the remnant of such a cave.

Many of these caverns have become blocked with sediment owing to the fact that they frequently slope downward from the entrance. Messers. Stirling and Patton entered at least a dozen such caves which had become sealed at varying distances from their mouths. The opening of such caves has heretofore been left almost entirely to chance. Scientific endeavor at this work should produce most

Fig. 86.-Pal, a typical village of Andorre, showing slate roofs and stone construction of houses. Note the terraces on the bare rock hillside back of the village. Every foot of soil is made available for cultivation.

Fig. 87.-An old bridge in Andorre. The verdure in this scene is exceptional. Andorre as a whole is practically treeless.
fruitful results. The sealing of these caves has been a fortunate accident of nature, since the contents are by this means preserved intact.

Of the regions visited, that in the neighborhood of Altamira, in Spain, and Ussat, in France, give most promise of rich returns to the archeologist.

A few days were spent in the republic of Andorre. This little semi-independent state contains much of interest to the ethnologist. Here one finds medieval customs and usages still functioning in the same manner that they did in the middle ages.

Located in the rugged mountains between the Spanish province of Lerida and the French department of Ariege, it is very difficult of access. Preserved from innovations by rival jealous potentates as well as by the conservative temper of its inhabitants, it has kept its medieval institutions almost intact. The administration of minor matters of justice and legislation is in the hands of local councils chosen from the heads of families in each of the six parishes into which the state is divided. The central government is vested in two viguicrs, one nominated by France and the other by the Bishop of Urgel in Spain. Serious crimes and important cases in dispute are brought before them for judgment. There being no written laws, their decisions are given according to their consciences, and are final.

The population is entirely self-sufficient, and each family is an independent unit, raising their own produce, grinding their own meal, and making their own clothing. The primitive nature of their farming and household implements and utensils make an interesting study.

ARCHEOLOGICAL FIELD-WORK ON゙ THE MESA VERDE NATIONAL PARK, COLORADO

In the year 1922, from May to August, inclusive, Dr. J. Walter Fewkes, chief of the Bureau of American Ethnology, contintued his archeological investigations, begun 15 years ago, on ruins of the Mesa Verde National Park, Colorado. The brief season's work was financed with small allotments from the Bureau of American Ethnology and the National Park Service. He had for assistants Messrs. W. C. McKern and J. H. Carter, who contributed much to the success of the summer's work. The site of the field operations was the so-called Mummy Lake village, better named the Far View group of mounds (fig. 88) through which runs the government road to Mancos. The group is situated about $4 \frac{1}{\ddagger}$ miles north of Spruce-tree Camp, contains 16 large stone buildings, many indicated by mounds of stone, sand, and a luxurious growth of sage brush. The three of

Fig. 88.-Mound in Far View House Group, before excavation. Situated at Far View Junction, Mesa Verde National
Park, Colorado. A few sage bushes have been removed, but otherwise no change. (Photograph by Geo. L. Beam. Courtesy Denver and Rio Grande Western Railroad.)

Fig. 89.-Pipe Shrine House looking south from Far View House, Mesa Verde Nationa! Park, Colorado. (Photograph by Geo. L. Beam. Courtesy Denver and Rio Grande Western Railruad.)

Fig. 90 --Restoration of Pipe Shrine House, Mesa Verde National Park, Colorado.
Made from data collected during field-work in 1922 by the Bureau of American Ethnology
of the Smithsonian lnstitution.
View from the south showing priests carrying offerings to the shrine of the mountain lion in
the recess of the retaining wall and a line of dancers personating bird gods.
these which have thus far been excavated belong to different types; but it is desirable to examine and repair them all in order to discover other types. Indian corn, the national food of the cliff-dwellers. should be again planted in this area so that the future student or tourist could behold a Mesa Verde village in approximately the same enviromment as in prehistoric times. The first of the mounds was excavated by the Bureau of American Ethnology in 1916, and was called Far View House, and the particular mound chosen for excavation in 1922 lies about roo feet to the sonth of it (fig. Sg) or on the southern edge of the sage-brush area.

Fig. 9I.-Distant view of Pipe Shrine House. This view shows the whole north wall and the east wall foreshortened. The group of men at extreme left are looking at skeleton in cemetery. (Photograph by Geo. L. Beam. Courtesy Denver and Rio Grande Western Railroad.)

The only noticeable characters of the mound when work began were a saucer-like central depression, and an elevated rim, which led Dr. Fewkes to suspect a buried subterranean kiva surrounded by a series of rooms above ground. The mound was covered by a dense growth of vegetation. No walls were seen when this was removed. and much accumulated sand, earth, and stone had to be removed before any masonry was visible. Complete excavation revealed a remarkable building or pueblo (figs. 89, 91) presenting to archeologists several new problems for solution.

The large depression turned out to indicate a central kiva (fig. 92) quite unlike that of any other on the Mesa Verde National Park. This room has no central fireplace; no ventilator or deflector to dis-

Fig. 92.-Interior view of kiva of Pipe Shrine House, looking north, showing shrine where pipes were found on floor. The ruin in the distance is Far View House. (Photograph by Geo. L. Beam. Courtesy Denver and Rio Grande W'estern Railroad.)
tribute fresh air; but in place of these a segment of the floor was separated from the remainder by a low curved ridge of clay. This area was a fireplace, as indicated by the large quantity of ashes and burnt wood it contained, and many artifacts mixed with the ashes showed that it served also as a shrine. Among other objects in it were

Fig. 93.-Several pipes from shrine on the floor of the kiva of Pipe Shrine House. Reduced a little less than one-half.
a full dozen decorated tobacco pipes made of clay, some blackened by use, others showing no signs that they had ever been smoked. Several of these are figured in the accompanying illustration. There were fetishes, a small black and white decorated bowl, chipped flint stone knives of fine technique, and other objects. For many years it had been suspected, that the ancient inhabitants of the Mesa Verde cliff dwellings were smokers, but these pipes (figs. 93, 94) are the
first objective evidence we have to prove it, and the fact that these objects were found in the shrine of a sacred room would indicate that they were smoked ceremonially, as is customary in modern pueblo rites. lividently the priests when engaged in a ceremonial smoke sat about this shrine and after smoking threw their pipes as offerings into the fireplace. Probably as with the Hopi every great

Fig. 94.-Pipes and other objects in shrine, as found. In addition to pipes many other objects were found, among which may be mentioned small black and white bowl, flint knives, idols, and "septarian nodule." (Photograph by J. W. Fewkes.)
ceremony opened and closed with the formal smoking rite at this shrine, and one can in imagination see the priests as they blew whiffs of smoke to the cardinal points to bring rain.

The discovery of pipes for ceremonial smoking in a Mesa Verde kiva is a significant one, indicating that the ancient priests of the
plateau, like the Hopi, smoked ceremonially. Morcover the forms of the prehistoric pipes (fig. 93) thus used differ materially from those of modern pueblos, in size and shape, although a few formerly used by the Hopi have much in common with them.

The walls of the kiva show structural variations from a standard Mesa Verde kiva. There were eight instead of six small mural pilasters, an addition of two to the usual number; evidently the roof of this subterranean chamber was vaulted and as its size was large it needed more than the regulation number of supports for the roof

Fig. 95.-Interior of Pipe Shrine House looking southwest across the central kiva. (Photograph by WV. R. Rowland, Durango, Colorado.)
beams. Although the means of entrance to the room is unknown there was probably a hatchway in the roof, but no sign of a ladder was discovered and no vertical logs to support rafters were scen.

The stones and plastering of the inner walls of the kiva indicate everywhere a great conflagration; the beams of the roof had completely disappeared, and the color of the adobe covering of the walls was a bright brick-red. The kiva measured about 24 feet in diameter and was about the same depth. Its roof served as the floor of a court surrounded by one-storied rooms. There was no large banquette on its south side (fig. 95) as almost universally occurs in a regular Mesa Verde kiva. A conspicuous slab of rock set in the
floor near the rim of the shrine was possibly reserved for an idol or the altar during ceremonies.

Midway in the length of the west side of the ruin there remain foundations of a circular tower whose wall once rose, like a minaret, several feet above the roofs of surrounding rooms. The altitude of this tower was no doubt formerly sufficient for a wide outlook, and its top, rising above the cedars, served as the elevation from which the sun priests watched the sun's position on the horizon at sunrise and sunset. It was perhaps built as an observatory for determining time for planting and other agricultural events, and may likewise have been used in certain solar rites.

Fig. 96.-Storage jars in place as found in northeast corner room of Pipe Shrine House. Four of these made of corrugated and one smooth white ware with black decoration. (Photograph by J. W. Fewkes.)

The chambers surrounding the central kiva do not appear adapted for habitations; several were more likely used for storage of food, or for other secular purposes. In a room situated on the northeast angle several pottery vessels were found arranged in a row (fig. 96). It would appear that the site of the kiva was dug out by the ancients before these rooms were built, and that the rooms forming the north side were built later than the others and constructed of poorer masonry than those of the south side, where the masonry compares very well with the best on the Mesa. The east rooms are well made and resemble those of Sun Temple. There are two entrances or passageways through the south side, midway between which on the outer surface there is set in the wall a large stone with a spiral incised figure
supposed to represent the plumed snake; and near the southwest corner there are smaller mural designs representing two snakes.

The presence of shrines outside Pipe Shrine House is significant as the first of their kind ever found on the Mesa. On the northeast corner of the ruin there is a small square enclosure with walls on three sides, one of which is the wall of the northeast side of the ruin. Reset in the north wall of this enclosure is a stone, found a little distance away, bearing an incised circle or sun symbol; and within the shrine were found several waterworn stones ; also an iron meteorite, a fossil nautiloid, and many stone concretions and waterworn

Fig. 97.-Mountain Lion Shrine, or Shrine of the South. Stairway constructed by aborigines. Square enclosure is shrine as found. South wall of Pipe Shrine House shown above. (Photograph by Geo. L. Beam. Courtesy Denver and Rio Grande Western Railroad.)
stones. A stone slab found nearby bears on its surface an incised circle, the symbolic representation of the sun, indicating the presence of a sun shrine nearby. Waterworn stones, by a confusion of cause and effect, are supposed to be efficacious in rain-producing.

South of Pipe Shrine House the ground slopes gradually (fig. 97), the earth being held back by a retaining wall. Aboriginal stone steps lead down to an enclosure which was a shrine, rectangular in shape, built in a recess of the retaining wall opposite the western doorway on the south side of the ruin. Within this shrine were a number of waterworn stones sufficient to fill a cement-bag, surrounding a large crudely fashioned fragment of a stone idol of the mountain lion. Al-
though the head and forelegs were broken from the body the hindlegs were intact : a long search for the broken anterior end of the idol was a disappointment. The indentations on the surface due to chipping were plainly seen ; and the tail was especially well made, resting along the dorsal line. This position of the tail is, in fact, what led the writer to identify the rude image as a representation of the mountain lion, for among the Hopi a picture of the puma painted on the north side of the warrior chamber has a similarly placed tail. The Hopi priests say that a Mountain Lion clan formerly inhabited the same cliff dwellings in the north as the Snake people. The position of

Fig. 98.-Stone idol of a bird. Views from front A, and one-half lateral B. Pipe Shrine House. Size: $4^{1 / 4} \times 2^{1 / 4} \times 23 / 4$ inches.
this shrine and the accompanying idol would indicate that the puma was the guardian of the south while at Walpi this animal is associated with the north. Among the Hopi, the mountain lion is also the guardian of cultivated fields.

Lest, in the future, vandals loot this shrine, it was protected by a wire netting set in cement spread on top of the walls, but the contents were left as originally found. South of the mountain-lion shrine, about 20 feet distant, was another enclosure, also a shrine, containing many waterworn stones, but its idol or guardian animal had disappeared. This receptacle was likewise protected by a wire net. Although it had no beast-god image: several stone idols (fig. 98) were found in the adjacent dump around Pipe Shrine House-evi-
dently belonging to other cardinal points-but no other shrines were discovered.

The heads of two stone idols, homeless or without a shrine, were picked up outside the walls of Pipe Shrine House, on rock piles between the retaining wall and the south side of the ruin. One of these (fig. 99) is thought to represent the head of a mountain sheep, another a serpent, and a third (fig. 98) a bird. The instructive thing about these idols, next to their crude technique, is the fact that stone images rarely occur on the Mesa Verde, few similar stone idols or images having previously been reported from ruins on this plateau. Their crude form reminds one of pueblo idols.

Fig. 99.-Stone idol of a mountain sheep. Pipe Shrine House. Size: $3 \times 5 \times 6 \mathrm{in}$.

An aboriginal cemetery, ransacked of its mortuary contents years ago by vandals, was found near the southeast corner of Pipe Shrine House. The human skeletons found in this cemetery show the dead were buried as a rule in an extended position. In cave burials the bodies were flexed or in a seated posture. The accompanying pottery contained food and drink for the deceased. On the western fringe of this graveyard Dr. Fewkes discovered about a dozen human skeletons that had escaped desecration, one or two of which were buried only a few inches below the surface; the deepest grave was shallow, not more than three feet deep. All the skeletons that were found were well preserved, considering their antiquity, and had been buried in an extended position on a hard clay bed. They lay on their backs at full length with legs crossed and heads oriented to the east,
generally accompanied by mortuary vessels of burnt clay and other objects. Several whole pieces of typical Mesa Verde pottery were taken out of the soil of this and another cemetery southeast of Far View House. These vessels once contained food and water, the spirit of which was thought to be suitable food for the spirit of the defunct. One of these skeletons (fig. 100) was as fresh as if buried a few years ago and the bones were so well preserved that they were left in situ. Every bone of one skeleton remains where it was found and was not raised from the position in which it was interred over 500 years ago. Walls of a stone vault (fig. 100) were constructed around the skeleton, reaching to the surface of the ground, and to a wooden frame firmly set in cement was nailed a wire netting, above which one of the workmen constructed a waterproof wooden roof hung on hinges. By raising this roof the visitor may now behold the skeletal remains of a man about 45 years old, 5 feet 6 inches tall, as he was laid out in his grave centuries ago. Visitors called him a mummy; his flesh had not dried as is sometimes the case with the cliff-dwellers, but turned into a brownish dust. So far as known this is the first time care has been taken to preserve a skeleton of a Pueblo in its aboriginal burial place so that it may be seen by visitors. It shows the environment of the defunct and satisfactorily answers the question whether the cliff-dwellers were pygmies.

In a refuse heap a short distance east of the sun shrine of Pipe Shrine House were found a hundred worn-out grinding stones and metates with many stones once used for pecking, all evidently thrown in a heap when they were no longer needed.

The grading of the area about Pipe Shrine House was a work of considerable magnitude, as the surface was very irregular and overgrown with vegetation. The soil, earth and stones fallen from the rooms had raised mounds of considerable magnitude around the ruin.

Pipe Shrine House appears to have served as a ceremonial building rather than a habitation-a kind of temple, originally constructed for the accommodation of the inhabitants of the neighboring Far View House. The tower was probably devoted to the worship of Father Sun and other celestials ; the kiva to that of Mother Earth and terrestrial supernaturals.

In the thick cedars south of Far View House there were two mounds, one of which (fig. ior) was completely excavated by Dr. Fewkes, who found in it a fine central kiva surrounded by low walls of rooms, the whole probably being the house of one clan, for which the name, One Clan House, seems appropriate. It was probably the

Fig. 100.-Cyst constructed around skeleton in cemetery southeast of Pipe Shrine House, and two partial skeletons. The rock walls were built around the skeletons by Dr. Fewkes. (Photograph by Geo. L. Beam. Courtesy of Denver and Rio Grande Western Railroad.)

Fig. ior.-One Clan IIouse, looking north. (Photograph by Gco. L. Beam. Courtesy Denver and Rio Grande Western Railroad.)
residence of a single social unit having a men's room or kiva in the center of the women's rooms or those used for grinding and storage of corn, sleeping, cooking, and other purposes.

The kiva (fig. 102) of this ruin is typical of a cliff-house sanctuary. Its architecture is normal, the floor being cut down a short distance into the solid rock and covered with a white earthy deposit. The roof was supported on six pilasters between each pair of which there is a banquette, that on the south side being darger than the others. In the floor there is a circular fire pit, near which is a deflector facing a ventilator. There is also a large sipaptu or ceremonial opening in the floor. The surface of the north banquette has its ledge lowered to a level below that of the others, and in the wall above it is a recess that served, no doubt, for the idol. A slab of stone formerly used to close this recess lay on the kiva floor below it. A structural peculiarity was observed in the wall of One Clan House. As a rule kiva walls are built of horizontal masonry, but here the walls above the banquettes were made of upright stone slabs.

A weil-worn trail, probably originally made by Indians, conmects Far View House, Pipe Shrine House, and One Clan House with Spruce-tree House. Since the Indians abandoned the Mesa this trail has been deepened by stock seeking water and by herdsmen; it was also formerly used by all early tourists who visited the ruin on horseback before the construction of roads.

An important result of the archeological work of the Bureau of American Ethnology at the Mesa Verde the past summer, 1922, is new information on the use of towers revealed by the excavation and repair of Far View Tower. This building (fig. 103) is situated north of Far View House, about midway between it and " Mummy Lake," and when work began on it no walls were visible: the site was covered with sage bushes, and fallen stones strewn over the surface had raised a mound a few feet high, which is now a fine circular tower surrounded by low walled basal rooms. Three kivas were revealed on the south side where formerly no evidences of their existence appeared. Two of these (figs. 104, 105) were completely excavated and a third showed evidences of a secondary occupation. After this kiva had been used for a time, no one knows how long, it was filled with debris and fallen stones on which new walls were built by subsequent occupants. The masonry of the rooms they built is much inferior to that of their prelecessors, the original builders of the kivas, and probably contemporaneous with the low walls east and north of the tower.

Fig. 102.-Kiva of One Clan House, from the north. Showing two pilasters, ledge on bancuette for altar, conical corn fetish, sipapu and mortar. (Photograph by Gico. I. Beam. Courtesy Denver and Rio Grande Western Railroad.)

Fig. 104.-Kiva A, Far View Tower, looking south, showing ventilator opening and large banquette. (Photograph by W. R. Rowland, Durango, Colorado.)

Fig. 105.-Kiva B, Far View Tower. (Photograph by W. R. Rowland, Durango, Colorado.)

The main object in excavating Far View Tower was to discover the use of these buildings, many of which occur on the Mesa Verde and still more in the canyons and tablelands west of the park. These structures are commonly supposed to have been used to detect enemies approaching the settlements. This was one of their functions; they were undoubtedly constructed to enable the observer to see or signal a long distance. Nordenskiöld suggested that Cedar Tree Tower had a religious character, which appears feasible. It is believed that one of their uses, perhaps the main one, was to observe the position of the sun on the horizon and thus to determine the seasons of the year by noting the corresponding points of sumrise and sunset. The sun priests of the early cliff dwelling determined the time of planting and other necessary calendar data for the agriculturists in the same way as the Hopi who use the following method: The line of the horizon silhonetted against the sky between the rising of the sun at the summer and winter solstices is divided into a number of parts each corresponding to a ceremony or other important event. ${ }^{1}$ The point of sunset at the winter solstice is likewise used for the same purpose. Having determined in this way that the time for planting has come, the sun priest informs the speaker chief who makes the announcement standing on the highest roof of the pueblo. These towers were not only lookouts from which by horizontal sun observations the seasons were determined, but likewise sun houses or chambers where certain sun rites were performed. There is a room dedicated to sun ceremonies connected with the Great Serpent worship among the modern Hopi; and it is instructive to note that incised spiral designs representing the great snake frequently occur on stones of which towers are built. These towers may be square, circular, or D-shaped in form ; may have one or many chambers : and may be accompanied with kivas or destitute of the same. Commonly the rising or the setting sun illuminates their summits. Sun Temple, on the Mesa Verde, may be regarded as a complicated tower with many chambers but in function practically the same as that of a simple one-chamber tower. The complex of rooms at Far View Tower should be looked upon as an architectural unit, composed of a tower, probably when in use as high as the tops of the neighboring cedars ; three subterranean ceremonial rooms, circular in form and similar to cliff-house kivas; and a cemetery situated on the sonth. The rooms for habitation surrounding the tower do

[^24]not belong to this complex but indicate a secondary occupation; their masonry is crude ; their number shows that the population was insignificant. The few people who occupied them came later than those who erected and used the tower.

There remain several large mounds in the Mummy Lake area awaiting excavation : some of these cover pueblos or houses of many clans, others small one-clan houses. The superficial appearance of these mounds seems to indicate types somewhat different from any yet described. One of the most unusual is a mound lying a few

[^25]hundred feet north of Mummy Lake, near the government road. When discovered nothing appeared above ground except a row of large unworked stones set on edge, forming one wall of a small room. On excavation walls of other rooms appeared, one of which was paved with flat stones. The ruin had a single subterranean kiva, of regulation shape and size, the walls characterized by large stones. This ruin, called Megalithic House (fig. Io6), belongs to a type which there is every reason to suspect is represented elsewhere on the Mesa. Cyclopean walls similar to those of Megalithic House have been previously reported from the bluff overlooking the junction of the Vellow Jacket and McElmo Canyons, and at various places in the

Fig. 107.-Pottery from cemetery of Pipe Shrine House: a, Red food bowl: b. Coiled brown ware, archaic decoration; c. Effigy jar, black on white; d. Ladle, black on white: c. Effigy jar, black on white; f, Vase, rough ware; g. Mug, gray with glossy black figures; h, Mug, gray with black decoration.
a, Diameter $\mathrm{II}^{\prime \prime}$, height $4^{\prime \prime}: b$, diameter $6^{1} / 2^{\prime \prime}$, height $3^{\prime \prime} ; c$, height $4^{1 / 4} 4^{\prime \prime}$, length $6^{\prime \prime}$, width $4^{\prime \prime} ; d$, diameter $3^{1 / 2^{\prime \prime}}$, handle $3^{1 / 22^{\prime \prime}}$ long; c, length $3^{1 / 4^{\prime \prime}}$, height $\mathbf{I}^{3 / 8^{\prime \prime}}$. width $2^{\prime \prime}: f$, height $3^{3 / 4^{\prime \prime}}: g$, height $4^{1 / 2 \prime}: h$, height $4^{1 / 2 \prime \prime}$.

San Juan Valley. In some instances the walls are made of much larger stones, but always vertically placed.

An examination of the numerous artifacts or small objects like stone implements, pottery (fig. 107), and the like, that were collected in the excavation of the rooms above mentioned, impresses one with the unique character of several, and the differences of the ceramics from those of Spruce-tree House and Cliff Palace. We find characteristic cliff-house forms of indented and corrugated ware differ from those of Far View Tower which more closely resemble those found at Pipe Shrine House ; other forms do not occur in cliff houses. Many specimens of apparently coiled ware were decorated with stamps, one

Fig. io8.-Stone with parallel grooves, possibly used as a pottery stamp. Pipe Shrine House. Size: $23 / 4 \times 23 / 4 \times 5$ inches.
of which is shown in figure 108. Among pottery types may be mentioned: a, food bowls with shiny black interiors and small grooves with corrugations on their exteriors; b, pottery showing coils (fig. 109) on their exteriors and painted designs on their interiors. The black and white ware is coarse and the designs used in decoration are simple and not very artistic. Representations of a few of these archaic types appear in the accompanying figures. The excavations at Far View House, Pipe Shrine House, and other surface pueblos show that there are several divisions of corrugated ware which should be considered. We should not rely wholly on geography in a comparative study of ceramics in the Southwest; age may also be considered. It is probable that types of architecture have changed
since man settled on Mesa Verde, and that pottery also has changed seems probable, but direct observations regarding that change are necessary. Take for instance the type known as effigy jars and vases. No clay effigies of men or animals had been recorded from Mesa Verde before the present year. Jars representing birds, quadrupeds, and a clay representation of the foot of a human effigy were excavated at Pipe Shrine House. A more archaic pottery distinguished by black figures on white ware is not the same as the black on white ware found in cliff dwellings, which would appear to indicate that the pottery from the cemetery of Pipe Shrine House was earlier than that of Spruce-tree House, and yet we find at the former locality pottery fragments equal in technique and almost identical in

Fis. Iog.-Fragment of corrugated pottery. One-third natural size. (Drawing by Mrs. George Mullett.)

Fig. ino.-Stone with carved Tdoorway in intaglio. (Drawing by Mrs. George Mullett.) Size: 51/8 x $5 \times 33 / 4$ inches.
ornament with the best taken from the latest cliff houses on the park. There is evidence from the character of the pottery that some of the Mesa Verde pueblos were inhabited later than Cliff Palace, rendering it easy to accept the theory that the Mesa Verde caves became so crowded with buildings that their inhabitants were compelled to move out and, having constructed pueblos, to settle on the mesa tops near their farms.

Several objects, some of which are of doubtful use, were found near Pipe Shrine House. One of these is the stone shown in figure 110, on which is engraved a T-doorway and roof beams, a specimen which, so far as known, is unique. A bare mention of the various forms of stone weapons and mortars and pestles, implements, pottery objects, bone needles, scrapers and the like would

Fig. inf.-Fossil shell used as an arrow polisher. Pipe Shrine House. Size: $23 / 4 \times 13 / 4 \times$ 13s inches.

Fig. ilz-Cool Spring House on Cajon Mesa, Hovenweep National Monument. (Photograph by J. W. Fewkes.)
enlarge this report to undue proportions. An implement hitherto undescribed (fig. III) is made of a fossil bivalve shell with two grooves for arrow polishing. This object is ornamental as the outer surface of the shell valves give it an artistic look.

In order to protect them from the weather, the tops of the walls of rooms in Pipe Shrine House, One Clan House, Far View Tower and the kivas of the same were covered with a cement grout. The walls of Far View House were treated in the same way and it is to be hoped that these ruins will not need additional protection from the elements for several years to come.

At the close of his season's work on the Mesa Verde National Park, Dr. Fewkes visited Cool Spring House (fig. II2), a large undescribed ruin on Cajon Mesa, in Utah, about 10 miles west of the junction of McElmo and Yellow Jacket canyons. Cool Spring House, like Cannon Ball Ruin, is situated about the head of a canyon and consists of several more or less isolated rooms. It takes its name from a fine spring below the mesa rim. This ruin is situated so far from white settlers that its walls are at present in no danger of being mutilated, but there is danger that the neighboring towers will soon be torn down, if not protected. As it is proposed that Cool Spring House be added to the towers in Square Tower Canyon and Holly Canyon to form the proposed Hovenweep National Monument, it would be most unfortunate if these three groups of ruins should be allowed to be destroyed by vandals.

OBSERVATIONS AMONG THE ANCIENT INDIAN MON゙MMENTS OF SOUTHEASTERN ALASKA

In the spring of 1922, the Bureau of American Ethnology dispatched a special investigator, Dr. T. T. Waterman, to examine the remains of native villages in southeastern Alaska. A number of these interesting old settlements were scrutinized, in the company of native informants. There is much of interest in and about these old-time villages, though signs of Indian occupancy are rapidly vanishing. The principal objects of remark are the totem-poles, for which this part of America is celebrated. Every village site shows a number of these columns, though some have fallen, some have been cut down with axes, and some have been hatled away bodily as curiosities, sometimes to distant cities. In spite of the fact that they are carved out of nothing more enduring than wood (usually yellow cedar) some of them are of such tremendous size and solidity that they have stood for many generations. Here and there on the old village-sites,
there still may be seen among the poles the framework of one of the old-time Indian houses.

The area in which totem-poles were originally in use was very definitely limited. Nowadays small replicas are being cut for sale

Fig. II3.-A fine example of totemic art, from the Alaskan town of Howkan (central pole). Striking features of totemic art are, (I) the love of complexity, and (2) the fact that the whole pole is an artistic unit. A figure merges into the ones above it and below it in the most clever way: This is well shown in the splendid column in the center. (Photograpli by Julius Sternberg, for the Smithsonian Institution.)
out of all sorts of wood, and stone, by all sorts of people, many of whom have not the faintest notion of how to do it properly. Originally, poles were not set up anywhere south of Frazer River. The Indians of Puget Sound, for example, never heard of these columns until late years. The Indians of the east coast of Vancouver Island
had totemic columns, but the custom had never spread to the island's western side. To the northward, totem-poles were carved by all the tribes as far north as the Chilkat (a Tlingit group living not far from Haines, Alaska). The Indians to the north and west of them.

Fig. ilt.-The degeneration of totemic art under civilized influences. It would be a pity to discuss this wretched thing, except to note that the clever joining of one figure to the next is completely forgotten. The carvings show (at the bottom) the Sun, above that two Beavers, and, at the top, an Eagle. The house behind it is called "Eagle-leg house." The house-posts represent the legs and feet of the eagle. (Photograph by Julius Sternberg, for the Smithsonian Institution.)
however, knew nothing of such columns. Beyond these lived the Eskimo and Aleut, to whom the whole matter is absolutely foreign. The whole idea of art from which the totem-pole rose, was limited strictly to the coast region.

It is safe to say that totem-poles are peculiar. As a matter of fact they represent a very highly developed, and very highly perfected, art. For many generations the Indians hereabouts were developing a special " knack," and special ideas, and the matter has gone so far that other people (even some civilized artists) seem to have a hard time even in copying their handiwork.

In looking over these monuments, one is impressed by the fact that there has been a gradual change in artistic style even on the part of the Indians themselves. Unfortunately, this change is in the wrong direction. The older monuments are much more interesting, and are better executed, than the later ones. In other words, the Indians themselves are forgetting their art. This matter is worth illustrating by photographs (figs. 113, 114). Monuments carved within the last Ło years look (usually) rather staring and stiff, compared to the ones executed previously. With the increasing decay of the old landmarks, a unique style of work bids fair to pass as completely out of existence as though it had never been.

This art consists almost solely in the representation of animals. In the second place, the carvings refer almost always to the parts which these animals played as actors in certain interesting old myths. The carving is meaningless, unless one understands the allusions. Personal experiences are sometimes portrayed. This matter, also, can be very simply illustrated. In the third place, in making a representation of an animal the Indian has special stylistic devices. He puts in what he knows should be there (including at times things not visible at all). Finally, he often simplifies and distorts (according to certain definite rules), in the interest of getting in what he regards as important. He actually loves artistic complexity. All of these tendencies prevent us from readily appreciating what is in many cases a genuine artistic masterpiece. These points may well be explained separately.

The significance of the poles can scarcely be understood withont taking into consideration the form of society which these Indians had developed. All of the tribes of the Northwest Coast are divided into what are usually called "clans." This word is borrowed from the Scotch, and is a very poor term to describe the social groups of the Northwest Coast Indians, for here each group looks upon itself as related by blood to some particular animal. A tremendous mass of ideas and usages has grown up, involving kinship, rules of marriage. property, religious ceremonies, and descent, all centered about these

Fu, its. I late carving, representing a Bear: more reat-
istic than if former, but not half as interesting. (Photo-
graph by Julim, Sternlorg, for the smithsonian Insti-
tution.)
animal crests. To the Indian of this region, the most important thing in life is his animal crest or "totem." All his ideas and ambitions center about this hereditary animal progenitor and protector, the similitude of which he carves on all his utensils, paints on his housefront, tattoos on his arms and chest, paints on his face, and represents on his memorial column. Curiously enough (from our particular point of view) these people reckon kinship through the mother only. This has some curious consequences. A man (to mention one consequence) sets up a memorial column, not for his father, but for his mother's relatives, particularly her brother. Conversely, if a collector wishes to buy a pole for preservation, he ought logically to arrange matters, not with a dead chief's son, but with the dead chief's nephews; for a son has (according to the native idea) no comnection with his father. It is to a maternal uncle that a boy or young man looks for guidance and counsel, and it to his maternal uncle's memory that he owes respect and veneration. It is from this uncle only that he inherits property. A boy's whole position in society, his rank. his outlook, his standing, and his prospect for a wife, all hinge upon the animal crest which he inherits from his mother's brother. It is clear, therefore, that a "totem-pole" will display to the public riew all the animal crests which the Indian possesses, and all those with which his family (i. c., his matcrnal relatives) have been associated in the past.

The importance of these animal crests to the Indian, may be illustrated in an interesting way by the matter of personal names. Many of the names used within a group of kindred, refer to the qualities, or traits, or tricks of behavior, of those animals to which the group, looks. Sometimes the names are highly figurative. Sometimes they are so pitilessly literal and Homeric in their directness that they almost disconcert us. Some very famous names, which have been used in certain families for generations, appear in the following list:

NAMES IN THE RAVEN CLAN

"Raven's child."
"Waddling." This refers to the raven's gait when he walks on the ground.
"Trcating-cach-othcr-as-dogs." This alludes to the fact that when a raven dies, the other ravens pull the body about, dragging it here and there.
"Big-doings." This refers to the fact that young ravens are noisy, in the nest. The native word means literally a celebration, or fiesta of some sort.
"Stinking-nation." This epithet refers to the fact that the raven's nest has a bad odor.

NAMES IN THE EAGLE CLAN

" Four-cggs," an allusion to the eagle's trait of laying always four eggs in the nest.
" Tail-dragging," because the tail of the eagle drags when he walks.
" Illying-dcliberatcly." The eagle, with his great bulk and enormous wings, flies strongly but deliberately, unlike any of the smaller birds.

The next point to be explained is the matter of mythology. The animals whose likenesses appear in the carvings are the heroes of endless mythical tales. It requires a good deal of erudition therefore to explain some of the carvings on the totem-poles. Only the old Indians can do it. In the first place, the animal may be represented either in human or in animal form, for any animal can take either form, as he pleases. A bear, for example, in his own den, takes off his bear-skin and hangs it up. What looks like a lot of stones or branches is in reality the furniture and property in a fine house; and the bear himself appears there as human as you or I. Conversely, when the Indian artist is carving the likeness of a man, he is occasionally so moved by his feeling for that man's totem or crest, that he introduces features of the crest-animal into the carving. The art is therefore a bit abstruse; and the native sculptor seems in some cases to delight in border-line styles of execution.

The carvings on a given pole, where they refer to the great animal heroes, usually allude to some certain episodes in the myth of that particular animal. For example, a certain family of Raven-people living at the town of Kasaan put up, the pole shown in figure 117 . It represents part of the legend known as "Raven Travelling." At the top is Raven himself, in human form. Below him is his likeness in bird form (and an impish look it has). Below this again is a fish called the sculpin or bull-head-an excessively ugly and repulsive looking fish.

Bull-head used to be a beautiful fish, the prettiest of all that swam in the sea. Raven when walking along the shore saw Bull-head disporting himself, and called out to him, "Come on shore one moment." Bull-head paid no attention. "Come ashore a moment," said Raven, " you look just like my grandfather." " I know you," said Bull-head,
" you might as well be still. Future generations also will know what kind of a person you are!" Bull-head was thus too smart to come ashore. "Well then," said Raven, " from this time on your head will be big, and your tail will be skinny, and you will be ugly." That is why Bull-head is so ugly to-day:

Fig. 117.-A totem-pole at Kasaan Village, illustrating the myth of the adventures of Raven. (Photograph by Julius Sternberg, for the Smithsonian Institution.)

An illustration of another kind of crest is supplied by the following picture (fig. 119). The carving at the top represents a man in a stovepipe hat and a frock coat. An old lady belonging to the house in front of which this pole stood, was the first person in the village to encotinter a white man. She went to Sitka with some Indians, and there saw a ship with whites in it. The figure representing what she saw was accordingly put on her pole. Below this white man is a

splendid carving of Raven, and below him a figure representing a "sea-lion rock." The supernatural being who lives in the rock is pictured as a great beast, who embraces a sea-lion, the flukes of which are under his chin. Such a rock-being is called " Grandfather-of-the-sea-lions." In this pole, carvings like the carving of the Raven, representing the ancestor of the owner's family, are combincel with

Fig. ilg.-A pole with a white man as a totem (central pole). An old lady who set up this pole was the first Indian of her group to see the whites, so she took a white man (in a frock coat and a stove-pipe hat) as her crest. (Photograph by Julius Sternberg, for the Smithsonian Institution.)
a carving representing something in the history of the owner's wife, namely, that she was the first person in thie village to come in contact with the whites.

A totem-pole represents, really, a certain Indian's claim to fame. His claim may be based cither on his own experiences (like a dis-
tinguished conduct medal is, with us) ; or it may be founded on his ancestry, as in the case of a title of nobility or a coat of arms.

The idea that a pole always represents descent is therefore not quite accurate. It is more nearly correct to say that the pole represents the Indian's claim to fame, or the claim of his family, whatever that claim may be based on. Examples of both kinds of carvings are plentifully illustrated in the poles.

A quaint example of a recently-acquired crest is shown in the next photograph (fig. 120). This specimen was described to me as "the best totem-pole in Alaska." As a matter of fact, it is not properly speaking an example of totemic art at all. The owner's wife was an Eagle woman, so the Eagle appears at the top of the pole. The owner himself many years ago, prior to the American occupation of Alaska, became converted to Christianity. The three figures on the body of the pole were copied, along with the scroll designs, from a Bible in the Russian church at Sitka. The bottom one represents, it is said, St. Patul. The pole, while it is not a totemic monument as far as the designs on it are concerned, illustrates how an individual's inner experiences give rise to crests. This man gave a great " potlatch " when he raised the pole, and thus endowed himself with title to these carvings, and made them his own. He was the first of his group to become a Christian.

It will be seen that there are a variety of ways in which carvings come to be on poles. In one case I know of, a chief who belonged to the Raven side, gave a great feast to a rival chief, a man of the Killer-whale persuasion at Wrangell, and made him numerous gifts. This latter chief fell upon evil days (he became a drunken loafer, in fact) and was never able to return these gifts, in their equivalent. The first chief therefore put on his totem-pole his own crest, the Raven, represented as biting the dorsal fin of a Killer-whale. The rival chief resented the affront, but he had lost his property so what could he do?

Some of the larger poles are 50 or 60 feet long. The tree is felled and transported to the village-site, often at great labor. Here it is blocked up, and an artist, hired for the purpose, works out the design. To carve an elaborate pole was often the work of several years. The back side of the pole was hollowed out, to lighten, as much as possible, the labor of erecting it. A large concourse of people assembled for the actual erection of the great column, and to partake of the accompanying feast. Tremendous amounts of property were distributed at such times, by the host and by his relatives, and such an occasion has come to be called a "potlatch." The rank of a family

Fig. 120.-A "totem-pole" with ligures copied from an old Russian Bible in the church in Sitka. The owner was the lirst inhabitant of the village to become a Christian. (Photograph by Bergstresser, Alaska.)
was greatly increased by this means. The size of a pole, and the style of the carvings, like the name assumed by the owner, were correlated to a nicety with the cost of the potlatch and the amount of property disbursed. The noble families were very careful of their dignity. Once a young man who was preparing to take a swim,

Fig. 121.-A pole at the village of Howkan, showing (near the top) a representation of the Czar of Russia who sold Alaska to the U. S. A. (Photograph by Julius Sternberg, for the Smithsonian Institution.)
slipped on a treacherous rock and capsized on this beach. His father at once ordered that a slave be killed, so that nobody would laugh at his son. Slave people, who merely represented objects of value, were often dispatched at potlatches, to add lustre to the occasion, and to show that the owner was so rich that the value of a slave was nothing to him.

In later times, after the first contact with civilization, it became difficult to kill slaves. The custom developed, therefore, of manumitting one or more slaves when a pole was set up. A figure representing the slave who went free, was often carved on the pole. A very finely carved pole in Howkan (fig. 12I) has an amusing figure on it. It represents the Czar of Russia who sold Alaska. It shows him with his military uniform, with epaulettes. An Indian made this pole soon after the transfer of Alaska to the United States. Concerning the Czar he said as follows: " We have now got rid of this fellow. We have let him go off about his business. Therefore, I will put him on my pole, in memory of the event."
A certain artistic style has become established in this region, which also tends to prevent the carvings from being readily recognized. Two tendencies especially may be recognized. In the first place, many parts of the animal are suppressed entirely, and selected features only are portrayed. In the second place, the Indian artist feels at liberty to rearrange the parts of the animal, to make the design fit the available space. Often the animal is reassembled in an entirely new way, the parts appearing in the most unexpected and incongruous way. These two tendencies have been labelled by Boas the tendency toward symbolism, and the tendency toward distortion.

Some of the important totem animals are symbolized by the following traits. When one or two of these traits are present, the animal may be readily recognized.

Beaver. This animal is usually represented as sitting up, and gnawing at a stick, which he holds in his forepaws. The great incisor teeth of this rodent are always shown very plainly.

Bear. The bear is usually in a sitting posture, ustally holds something between his paws, and usually has something protruding from his jaws (if nothing else, then his tongue).
Eagle. The beak of the eagle curves over at the end, and has a characteristic shape.
" Thunderbird." This bird (which does not appear in the natural histories) makes thunder by clapping his wings, and lightning by winking his eyes. He is carved very much like the eagle, but his beak is larger, and he wears a cloud hat.

Hazv. The carving of the hawk may be distinguished by the fact that the beak curves over, and the point of it touches the mouth or chin.

Shark. The characteristics emphasized in the shark-carvings are rather curious. The animal's gill-slits (a row of openings on either side of the animal's neck) are alwars shown by crescent-shaped
markings. When the shark is represented in human form, these marks appear on the cheek. The mouth is invariably curved dozenward at the corners, and is often furnished with sharp triangular teeth. The forehead of the shark always rises into a sort of peak.

The principle of dissection is equally useful to the native artist. It may be illustrated not merely in the case of totem-poles, but with many varieties of objects. We may suppose for example that an Indian's totemic crest happens to be the Killer-whale, and that this man is ornamenting a slate bowl with this family crest. The shape of the bowl is settled in advance ; that is, being a bowl or dish, it is round. The nature of the design is also a cut-and-dried matter. The man in the nature of the case wishes to represent the Killer, for that is the crest he has inherited from his forebears. He therefore has to make a killer-whale pattern which will exactly fit into a round field. The Indian's artistic ideal is quite different from our own. He feels (apparently) that certain essential traits (or "symbols") of the animal must go in ; and that the design when finished must neatly fill up the available space.

The monmments left in Alaska are often in the last stages of neglect and decay. Worse than that, even, many of them are being deliberately destroyed. The Indians themselves, under the influence of the whites, learn to despise these monuments of their past, as being reminders of their state of unregenerate barbarism. One Indian chap, trained in the white man's ways and " educated " perhaps somewhat beyond his intelligence, cut down with an axe a lot of fine old totem-poles, sawed them into sections, and used them in building a sidewalk. (See fig. 122.)

The fate which has for various reasons overtaken these monuments is best indicated by the accompanying photographs. The ruin and decay which has fallen upon all things simply beggars description. No work could be better than to preserve, somewhere in Alaska, at at least one house, with its totem-poles and carvings complete. This would at least serve to illustrate the kind of architecture which these Indians developed. Some of these native houses were of cyclopean proportions, the great beams being 3 and + feet in diameter. The older Indians themse!ves often have toward the whole matter what seems to be an apathetic attitude, but this is misleading. The real inner feeling seems to be that the old times are gone, and that these monuments of the vanished past should, in the nature of things, be allowed also to decay in peace and to vanish quietly from off the face of the earth. It would not be impossible to interest some of the more alert ones in the preservation of at least some of the ancient glories of

Fic. 123.-An outcrop of rock at Howkan, shaped to
represent the sea-lion. (Photograph by Julins Sternherg.
for the Smithsonian Institution,)
 and

Fig, i22.-Totem-poles sawn into sections to make sup)ports for a sidewalk at the village of Klinkwan. I section
of a pole is visible muder the sidewalk, to the right. In the background stands an undamaged pole, showing (at the top)

Raven carrying the moon. (Photograph by Juluns Stern-
berg, ior the Smithsonian Institution.)
Raven carrying the moon. (Photograph by Julnus Stern-
berg, for the Smithsonian Institution.)
this region. In spite of all that has happened, there is much of great interest left, as the pictures show. No poles worthy of the name have been carved for 30 years, and for 20 years before that the art was degenerating. Some of the old columns are in a marvelous condition of preservation considering their age. The decay begins at the top,

Fig. 124.-Interior of an abandoned native house, showing one of the totemic house-posts, portraying the Bear. (Photograph by Julius Sternberg, for the Smithsonian Institution.)
where seeds also take root and sprout. Often when the top figure is gone, the remainder of the carvings are fairly sound. At the town of Tuxekan an observer in 1916 counted 125 poles standing. In 1022, only 50 were left. The information about the poles, also, is disappearing even more rapidly than the poles themselves, for only the old people know or care.

Smithsonian
or the
alove)
2. (Photograph by Julius Sternherg.
laska, as it was in 192 photograph of the

During the time the (berver was in the field, a half dozen of the old village-sites were visited. Sketch-maps were prepared, showing the condition of the monuments. Quite extensive notes were taken from native informants, respecting the genealogies of the people who owned the houses, and the symbolism of the poles. A complete list

Fic. i26.-Thrce Indians of a totem-pole tribe, in native garb.
was made also of the geographical names along the coast from one village to the next. The native geography of extreme southeastern Alaska was therefore rather completely obtained. The number of place-names thus recorded, charted and analyzed, amount to several thousand. There is probably no region in North America where investigations can be carried out with richer results.

ARCHEOLOGICAL INVESTIGATIONS AT PUEBLO BONITO, NEW MEXICO

During the months of May to September, inclusive, Neil M. Judd, curator of American archeology, U. S. National Museum, continued his investigation of prehistoric Pueblo Bonito, in behalf of the National Geographic Society. ${ }^{1}$ As in 1921, Mr. Judd's staff consisted of seven trained assistants with about 20 Navaho and Zuñi Indians employed for the actual work of excavation.

Fig. i27.-Mr. R. P. Anderson, a former captain of engireers, A. E. F... at work on a topographic map of Chaco Canyon. This view, taken from above Pueblo Bonito, affords an excellent idea of the surroundings of the great ruin and the height of the canyon wall. Note the horses and one of the expedition's test pits in the right foreground. (Photograph by Neil M. Judd. Courtesy of the National Geographic Society.)

In these recent explorations, attention was directed especially to the eastern part of the great ruin, a section which includes not only the finest masonry in the whole pueblo but which exhibits other evidence of relatively late construction. This entire section, although apparently erected last, was probably abandoned before the remainder of Pueblo Bonito. Because of this general abandonment, cultural evi-

[^26]dence is largely lacking in the several rooms but the information gathered has been sufficient, nevertheless, to afford accurate comparison with that of other sections. It is now certain that Pueblo Bonito is not the result of a single, continuous period of construction, rather, that it took its final form after much building and rebuilding in which sulbstantial homes were razed to make way for others.

A deep trench was cut in the east refuse mound in order to obtain chronological data for use, with similar information gathered in the

Fig. i28.-Part of the excavated northeast section of Pueblo Bonito at the close of the 1022 season. Most of these rooms had been abandoned prior to the general exodus from the village and were utilized as dumping places for refuse by families which continued to dwell nearby. (Photograph by Neil M1. Judd. Courtesy of the National Geographic Society.)
west refuse mound during i92 , in tracing the cultural development of Pueblo Bonito and establishing relative dates, if possible, for the several foreign influxes already apparent. As has been previously noted, clans from the Mesa Verde, in Colorado, and from the valley of the Little Colorado River, in Arizona, and elsewhere, came to dwell at Pueblo Bonito at some time after the establishment of the great community house. The expedition seeks to isolate these outside influences and to determine the effect they exerted upon the distinctive local culture.

In addition to the purely archeological phase of the expedition, geophysical investigations were undertaken in an effort to trace climatic or other changes which may have taken place in Chaco Canyon since the occupancy of prehistoric Pueblo Bonito. Three test pits near the ruin, each more than 12 feet in depth, provided stratigraphic sections of the valley fill in addition to that already available in the arroyo. From the evidence disclosed in these pits, and elsewhere, it now appears that Pueblo Bonito was originally constructed on a slighi elevation, superficial indications of which have since been entirely obliterated through building up of the level valley floor by means of blown sand and silty deposits washed in from the sides of the canyon. These deposits vary in depth from 2 to 6 fect and frequently contain scattered objects of human origin.

A pre-Pueblo ruin, the existence of which was disclosed only through caving of the arroyo bank, affords further evidence of the human occupancy of Chaco Canyon at a considerable period prior to the erection of Pueblo Bonito and the other major ruins, a similar structure having been excavated by the National Geographic Societys Reconnaissance Expedition of 1920. This ancient habitation consisted of a circular pit 12 feet 9 inches (3.9 m .) in diameter and about 4 feet (1.2 m .) deep, excavated in the former valley floor; its roof was of reeds and earth supported by small poles which reached from the wall of the excavation to upright posts placed just within an encircling bench. A considerable quantity of potsherds, collected both from the debris which filled the pit and from the masses of adobe which had fallen away from the bank, established the period to which the dwelling belongs as " early black-on-white," a culture well known throughout the San Juan drainage. The fact that the floor of this ancient structure lay 12 feet below the present valley surface is evidence not only of the vast amount of silt which has been deposited since occupancy of the room, but carries the promise, also, that other similar lodges may yet be disclosed by excavation or through the gradual erosion of the valley.

A topographical survey of that part of Chaco Canyon adjacent to Pueblo Bonito, completed by the 1922 expedition, affords the first accurate map of the principal portion of the Chaco Canyon National Monument. This survey correctly locates nine of the major ruins and indicates the relative position of most, but not all, of the smaller structures to be found, especially those along the southern side of the canyon.

Fig. 129.-A narrow, elevated passage-way constructed through one Pueblo Bonito room to connect the two adjoining chambers. The lintel poles of the nearer doorway are supported, on the right, by a hewn plank which rests upon an upright pine log partially imbedded in the wall. (Photograph by . Yeil MI. Judd. Courtesy of the National Geograplic Society.)

Fic: 130.-The ceremonial rooms which belong with the characteristic Chaco Canyon culture are all very much alike. This view in Kiva G, at Pueblo Bonito. shows a portion of the encircling bench, one of the pilasters or roof supports and several charred posts which originally formed something of a wainscoting behind the lower ceiling logs. (Photograph bv Neil M. Judd. Courtesy of the National Geographic Society.)

Fig. ist--Excavating one of Puchlo Bonito's mumerons kivas. Muledrawn dump cars were used in comection with a portable steel track which could be shifted as the explorations progressed. Owing to the depth of some rooms it was necessary to pass the debris upward from one man to another before it reached the track level. (Photograph ly Neil M. Judd. Courtesy of the National (icograpinic Socicty.)

Fig. 132.-Many instances of superposition have been disclosed by the excavations at Pueblo Bonito. This particular view shows the disintegrating masonry of a typical Chaco Canyon kiva resting directly won the partially razed walls of a ceremonial room fundamentally different in construction and representing an entirely distinct culture. (Photograph hy Neil M. Judd. Courtesy of the National Geographic Society.)

Altogether, 35 secular rooms and six kivas were excavated in Pueblo Bonito during the past summer. Several of these, following abandonment of the eastern portion of the pueblo, had been utilized as dumping places by the families which still dwelt nearby. Rubbish from wall repairs, floor sweepings containing potsherds and other artifacts, cedar bark and splinters from old wood piles, etc., comprised this debris. The doorways in many of these deserted dwellings had been blocked with stone and mud and the rooms themselves were

Fig. 133.-Part of the excavated area of Pueblo Bonito at the close of the 1922 season, looking southeast across Kiva G (in the foreground). The upper walls in the three kivas shown here have been slightly repaired to prevent rain water from ruming into the open rooms. (Photograph by Neil M. Judd. Courtesy of the National Geographic Society.)
entirely filled by masonry fallen from the upper stories and by the vast accumulation of blown sand and adobe. Indications of fire were encountered frequently but in most instances the conflagration obviously occurred at a considerable period following the general abandonment inasmuch as blown sand and. sometimes, fallen wall material had accumulated upon the lower floors before the burning of the ceiling structure. From this evidence, it is certain that the fire which destroyed much of the woodwork in the eastern portion of Pueblo Bonito could have contributed in no wise to its desertion. Sections
of charred and other beams have been examined to determine the relative date of cutting and in the hope, also, that a means may yet be discovered for connecting the anmual rings in these ancient timbers with those in trees still growing upon the northern New Mexico mesas. Inasmuch a; the prehistoric Bonitians left no known calendar or other time record, an effort is to be made to correlate their distinctive chronology with that of our own civilization through over-

Fig. 134.-The high cliff behind Pueblo Bonito affords an exceptional vantage point from which to view the ancient ruin. In this photograph, taken at the close of the 1922 season, the relationship of the secular rooms and kivas is at once apparent. Note the cars and track by which debris was conveyed from the ruin for deposition in the arroyo; also the expedition camp in the upper right-hand corner. (Photograph ly Neil M. Judd. Courtesy of the National Geographic Society.)
lapping series of growth rings in living trees, old logs and ancient beams.

Investigations pursued beneath the floors of both dwelling rooms and kivas revealed, as in 192I, the remains of razed walls belonging to an earlier period of construction. The later habitations do not necessarily conform to the ontline of those preceding: the masonry
itself is usually, but not always, different in type thus indicating that people with entirely distinct cultural customs reoccupied this section of the pueblo prior to its final abandonment.

Among the artifacts collected during the past two years are specimens and many fragments of mosaic. These, with the number and

Fig. 135.-A circular pre-Pueblo dwelling, I mile east of Pueblo Bonito, was cross sectioned by caving of the arroyo bank. Twelve feet of blown sand and water-deposited silt had accumulated upon the floor of the room whose furnishings included a central fireplace (above the Indian) and a semi-circular bench (at upper left). Charred fragments of roofing poles are plainly seen. (Photograph by Neil M. Judd. Courtesy of the National Geographic Society.)
variety of bracelets, pendants and other objects of personal adormment already recovered, tend to confirm the Navaho and other traditions relating to the great wealth of the ancient Bonitians. Pueblo Bonito is still identified among the Indians of northwestern New Mexico as a village where turquoise and rare shells were abundant. The pottery

Fig．136．－Dwellings in Pueblo Bonito were sometimes razed to permit of the construction of ceremonial chambers．The former ceiling beams shown in this illustration are here used both as braces for the curved wall of a kiva and as supports for a second－story room which was subsequently abandoned as its enclosing walls were still further altered．（Photograph by Neil M．Judd．Courtesy of the National Geographic Society．）
of this ancient community is among the finest in the Southwest, no other prehistoric people within the borders of the United States having surpassed the ancient Bonitians in the beaty of form and decoration of their ceramic artifacts.

INVESTIGATION OF PREHISTORIC QUARRIES AND WORKSHOPS IN PENNSYLVANIA

Mr. John L. Bacr, acting curator of American archeology in the U. S. National Museum during the absence of Mr. Neil M. Judd, curator, spent a part of April, 1922, and a number of week ends during the summer, along the Susquehanna River, where he investigated a number of prehistoric quarries and workshops for the Burean of American Ethnology.

On Mount Johnson Island, one mile above Peach Bottom, Lancaster Co., Pa., he has located a workshop where slate banner stones were made in quantity. These prehistoric objects, figures I37, I38, often of finest workmanship, are peculiar to the eastern part of the United States and their use has led to much speculation among archeologists. During the past few years more than 300 broken and unfinished banner stones have been found here, from which a number of series have been assembled showing all stages of development from the split blocks of slate to finished banner stones. The series illustrated herein has been placed on exhibition in the Pennsylvania case in the Archeological Hall of the U. S. National Museum.

This workshop was conveniently located a short distance up the river from a large vein of slate which crosses the Susquehanna. A high cliff of exposed slate extends to within a few yards of the water's edge on either side of the river.

The large number of specimens broken in the early stages of manufacture, found at the island workshop, and the scattered specimens showing more advanced work, picked up on nearby camp sites, indicate that many of the unfinished banner stones were blocked out and partly pecked at the workshop near the source of material and carried to distant camp sites to be completed there. As there was a famous shad battery on Mount Johnson Island, to which Indians from distant points came for supplies of shad and herring, it is probable that many of the slate banner stones scattered through Pennsylvania and Maryland may have been made, or at least started, at this workshop.

Fig．Iз子．－A series of unfinished banner stones．

Fig. I38.-Banner stones in series, and shaping tools.

INVESTIGATIONS AMONG THE ALGONQUIAN INDIANS
At the close of May, 1922, Dr. Truman Michelson, of the Bureau of American Ethnology, proceeded to Oklahoma to conduct researches among the Sauk and Kickapoo. The prime object was to secure data on the mortuary customs and beliefs of these tribes. From these data it is now absolutely certain that the mortuary customs and beliefs of not only the Sauk and Kickapoo but also those of the Fox for the

Fig. 139.-Fox winter lodge, at Tama, lowa.
greater part have been derived from a common source. Towards the end of June, Dr. Michelson went to Tama, Iowa, to renew his work among the Fox Indians. Many texts in the current syllabary were translated, some restored phonetically, fuller data on the mortuary customs and beliefs were obtained as well as new data on the ceremonial attendants and runners.

In August, Dr. Michelson left for Wisconsin, where he spent a week of reconnaissance among the highly conservative Potawatomi,
near Arpin. He then visited the Ojibwa near Reserve, Wisconsin, to obtain some first-hand information on them, and afterwards the Ottawa of the lower Michigan peninsula. It appears that their language and folklore survive with full vigor, but their social organization has rather broken down. Dr. Michelson next visited the Delaware and Munsee of Lower Canada. It is clear that the Delaware and Munsee spoken in Canada are not the same as spoken in the United States; so that the term "Delaware" is really nothing but a catch-all designation of a number of distinct though closely related languages. Finally, Dr. Michelson carried on investigations among.

Fig. ifo.-Fox matting at Tama, Iowa.
the Montagnais, near Pointe Bleue, P. Q., for a few days. He found that although the language is distinctly closely related to Cree, nevertheless it is decidedly more archaic than has been commonly supposed.

FIELD-WORK AMONG THE IUMA, COCOPA, AND YAQUI INDIANS

Miss Frances Densmore, collaborator of the Bureau of American Ethnology, conducted field-work among the Yuma and Cocopa Indians living near the Mexican border in Arizona, and the Yaqui living near Phoenix, Arizona. Songs of the Mohave were recorded by members of the tribe living on the Yuma reservation, and a Mayo song was obtained from a Yaqui Indian.

The Yuma and Cocopa are the most primitive tribes visited by Miss Densmore and are probably as little affected by civilization as any living in the United States. The Yaqui are still citizens of Mexico though they have lived in Arizona for many years, their little settlement being known as Guadalupe Village. They obtain a scanty living by working for neighboring farmers and their chief pleasure is music, which is heard in the village at all hours of the day. They are governed by a chief and several captains, and seem contented and orderly.

The field-work among the Yuma and Cocopa centered at the Fort Yuma Indian agency, situated on the site of Fort Yuma, in California. An opportunity presented itself to observe their custom of cremating the dead. The body of an Indian who had died in an asylum for the insane was brought to the reservation for cremation. When Miss Densmore went to the cremation ground in the morning the body was seen lying on a cot under a " desert shelter." The relatives were crowded around it, sitting close to it and fondling the hands as they wept. The face of the dead man was covered. The wailing had been in progress all the previous night and the people showed signs of weariness. About 100 people were present, many being old men who sat with tears streaming down their faces while others sobbed convulsively. The cremation took place at about two o'clock in the afternoon. The ceremony was witnessed from the time when the body was lifted for removal to the funeral pyre, until the flames had destroyed it. Clothing and other articles of value were placed with the body or thrown into the fire. The ceremony was given in its most elaborate form, the deceased being accorded the honors of a chief because he had, prior to his mental illness, been one of the two leading singers at cremations. The rattle used in the ceremony is said to be about 250 years old. It is made of the "dew-claws" of the deer, one being added for each cremation in early times. It is now impossible to continue this as the deer are not available.

Information concerning this ceremony was surrounded with the secrecy which envelopes this class of material among all Indian tribes. Many of the ceremonial songs were, however, recorded phonographically by the oldest man who has the right to sing them, and an account of the history of the custom was obtained, together with a description of the Kurok, or memorial ceremony which is held every summer. In this ceremony there is a public burning of effigies of the more prominent persons who have died during the year. The dead are never mentioned, this custom being rigidly observed. The
songs of the Kurok, and several cremation songs of the Mohave, which showed interesting differences from those of the Yuma, were recorded.
Miss Densmore's study included war customs, the songs used in treating the sick, those of the maturity ceremony of young girls, those connected with folk tales, and several long cycles of songs sung at

Fig. I4I.-Kachora, a Yuma. His long hair is wound like a turban around his head. (Photograph by Miss Densmore.)
tribal dances, or for pleasure without dancing. These songs are interesting, many of them being pure melody without tonality. The words are exceptionally poetic and concern birds, insects and animals, as well as rivers and mountains. The work among the Yuma was aided by Kachora (fig. 141), a prominent member of the tribe.

A trip was made to a Cocopa village in the extreme southwestern portion of Arizona, near the Colorado River and only a few miles
from the Mexican border. In the work of recording songs it was necessary to employ two interpreters, Nelson Rainbow, who translated Cocopa into Yuma, and Luke Homer who translated Yuma into English. In many instances it was necessary for the singer to explain his material to Tehanna (fig. 142) who discussed it with Rain-

Fig. i42.-Frank Tehanna, a Cocopa. (Photograph by Miss Densmore.)
bow, who in turn related it to Homer, after which it was translated into English. Under such conditions it was possible to make only a general study, but much interesting material was obtained. Two of the principal Cocopa singers were Clam and Barley (figs. I 43 , I 44).

The musical instruments of the Iuma and Cocopa are the gourd rattle, the morache (rasping sticks), the basket drum beaten with wooden drumming sticks or with bundles of arrow-weed, also a flageo-

Fig．143．－Clam，a Cocopa．（Photograph by Miss Densmore．）

Fig．I44．－Barley，a Cocopa．（Fhotograph by Miss Densmore．）
let and a flute, the latter being the first wind instrument blown across the end which has thus far been obtained. Specimens of all these were secured and the playing of the flageolet and flute were recorded by the phonograph. In addition to her musical work, Miss Densmore made a phonograph record of the numbers from I to 30 spoken by an aged woman who knows the " old language."

In April, 1922, Miss Densmore visited the Yaqui at Guadalupe Village, about to miles distant from Phoenix. She was present at the observances of the week preceding Easter, including the deer dance which was given on Good Friday. Similar, though more primitive, observances were attended at a Yaqui village near Tucson, in April, 1920. The Yaqui observance of Holy Week is a mixture of Roman Catholic influence and native ideas, customs, and dances. The singing is said to be continuous day and night from Good Friday to Easter. There is an evident fanaticism, and a certain hypnotic effect in Yaqui singing which suggests that, under some conditions, the people could work themselves into an irresponsible state of mind by its use. The melodies connected with the religious observance were less distinctly native than those of the deer dance which was performed on the day before Easter by five men, all scantily clad. The leader of the dancers wore a head dress made of the head of a deer and his legwrappings were ornamented with hundreds of tiny pouches made of deer hide containing pebbles, forming a series of rattles. Two of the dancers carried rattles made of a flat piece of wood in which were set several small tin disks which vibrated as the rattles were shaken. In this dance they likewise used four half-gourds, of which one was placed hollow side downward on water in a small tub and another was inverted on the ground. These served as drums. The other two were placed on the ground and used as resonators for rasping sticks. A few days later Miss Densmore recorded the deer dance songs, given by an old man who was the leading singer at all the deer dances. She recorded also a deer dance song of the Mayo, living in Mexico.

It was found there are two kinds of music among the Yaqui, one being the native, exemplified in the deer dance, and the other showing a Mexican influence, though the people stoutly asserted that it is Yaqui and "different from Mexican music." The songs of the deer dance are simple, with some characteristics not previously found in Indian music but appearing to be native concepts. These and similar songs are known to only a few of the old men. Songs of the second kind are sung by the younger men and are very pleasing, joyous melodies, usually accompanied by the guitar.

Instrumental music is highly regarded among the Yaqui, a favorite instrument being a short harp of native manufacture, which is played in an almost horizontal position, its base resting on a box in front of the seated player.

Fig. 145.-Manuel Ayala, a Yaqui, playing on flageolet and drum. (Photograph by Miss Densmore)

Among the musicians at the observance of Good Friday was Mantel Ayala who played the drum and the flageolet at the same time, each having its own rhythm (fig. I45). This flageolet had only two sound holes, and was made in two sections which could be taken apart.

DESIGNS ON PREHISTORIC POTTERY FROM THE MINBRES YALLEY, NEW MEXIC0

BY
J. WALTER FEWKES
Chief, Bureau of American Ethnology

(Publication 2713)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
MAY 29, 1923

UBe Eord CBaftimore (press baltimore, md., U. S. A.

DESIGNS ON PREHISTORIC POTTERY FROM THE mimbres Valley, NEW MEXICO

By J. WALTER FEWKES .
CHJEF, BUREAU OF AMERICAN ETHNOLOGY

Before the year 1914 little was known of the manners and customs of the prehistoric inhabitants of the valley of the Rio Mimbres in southern New Mexico. Historical references to these people from the time this valley was discovered to its occupation by the United States are few and afford us scanty information on this subject. Evidence now available indicates that the prehistoric occupants had been replaced by a mixed race, the Mimbreños Apache, of somewhat different mode of life. Until a few years ago the numerous archeological indications of a prehistoric population were equally limited. Some of the earlier writers stated that there are no evidences of a prehistoric sedentary population occupying the area between Deming, New Mexico, and the Mexican border.

In his pamphlet on the " Archeology of the Lower Mimbres Valley; New Mexico," published in 1914, the author reviewed the contributions of others on this subject up to that date, and the present paper offers, as a supplement to that preliminary account, descriptions of additional designs on pottery collected by several persons since the publication of the article above mentioned. The writer has laid special stress on the quality of realistic designs on pottery from this region, and has urged the gathering of additional information on their meaning and relationship.

In the author's judgment no Southwestern pottery, ancient or modern, surpasses that of the Mimbres, and its naturalistic figures are unexcelled in any pottery from prehistoric North America. This superiority lies in figures of men and animals, but it is also facilc princeps in geometric designs. Since the author's discovery of the

[^27]main features of this pottery the Mimbres Valley has come to be recognized as a special ceramic area.

Specimens of this pottery were first called to the attention of the author in 1913 by Mr. H. D. Osborn, of Deming, New Mexico, who excavated a considerable collection of this ware ${ }^{1}$ from a village site near his ranch 12 miles south of Deming. Shortly after the discovery the author visited the location where it was found and excavated a small collection. From time to time since the author first announced the discovery of this material, years ago, other specimens of the same type have been described by him. These objects support early conclusions as to the high character and special value of this material in studies of realistic decoration. New designs have been added to available pictographic material which justify these conclusions.

In the past year (1921) Mr. Osborn has continued his excavations and obtained additional painted bowls, thereby enlarging still more our knowledge of the nature of the culture that flourished in the Mimbres before the coming of the whites. These newly discovered specimens are considered in the following pages. ${ }^{2}$

A brief reference to a physical feature of the Mimbres Valley may serve as a background for a study of the culture that once flourished there. The isolation of this valley is exceptional in the Southwest. The site where the Mimbres culture developed is a plateau extending north and south from New Mexico over the border into Mexico. Ranges of mountains on the east side separate it from the drainage of the Gulf of Mexico and high mountains prevent the exit of its rivers on the west. Its drainage does not empty directly into the sea, but after collecting in lakes it sinks into the sands. The lowest point of this isolated plain in which are the so-called lakes, or "sinks," Palomas and Guzman, is just south of the Mexican line. The water of the Mimbres sometimes finds its way into the former, but is generally lost in the sands before it reaches that point. The Casas

[^28]Grandes and tributary streams that lie in the basin south of the national boundary flow northward and finally empty into Lake Guzman. It is characteristic of the upper courses of these streams that they contain abundant water, while lower down they sometimes sink below the surface, but still continue their courses underground unless rock, clay or other formations that the water can not readily penetrate have pushed up their beds to the surface.

Flowing water is constant in the upper Mimbres but lower down the valley it is subterranean, though rising at times to the surface. The river is indicated here and there by rows of trees or a series of ponds. Water is never found in great abundance, but there is always enough for trout and a few other fishes which the early inhabitants, judging from the number of these animals depicted on pottery, admired and greatly esteemed for food.

There is more water in the Casas Grandes River and its tributaries than in the Mimbres, which is smaller and has fewer branches. There is a remarkable natural hot spring in the Mimbres Valley at Faywood, in which a large number of aboriginal implements and other objects were found when this spring was cleaned out several years ago, leading to the belief that it was regarded by the aborigines as a sacred spring.

The forms of pottery found in the Mimbres Valley differ very little from those of the pueblo areas. Food bowls predominate in number, although effigy vases, jars, ladles, dippers, and similar objects are numerous in all collections from this locality. They belong to modified black and white ware, red on white, unglazed, generally two-colored types. There are also specimens of uncolored, corrugated and coiled ware.

As the author has elsewhere indicated, ${ }^{1}$ the figures on Mimbres pottery are largely realistic. A reference to an early account of the fauna might be instructive as an indication of the motives of the decoration of this pottery.
" The hills and valleys," writes Bartlett," " abound in wild animals and game of various kinds. The black-tail deer (Cervus lezvisii) and the ordinary species (Cervus virginianus) are very common. On the plains below are antelopes. Bears are more numerous than in any region we have yet been in. The grizzly, black, and brown varieties are all found here; and there was scarcely a day when bear-

[^29]meat was not served up at some of the messes. The grizzly and brown are the largest, some having been killed which weighed from seven to eight hundred pounds. Turkeys abound in this region, of a very large size. Quails, too, are found here; but they prefer the plains and valleys. While we remained, our men employed in herding the mules and cattle near the Mimbres often brought us fine trout of that stream, so that our fare might be called sumptuous in some respects."

The above mentioned animals and many others are represented on ancient Mimbres pottery. There are a few paintings of flowers but only rarely have natural objects such as sun, moon, mountains, or hills been identified. Of geometrical designs there are zigzags, terraces, circles, rectangles, spirals, and conventionalized heads, beaks, feathers and the like of birds; but food animals are the most abundant, deer, antelope, turkeys, rabbits and the like predominating. We have every reason to suppose from the pictography on the pottery that animal food formed a considerable part of the dietary of the ancient Mimbrenos, but there is also abundant evidence that they were agriculturists and fishermen.

As a rule the bowls on which the designs here considered are depicted were mortuary, that is, found buried with the dead under the floors of former houses. These bowls are almost universally punctured or "killed" and are commonly found at the side of the skeleton, although when it is in a sitting posture, as often occurs, the bowl covers the head like a cap.

The Mimbres pottery shows several designs representing composite animals, or those where one half of the picture represents one genus of animal and the other a wholly different one. Similar composite pictures are rarely found in American art, although there are several examples of feathered and bicephalic serpents, winged reptiles, and the like. Probably if we were familiar with the folklore of the vanished race of the Mimbres we would be able to interpret these naturalistic pictures or explain their significance in Indian mythology.

The attention given to structural details in the figures of animals shows that the ancient inhabitants of the Nimbres who painted these designs were good observers, clever artists, and possibly drew these pictures from nature. There are, however, anomalies; profiles of the tails of birds are drawn vertically and not represented horizontally; the feathers that compose them were placed on a plane vertical, not horizontal, to the body. Both eyes were rarely
placed on one side of the head as is so often the case with bird figures from the ancient pottery. They are often lozenge shape but generally round. Birds are the most common Mimbres animal paintings and the details of different kinds of feathers are often so carefully worked out that they can be distinguished. Many birds are represented as destitute of wings or have them replaced by geometrical figures of various angular shapes.

The designs here described support the theory already published, that the pottery of the Mimbres is related to that of Casas Grandes in Chihuahua, Mexico, but there are significant differences between the houses of the two areas. The Casas Grandes culture apparently extended northward into New Mexico and penetrated to the sources of the Mimbres River. In this uniquely isolated valley, whose rivers had no outlets in the sea, there developed in prehistoric times one of the most instructive culture areas of the Southwest. The geographical position renders it most important to investigate as it lies midway between the Pueblo and Mexican region, showing affinities with both.

The majority of designs on Casas Grandes pottery are drawn on curved surfaces, as terra cotta vases, jars, and effigies, while those on Mimbres ware are depicted on a flatter surface-the interior of food bowls. For this reason the spaces to be filled on the former are more varied; but the style in the two types is practically the same.

The designs of Mimbres ceramics are painted on the inside surface of clay bowls, the color of which is white, red, brown, or black. While the majority of the designs are depicted on the inside of Mimbres food bowls, similar geometric figures occur on the outside of Casas Grandes vases, dippers, ladles, cups, and other forms. A food bowl furnishes a plane inner surface but its rounded exterior is the least desirable for realistic figures. In these characters we have one of the important points separating the pottery of the Mimbres from that of Casas Grandes.

Effigy jars and vases, predominating in collections from Casas Grandes, are rare in those from near Deming and on the upper Mimbres. The pottery from at least one village site of the Mimbres resembles that of the upper Gila and its tributaries; but both shards and whole pieces of pottery from the Gila are characteristic and can readily be distinguished from that of the Mimbres-Casas Grandes region. The decoration of Mimbres pottery is distinctive and very different from that on any other prehistoric pueblo ware, evidently
little modified by it. Although highly developed and specialized like modern pueblo pottery, it is quite unlike that from ancient pueblos of the Rio Grande region.

We find in this pottery well drawn naturalistic pictures as well as geometric designs, but there is no new evidence that the former were developed forms of the latter. It is more than probable that both geometric and realistic types were made contemporaneously and originated independently. By many students geometric ceramic decorations are supposed to be older than realistic ; straight lines, dots, circles, stepped figures and spirals are supposed to precede life figures. Others hold that conventionalized designs follow naturalistic forms. It is sometimes supposed that in the growth of decorative art lines or dots are added to meaningless figures to make them more realistic. For instance, three dots were added to a circle to bring out a fancied human face, or representations of ears, nose, and other organs were annexed to a circle to make a head seem more realistic. Lines are thus believed to be continually added to a geometric meaningless figure to impart to it the life form.

There is a certain parallelism in these figures to drawings made by children to represent animals, whose pictures are often angular designs rather than realistic portrayals of objects with which they are familiar. It may be pointed out that some children in their earliest drawings make naturalistic, others geometric figures.

Naturally, when we contrast the designs on pottery from the Mimbres with that of the Mesa Verde, one great difference outside of the colors is the large number of realistic figures in the former and the paucity of the same or predominance of the geometric type in the latter. If we compare the designs of Sikyatki pottery with those on the Mimbres ware the differences are those of realism and conventionalism. The designs of Sikyatki pottery are mainly conventionalized animals, while those of the Mimbres are realistic. Geometrical designs from Mesa Verde are not conventionalized life forms; neither are they realistic. The pottery of the Little Colorado is midway in type, so far as its decoration goes, between that of Sikyatki and Mesa Verde. It is not as realistic as the Mimbres, not as conventionalized as Sikyatki, nor as geometric as Mesa Verde.

There seems much to support the theory that these three types of design, geometric, conventionalized, and realistic, are of equal age and developed independently. The author inclines to the belief that the primitive artist, having noticed certain resemblances in his geometric designs to life forms, men or animals, helped out the fancied like-
ness by adding dots or lines for eyes, nose and mouth, wings, legs or tail, to a circular or rectangular figure, and thus made a head of a man or an animal, the result being a crude realistic figure. Subsequent evolution was simply a perfecting of this figure. The theory that the conventional figure was derived from the realistic also appeals to the author; and he further believes that there are many geometric decorations that have no symbolic significance.

The naturalistic designs on pottery of the modern pueblos of Keresan stock resemble somewhat those of the Nimbres, or are closer to them than those of the modern Tewa, Zuñi, or Hopi; while, on the other hand, ancient Tewa, Zuñi, and Hopi wares are closer to Keresan than they are to modern pottery of the same pueblos. Ancient Hopi and Zuñi designs resemble each other more closely than modern, a likeness due in part to their common relationship to the culture of the Little Colorado settlements, the differences being due to the varying admixture of alien elements. In fact, the archaic pottery symbols are simpler than the composite or modern.

Human figures on Mimbres pottery are as a rule cruder than those of animals and in details much inferior to those of birds. They represent men performing ceremonies, playing games, or engaged in secular hunting scenes, and the like. ${ }^{1}$ Now and then we find a representation of a masked man or woman in which the face is sometimes decorated with black streaks as if tattooed or painted. Frequently there are representations of feathers or flowers on body, limbs or head. Both full face and profiles of men occur in these figures; even the hair dressing is shown with fidelity. Several styles of clothing are recognizable. Let us now proceed to discuss a series of these figures.

HUMAN FIGURES

Figure I represents men engaged in a hunt. A hunter carries in his right hand three nooses attached to sticks; in his left he holds a stick to which feathers or leaves are attached. The hunter's hair is tied down his back; apparently he wears a blanket or loose fitting garment. Five groups of upright sticks support horizontal ones: that at the extreme right has attached to it a noose still set. Three captured birds are seen in the remaining nooses. The double row of dots represents a trail ; two birds to the right of the human figure

[^30]face three sticks. The whole picture represents a method of snaring birds that was in vogue among the Mimbres ancients.

Figure 2. is also instructive. It is evidently a gambling scene representing three men playing the cane dice game, widely distributed among our aborigines. Unfortunately almost a half of the picture is no longer visible, but three cane dice appropriately marked lie in the middle of what remains of a rectangular design on the bottom of a broken jar. As the game requires four cane dice, two are missing. On one side of the figure is what appears to be a basket of arrows, evidently the stakes for which the game is being played. One of the seated human figures holds a bow and three or four arrows, while another has only one arrow. Rows of dots extending across the bowl are visible under the feet of the figure with one arrow.

There are six human figures represented in figure 3 , five of which in a row appear to be crawling up a ladder while a sixth, bearing in the left hand a crook, is seated in an enclosure near the end of the ladder. The attitude of the five climbing figures suggests men emerging from the earth; the chamber in which the sixth is seated resembles a ceremonial room or kiva.

In figure 4 we have three human figures, two seated and one lying down. The difference between these figures is not great, but the two seated figures have their hair tied in a knob ; the hair of the horizontal figure is straight. The left-hand figure bears a zigzag object in his hand that reminds one of a snake or lightning symbol. The righthand figure appears to hold in his hand an implement represented by parallel lines and dots surmounted by an imitation of a head with feathers. This object calls to mind the wooden framework used by the Hopi in their ceremonies to imitate the lightning.

In figure 5 there are four figures, all different; two were evidently intended to represent men with human bodies and heads of animals. Each carries a rattle in one hand and a stick to the end of which is attached a feather, or a twig with leaves, in the other.

The exact signification of the group of three figures, two male and one female, shown in figure 6 , is not evident. The two men carry sticks with attached flowers, or figures of the sun or a star; the other figure, which represents a woman, has a crook in one hand. The frayed edge of the woven belt she wears hangs from her waist.

The knees of the two human figures shown in figure 7 rest on the back of a nondescript animal. The figures are evidently duplicates, the only difference being in the forms of the geometric figures depicted on the bodies of the animals.

Two nicely balanced human figures shown in figure 8 are represented as resting on a quadrilateral object decorated with zigzag markings, like symbols of lightning.

The heads in figure 9 are human but the body and limbs are more like those of quadrupeds.

The method of drawing the human figure in figure 10 is very characteristic. Here we evidently have a representation of a dancer, whose body is painted black, surrounded by a white border.

The human figures thus far considered are drawn in colors on a white background. Not so those that follow. In figure II there are two negative figures, representations of human beings placed diametrically opposite each other, and, similarly arranged, two turkeys painted black on a white oval area, a very good example of the arrangement of double units. The human figures are white and have arms and legs extended. A black band in which are two eyes extends across the forehead. The lips are black; mouth white. This is a good example of one pair of units being negative, the other positive. There are four triangles with hachure in the intervals between the figures.

An analysis of the design in figure 12 shows two human figures drawn opposite each other, with arms extended and legs similar to those of frogs. The complicated geometric figures vary considerably but can be reduced to about three units; but these units are not always repeated twice.

In figure 13 there are two human figures, one seated on the shoulders of the other, who is prostrated and has head severed from body. The former apparently is holding a knife or pipe in his right hand and the hair of the decapitated head in the left. The head and back of this seated figure is covered with what appears to be a helmet mask and animal's pelt. The mask resembles the head of a serpent or some reptilian monster that has a single apical horn on the head and jaws extended. Possibly the disguise represents the Horned Serpent or the same being as figure 4I. The body of the man and the lower part of the face is black. The Snake priests at Walpi paint their chins black.

ANLMALS

Quadrupcds.-Many of the animals depicted on the bowls are mammals distinguished by four legs, but often these present strange anomalies in their structure. In several pictures of rabbits and some - other quadrupeds the lower fore-legs bend forward, and in one instance, a composite animal, the fore-legs are short and stumpy with no indication of a joint, but the hind-legs are slender, longer than
the fore-legs, and apparently belong to a different animal. The majority of all the mammals represented have geometric designs on the body.

Variations in the form of the head and mouth are noticeable and are important in the determination of different genera to which these mammals belong. Figure 14 represents two quadrupeds with heads of lions and two geometric designs irregularly terraced, with white border. The interior is marked with parallel lines. The head is short and calls to mind that of a carnivorous animal ; there is a white band about the neck; the tip of the tail is white. The rectangular body marking is lozenge-shaped with dots.

Figure ${ }_{5} 5$ represents an unknown quadruped resembling some carnivorous animal. The tail has a white tip like figure 14 ; the ears are more prominent and pointed.

In figure 16 two men are dragging an animal by ropes tied to the neck of the captured beast. This is an effective way of leading a dangerous animal and preventing it from attacking either one of them.

The head and fore-legs of figure 17 resemble those of the bison. The head has ears, a horn, and a cluster of five feathers that are grouped fan-shape. The rear end of the body and hind-legs are somewhat like those of a wolf. This is a mythological composite animal or two different animals united.

The animal shown in figure i8 is seated, and has tail and ears like those of a hare or rabbit. The head, however, resembles that of a human being, with two black marks on the white cheeks. The upper part of the head is black. The two marks on each cheek among the Hopi are symbols of the Little War God.

Two exceptional animals with tails flattened like beavers are represented in figure 19. Although the fore-legs bear claws the posterior legs are club-shaped or clavate. The distribution of white and black on the bodies indicates a partly negative and partly positive drawing. The mouth has the form of a snout.

It would seem that figure 20 represents a carnivorous animal like a mountain lion. The tail is coiled, ending in a triangular appendage. Head, ears, and claws like a cat. The checkerboard periphery design is particularly effective.

Figure 21 represents a rabbit or hare whose body is black and without ornament. The joints of the legs bend in an unnatural way. Ears, tail, and labial hairs recall a rabbit.

Figure 22 represents two negative pictures of rabbits with characteristic ears and tails. They are separated by a band composed of
parallel lines, somewhat after the style of figure 9. Space between fore- and hind-legs is filled in with white zigzag lines. Two rabbits also appear in figure 23 , the forms of ears, tail, and body being somewhat different.

Figure 24 is likewise a rabbit figure which resembles the preceding in color. Most figures of rabbits have black bodies without the decorations on other mammals.

The food bowl illustrated in figure 25 has thirteen clusters of feathers, each cluster composed of four feathers, making an ornamental periphery. These clusters are called feathers because of their resemblance to the feather in a bird's wing depicted in figure 54. Although the two figures have rabbit features, the feet are quite different from those of that animal, the legs ending in sickle-like appendages. The reason for the strange shape of the fore and hind feet of this picture is unknown.

The body of the quadruped shown in figure 26 appears to have been penetrated by four arrows, but the central portion of the bowl has been broken or "killed" and an identification of the figure is impossible. The neck is long, quite unlike that of any animal known in the Mimbres fauna.

The animal represented in figure 27 is probably a bat ; in no other representation is a realistic zoic figure so closely related to the geometric design.

Figure 28 resembles a frog, and figure $28 a$ suggests two tadpoles crossed over a disk on which are depicted eight small circles. The petal-like bodies radiating from the central disk are ten in number, four of which are primary, four double, and two single. A much better figure of a frog is shown in figure 29.

Reptiles.-Figures 30 and 3 I have closer likenesses to turtles than to frogs. The resemblance to a turtle is very striking in figure 31 . The tail, which is absent in pictures of frogs, is here well developed, and the eyes and legs differ from those of frogs. The carapace of figure 3 I is covered with scales.

Figures of a serpent and a mountain sheep are shown in figure 32 . The two animals in figure 33 appear to be lizards outlined in white on a black ground ; a kind of negative picture in which the body is filled in with black.

The animal shown in figure 34 is apparently a lizard, but it differs from the other figures of lizards in the bifurcated head, lizards generally being represented with lozenge-shaped heads.

The two reptilian figures shown in figure 35 have all the characteristics of lizards and the picture probably illustrates some myth or folk-tale. The mouths of the two lizards and that of the bird are approximated, which would suggest that the three were talking together.

Fishes.-The representation of a fish (fig. 36) between two birds suggests the aquatic habits of the latter. The form of the fish suggests the garpike, but the tail is more like that of a perch. The markings on the body are probably scales. Trout were formerly common in the Mimbres River, but none of the pictures on pottery from ruins in that valley have the adipose dorsal that distinguishes the trout family. There is a considerable variety in the pictures of fishes and probably more than one genus is represented. In no other ancient Southwestern pottery do we find as many different kinds of fishes represented as in that from the Mimbres.

Figure 37 represents a fish with pectoral, ventral, anal, and a single dorsal fin. The tail is uncommonly large. In figure 38 we have a fish accompanied by two birds; the body shows portions of the skin and also backbone and spines. The birds have long legs and necks, which are the structural features of aquatic birds.

In figure 39 we have one of the best examples of Mimbres negative pictures or white on a black background. These negatives are without outlines, their form being brought out by a black setting. Various anatomical structures are evident, as paired pectoral and ventral fins which are curved on one edge ; pointed anal fin, small dorsal, crescentic gill-slit, small eyes, no mouth.

Figure 40 represents a sunfish, the body in profile being oval with long pointed dorsal fins and cross-hatched body.

The form of figure 4 I is serpentine with two pairs of fins on the ventral side and a single fin on the dorsal region. The body of this animal ends in a fish tail; the head, which is black, has no gill openings in the neck. There is a horn on top of the head which bends forward and terminates in a bunch of feathers. The eye is surrounded by a ring of white dots; teeth white; tongue black.

The small fish represented in figure 42 has three fins on the ventral and one on the dorsal side. Through the whole length of this fish extends a white band, possibly the digestive organs. The fins of this particular fish have spines represented, whereas in other pictures these fins are solid black.

Figure 43 shows two fishes which closely resemble each other in structure. One, however, is painted black, while the other is covered
with a checkerboard design. Each of these has a single ventral, dorsal, and pectoral fin, in which regard they differ from the specimens of fishes thus far known in Mimbres designs which commonly have paired pectoral and ventral fins.

Birds.-From their mysterious power of flight, and other unusual characteristics, birds have always been considered by the pueblos to be important supernatural beings and are ordinarily associated with the sky. We find them often with star symbols and figures of lightning and rain clouds. There is something mysierious in the life of a bird and consequently there must be some intimate connection between it and those great mysteries of climate upon which so largely depends the production of food by an agricultural people.

In Mimbres ware, as is usually true in conventional or naturalistic figures on prehistoric pueblo ware, birds excel in numbers and variety all other animals, following a law that has been pointed out in the consideration of pottery from Sikyatki, a Hopi ruin excavated by the author in $1895 .{ }^{.}$

There is, however, a great difference between the forms of birds, conventional and realistic, from different areas of the Southwest, and nowhere is the contrast greater than in those on the fine ware from Sikyatki and that of the Mimbres. The conventional bird and sky band, so marked a feature in the Hopi ruin, are absent in both the Little Colorado and Mimbres pottery.

The wild turkey, one of the most common birds, associated by the Hopi with the sun and with the rain, is repeatedly figured on ancient pottery from the Mimbres Valley.

Figure 44 shows three birds of a simple form from dorsal or ventral side, the head being turned so as to be shown laterally; but generic identification of these birds is difficult.

Figure 45 represents the head, neck, and wing of a parrot. It is instructive as showing wing feathers with white tips and black dots on the extremities. The triangular geometrical figure near its head has six feathers with black dots near their extremities.

Figure 46 , one of the most realistic pictures in the collection, is evidently intended for a parrot and is one of the few representations of birds on Mimbres pottery in which the tail feathers are indicated by parallel lines. The special avian feature of this figure is the shape of the head and upper beak, which corresponds pretty closely with

[^31]a geometric pattern called the " club design" used as a separate design in Casas Grandes pottery decorations.

The appendages on the head of figure 47 are feathers recalling those of quails; the tail is destitute of feathers.

The two wingless birds represented in figure 48 have a characteristic topknot on the head and a highly exceptional bodily decoration. Identification is doubtful.

The bird (fig. 49), shown from one side, has a vertical conventional wing, long neck and legs adapted for wading.

Although the tail of a bird shown in figure 50 resembles that of a turkey, the head and beak are similar to the same organs in a humming bird. Its beak is inserted into the petals of a flower, evidently for honey. The birds (fig. 5I), among the simplest figures in the collection, have angular wings, the feathers being represented by serrations or dentations. There are figures of two birds drawn in a white dumb-bell-shaped area in figure 52.

The bird (fig. 53) has outstretched wings with hanging feathers of exceptional form. Legs are not shown, which leads to the belief that the back of the animal is represented. The tail was obscurely shown in the photograph, which made it impossible to obtain a good drawing of this organ. This is one of the few dorsal representations of a bird, most of the others being shown from one side. The position of the hanging feathers of the wings is exceptional. ${ }^{1}$

The bodies of the four birds represented in figure 54 are oval, without wings or legs. Two of these bear triangular and cross designs, and two have lenticular markings. Between the beaks of each pair of birds there is a rectangular and three triangular designs, all terraced on one side.

The tips of the tails of the birds represented in figure 55 are like that of a turkey but it is hardly possible to prove that this is a proper identification.

The bird figure shown in figure 56 exhibits no wing or tail feathers, but the body is prolonged into a point. The head bears four upright parallel lines indicating feathers. Legs, short and stumpy. The object suspended like a necklace from the neck is not identified.

There are several examples of wingless or tailless birds and a few are destitute of legs. The signification, if any, of this lack of essen-

[^32]tial organs does not appear. Some of the birds have egg-shaped bodies; the heads with long beaks.

Figure 57 probably represents a turkey. The feathers of the tail are turned to a vertical position and the elevated wings have characteristic feathers. The legs end in conventionalized turkey tracks. There is a protuberance above the beak-a well known turkey feature. Figure 58 also represents a turkey, or rather three heads of the same animal with a single body. There are also three wings. The tail is turned vertically instead of horizontally and the claws are four in number-three anterior and one posterior. It has a single breast attachment.

Feather designs.-Among the modern pueblos the feather is one of the most prominent ceremonial objects and the specific variety used in their rites is considered important. Every Hopi priest in early times had a feather box, made of the underground branch of the cottonwood, in which he kept his feathers ready for use. The forms and decorations of Mimbres pottery would seem to indicate that feathers played a conspicuous rôle in the symbolic designs on prehistoric pottery.

The importance of the feather as a decorative motive is somewhat less in Mimbres pottery than in Sikyatki, the symbolism of which is elsewhere ${ }^{1}$ considered; but the symbols for feathers in the two areas are different and might very readily be used to distinguish these areas.

The types of the wings and tails of birds here considered were taken from the realistic representations on Mimbres pottery. We often find a dot indicated at the tip of a feather, a feature likewise seen in pottery from Casas Grandes in old Mexico and of wide distribution in aboriginal North America.

In order to be able to demonstrate that a geometrical decoration is a feather in Mimbres designs, the author has taken the representations of the wings and tails of many pictures of birds and brought them together for comparison. A few of these different forms of bird feathers from the Nimbres are shown in the figures (59-92) that immediately follow. The different forms of tail feathers thus obtained are considered first and those from the wings follow. It is interesting to point out that the author's identification of certain linear designs on Southwestern pottery as feathers was not obtained from the surviving Indians but by comparative studies. Starting

[^33]with the thought that certain rectangular designs are feathers, we can demonstrate the theory by its application and association with other bird figures.

Several forms of feather designs that appear quite constantly in the decoration of Sikyatki ware are not found on Mimbres ceramics, and vice versa. The Mimbres has several geometric feather designs peculiar to that valley. In the Sikyatki ware the relative number of feathers, free from attachment to birds, used in decoration is larger than in the Mimbres ceramics. Tail feathers have as a rule a different form from wing feathers and are more seldom used. Eleven different figures of birds' tails are here given, and there are twenty-two designs that are supposed to represent wings of different birds.

Tail feathers.-One of the simplest forms of birds' tails obtained in the way above mentioned is shown in figure 59, which represents five feathers. This feather type has square ends, each feather differentiated by lines as far as the body attachment. In figure 60 we also have four tail feathers, but the ends are rounded, and in figure 61 there are four feathers having rounded tips; the two outer could better be regarded as incomplete feathers. There are likewise four feathers in figure 62, but, although the tips are rounded, the angles are not filled in with black as in the two preceding specimens. Here the four feathers are united by a broad black band. In figure 63 three whole and two half feathers are represented, united by two broad transverse bands and four narrow parallel lines also transverse ; and in figure 64 there are five whole feathers and two half feathers, which are barely indicated, the lines that divide the two members being simply indicated.

It is instructive to note how often this connecting black band appears on bird tails. Figure 65 is a case in point. Thus far also the feathers of birds' tails considered are about equal in length. Here (fig. 65), however, the middle feathers are longer than the outer; the line connecting the tips would be a curved one.

An innovation is introduced in the tail feathers shown in figure 66. Their tips are rounded and there is a slight difference in general form between the three middle and the two outer members. The novel feature is the appearance of semicircular, or triangular black dots at their tips. Whether the existence of these differences means that another kind of feather is depicted or not the author is unable to say.

In figure 67 the four feathers are characterized by black markings throughout almost their whole length. This variation may indicate a special kind of feather or a feather from a different bird.

Wing foathers.-The simplest forms of wing feathers are marginal dentations, serrations, or even parallel lines without broken borders. One of these last mentioned is figured in figure 68, where the wing is sickle-shaped and the feathers short, curved lines. In figure 69 these lines are replaced by dentations, and in figure 70 we have three wings, each with dentations on one edge.

The form of the wing has been somewhat changed in figure 71 , but the feathers appear as dentations, while in figure 72 the feathers have become semicircular, each with a black dot. Wing feathers in figure 73 are simple triangles without designs, and in figure 74 they are semicircular figures, black at the base.

Typical forms of wing feathers appear in figures 75-79, which differ somewhat in form but are evidently the same. One of the essential features of these wings, as shown in the four figures mentioned, is their division into two regions distinguished by the forms of feathers in each case. This is not as well marked in figure 75 as in figure 76 , where the four primary and three secondary feathers on the same wing are distinctly indicated. The markings on these are similar, but the primary feathers are long and their extremities more pointed. In figure 77 we can readily distinguish primary and secondary feathers in the same wing by the absence of a black marking evident on all the others, and in figure 78 the three secondary feathers are distinguished by dots near their tips; the primary wing feathers are here narrower and longer, the longest terminating in curved lines. Figure 79 represents a wing with seven feathers, of which the four secondary are distinguished by the existence of terminal dots.

Neither figure 80 nor 8 I shows distinction of primary and secondary feathers but both have blackened tips. A like marking appears in figures 82 and 83 , where it extends along the midrib of four feathers.

Figure 8_{4} represents a right wing of a bird with eight feathers. A similar representation is found on the left side and for comparative purposes a cluster of these designs from a bowl decorated with geometric designs is also introduced (fig. 85).

Three feathers which have markings probably symbolic but different from any previously described are shown in figure 86. These were attached to a staff. Their identification is doubtful, which may likewise be said of figures 87 and 88 , the two latter being a very simple form of the feather symbol. The four designs that appear in figures $89-92$ are supposed to represent either tails or wings of birds in which individual feathers are not differentiated.

It is sometimes difficult to recognize the feather element in some of these and in others it is very well marked. These designs have been identified as feathers mainly on account of their connection with wings or tails of birds.

Insects.-The people of the ancient Mimbres probably did not recognize a sharp line of demarcation between birds and insects. Both were flying animals and can be distinguished in several figures. Figures $93-95$ were evidently intended to represent insects, probably grasshoppers. The animal represented in figure 96 is enigmatical. It apparently represents an insect but has strange anatomical features for a member of this group. The head and antennae resemble those of other insects, but the two sets of leg-like appendages, three in each set, hanging from the ventral region distinctly resemble fins of fishes. We cannot identify this as a naturalistic representation of any known water insect. It is probably some conventionalized mythic animal.

It is impossible to identify with any certainty several pictures that occur in the collection further than to recognize that they represent insects. There are several pictures of the grasshopper or locust. and the bee, dragon-fly, and butterfly can be recognized. The object shown in figure 97 looks like an insect but its structure is not sufficiently marked to definitely determine the family.

The insect shown in figure 98 has the wings and extremity of the abdomen similarly marked and recalls the dragon-fly. The head and legs differ considerably from those in figure 97.

Figure 99 appears to represent a moth or butterfly. No identifications were made of figures 100 and ioi. Figure 102 is a representation of an animal with four pairs of legs, possibly the insect known as the "skater." It has a head, thorax, and abdomen like an insect, legs like a grasshopper, and a tail like a bird.

The animals, and more especially the geometric patterns represented on both Mimbres and Casas Grandes pottery, are often similar ; but this similarity in the beautiful pottery of the northern and southern regions of the Mimbres-Casas Grandes plateau is even stronger than the resemblances here pointed out would seem to indicate. The pottery of both regions, for comparative purposes, ${ }^{1}$ may be regarded as belonging to the same area.

[^34]
COMPOSITE ANIMALS

One unusual feature of life figures on Mimbres pottery is the union of two genera of animals in composition in one picture, probably representing a legendary or mythological animal. The signification of such a union is not known, as the folk tales of the ancient inhabitants of the Mimbres are unrecorded; but it is instructive to note that similar composite animals are not commonly represented on pueblo pottery, ancient or modern, although we have pictures of reptiles and the like with feathers on different parts of their bodies.

It is also instructive to note how many synchronous differences there are between prehistoric pottery and architecture. While there are evidences of interchange of material objects in two areas, we cannot say that the culture of the inhabitants of any two regions was identical until both have been studied. The occurrence of Casas Grandes pottery fragments in the Mimbres ruins or vice versa would indicate that the two cultures were synchronous.

GEOMETRIC FIGURES

The geometric designs on Mimbres pottery are as varied and striking as the life figures, and while they show several forms found on the pottery from Casas Grandes, a large majority are different and characteristic. The geometric decorations are confined for the most part to the interior surface of food bowls, but exist also on the outside of effigy jars and other pottery forms. The geometric designs on Mimbres pottery are not ordinarily complex but are made so by a repetition of several unit designs.

The arrangement of geometric figures in unit designs is in twos, threes, and fours. When there are two different units they are found duplicated. There is seldom more than one unit in the arrangement by threes and very seldom an arrangement of units in fives, sixes, or higher numbers. It is instructive to notice en passant that while there are several designs on Mimbres food bowls representing stars, these stars generally have four points, but sometimes five.

Great ingenuity was exercised in filling any empty spaces with some intricate geometric decoration. No two bowls out of over a hundred specimens examined bear identically the same pattern painted on their interiors.

One small but important feature in encircling lines should not be passed in silence. There is no break in decorative lines surrounding the bowl. This is characteristic of the northern pueblo or cliff-house area known as the San Juan drainage, but not of pottery from the Gila
basin and the Little Colorado area as far north as old Hopi (Sikyatki). Much of the ancient decorated ware in the area between the Mimbres Valley and the Upper San Juan has surrounding lines broken. The broken line does not occur on the black and white type of ware, of which the Mimbres is a highly modified subtype. From the aloove facts regarding its distribution it appears that the "line of life " ${ }^{1}$ on Southwestern pottery can be traced to southern Arizona, and as black and white ware does not have this feature and is ranked as very old, the decorated pottery of Arizona and central New Mexico where it occurs should probably be ascribed to comparatively recent times. The Mimbres ware has no life line decoration and as this valley is only a short distance from the Gila settlements that show the line of life on their pottery the logical conclusion would be that the Mimbres pottery is archaic or probably older than that which has a life line.

There is at least one ruin in the Mimbres in which pottery with the life line occurs. This pottery is so close in other respects to that of the Gila and so different from that of the majority of neighboring ruins in the Mimbres that we may suppose those who settled there came from the Gila valley.

Underlying the pure pueblo or kiva culture of the San Juan and its tributaries is a prepueblo culture which differs in terms of architecture ${ }^{2}$ as well as in various types of artifacts.

The unpolished pottery of the prepueblo culture in the Mesa Verde is distinguished by the varieties of corrugated, coiled and rough unpolished ware. One type has the neck and mouth of the jars formed of coiling while the body of the jar is rough without. Unlike food bowls from the Mesa \erde cliff dwellings, the Mimbres pottery is destitute of painted dots continuous or in clusters that are almost constantly found in this more northern area. The great difference, however, between the ancient pottery of these two regions is of course the absence of realistic figures in the northern and their great abundance in the southern prehistoric ruins.

There are many bowls in the Mimbres ware that introduce areas, triangles, rectangles, and other geometrical figures across which

[^35]extend parallel lines or hachures. When triangles, these figures interlock with the same of solid black, leaving zigzag white designs. This is apparently a rare method of decoration of Mesa Verde pottery by indentations, and occurs at intervals down the San Juan to the great ruins of northern Arizona no less than in ruins at Aztec and in the Chaco.

It seems to indicate an older state of culture as it universally underlies the true black and white or prepueblo culture which is missing in the Mimbres, Gila and Little Colorado regions.

While a knowledge of the distribution of the broken encircling line in pottery from Southwestern ruins is not very extensive, those in which it has survived lie in contiguous areas. This feature is absent in the oldest ruins. In the area where pottery thus decorated occurs there survive few inhabited pueblos. Another point: the decorated pottery of the San Juan drainage, where corrugated ware is most abundant, has no life line; this is true likewise with the Mimbres Valley, where the most realistic decorated figures occur, corrugated ware being comparatively rare. The line of life does not ordinarily occur in black and white ware. Archaic ware, generally speaking, has no line of life, which leads me to suppose that the Mimbres ware is older than the Gila pottery. One of the peculiarities of Mimbres pottery is the use of geometric figures on the bodies of animals. These are practically the same as those used free from zoic forms. Their meaning in this connection is not known but several explanations, none of which are satisfactory, have been suggested to account for their existence on animal bodies. This is not common in the pueblo area but occurs in the region or regions that are peripheral in situation, two of which are the San Juan cliff houses and related ruins and the Mimbres; one north, the other south of the central or northern pueblo zone. The author is led to regard this feature as later in development or more modern. If earlier it would probably have been distributed over the whole area. From a study of houses the author was led to believe that the Mimbres settlements were older than the great highly differentiated cliff dwellings and pueblos.

The geographical distribution of the " life line" is suggestive of its comparatively modern origin. It is found in ruins along the Gila and its great tributary, the Salt, in the ruins along the Little Colorado and its tributaries, at Sikyatki, Zuñi and some of the Rio Grande ruins.

The geometrical decorations on Mimbreños pottery can generally be resolved into certain units repeated two or more times, forming
a complex figure. We have, for instance, a single type repeated four times, each unit occupying a quadrant. We have also another unit type repeated three times. In a fourth form we have two unit types, each repeated in opposite hemispheres, all together filling four quadrants. In a fifth method we have three different unit types, each duplicated.

In the design represented in figure 103 we have what appears to be a sun symbol or a circle with checkerboard covering and four projecting appendages that resemble bird-tails arranged in pairs, the markings of the opposite members of each pair being practically identical. The geometrical designs on the periphery of the bowl consist of six units, in each of which pure black and hachure are combined. In figure 104 the design appears as a central circle with four radiating arms of a cross, each with checkerboard decoration. Oval white figures alternate with these arms and in each of these ovals is depicted a compound figure of six triangles. A similar design appears on ancient pottery from the Hopi ruin, Sikyatki, where it has been identified as a complex butterfly symbol, and on that from the cliff dwellings of the Mesa Verde. In Mimbres pottery it sometimes occurs on the body of animal pictures, as the author has shown elsewhere. ${ }^{\text {B }}$

In the design (fig. 105) a central circle is absent but it has four arms like a cross with zigzag lines. The design (fig. 106) is made up of four S-shaped figures painted white on a black zone. From the inner ring there arise eight radiating lines which extend toward the center. Each of these radial lines has three parallel extensions at right angles.

Figure 107 is a broad Maltese cross painted white on a black background, one edge of each arm being dentated. This figure may be classed among the negative figures so successfully used by the ancient Mimbreños.
A swastica design represented in figure to8 is so intricate that it is not readily described. In the middle there is a square on the angles of which are extensions that have a dentate margin. The designs placed opposite each other are more elaborate than the other four and are triangular with solid colors and hachures.

Four triangular designs radiate from a common center on a white field in figure 109. Serrate marginal edges are used with good effect in this picture.

[^36]There are two pairs of rectangular designs in figure 110 arranged about a central circle with peripheral serration recalling a buzz saw. The combination of designs surrounding it is unique but the elements resolve themselves mostly into zigzag and checkerboard decorative elements.

The extremities of the cross (fig. ili) are rounded; its arms arise from a central inner circle with figures in white on a black background. Two of the arms are ornamented with terraced rims and two have diamond figures separated by parallel zigzag lines forming bands in white on a black background.

Three pairs of designs can be recognized in figure 112, one pair resembling flowers on stalks; the others, also paired, are octagonal in form, recalling flowers seen from above. An eight-pointed rosette forms the center of one, and a cross, white on black, the other. Six triangular designs in which hachures predominate decorate the periphery.

Two pairs of geometric figures cover the interior of the bowl shown in figure II3. One pair is mainly a checkerboard design, the other chevrons on parallel lines. The central figure is surrounded by nine crosses on a white zone. Figure II4 has likewise two pairs of geometric units arranged about a central circular area which is white.

Figure II5 also has two pairs of radically different units, one with two rectangular designs, the other with wavy lines having dentate borders.

There is a trifid arrangement in the decoration of figure i16, consisting of three lozenge-shaped figures with dentate borders and parallel lines set in as many oval white areas. The central figure is a white circle with black border.

Figure 117 is also made up of three unit figures, each of triangular shape with an elaborate border of solid triangles and hachure surrounding figures.

Figure 118 is a very exceptional decoration and may be divided into six units arranged in pairs. There are four triangles, two pairs of which have a decorated border and two have not, but all alternating with a pair of five needle-like solid black pointed extensions reaching from the margin of the bowl inward. The most conspicuous figure is a unit design consisting of bands with two opposite figures united with the margin by a black line, each decorated with four frets.

Figure II9 is an unique decoration made up of a central circle with five claws like birds' beaks, each with an eye. The interior of each is a five-pointed star.

Figure 120 is a central four-terraced symbol from which extend many radiating feather-like designs. A central rosette in figure 121 has eight petaloid divisions; it is white at the extremities, black at the center.

The decoration of figure 122 consists of an intricate meander filling the peripheral space outside a circular central black area.

In figure 123 the more striking parts are the five white circles, one centrally situated, and four equidistantly placed near the periphery: The main portion of the bowl is covered with figures consisting of rectilinear lines and spirals.

The prominent design in figure 124 is a star with eight slender arms and exceptional peripheral decorations.

The centrally placed design depicted in figure 125 is a quadruped with tail curved upward, recalling a conventional mountain lion. The peripheral figures are of two shapes, lozenge or angular, and semicircular with zigzag extensions.

Two birds stand on an unknown object in figure 126, while in figure 127 we have a quadruple arrangement of parts, the same unit being repeated four times. The most striking designs are bundles of conventional feathers, four in each, arranged at intervals. These have been identified as feathers by a comparison of them with the wing feathers of an undoubted bird elsewhere considered.

The designs shown in figures 128 and 129 are four-armed crosses. Between the arms of the last mentioned figure there are white designs on a black ground.

Now and then we find in ancient Mimbres pottery the universal symbol called the swastica. Figures 130 and 131 are geometrical, the latter having three instead of four arms. Figure 132 represents a four-armed swastica in which the extremities of the arms are quite complicated.

One of the most beautiful geometric designs from Nimbres pottery is shown in figure 133, where a combination of curved and linear figures, black, white, and hachure work, all combine to produce the artistic effect. Elsewhere ${ }^{1}$ the author has figured a similar design with four S-figures around the periphery of a bowl.

The design on the food bowl shown in figure 134 is very ornate and in a way characteristic of Mimbres ware. We have in its composition solid black, hachure, and white rectangular lines and scrolls

[^37]so combined as to give a striking effect and attractive harmony. Of all geometric figures this appears to the author to be one of the most artistic.

In figure 135 is an artistic combination of a double ring of terraced triangular figures surrounding a central zone in white, and in figure 136 there is a composite decoration composed of a complex of triangular designs. In figure 138 there is a white square in the middle, around which are arranged eight figures of two kinds alternating with each other; four in each type.

The design in figure 137 is simple, consisting of a number of white zigzag figures with intervals filled in with triangles, sometimes black and sometimes crossed by parallel lines.

In figure 138 we have two groups of similar unit designs, four in each group, composed of triangular blocks terraced on one side and crossed by parallel lines. The simple designs on figures I39-I 40 need no elaborate description.

CONCLUSION

The material here published is extensive enough to permit at least a preliminary estimation of the relation of Mimbres pottery to that of the so-called pueblo area on the north and that of Casas Grandes on the south.

The Mimbres valley is an ideal locality for the development of an autochthonous and characteristic ceramic area. There is not sufficient evidence to prove that decorative elements in any considerable number from the North modified it to any great extent, for we find little likeness to pottery of the Tulerosa and other tributaries of the Gila and Salt. The pottery of the Mimbres had crossed the watershed and reappears in the sources of tributary streams that flow into the Gila. Examples of it have been found on Sapello Creek, which, so far as we know, is the northern extension of the Mimbres culture. The beautiful pottery collected by Mrs. Watson at or near Pinos Altos clearly indicates that Mimbres pottery was not confined to the Mimbres Valley. Limited observations often render it impossible to trace the extreme northern extension of the Mimbres pottery, but it seems to grade into ceramics from the upper Gila and Salt River tributaries. The southern migration of pueblo pottery appears to have been very small, but elements of foreign character worked their way into the Mimbres from the west, as is clearly indicated by shards from the ruin at the base of Black Moun-
tain. ${ }^{1}$ The line of demarcation between the two on the west is clearly indicated by specific characters.

The Mimbres pottery most closely resembles that from the Casas Grandes mounds in Mexico, on the south, but whether we may look to the south for the center of its distribution is not apparent. The mounds near Casas Grandes River are situated in the same inland plateau, and although Casas Grandes pottery excels the Mimbres in form and brilliant color, it is inferior to it in the fidelity to nature of its realistic pictures of animals. In this respect the Mimbres has no superiors and few rivals.

We have found no evidence bearing on the antiquity of Mimbres pottery from stratification. It is not known whether it overlies a substratum composed of corrugated, coiled, or black and white ware as commonly occurs in the pueblo and cliff-house regions. Decorative features characteristic of it have been developed independently in this isolated region. A knowledge of the length of time required for its development as compared with that necessitated for the evolution of the Sikyatki designs must await more observations bearing on this subject.

The animal designs were not identified by Indian descendants of those who made them. A determination of what they represent is based solely on morphological evidence. They are às a rule well enough drawn to enable us to tell what animal they represent. Very often the animal is recognizable by comparisons, for we can reconstruct a series reaching from a symbol made with a few lines to a well drawn picture. There is danger in supposing that a series thus constructed may always lead to accurate identifications as comparisons of symbols with decorative designs are often very deceptive.

The break in decorative lines surrounding pueblo food bowls and other forms of pottery is absent in specimens from the Mimbres Valley. This is also true of the cliff house and other pottery of the San Juan Valley.

Pottery from the Gila basin and the intervening area as far north as old Hopi ruins has this life line. Much of the ancient decorated ware found in the area between the Mimbres valley and the upper San Juan also have surrounding lines broken.

[^38]

3

OSBORN COLLECTION.

1. Snaring wild birds.
2. Game of chance.
3. Men emerging from the underworld.

2

4

6
4. Man shooting off the lightning.
5. Two men and two animals.
6. Two men and one woman.

OSBORN COLLECTION.
7. Two men kneeling on quadrupeds.
8. Two men lying on table.
9. Two men with bodies and limbs of
animals (Hulbert collection).

1o. Man dancing.
II. Two men dancing and two turkeys.
12. Two human figures.

13

15

14

16

OSBORN COLLECTION.
13. Man representing plumed serpent, cut ting off head of a victim sacrificed.
14. Two carnivorous animals.
15. Quadruped (probably wolf).
16. Two men dragging a quadruped.
17. Horned composite quadruped with feath-

- er head-dress.

18. Man with rabbit ears and body.

36

38

40

37

41

OSBORN COLLECTION.

[^39]

OSBORN COLLECTION.

[^40]45. Parrot.
46. Well-drawn parrot.
47. Quail.

48. Two birds on dumb-bell-shaped field. 51. Three birds.
49. Bird with wings extended.
52. Two birds with triangular tails and wings. 53. Sun bird.

59

62

63

64

65

66

67

TAIL FEATHERS.

89
ABERRANT WINGG AND TAILS OF BIRDS.

93

95

97

94

98
OSBORN COLLECTION.
93. Grasshopper with extended wings.
94. Four grasshoppers with extended wings.
95. Locust.
96. Unknown animal.
97. Unknown animal.
98. Dragon fly.

99

103
99. Butterfly (Hulbert collection).
100. Unknown animal (Osborn collection). tor. Insect with extended wings (Osborn collection).

100

102. Water bug (Osborn collection).
103. Sun emblem (Osborn collection)
104. Cross with butterfly symbols (Osborn collection).

OSBORN COLLECTION.
105. Cross painted white, alternating with
cuf. Gcometrical lines.
1, 6. Geometrical figure with friendship signs (Hulbert collection).
107. Maltese cross, modified.
108. Rectangular figure, modified.
109. Cross.

IIo. Cross with zigzag modifications.

111

113

115

112

116

OSBORN COLLECTION.

[^41]

II7. Swastica with three points (Osborn (8) collection).
iIS. Figure of unknown meaning (Watson collection).
rin. Five heads of birds around a central circle (Osborn collection).
120. Radiating feathers (Osborn collection).

121. Radiating pear-shaped objects surrounded by elaborate zone of complicated solid black and parallel lines (Osborn collection).
122. Figure of unknown meaning (Osborn collection).

123

125

127
123. Intricate design with five white circles
(Hulbert collention).
12.4. Star with eight rays (Osborn collec-
125. Quadruped surrounded by zigzag lines (E. White collection).

126. Two birds on an unknown weapon (Os born collection).
127. Cross with four bundles of feathers (ride fig. 53) (Osborn collection).
128. Rectangular cross around a circle, with elaborate peripheral design (Osborn collection).

129

129. Maltese cross (Osborn collection).
130. Cross with arms of two types (Osborn collection).
131. Three-pointed swastica (Osborn collection).

132. Swastica with zigzag extensions (Osborn collection).
133. Combination of rectangular and spiral designs (Osborn collection).
134. Complicated unknown figure (Watson collection).

135

139
135. Rings of cerrated symbols surrounding a central white area (Watson collectinn).

136

140
I36 to 140. Geometrical ornamentations of unknown meaning (136,138 , Watson collection; 137, 139-140, Osborn collection).

the distribution of energy in the SPECTRA OF THE SUN AND STARS

BY

C. G. ABBOT, F. E. FOWLE, and L. B. ALDRICH

(Publication 2714)

GITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION

BALTIMORE, MD., U. S. A.

THE DISTRIBUTION OF ENERGY IN THE SPECTRA OF THE SUN AND STARS

By C. G. ABBOT, F. E. FOWLE and L. B. ALDRICH

Until recently, one could form an estimate of the temperatures prevailing in the sun and other stars only by a determination of the distribution of energy in their spectra and the application of the laws of the perfect radiator or absolutely black body. Although recent advances in the physics of the atom point to a new method of approach to this subject, the form of the energy curve still remains of great theoretical interest.

In the measurement of the solar constant of radiation by the method of Langley, it requires us to determine the ratio of the areas of the energy curve of the sun at the earth's surface and outside the atmosphere, and knowledge of the distribution of intensities of the solar rays is indispensable. To be sure, the values come in merely as a series of weights in forming a pair of sums, one in the numerator, the other in the denominator of the fraction which gives the ratio of the solar energy outside the atmosphere to the solar energy within it. Hence no very high degree of accuracy is needful for this purpose. This is fortunate, for so far as our experiments have gone we have never succeeded in obtaining so high a degree of accuracy as would satisfy us from the workmanlike point of view.

This comes out clearly if one compares the results of our various determinations of the form of the solar energy curve as published in Volumes III and IV of the Annals of the Astrophysical Observatory. The divergence in these values is considerable, and when in 1920 the experiments for the determination of the form of the sun's energy curve were repeated, a still wider discrepancy appeared, so great that although these experiments of 1920 were ready at the time of printing of Volume IV of the Amnals we hesitated to include them until they should be checked by other independent determinations.

These proposed new determinations have been made at Mount Wilson during the summer of 1922, and form the first part of the present communication. The latter part includes the application of them to the spectra of ten of the brightest stars observed with a

[^42]special bolometric outfit by Messrs. Abbot and Aldrich at Mount Wilson in 1922. The work was done in connection with the roo-inch telescope.

We here return our thanks for the aid and encouragement furnished in the stellar work by Dr. Hale, Dr. Adams, and many of the staff of the Mount Wilson Solar Observatory.

SOLAR SPECTRUM ENERGY CURVE

A statement of the method adopted for the observations may be found in Volume II of the Annals of the Astrophysical Observatory, pages $24,50-57$. Briefly, it is this:

At each of a number of wave lengths in the solar spectrum it is required to determine: (1) The intensity of the spectrum observed in the bolometer ; (2) the selective transmission of the spectroscope; (3) the selective reflection of the coelostat ; (4) the transmission of the atmosphere. The bolograph indicates the first, and the measurements on a series of bolographs taken at different zenith distances of the sun furnish the means of computing the last. The reflection of the coelostat is determined by taking bolographs (a) with the ordinary pair of mirrors, (b) with a substitute pair of mirrors, (c) with a combination of both regular and substitute mirrors. The selective transmission of the spectroscope is determined by first passing the ray through an auxiliary spectroscope, selecting certain wave lengths and observing their intensity, (d) as transmitted by the auxiliary spectroscope, (e) as transmitted by both spectroscopes.

The observation (d) is made by setting the bolometer to occupy the position usually occupied by the slit of the usual spectroscope. In this position a number of settings of the auxiliary spectroscope are made, so as to determine the intensity of its radiation at a sufficient number of wave lengths. Then the slit of the usual spectroscope is restored to its proper position so as to permit nearly monochromatic beams of light to pass through the usual spectroscope after having been sorted out by the auxiliary one. The relative intensities of these nearly monochromatic beams are determined by taking bolographic energy curves of them. The areas included in these bolographic energy curves give the relative amounts of energy remaining in these wave lengths after having suffered absorption in the usual spectroscope. Thus the galvanometer deflections with the bolometer at the slit divided by the areas of the corresponding energy curves formed by the bolometer in its usual position, give numbers inversely pro-
portional to the transmission of the usual spectroscope, and suitable to correct its losses.

It will be noted that the procedure thus outlined takes no account of selective absorption by the bolometer for different wave lengths. If, for example, the bolometer should only absorb 50 per cent of the rays in the ultra-violet while it absorbed 95 per cent of the rays in the infra-red, the form of the energy curve would be quite erroneous. We confess that in even our present experiments the possibilities of error from this cause have not been eliminated, but as will appear we have at least shown that with several different bolometers, some camphor smoked, some painted with lamp-black, some in atmospheric pressure, and some in high vacuum, there is no certain difference beyond the experimental error, and we continue here, as heretofore, tacitly to make the assumption that the bolometer absorbs a uniform proportion of the rays throughont the region of spectrum we are concerned with, namely, from 0.3μ to 3μ. Our position is strengthened by the fact that Angström, Coblentz, and others estimate the absorption coefficient of blackened surfaces for total solar radiation as high as 97 or 98 per cent. This leaves little room for selective absorption.

Observations of 1920.-The determination of the transmission of the spectroscope was repeated in 1920 with new stellite mirrors, those used in 1917 and 1918 having gone to Chile. There is nothing new in the method employed, but the work was done with all possible care and with independent adjustments on July i6, I7, and 19, and August i8 and 19, 16 determinations in all. Ten points in the spectrum were observed in July and nine others alternating with them in August. The average probable error of the determination of relative spectroscopic transmission at these 19 points was 1.2 per cent. The results run as shown in table I.

Combining these results with the determination of the reflecting power of the stellite-mirror coelostat made in 1918, and determinations of the form of the energy curve at the earth's surface and of atmospheric transmission accompanying made at Mount Wilson on 10 satisfactory days of 1920 , of which five gave high, five low solar constants, we obtained the distribution of solar energy in the spectrum outside our atmosphere. These values will be given below.

Observations of 1922.-All the apparatus used in 1920 having been removed to Mount Harqua Hala, we used an entirely new outfit. The coelostat mirrors were silvered but the main spectroscope had new stellite ones.

In repeating the work, we were well convinced that the principal uncertainty rested on the determination of the absorption of the spectroscope. So many closely agreeing observations have been made in former years of the transmission of the atmosphere, the results of which fall in so well with the theory of Rayleigh on the molecular

Table 1.-Spectroscopic Transmission. Observations of 1920

Place by count	$\begin{array}{r} 193 \\ 18 \end{array}$	$\begin{array}{r} 194 \\ \text { ○o } \end{array}$	$\begin{array}{r} 194 \\ 45 \end{array}$	$\begin{array}{r} 195 \\ 30 \end{array}$	$\begin{array}{r} 196 \\ 15 \end{array}$	$\begin{array}{r} 196 \\ 45 \end{array}$	197 20
Prismatic deviation from ω_{1}	224.6'	210.6	195.6'	180.6	165.6	155.6'	144.0'
Wave length	. 355	. 370	-391	.412	. 441	. 463	'. 492
Relative transmission	194	243	297	291	314	328	343
Probable error, per cent.	$3 \cdot 2$	3.0	1.8	0.4	1.4	0.7	0.9

Place by counter	$\begin{array}{r} 198 \\ \text { oo } \end{array}$	$\begin{array}{r} 198 \\ 35 \end{array}$	$\begin{array}{r} 199 \\ 15 \end{array}$	200 12	$\begin{array}{r} 200 \\ 30 \end{array}$	$\begin{array}{r} 201 \\ 10 \end{array}$	$\begin{array}{r} 201 \\ 45 \end{array}$
Prismatic deviation from ω_{1}	130.6	119.0'	105.6'	86.6'	80.6	67.2'	55.6
Wave length μ	. 533	. 578	650	. 798	. 859	1.040	1.215
Relative transmission	372	378	362	348	335	295	291
Probable error, per cent...	I. I	I. I	0.9	1.2	0.3	0.9	0.7

Place by counter	$\begin{array}{r} 202 \\ 00 \end{array}$	$\begin{array}{r} 203 \\ 00 \end{array}$	$\begin{array}{r} 203 \\ 30 \end{array}$	$\begin{array}{r} 205 \\ 00 \end{array}$	$\begin{array}{r} 205 \\ 50 \end{array}$
Prismatic deviation from ω_{1}	50.6	30.6	20.6'	$-9.4{ }^{\prime}$	-26.0'
Wave length μ	I. 297	1.594	1.733	2.118	2.310
Relative transmission	324	365	383	351	186
Probable error, per cent...		1.2	0.5	0.4	2.3

scattering, that we could not doubt that the atmospheric transmission coefficients obtained on excellent days were abundantly accurate for the purpose here in view. At least this is true for the wave lengths greater than 0.4μ. In the ultra-violet, we are well aware that there is contamination of the spectrum by stray light from longer wave lengths, so that the atmospheric transmission coefficients determined for that region are too high, and the magnitude of this error increases
as the wave length diminishes. If that were the only effect of the stray light, it would tend to diminish the intensities of the solar energy spectrum outside the atmosphere in the region of the ultra-violet rays, but there are also two additional effects of stray light, both of which tend in the other direction.

The first of these is the building up of the bolographic energy curve at the earth's surface in the ultra-violet by these same stray radiations which, as we have just said, tend to raise the atmospheric transmission coefficients. Obviously the effect of this building up tends to make the ultra-violet too high.
The third effect of stray light is in the determination of the transmission of the spectroscope. If the reader will go over the summary of procedure for that purpose, which has just been stated, he will perceive that the auxiliary spectrum which falls at the slit of the main spectroscope will be subject to contamination by the stray light. Monochromatic beams of energy result at the usual position of the bolometer, after the passage of the light through both spectroscopes, in which the stray light will be practically eliminated. Consequently in the ultra-violet the auxiliary spectrum will be relatively too bright, owing to the influence of stray light, while in the final spectrum represented by the little energy curves, the stray light will be eliminated. Hence, the ratios of the bolometric deflections at the focus of the auxiliary spectrum divided by the bolographic areas observed in the usual spectrum will be too large in the ultra-violet, indicating a greater absorption in the spectroscope than actually exists, and this will tend to make the ultra-violet part of the solar spectrum outside the atmosphere too high. We sha! 1 recur to this question of stray light a little later, and introduce an estimate of the combined effect of these three different influences.

In considering the best means of assuring a trustworthy result, it seemed to us that great advantage would come from using several different prisms, both in the auxiliary and in the usual spectroscope, so that we could carry through the whole determination of the solar energy curve outside the atmosphere with instruments of very different dispersion characteristics. In order to get these as decisively different as possible and at the same time to use materials of high transmissibility throughout the region of the spectrum we were concerned with, it occurred to us to use prisms of rock salt in substitution for the ultra-violet crown glass prisms we usually employ. Moreover, as the work of 1920 and some previous years had been done with ultraviolet crown glass prisms in both the auxiliary and usual spectro-
Table 2.-Circumstances of the Observations

$\begin{aligned} & 1922 \\ & \text { Date } \end{aligned}$	Object	Prisms		Bolometer	Type of blackening	Spectrum places	No.of tests	Notes
		ist spectroscope	$\begin{aligned} & \text { 2d spectro- } \\ & \text { scope } \end{aligned}$					
Aug. 28	Spectroscope absorption	Great flint	U_{6} V. Crown.	New vacuum	Lamp-black paint.	First set	2	1. Part of plates melted.
6 29	,	" 6	،6 6	" "	" " "	t		" ${ }^{\text {Bolometer }}$ wiggles.
* 69	6	" 6	"6 **	Old air	Camphor smoke. .	" 6	1	4. Correction for shutter.
" 30	"	"	"	O6 6	Camphor smoke..	" 6	1	5. Shutter changed.
* 6	،	"	"6 *		Lamp-black paint.			$\int \begin{gathered}\text { 6. Bolometer wiggles } \\ \text { much. }\end{gathered}$
" "	6 6	6 6	6 6	66	$66 \quad 66$	6 6	2	much. 7. Bolometer wiggles much.
$3 I$	Test of bolomete	" 6	None	Old vacuum in air...	$\text { cc } 66 \quad \text { or }$		2	8. Bolometer of 1916.
	\% 66	46	None	Old air	" 6 "	" 6	I	9. Same as Aug. 30.
Sept. ${ }_{\text {\% }}{ }^{\text {a }}$	" 6 "	*	6	Old vacuum exhausted	46	" 6	2	10. On these days many
"6" "	"6 "6	6	" 6	"6 "6 in air...	"6 66 66	6 6r		experiments alter-
4 4 6	"6 "6 " 6	"	\%6	"6 "6 exhausted	"6 66 64	" 6	1	nately with and
	" ${ }^{6}$ " ${ }^{\text {6 }}$ " ${ }^{\text {a }}$	None	" 6	"6 6\% in air...	66	"	I	without air.
" 6	" "\% galvanometer scale	None	"" V Crown	" "6 "6	"6 "6 6	None	1	11. Varied shunt.
" 6	" "\% sectors		U. V. Crown.	"6 \% 68	"6 "6	Selected	1	12. Eye observations.
	" " bolometers	Great flint	None	$66^{6} 6$	" 6	Second set	1	13. First spectroscope resilvered.
" "	" 6 6	\%	6	New vacuum repaired	66 6	6	\pm	14. Strips resoldered and re-evacuated.
"6	Spectroscope absorption . \% $^{\text {c }}$	46	$\mathrm{U}_{66} \mathrm{~V}$. Crown.	"6 "6 "6	64 66	"	2	15. Excellent conditions.
" 3	Star "\%			"6 "6 \% 6	"6 6\% 6	First set Bolographs	$1{ }_{10}$	16. Cloudless.
" 65	Splar energy spectrum distribution.	None Great flint	Rock salt .	* 6	" "6	Combined set.	10	16. Cloudless. 17. See final discussion.
" 6	Solar energy spectrum distribution.	None	Rock salt	"6 "6	"6 \% 6	Bolographs ..	10	18. Cloudless, good sky.
" 64	Spectroscope absorption	Great flint	" ${ }^{\text {c }}$	" ${ }^{6}$ "	"6 "6 " 6	Combined set.	I	19. Excellent conditions.
" "	Test of bolometers.		None ..	Old vacuum in air...	" " 6	\%6 "6	1	20. Compare Sept. 2.
" 9	Spectroscope absorption	U. V. Crown.	Rock salt	Old air repaired....	"	""	1	21. Little value.
"6 IT	Bolographs great wave-lengths....	None	" ${ }^{6}$	" 6 6 ${ }^{\text {a }}$	"6 "6 \%	Bolographs ..	4	22. Eye observations also.
	Test of sector values.............		6	" 6	$6{ }^{6}$	Selected	3	23. Bolographic.

[^43]scopes, we determined to substitute in the auxiliary spectroscope a prism of ordinary flint glass which, as is well known, produces a far greater relative dispersion in the ultra-violet than the ultra-violet crown glass.

It seemed to us that when these various modifications of the experiments had been made, namely, the use of bolometers in air, bolometers in vacuum, bolometers painted with lamp-black, and bolometers smoked with camphor smoke; when we had employed several different types of prisms; and when we had independently set up the apparatus with the greatest possible care on several different occasions; then, if the results of all these modifications should agree among themselves and should agree either with the work of 1920 or with the work of the earlier years, as reported in Volumes III and IV of the Annals of the Astrophysical Obscrvatory, the final result, supported by such farreaching agreements, ought to be entitled to confidence.

We now proceed to give in table 2 in abbreviated form the data of the observations and their results.

As noted above, the measurements of the degree of uniformity of the galvanometer scale do not indicate appreciable corrections to be necessary. For though the increase of deflection for successive steps of one ohm diminishes slightly with increasing deflection, yet there should be a small change in this direction depending on the fact that a change of one ohm on a shunt of 1,937 ohms about a Wheatstone's bridge coil of 56 ohms produces less current in the galvanometer than I ohm change on $\mathrm{I}, 930$ ohms. With allowance for this, the readings differ by less than their probable error from linear relations.

The deflections are governed by rotating sectors. As determined with automatic recording of deflections in numerous series, the deflections for sectors are as follows:

Sector No.	3	2	1	0
Deflection	1.000	3.159	9.161	26677
Deflection	0.3748	1.18+	3.434	10.000

From this we derive factors of reduction:

To reduce3 3 to o	2 to o	I to o	0 to 0
Factor 26.68	8.445	2.913	1.000
To reduce 3 to 3	2 to 3	I to 3	0 to
Factor 1.000	0.3166	0.1092	0.03748

Table 3.-Ratios of Deflections of Various Bolometers as Reduced to Nearly Equal Scales
$A=$ old bolometer No. 20 in air, camphor-smoked.
$B=$ old bolometer No. 20 in air, lamp-black-painted.
$C=1916$ bolometer in air, lamp-black-painted, glass plate in front.
$D=1916$ bolometer in vacuum, lamp-black-painted, glass plate in front.
$E=1922$ bolometer in vacuum, lamp-black-painted, glass plate in front.

Spectrum place	Wave length	A/C	B/C	D / C	D/C	D/C	D / C	$\begin{gathered} \text { D/C } \\ \text { Mean } \end{gathered}$	E/C
	microns								
06:00	0.37	89	105	107	105	99	103	1.035	94
04: 30	0.40	100	91	100	106	103	104	1.032	108
03: I5	0.46	100	100	104	101	100	99	1.010	106
02: 00	0.53	103	106	95	90^{*}	99	105	. 997	102
00: 45	0.65	102	100	102	88*	95	100	. 992	99
99:50	0.86	110	100	105	100	98	101	1.010	100
98: 15	1.22	106	99	108	100	99	IOI	1.020	100
97:00	1.60	I I I	109	89^{*}	99	93	95	. 970	103
95:00	2.12	110	105	100	102	93	98	. 982	100

*Omit.
These figures perhaps show that the camphor-smoked bolometer No. 20 read low in the visible and ultra-violet spectrum as compared with the infra-red, but this result may have been produced by changes of sky between the two series of observations, which in this instance were not made on the same day. In all the other cases we incline to think there is nothing definite shown, and the fluctuations were due to slight differences of wave length between settings, or to changes in sky between observations, as well as to accidental errors of galvanometer readings, which latter were sometimes no doubt more than I per cent. The change between air pressure and evacuated condition of the ig16 bolometer seemed to us at one time real, but looking at the individual determinations we now incline to doubt it. In vacuum the 1916 bolometer was about five times as sensitive as in air. The observations in vacuum in each case were taken immediately preceding those in air, and at high sun.

Reduction of the observations of spectroscopic absorption.-As a sample of the work we give the observations and reductions for September 2, first series.

Table 4.-Sample of Spectroscopic Absorption Work

Place by second spectroscope	Sector-free deflections and times				Sector-free areas and times		Sectorfree mean deflection	
	Deflection	Time	Deflection	Time	$\begin{gathered} \text { Mean } \\ \text { measures } \end{gathered}$	Time		
	cm.		cm.		cm. ${ }^{2}$			
05: 00	0.77	$3^{11} 07^{m}$	0.52	$3^{\mathrm{h}} 54^{\mathrm{mm}}$	1.97	$3^{\text {n }} 29^{\mathrm{m}}$	0.645	327
04: 30	5.54		4.95		16.19		5.25	325
03: 15	15.10	$3^{\text {l/ }} 09^{\text {m }}$	14.15	$3^{\text {h }} 56^{m}$	48.5	$3^{\text {h }} 35^{\text {m }}$	14.62	302
02:00	30.51		28.89		I 12.1		29.70	265
00: 45	56.58		54.89		204.5		55.73	273
99:50	85.29	$3^{\text {h }}$ II ${ }^{\text {m }}$	86.15	$3^{\mathrm{h}} 59^{\mathrm{m}}$	323.0	$3^{\mathrm{h}} 39^{\mathrm{m}}$	85.72	266
98: 15	91.20		90.20		330.5		90.70	275
97:00	60.63		61.16		236.2		60.90	258
95:00	17.61	$3^{\text {b }} 14^{\text {m }}$	17.61	$4^{\text {h }} \mathrm{OI}^{\mathrm{m}}$	51.7	$3^{\mathrm{h}} 46^{\mathrm{m}}$	17.61	341

Working along in this way, and reducing all of the ratios, deflection divided by area, proportional to spectroscopic absorption, to the same scale of arbitrary units, we come at length to the following tables :

Table 5.-Collected U.V. Glass Spectroscopic Absorption. First Places

Place by second spectroscope	Dates of observation			Mean values	Percent probable error
	Aug. 28	Sept. 3^{-1}	Sept. 3-II		
05: 15	518	431	417	455	4.2
03: 45	495	480	484	486	0.6
02: 40	448	446	437	444	0.4
OI : 25	403	427	432	42 I	1.3
99: 48	384	409	422	404	1. 6
98:30	. . .	428	425	426	.
98:00	. \cdot	437	420	428	-
96:30	416	405	398	406	0.7
94: 10	. .	703	735	419	.

Similarly for the other set of spectrum places we obtained:
Table 6.-Collected U. V. Glass Spectroscopic Absorption. Second Places

Place by second spectroscope	Dates of observation						Mean values	Per cent probable error
	August 28	$\underset{29^{-1}}{\text { August }}$	$\underset{29-11}{\substack{\text { August }}}$	$\begin{gathered} \text { August } \\ 30 \end{gathered}$	Sept. $2-\mathrm{I}$	$\begin{aligned} & \text { Sept. } \\ & 2-\text { II } \end{aligned}$		
06:00	500	541	507	496	515	544	517	1.0
04: 30	508	458	495	368	507	547	480	3.0
03: 15	466	461	452	400	471	473	454	1.3
02:00	410	433	426	397	412	440	420	1.0
00: 45	490	445	450	436	426	42 I	445	1.2
99: 50	408	413	400	428	413	385	408	0.8
98: 15	433	428	419	422	426	436	427	0.3
97:00	. .	377	370	48 I	402	398	406	2.5
95:00	\cdots	553	591	630	532	569	575	1.7

In the same manner we arrived at the following results for the spectroscopic absorption values in arbitrary units applicable to the case of the rock salt prism replacing the U . V. crown glass prism in the

Table 7.-Collected Rock Salt Spectroscopic Absorption

Place by U. V. spectroscope	Dates of observation			Mean values	Per cent probable error
	Sept. 5	Sept. 6	Sept.9		
$06: 00$	699	644	693	679	1.5
$05: 15$	582	567	513	554	2.1
$04: 30$	522	539	476	512	1.6
$03: 15$	451	438	412	434	1.6
$02: 00$	411	391	384	395	1.2
$00: 45$	349	352	368	356	1.0
$99: 50$	313	305	327	315	1.2
$98: 15$	264	271	281	272	1.0
$97: 00$	239	260	270	256	2.1
$95: 00$	215	227	223	222	0.9
$94: 10$	203	208	\cdots	210	\ldots

second spectroscope. As we had no reason to expect absorption bands introduced by rock salt it was unnecessary to investigate so many places in the spectrum as were used for the U.V. crown glass prism which has several such bands. Eleven places were chosen including all the wave lengths of the "Second Places" above and in
addition two others from the "First Places." For clearness we give the spectrum settings which the U. V. crown glass prism would have required at these wave lengths, so as to compare with those in the preceding tables.

These determinations of spectroscopic absorption for the U.V. glass and for the rock salt spectroscopes were plotted on a large scale and smooth curves drawn to fix the best values to use for the absorption coefficients at the wave lengths where bolographic ordinates are measured. These results will appear in a later table.

Reductions of observations of coelostat absorption.-On September 5, and again on September 6, bolographs were taken to determine coelostat absorption. Thus, for instance, on September 5, after a series of four bolographs beginning at $6^{h 1} 36^{m}$ and finishing with the bolograph at $8^{\mathrm{h}} \mathrm{I} 3^{\mathrm{m}}$ taken to determine atmospheric transmission coefficients, two additional silvered mirrors were employed in connection with the bolographs as follows:

	$9^{\text {h }} 45^{\mathrm{m}}$	${ }_{10}{ }^{\text {hoi }}$ Om	$10^{1{ }^{12}} 20^{\text {m }}$	$10^{\text {h }} 39^{\text {m }}$	$10^{\text {h }} 49^{\mathrm{m}}$	
Mirror arrangement	mirror	Usual	mirrors	substitute	substitute	Usu

These bolographs of the solar spectrum having been marked with smoothed curves as usual, were measured in ordinates at the usual places as in solar-constant determinations. The results were then combined in the following manner:

From the usual bolographs taken at $\mathrm{S}^{\mathrm{h}} \mathrm{I}^{\mathrm{m}}$, $\mathrm{Io}^{\mathrm{h}} \mathrm{or}^{\mathrm{m}}$, and $\mathrm{II}^{\mathrm{h}} \mathrm{O}^{\mathrm{m}}$, it was determined what would have been the usual ordinates at the various times when four mirrors and two substitute mirrors were employed, and thus the whole body of data could be brought to a common time and air mass. Mean values of ordinates for the four mirrors and for two substitutes were determined. Let A, B, and C be directly comparable ordinates at a certain wave length with usual, substitute, and four mirrors, respectively, then the correcting factor for the combined absorptions of the usual mirrors at this wave length is B / C. If that for the substitute mirrors was desired, it would be A / C.

Proceeding thus in effect, we obtained the correcting factors for the absorption of the usual mirrors over the whole spectrum for both September 5 and September 6. The latter day's values were obtained for slightly different wave lengths as observed with the rock salt prism. But the values were readily convertible to a comparable basis, and were thus compared by plotting on a large scale. The two sets of data were in satisfactory accord throughout, but were mutually helpful in smoothing out accidental errors. This being
done, smoothed curves were drawn for each day separately and applied independently in the final computations of the energy curves of the two days. From inspection of the results it is believed that the determinations of coelostat reflection are surely correct to within I per cent, except as far as they may be affected systematically in the violet by stray light as already referred to above.

Table 8.-The Solar Energy Curve. U.V. Glass Prism. September 5, 1922

Prismatic deviation from ω_{1}	$\underset{\substack{\text { Wave } \\ \text { length } \\ \mu}}{\substack{\text { len }}}$	Dispersion coefficient	Coelostat reflection	Spectro- scope co- efficient	$\begin{gathered} \text { Prismatic } \\ \text { energy curve } \\ \text { outside } \\ \text { atmosphere } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Normal } \\ \text { nergy curve } \\ \text { outside } \\ \text { atmosphere } \end{gathered}\right.$
230^{\prime}	0.3504	1104	0.545	632	394	435
220	0.3600	990	0616	580	506	501
210	0.3709	887	0.667	530	615	546
200	0.3853	788	0.705	490	825	650
190	0.3974	692	0.734	480	980	678
180	0.4127	605	0.760	480	1445	875
170	0.4307	529	0.784	487	1820	963
160	0.4516	460	0.807	470	2350	108)
150	0.4753	397	0.829	450	2960	1175
140	0.5026	338	0.850	436	3390	1146
130	0.5348	282	0.870	420	3806	1073
120	0.5742	230	0.890	420	4500	1035
115	0.5980	206	0.899	428	5002	1030
${ }^{110}$	0.6238	183	0.907	440	5650	1034
105	0.6530	162	0.915	444	6000	972
100	0.6858	144	0.923	435	6400	922
95	0.7222	127	0.930	420	6380	810
90	0.7644	112	0.936	410	6270	702
85	0.8120	98.8	0.941	407	6250	618
80	0.8634	86.5	0.945	410	6165	533
75	0.9220	76.8	0.949	413	5910	454
70	0.9861	71.5	0.953	418	5620	402
65	1.062	68.0	0.957	422	5248	357
60	1.146	66.0	0.960	426	4760	314
55	1. 225	66.0	0.963	429	4400	290
50	1.302	66.0	0.966	428	3850	254
45	1.377	66.0	0.970	424	3312	218
40	1.452	66.0	0.973	418	2880	190
35	1. 528	66.4	0.975	411	2460	163
30	1. 603	67.3	0.977	406	2164	146
25	1.670	68.1	0.978	405	2013	137
20	1.739	69.6	- 979	408	1774	123
10	1.870	72.3	0.979	430	1390	100
0	2.000	76.8	0.980	-- 495	1088	84
-10	2.123	83.0	0.980	574	662	55
-20	2.242	90.5	0.98 I	660	378	34

Table 9.-The Solar Energy Curve. Rock Salt Prism. September 6, 1922

Prismatic deviation from A	Wave length	Dispersion coefficient	Coelostat reflection	Spectroscope coefficient	Prismatic energy curve outside atmosphere	Normal energy curve outside atmosphere
200'	0.3749	1585	0.676	630	199	313
190	0.3820	1484	0.699	592	193	286
180	0.388 r .	I384	0.717	562	231	32 I
170	0.3975	1280	0.735	543	335	429
160	0.4057	1193	0.75 I	526	420	500
150	0.4145	III3	0.766	508	447	496
140	0.4242	1036	0.78 I	492	461	477
130	0.4350	958	0.796	476	524	502
120	0.4463	886	0.8II	463	620	549
110	0.4590	817	0.825	450	672	549
105	0.4652	785	0.83 I	443	676	530
100	0.4720	750	0.839	436	745	558
95	0.4790	714	0.845	430	826	590
90	0 4860	679	0.852	424	867	589
85	0.4937	642	0.858	419	880	565
80	0.5017	607	0.865	414	917	555
75	0.5105	571	0.87 I	408	951	544
70	0.5199	534	0.877	402	974	52 I
65	0.5290	500	0.882	396	1020	510
60	0.5400	466	0.888	392	1088	507
55	0.5513	434	0893	388	1165	506
50	0.5638	404	0.898	384	1228	496
45	0.5767	377	0.902	379	1307	493
40	0.5905	351	0.907	374	1426	501
35	0.6052	323	0.910	368	1436	464
30	0.6212	294	0.914	362	1482	435
25	0.6380	267	0.917	355	1517	40.4
20	0.6557	243	0.920	348	1648	400
15	0.6784	222	0.923	34 I	1743	386
10	0.7037	199	0.927	334	1843	366
5	0.7302	174	0.930	326	1965	342
0	0.7604	152	0.933	318	2087	317
-5	0.7957	135	0.935	307	2170	293
-10	0.8321	117	0.937	298	2261	265
-I5	0.8788	975	0939	290	2396	234
-20	0.9322	820	0.94 I	282	2514	206
-25	0.9970	670	0.943	272	2676	179
-30	1.093	527	0.945	262	283 I	149
-35	I. 202	402	0.947	250	2897	117
-40	I. 332	300	0.949	242	2961	89
-45	1.500	245	0.95 I	232	2947	72
-50	1.751	216	0.953	222	2821	61
-55	2.070	208	0.954	212	1657	35

In further reduction we now include the mean result of 1920, the U. V. glass prism result of 1922, and the rock salt prism result of 1922, with the object of comparing these several determinations, getting from them the best general representative values, and finally comparing these with the earlier results of 1903 to 1910, and 1916 to 1918, respectively, given in Table 58 of Volume IV, Annals Astrophysical Obscrvatory. In order to do this we first reduced the results of 1922 to the scale of those of 1920 . In the following table we do not retain the individual wave lengths observed for rock salt, but have read off from a large scale plot the values which the rock salt work would indicate for the wave length places used in U. V. glass work.

We give in figure I the individual values found for the different wave lengths for the work of 1920 and the U. V. glass and rock salt prisms in 1922. As will be seen by inspection of the plot, when we consider all circumstances, particularly the wide differences in dispersion characteristics, the agreement of the rock salt work of 1922 with the U. V. glass work of ig20 is little less than remarkable over the whole extent of spectrum covered. Agreement even descends to the details in the solar bands near wave lengths 0.386 , 0.425 , and 0.535 micron. There are moderate divergences central at wave lengths 0.65 and I .3 microns. The discrepancy beyond 1.7 microns is not surprising in view of the difficulty introduced by the watervapor bands, and the approaching opacity of U . V. crown glass.

Turning to the U. V. glass work of 1922, its agreement with 1920 between wave lengths 0.5 and 1.7 microns is nearly perfect. At greater wave lengths than 1.7 it lies between the 1920 work and the rock salt work. For wave lengths less than 0.5 micron there is a pretty wide divergence, the $1922 \mathrm{U} . \mathrm{V}$. glass work running smaller. The departure does not much exceed io per cent until the wave length is less than 0.40 micron.

We incline to attribute this ultra-violet discrepancy to the inferiority of the day, September 5, 1922, as indicated by the logarithmic plots of atmospheric extrapolation. These indicate that the sky was growing less transparent towards noon, for the computed coefficients of atmospheric transmission in the infra-red are all closer to unity than they ought to be. This mediocre character, and the excessively high transmission coefficients, would scarcely affect the form of the energy curve for wave lengths greater than 0.6 micron, because here the atmospheric transmission is always above co per cent, so that changes of it affect the form of curve only slightly. But supposing the sky

Table io.-Comparison of Normal Solar Energy Curves

Wave $\underset{\omega_{1}}{\text { length }}$	$\begin{array}{\|c} \text { U. V. } \\ \text { glass de- } \\ \text { viation } \\ \text { from } \mu \end{array}$	Energy curves outside the atmosphere						
		1920	$\begin{aligned} & 1922 \\ & \mathrm{U} . \mathrm{V} \end{aligned}$	$\begin{aligned} & 1922 \\ & \text { R. S. } \end{aligned}$	1903-10	1903-10 omitting quartz work	1916-18	
0.3415	240^{\prime}	262	226	...	263	262
0.3504	230	307	200	\ldots	$272^{\text {, }}$	\cdots	304	281
0.3600	220	330	230	.	310	\ldots	330	297
0.3709	210	340	251	325	342	\ldots	353	318
0.3853	200	304	299	300	344	\ldots	385	301
0.3974	190	343	312	350	413	. \cdot	4 II	340
0.4127	180	484	403	513	506	500	567	480
0.4307	170	482	443	495	535	506	518	479
0.4516	160	569	497	548	610	567	580	548
0.4753	150	570	540	575	625	569	622	566
0.5026	140	558	527	553	604	548	566	546
0.5348	130	515	493	509	578	515	530	506
0.5742	120	498	476	493	538	484	508	489
0.5980	115	487	474	493	505	464	482	485
0.6238	110	466	475	430	472	434	450	457
0.6530	105	446	447	400	424	400	423	431
0.6858	100	419	424	384	384	370	391	409
0.7222	95	373	373	350	333	340	351	366
0.7644	90	332	323	315	293	310	313	323
0.8120	85	287	284	279	256	275	278	283
0.8634	80	244	245	244	227	245	247	244
0.9220	75	212	209	211	198	220	212	211
0.986ı	70	191	185	191	172	200	187	189
1.062	65	182	164	162	144	180	165	169
1.146	60	150	144	135	119	153	135	143
1.225	55	133	133	113	102	125	118	126
I. 302	50	113	117	96	89	96	101	109
1.377	45	97	100	84	78	85	87	94
1.452	40	87	87	76	68	75	75	83
1.528	35	77	74	72	59	67	65	74
I. 603	30	68	67	68	52	57	57	68
1.670	25	60	63	63	45	51	50	62
1.738	20	53	57	61	42	46	45	57
1.870	10	40	46	51	33	38	31	46
2.000	оо	28	39	42	25	26	23	36
2.123	-10	18	25	32	18	...	15	25
2.242	-20	16	16	...	14	\ldots	12	16
2.348	-30	20	...	\ldots	12	\ldots	10	20

was actually growing worse, the effect on the wave lengths less than 0.6 micron would be more and more serious, as indeed the energy curves of figure I indicate.

The second day, September 6, is not subject to this criticism. The work of 1920 rests on many good days of observation. Accordingly we decided to give the 1920 work and the 1922 rock salt work each double weight for wave lengths less than 0.5 micron, and all three curves equal weight for greater wave lengths. With this convention we compute the weighted mean of table 10 as plotted in heavy full line in figure I.

This new result, namely the weighted mean of the 1920 and 1922 observations, given in table 10 and in the heavy full line of figure 1 , we regard as our best determination of the form of the solar energy curve outside the atmosphere.

It rests principally on our very careful work of 1920, which, however, on account of its divergence from our previously published work of 1903 to I9Io we had hesitated to publish until further tested. Now it is confirmed beautifully by the rock salt work of 1922, a determination as absolutely different as possible. The principal differences are: Silver in place of stellite at the coelostat; new stellite mirrors in the usual spectroscope ; a flint glass prism of high dispersion in place of the low dispersion $\mathrm{U} . \mathrm{V}$. crown prism in the auxiliary spectroscope; a rock salt prism of excessively different dispersion in place of the $U . V$. crown glass prism in the usual spectroscope; a new bolometer and new galvanometer. Also the U. V. crown glass work of 1922 is in almost perfect agreement over the whole range of longer wave lengths, and where it differs in the visible and ultraviolet it differs in the opposite sense to the 1903 to 1910 work.

We place little confidence in our work of i916 to 1918 on the form of the energy curve, for a reason already explained in Volume IV of the Annals. To avoid confusion we have not plotted it, although its mean result is given in table 10 . The mean value of 1903 to 1910 is given there and plotted in figure 1 . As it rests on a great number of observations at different stations, and as these individual determinations differ widely among themselves, as given in the Annals, Volume III, table 62, it is interesting to examine them separately and see if any class of the individual determinations would have tended to agree better with the new work. We are at once struck by the fact that it is the quartz prism work at Mt. Wilson and Mt. Whitney which has given most of the divergence, excepting of course the three short-wave values at the top of column 4 of the above cited

Table 62 of Annals, Volume III. These are very likely vitiated by stray light. The quartz prism was very imperfect, being greatly blemished by interior striae and a tinge of smokiness, and its definition was so abominable that hardly any lines could be distinguished in its solar spectrum. Very possibly the determinations with quartz ought therefore to be rejected.

If we should reject all of them, there would result the following modification of Table 62 of Annals, Volume III:

Wave length 0.42	0.43	0.45	0.47	0.50	0.55	0.60
Percentage correction by determinations $\mathrm{I}, 2,3,4 . .\|-3.7\|-4.8\|-6.1\|-8.7\|-9.3\|-10.5 \mid-10.1$						
Corrected intensitics..... 506	506	566	5\%0	550	503	453
Wave length............ 0.70	- 80	1.00	1. 30	1.60	2.00	
Percentage correction by determinations $\mathrm{I}, 2,3,4$.. -1. 6	$+5.4$	$+2.8$	+0.9	+6.2	+3.2	
Corrected intensities..... 358	280	171	90.6	56.5	25.5	

These corrected values are given in table io and are much closer to the new determination, indeed they are mainly in very good agreement. We therefore are the more confirmed in our view that the new values, the weighted mean of 1920 and 1922, are good, and that the old ones called "Mean 1903 to 1910 " were vitiated by the inclusion of the numerous quartz prism determinations.

In figure I we have given in dot and dash lines the distribution of energy in the spectrum of the perfect radiator or "black body" at $6,000^{\circ}$ absolute centigrade. It is apparent that closer agreement exists between this and the new curve of 1920 and 1922 than exists between it and the o!d one of 1903 to 1910. But still the observed solar energy curve is far from being of the "black body" form. In order to match the two from 0.6 to 2.0 microns, a higher "black body" temperature than $6,000^{\circ}$ would be required, and then the visible and ultra-violet parts of the observed curve would lie far beneath the computed one.

We have explained this kind of phenomenon by a double hypothesis. First, because we see deeper into the sun the longer the wave length, because long-wave rays are less scattered. Hence the infra-red region is supplied by a hotter, because deeper lying, layer. Secondly,

Figs. 1, 2, and 3.
the profusion of Fraunhofer lines in the visible, and still more in the ultra-violet solar spectrum, must cut this part down very greatly. The purity of our spectrum does not suffice to enable us to restrict our measurements to spaces between the lines, as was done by Fabry and Buisson in their beautiful studies of the ultra-violet. ${ }^{1}$ They find even for the ultra-violet solar spectrum between wave lengths 0.394 and 0.292 micron, the corresponding "black-body" temperatures between $6,020^{\circ}$ and $5,970^{\circ} \mathrm{K}$. These measurements, however, relate to the center of the solar image, while ours include the rays as mixed in ordinary sunlight and coming from all parts of the sun's image. Ours is therefore a cooler source than theirs.

Fabry and Buisson draw attention to our over-estimate of the transparency of the earth's atmosphere for rays in this region, which indeed we have already admitted. As they point out, it is impossible to determine the atmospheric transmission correctly in this region without screening out stray light arising in the more intense spectrum regions.

We may remark, however, that the high altitudes of our observing stations, as they tend strongly to build up the ultra-violet compared to other parts of the spectrum, are favorable to diminishing this source of error below what might appear from a mere inspection of Fabry and Buisson's sea-level atmospheric transmission cocfficients.

As we have stated at the beginning, we have tried to estimate the effects of the three kinds of errors stray light produces in our work on the form of the ultra-violet solar energy curve outside the atmosphere. Two of these tend to make our values in the ultra-violet too high, and the third acts oppositely. Assuming for the moment that the spectroscopic correction factor is right, suppose the true ordinate of the energy curve outside the atmosphere for a wave length λ in the ultra-violet should be e_{t}, but that in the ordinary bolographic work we determine this ordinate from observations as \mathcal{e}_{c}. The discrepancy is caused by stray light coming from another part of the spectrum, which increases the intensity observed at the wave length λ, and also increases the apparent atmospheric transmission coefficient because the stray light being of longer wave length is of higher real transmission coefficient than the ray in question. Let e_{s} be the intensity of the stray light outside the atmosphere, and a_{s}, a_{c}, and a_{t} be the true atmospheric transmission coefficient for stray light, the falsified computed one, and the true one for the wave length λ.

[^44]Then for air masses 2 and 1 , respectively, the observed intensities will be :

$$
\left\{e_{t} a_{t}^{2}+e_{s} a_{s}^{2}\right\} \text { and }\left\{e_{t} a_{t}+e_{s} a_{s}\right\}
$$

Therefore

$$
\frac{c_{t} a_{t}^{2}+a_{s} a_{s}^{2}}{c_{t} a_{t}+c_{s} a_{s}}=a_{c} \text { and } e_{c} a_{c}=c_{t} a_{t}+c_{s} a_{s}
$$

Whence

$$
\frac{e_{t}}{e_{c}}=\frac{a_{c}}{a_{t}} \quad\left\{\frac{a_{s}-a_{m}}{a_{s}-a_{t}}\right\} .
$$

Judging from the visible appearance in the eyepiece of the bolometer, when the spectroscope is set for infra-red rays, where there is properly no visible light, the stray radiation there, and presumably in the ultra-violet region as well, represents impartially the whole spectrum, for it appears in the infra-red as white light. If so, we may reasonably assign for a_{s} the value 0.90. Other lesser values, o.80, o.70, may also be used for illustrative purposes.

Take now a wave length in the ultra-violet for which a_{c} is 0.60 . This in ordinary Mt. Wilson observing is about $\lambda=0.35 \mu$. In the following table we give values of the expression $\frac{e_{t}}{e_{n}}$ corresponding to assumed values of a_{s} and a_{t}, a_{c} being 0.60 in all cases.

Table 1I.-Comparison of True and Measured Radiation Outside Atmosphere. Specimens of ratio $\frac{c t}{e_{c}}$.

Stray light transmission	True transmission coefficient		
	0.55	0.50	0.40
0.90	0.93	0.90	0.90
0.80	0.87	0.80	0.75
0.70	0.73	0.60	0.50

These illustrations indicate that for the more probable conditions the ratio of real to bolographically determined radiation outside the atmosphere, so far as this depends on daily observations, is between 0.8 and unity. It is of course easy to see why the ratio falls rapidly when the stray light is assumed to have nearly the same transmission coefficient as that observed, for it must then require a far greater dilution with the stray light to change equally the transmission coefficient of the combination.

Returning now to its influence on the spectroscopic correction factors, we have already pointed out that it tends to make this correction
factor too large, but just how much we cannot tell. However, as it works in the same sense as the combined effects just tabulated, we can finally say that the complete tendency of stray light is to cause the ultra-violet region of our spectrum energy curve to be too high. The real values would be such as to give smaller intensities in the ultra-violet than our curve indicates. In other words, the real curve would deviate still further below the "black-body" curve in the ultra-violet than figure I indicates.
That the error is not so large as the figures of table II indicate, or as readers of Fabry and Buisson's paper might suppose, seems apparent from computations by Fowle of the Rayleigh atmospheric transmission coefficients based on the number of molecules of air above Mt. Wilson. For comparison we give observed transmission coefficients of a good day, September 20, 1914, when we observed from sunrise until noon and also the mean of many good days of the years 1909 to $1912 .{ }^{1}$

Table 12.-Atmospheric Transmission Coefficients. Mt. Wilson

Wave-length in microns	0.342	0.350	0.360	0.371	0.384	0.397	0.413
Computed		0.617	0.650	0.684	0.719	0.75 I	0. 784
Observed 'Sept. 20, 1914.	0.615	0.600	0.618	0.68 I	0.68 r	0.743	0.764
Observed mean of many days	0.604	0.605	0.635	0.656	0.686	0.726	0.741

Wave-length in microns	0.43 I	0.452	0.475	0.503	0.535	0.574
Computed	0.815	0.845	0.872	0.897	0.919	0.939
Observed Sept. 20, 1914.	0.794	0.820	0.859	0.88I	0.893	0.889
Observed mean of many days	0.784	0.812	0.841	0.865	0.882	0.887

Our observed transmission coefficients actually fall below the computed values for all wave lengths given in the table, which shows that even with the blue skies of excellent days on Mt. Wilson there is still some effect of haziness additional to molecular scattering. But we do not see that it is necessary to suppose that our observed values are greatly erroneous, at least for wave lengths above 0.350 micron.

[^45]Before leaving the subject of our solar work and its relations to the ultra-violet solar observations of Fabry and Buisson, we give in the following table I3 Fabry and Buisson's determinations of atmospheric ozone for 14 days of the year 1920, and corresponding solarconstant values as determined by Smithsonian observers at Calama, Chile. In giving the solar-constant observations we add for three days corrected values. They are determined by drawing, in figure 2, a smoothed curve following the run of the numbers from day to day. In figure 3 we plot Fabry and Buisson's ozone values as abscissae, with solar-constant numbers as ordinates. The observed values are given

Table 13.-Ozone and the Solar Constant

$\xrightarrow[\substack{\text { Date } \\ 1920}]{ }$	$\begin{aligned} & \text { Ozone value } \\ & \text { Faby and } \\ & \text { Fuisson } \end{aligned}$	Solar constant, Calama	
		Observed	Smooth curve
	cm.	cal.	
May 21	0.304	1.936	
25	0.310	1.970	1.950
27	0.298	I. 964	
28	0.290	I.952	
29	0.275	1.942	
31	0.306	1.952	
June 4	0.293	1. 929	1.957
5	0.297	1.960	
7	- 325	r. 938	
9	0.321	I. 940	
${ }^{10}$	0.335	I. 933	
11	0.314	1. 943	
21	0.286	\ldots	1.950
23	0.289	1.947	

as circles, the corrected values as crosses. We believe readers who examine figure 2 will scarcely hesitate to think the three corrected values (the crosses) are probable ones. If that is admitted, we think the run of observations in figure 3 gives some indication that increasing values of the solar constant are associated with decreasing quantities of atmospheric ozone.

If this is so, the important infra-red ozone band ${ }^{1}$ at a wave length of about io. 4 microns, falling exactly in the region where terrestrial radiation is otherwise most freely transmitted by the atmosphere, very likely changes greatly its absorbing power for outgoing earth rays along with changes in the solar radiation, but in the sense to

[^46]diminish terrestrial temperatures as solar radiation increases. This, if true, must be an important meteorological consideration. We hope soon to make an investigation of this ozone problem.

STELLAR SPECTRUM ENERGY CURVES

By invitation of Dr. Hale, given in the year 1916, we devised a spectro-bolographic outfit for obtaining spectrum energy curves of images of the brighter stars focused by the ioo-inch telescope of the Mount Wilson Solar Observatory. The experiments were unavoidably postponed until the summer of 1922 . We do not give here an extended account of them because we hope to repeat them with improvements in sensitiveness and accuracy. We are convinced that though we succeeded in making a vacuum galvanometer of II ohms resistance with which we measured 5×10^{-12} amperes, and though in combination with the vacuum bolometer we measured with it a change of temperature of $\mathrm{I} \times \mathrm{IO}^{-8}$ degrees Centigrade, satisfactory stellar spectrum energy observations demand at least tenfold more sensitiveness with fivefold less disturbance than we could achieve in this way. Hence, although we observed roughly the distribution of energy in the spectra of io of the brighter stars, including nearly all of the principal Harvard classes, we propose to employ new devices in further experiments.

Without the aid furnished by Dr. Stratton and the Bureau of Standards, Dr. Thomson and the General Electric Laboratory, at Lynn, Dr. Nichols and the Nela Research Laboratory, and especially Dr. Hale, Dr. Adams, and the staff of the Mount Wilson Solar Observatory, we could not have obtained these preliminary results.

Figure 4 gives a general view of the arrangement of apparatus successfully employed after a failure of preliminary experiments at the Newtonian focus of the great telescope, due to electrical and temperature disturbances. The rays $a b$ coming from the star were reflected from b backwards towards the focus of the Ioo-inch imirror and were reflected a second time at c by a convex mirror whose property it was to increase the focal length from 40 to 250 feet. There was a third reflection by a plane mirror at d, so that the rays came at length to the so-called Coude focus at e, in the southern prolongation of the equatorial axis of the telescope.

Here the rays entered the nearly constant temperature room q, whose roof, walls, floors, and piers are so massively built of cement as almost to remind one of Egyptian pyramids. The star rays diverged to the concave mirror f (at 6 meters distance beyond the

Coude focus) which brought them a second time to focus over a meter distant at the slit g. Thence they diverged to the collimating mirror h, of 45 centimeters focus, proceeded parallel to the 18°

Fig. 4.
ultra-violet crown glass prism i, and were returned nearly over the same path by a reflecting coat of silver on the back of the prism so that they came at last to focus on the special vacuum bolometer close to the slit g.

Electrical connections led from the spectrobolometer situated 6 meters above the floor (but conveniently adjustable from the platform p, p) to the special magnetically shielded galvanometer j, whose tiny platinized mirror, m, reflected a beam of light from the brilliant special incandescent lamp k up to the photographic plate carrier n, where bolographs of the stellar spectra were to be taken. The astronomical clock o was connected so as to move the prism and photographic plate simultaneously for this purpose. .

In practise we found that owing (I) to a slow but persistent drift of the galvanometer due to temperature changes, and (2) to a continual oscillation of the galvanometer light spot over a range of from I to 5 millimeters, occasioned apparently by electrical oscillations induced by power and light circuits, it was inadvisable to use the photographic recorder. All of our results werę obtained by eye observing upon a ground glass scale drawn with luminous paint, and resting on the platform p, p, at 5 meters from the galvanometer.

The procedure of observing was as follows: A selected star having been brought into focus at c by the night assistant at the telescope in the dome, r, r, the mirror, f, was adjusted so as to form its image centrally within the slit at g. The prism, previously set by means of a sodium flame exposed at c so that the D line fell upon the bolometer, was then rotated by turning the driving shaft which connected to the clock o through a certain number of turns sufficient to go beyond the region of spectrum where sensible heat could be observed. Then one observer (Mr. Aldrich) made successive settings of whole turns down through the star spectrum, and recorded the other observer's (Mr. Abbot's) galvanometer readings at these settings. Arrived at the other end of the spectrum region where sensible deflections were observed, a return series of settings was made at places half-way between those of the first series. Exposures in the spectrum were made by pulling a cord which lifted a shutter at t near the Coudé focus. Frequently the slit g was inspected from a distance by a telescope so as to correct if necessary the position of the star image within its jaws.

All of the observations of stellar spectra were made when the stars observed were within less than 50° of the zenith, so that the air-mass never exceeded I.5. For the purpose of eliminating in one operation the selective losses in the atmosphere, the telescope, and the spectroscope, so far as necessary for such rough measures, it was contrived to observe near midday with the same apparatus an image of the sun whose energy spectrum is known. For this purpose a screen, s, with eight symmetrically distributed quarter-inch holes was placed
over the top of the telescope tube, and a diaphragm of $\frac{1}{8}$-inch aperture inserted at t. These reductions of the solar intensity sufficed, with a little series resistance added in the galvanometer circuit, to permit the solar spectrum to be observed on nearly equal terms with those of the stars. The factor of reduction to bring the sun down to about the intensity of Capella proved to be as expected a little more than 26 magnitudes.

Employing these solar comparisons together with the 1920 determination of the forms of the sun's energy curve outside the atmosphere both for the prismatic and the normal spectra, we have eliminated selective effects of absorption from the stellar spectra which follow.

On various accounts we are unable to claim much accuracy for our results. They are to be regarded merely as a preliminary feeling-out of the problem. Better knowledge of the distribution of these stellar spectra has, we believe, already been obtained by Coblentz with his method of absorbing screens, also being employed by Pettit and Nicholson. But of course if the employment of a prism could be made satisfactorily, its results would be far preferable to those of absorption methods. Our experiments show us just what must be done to bring this about, and we now have great hope of succeeding in new experiments with modified instruments.

In our experiments of 1922 the principal defects are these:
I. Insufficient sensitiveness. It was impossible to measure the radiation, as weakened by increasing prismatic dispersion and increasing atmospheric and instrumental absorption, far enough towards the violet to follow with any accuracy the normal spectra of stars of types G, F, A, and B to their maxima.
2. Insufficient accuracy of wave length. With the moderate dispersion of what was practically a 36° crown glass prism, the wanderings of the star image in the wide slit of the spectroscope were sufficient to produce uncertainties of wave length amounting roughly to as much as the distance from D to B in the orange-red of the spectrum. This defect could have been reduced greatly had we been able to continue the experiments one or two more nights, and will easily be made small hereafter by better following devices.
3. Insufficient accuracy of intensity measures. Owing to bad following the image wandered sometimes partly onto the slit jaw before it was corrected. This would, of course, have been prevented had the work gone on. But more serious, because incessant, were the oscillations of the galvanometer light-spot on the scale, through amounts which, for some stars, were nearly as great as the observed maximum deflection in the spectrum. Though every deflection re-
Galvanometer deflections in millimeters

Spectrum place		$\underset{\substack{\text { Orionis } \\ 1.8,130 \\(2)}}{\substack{\beta \text { Orionis } \\ 0.3,688 \\(2)}}$		Name of star observed, its magnitude and spectrum class											
$\begin{aligned} & \text { Shaft } \\ & \text { Surns } \\ & \text { from } D \end{aligned}$	Wave rength			$\begin{gathered} a \text { Lyra } \\ \text { o.1, Ao } \\ (3) \end{gathered}$ (3)	$\begin{gathered} a \text { Can. } \\ \operatorname{Maj} \cdot-1.6, \\ \operatorname{Ao}(3) \end{gathered}$	$\underset{\substack{\text { a Aquilx } \\ \text { o.s, })^{\prime}}}{ }$	$\begin{aligned} & \text { a Au, } \\ & \text { o. }, \\ & \text { (2), } \end{aligned}$	$\begin{aligned} & \text { igra } \\ & \text { Co } \\ & (3) \end{aligned}$	$\operatorname{Sun}_{\substack{-26.5, G a \\(1)}}$		$\begin{aligned} & u_{\mathrm{uri}} \\ & { }^{5} \\ & (3) \end{aligned}$	$\begin{gathered} \beta \text { Pegasi } \\ \begin{array}{c} \text { Par., }_{2} \text { MIa } \end{array} \end{gathered}$	a Herculis $\underset{\text { (2) }}{\mathrm{Var.,}^{2} \mathrm{Mb}}$	$\begin{aligned} & \begin{array}{l} \text { Orionis } \\ \text { (ar., Ma } \\ \text { (1) } \end{array} \end{aligned}$	
-3.0	0.477	o	\ldots	\ldots	\ldots	\cdots	0	I	\cdots	.	.	\ldots	\ldots	-•	.
-2.5	0.465	\cdots	\cdots	\ldots	\cdots	0	1	-	3	.	\cdots	\ldots	\ldots	..	.
-2.0	0.484	0	0	\ldots	I	\ldots	2	1.5	\ldots	-	1.5	\cdots	\cdots	\cdots	.
-1.5	0.505	o	0	\ldots	\cdots	2.5	3	.	13	0	5	\ldots	\cdots	.	.
-1.0	0.529	0.5	1.5	\cdots	10	...	3	4	\cdots	-	3	\ldots	0	.	1
-0.5	0.557	4	6	0	9	2	7	.	20	2	7	...	\cdots		\cdots
00	0.589	4.5	2	6	15	\cdots	5	7	37	3	7	\cdots	0.5	0.5	9
+0.5	0.628	5.5	I	1.5	13	6	4	.	34	3	10	\ldots	...	1.5	0
1.0	0.674	I	5	4	II	5	7	10	43	5	13	o	5		16
I. 5	0.729	\ldots	0	5	17	5	6	.	45	4	14	\ldots	...	6.5	11
2.0	0.797	\ldots	0	4	6	2	6	14	45	9	17	4 ?	9		18
2.5	0.874	\ldots	\ldots	6	\cdots	1. 5	6	..	45	4	15	\ldots	...	12.5	26
3.0	0.956	\ldots	\cdots	2.5	I	...	5	15	36	12	15	5 ?	7		33
3.5	1.088	\ldots	\cdots	3	\cdots	\cdots	I	8.5	41	7		30
4.0	1.204	\ldots	\ldots	o	\cdots	\cdots	I	7	30	10	13.5	0.5 ?	7	3	23
4.5	1.320	\ldots	\ldots	\ldots	\cdots	\ldots	.	6	30	10	2.5	29
5.0	1.434	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots	2	18	Io	14	0	5		16
5.5	I. 544	\ldots	\ldots	\ldots	\cdots	\ldots	.	\cdots	13	4	.	\ldots	...	2	20
6.0	1.652	\ldots	\ldots	\cdots	\ldots	\ldots	.	\cdots	15	0	3.5	-	I		28
6.5	1.755	\ldots	\cdots	\ldots	\cdots	\ldots	\cdots	.	11	o	.	\ldots	II
7.0	1.855	\ldots	\ldots	\cdots	\ldots	\ldots	\cdots	.	4	\bigcirc	o	0	o	.	7
7.5	1.95t	\ldots	\ldots	\ldots	\cdots		\ldots	\ldots	.	5
8.0	2.048	\ldots	\ldots	...	\ldots	\ldots	.	.	\ldots	.	.	\ldots	\ldots	.	12
8.5	2.141	\cdots	\cdots	\ldots	\cdots	\ldots	\cdots	-	\cdots	.	.	\cdots	\ldots	..	o
9.0	2.230	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	-	\ldots	-	-	\ldots	\cdots	-	

corded is the mean of several trials, it cannot be hoped that these relatively large disturbances are eliminated satisfactorily. Moreover, the uncertainties of wave-length settings mentioned above aggravate the errors of intensities, because the deflections, even if true, might have related to wave lengths somewhat different from those supposed. If the experiments on each star had been repeated several times on later nights very much greater accuracy could doubtless have been had in the final means. But, after all, the sensitiveness available was not adequate ever to give satisfactory results, and it would have been a waste of time to go on with the apparatus as it was in 1922. With these remarks we give the observations. We have arranged the stars in order of the Harvard spectrum classification, although the order of observing followed approximately the order of their right ascensions.

The scale of galvanometer deflections differs on the three nights of observation and even at different hours of the same night according to the time of swing which was practicable at the time. Wherever there are two observations on one star we have reduced the smaller deflection data to the scale of the larger approximately and have given the observations of larger deflection greater weight in drawing smoothed curves. In view of what has been said of the sources of error always present, readers will not be surprised at the irregularities which the data present.

As the work is altogether rough and preliminary we shall not take space to detail what steps were necessary to reduce the direct observations for the selective losses in the atmosphere and the apparatus, merely repeating that these reductions depended on the solar-spectrum observations of 1920 taken together with those made on August 19, 1922, with the great telescope and stellar spectro-bolometric outfit.

In figure 5 we have given in smooth curves as well as we can the stellar distribution outside the atmosphere on the scale of the 36° ultra-violet crown glass prism, and in figure 6 the corresponding curves reduced to the normal or wave-length scale. In drawing the normal curves we were immediately made conscious that for the stars of types B, A, F, G, the original very small deflections in the shorter wave lengths lacked a sufficient degree of accuracy to warrant multiplying them by the very large prismatic dispersion factors. Such results would have had no meaning and would have been apt to mislead. Accordingly we cut off all of these normal curves beyond wave length 0.5 micron, and omitted four stars of types B and A for which the observed deflections at maximum ordinate in the prismatic spectrum did not exceed 5 millimeters.

Obviously in order to determine at all satisfactorily by heat methods the spectrum distribution for stars of types B, A and F, it will be necessary to use apparatus of a decidely higher order of sensitiveness than ours.

On the whole the positions of maximum ordinates in the prismatic spectra shift with spectrum type much as we should have expected.

Fig. 5.
It is satisfactory that the curves for the sun and Capella agree so well. The several depressions in the infra-red of the solar curve are most likely real, as they coincide closely with great infra-red water vapor bands. The stellar curves would doubtless have shown them too if there had been enough energy so that they had been equally as accurate.

We attribute little weight to the circumstance that the maximum in the normal spectrum curve of a Herculis falls to the violet of that of a Orionis. That Aldebaran gives its maximum at shorter wave lengths than either, we think is real, but we do not feel confidence in the exact places for any one of the three. Greater accuracy is essential if real deductions as to star temperatures and their approach to " black body" conditions are to be made.

Though we have not concealed the shortcomings of these stellar observations, they cost a great deal of effort. Fatalities seemed to lurk about the work to surprise us so that we were almost ashamed to meet

any one on Mount Wilson lest he should ask what new things had gone wrong that day. We made a list of all the serious mishaps, and they numbered nearly 30 , some requiring a whole week to repair. But we feel after all that a decided step was made to have gotten from io to 30 millimeters deflection in the fairly extended spectra of four of the brightest stars. For it was not many years ago that Boys failed to recognize stellar heat, and Nichols observed but one or two millimeters in the total radiation of such stars. Naturally our success, such as it was, depended largely on the great size of the Mount Wilson telescope, but besides that it indicates a large gain in sensitiveness of apparatus. Furthermore, the experience gained clarifies the problem so exactly that plans for future experiments may now be laid with great certainty.

[^0]: "EVERY MAN IS A VALUABLE MEMBER OF SOCIETY WHO, BY HIS OBSERVATIONS, RESEAKCHES, AND EXPERIMENTS, PROCURES KNOWLEDGE FOR MEN" —SMITHSON

[^1]: Smithsonian Tables

[^2]: -

[^3]: ${ }^{1}$ Ann. Mus. Civ. Stor. Nat. Genova, ser. I, XIV, April 22, 1879, p. 210. For explanation of this identification, see the next heading.
 ${ }^{2}$ Journ. Asiat. Soc. Bengal, XIII, pt. I, No. I49, for May, I844, p. 384.
 ${ }^{3}$ Genera. of Birds, I, December, I846, p. 209.

[^4]: ${ }^{1}$ 'А $\lambda \kappa \iota \pi \pi \eta$, Alcippe: öpvıs, bird.

[^5]: ${ }^{1 "}$ Alcippe cinerea? (Eyton)" Blyth, Journ. Asiat. Soc. Bengal, N1ll, pt. 1. No. 149, for May, 1844. p. 384 ("Singapore").
 ${ }^{2}$ Cf. also Blyth, loc. cit. p. 383.
 ${ }^{3}$ Notes Leyden Mus., VI, July, 1884, p. 178.
 ${ }^{4}$ Ann. Mus. Civ. Stor. Nat. Genova, Ser. I, XIV, April 22, I879, p. 210 (Ajer Mantcior, western Sumatra).

[^6]: ${ }^{1}$ Smithsonian Misc. Coll., vol. LX, No. 7. October 26, 1912, p. 9.
 ${ }^{2}$ Trans. Linn. Soc. Lond., XIII, pt. 2, 1822, after October, p. 312.
 ${ }^{3}$ Cf. Oberholser, Proc. Biol. Soc. Wash., XXXIV, December 2I, 1921, pp. 163-166.
 ${ }^{4}$ Zool. Researches in Java, pt. III, February, 1822, pl. [42], fig. [2], and text p. [I] ("Island of Sumatra").

[^7]: ${ }^{1}$ From this manuscript Horsfield quotes as follows: "Motacilla gularis, Sir T. S. Raffles's MS. Cat. of a Zool. Coll. made in Sumatra."
 ${ }^{2}$ Syst. Nat., I, pt. 2, 1789, before April 20, p. 997.

[^8]: ${ }^{1}$ T[imalia]. crythroptera Blyth, Journ. Asiat. Soc. Bengal, XI, pt. II, No. 128, August 1842, p. 794 ("Singapore ").
 ${ }^{2}$ Rev. Zool., VII, for November (=December), 1844, p. 402 ("Malacca. Sumatra"; we select Malacca as the type locality).
 ${ }^{3}$ Ann. and Mag. Nat. Hist., ser. I, XVI, October, 1845 , p. 228 ("Malacca").
 ${ }^{4}$ Consp. Gen. Avium, I, June 24, 1850, p. 217 (Boie MS.) (based on " [Timalia] erythroptera Blyth.-Journ As. Soc. XI p. 794"; therefore the type locality is the same, i. e., Singapore).
 ${ }^{5}$ Stray Feathers, VI, June, 1878, p. 269.

[^9]: ${ }^{1}$ Proc. Zool. Soc. Lond., VII, for 1839 (November, 1839), p. 103 ("Malaya" [= Malay Peninsula]).
 ${ }^{2} B[$ essethera $]$ barbata Cabanis, Mus. Heinean., Theil I, 1851, after October 23, p. 76 (in text of footnote) ("wahrscheinlich von den Sunda Inseln oder Malacca." We designate Malacca as the type locality).
 ${ }^{3}$ Compt. Rend. Acad. Sci., XXXVIII, No. 3, January 23, I854, p. 59 (Verreaux MS.) ("Malacca").
 ${ }^{4}$ Malacocincla abbotti baweana Oberholser, Proc. U. S. Nat. Mus., vol. 52, Feb. 8, I917, p. 194 (Bawean Island, Java Sea).

[^10]: ${ }^{1}$ The bird currently called Aethostoma biittikoferi (Trichostoma biittikoferi Vorderman, Natuurk. Tijdsch. Nederl.-Ind., LI [ser. 8, XII], 1892, p. 230; "Lampongs, Zuid-Sumatra") should be known as Aethostoma rostrata buxtoni Tweeddale (Brachypteryx buxtoni Tweeddale, Proc. Zool. Soc. Lond., 1877, pt. 2, August 1, 1877, p. 367 ; " District of Lampong, S. E. Sumatra"), since the latter name has priority and is of identical application; and the bird is clearlv a subspecies of Aethostoma rostrata.

[^11]: ${ }^{1}$ See Miller, Smithsonian Misc. Coll., Vol. 66, No. 12. December 7, 1916.

[^12]: ${ }^{1}$ Measurements in parenthesis are those of a specimen of Plagiodontia (No. 200412) of approximately equal size.

[^13]: ${ }^{1}$ Remains of Birds from Caves in the Republic of Haiti, Smithsonian Misc. Coll., Vol. 74, No. 4, 1922.

[^14]: ${ }^{1}$ Remains of Mammals from Caves in the Republic of Haiti, Smithsonian Misc. Coll., Vol. 74, No. 3, 1922.

[^15]: Smithsonian Miscellaneous Collections, Vol. 74, No. 4

[^16]: ${ }^{2}$ See Wetmore, Proc. U. S. Nat. Mus., vol. 54, p. 516; Proc. Biol. Soc. Washington, vol. 32, Dec. 31, 1919, p. 235, and vol. 33, Dec. 30, 1920, pp. 77-82.

[^17]: ${ }^{3}$ It may be noted that the genus Badiostes Ameghino (Bol. Inst. Geogr. Argentino, vol. XV, Nov. and Dec. 1894, p. 601) which has been attributed to the Tytonidæ, appears from the figures and description to be related to the Falconidæ. Other extinct species ascribed to the Tytonidæ have been placed in the same genus as the barn owl and are all more or less similar to it in size.

[^18]: Smithsonian Miscellaneous Collections, Vol, 74, No. 5.

[^19]: Douglas (10,55 feet, 3.018 m .) and St. Bride ($10.875 \mathrm{fect}, 3.262 \mathrm{~m}$.) over-
 Douglas canyon valley nearly opposite Mount St. Bride
 Douglas canyon valley nearly opposite
 of Lake Louise Station on the Canadia
 느눙 Alberta, Canada. (Mr. and Mrs. C. D. Walcott, 1922.)

[^20]: Fig. 5.-Panoramic view of Bonnet glacier and ice fall with a great lateral moraine from which the ice has retreated in
 Locality: Same as figure 4. (C. D. Walcott, 1022.)

[^21]: ${ }^{1}$ Bull. Geog. Soc. Philadelphia, Vol. XX, 192 I.

[^22]: ${ }^{1}$ Explorations and Field-work of the Smithsonian Institution in 1919, p. 15. Smithsonian Misc. Coll., Vol. 72, No. I, 1920.

[^23]: ${ }^{1}$ Smithsonian Misc. Coll., Vol. 72, No. I, p. 15, 1920.

[^24]: ${ }^{1}$ It would be very instructive in this connection to determine by excavation whether the two towers known as Kuikuichomo, on the East Mesa of the Hopi, were used for the same purpose as those at Mesa Verde.

[^25]: Fig. io6.-Megalithic House. Mainly distinguished by walls made of huge stones on edge. (Photograph by Geo. L. Beam. Courtesy Denver and Rio Grande Western Railroad.)

[^26]: ${ }^{1}$ Smithsonian Misc Coll., Vol. 72, Nos. 6 and 15.

[^27]: ${ }^{1}$ Smithsonian Misc. Coll., Vol. 63, No. 10. Supplementary additions were made in the "Explorations and Field-Work of the Smithsonian Institution in 1914," pp. 62-72, Smithsonian Misc. Coll., Vol. 65, No. 6, 1915; and in the American Anthropologist, n. s. Vol. XVIII, pp. 535-545, 1916.

[^28]: ${ }^{1}$ Many of these specimens were purchased by the Bureau of American Ethnology and are now in the U. S. National Museum, but the majority were later sold to Mr. George G. Heye and are now in the Museum of the American Indian, New York.
 ${ }^{2}$ Several other collectors have furnished me with data on Mimbres ware, among whom Mrs. Edith Latta Watson, and Mrs. Hulbert, of Pinos Altos, New Mexico, should be especially mentioned. On the very threshold of his descriptions the author desires to thank Mr. Osborn, Mrs. Hulbert and Mrs. Watson for permission to describe this new material. He desires also to commend the beautiful copies of photographs of the designs on these bowls, made by the artist, Mrs. George Mullett, of Capitol View, Maryland.

[^29]: ${ }^{1}$ Archeology of the Lower Mimbres Valley, New Mexico, Smithsonian Misc. Coll., Vol. 63, No. 10, 1914.
 ${ }^{2}$ Personal Narrative, 1854.

[^30]: ${ }^{1}$ Why the figures on Mimbres pottery should be more realistic than those from elsewhere in the Southwest is not apparent, unless the richness of the fauna has some connection with it.

[^31]: ${ }^{1}$ Seventeenth Annual Report Bureau of American Ethnology, Washington, 1898.

[^32]: ${ }^{1}$ On the reredos of the Owakulti altar at Sitcomovi on the East Mesa of the Hopi there is a similar figure with drooping wing feathers. Here it probably represents the Sky god, as there are several stars near it.

[^33]: ${ }^{1}$ Thirty-third Annual Report Bureau of American Ethnology, 'Washington, I919.

[^34]: ${ }^{1}$ The northern extension of typical Mimbres pottery is doubtful, but certain food bowls from Sapello Creek, a Gila tributary, bear figures that distinctly resemble those found near Deming. Vide: Hulbert and Watson Collections.

[^35]: ${ }^{1}$ It does not seem probable that this line break originated independently in different ceramic areas of the Southwest. The pottery on which it occurs is supposed to be later than the Mesa Verde.
 ${ }^{2}$ As elsewhere pointed out, the character of ancient dwellings in the Mimbres belongs to a more ancient epoch than the pueblos; it looks as if the absence of the life line on pottery supported the same theory, but the other features in decoration appear more highly differentiated and therefore more recent.

[^36]: ${ }^{1}$ See plates 3, 4, Archeology of the Lower Mimbres Valley, New Mexico. Smithsonian Misc. Coll., Vol. 63, No. 10, pp. 1-53, 1914.

[^37]: ${ }^{1}$ Archeology of the Lower Mimbres Valley: Smithsonian Misc. Coll., Vol. 63, No. io, pl. 8.

[^38]: ${ }^{1}$ The author has already commented on this infiltration in his Archeology of the Lower Mimbres, op. cit. Mimbres and Casas Grandes pottery are readily distinguished.

[^39]: 36. Fish with two birds standing on it.
 37. Sun fish. birds standing on a fish.
 38. Two fishes drawn in white on black
 ground.
 39. Sun fish.
 +1. Serpent-like monster with horn on head.
[^40]: 42. Coiled fish (Hulbert collection).
 43. Two fishes symmetrically arranged.
 44. Three birds.
[^41]: ili. Cross with rounded arms.
 114. Geometrical figure.
 112. Six flowers. two in profile, the re- 115. Two-armed rectangular figure.
 mainder from beneath.
 113. Geometrical figure.
 116. Center circle with three rectangular figures with serrated edges.

[^42]: Smithsonian Miscellaneous Collections, Vol. 74, No. 7

[^43]: Notes.-1, 2, Wash water too hot. Only half plates saved. One of each set. 3, Progressive increase of bolometer disturbance led finally to resoldering of connections and reevacuating the bolometer. 4, No glass being in front of bolometer the shutter gave a deflection due to its difference of temperature from surroundings. Noted magnitude and applied corrections. 5, Shutter moved over in front of slit instead of in front of bolometer. Correction avoided. 8 , 7 , In pump and used alternately with and without vacuum of less than 0.001 mm . mercury on Aug. 31, Sept. 1,2 , and 6 . Readings in the auxiliary spectrum by eye observations at galvanometer compared with and without air, and with old air bolometer repainted and with new vacuum
 galvanometer deflections for increasing bolometer shunt by $1,2,3,4,5,6,7$ oh ms from 1930 ohms originally. First swings were $31.3,61.0,910,122.0$, $152,18 \mathrm{I}$, 211 mm . No corrections seem required for inequalities of galvanometer scale. 12 , A few trials of deflections at the same spectrum points with different rotating highest weight. 16, Atmospheric transmission coefficient and absorption of coelostat mirrors entirely determined. I7, Changed to rock salt prism. Good determina-

[^44]: ${ }^{1}$ Astrophysical Journal, December, 1921, and Comptes rendus t. 175, p. 156, 1922.

[^45]: ${ }^{1}$ See Annals Astrophysical Observatory, Vol. IV, p. 243, and Vol. III, p. 138.

[^46]: ${ }^{1}$ See figure 41, Annals Astrophysical Observatory, Vol. IV, p. 285.

