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ADVERTISEMENT 

The present series, entitled “Smithsonian Miscellaneous Collec- 

tions,” is intended to embrace all the octavo publications of the 
Institution, except the Annual Report. Its scope is not limited, 

and the volumes thus far issued relate to nearly every branch of 
science. Among these various subjects zoology, bibliography, geology, 

mineralogy, anthropology, and astrophysics have predominated. 
The Institution also publishes a quarto series entitled “ Smith- 

sonian Contributions to Knowledge.” It consists of memoirs based 
on extended original investigations, which have resulted in important 

additions to knowledge. 
CHARLES Di WESECOnT 

Secretary of the Smithsonian Institution. 
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ADVERTISEMENT 

The Smithsonian Institution has maintained for many years a group of 

publications in the nature of handy books of information on geographical, 

meteorological, physical, and mathematical subjects. These include the 

Smithsonian Geographical Tables (third edition, reprint, 1918); the Smithsonian 

Meteorological Tables (fourth revised edition, 1918); the Smithsonian Physical 

Tables (seventh revised edition, 1921); and the Smithsonian Mathematical 

Tables: Hyperbolic Functions (second reprint, 1921). 
The present volume comprises the most important formulae of many branches 

of applied mathematics, an illustrated discussion of the methods of mechanical 
integration, and tables of elliptic functions. The volume has been compiled by 

‘Dr. E. P. Adams, of Princeton University. Prof. F. R. Moulton, of the Univer- 

sity of Chicago, contributed the section on numerical solution of differential 
equations. The tables of elliptic functions were prepared by Col. R. L. Hippisley, 

C. B., under the direction of Sir George Greenhill, Bart., who has contributed the 

introduction to these tables. 

The compiler, Dr. Adams, and the Smithsonian Institution are indebted to 

many physicists and mathematicians, especially to Dr. H. L. Curtis and col- 

leagues of the Bureau of Standards, for advice, criticism, and codperation in 

the preparation of this volume. 
CHARLES D. WALCOTT, 

Secretary of the Smithsonian Institution. 
May, 1922. 
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PREFACE 

The original object of this collection of mathematical formulae was to bring 
together, compactly, some of the more useful results of mathematical analysis 

for the benefit of those who regard mathematics as a tool, and not as an end in 

itself. There are many such results that are difficult to remember, for one who 

is not constantly using them, and to find them one is obliged to look through a 

number of books which may not immediately be accessible. 

A collection of formulae, to meet the object of the present one, must be 

largely a matter of individual selection; for this reason this volume is issued 
in an interleaved edition, so that additions, meeting individual needs, may be 

made, and be readily available for reference. 

It was not originally intended to include any tables of functions in this 

volume, but merely to give references to such tables. An exception was made, 

however, in favor of the tables of elliptic functions, calculated, on Sir George 

Greenhill’s new plan, by Colonel Hippisley, which were fortunately secured for 

this volume, inasmuch as these tables are not otherwise available. 

In order to keep the volume within reasonable bounds, no tables of indefinite 

and definite integrals have been included. For a brief collection, that of the 

late Professor B. O.* Peirce can hardly be improved upon; and the elaborate 

collection of definite integrals by Bierens de Haan show how inadequate any 

brief tables of definite integrals would be. A short list of useful tables of this 

kind, as well as of other volumes, having an object similar to this one, is appended. 

Should the plan of this collection meet with favor, it is hoped that suggestions 

for improving it and making it more generally useful may be received. 

To Professor Moulton, for contributing the chapter on the Numerical 

Integration of Differential Equations, and to Sir George Greenhill, for his Intro- 

duction to the Tables of Elliptic Functions, I wish to express my gratitude, 

And I wish also to record my obligations to the Secretary of the Smithsonian In- 

stitution, and to Dr. C. G. Abbot, Assistant Secretary of the Institution, for the 

way in which they have met all my suggestions with regard to this volume. 

E. P. Apams 
PRINCETON, NEW JERSEY 

iv 
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SYMBOLS 

) WANTLIST DIBRUAG at a 

. GEOMETRY 

. TRIGONOMETRY 

CONTENTS 

VECTOR ANALYSIS . 

. CURVILINEAR COORDINATES 

. INFINITE SERIES. we 

. SPECIAL APPLICATIONS OF ANALYSIS 

. DIFFERENTIAL EQUATIONS ie 

. DIFFERENTIAL Equations (Continued) 

. NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS 

. ELLIPTIC FUNCTIONS . 

Introduction by Sir George Greenhill, F.R.S. . 

Tables of Elliptic Functions, by Col. R. L. Hippisley 
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SYMBOLS 

log logarithm. Whenever used the Naperian iogarithm is understood. 
To find the common logarithm to base to: 

login @ = 0.43429... loga. 

log a 4230250)... . logio'a. 

! Factorial. 2! where 71s an iteger denotes 1 °2123.. 45.0. ee nN. 
Equivalent notation [|% 

== Does not equal. 

> Greater than. 

< Less than. 

Z Greater than, or equal to. 

< Less than, or equal to. 

(i) Binomial coefficient. See 1.51. 

—> Approaches. 

| aix | Determinant where a; is the element in the 7th row and kth column, 

NC) Functional determinant. See 1.37. 
OG, hen oe aoe ) 

|a| Absolute value of a. If @ is a real quantity its numerical value, 
without regard to sign. If @ is a complex quantity, a =a + if, 

| a| = modulus of a = +V a? + B. 

Z The imaginary = +V — 1. 
k=n 

> Sign of summation, i.e., ae = ++ 43 +....+n. 
k=1 

k=n 

ll Product, i.e., [Ie 4+- kx) = (1 + x) (1 + 2x) (1 + 3a)... . (r+ mx). 
k=.I 

vill 



b. ALGEBRA 

1.00 Algebraic Identities. 

meas — 0" = (@—d)(a"* + a**d + a" ++ wk. + apm + $4), 

2. a> +6" = (a+ d)(a*1- a b+a™W_-..... += ab" + 7), 

n odd: upper sign. 

n even: lower sign. 

3. (vw + a)(e + a) . aa Gea) = 6" + Pin Poe as 

+ Prat + Pa. 

Py =Qqntat Gana ao), ae + dy. 

P;, = sum of all the products of the a’s taken k at a time. 

P0003... . « One | 

4. (a? + 8)(a? + 6) = (aa = 08)? + (cB + ba)?. 

5. (a — b?)(a? — 6?) = (aa + 0B)? — (aB + ba). 

-(@4+P4+C)(e? + B+ yy’) = at 08 + cy)? + (by — Bc)? + (ca — ya)? 
+ (a8 — ab)?. 

~@+P4+24+@)(2+ B+ y? + &) = (aa+d8 +cy+ db) 

+ (cB — ba + c6 — dy)? + (ay — 66 — ca+ dB)? + (a6 + by — cB — da)’. 

8. (ac — bd)? + (ad + bc)? = (ac + bd)? + (ad — bc)?. 

9. (a+ b)(b+c\(e+a) = (a+6+4+c)(ab + be + ca) —abe. 

. (a+ d)(64+clc+a)=@(64c)4+ RP(c+a)+cC(at+b) 4+ 2abc. 

. (@+6)(6+c)(c +a) = bc(6 +c) + ca(c + a) + ab(a + b) + 2abc. 

. 34+ d(64+cl(¢+a) =(a+b4+c%- (+640). 

. (b-a)(c—a)(e—-b) = @(c—b) + 2(a—c) +C(6- a). 

. (6—a)(c—a)(c— bd) = a(BP— 2) 4+ 0/2 —&) + ce — 8). 

. (b-— ale — a)(c — b) = be(c — b) + ca(a — c) + ad(b — a). 

- @—5b) + (6—c)? + (c — a)? = (a — b)(a—c) + O— a) —- 6) 

ae = 'a)(¢ = 8). 
. a3(6? — c2) + B(2 — a’) + B(a@ — 3) = (a — 6)(b — c)(a — c)(ab + bc + ca). 

~ (@+b4c)(84+P4) = dbe(b+0)+calc+a)+ab(a+b) + 804840. 

(a@+6+c)(be+ca+ab)=a@(b+c)+R(c+a)+C(atb) + 3abc. 

(b+c-—a)(c+a—b)(a+b-—c)=(b4+0c)+0(c+a)+c(a+) 

—(a@ + 63 + c3 + 2abc). 



2 MATHEMATICAL FORMULZ AND ELLIPTIC FUNCTIONS 

ar. (@+b+c)(—a+b+o(a—b+c(at+b—c) = 2(bc? + Ca? + ab?) 

—(a* + b* + c). 

22. (a@+b+c+d)+(a+b—c—d)?+(a+ce-—b-d)?+(a+d—b-c) 

= 4(@ + 64 ¢ + a’). 

Ii A=aa+by+c6 

B=aP+ba+cy 

C=ay+b8+ ca 

23. (@+64+c)\(a+B+y)=A+B4+C. 

24. fae bc — (ab +. be=-ca)i| fia 8? 4 y? — (ab byl 
= A?+ B? + C? — (AB+ BC + CA). 

25. (8+65+¢ — 3abc)(a? + BF + vy? — 3aBy) = A? + B+ C* — 3ABC. 

ALGEBRAIC EQUATIONS 
1.200 The expression : 

Ce) = Wge™ AS ae rc tre to ce eae + Anat + An 

is an integral rational function, or a polynomial, of the mth degree in x. 

1.201 The equation f(«) = 0 has m roots which may be real or complex, dis- 

tinct or repeated. 

1.202 If the roots of the equation f(x) =0 are G, @, .. ., Cn, 

f(G) = G0 Gt). a 5S (x4 — Cn) 

1.203 Symmetric functions of the roots are expressions giving certain com- 

binations of the roots in terms of the coefficients. Among the more important 

are: 
ay 

Cy te Gorse: sg a Sk ae een +¢C,=-— 
ao 

a2 
Oda +é3+...+ 63+ C04 +...... 1G, 167 = 

0 

a3 
C100C3 + CyColg +. . «+ OC30g +. 2... =~ Gy 96n16n = — ie 

0 

an 
Cine e elane Cn = (—1)"— 

ao 

1.204 Newton’s Theorem. If s; denotes the sum of the kth powers of all the 

roots Of f(x) — 0, a : 

ye Gl PQ apog oo 6 + Cn 

1a + S129 = 0 

202 + S101 + Sep = O 

3d3 + S1d2 + S201 + S389 = O 

44 + S103 + Sodq + S301 + S429 = O 
@ 1 ee: @ ‘0 G6) "6. %0 

@ @: @° 0. ‘e, ‘e) ie ce 
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or: 

ay 
ot 2 

ao 

2a, ay 
3 = = ——+-—> 

ao ao 

303  3d1d, ay 
2 a eam Db ater railcars 

ao ay ao 

4d4 . 40\03 40@;2d2 24-2 a4 
eee tn 2a tees oes 

ao ao ao ag ao 

@) @) <6) (eo « (e ° 

1.205 If S; denotes the sum of the reciprocals of the kth powers of all the 
roots of the equation f(«) =o: 

1 it 
Sreiec) art Je lee are 

Tdna + Sian = 

QnA 
= — 

an 

20n-2 QnA 
S2=—- ; 

a, a 

5 Bre) 3On1On-o Ont 
3= aor a ar emt 

(ee ae a 

e © @¢ @ @ «© « -6 © 

1.220 If f(x) is divided by x —h the result is 

f(x) = (w-hA)OFR. 

Q is the quotient and R the remainder. This operation may be readily per- 

formed as follows: 

Write in line the values of ao, a1, ... ., dn. If any power of x is missing 

write o in the corresponding place. Multiply ao by # and place the product in 
the second line under a;; add to a; and place the sum in the third line under a. 

Multiply this sum by / and place the product in the second line under a2; add 

to ad, and place the sum in the third line under a. Continue this series of 

operations until the third line is full. The last term in the third line is the 

remainder, R. The first term in the third line, which is ao, is the coefficient of 

«"—! in the quotient, 0; the second term is the coefficient of «”~®, and so on. 



4 MATHEMATICAL FORMUL AND ELLIPTIC FUNCTIONS 

1.221 It follows from 1.220 that /(/) = R. This gives a convenient way of 
evaluating f(x) for « = h. 

1.222 To express f(«) in the form: 

f(x) = Ao(w —h)" + Are —h)™1*4....4Ann(e—h) +A, 

By 1.220 form f() = An. Repeat this process with each quotient, and the 

last term of each line of sums will be a succeeding value of the series of co- 
emcients Ayes Ay 1, --. «+! , Ao. 

Example : 

f(x) = 3x5 + 2x4 — 8x7 4 ax -— 4 L—2 

3 2 fo) —8 2 —4 

6 16 22 48 sefe) 

3 8 16 24 50 96 = As 

6 28 88 224 

14 44 T12 274 = Ag 
6 40 168 

("26 84 280 = Ag 

6 52 

26 136 = Ae 

6 

B21 JAq 

G2 20 
Thus: 

O = 3x4 + 8x3 + 1627 + 24% + 50 

R = f(2) = 96 
S(*) = 3@ — 2)° + 32(@ — 2)* + 136(@ — 2)8 + 280(x — 2)? + 274 (a — 2) + 96 

TRANSFORMATION OF EQUATIONS 

1.230 To transform the equation f(x) = 0 into one whose roots all have their 
signs changed: Substitute —x for x. 

1.231 To transform the equation f(x) = o into one whose roots are all multi- 

plied by. a constant, m: Substitute «/m for x. 

1.232 To transform the equation f(x) =o into one whose roots are the 

reciprocals of the roots of the given equation: Substitute 1/«* for x and multiply 

Dy. 

1.233 To transform the equation f(«) = o into one whose roots are all increased 
or diminished by a constant, 4: Substitute « + / for x in the given equation, 
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the upper sign being used if the roots are to be diminished and the lower sign 
if they are to be increased. The resulting equation will be: 

feb) + af’ eh) +f" (ach) + . nN aes te 

where f’(x) is the first derivative of f(x), f(x), the second derivative, etc. 
The resulting equation may also be written: 

A ox” + Anti + Aox™ =| Oa ottett see aa An-1X “fF Ae =O 

where the coefficients may be found by the method of 1.222 if the roots are to 

be diminished. To increase the roots by / change the sign of h. 

MULTIPLE ROOTS 

1.240 If c is a multiple root of f(x) = 0, of order m, i.e.. repeated m times, 

then 

f(x) = @ — "0; R=0 
c is also a multiple root of order m — 1 of the first derived equation, f’(x) = 0; 
of order m — 2 of the second derived equation, f’(«) = 0, and so on. 

1.241 The equation f(«) = o will have no multiple roots if f(x) and f’(«) have 

no common divisor. If F(«) is the greatest common divisor of f(x) and f’(x), 

f(«x)/F(«) = fi(x), and fi(«) will have no multiple roots. . 

1.250 An equation of odd degree, 7, has at least one real root whose sign is 

opposite to that of ap. 

1.251 An equation of even degree, 7, has one positive and one negative real 

root if a, is negative. 

1.252 The equation f(«) = o has as many real roots between x = a; and « = 4 

as there are changes of sign in f(x) between a and x. 

1.253 Descartes’ Rule of Signs: No equation can have more positive roots 
than it has changes of sign from + to — and from — to +, in the terms of f(x). 

No equation can have more negative roots than there are changes of signin {(—~). 

1.254 If f(x) =o is put in the form 

Ag(a —h)* + Aifx—h)"14+...... AO 

Dynieaee, and Aig, Ay, .... . , A, are all positive, # is an upper limit of the 

positive roots. 

If f(—x) = 0 is put in a similar form, and the coefficients are all positive, 

h is a lower limit of the negative roots. 
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If f(1/x) = 0 is put in a similar form, and the coefficients are all positive, 

h is a lower limit of the positive roots. And with f(— 1/x) = 0, # is an upper 

limit of the negative roots. 

1.255 Sturm’s Theorem. Form the functions: 

f(%) = aoe” + qua? + wa sw ee, 

fila) =f’ (x) = nage" + (nm — thax"? 4+... Ot 

fx(x) = —R, in f(x) = Afila) + Ri 

fs(x) = —Re in fil) = Qofo(~) + Re 

oeoeeee e we 

The number of real roots of f(x) = o between « = 2 and x = x is equal to the 

number of changes of sign in the series f(«), fi(x), fo(~), . . . when x is sub- 

stituted for x minus the number of changes of sign in the same series when a» 

is substituted for «. In forming the functions ft, fo, . . . . numerical factors 

may be introduced or suppressed in order to remove fractional coefficients. 

Example: 

f(%) = «4 — 2x3 — 30? + 10% —4 

fila) = 2x3 — 30? — 3x45 

fo(x) = ox? — 27" 411 

f(x) = —8x - 3 

fa(%) = —1433 

i) fi fr fs i 

te os - + af = 3 changes 
Gea aS a an - —. 2 changes 

x=+o of + + om - 1 change 

Therefore there is one positive and one negative real root. 

If it can be seen that all the roots of any one of Sturm’s functions are 

imaginary it is unnecessary to calculate any more of them after that one. 

If there are any multiple roots of the equation f(«) = o the series of Sturm’s 

functions will terminate with f,,7 <n. f,(x) is the highest common factor of 

fand fi. In this case the number of real roots of f(«) = o lying between « = a 

and x = a», each multiple root counting only once, will be the difference be- 

tween the number of changes of sign in the series f, fi, fo,. . . ., f, when a and a2 

are successively substituted in them. 

1.256 Routh’s rule for finding the number of roots whose real parts are 
positive. (Rigid Dynamics, Part II, Art. 297.) 

Arrange the coefficients in two rows: 

x ao a2 a Ae @ 6 

ant ORT a3 a5 ; ee2eee 
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Form a third row by cross-multiplication : 

Qd2 — A0d3 a1d4 — Aas M5 — Aoa7 

ay a ay 
re anetars 

Form a fourth row by operating on these last two rows by a similar cross- 

multiplication. Continue this operation until there are no terms left. The 
number of variations of sign in the first column gives the number of roots 
whose real parts are positive. 

If there are any equal roots some of the subsidiary functions will vanish. 

In place of one which vanishes write the differential coefficient of the last one 
which does not vanish and proceed in the same way. At the left of each row 

is written the power of x corresponding to the first subsidiary function in that 

row. This power diminishes by 2 for each succeeding coefficient in the row. 
Any row may be multiplied or divided by any positive quantity in order 

to remove fractions. 

DETERMINATION OF THE ROOTS OF AN EQUATION 

1.260 Newton’s Method. If a root of the equation f(«) = o is known to lie 

between « and « its value can be found to any desired degree of approximation 
by Newton’s method. This method can be applied to transcendental equations 
as well as to algebraic equations. 

If 6 is an approximate value of a root, 

f(0) ' wens 
b- = c is a second approximation, 

f© .; ote 
c¢ — =~ =d 1s a third approximation. fo Pp 

This process may be repeated indefinitely. 

1.261 Horner’s Method for approximating to the real roots of f(x) = o. 
Let #; be the first approximation, such that p; + 1 > c > 1, where c is the 

root sought. The equation can always be transformed into one in which this 

condition holds by multiplying or dividing the roots by some power of ro 

by 1.231. Diminish the roots by p; by 1.233. In the transformed equation 

Ao(u — pi)” + Ai(w — py)" 14+. 0 ~+ Anil(e — pi) + An =o 

put 

pe Al 

Io A rll 

and diminish the roots by f2/10, yielding a second transformed equation 

N\ 9 
Box — p.- 2) + Bile p.- By, re .+ B, =o. 

Io 
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If B, and B,_; are of the same sign f2 was taken too large and must be dimin- 

ished. Then take 
Ps B n 

TOO™, LBaEt 

and continue the operation. The required root will be: 

Pn VEE ee C= = 
Ps a Io I00 

1.262 Graeffe’s Method. This method determines approximate values of all 

the roots of a numerical equation, complex as well as real. Write the equation 

of the nth degree 

~(@) = enn" =a" + oe — 0. EO, SO. 

The product 

f(s) -f(=2) = Awe Ane 4 Abt EAL 

contains only even powers of x. It is an equation of the mth degree in «7. The 

- coefficients are determined by 

Ay = ae 

A; = af — 249m 

Ag = dy? — 20103 + 20004 

Az = a3” — 2d2d4 + 20105 — 20006 

Ag = ag — 2035 + 2d2d5 — 20107 + 2d dg 

The roots of the equation 

Ay” — Ay" -- Any"? Ce REC Pees = AG =O 

are the squares of the roots of the given equation. Continuing this process we 

get an equation 
Rou” — Ryu"! + Rou" Se lig =0O 

whose roots are the 2’th powers of the roots of the given equation. Put A = 27. 

Let the roots of the given equation be c, c, ...., Cn. Suppose first that 

Cy DS \ Cay S163 eae ens (G5 

Then for large values of X, 

Ri R ies 

If the roots are real they may be determined by extracting the Ath roots of 
these quantities. Whether they are + is determined by taking the sign which 

approximately satisfies the equation f(«) =o. 
Suppose next that complex roots enter so that there are equalities among 

the absolute values of the roots. Suppose that 

lie) 2 | co ae | 6 |. Ss Sale ale (oie Pearest = 

| pia. | 2 | Gopse| eee eee ele 
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Then if ) is large enough so that c,’ is large compared to cy41>, cy, co 

Cp’ approximately satisfy the equation: 

Rou? — Ryu? ++ RouwP*—-.... 4 Rp=0 

> * © @ 

and Cpyi%, Cp, . - - » Cn approximately satisfy the equation: 

Rees? = 1 ag ia a + Ne NG om cs nO OS Pee = Ka =O, 

Therefore when 2 is large enough the given equation breaks down into a number 

of simpler equations. This stage is shown in the process of deriving the suc- 
cessive equations when certain of the coefficients are obtained from those of 
the preceding equation simply by squaring. 

REFERENCES: Encyklopadie der Math. Wiss. I, 1, 3a (Runge). 

Barrstow: Applied Aerodynamics, pp. 553-560; the solution of a numerical 

equation of the 8th degree is given by Graeffe’s Method. 

1.270 Quadratic Equations. 

x? 4+ 2ax+6b=0. 

The roots are: 

m1 =-at+vVe—b 

t= —-a—-Vae—b 
1+ x = —2a 

Lite = bd. 

Tf a >b roots are real, 
a> <b roots are complex 

a* = 6 roots are equal. 
d 

1.271 Cubic equations. 

(r) 2° +4 a 4+ bx +c=0. 
Substitute 

a 
2) x=y-- (2) Bary 

(3) »° — 3py — 2g =0 
where 

a 

1) eal 3P 3 

2 LENE 
ee, : 

Roots of (3): 

fie peo, G 0, g2 > p* 

cosh @ = pe 
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1 = 2p cosh © 

Yo = - 2 +iv3p sinh € 

oi Bt ee Wie eee iv 3p a 

lip> og <9, 9 > 7’, 

cosh @ = —L 9-5 

W=—2 Ricoh © 
3 

m= 2+ iv5p sinh S 

yn = — 2 = iV/5p sinh &. 

If p<o 

. q nh @ = sinh @ Wize 

wy) y= 2V/ —p was 

n= — +i — 3p cosh 

PE Cree Coch 18 Sie iW — 3p cosh ; 

lisp > 079g pe 

q cos @ = ——= 
Vv p® 

yy = 2p cos 2 

Si eee jaa, te Nee ; 

V3 = -2_ V3p sin &. 

1.272 Biquadratic equations. 

Aox* + ayx? + aox? + a3x + a4 = O. 

Substitute 

a 
sas AA DS 

6 4 I A ROR a oan ay 1 te y + oa Hy Pipe) geen ° 
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= aoa. — ar 

G = a'd3 — 3000102 + 20;° 

F = 4°04 — 400°,43 + 690;a2 — 3a," 

I = dod4 — 40103 + 302° 

F =a¢I — 3H? 
J = dpdnd4 + 2010243 — aoas? — aay — a3 

A = [3 — 27J* = the discriminant 

G + 4H? = ap (HI — aJ). 

Nature of the roots of the biquadratic: 

A =o Equal roots are present 

Two roots only equal: J and J are not both zero 

Three roots are equal: [ =J =o 

Two distinct pairs of equal roots: G = 0; aol —12H*?=0 

Four roots equal: H = J =J =o. 

A <o Two real and two complex roots 

A>o Roots are either all real or all complex: 

H <o and a,°l — 12H? <o Roots all real 

H>o and al —12H? >o0 Roots all complex. 

DETERMINANTS 

1.300 A determinant of the mth order, with n? elements, is written: 

A =/]Qy ap a3 SO: 680") On By OE CLO EOmee Ain = | a:; | ‘ es ey Sly bh) Olo OH a) 

Ch Wb CSR Go 5 6 6 5 6 Go a oo Aon 

On UY OKhes5 6 6 & O16 o ONO GO eo azn 

Olen Ulead Uns glo oo o oOo) Oo aONO Ann 

1.301 A determinant is not changed in value by writing rows for columns and 
columns for rows. 

1.302 If two columns or two rows of a determinant are interchanged the re- 
sulting determinant is unchanged in value but is of the opposite sign. 

1.303 A determinant vanishes if it has two equal columns or two equal rows. 

1.304 If each element of a row or a column is multiplied by the same factor 

the determinant itself is multiplied by that factor. 
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1.305 A determinant is not changed in value if to each element of a row or 

column is added the corresponding element of another row or column mul- 

tiplied by a common factor. 

1.306 If each element of the /th row or column consists of the sum of two 

or more terms the determinant splits up into the sum of two or more de- 

terminants having for elements of the /th row or column the separate terms of 

the /th row or column of the given determinant. 

1.307 If corresponding elements of two rows or columns of a determinant 

have a constant ratio the determinant vanishes. 

1.308 If the ratio of the differences of corresponding elements in the pth and 

gth rows or columns to the differences of corresponding elements in the rth 

and sth rows or columns be constant the determinant vanishes. 

1.309 If » rows or columns of a determinant whose elements are rational 

integral functions of « become equal or proportional when x = /, the determinant 

is divisible by (w — h)?7. 

MULTIPLICATION OF DETERMINANTS 

1.320 Two determinants of equal order may be multiplied together by the 

scheme : 
| ai7| X | bes] = | ea | 

where 
Cij = ab j1 + ind 52 = —Wahala are nei roe to EN Doe 

1.321 If the two determinants to be multiplied are of unequal order the one 

of lower order can be raised to one of equal order by bordering it; i.e.: 

(Oxi iD? 65 ho osc Qn | = LE) MOP mOR er cic) tele, thie) cojlio eteelh ots Oo 

Gay “Gaowaws «ies don Ow TED s OU epragher Xolile! sete, .0. Kehoe) ie *’ ie) 

AM iy COL Cm Cea OO 0 Oo ONO Steere: cmciecivs: sien els Reto 

Qni Ane . (| el RS Peete Swe S.C. Or ON GeO cpt cie oe Gu Oey 6 

(oy fe) {to} 5 at (Oh) Beep ao. Ge AIS 

(oy Koy Xo) Qo} (193 Fat vo ge oe Dy 

Qa oF © Qni Ane Qnn 

OR Mas oy  Sautiai@rotwos o °C ‘thics || OX bu 5 Nel on re et ehvonmctn cmon bin 
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"|| Chin 5’ 5 oo oO Gin Qin Oo 5 & 6 4 6 BS ag Ke 

Qni @ Gets ey) ie.-eh 6 106 Qnn O) 6 6 6 Oo G Onona Oo a (8) 

e) Ah fp BBO Oo by ML Ronettes es re 5 bin 

1) Soo 6 5 080 0,2 bri oe © © © © © bey 

DIFFERENTIATION OF DETERMINANTS 

1.330 If the elements of a determinant, A, are functions of a variable, 2: 

7 , , 
aA ayy Qh o.4g p 0 6 6 Ayn +] dy Gh oo oo x Ain 
Se ; 

dt Qo ade 2 dyn OD UUbO) ~ 695 A 4 6 don 

/ 
a nl On2 OOF. Von OS Ann Qnl a nD) Pia on wie fee Ann 

ii 
aPo a oo 0660000 6 0 6 cam) Ct hbo oo 6 oF On 

, 
ay, ae a on 

/ 
. Ani OAn2Q os tome, esse Te a mn 

where the accents denote differentiation by ¢. 

EXPANSION OF DETERMINANTS 

1.340 The complete expansion of a determinant of the mth order contains n! 

terms. Each of these terms contains one element from each row and one ele- 

ment from each column. Any term may be obtained from the leading term: 

OhWOORE 6 6 6 8 6 bc Ann 

by keeping the first suffixes unchanged and permuting the second suffixes among 

I, 2,3,... .,#. The sign of any term is determined by the number of inversions 

from the second suffixes of the leading term, being positive if there is an even 

number of inversions and negative if there is an odd number of inversions. 

1.341 The coefficient of a;; when the determinant A is fully expanded is: 

aA 

0a; 7 

Aj}. 
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A;; is the first minor of the determinant A corresponding to a;; and is a de- 

terminant of order 7 — 1. It may be obtained from A by crossing out the row 

and column which intersect in a;;, and multiplying by (—1)**, 

1.342 

| Ap a ol ts 
du Ayntaz Apt. ee “hein inlets 

A. ep yomeieeey 
a1; Ar; + do; Aj + iy a + dniAnj = A ifi=j 

1.343 

is the coefficient of a;;a,, in the complete expansion of the determinant A. It 

may be obtained from A, except for sign, by crossing out the rows and columns 

which intersect in aij and ay. 

1.344 

(Aes) x | a3 | = A” 
Aj; | = Ar, 

The determinant | A;;| is the reciprocal determinant to A. 

1.345 
SA eee oA aA aAnae 
04; j;0AK1 a Ax; Au x 0a;; Od] Oa; Oak; 

1.346 
. aA “ AN. iN 

04; ;00100 pq Ax; Ani Nae 

aN Api Ang 

1.347 
pA. vA: 

04; ;00x1 O4;100, ; 

1348 If A =o, 
aA aA aA dA. 
Og;; Odk1 Odi Oak; 

1.350 If a;;=a;; the determinant is symmetrical. In a symmetrical 

determinant 
Ai; = Aj 

1.351 If a;; = —a,;; the determinant is a skew determinant. In a skew 

determinant 
A;; = (eee jie 
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1.352 If a;; = —a;:;, and a; =o, the determinant is a skew symmetrical 

determinant. 

A skew symmetrical determinant of even order is a perfect square. 
A skew symmetrical determinant of odd order vanishes. 

1.360 A system of linear equations: 

Ghitial 9° Gl =P a 6 0 6 6 tn — ek 

MyX1 + doXe, +. .... + AonXn = ke 

Gniti + Gnote+.. we = Gnntn =n 

has a solution: 
A:x; = k Ai; + ke Ao; Fee +. R: Nes 

provided that 
A = | Qi; | SE Oo. 

1.361 If A =o, but all the first minors are not 0, 

[Nee “Ni = Ms D>) ars = G = ts: Dec tert) 

where s may be any one of the integers 1, 2,...., n. 

aeoto Miele he = oc oss =k, =0, the linear equations are homogeneous, 

wide A= O, 
X 5 Ts 

1.363 The condition that 2 linear homogeneous equations in 7 variables shall 
be consistent is that the determinant, A, shall vanish. 

1.364 If there are » +1 linear equations in variables: 

Qy1X; + AeX%. +... S= Whe. = ky 

eal 4 0b es CR + dontn = ke 

Ani Xy + OngXx2 a eliemae le eure ae AnnXn = Ry, 

Gitte Co%> + 2. 2. se e's +OnXn = Raw 

the condition that this system shall be consistent is that the determinant: 

dict” Mik a Qin ky =o 

Qa CODD) oho 68a o dodge Sh Qon ko 

CEMENT Bethe nese. fh Dons at Gee wee 
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1.370 Functional Determinants. 

If Vij Nay state) Vn ALC H) AUDCUODS Ol i. to.1 meee ee 

Vie fi(m, ADs ie nalieiistie ‘ Xn) 

the determinant: 

Ee een yr | _ | OV} _ Ay de». + +» In) 
Oot lr ahane ee OXn Ox; = OG wy ale 

an 0k, oa ee ax, 

OVn OVn OVn 

Ox, OX2 ie ger OXs 

is the Jacobian. 

Meine Eh mic Abbie: sta af ater , Yn are the partial derivatives of a function 
PWCGH, Beng ss Sigs oaks See 

Vetere hate 25,2 <> 29 1) 

the symmetrical determinant : 

Bae a 
G | oF | A ae 

Ox; OX; GCE Coe eee be 

is the Hessian. 

ota le V1, No;aehae ters , Yn are given as implicit functions of m, %,..... 4 

xn by the m equations : 

Fea Mie 400) \eosctic tae RAIMI IG IReR Da Lien pay at sett = ik O 

Beak Soper oe BRC Hei rect Noy Si ie tO 

then 

j O(v1, Ve, choke a” tel te ; Vn) oe (apne ee 8 F,,) < O(F,, Fy, ashes F,) 

Ole ao. Ol Sin Cop ap en LO Vinson le cocin aya) 

1375. if the #7 functions, 41,/ ve; o0s -aene , Vn are not independent of each other 
the Jacobian, J, vanishes; and if J = o the m functions 1, ye, . . . ., Yn are not 

independent of each other but are connected by a relation 

F(1, 25) apne) een ’ Yn) aes 
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1.374 Covariant property. If the variables 1, m,... ., %, are transformed 

by a linear substitution : 

Xi = Qi & IF inks a0 06650 © = Gintn (Ge. ee n) 

and the functions 41, y2,....- Vay OL Mig tana a cp eee es , Xn become the functions 

Man Nase chs .< MIP ORIET Coys «odds, 33 eee 

pe fe a(m, Py OO AOD ’ Nn) = O(y1, Voy 2 2 so ’ Yn). | ai; | 

0(&:1, £, 505 O56 ) £,) d(a, M2). 2 ee ) Kn) , 

or J'=J- | a; | 

where | a;;| is the determinant or modulus of the transformation. 

For the Hessian, 
H' = H.- | a;; | ?. 

1.380 To change the variables in a multiple integral : 

| ie (Se aaraa ara SACHS) eee PUA IUAY ae 5 ene dyn 

to new variables, 71, %2,..-. .» %n when yi, y2,.....- , Yn are given functions 

OEM ela 3 es in: 

Cy A Be sare aaa f ISS ce) F(@)dxidst,. 2. ss din 
Ol Gin Key wee se! a) 

where F(x) is the result of substituting 1, 42,... ., Ua for yi, Yo, . ~ «) Yn 

ine (yj, a, = 0 oe. 5 Sh) 

PERMUTATIONS AND COMBINATIONS 

1.400 Given x different elements. Represent each by a number, ft, 2,3,..... 

n. The number of permutations of the m different elements is, 

“lirytas (Ol 
eg., 2 = 3: 

(123), (132), (213), (231), (312), G21) = 6 = 3! 

1.401 Given m different elements. The number of permutations in groups of 

r (r<n), or the number of r-permutations, is, 

pa n! 

“rT a-yr! 
Oe. f = A%,— 2: 

(123) (132) (124) (142) (134) (143) (234) (243) (231) (213) (214) (241) (341) (314) 

(312) (321) (324) (342) (412) (421) (431) (413) (423) (432) = 24 



18 MATHEMATICAL FORMULZ® AND ELLIPTIC FUNCTIONS 

1.402 Given mn different elements. The number of ways they can be 

divided into m specified groups, with a, %,..... » Xm in each group respec- 

tively,\(%1 + 42+..... + im) =n 1s 

n! 

NE Phas Soma 3 staal 

e.g., 1 = 6, m = 3, M1 = 2, XH = 3, M = 1: 

(12) (345) (6) (13) (245) (6) xX 6 = 60 
(23) (145) (6) (24) (135) (6) 
(34) (125) (6) (35) (124) (6) 
(45) (123) (6) (25) (234) (6) 
(14) (235). (6) (15) (234) (6) 

1.403 Given nm elements of which « are of one kind, a, of a second kind, 
4) eam a , %m of an mth kind. The number of permutations is 

n! 

LBW Dey oe Oe Sipe 

Ale ol) ec yo. Baer + Xm =n 

1.404 Given n different elements. The number of ways they can be permuted 

among m specified groups, when blank groups are allowed, is 

(m+n -—1)! 

(m — 1)! 

Cg. 1 = 3, M= 2: 

(123,0) (132,0) (213,0) (231,0) (312,0) (321,0) (12,3) (21,3) (13,2) (31,2) (23,1) 
(32,1) (1,23) (1,32) (2,31) (2,13) (3,22) (3,21) (0,123) (0,213) (0,132) (0,232) 
(0,312) (0,321) = 24 

1.405 Given different elements. The number of ways they can be permuted 
among m specified groups, when blank groups are not allowed, so that each group 

contains at least one element, is 

n'(n — 1)! 

(n — m)!(m — 1)! 

e.g., 1 =3,M=2: 

(12,3) (21,3) (13,2) (31,2) (23,1) (32,1) (1,23) (1,32) (2,31) (2,13) (3,12) (3,21) = 12 

1.406 Given x different elements. The number of ways they can be combined 

into m specified groups when blank groups are allowed is 

m” 

e.g., 1 = 3, M=2: 

(123,0) (12,3) (13,2) (23,1) (1,23) (2,31) (3,12) (0,123) = 8 

1.407 Given 1 similar elements. The number of ways they can be combined 

into m different groups when blank groups are allowed is 
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(1+m—1)! 

(m — 1)!n! 
e.g., 2 =6, m= 3: 

Groupe ONS 5 4.4 4 33°23 3222226 Ti LI10000000 

Beroup2) Om O.2.0 1 30214037 25045 3 2605 1 423 5 = 28 

Rion, O10 HO 2.03 1204 13 2°05 17412 3.0601 5 24 3 | 

1.408 Given similar elements. The number of ways they can be combined 

into m different groups when blank groups are not allowed, so that each group 

shall contain at least one element, is 

(n — 1)! 

(m — 1)!(n — m)! 

BINOMIAL COEFFICIENTS 

n n ¥ _ n(n —1)(n—2)...(am—k+1) 

(0) = aes) oe Rk! 

Orbt)-659 

1.5 

S 

w 
, 
os —— Ss aS alee) 

ll 
S 
La s s Se 

ll 

: ; ) : cot ; zi 
‘. (Join <b 

pete ety )te'--+G)-GtD) 
mea (")+(G)—.--.+ (99) = ("7 

Goat. -+G)=(3): 

Ir r+ 
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1.52 Table of Binomial Coefficients. 

()- 
I 

2 I 

3 3 I 
4 6 4 ui 

5 pao 10 5 I 

OES 20 1s 6 I 

(eee 35 35 21 7 I 
Sa 28 56 70 56 28 8 I 

Ow 0 84, 120. 126 84 36 9 I 

TO) (Ay § 7L20. | 21ON 20 om oTO es 120 45 1K) I 

Tr 755, 6 205.) 1330) 2 402) 2402: 39330) 105 Die, Ea I 

£2) 00. §220;° "405 7702); 024° 792” =405" %220.5":00 rear 

1.521 Glaisher, Mess. of Math. 47, p. 97, 1918, has given a complete table 

of binomial coefficients, from = 2 to m= 50, and k=o0 to k=un. 

1.61 Resolution into Partial Fractions. 

If F(«) and f(x) are two polynomials in x and f(«) is of higher degree than 

(x), 
Fig) ss FG) Saee ds [Ee 

S@) “ad 6@ x= Fae Lge (p —-1)! de? lee ye | 

o( =|] 

ales (w — c)? 

where 

The first summation is to be extended for all the simple roots, a, of f(«) and the 

second summation for all the multiple roots, c, of order p, of f(x). 

FINITE DIFFERENCES AND SUMS. 

1.811 Definitions. 

1. Af(x) =f(x +h) — f(x). 

2. A®f(x) = Af@ +h) — Af(a). 
= f(x + 2h) — 2f(w +h) + f(x). 
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3. A®f(a) = A’f(w + h) — A*f(@). 
= f(x + 3h) — 3f(wt+ 2h) + 3f(x +h) — f(a). 

4. Ary(a) = fet nh) — "je + n= ah) + 249 

ts (= 1)77@): 

f@+n— 2h) - 

1.812 

x. Alcf(x)] = cAf(~) (¢ a constant). 

2. AL At) +f) +... .J=AA@) +Af@+.... 

3. ALfala) -fal)] = fale) A(x) + fale +h) - Afi) 
= filx)-Afe(x) + fo(x)-Afi(x) + Afi(x)-Afe(x). 

4 Af) AO): AN Ce) = file) Af) 
f(a) a(x) -fo(% + h) 

1.813 The mth difference of a polynomial of the mth degree is constant. 

CACC Oe ae + GniX + An 

A*f(x) = nlagh”. 

1.82 

An{(% — b)(«—b—-h)\(w-—b-—2h)..... (¢—6b—n—rh)} 

s n(n—1)\(m—2)..... (n —m+1)h™ 

=(x —b)(x—b—h)(wx—b—2h)....(u—b—n—m-— th). 

I 

Gia oe nia+ 6+ 2h). ... @+64+ v= Th) 

(0 GEM = 2) och ca (n +m — 1)h™ 

2. A 

paeAca = — (a sn) "a 

A f(x) 4. A log f(x) = log (: + 7) ). 

BA sini (Gx +d) = (: sin oy'sin («x +dtm 
ch + tm). 

6. A™ cos (cx + d) = (2sin =)" cos(cx +d +m **). 

(«+ 6) (#+b+h) (4+b+2h).... (n+b4+"+m-—Tth) 

21 

If 
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1.83 Newton’s Interpolation Formula. 

fe) {0 4 ie ee 

Boa e-1-B lene Dann, ae 

y We (== pests ine (« —a—n-— th) Ary(a) 

where £ has a value intermediate between the greatest and least of a, (a + nh), 

and 4. 

1.831 

flo +nk) = f(a) +S Asa) +P aya) + MED aya 

a eS na + nAn—f(a) + A*f(a). 

1.832 Symbolicalls 

NE 
2. f(a+ nh) = (1 + A)*f(a) 

1.833 If m=f(a), m=f@t+h, m=fa+e2h),...., uz=f(a+xh), 
(6) 

t,=(t + A) 2m = €" 702 UM. 

1.840 The operator inverse to the difference, A, is the sum, 2. 

I yA = 
ez —1 

1.841 If AF(x) = f(a), 
f(x) = F(x) +C, 

where C is an arbitrary constant. 

1.842 

Tepe) — Cait). 

2. UC flx) +h) +...J=2A@)+2h@)+... 
3. DE filx)-Af(a)] = fi@) f(x) — ZL fe@ + 2) - AAG). 
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1.843 Indefinite Sums. 

tr. DL (w — b)(~-—b—-—h)(w~—b—- 2h)... w~—b-—n-—th)] 

ecsey (a — b) (« —b —h) 5 6 Alas (co -—b—nh) +C. 

I 

De em a ee a 

NET th .... (*4+0+4+7n- th) 

I 

et («a+ b)(#+60+h)....(@+6+4n — 2h) 

s Dia" 
i ch sin (ce —F +a) 

sin { cx -~S4d 

4. . (cx +d) = ———eoo t Gc. 

2 sin =< 

ch 
cos (cr +a) 

i. >) sin (ce + @) = “aa 

1.844 If f(x) is a polynomial of degree x, 

Des =a [6 
a 

Wh = 
)ary(a) - 

A ( zal y'ary(a G. 
a’—y 

1.845 If f(x) is a polynomial of degree n, 

f(x) = dou” + ayer... + Gnix + dy, 

Zf(x) = F(a) +C, 

F(@) = con®! + Gqu® + coe 1 + 0. 1 + end + Cnn, 

and 

where 
(2 + 1)hco = ao 

ee h'co + nha, = 

ee Gia = a 

The coefficient cry: may be taken arbitrarily. 

+C, 

23 
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1.850 Definite Sums. From the indefinite sum, 

a definite sum is obtained by subtraction, 

a+nh 

Die) = F(a + nh) — F(a + mh). 
a+mh 

1.851 
a-+nh 

Dy fo) = f@ + fla +h) + flat 2h) +. ...+f(a+n-— th) 

‘ = F(a+nh) — F(a). 

By means of this formula many finite sums may be evaluated. 

1.852 ee 

D) (x = Ne — b= Ww = b = 2h) Os Gabe B= aD 

(G=ttm@—bt nm... Gb + nae 
(k+1)h 

GD G2 bh) eae Ge 6 En) 
- (k+1)h ; 

1.853 
a+nh 

De - Oe -a-h) ae ih ee prea) 

_ n(n — 1)(m — 2) aioe ate (n—k), 

(k + 1) ; 

1.854 If f(x) is a polynomial of degree m it can be expressed: 

f(x) = Aot Ai(w — a) + Ao(w —a)(w-a-—h)+.... 

+An(x—a)(x-—a—h).. («—a—m-— th), 
a+nh 

Diy) = Aen + AAG A, 
a 

n(n — 1)(n — 2) e 

n(n—1)... (n—™m) 
at ae Sara pee AP 

1.855 If f(x) is a polynomial of degree (m — 1) or lower, it can be expressed: 

f(x) = Ao + Ai(x + mh) + Ao(~ + mh) (x + m — th) 

Hees « Aa on) wee ee, (BE 2h) 
and, 

- x(a + h)(« + 2h)... («+ mh) rh nar ..» (a+.m— th) 



— 

> 

“el! 
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As | Ae 
PEGG EW a oie Nisin 

Aes z I 
SOR cAcd as: . af 7 

a@ a+nh 

1.856 If f(x) is a polynomial of degree m it can be expressed: 

f(x) = Ao + Ai(u + mh) + Ao(x + mh)(x+m—1h)+.... 

+Am(x+mh)... (x«t+h) 
and, ; 

a+n 

f(x) Aof I 
m@u(a+h) ... («+ mh) ae Vala it ye en (eo aah) 

I 

(Genk). os . Gee} 

A f 1 a+nh 

m—1 I Ut 

ips 7° Se \a ecait tM De 

where, 

ee I I ee 
ment Sa ath a-+2h pe yf 

1.86 ue Summation Formula. 

ie - ie flode+ As {70 -)} +A {ro -ro}, 
Lt Al | f-9() — fo-O(a) 

i Bete 
fs Pn(2) > hdx” dz 

x=a 

[ER [pra 

Gea” Gea)! 
m'hm(z), with = 1, is the Bernoullian polynomial. 

A, = -4, Ax,+1=0; the coefficients A», are connected with Bernoulli’s 
numbers (6.902), B;, By the relation, 

Fin eye sp Amat 2. bm(z) = + Ay 

B, 
as = k+1 

Aor = ( r) (2k)! 

Wes eee Aa, Paes L 
2 12 720 30240 
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1.86100 
I b iE 

Ze =} f toa -2{ 70 - sa) | +2170 - so) | 

ee nD) ft | he - 2 

5 eee ey +s {PO - 1K} a oe 
1.862 

I I dur Tee ihe i MEI boi 

Di m c+ f uae - Be they vax ok 720 dx eens ag? ea 

SPECIAL FINITE SERIES 

1.871 Arithmetical progressions. If s is the sum, a the first term, 6 the common 

difference, / the last term, and m the number of terms, 

a+(a+6)+(a4+26)+....[¢+ (-—1)6] 

b=a+(n—1)6 

“[2a + (n — 1)6| 

Ss 

AY 

ll 
nN 

s+). 

1.872 Geometrical progressions. 

s=a+taptap+..... + apr 

see ees 
(i 

a 
If p<, ape es SF 

1.873 Harmonical progressions. a,b,c, d,. . . . form an harmonical progression 
if the reciprocals, 1/a, 1/b, r/c, 1/d,. . . . form an arithmetical progression. 

1.874. 

s=n x=n : 
2 > o n(n + 1) x > £ jee) 

2 2 
x= 1 x= 1 

pa ae Be yee 3 se > OE eg (Cran 9) a >= Bre IEE Le Oe 
6 5 2 3 3° 

x=I1 £= 1 
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1.875 In general, 

k+1 k 
> = se ach - + 7) Bynk — (3) Bon*-3 + 2(5)B Te i 

*x=1 

B,, Bo, Bs, ... are Bernoulli’s numbers (6.902), (;) are the binomial 

coefficients (1.51); the series ends with the term in m if & is even, and with the 

term in wv? if & is odd. 

1.876 

i ee a eee ee ee = 20S a2 
SE (a as MT IOS Trine, n(n + 1) 

a3 

n(n +1) (n+ 2) 

vy = Euler’s constant = 0.5772156649... 

I 
Op tare 12 

I 
a =— 

12 

== a= 5 f x0-2) (g—ax).....@=1—x2)dx 

Lh 
$e os 

1.877 

Bees ee eee eo! Pine) cae ae 
Tee ee ae) 6 aE EG 2) 

</> 
(n+1) (4+ 2) (w4+3) ~ °° 

_ (k-1)! 
aay ane 

1.878 

Stutat...-+4=C-_— 
i Sagas n> (1 +1) (n + 2) 

_ al ee ee 
(n+1) (n+ 2) (n+ 3) 

C= “= = 1.2020569032 
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1.879 Stirling’s Formula. 

log (n!) = log V2m + (n +3) logn—n 

A k—4)! 
eg Leet Ane PEE 

BeeoN 
+ 6 Ax: G Zk— an n 

o<@<1. The coefficients A; are given in 1.86. 

1.88 

TI. r+1!+2-2!4+3-3!4+....+n-n! = (n+1)! 

2. 1°2°3+2°3°44+3°4°54+....+n(n+1) (n +2) = n(n +1) (n+ 2) (n+ 3). 

Fe EO Solr i ea es CEA Wace ho (eg) fae i i + n(n +1) (n+ 2) 

.(w+r-—1) 

_ n(n +1) (m+2)....(+7) 

eo eo ee ee 

4A. rp+2(64+1)+3(p4+2) +....... +n(p+n-—1) 

= 5 n(n + 1)(3p + 2m — 2). 

Be ders sD) (0) eee 2) tte, Me ee (p—n) @—n) 

= <n[6pq — ( — 1) (3p + 39 - 20 + 1) 
bbb st) b(b+1).... (6+ —1) 

be Eee aGeeay ee ee 

b(6+ 1). . (647) a—I 
SO  —_—— ST — + 



Il. GEOMETRY 

2.00 Transformation of codrdinates in a plane. 

2.001 Change of origin. Let x, y be a system of rectangular or oblique coér- 

dinates with origin at O. Referred to x, y the codrdinates of the new origin O’ 

are a, 6. Then referred to a parallel system of codrdinates with origin at O’ 

the codrdinates are x’, y’. 
io 

PS ae. 
2.002 Origin unchanged. Directions of axes changed. Oblique codrdinates. 

Let w be the angle between the x — y axes measured counter-clockwise from 

the x- to the y-axis. Let the x’-axis make an angle @ with the x-axis and the 

y’-axis an angle 6 with the x-axis. All angles are measured counter-clockwise 

from the x-axis. Then 

x sin w = x’ sin (w — a) + y’ sin (w — B) 
ysinw =x’ sina+y’ sin B 

w’ = B-a. 

2.003 Rectangular axes. Let both new and old axes be rectangular, the new 

axes being turned through an angle 8 with respect to the old axes. Then 

Tv T 
ees Serpe me 

«x = x’ cos 9 — y’ sin 8 
x’ sin 0 + y’ cos 0. << 

ll 

2.010 Polar coérdinates.. Let the y-axis make an angle w with the x-axis and 
let the x-axis be the initial line for a system of polar codrdinates 7, 8. All angles 

are measured in a counter-clockwise direction from the x-axis. 

veg sin (w — @) 

sin @ 

sin 0 
sin @ Dee 

2.011 If the x, y axes are rectangular, w = _ > 

x =rcos 9 

y =rsin 0. 
29 
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2.020 Transformation of codrdinates in three dimensions. 

2.021 Change of origin. Let x, y, z be a system of rectangular or oblique coor- 

dinates with origin at O. Referred to x, y, z the codrdinates of the new origin 

O’ are a, 6, c. Then referred to a parallel system of codrdinates with origin at 

O’ the coérdinates are x’, y’, 2’. 
x=a +4 

et al 
g=2+6¢ 

2.022 ‘Transformation from one to another rectangular system. Origin un- 
changed. The two systems are x, y, z and x’ y’ 2’. 

Referred to x, y, z the direction cosines of x’ are 4, my, m 

Referred to x, y, 2 the direction cosines of y’ are /2, m2, ne 

Referred to x, y, z the direction cosines of 3’ are /3, m3, 13 

The two systems are connected by the scheme: 

x y z 

x ly ls ls 

By, mM Ms Ms 

Zz Ny Ng N3 

= lx’ + ly’ + 132’ v= he + my + ms 

mx’ + mey’ + 33" 

mx’ + ny’ + 133" 

yy! = Inn + Moy + Nez 

z 3’ = I3x + m3y + 138 

L? + m? + n?2 

bo? + mo? + nq 

Is? + m3 + n3? 

Lym + Lome + Isms 

MN, + Mone + M3Nz3 

L? + 12+ 13? 

my” + me” + m3? 
9 

Ne + nr + ng = 1 

Lle + mymy + 14M 

lols + mom3 + Non3 

ml + Nols “+ Nals Is), + mgm, + 131 

2.023 If the transformation from one to another rectangular system is a rotation 

through an angle @ about an axis which makes angles a, 8, y with x, y, 2 re- 

spectively, 
2cos0=1+m+73—-1 
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cos? a cos? 6 cos? Y 
Mm+m-h—-t mwmt+h—-m—-Io kh +m—nm-—I1 

2.024 Transformation from a rectangular to an oblique system. 4, y, 
-tangular system: x’, y’, 2’ oblique system. 

pay esp 

cos an’ = |, cos #y =h COS XZ 
es, aS, 

cos yx" = m cos yy 
oy ——~ 

)&) 
] 

me cos ys’ 
-——~ 

ll S 
cos 2x’ = m cos zy’ = Me COS 22’ = Ng 

hx’ + ly’ Feat 

y = mx’ + moy’ + m32' 

= mx’ + ny’ + 132" ve | 

>) cos y/z’ = lols + myem3 + nons 
a——~ 

cos 2/x”’ = Isl) + mgm, + ngny 
oa 

cos xy! = Ale + myme + mmo 

lL? +m? +n? =1 

1? + me + mn? = 1 

13? + m3? + ns? = 1 

2.025 Transformation from one to another oblique system. 
a e > ain; 

Cost — 1h cos xy" = k COS 420— 15 
Say ae eae 

cos yx’ = my, cos yy’ = mz cos yz’ = m3 
a a> ay 

cos 2x’ = mM COS Zy’ = Ne COS 22’ = Ng 

Nah bl; 

Mi{MyeM3 

hy Ne Nz 

x= be’ + lay’ -f- lez! 

y = mx’ + moy’ + m2" 

= mx’ my’ + 132’ 

> Se 
| (myn3 — M3N2)x + (Nol3 — Nale)y + (lems — lme)z, 

Avy! = (mgm — myns3)x + (ns — mls)y + (lam — Lims)z, 

(myne — myny)x + (Mle — Noli) y + (Lime — lemy)z. > se ] 

—. ———— —™ 

1? + m2? +n? + 2mm Cos ye+ 2m, Cos 2x + alym, COs xy = 1, 

Ie? + me? + no? + 2moMN2 COS 9 + 2Nel. cos eat + 2lym, cos xy = i. 
——~ 

1? + m3? + m3? + 2m3n3 COS ye + 2nsl3 cos zx + 2133 COS ey =I, 

— a , , , 

x+ycosxy+ zscosxzg=hx’ +hy’ +132, 
——~ — , , , 

y+x COS XY + 2 COS ZV = MX + Moy + M32, 
— — 

Z2+xcosxz+ycos sy = mx’ + my’ + 132’. 
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2.026 Transformation from one to another oblique system. 

If n,, my, mz are the normals to the planes yz, 2x, xy and nz’, ny’, nz’ the 
SVs 

normals to the planes y's’, 2’x’, x’y’, 

ine D Aig ’ ape , SPs 
xcosan, =x’ cosx’'n,+y’ cos y'Nz+3' COS 22. 

an , Sips ! ip , aS 
y COS ty =2%' cosx’'ny+y’ Cos yny+2' Cos 2'ny 

— aa ap —~ 

2cosen, =x’ cosx’'n,+y’ cos yn”,+ 3’ cos 2'nNz. 

— —— — - a 

x’ cos x/n,’ = % COS Xn z' + Y COS yn’ + 2 COS Zhz’. 
Pa —™ a — 

y’ cos y'nNy’ = % COS Xn y’ + y COS YNy’ + 2 COS Zn,’. 
-_— 

/ Say gory mS by y 
2 COSZ2Nz =XCOSXnNz + YCOS YNz +2COS Zz. 

2.030 Transformation from rectangular to spherical polar codrdinates. 

r, the radius vector to a point makes an angle 6 with the z-axis, the projection 
of r on the x-y plane makes an angle @ with the x-axis. 

x =rsin 0 cos b p2 = ght 4 oP 
Z 

=rsin @ sin 6 = cos! ay) Sl p s Vat + x + 22 

z=rcos 80 o = tan 

2.031 Transformation from rectangular to cylindrical codrdinates. 

p, the perpendicular from the z-axis to a point makes an angle @ with the 
x-g plane. 

x = pcos 6 p=vVx2e+¥ 

y =psin@ 6 = tant? 

Z=8 

2.032 Curvilinear codrdinates in general. 

See 4.0 

2.040 Eulerian Angles. | 

Oxyz and Ox’y’s’ are two systems of rectangular axes with the same origin O. 
OK is perpendicular to the plane zOz’ drawn so that if Oz is vertical, and the — 

projection of Oz’ perpendicular to Oz is directed to the south, then OK is directed 
to the east. 

Angles 2/0z = 0, 

yOK = §, ; 
y'OK = y. ; 
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The direction cosines of the two systems of axes are given by the following 
scheme : 

cos ¢ cos 8 cos Y — sin @ sin sin @ cos 8 cos WY + cos@sin W | —sin O cos p 
x . . 

y’ | —cos ¢ cos Asin W — sin @ cos Y| — sin d cos O sin P + cos p cos P sin sin 
3! cos @ sin 8 sin @ sin 8 cos 

2.050 Trilinear Codrdinates. 

A point in a plane is defined if its distances B 

from two intersecting lines are given. Let CA, 

CB (Fig. 1) be these lines: 

ate) =, wll = 7: R z 

Taking CA and CB as the x-, y-axes, including 

an angle C, 

a an C C S A 

etiaan BIBS y= EWE Fic. 1 

Any curve f(x,y) = 0 becomes: 

Boat GN e, 
Gre sin 2) ag 

If s is the area of the triangle CAB (triangle of reference), 

2s = ap+ bq +cr, 

Gi— BC. 

be GA 
C= Ab), 

and the equation of a curve may be written in the homogeneous form: 

f ( asp 25q z) mts 

(ap + bg+cr) sinC (ap+bg+ecr)sinC}  ~ 

2.060 Quadriplanar Codrdinates. 

These are the analogue in 3 dimensions of trilinear codrdinates in a plane 

(2.050). 
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1, %2, 3, x4 denote the distances of a point P from the four sides of a tet- 

rahedron (the tetrahedron of reference); 11, 1, 1413; 12, m2, M2; /3, ms, m3; and 

14, ms, 4 the direction cosines of the normals to the planes 21 = 0, a4 = 0, 13 = 0, 

%4 = Oo with respect to a rectangular system of codrdinates x, y, 2; and dj, do, ds, 

d, the distances of these 4 planes from the origin of codrdinates : 

wy =he +my+ mez — dy 

x. = lox + My + Mos — dy 

x3 = Iv + my + 132 — ds 

X= [yx + my + naz — dy. 

(1) 

$1, Se, $3, and sy are the areas of the 4 faces of the tetrahedron of reference 

and V its volume: 

3V = 181 + 82 + 4353 + 454. 

By means of the first 3 equations of (1) x, y, s are determined: 

x = Ayr, + Byxo + Cix3 + Di, 

y = Aon, + Box, + Cox3 + Dr, 

z= A3X1 + Bx a. C3x3 + D3, 

The equation of any surface, 

F(x,y,2) = O, 

may be written in the homogeneous form: 

D 
F |4 141 + Bye + Cyxg + V (51%) + So%e + S3%3 + sa) 

Ds 
EE + Boxy + Coa3 + ay. (syXy + Soa, + S303 + sat) | 

D 
EE + Bgx + C3x3 + V (s1X1 + Sete + 5343 + sa) | =O 

PLANE GEOMETRY 

2.100 The equation of a line: 
Ax+ By+C=o. 

2.101 If » is the perpendicular from the origin upon the line, and @ and 8 the 

angles p makes with the x- and y-axes: 

p=xcosa+ycos B. 

2.102 If a’ and §’ are the angles the line makes with the «- and y-axes: 

p= ycos a’ — x cos BP’. 

2.103 The equation of a line may be written 

y= Ox 0. 

= tangent of angle the line makes with the x-axis, 
= intercept of the y-axis by the line. =) od 
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2.104 The two lines: 
Ve ax + by, 

y = x + bo, 
intersect at the point: 

by == by, Abo = Ab; 
4= — = ————— 

a — a& ay — ay 

2.105 If ¢ is the angle between the two lines 2.104: 

a, — ao ‘ 

I + Qa 
tan @ = + 

2.106 Equations of two parallel lines : 

[ de+ By +C,=0 a y=ax+h, 
| Ax + By +Cz=0 y = ax + bo. 

2.107 Equations of two perpendicular lines : 

eae me ae 

Bu — Ay+C, =0 y= othe 

2.108 Equation of line through 4, y, and parallel to the line: 

Ax+ By+C=o0 or y=ax+, 

A(fa—m)+By-y)=0 or y—-m=a(x—-). 

2.109 Equation of line through «1, y, and perpendicular to the line 

Ax+ By+C=o0 or y=ax+b, 

Bea) Aly yi= 90 oF y— y= — 

2.110 Equation of line through x,, y, making an angle @ with the line y = ax + 0: 

a+tan@ Ge 
—-VW= 

ae I—atangd 

2.111 Equation of line through the two points, «1, 11, and a, yo: 

Voie VI 
— Vii == = 46 — > Bt))c 

y a Xe — X41 ( y 

2.112 Perpendicular distance from the point «1, y; to the Jine 

Ax+By+C=o0 or y=ax+), 

Ax, aL By, oh G Vit Ot b 
i or Pp = ———____——__e 

V Ao + Bo 

2.113 Polar equation of the line y = ax +b: 

p 

Fogle bcos @ 

sin (8 — a)’ 
where 

tan @ = a. 
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2.114 If p, the perpendicular to the line from the origin, makes an angle 6 

with the axis: 
p =rcos (0 — £). 

2.130 Area of polygon whose vertices are at M1, Vij Ae, Woh “s alie ohe eee 

Xny Vn — Ae 

2A = y1(%n — 42) + yo(a1 — Xs) + ya(v2— 44) +... - + Yn(%n-1 — 41). 

PLANE CURVES 

2.200 The equation of a plane curve in rectangular codrdinates may be given 

in the forms: 

(a) y = f(@). 
(b) x = fil), y = fo(é). The parametric form. 

(c) F (x,y) = 0. 
2.201 If 7 is the angle between the tangent to the curve and the x-axis: 

(a) tanT = ey = ¥'. 
dx 

dfo(t) 
dt 

(Db). tan" 7 — FON 

dt 

OF (x, y) 
Ox 

(Qian; = — aR, 9) 

dy 

In the following formulas, 

me ~ Do OL UN 
FIG. 2 

2.202 OM =x, MP =, angle XTP = 7. 

yVi + yy? 
J 

IM=y cot T= - = subtangent, 

EP VCs 7 = = tangent, 

PN = ysecT = yvV/t + y” = normal, 

MN = y tan T = yy’ = subnormal. 

Vee : 
2.203 OT =x — y/ = intercept of tangent on x-axis, 

OT’ = y — xy’ = intercept of tangent on y-axis, 

ON =x+ yy’ = intercept of normal on x-axis, 

ON’ =y+ z = intercept of normal on y-axis. 
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, 

2.204 OO = ee = distance of tangent from origin = PS = projection of 
Nasr radius vector on normal. 

Oy = y) y= ey 
it ae nie ? I as aie Coordinates of Q: 

2.205 OS =— gf OD = = distance of normal from origin = PQ = projection of 
Vi+ty radius vector on tangent. 

; ee y Nal 

Coordinates of Sx <= _, ezasee EES : 
Le Dey 

Vi +P (y — xy’) 
2.206 OR = > ee de polar subtangent, 

(CASS 0 EERIE PR = —————\—_ = polar tangent, 
x + yy e 6 

xy! — vy n(ay — aay! 

Codrdinates of R; 272 = (wy » y uly = #y') z ) . 
w+ yy ? “+ yy 

2.207 OV = vee = polar subnormal, 

PV = Homie EV BED oa TORS polar normal, 
yxy 

ee yy! a (- , 
-Codrdinates of V; 272? (ons a ) es ao(a + yy") : 

y — xy y — xy’ 

2.210 The equations of the tangent at 21, yi to the curve in the three forms 

of 2.200 are: 

(a) y—n =f’ (x) (« — m1). 

(b) (y — yi) fi (A) = (% — a) fo" (A). 

(c) (x — 21) (; oho + (y — 91) (; ae nm = 0. 

2.211 The equations of the normal at 2, y; to the curve in the three forms 

of 2.200 are: 

(a) f'(a) (y -— 1) + @ — m) = 0. 
(b) (y — yi)fe’ (4) + (« — a) fi’ (4) = 0. 

(c) (x = 21) Gee = (y an v1) (; ae x1 ° 

yi y= 1 



38 MATHEMATICAL FORMULZ AND ELLIPTIC FUNCTIONS 

2.212 The perpendicular from the origin upon the tangent to the curve 
F(x, y) = o at the point 4, y is: 

, oF - \) OF 

ee oy 

Ox Oy 

2.213 Concavity and Convexity. If in the neighborhood of a point P a curve 

lies entirely on one side of the tangent, it is concave or convex upwards according 

p= 

d’y . ve s is : : 
A = 7,2 1S positive or negative. The positive direction of the axes are shown 

Le 

in figure 2. 

2.220 Convention as to signs. The positive direction of the normal is related 

to the positive direction of the tangent as the positive y-axis is related to the 

positive x-axis. The angle 7 is measured positively in the counter-clockwise 

direction from the positive «x-axis to the positive tangent. 

2.221 Radius of curvature = p; curvature = 1/p. 

dT z 
A ods 

where s is the arc drawn from a fixed point of the curve in the direction of the 
positive tangent. 

2.222 Formulas for the radius of curvature of curves given in the three forms 

of 2.200. 

en 
(a) 2 dx} J _ (za +y™! 

p d*y Br 

dx? 

enn te (b) Dike lo dt 
pe ee eae see 

dt dP? dt d? dt” d?} \dP 

If s is taken as the parameter ?: 

(b’) Lae Cy yee (3) =) ; 
ae oe ko Ge Ge 

(se) +055) | ie) maaan 
(c) aa sa Ei NNO AOE Pe 

slg) ie Of ORCL OLB OlN 

Ox? \dy dxdy dx dy * dy? \ax 
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' 9.293 The center of curvature is a point C (fig. 2) on the normal at P such 

that PC = p. If p is positive C lies on the positive normal (2.213); if negative, 
on the negative normal. 

2.224 The circle of curvature is a circle with C as center and radius = p. 

2.225 The chord of curvature is the chord of the circle of curvature passing 
through the origin and the point P. 

2.226 The codrdinates of the center of curvature at the point x, y are &, 7: 

E=x%—psinT 

Lana — wy 
7 dk 

N=y+ Pp cos T 

If 7’, m' are the direction cosines of the positive normal, 

E=x+1'p 
n=y+m'p. 

2.227 If /, m are the direction cosines of the positive tangent and /’, m’ those 
_of the positive normal, 

dl 0 dm mt 
as 5p» a5 .9.p 

Uv’ =m, m' = -, 

ee 
is) 2p ,.as p 

2.228 If the tangent and normal at P are taken as the x- and y- axes, then 

limit 
x0 2y 

p= 

2.229 Points of Inflexion. For a curve given in the form (a) of 2.200 a point 

of inflexion is a point at which one at least of = and = exists and is con- 

2 c 

: ; d dx: : : 
tinuous and at which one at least of 7 = and = vanishes and changes sign. 

If the curve is given in the form (b) a point of inflexion, 4, is a point at which 

the determinant: 
fi’ (t) fo!" (hh) 
fi’ (4) fy’ (th) 

vanishes and changes sign. 

2.230 Eliminating « and y between the codrdinates of the center of curvature 

(2.226) and the corresponding equations of the curve (2.200) gives the equation 

of the evolute of the curve — the locus of the center of curvature. A curve 

which has a given curve for evolute is called an involute of the given curve. 
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2.231 The envelope to a family of curves, 

i Bc yi Nay 

where a is a parameter, is obtained by eliminating a between (1) and 

oF . 
2. age 

2.232 If the curve is given in the form, 

i x = fi(t, a) 

2. y = frlt, a), 

the envelope is obtained by eliminating ¢ and a between (1), (2) and the func- 

tional determinant, 

~ ee a (ses 1570) 

2.233 Pedal Curves. The locus of the foot of the perpendicular from a fixed 

point upon the tangent to a given curve is the pedal of the given curve with 

reference to the fixed point. 

2.240 Asymptotes. The line 
y=ax+b 

is an asymptote to the curve y = f(«) if 

limit 

a= 740 f'(x) 

b = sim CHa) — of O1 

*x=fid), vy =frld), 

and if for a value of ¢, 4, fi or fe becomes infinite, there will be an asymptote if 

for that value of ¢ the direction of the tangent to the curve approaches a limit 

and the distance of the tangent from a fixed point approaches a limit. 

2.241 If the curve is 

2.242 An asymptote may sometimes be determined by expanding the equation 

of the curve in a series, 
n foo) 

> » by, 
y= ayna® + ae 

k=o0 i— 

co 

limit by. 
Tf X— 00 xt = 0, 

Rn 

the equation of the asymptote is 
n 

[J \(e) 

———————E—— eeeeeee,rlc ee ee es 

a, 
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If of the first degree in x, this represents a rectilinear asymptote; if of a higher 
degree, a curvilinear asymptote. 

2.250 Singular Points. If the equation of the curve is F («, y) = 0, singular 

points are those for which 

oF OF 
ax oy” 

Put, 

= a 
"ydx dy? ax dy 

If A<o the singular point is a double point with two distinct tangents. 

A>o the singular point is an isolated point with no real branch of the curve 
through it. 

A = o the singular point is an osculating point, ora cusp. The curve has two 

branches, with a common tangent, which meet at the singular point. 

1 OF, OP, OF OF OP 
dx Oy dx* dy? Ox dy 

point is one of higher order. 

simultaneously vanish at a point the singular 

PLANE CURVES, POLAR COORDINATES 

2.270 The equation of the curve is given in the form, 

r= (0), 

In figure 2, OP = r, angle XOP = 0, angle XTP =7, angle pPt = ©. 

2.271 6 is measured in the counter-clockwise direction from the initial line, 

OX, and s, the arc, is so chosen as to increase with 6. The angle ¢ is measured 

in the counter-clockwise direction from the positive radius vector to the positive 

tangent. Then, 
T=0+4¢0 

r dO 
2.272 Ce alae 

r dO 
Sn = 
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aot? sin 0 a +r cos 0 

tan T= 1 abana 

cos 9@— —r sin 0 
d0 

z dr 2 3 

as — {r +(55) d0 

2.274 PR= Nx (‘)- polar tangent 
Yr 

PV= \/72 + (%) = polar normal 

Ok— lt = polar subtangent 

OV = gt = polar subnormal = isp = polar rmal, 

2 

2.275 OQ = af ee p = distance of tangent from origin. 
rare eed 

v4 (ia) 
dr 

"70 
OS = - = distance of normal from origin. = Vet i (%) 

dé 

2216 liu = = , the curve r = f(8) is concave or convex to the origin according as 

ae 
d@? 

is positive or negative. Ata point of inflexion this quantity vanishes and changes 
sign. 

2.280 The radius of curvature is, 
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2.282 If the equation of the curve is given in the form, 

r = f(s) 

where s is the arc measured from a fixed point of the curve, 

2.283 If » is the perpendicular from the origin upon the tangent to the curve, 

d a’ 
i: Daan 2. p=p+o5 

2.284 If w == 

a) Po d@ 

du My dp 
2.285 dgatne (2) 

2.286 Polar codrdinates of the center of curvature, 7, 0,: 

TOC na eae a ldo emcee: do) \\ao) * 
a= : (a) = ot 2 

7? \ a0)” dG? 

2.287 If 2c is the chord of curvature (2.225): 

2c = 2p ae ape, 
if 

“(a is i dé 

f du 
u(u + a 

2.290 Rectilinear Asymptotes. If 7 approaches » as 6 approaches an angle a, 
and if r(@ — 0) approaches a limit, 6, then the straight line 

r sin (a—6)=6 

is an asymptote to the curve r = (8). 
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2.295 Intrinsic Equation of a plane curve. An intrinsic equation of a plane 
curve is one giving the radius of curvature, p, as a function of the arc, s, 

p = f(s) 
If 7 is the angle between the x-axis and the positive tangent (2.271): 

ds 3 
iri Alay cams fi cos T-ds 

Sq s 

ratet f 7 yar f sin T-ds. 

2.300 The general equation of the second degree: 

AyX” + 2dpxXY + Aoyy + 2di3% + 2doxy + A33 = O 

Ai Q1 Ap ays 

dq, 22 23 

’ 

Qnk = Akh 

a3, A302 33 

Anz = Minor of Giz. 

Criterion giving the nature of the curve: 

A33 = O A33 = O 

A33>O 

QA or deA 

SO Parabola A +0 
ss Hyperbola 

Ellipse | Imaginary 
Curve 

Pair of | Pair of Imaginary | Real Imaginary 
We oO Real Lines Double 

Straight Line 
Lines Pair of Parallel Lines 

Intersection Finite 

(Pascal: Repertorium der héheren Mathematik, II, 1, p. 228) 



GEOMETRY 45 

2.400 Parabola (Fig. 3). 

ZA01 O; Vertex; F, Focus; 

ordinate through D, Direc- 

trix. 
Equation of parabola, 

origin at O, 

y= 4ax 
x= OM, y= MP, 

Ok =O), — a 

FL = 2a = semi latus 

rectum. 

FP =D'P. 

2402 FP =FT =MD 

=«x+a. 
Fic. 3 

NP = 2Va(a+<x), TM = 2x, MN = 2a, ON = x + 2a. 

Lee. ee Dies Aaland, on’ = \/2 (w+ 20), OO = x ay OS (e+ 2a)\/— 

FB perpendicular to tangent TP. 

FB = Va(a+x), TP = 2TB = 2Vx(a +x). 

‘FB’ = FT x FO = FP x FO. 
The tangents 7P and UP’ at the extremities of a focal chord PFP’ meet 

on the directrix at U at right angles. 

j—anvle XP. 

tan: 7 = y/o. 
ie 

The tangent at P bisects the angles FPD’ and FUD’. 

2.403 Radius of curvature: 

Coodrdinates of center of curvature: 

£ = 344+ 24, n= — pa 
a 

Equation of Evolute: 

27ay" = 4(x — 2a), 
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2.404 Length of arc of parabola measured from vertex, 

s= Va(%x + a) +a log (V/s eae ; 

Area OPMO = 50 y. 

2.405 Polar equation of parabola: 

hele 

6 = angle XFP, 

pee Soca ey. 
—1r— cos 6 

2.406 Equation of Parabola in terms of p, the perpendicular from F upon the 

tangent, and r, the radius vector FP: 

l 

P 
1 = semi latus rectum. 

eS) 

2.410 Ellipse (Fig. 4). 

FIG. 4 

2.411 O, Centre; F, F’, Foci. 

Equation of Ellipse origin at O: 
a2 42 

ate 
2 = OM, y = MP, a=OA, b= OB. 
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2.412 Parametric Equations of Ellipse, 

% =a cos @, SUN Sun Tay, 

¢@ = angle XOP’, where P’ is the point where the ordinate at P meets the 

eccentric circle, drawn with O as center and radius a. 

2.413 OF = OF’ = ea 

Va — BP 

a 
. e = eccentricity = 

b? : 
FL= ate a(1 — e?) = semi latus rectum. 

F'P =a+ex, FP =a— ex, FP + F'P = 2a. 

7 =angle XTT’,. 

tan T = — ——— Le 
aV a — x2 

Pye 

nu =, on = ex, or =£, Or ==, MT =" —— 

a 5 
Pi= pe ON eA Se 2, PS = ab 

x b V a2 — ex2 

OS = exV a? — x2 

Va? — ex? 

2.414 DD’ parallel to T’T; DD’ and PP’ are conjugate diameters: 

OD a ee — KEP. 

OP? + OD? = @ + 0. 

PS x OD = ab. 

Equation of Ellipse referred to conjugate diameters as axes: 

LE ae a = angle XOP 

Gabe 6B = angle XOD 
2p2 pe 

Tay py bp. ge ts es 
oiae ‘i a sin? a + 0? cos’? a@ tan @ tan 9 a 

b’ = OP b” e2 ab? 

2.415 Radius of curvature of Ellipse: 

_ (ty + b4y2)? E (a2 — ea?) 

ie a‘h4 ab 

angle FPN = angle F’PN = o, 

eay 

lie 
| tan W 

ihe, ie eapeete 
picos @ » PP) er P* 
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Coérdinates of center of curvature: 

é e238 arerys 

@’ Le b+ 

by\! 
7 =I. 

Equation of Evolute of Ellipse, 

(“) 
arr} Wa a 

2.416 Area of Ellipse, mad. 

Length of arc of Ellipse, 
* 

sea f Vine sin? d dd. 
0 

2.417 Polar Equation of Ellipse, 

r= F'P, 6 = angle XF’P, 

_ a(t — @&) 

Vere" Gos s6 

2.418 7 =0P,-0.= angle XOP, 

b 
——————— 

‘/1 — & cos? @ 

2.419 Equation of Ellipse in terms of , the perpendicular from F upon the 
tangent at P, and 1, the radius vector FP: 

1 = semi latus rectum. 

2.420 Hyperbola (Fig. 5). 

2.421 O, Center; F, F’, Foci. 

Equation of hyperbola, origin at O, 

a2 42 

ae, ob 

«= OM, y= MP, a=OA = OA’. 

I 

2.422 Parametric Equations of hyperbola, 

x =a cosh uw, y= b sinh wu. 
or 

x =a sec d, y= 05 tan @. 

= angle XOP’, where P’ is the point where the ordinate at T meets the 
circle of radius a, center O. 
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2.423 OF = OF’ = ea. 

é = eccentricity = 

EIG5 

= a(e? — 1) = semi latus rectum. 

iP — et oh P= ex—a, BP. — FP = 2a. 

T= angle XTP. 

bx 

aV2— & 

2. vA 2 

iON en Ol 2s OT = *, 
a x y 

tan T = 

MT = x2 — a PT = Vx — Vex — a ON’ = ea oie 

x 
2 as 

ny ee exViat = @ 

ae OU = Asymptote. 

b 
tan XOU =-- 

a 

6 = distance of vertex A from asymptote. 

A 
= 2 

49 
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2.425 Radius of curvature of hyperbola, 
¥ (e242 x. a®)? 

ab 

angle F’PT = angle FPT. 

angle FPN = w = = ao) 20 

angle F’PN = w'= = + F'PT. 

aey 
tan W= TRY. 

b 
cos 1G@))— — = 

Vex — & 

2 I ait 

Coodrdinates of center of curvature, 

e243 ares 

ea 
Equation of Evolute of hyperbola, 

ele! 5; a Wome = 0s 
e e 

2.426 Ina rectangular hyperbola ) = a; the asymptotes are perpendicular to 

each other. Equation of rectangular hyperbola with asymptotes as axes and 
origin at O: 

Eo ene 9 

2.427 Length of arc of hyperbola, 

2 $ 2 | ee ne stan by 2 Oe? 
aeJo Vi-F sink od 

2.428 Polar Equation of hyperbola: 

OP OER tee 
6°c0s (Ok 1 

2 

OP eG — Oe eels oe 
e cos? @—1 

2.429 Equation of right-hand branch of hyperbola in terms of /, the perpen- 

dicular from F upon the tangent at P and 1, the radius vector FP, 

On; aT 

Fee 
bat 

Pp 

Zl = semi latus rectum. 

> £9- 

ES SS 

—— 
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2.450 Cycloids and Trochoids. 

If a circle of radius a rolls on a straight line as base the extremity of any 

radius, a, describes a cycloid. The rectangular equation of a cycloid is: 

x =a(d-—sin 9), 

y = a(1 — cos @), 
where the «x-axis is the base with the origin at the initial point of contact. @ is 

the angle turned through by the moving circle. (Fig. 6.) 

Y 

A = vertex of cycloid. 

C = center of generating circle, drawn tangent at A. 

The tangent to the cycloid at P is parallel to the chord AQ. 

Arc AP = 2 X chord AQ. 

The radius of curvature at P is parallel to the chord QD and equal to 2 x chord QD. 

PQ = circular arc AQ. 

Length of cycloid: s = 8a; a = CA. 

Area of cycloid: S = 37a’. 

2.451 <A point on the radius, 6>a, describes a prolate trochoid. A point, 

b<a, describes a curtate trochoid. The general equation of trochoids and 

cycloids is 

ab — (a +d) sin 9, x= 

y = (a+d) (1 — cos 9), 

d =o Cycloid, 

d>o Prolate trochoid, 

d<o Curtate trochoid. 

Radius of curvature: 

_ (aay + d?)? 5 

ay +ad+@ 
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2.452 Epi- and Hypocycloids. An epicycloid is described by a point on a 
circle of radius a that rolls on the convex side o a fixed circle of radius 6. An 

hypocycloid is described by a point on a circle of radius a that rolls on the con- 
cave side of a fixed circle of radius 0. 

Equations of epi- and hypocycloids. 

Upper sign: Epicycloid, 

——— —————————— 
Lower sign: Hypocycloid. 

“¢; x = (b+4a) cos Peas = 

Oy 

The origin is at the center of the fixed circle. The x-axis is the line joining the 
centers of the two circles in the initial position and @¢ is the angle turned through 

by the moving circle. 

y= (b+a) sin d-a fee 

EE EE 

Radius of curvature: 
2a(b+a) . a 

CS b+ 2a SU 

2.453 In the epicycloid put 6 =a. The curve becomes a Cardioid: 

(x? + y?)? — 6a2(a? + y”) + 8a3x = 304. 

2.454 Catenary. The equation may be written: eit i i 

Tt ie oc 
Ts psig ole 28) 

; 
2 ‘ V— Gsc0sh= | 

ytV¥P— a | 
3: 4: = a log - 

The radius of curvature, which is equal to the length of the normal, is: 

ES 
p =a cosh? a 

2.455 Spiral of Archimedes. A point moving uniformly along a line which 
rotates uniformly about a fixed point describes a spiral of Archimedes. The 

equation is: . 
r= a0, 

or 
a Vee se = atane zs 

The polar subtangent = polar subnormal = a. 

Radius of curvature: 
) es PE et 

~~ O(2 +0) rr? + 20? 

2.456 Hyperbolic spiral: 
r0 =a. 
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2.457 Parabolic spiral: 
rao 

2.458 Logarithmic or equiangular spiral: 

: r= ae", 

n = cot @ = const., 

q@ = angle tangent to curve makes with the radius vector. 

2.459 Lituus: 

rV/ 0 =a. 

2.460 Neoid: 
r=a+00. 

2.461 Cissoid: 

(+ y)ax = 209, 
r = 2a tan @ sin 0. 

2.462 Cassinoid: 
(a2 + 52 + @)? = gar? + 4, 

r* — 2a"r? cos 20 = bt — at. 

2.463 Lemniscate (6 = a in Cassinoid): 

(eee ris) = 20° — 97), 
v2 = 2a" cos 20. 

2.464 Conchoid: 

ay? = (6 +9)? — 99), 
2.465 Witch of Agnesi: 

xy = 407(2a — 9). 

2.466 Tractrix: 
Nene 

« = 4a log ot a ee ee Vaz — ys 
a-V@-—y¥ 

UBIAP dle ee a 
dx Va — y 

ava— vy 
aa 

SOLID GEOMETRY 

2.600 The Plane. The general equation of the plane is: 

Ax + By+Cz+D=o. 

2.601 /, m, are the direction cosines of the normal to the plane and # is the 

perpendicular distance from the origin upon the plane. 

ABC 

p=lx+my+ nz, 

eee 
VA + B+ CO 

l,m, n= 

p= 
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2.602 The perpendicular from the point a, y1, 2: upon the plane Ax + By + 

Cz+ D=o0 is: 
a Ax, + By, + Cz, + D 

oS ee enna 
2.603 @ is the angle between the two planes: 

Aw+By+C2z+ Di =0, 

Aox + Boy + Coz + D2 = 0, 

A,A, + ByBy + CiC2 

VAP + B2+ Ce VAZ+ Be + Cz? 

2.604 Equation of the plane passing through the three points (1, 1, 21) (a2, ye, 22) 

(x3, V3, 23): 

cos 9 = 

x WV a4 iI ae 21 % I eles %1 Yi I = 1 VM 4 

yo 22 I &2 X2 I X2 ye I X2 Yo a2 

V3 23 I 23 X%3 I %3 3 I 3 V3 23 

THE RIGHT LINE 

2.620 The equations of a right line passing through the point x, yi, 21, and whose 
direction cosines are /, m, 1 are: P 

4 == Oe] Vite Va Vi | 

l m n j 

2.621 4 is the angle between the two lines whose direction cosines are /;, m1, n, 

and /s, m2, Ne: 

cos-6 = Llp + myme + Ne, 

sin? 9 = (Lyme — lem)? + (mye — mom)? + (mle — nol)?. 

2.622 The direction cosines of the normal to the plane defined by the two lines 
whose direction cosines are /;, 71, 7 and Jo, mone are: 

Min» — Mon Nylo — Nol, lyme = lem, 

Sine wees Sinvg) sin 6 

2.623 The shortest distance between the two lines: 

2 Se aE ey Beda ee eee 
ly mM, ny ly my Ny, ” 

is: : 

gq = Ga 82) (mins = mem) + (9 = 92) (ils = nels) + (21 = 22) (hme — om) 
{ (mine — meni)? + (le — Noli)? + (hme — lem)? $3 : 

2.624 The direction cosines of the shortest distance between the two lines 

are: 
(myne — nom), (mle — oly), (lyme — lem) 

{ (mynz — mem)? + (mle — nah)? + (lime — lomy)?}* 
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* 2.625 The perpendicular distance from the point x, yo, 22. to the line: 

is: 

d = { (a2 — m1)? + (yo — yi)? + (22 — 21)?}4 — {li (we — a1) + (ye — 1) + (zs — 21)}- 

2.626 The direction cosines of the line passing through the two points «1, 1, 2 

and x2, ye, 22 are: 
(%2 — x1), (yo — 1), (g2 — 21) A 

{G2 — a)? + (2 — yu)? + Ce — 21)? 

2.627 The two lines: 

x= me+ fi, x = Mz + pr, 

and 

” y=mst Hy, y= M2 + Q, 

intersect at a point if, 

(m, — m2) (gi — G2) — (m1 — Mm) (pi — pe) = 0. 

The coérdinates of the point of intersection are: 

i Mm p2— Mop CMe 7 paps geet GT 

mM, — Mo Mm — 1,’ Mm —M mm — Ne 

The equation of the plane containing the two lines is then 

(m — Nz) (~ — mz — pi) = (my me m2) (y- M2 — qi). 

SURFACES 

2.640 A single equation in x, y, z represents a surface: 

Fi, y, 2) = ©. 

2.641 The direction cosines of the normal. to the surface are: 

Sees ee ol 
Ox oy Oz 

Ox oy Oz 

2.642 The perpendicular from the origin upon the tangent plane at x, y, g is: 

p=lx+ my + nz. 

2.643 The two principal radii of curvature of the surface F («, y, z) = 0 are 

given by the two roots of: 
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k , OF I oF oF =o) 

p és Ox” Oxdy OxdzZ Ox 

ar k, OF #F oF 
Oxdy pax Oyoz oy 

eR. > Or A) PN a 
0x02 Oydz Pareon Oz 

ar apo F 
ax ay Oz B 

where: 

6 -)+@) San ay Oz 

2.644 The coédrdinates of each center of curvature are: 

Seren oe ae ieee age 
oe tas Ox’ Tigra tee oy’ Geo Zz 

2.645 The envelope of a family of surfaces: 

i F(x, y, 2, @) =o 

is found by eliminating @ between (1) and 

ony 
a da 

2.646 The characteristic of a surface is a curve defined by the two equations 
(x) and (2) in 2.645. 

2.647 The envelope of a family of surfaces with two variable parameters, 

a, B, is obtained by eliminating @ and £ between: 

I. F(x, y, 2, a, B) moe 

: aR . an = ©. 

oF 
3. ap = ©h 

2.648 The equations of a surface may be given in the parametric form: 

x = fila, 2), ay, = fr(u, v), & = fs(u, v). 

The equation of a tangent plane at 1, 1, 2% is: 

O( fo, fs) O( fs, fr) : 
O(u, v) gnc hae “O(u, 2). aie 

O( fi. fe) ‘e 

O(u, v) - 
(« — x1) 

where 

O( fo, fs) _ | Ofe fe 
ira) 7 | Oe cena etc. See 1.370. 

dfs fs 
Ou Ov 
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’ 9.649 The direction cosines to the normal to the surface in the form 2.648 are: 

O( fo, fs) OCfs, fi) Afi, fr) 
O(u, v)’ Ou, v)’ du, 2) 

(sass) +(e5) + GES) | 
2.650 If the equation of the surface is: 

4 = f(x, y), 

the equation of the tangent plane at x, 1, 21 is: 

oie ss (2) @- a1) + ($4) =i). 

2.651 The direction cosines of the normal to the surface in the form 2.650 are: 

(D- Hee Ox oy ; 

"TS \ Ox oy 

2.652 The two principal radii of curvature of the surface in the form 2.650 
are given by the two roots of: 

(ri— S8)p?— {Cr+ q)r— 2pgst+ (1+ PYVIFP +E pt (r+ P49)? =0, 
where 

2.653 If p; and p» are the two principal radii of curvature of a surface, and p 

is the radius of curvature in a plane making an angle ¢ with the plane of pi, 

I _ Cos? @ smn! Q. 

p Pi P2 

2.654 If p and p’ are the radii of curvature in any two mutually perpendicular 
planes, and p; and p, the two principal radii of curvature: 

a a p>» 

2.655 Gauss’s measure of the curvature of a surface is: 

see 
P pipr 

SPACE CURVES 

2.670 The equations of a space curve may be given in the fous 

(a) Fi(x, y, 2)=0, Fo(a, y, 2) =0. 

(b) x=fil), y=frlt), 2 =fs(d). 
(c) y= (x), = P(x). 
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2.671 The direction cosines of the tangent to a space curve in the form (a) are: 

eee 

— eee 

where T is the positive root of: 

r= (EY (8) CY) (Cy Yo) 
{2S OF, | OF; OF. | OF: aa 

Ox Ox tay Oy “ay 02 02 

2.672 The direction cosines of the tangent to a space curve in the form (b) are: 

20, Ne Bs 

where the accents denote differentials with respect to ¢. 

an — 

2.673 If s, the length of arc measured from a fixed point on the curve is the 
parameter, ¢: 

dx dy dz 
l, 9 I oe ete 

_ 2.674 The principal radius of curvature of a space curve in the form (b) is: 
a at ~- + me 3 

i 

where the double accents denote second differentials with respect to #, and s, 

the length of arc, is a function of #. 

5 (Ga) +(@2) +) | pr ds ds? ds? 

2.676 The direction cosines of the principal normal to the space curve in the 

form (b) are: 

2.675 When t=s: 

; 2! (2'x"" ‘:, x's!) iE? yy! (aly! se! vy'x!") 

ee 
; x! (aly! — els 2! (y’z Ig! __ cu) 
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; yy! (ya! a 2!) oD) ~~ ae! (z!a0"" ve; 4¢/z!") 

r a CV eae 2 n 

where 

Here yeah y'2! — aly") Ela — w'a!/)  (w'y!! = y'x!")P}, 

2.677 The direction cosines of the binormal to the curve in the form (b) are: 

Je albag Ol 
" yy ae oy. Iv = 5 ’ 

2A SSH, Re a eS 
nm = S ’ 

RT, Poll? pe SOIES 
n= S ? 

where 
iS = {G/2" a eh OI = (2/4 Poo a¢'g!!)2 ae (eg —_ aioe Phe, 

2.678 If s, the distance measured along the curve from a fixed point on it is 

the parameter, ¢: 
ax d? dz 
st 

— SS) _ aes, -_ , Meacham gan Pass 

where p is the principal radius of curvature; and 

i. (2 az Z =) 
1 =) —— = — 72) 

2.679 The radius of torsion, or radius of second curvature of a space curve is: 

Cen wases 

ot ot Ot 

= 

tb le ’ ’ Te ae y z 
wis? 

xl! ” Py, 

yr my ry 
x z 

where S is given in 2.677. 

5 (CE) Ce) Gey} aa Os Os Os 

2.680 When ¢=s: 
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=—/p dx dy dz 

ds ds ds 

ads*” ds* ds? 

as) sdst- Vdseie 

2.681 The direction cosines of the tangent to a space curve in the form (c) are: 

ei ees 
A Tey ae 

where accents denote differentials with respect to x: 

l, m, n 

2.682 The principal radius of curvature of a space curve in the form (c) is: 

(x + y4 + 2”)8 : 

2.683 The radius of torsion of a space curve in the form (c) ds: 

Cae i la ° 
p?(y''2//" as gl lyl!") 

2.690 The relation between the direction cosines of the tangent, principal 
normal and binormal to a space curve is: 

l m n =I. 

iM m’ n! 

ihe mm" yn"! 

2.691 The tangent, principal normal and binormal all being mutually perpen- 

dicular the relations of 2.00 hold among their direction cosines. 
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sin x I I 
3.00 tan 4 = — » sec X = —— CSC X= » cot + = 5 ? 

Sux cos x sin x tan x 

sec? « = 1+ tan’x, csc’x = 1 + cot’x, sin’ + cos’v = I, 

versin % = I — COS #, coversin ¥ =I — sil 4%, haversin x = sin? a 

A ° if —= (Cols) Ze x x 
3.01 sin x = —sin (-— x) = eases = a4) cost® — cost —» 

2 2 

oe 

2) Wwanol = 
: ae x tan x 2 

= Sil = QS ==] S{2222}=— BH 
2 2 2y x Vt + tanx ee Gane 

I if I 
= = n,n ? 

a/ t+ Cotrxr x x 
CO cous tan Sanne x 

x x 
= cot okt — cos x“) = tan a: +08 2), 

sin y cos (v — y) + cos y sin (x — 9), 

cos y sin (v + y) — sin y cos (x+y), 

= —hi(e*-—e-*). 

T J2COS, 2% ects 
3.02 cos x =cos (— x) = eae =I-—2 sin?-) 

2 2 

x ee x I 
=f Sa Se SS] 2 COS St = 

2 : 2 Vi + tan? x 
x 

t — tan?— 
2 I I 

= = ee Ee 

ees x x 
Dei tan I+ tan * tan > tan x ee 

cot — — tan — 
2 cot x sin 24x 

=" ae = = . b] 

2 sin x 

=cos y cos (v + y)+sin y sin (x+y), 

= cos y cos (x — y)— sin y sin (« — y), 

=e (G-P16 77"). 
61 
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sin 2” T — COS 2% 
: tan x = — tan (— x) = ———_ = ———_ 7, = 

3.03 6s tan (— 2) I+ cos 2% sin 26 7 

/1—cos 2x sin (v+y)+sin (« — 9) 

r+ cos 2x cos (s+y)+cos (% —¥y)’ 

60s. = 9) = cosy) 
== : = cot x — 2 cot 2% 

sin (w+ y) — sin (# — y) 

tan — tan — 2 tan — 
heres le Seer 5 e 

t— tam 2 tan — tan — 

I I 
a ar ’ 

I—tan- 31I1+tan- 

I— ez 

aed t+ ¢* 

3.04 The values of five trigonometric functions in terms of the sixth are given 
in the following table. (For signs, see 3.05.) 

sinx =a |cosx=a|tanzx=a|cotx=a secx =a |cscx =a 

SS ee Oe a 

Sn a Vee Z 
Vi+@ Vit@ a a 

I a Ne 
cos X%¥ = Vr — @ a aaa 2 aes 

ViI+ @ Vi+@ a a 

f a Vi-@ I +, I 
an ~ = ——— = a - B= 

Vi-@ a a Y : Va=t 

Vi-@ a tT I 
GONE 32 = = - a | Ae 

a Vi-@ a Vae—1 

z I Vi+@ ve 
S26 2 = - “/ 2 ——_— a SSS 

Vi-@ a Be a Va—1 

I I Vi+@ a 
csc © ae — a 

a Der Va —1 
I 

al << | a bo 

3.05 The trigonometric functions are periodic, the periods of the sin, cos, sec, 
csc being 277, and those of the tan and cot, 7. Their signs may be determined 

from the following table. In using formulas giving any of the trigonometric 
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functions by the root of some quantity, the proper sign may be taken from this 

table. 

Tee aa 1 3 3 3 
o-—| —]—-7 1 T—<m | =a | -wW— 20 | 27 

Dal, 2 2 2 2 2 
0° 

© — go0°| go° | 90° — 180° | 180° | 180° — 270°} 270° | 270° — 360° | 360° 

sin fe) + it = fe) _ —I _ fe) 

cos it -+ fe) - —I — fe) + I 

tan] o aR +o = fe) ar +o = fe) 

COL |) co + fe) _ + 00 + fe) = Fo 

Bee I + “boo — —I - +00 + I 

ESC | =o He i “t= +o = =i = Fo 

3.10 Functions of Half an Angle. (See 3.05 for signs.) 

3.101 ak ee TS COS TX 
sin Pi SENG ee een ed 

2 

if ele, Sosa 5 

Ei avi sin x -F-ViI—sin =| 

Via 1+ tan? x 

3.102 I /3 + cos x 
Cos Bi + / ——__— 

2 

rt es SP atreei 
1 avigan “+ Vi —sin zt 

oo +\/ -(1 + —————.} 
2 +V1-+ tan? x 

a COSKYG 
Sl ArT 

I, SP (COs) Be 

3.103 it 
tan -x 

2 
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sin x I — cos x 

rt -+- cos # sin x“ 
? 

4Vi+tam x—1 

tan x 

3.11 Functions of the Sum and Difference of Two Angles. 

3.111 sin (v + y) = sin x cos y+ cos ~& sin y, 

= cos * cos y (tan «+ tan y), 

tana == tan yi 
a eT 

tan « * tan y (eet 

= 2{ 00s (~% + y) + cos @ =») } Gan “+ tan y). 

S412 cos (v + y) = cos x cos y sin x sin y, 

=(Cos. “cos y'(1 + tan 4 tan), 

cot x * tan 
= 605 (x + y), 

cot x + tan y 

COU ar tan x, 
cance BERRIES sin (4-4), 

cot 4) tan x =F 1 

= cos “isin y (cot y+ tan 2). 

3.113 Ga Cee tan «+ tan y 

o> tan x tan y_ 

cot y+cot x Se 
cot. & Cot yr 1 

sin 2x + sin 2y 

cos 2% + cos 2y 

3.114 COLL COba y's I 

SOs ue) = cot y+cot x’ 

sin 2” * sin 2y 

cos 2% — COs 2y 

3.115 The cosine and sine of the sum of any number of angles in terms of the 
sine and cosine of the angles are given by the real and imaginary parts of 

cos (4+ %2+....+4n) +2 sin (tat... . +n) 

=(cos 4 +7 sin %;)(cOs % +7 Sin %)..... (cos 4, +7 Sin Xp) 
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°3.12 Sums and Differences of Trigonometric Functions. 

3.121 sin «+ sin y = 2 sin («+ y) cos $(¢ Fy), 

(cos «+ cos y) tan $(x+y), ll 

(cos y — cos x) cot (x Fy), 

tan $(~+y),. ; 
= Abe ee) (sin « sin y). 

tan AG SF y) 

3.122 cos x + cos y = 2 cos (x+y) cos $(%— y), 

sin x + sin y 

cot 4(x + y) 
==—___——~ (cos y — COs &). 
APE). a) 

3.123 cos — cos y = 2 sin $(y +x) sin 3(y — x) 
= —(sin «+ sin y) tan $(« +4). 

sin (x + 4) 
3.124 tan «+ tan y 

cos x: cos y 

sin (x + y) = =~ (tan x ¥ 
Sinise 4). Mant cana) 

= tan y tan (v + y)(cot y * tan x), 

I + tan x tan y 

cot (« + y) 

= (i + tan « tan’ y) tan @+ 74). 

sin (a + 4) 
3.125 cot x+cot y=+ = : 

sim # sin ¥y 

3.130 
sin * + sin y 

ie SSS = tan 1 43 ‘ 

cos x + cos y 2(« + 9) 

sin « + sin y 7 
2. —————— = — cot 3(x ¥ y). 

cos « — cos y 

“sinx +siny tan3(x+4+ y) 
sinx —siny tan 4(« — 9) 



3.140 

TD oe 

wn 

3.170 

3.171 

sin ux 

COS WX 

MATHEMATICAL FORMULA AND ELLIPTIC FUNCTIONS 

sin? x + sin? y = 1 — cos (x + y) cos (x — y). 

sin? ~ — sin? y = cos” y — cos? x 

sin (« + y) sin (« — y). 

cos (w+ y) cos (x — y). 

sin? (w + y) + sin® (w — y) 

sin? (x + y) — sin? (x — y) 

cos? (x + y) + cos? (x — y) = 1 + cos 2% Cos 2y. 

> cos? x — sin’ y 

I — COS 2% COS 2y. 

sin 2x sin 2y. 

cos? (x + y) — cos? (« — y) = — sin 2% sin 2y. 

cos nx cos mx = 4 cos (n — m)x + 4-cos (n+ m)x. 

sin mx sin mx = % cos (n — m)x — 4 cos (n+ m)x. 

Nik Nie Nie NIK nie ple cos nx sin mx = 3 sin (n + m)x — 3 sin (n — m)x. 

ettty = e* (cosy +isin y). 

attiv = q {cos (y log a) + isin (y log a)}. 

(cos x +7 sin x)” = cos mx +7 sin nx 

[De Moivre’s Theorem ]. 

sin (v + iy) = sin x cosh y +7 cos & sinh y. 

cos (« + zy) = cos x cosh y ¥ 7 sin «x sinh y. 

cos « = 3(e** 4+ e-*?), 

sin x = — (e%* — vent). 

e*= = cosx+7sin x. 

e-*7 = cosx —7 sin x. 

Sines and Cosines of Multiple Angles. 

m an even integer: 

(= 2) ee) 

9 

3! 5 
nN. Wn? — 27) ., n?(n? — 27) (n? — 2 

ee pet UE OD) ge Ne) A) 

2! 4! 6! 

=ncosx {sin x — sin” 4! eae 

sin®\4 ee 
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’ 3.172. » an odd integer: 

E nN = T"), n> — 1°) (n* — 27). . 
sin ne =n { sine —* sint ep SOAS sieve... S 

\ 3! 5! 
WT) a WP 12) (A? 232) 

I a ay ee 

3.173 m1 an even integer: 

2 n—3 sin”—3 x sin nx 
(n — 2) 

Nl ip} 

ng is 2 \n eA ee heey es 4) ae 5) (w — 6) 

a 
(—1)? cosx 20 Sina 4) — 

grt sin”? x 

+...}- 
n(n — : 
tS) Bro einy a 

n ft : n . 
cos nx = (—1)2 an! sin” 4 — | oo srsin" 2 4 4 , 

! 2! 

AO ESS Fane ie 
3} 

3.174 mn an odd integer: 
n—TI : aad é n 3 n(n — : 

sin nx = (—1) 2 PAE NN Nie ee STO nn = 3) ee Oar 
r! 2! 

VIS) ea a ; 
eu 

test nN — 2 
base = (—1) 2 cosx { 2% 1 sin™" x — Qe erin tame ys 

(n — 4) (n — 5) (n — 6) _ @=3) a=4) : gnr—7 sin”? Xx 

2! 
gn—5 sin”—> x — 

3.175 m any integer: 

n— 2 
Bie COS teed 

rs (n — a — 4) cee eae (n — 4) (n 2 5) ( — 6) ; 
3! 

sin nx = sin x { 20 cos" x — 

n—T cos"! x 

pea 

DMCC OR MRO A> 6 eee 

n(n — 3) 
gn—-5 cos”—4 x 

Dis 

n 
cos nx = 27-1! cos" x — = 2-3 cos"? x +- 

1! 

n(n — 4) (2 — 5) er oa 
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3.176 sin 2% = 2 sin x Cos x. 

sin 3x = sin «(3 — 4 sin’ x) 

= sin «(4 cos? « — 1). 

sin 4x = sin «(8 cos* x — 4-cos x). 

sin 5x = sin «(5 — 20 sin? x + 16 sin* x) 

= sin «(16 cos* % — 12 cos? x + 1). 

sin 6x = sin «(32 cos> « — 32 cos’ « + 6 cos 4). 

3.177 COS 2% = Cos? « — sin*% 

=I-—2sIn’4 

= /2:COS' t= 1. 

Cos 3% = cos «(4 cos? x — 3) 

= cos «(1 — 4 sin? x). 

cos 4% = 8 cos* x — 8 cos? x + I. 

cos 5x = cos «(16 cos* x — 20 cos? x + 5) 

= cos #(16’sin* x — 12 sin? x + 1). 

cos 6% = 32 cos® x — 48 cos* x + 18 cos? * — I. 

2tan x 
3.178 tan 2¢ = ————— 

I — tan’ x 

COL x4 — £ 
Ol 3 = S$ 

(BOG He 

3.180 Integral Powers of Sine and Cosine. 

3.181 1 an even integer: 

ee ee nx — N COS (n — 2)n + MP =D cs (n — 4)x 

n(n — 1) (n — 2) .. 2 
cir eames Ge Casi gig hr ee aloe) (2:2) 

a) Xe 

f n(n — 1) 
ht errant, 00 (7 Ie COS AP 2) ices OC OE 

(ne = ! n(n — 1) (n 2) ost ee sha Was 

3! 
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3.182 7 an odd integer: 

n—tT 

= 1) ee ; n(m—T) . 
sin” x = a) J sin nx — n sin (n — 2)x + ea) sin (n — 4)x 

gr-i | 2! 

= —2). tized n! ; 
_ (Ls Gi Oreo es. oe (en) a = 

ai! Ween, (Maat oN 
Piety he ay 

n(n — 1 
cos” 4 = =s | cos nx + n cos (n — 2)x + a cos (nm — 4)x 

oo  — 2 * n! - 
gee) Ame?) COS) (+O) ees. . + cos x | 

3! (+): (): F 

ys 2 

3.183 
sin? « = 3(1 — COS 24). 

sin’ « = +(3 sin x — sin 3x). 

sint « = #(cos 4x — 4 cos 2x + 3). 

sin? « = 7,(sin 5% — 5 sin 3% + Io sin x). 

sin® x = — g;(cos 6x — 6 cos 44+ I5 COS 2% — 10). 

3.184 
cos? « = 4(1 + cos 2%). 

COS? 4 = 4(3 COS %-F COS 3%): 

cos! x = #(3 + 4 cos 2” + COs 4x). 

cos’ x = 7,(10 cos x + 5 COS 3% + COS 5x). 

cos® ~ = gy(10 + 15 cos 2% + 6 cos 4x + Cos 6x). 

INVERSE CIRCULAR FUNCTIONS 

3.20 The inverse circular and logarithmic functions are multiple valued; i.e., if 

; 1 
O< site £<——, 

2 

the solution of x = sin @ is: 

0 = 2n7 + sin x, 

where 7 is a positive integer. In the following formulas the cyclic constants are 

omitted. 
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3.21 
: : T === 
Si - 4 = — sin—*(—z) = 3 COS Ne = COS™ Vi — x 

Tm 223 oS) i ak ee 
= ——sin? Vi — x? = —+- sin (2x? — 1) 

2 4 2 

I x 
== (cos 2 (P— 29) = tah —————— 

2 Vi-x 

Per Vi- 2 I PN AE Sei 
= 2 tan =-t SSS 

x I — 2% 

Ni TT 
= cot-! ———. = — ~— i log (xv + Vx? — 1)- 

2 

3.22 : 

=il =i LIS Ra sce Lam as ey poe cos! x = 4 — cos (a) sin x = COs (2x2 — 1) 

I+” ; Vi-— x 
= 2cos-y/ sine fb — i — PAD a en 

aries Digeaee oxV 1 — ce Jae 
= 2 tan =— = = iii SS COL 5 

Lo ei 2 Ji in|) Vie 

=i log (x + Vx? — 1)= w—-i log (Vx? — 1-2). 

3.23 
: x 

tan-! « = — tan-! (—x) = sin~! ——— = cos-! ——— 
Vit 2 Vi + 2 

: 25 1 aan 
= — sin“ 5 = = = Obes = SeCs VV Lope 

2 I+ . 2 

te oc 1-2 
== — tan= = = = Cos 5 

% 2 1+ % 

= {ttvite | int PEt 

oJ/i za | to avi4+2 

I 2x I+x-1 
ye I x 

c+e¢ 
- Sant c ftant 

I — cx 

I—m 1. t+x 1+ 7% 
= —2 log —i log zi =-—-1 al 
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3.25 
I. sin x + sin y = sin {avi — y+ yvV1t — 2}. 

2. cos! « + cos! y = cos {xy F V(r — x”) (2 — ¥%)}. 

B- sin x + cos y = sin2{«y + V(r — 2) (2 — 9)} 

= cos yi — 2 Fai — y}. 

bY 
= —l 4) — —1 2 4. tan™ x + tan™ y = tan Fay 

. erie. ty ek eee Ley 
5. tan™ x=+ cot™ y = tan eae 

a ag 
= Om ———- 

Cy a I 

HYPERBOLIC FUNCTIONS 

3.30 Formulas for the hyperbolic functions may be obtained from the corre- 
sponding formulas for the circular functions by replacing « by ix and using the 
following relations: 

ie sin ix = 34(e* — e~*) =isinhx. 

2. cos ix = $(e* + e—*) = cosh x. 

: we=—1) —. 
2. an —— 2 tanh 2 

Cae 

9 

P Ge se il é 
4. cot ix = —1 = = —icothx. 

(Ae Ei 

: 2 
i. Sec 74 = ————_ = sech %. 

ez =e x 

; 24 F 
6. csc 14x = — ——— = —icschy. 

Coe Cai 

ie sin! i# = 7 sinh x = i log («+ Vi + 2). 

ae , Te 
8. cos! ix = —i cosh x = ae log (x + V1 + 2”). 

9. tan ix = 7 tanh x = 7 log \ : us = 

° . : Xx I 
10. cot ix = —icoth« = —i log \/ st 

= 
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3.310 The values of five hyperbolic functions in terms of the sixth are given in 
the following table : 

sinh « = alcosh x = altanh x = alcoth x = alsech x = alcsch x =a 
Se | s | SS eee eee ; 

sinh x = a Va —1 aS wae va = 

tanh x = ena a As z a ~ Vi-& ae 

coth « = —— = : : a a; - zs arm 

sech x = = ; z VI-@ NA a — 
Vr a a a AY Tee: 

esch) 4 = = —— seere V/a— 1 == a 

3.311 Periodicity of the Hyperbolic Functions. 

The functions sinh x, cosh x, sech «, csch « have an imaginary period 277, e.g. : 

cosh x = cosh (x + 277m), 

where 7 is any integer. The functions tanh «, coth « have an imaginary period 77. 

: : Ti Aaa 
The values of the hyperbolic functions for the argument oa, 5 Ts = 

are given in the following table: 

2 erent | Ne et et 



4 

‘ 

) 

ze a 
x4 

a 

- 

a4 

= 

<= = n 

oe 2s - 

‘ie: es 

Pn lt * 

—— 
. 

- 

2 

7 

| a 

me 

> 

% 

z 

*» 

‘ 

© 

aa 

ad 

on 
oe, 









3.320 

3.33 

3.34 
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T cosh x+ 1 
cosh -—x = \ 

2 

I cosh 4% — 1 sinh x cosn 2 — 
tanh —x = ————— = ———_ = (/ ———— 

2 sinh x coshx+1 cosh x +1 

sinh (x + y) = sinh x cosh y + cosh « sinh y. 

cosh (« + y) = cosh x cosh y + sinh « sinh y. 

tanh « + tanh y 

1 + tanh « tanh y 
tanh (x + y) = 

coth « coth y+1 

ee coth y + coth x 

sinh x + sinh y = 2 sinh 3(x + y) cosh $(x — 4). 

sinh x — sinh y = 2 cosh 4(x 4+ y) sinh 3(x — y). 

cosh x + cosh y = 2 cosh 3(x + y) cosh $(” — y). 

cosh « — cosh y = 2 sinh (x + y) sinh (a — y). 

tanh « + tanh y = sinh (@ + y) | 
cosh « cosh y 

tanh x — tanh y = sinh. (x — y) | 
cosh x cosh y 

sinh (x + y) 
sinh x sinh y 

sinh (« — y) 
sinh x sinh y 

coth « + coth y = 

coth « — coth y = — 
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3.35 

cd sinh («+ y) + sinh (« — y) = 2 sinh x cosh y. 

2. sinh (x + y) — sinh (w — y) = 2 cosh x sinh y. 

cosh (x + y) + cosh (~ — y) = 2 cosh « cosh y. 

4. cosh (x + y) — cosh (x — y) = 2 sinh x sinh y. 

1 .) _ sinh x + sinh y 

5° | en a cosh « + cosh y 

1(, °.) _ Sinh x ¥ sinh y 
6. Soh cosh x — cosh y 

tanh x + tanh y _ sinh (« +). 
it tanh x —tanhy — sinh (x — 4). 

8 coth « + cothy _ _ sinh (7 + y) 

; cotha—cothy sinh (x — y) 

3.36 

1. sinh («+ y) + cosh (« + y) = (cosh x + sinh x) (cosh y + sinh y). 

2. sinh (x + y) sinh (« — y) = sinh? x — sinh? y 

= cosh? « — cosh? y. 

3. cosh (x + y) cosh (x — y) = cosh? x + sinh? y 

= sinh? x + cosh? y. 

54: sinh x + cosh x = SEARS, 

se (sinh x + cosh «)” = cosh mx + sinh ma. 

3.37 

cs e” = cosh « + sinh x. 

B: é-* = cosh a = sinh x 

a sinh x = 3(e7 — e—?). 

4. cosh + = 4(e7 +77”). 
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3.38 
Fr. sinh 2% = 2 sinh % cosh 4, 

mezetanhes: 

=r = tanh? x 

2. cosh 2% =‘cosh®? # -— sinh* # = 2 cosh? x — x, 

=| 2) sininex, 

etch tanhe« 

1 — tanh? x 

tanh 2x = Ss 
3: oe etree ee 

4. sinh 3% = 3 sinh x +4 sinh*x. 

- cosh 3x = 4 cosh? x — 3 cosh ». 

tanh «+ tanh® « 
6. tanh 3x EE cee 

I+ 3 tanh? x 

3.40 Inverse Hyperbolic Functions. 

The hyperbolic functions being periodic, the inverse functions are multiple 
valued (3.311). In the following formulas the periodic constants are omitted, 

the principal values only being given. 

i. sinh x = log (x + Vx? + 1) = cosh V2? + 1. 

2. cosh «= log @& + Vx —a) =sinh~ V2 — 1. 

a tanh «x = log \/ = = = 

Leh <j a aan ee 4. cothss a — log \ aa tanh 2 

5. Seche 2 — log fe + We = r) =PCOSie! = = 
ie Ai XG 

6. esch= = log (: 2b vs ak ) = sinh7! x 
x x x 

3.41 

T. sinh x + sinh y = sinh(aV1 + y? + yVr + 2”). 

2. cosh x + cosh y = cosh (xy + V (2? — 1)(y? — 1)). 

Rs tanh x + tanh” y = tanh ceiesiee 
I+“y 
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3.42 
Ts cosh s(x +} ) = sinhs “(1 - ) 

2 % 2 i 

= tanh? =~ = 2 tanh == 
x+1 

= log x. 

2. cosh csc 2x = — sinh cot 2x = — tanh cos 2x, 4 
= log tan x. : 

; ; 

ey tanh™ tan? ( oo =| = logvcse' a: ‘| 
A tae I 7 

eee r! 
4. tanh= tan? == — log sec a. : 

a 2 

3.43 The Gudermannian. »| 
If, 

i cosh « = sec @. : 

2. sinh x = tan 0. 

2 e7 =sec 0+ tan 0 = tan (= +4). 
Aun ae 

7 0 
4. x = log tan (Z+5). 

5 C= ode 

3.44 

coh sinh 4 = tanved a. 

2. COShEG — Sec Ga, 

2: tanh x = sin gd x. 

x I 
4. tanh ms gd x: 

I — cos (Z d ) 
Pre aa SEES Psa 

5: Y icosked caean , 
sin (Z + gd x) 



3.50 

Given 

G0, C 

TRIGONOMETRY 

1 tanks) tan = 5 gd 22. 

tans) tank ¢ = 3) gd 20. 

SOLUTION OF OBLIQUE PLANE TRIANGLES 

a, b, c = Sides of triangle, 

a, B, 

— Sought 

Qa 

= angles opposite to a, b, c, respectively, 

A = area of triangle, 

=1(a+b+0). 

Formula 

sin —a@ = (esd Gia) 
2 bc 

I /s(s — a) /s(s — a) a). 
cos a= \ ih 

ne as (SS OS oc). 

2 s(s — a) 

C+eP- a 
cos @ = —————_ 

2bc 

A= WV/s(s =a)(s — ds = 2). 

ane b sin ae 

When a>, 2. and but one value results. 

GB has two values. 

y = 180° — (a+ £). 

_ @ sin Ne 

sin @ 

A= ab sin ¥. 

sin B 

sin @ 

7 = 180° — (a+ f). 

asin y_ asin (a+ £) 

sin Q@ sin @ 
E= 

cr 

When b>a 
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Given Sought Formula 

i Ber ae pans eek a 
2 2 sin @ 

Br yay) 
a,b, ¥ a tal <0 Ss eas 7 

a, B 3(@ + B) = 90° — 37. 

Ea lal as 1 tan 56 B) er cot +¥ 

C = (a? + B® — 2ab cos Y)?. 

= {(a+ 6)? — 4ab cos’ 3}? 
= {(a — b)? + 4ab sin? 3}?. 

oe =) Sp Si 
eters where tan @ = 2~/ab aay 

_asin y 

| ising 

A =i ab sin y. 

SOLUTION OF SPHERICAL TRIANGLES 

3.51 Right-angled spherical triangles. , 

a, b, c = sides of triangle, c the side opposite y, the right angle. 

a, B, y = angles opposite a, b, c, respectively. 

3.511 Napier’s Rules: 
5 

The five parts are a, b, co c, co a, co B, where coc = ae 

‘ is omitted. 

The sine of the middle part is equal to the product of the tangents of the 

adjacent parts. 

The sine of the middle part is equal to the product of the cosines of opposite 

parts. 

From these rules the following equations follow: 

sin a 

tan a 

sin 6 

tan b 

cos @ 

cos B 

COS ¢ Il 

sin ¢ sin Q@, 

tan c cos B =sin 6 tan a, 

sin’ ¢1sin 0; 

tan c cos a = sin a tan 8, 

cos a sin PB, 

cos 6 sin @, 

cot a cot 8 = cos a cos b. 

The right angle 

= a% 

oe oe 
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3.52 Oblique-angled spherical triangles. 

a, 6, c =sides of triangle. 

_a@, B, y = angles opposite to a, b, c, respectively. 

s=4(a+6)+0), 

g=7(a+6+Y), 
€=a+ 6+ ¥ — 180 = spherical excess, 

S = surface of triangle on sphere of radius r. 

Given Sought Formula 

i, 0, 6 a sin? 4q@ = haversin a, 

Psi (s — b) sin (s — c) 

Re sin 6 sin c 

I sin (s — 6) sin (s —c ey ee Vs ee 
2 sin s sin (s — a) 

f sin s sin (s — a) 
0s) = a = ——_ 

sin 6 sin ¢ 

; hav a — hav (6 —c 
haversin @ = bag = Nee) 

sin 6 sin ¢ 

a, B, ¥ a sin? 4a = haversin a, 

_ —cos o cos (g — a) 

sin B sin Y 

it — cos 0 cos (6 — @) 
tan? = ¢ = ——— 

2 cos (o — B) cos (o — ¥) 

I cos (o — cos (a — ieee cos (g — 8) cos (o — Y)_ 
2 sin 6 sin Y 

OC, O . sin @ sin ¢ 
Y sin Y = ——————_ 

Ambiguous case. sin a 

Two solutions 

possible. a | tan @ = tan @ cos ¢. 
sin (8 + 8) = sin @ tan c cot a 

cot @ = tan ¢ cos @. 

; cos a sin 
sin (6+ ¢) mee = 

a, Yi C 

Ambiguous case. 

Two solutions 

possible. 

sin a sin Y 

sin @ 
c sin ¢ 
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Given Sou { 

( ie 

B 

a, b, Y 
tan 0 = tan acos y 
tan @=tanbcosy ¢ 

( 

a, B 

GQ; p Y 

tan §@=cosc tana 

tan @ = cosc tan B 

tan = (08 4+ 8) = 

tan *(a = 3) 

MATHEMATICAL FORMULZ AND ELLIPTIC ‘FUNCTIONS 

Formula 

tan 6 = tan a cos y. 
sin (b — 6) = cot @ tan y¥ sin 0. 

a sin 3(@ + ¥) 4 
tan = b Tet eae tan 4(a —c) 

| eos (aay) A 
= Gas tan $(a+c). 

cot @ = cos a tan Y 

a sin @ sin (B — g) = SANS. 
ee 4(a+c) A 

cot = 7 ae Se tan 3(@ — ¥). 

_ cos $(a + 6) ft 

~ cos 4(a — Cc) tana (Cia 

cos c = cos a cos 6+ sin a sin b cos ¥. 

cos’ a cos (6 — 8) 
cos ¢ = ———__, 

cos 0 

| PCOSSUECOSE Gla p) 

cos @ 

hav c = hav (a — b) + sin a sind hav y 

sin 6 tan 

Oe an G27), 

sin B 

tan B = 

cos Y = 

cos y= 

sin Y sin b 

sin ¢ 

sin @ sin b 

sin a 

sin @ tan ¥Y 

sin (a — d) 

cos 4(a — b) cot 4¥ 

cos 4(a + d) 

sin 4(a — b) cot $7 

sin 3(a + b) 

— cos a cos B+ sin a sin 6 eosec. 

cos a cos (8+ 8) 

cos 6 

_ cos B cos (@+ @). 

tan — 

cos @ 

tan c sin 6 

sin (B + 6) 
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Given Sought Formula 

tan c sin @ 
b tan Oe (Gay 

3(a@ — B) tan 4c 

cos #(@ + B) 

(a — B) tan ic 

sin 4(@ + £) 

_ cot 3a cot 46+ cos y 

tan #(¢ +b) =—— 

one in 
tan 3(a — b) = 

( 

Gs, Oy € cot 3€ ae 

EM a € tan? 7€ = tan $s tan 3(s — a) tan 3(s — 5) 
tan 4(s —c). 

€ 
€, Y S Se 780° mr? 

FINITE SERIES OF CIRCULAR FUNCTIONS 

3.60 If the sum, f (7), of the finite or infinite series: 

ff @Q=O-ar+ar+... 

is known, the sums of the series: 

Si = do cos x + a7 cos (x + y) + a2 7? cos (w+ 2y)+.... 

S2=d sinx+aqrsin («+ y)+a7? sin (n+ a2y)+.... 

zie**f(re’”) + e*f(re-*")}, 

ti “feizf(re'v) —e—**f(re—*v)}, 

are: 

Si 

S2 

3.61 Special Finite Series. 

A n/n / ie ee | 
sin — sin x 

' 2 2 
Te sin kx = —————————__- 

as 
Boe sin — 

2 

is @ 
cos — sin x 
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ios) 

Io. 

Il. 

r2. 

ee 

TA. 

ne 

MATHEMATICAL FORMULZ AND ELLIPTIC FUNCTIONS 

n 

: n 
> . sin? kx = — 

2 
k=1 

cos (7+ 1)x-sin mx 

2 sin % 

15%; a cos (1+ 1)x-sin nx n 
> cos? kx = 

— 7, 

> F008 i 

R= 

n 

2 2 sin x 

290 ai 
° WU COS sa 

smn WX 2 

dee. ay 
A sine— 2 sin - 

2 

2n —1 
n sin 

2 I — COS NX 

2 2 2 sin) — Asin — 

: sin? 24x 
» sin (2k — 1)” = ees 

[=a 

n 

k=o 

n 

k=o 

n+1 

>> (—1)* sin 

k=1 

n 

R— 

n—TI 

> r* sin kx = 

k=1 

n—I 

> r* cos kx = 

k=o 

cos (x + "9 sin (" tee y) 
> cos (x + ky) = Nia es eh 2 

sin x 

: TIN, os n+t 
sin (x + “2 sin ( ; y) 

> sin (x + ky) = ——————___- 

i! 
Sle 

2 

, sin (2n + 2) 

2 COS'% 
(2k — 1)x = (—1) 

s (———-« 
I 2 

— k = —) — _ n —__________—_- + a 1)* cos kx San I) zi 

2 OS” 
2 

r sin x(1 — 7” cos mx) — (1 — 7 Cos x)r” sin nx 

Tt — 27/C0s 6 = 7 

(1 —r cos x) (1 — 7” cos mx) + r"*1 sin x sin nx 

Tt — 27, COs 4-7 



TRIGONOMETRY $3 

ri x I x La 
16. a tan > ae cot a 2 COt 2%. 

k=0o 

n—TI x — 

R227 n nw NTT 
17: cos = —/(/(1+cos— + sin —}- 

n 2 2 2 
k=o 

t— a — 

R295 7 nr 5 LOS 
18. sin = — (1+ cos — — sin —}- 

n 2 2 2 
z= 

n—TI 

2 Ra T 
1g. sil) —— = cot == 

n 2n 
kR=1 

n 3 - 

igeeGew eo I pee al x 
20. poet erence i it Cot EY ey lee 

k-—o 

3.62 

Watson (Phil. Mag. 31, p. 111, 1916) has obtained an asymptotic expansion 
for this sum, and has given the following approximation: 

Sn = 2N{0.7329355992 logi(2n) — 0.1806453871} 

0.087266 | 0.01035 0.004 0.005 
oe ae ere ead a 7 n n' n' n 

Values of S, are tabulated by integers from = 2 to m = 30, and from n = 30 
to n = 100 at intervals of 5. 

The expansion of 
70 p 8 ie 

a >) cse( -*), 
n 2 

R= 

27 27 
where —-—<Bp<—, 

n n 
is also obtained. 
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3.70 Finite Products. 
n 
a 
2 ee 

: ; sin? x 
T sin nx = n sin x cos x i ie nm even. 

k=1 sin? — 

mh 
2 es 

sin? x 
2. COS NX = I — ——————__ | n even. 

aN 2h V1 
k=t1, sin? ——— 7 

2n 
n—TI 

2 2 : : sin? x 
. sin ux = n sin x \ I — odd 

ay OTE 
aS sin? — 

n 
nu—tTI 

2 . 

sin? x ; 
4. cos mx = COS x I — ————_ J odd. 

Oo 
k=1 sin? T 

2n 
mu—TI 

is 2k\ \ 
5: cos ux — COs ny = 2” cos x — cos{y + 5 i . 

k=o 

n—I E 

oki 
6. a2" — 2a"b" cos nx + 6?" = i i a — 2ab cos (+27) 40 |. 

k=o 

ROOTS OF TRANSCENDENTAL EQUATIONS 
3.800 tan «=x. 

sin x 
The first 17 roots, and the corresponding maxima and minima of go 

are given in the following table (Lommel, Abh. Munch. Akad. (2) 15, 123, 1886): 

n Vn Max sin x 

Min «x 
I fo) I 
2 4.4934 —0.2172 
2 WAAR +0.1284 
4 10.9041 —0.0913 
5 14.0062 +0.0709 
6 17.2208 —0.0580 
7 20:3 713 +0.0490 

8 23.5195 —0.0425 
9 26.6661 +0.0375 

ie) 29.8116 —0.0335 
II 32.9504 +0.0303 
12 36.1006 —0.0277 

13 39-2444 +0.0255 
14 42.3879 —0.0236 
15 45-5311 +0.0220 

16 48.6741 —0.0205 
Ty, 51.8170 +0.0193 



3.801 

The first three roots are: 

If x is large 

Xn = NT — 

3.802 

The first two roots are: 

3.803 

The first two roots are: 

3.804 

The first seven roots are: 

3.805 

TRIGONOMETRY 

T 

&3 = 340.35 —o°° 

2 16 

us Pe upe 

(Rayleigh, Theory of Sound, IT, p. 265.) 

APY 

Sy ee 

tan =~ Z lg 
4x? — 9 

“=O, 

1) yey. ee 
(Rayleigh, 1. c. p. 266.) 

tan % = = ae 

“1 = O90, 

V2. 74d, 

tan x = 3% =C — x2 

C—O, 

x2 = 1.83467, 

%3 = 2.895077, 

Vat— 2.0225, 

%5 = 4.938577, 

x6 = 5.948907, 
71 —-0:05027h. 

(Lamb, London Math. Soc. Proc. 13, 1882.) 

85 
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The first seven roots are: 
“1 =O, 

x2 = 0.81607, 

x3 = 1.928577, 

%4 = 2.93597, 

X5 = 3.90587, 

Xe = 4.97287, 

47 = 5.97747. 
(Lamb; 1 ¢) 

3.806 
COS. 4.G0Sh y= a, 

The roots are: 
%1 = 4.7300408, 
%2 = 7.8532046, 

x3 = 10.9956078, 

04 — As 71055, 

X53 = 17.2787596, 

tn = 320 + 1) ns. 

(Rayleigh, Theory of Sound, I, p. 278.) 
3.807 

cos x cosh « = — I. 
The roots are: 

Xi) eo 7 5104, 

%2 = 4.694008, 

v3 = 7.854757; 

X4 = 10.995541, 

te — 14.037 L05, 

x6 = 17.278759; 
Xn =3%(2n —1)7 n>6. 

3.808 
1 — (1 + x) cos % =0. 

The roots are: 
Li WslO2 500, 

%2= 4.754701, 

x3 = 7.837964, 
vi — LE.003/700, 

t51— TAI 2 TOS, 

X¢ = 17-202007. 

(Schlémilch: Ubungsbuch, I, p. 354.) 

3.809 The smallest root of 
— cot # = 0, 

is 
@ = 49° 17’ °36".5; 

(Il. c. p. 355.) 
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3.810 The smallest root of 
@— cos 7 =0, 

is 
0 = 42° 20’ 47”.3. 

Ges p: 353.) 
3.811 The smallest root of 

xe? —2=0, 

is 
% = 0.8520. 

(Lc. p. 353-) 
3.812 The smallest root of © 

log (1 + x) — 24 =0, 
is 

Xi = 0172300. 

(lc. p. 353-) 
3.813 

tan x — x +— = 0. 

The first roots are: 
Lu—) 4.4005 

We 1 =f 233 

3110.00, 

C7 

(Collo, Annalen der Physik, 65, p. 45, 1921.) 

3.814 
I 

BOL, 0 a ae ee 

The first roots are: 
v—) O; 

v2= 2.744, 

fo =O ha By 

X14 = 9-317; 

ire, 

%e = 15.64, 

x7 = 18.80. 
(Collo, 1. c.) 

3.90 Special Tables. 

sin 0, cos 6: The British Association Report for 1916 contains the following 
tables: 

Table I, p. 60. sin 0, tos 8, @ expressed in radians from 8 = 0 to 8 = 1.600, 
interval o.co1, 10 decimal places. 

Table II, p. 88. 6@—sin 6, 1 — cos 0, 8 = 0.00001 to 8 = 0.00100, interval 

0.00001, 10 decimal places. 
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Table III, p. 90. sin 8, cos 0; @ = 0.1 to 8 = 10.0, interval 0.1, 15 decimal 
places. 

J. Peters (Abh. d. K. P. Akad. der Wissen., Berlin, 1911) has given sines and 

cosines for every sexagesimal second to 21 places. 

hav 6, logio hav @: Bowditch, American Practical Navigator, five-place 
tables, o° — 180°, for 15” intervals. 

Tables for Solution of Spherical Triangles. 

Aquino’s Altitude and Azimuth Tables, London, 1918. Reprinted in Hydro- 

graphic Office Publication, No. 200, Washington, 1918. 

Hyperbolic Functions. 

The Smithsonian Mathematical Tables: Hyperbolic Functions, contain the 

most complete five-place tables of Hyperbolic Functions. 

Table I. The common logarithms (base 1o) of sinh #, cosh uw, tanh w, coth u: 

Uu = 0.0001 tO u = 0.1000 interval o.oooT, 

U 0.001 to “= 3.000 interval o.oo1, 

u—= 2.00 10% = 6:00, “ interval’o:or. 

Table II. sinhw, cosh uw, tanh u,coth w. Same ranges and intervals. 

Table III. sin uw, cos 4, logi sin u, login cos u: 

u = 0.0001 to 4 = 0.1000 interval 0.0001, 

u= 0.100 to “w= 1.600 interval o.oor. 

Table IV. logwe” (7 places), e“ and e~” (7 significant figures) : 

u = 0.001 to # = 2.950 interval o.oo, 

u = 3.00 to“= 6.00 interval o.o1, 

4“ — 1:0 =tou = aco imueryal ro (9-10 figures). 

Table V.  five-place table of natural logarithms, log w. 

u“%#=1.0 t0#= 1000 interval 1.0, 

u = 1000 tO & = 10,000 varying intervals. 

Table VI. gd u (7 places); « expressed in radians, u = 0.001 to u = 3.000, 

interval o.oo1, and the corresponding arigular measure. 4 = 3.00 to u = 6.00, 

interval o.or. - 

Table VII. gd, to o’.o1, in terms of gd u in degrees and minutes from 

Ori 10180450; 

Table VIII. Table for conversion of radians into angular measure. 
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Kennelly: Tables of Complex Hyperbolic and Circular Functions. 

Cambridge, Harvard University Press, 1914. 

The complex argument, « + ig = pe®. In the tables this is denoted pZ6. 

p= V2x2+ 4%, tan 6 = q/x. 

Tables I, II, III give the hyperbolic sine, cosine and tangent of (p20) 

expressed as rZY: 
6 = 45° tod =go° interval 1° 

p = 0.01 to p = 3.0 interval o.1. 

i h 0 
Tables IV and V give a “ expressed as rZ y, 0 = pZ6, 

é 

pi— oto p'— 3-0" “interval.o.r; 

Oo = 45° to 0 = 90. ‘interval x”: 

Table VI gives sinh (9 245°), cosh (9 245°), tanh (9 245°), coth (9 245°), 

sech (9 245°), csch (9 245°) expressed asrZY: 

pl — 0 atop —s Oo" anterval or, 

p = 6.05 to p = 20.50 interval 0.05. 

Tables VII, VIII and IX give sinh («+ iq), cosh (a + 7g), tanh (x + 79), 
expressed as u + 1: 

C—O {0.4 — 3-905 intervallo.o5; 

g— 0 tog — 2:6 ~ interval’o.o5. 

Tables X, XI, XII give sinh (x + ig), cosh (a + ig), tanh (a + ig) expressed 

asrZy: 
(— 0 tOri——4-05 “intervalo.os; 

qg=otog=2.0 interval 0.05. 

Table XIII gives sinh (4 + iq), cosh (4 + ig), tanh (4 + ig) expressed both 

asu+ivandrZy: 
G= oto g— 2.0 intervalo.os: 

Table XIV gives > and logio =. 

i= 4.00 10.4. — 10.00 Interval 0.08. 

Table XV gives the real hyperbolic functions: sinh 0, cosh 0, tanh 0, coth 6, 
sech @, csch 0. 

@=o0 to@=2.s5 interval o.o1, 
@=2.5to@= 7.5 interval o.1. 
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Pernot and Woods: Logarithms of Hyperbolic Functions to 12 Significant 

Figures. Berkeley, University of California Press, 1918. 

Table I. logio sinh «, with the first three differences. 

x = .000o tox = 2018 _ nterval 0.001. 

Table II. logio cosh x. 

x% = 0,000 to * = 2.032 interval 0.001. 

Table III. logio tanh x. 

4 — (ovforelo) 110) 24 2.018 interval o.oo. 

sinh x 

x 
Takle TVs logio 

x = 0.00 to x = 0.506 interval o.oor. 

tanh « 
- 

Table V.  logio 

x = 0.000 to % = 0.506 interval o.0o1. 

Van Orstrand, Memoirs of the National Academy of Sciences, Vol. XIV, 

fifth memoir, Washington, 1921. 

I Les ° 
Tables:of —) e*,.e-*, e"", €-"", € 360, sin #, cos %, to 23-62 decimal placesion 

nl 

significant figures. 



IV. VECTOR ANALYSIS 

4.000 A vector A has components along the three rectangular axes, x, y, z: 

FA ., Az. 
A = length of vector. 

A=nW/A2Z+ Aft Ae. 

bane A A; A 
Direction cosines of A, —, — A, b Ake A’ A 

4.001 Addition of vectors. 
A+B=C. 

C is a vector with components. 

C,=Az+ Bz. 
G7 =eA, 4 By. 

Co Ar oe 

4.002 6 = angle between A and B. 

C = ~V/A2+ B+ 2AB cos 6. 

ADBe+ Al Be AXAGR., 
cos § = TE 

4.003 If a, b, c are any three non-coplanar vectors of unit length, any vector, 

R, may be expressed: 
R=aa+bb+ cc, 

where a, 6, c are the lengths of the projections of R upon a, b, c respectively. 

4.004 Scalar product of two vectors: 

SAB = (AB) = AB 
are equivalent notations. a 

AB = AB cos AB. 

4.005 Vector product of two vectors: 

VAB = ACB = PAB = 'C) 

C is a vector whose length is os 

C= AB sin AB: 

The direction of C is perpendicular to both A and B such that a right-handed 

rotation about C through the angle AB turns A into B. 
QI 



g2 MATHEMATICAL FORMULZ AND ELLIPTIC FUNCTIONS 

4.006 i, j, k are three unit vectors perpendicular to each other. If their direc- 

tions coincide with the axes x, y, z of a rectangular system of codrdinates; 

A=AA+t+A,+A&. 

4.007 
=f = ee 

ij = ji = jk = kj = ki = ik=0 

4.008 
Mip=— Vir vk; 

Vike = ike — 1 

Viae— — Viko— | 
4.009 ae 

AB = BA= ABcosAB=A,B,4+ A,B,+A-Bz 
4.010 

VAB = — VBA = |i j k 

A es, ey eee 

Bp OA Bg 

= (AB, = AB i (ALB; = ALB + (4B eee 

4:10) tA; B, Cyrareany. three vectors: 

AVBC = BVCA = CVAB 

= Volume of parallelepipedon having A, B, C as edges 

= Ae AL A 

4.11 
1. VA(B+C) = VAB + VAC. 

V(A +B) (C+D) = VA(C + D) + VB(C + D). 

VAVBC = BSAC — CSAB. 

VAVBC + VBVCA + VCVAB = o. 

VAB-VCD = AC-BD — BC-AD. 

V(VAB- VCD) = CS(DVAB) — DS(CVAB) 

= CS(AVBD) — DS(AVBC) 

= BS(AVCD) — AS(BVCD) 

= BS(CVDA) — AS(CVDB). 

ae a ap eas 



VECTOR ANALYSIS 

4.20 
te dAB = Ad B+ BdA. 

2. dVAB = VAdB + VdAB 

= VAdB — VBdA. 

4.21 : 

a Ooe pO. 0 
i: Morag via oz 

2 0A;  dAQ - 0A, 
2 VA=divA= Fie a ay : 

iv ee eee 3 Vb = grad @ = 150 +557 +k 5S 
4. VVA=curl A =rotA 

Cs RS 
Ox Oy 02 

Ai, PTA, - 

2 /(o4, OA JA. OA; 0A y 

i Wieoe ) +i Pa ac) + #( Ox 

07 oe ole 

pe ae ay T ae 

4.22 

Eecurl orad @ — curl Vo = VVVo =o. 

div grad d = VV 

div curl A = o. 

mea aie 
ed a Pp. 

ale 2 oy" 

eunennl A = cur? A= V7 div A — \77A. 

WA yA eines kA 

0 
AV =A:-— 
aa Ox 

oy eae Aye a) 
Aza: 

2 
2 

OA: 

Oy 
) 

93 



O4 MATHEMATICAL FORMUL AND ELLIPTIC FUNCTIONS 

4.23 

Hg VAB = grad AB = (AV)B + (BV)A + V.A curl B + V.B curl A. 

2.  VVAB = div VAB = Bcurl A — Acurl B. 

3. VV VAB = (BY)A — (AV)B + A div B — B div A. 

a div @A= ¢ divA+ AV@. 

5. curl PdA= V-VoA+¢ curl A = V-grad ¢.A + @ curl A. 

6. VA = 2(AV)A + 2VA curl A. 

7. C(AV)B = A(CV)B + AVC curl B. 

8. BVA? = 2A(BY)A. 

4.24 Risa radius vector of length y and r a unit vector in the direction of R. 

I I I 

: "Gee 

2 Woe fe) 

r 

B Vr =“R=r=gradr 

2) pe 
4 Wer i 

VVR— cul Rk 

VR =divR =3 

dp 
7 pe rVo: 

dA 
8 (RV)A = by Fe 

dA 
9 (rV)A = ae 

10. (AV) R= A. 

4.30 dS = an element of area of a surface regarded as a vector whose direction 

is that of the positive normal to the surface. 

dV = an element of volume — a scalar. 
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ds = an element of arc of a curve regarded as a vector whose direction is 

that of the positive tangent to the curve. 

4.31 Gauss’s Theorem: 

SSS div AdV = f fAds. 

4.32 Green’s Theorem: 

. SSSOTWIV + SSS TOTWAV = SS OVS 

2 SSS (OVW —-WVo)dV = SS (OVP —- PV O)dS. 

4.33 Stokes’s Theorem: 

JS J curl AdS = / Ads. 

4.40 A polar vector is one whose components, referred to a rectangular system 
of axes, all change in sign when the three axes are reversed. 

4.401 An axial vector is one whose components are unchanged when the axes 

are reversed. 

4.402 The vector product of two polar or of two axial vectors is an axial vector. 

4.403 The vector product of a polar and an axial vector is a polar vector. 

4.404 The curl of a polar vector is an axial vector and the curl of an axial vector 

is a polar vector. 

4.405 The scalar product of two polar or of two axial vectors is a true scalar, 

i.e., it keeps its sign if the axes to which the vectors are referred are reversed. 

4.406 The scalar product of an axial vector and a polar vector is a pseudo-scalar, 

i.e., it changes in sign when the axes of reference are reversed. 

4.407 The product or quotient of a polar vector and a true scalar is a polar 

vector; of an axial vector and a true scalar an axial vector; of a polar vector 

and a pseudo-scalar an axial vector; of an axial vector and a pseudo-scalar a 

polar vector. 
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4.408 The gradient of a true scalar is a polar vector; the gradient of a pseudo- 

scalar is an axial vector. 

4.409 The divergence of a polar vector is a true scalar; of an axial vector a 

pseudo-scalar. 

4.6 Linear Vector Functions. 

4.610 A vector Q is a linear vector function of a vector R if its components, 
Q;, Ox, Os, along any three non-coplanar axes are linear functions of the com- 

ponents Ri, Re, Rs of R along the same axes. 

4.611 Linear Vector Operator. If @ is the linear vector operator, 

Q = OR. 

This is equivalent to the three scalar equations, 

Or = OuRi + @2R2 + @3R3, 

Oo = Wa Ri + WoeRe + Wo3Rs, 

Os = Wai Ri + W32R2 + W33Rs. 

4.612 Ifa, b, c are the three non-coplanar unit axes, 

Wy = S.a@a, Wa = S.b@a, ws = S.cda, 

We = S.a@b, Wo = S.b@b, Wz. = S.c@b, 

W13 = S.a@c, Wo = S.b@c 33 = S.cac. 

4.613 The conjugate linear vector operator @’ is obtained from @ by replacing 

Whk by Wh; TP R= I, 2, 3. 

4.614 In the symmetrical, or self-conjugate linear vector operator, denoted 

by , 

Hence by 4.612 
w = 1+ 8’). 

S.a@Ds—)5-DW@a, Lc. 

4.615 The general linear vector function @R may always be resolved into the 

sum of a self-conjugate linear vector function of R and the vector product of 

R by a vector c: 
OR = wR + V.cR, 

where 

CN w= 3(@+ @’), 
and 

C = 4(W32 — We3)i + $(W13 — Ws1)j + 3(Wer — Wi2)k, 

if i, j, k are three mutually perpendicular unit vectors. 

4.616 The general linear vector operator @ may be determined by three non- 

coplanar vectors, A, B, C, where, 

os 
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A = aQ@) + bi. + C3, 

B = aWo1 + b@o22 + C23, 

C = a3; + DWs2 + CW33, 

and . 
@=aS.A+bS.B+.CS.C. 

4.617 If @ is the general linear vector operator and @’ its conjugate, 

Q@R = RO’, 
@’R = R® 

4.620 The symmetrical or self-conjugate linear vector operator has three 

mutually perpendicular axes. If these be taken along i, j, k, 

WO = iS. Wi ++ jS.Woj — kS.w3k, 

where W;, @2, Ws; are scalar quantities, the principal values of w. 

4.621 Referred to any system of three mutually perpendicular unit vectors, 

a, b, c, the self-conjugate operator, w, is determined by the three vectors (4.616): 

A = Wa = a) + DW» + CQ)3, 

B = wb = a@. + DW + CWo3, 

C = We = aWs1 + DW32 + CWs33, 

where 

Wrk = Wkhy 

@ = aS.A + bS.B + cS.C. 

4.622 If 7 is one of the principal values, 1, ws, w3, these are given by the roots 

of the cubic, 

n? — n(S.Aa + S.Bb + S.Cc) + n(S.aVBC + S.bVCA + S.cVAB) 

— S.AVBC =o. 

4.623 In transforming from one to another system of rectangular axes 
the following are invariant: 

S.Aa cL S.Bb -b S.Ce = W®, + We + Ws. 

SaVBC + S.bVCA -b S.cVAB = WeW3 + Ws, + WW. 

S.AVBC = @)@sW3. 
4.624 

W@W, + We + W3 = Wi + Woo + W33, 

WoW3 + W3W1 + W1We = G22W33 + W33W11 + Wi1We2 — W723 — Ws: + Wh0, 

@1Q2W3 = W11Wo2W33 + 2W23W31W12 — W11W"23 — We2W"31 — W33W)2. 

4.625 The principal axes of the self-conjugate operator, w, are those of the 
quadric: 

WX? + Wooy? + W333? + 2Wo3VS + 2Ws313X + 22x = Const., 

where x, y, are rectangular axes in the direction of a, b, c respectively. 
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4.626 Referred to its principal axes the equation of the quadric is, 

Wx? + Wey” + ws2” = const. 

4.627 Applying the self-conjugate operator, w, successively, 

WR = iw, RK; + jwok. + kw 3Rs, 

wwR = wR = wR, + jo’Re + kos’Rs, 

wo’R = wR = iw Ry + joo’ Re + kw’ Rs, 

4.628 Applying a number of self-conjugate operators, a, B,.. . ., all with the 
same axes but with different principal values (a;a2a3), (8:18283),... . 

aR = ia Rk, + jasRk. + kasksz, 

BaR = aBR = ia,8,R, + jasboR. + ka383R3. 

4.629 
S.QwR = S.RwQ, 

WOR: + WoQ2R2 + w:03R3. ll 



V. CURVILINEAR COORDINATES 

5.00 Given three surfaces. 
Liv ICs baa 

Ti Vo GVae)), 

w= fs(x, y; Z). 

| x = di(u, 2, w), 

a de (u, dv; w), 

z= 3(u, v, w). 

in ‘" Ge) cm aa) ay ae 

co eal cal 
acount 

ddr Ogi, dhe Ade, ab Ib, 
Ov Ow Ov Ow te tae ov Ow 

3 8b: Ob: , Abe Ady , Ab, Ads 
Ou ow Ou Ow Ou 

_ dd: dd: , dy Adz , Ads Is 
Soa Ou dv ig Ou Ov ay Ou Ov 

=| <) 
lI 

Was 2|$ 

ro ll 
Q Ss 

5.01 The linear element of arc, ds, is given by: 

due dv dit 
he + Ib +— ip 4 29, dv dw + 292 dw du + 2¢5 du dv. 

at 

ds? = dx? + dy? +d? = 

2 
5.02 The surface elements, areas of parallelograms on the three surfaces, are: 

dv dw SEA SD, 
RSE = Joalis VJ/1 = he he £15 

dS» = ~ a V1 — h3hyge, 

dSy = tu i a/1 = hyheg3" « 

99 
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5.03 The volume of an elementary parallelepipedon is: 

du dv dw keh v 3 
aT = Wiel DS hyhe? gs” = hehs*gy" = heh ge == hyhe?hs? gi 2288 

5.04 1, Ws, w3 are the angles between the normals to the surface fo, fs; fs, fi; 

fi, fe respectively: 
Cos @ = Mnhsgy, 

COS We = hshyge, 

COS W3 = Myliogs. 

5.05 Orthogonal Curvilinear Coérdinates. 

ila Up ese JCF 

du? dv. dw 
2 —— —= = Siege ca ab pe 

dv dw dw du du dv 
ic ) d i ) w= ? 

dS hohe =) lish, hyhe 

ae du dv dw 

¥ Iyhohs 

5.06 hy2, he?, hs? are given by 5.00 (3) and also by: 

= Fo 
rg 3 
Oy 
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5.07 A vector, A, will have three components in the directions of the normals 
to the orthogonal surfaces u, v, w: 

Ain AAS A 

5.08 
| BY Bi Ae \ a. 

Be a = dale Oi sligt) + ™ By (=) x Bo ali 

ile hy 0 0 

oe) v= falals 2 Ou (ae =) a 

curl, A= hizhg 

= (* hs 0 =) \ ; 

ijhy Ow J 

a. curl, A = Ash, 

curl, A = Mh o ( ‘ (5) 
Ou \Iy dv\ hy 

5.09 The gradient of a scalar function, W, has three components in the directions 

of the normals to the three orthogonal surfaces: 

ay ,, a 
ie Ou’ hn Ov’ Ms a0 

5.20 Spherical Polar Coérdinates. 
LV, 

I. vy = 0, 
w= @. 

“= 7.sin 6 cos ®. 
2 {yr sin 8nd 

2 — 7rCos G: 

if 
3. a ae Srey 

dS, =r? sin @d 6 dq, 
4. [aSh sind 

dS¢ =rard0. 
= dt =?r'sin@drd 0 dd. 

6. hy sin 2 (1 A,)4 7 (sin 8 do) + 7 288 . 
r? sin 8 or : 06 dp 

Ni ane ey ee 
7. 7 = aig {sind 2(, 5) wisi O55) + sa ae - 
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| curl, A = | 3g (sin 8 49) - th 
yr sin®@ Cola) 

ay ee! OA, - . O(rAg) 
curlg A = ro ap = Sin Ue ie 

1 fs) dA, | 
curlg A = x 5 (r 40) a0 | 2 

§.21 Cylindrical Coérdinates. 

I. 

= 

Fn 

u = Pp, 

Fs = 6, 

wWw=2 

4 = 0 cos 0; 
[y= pana 
z=. 

io ips: i — ie 
p 

dS, = p dé dz, 

dSe = dz dp, 

dS. = pdp d0. 
dr = pd pd Odz. 

cone teal ga). do, aaa awh =2( 204) eo 
weet a =| Elie 

p|op\' dp] poe? Paz 

curl A= 2s Oto, 
| ode a dae 
se A re = dp 

te) OA 
[ curl. A=- jp (P49) Hi 

5.22 Ellipsoidal Codrdinates. 

u, v, w are the three roots of the equation: 
x2 v2 2 

4) 

Pre” PaO oO. 7 
aS>b>c. u>v>w. 

6=4u: Ellipsoid. 
6 =v: Hyperboloid of one sheet. 
6 =w: Hyperboloid of two sheets. 
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: Ca Ce ae 

oe re Oe) 
2. iz (b? — c2) (a — 8?) ’ 

ie (+4) (P+) (2+) 
(a? —_ G) (b? ia Cc’) 

ag A4(a? + u) (62 + u) (24+ 2) 

<< (u — v) (u — w) d 

; Ca Ca Gl) 2 

In (v — w) (v— 4) , 

2 4(a? + w) (62+ w) (2 + w) Sie Pd Sa al,” Nee SN 

4 

; (w — u) (w — v) 

2) 2) 2 Ss eae a= 5 V@+u P+u(P+u) a 7 (Vu ea = ; 
(uw — v) (wu — w) 

py nde ON oe + (Vea ea A.) 
(v— w) (4 — v) 

J (a+ w) (b?+w) (e@+w) d 

= (u—w) (v'— w) Ow (Vw BR) Ay) 

ie V(a+u) (P+u)(2+u) da fs) 
Dimes SES (EE a a ee 2 2 ) 2 pe tls 

aay. (u — v) (u— w) Ou (via Beit bart NO aD <) 

VJ (a? +0) 2+) (bc + 9) a ale Sat AY, he 
ap a ea ay (Vie + v) (6° + v) (2 + 2) =| 

/(a? + w) (67+ w) (2 +w) O ; a 

ne (a—w) (v-w) Ow (Vie + w) (6° + w) (P+) a 

Pep 22 (a2 ++ v) (02? + 0) (2 +2) —_ ) 
; cuty a= 2 {fe te (Ven Au 

a qe +w) (P+w)(e@+w) d (vam Ab : 
u — W Ow 

eae i) ew) (52 = w).(c? +. w) =-( 
ta WF Bs Vu—-wa 1.) 

sey eae (G2 SEN (G2 Ey) = (Vane An) | 

v—u i 

ay Ree 2 jy ete (2+ 2) (2 + wu) 2 (ven w Ay) 

u—v wW—U 

2 CeCe +v) (2+ 2) (249) 5 (Vea es) } 

(bd) —— vl) 
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5.23 Conical Coérdinates. 

The three orthogonal surfaces are: the spheres, 

q. x? 4-9? + 2 = a, 

the two cones: 

- 

a? ‘yy? 2 

i PP ae 
x2 ye ne) | 

o we woe! wee 

Cor Sb Su. 

i 
CL tae y RE 9? 

pee — 62) (0) 
4: 5 ars 62(62 — 2) ? 

“Re U2 (v2 us G) (w hte c) 

aes e(e2 — 8) 

(v? — 6?) (? — 0?) (0? — w*) ( — w?*) ia he Olle. UNE Dine SN Perl 
5 Ries we — ww) ’ he u?(v” — w?) 

oy A ape VE RIAG = ene = ( 2 stag 6. divA = ai (WA) + eae VF? —w A, 

+ VO CAS (VER As): 

u(v? — w?) 

See ae vee) 22) nae ak 
TV = Ou G ml e u?(v? — w) dv VE el? dv 

V(b? — w?) (? — wv?) = 
u?(v? — w) 

I me ke Sees ays St ri eSeE [a ie CRA) Vi? — vw Aw 

8. oc ee a 

cla = Ve 0An i 2 0. (u4.) }, 

uv? — w? ow udu 

(Gn Dn Ce a on, 

curl, A = aaa. (u.) = Vit SAS?) OAu, 

5.30 Elliptic Cylinder Coérdinates. 
The three orthogonal surfaces are: 

1. The elliptic cylinders: 

ceria ce 2 Lk 
Cu? * (v2 —1) 
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2. The hyperbolic cylinders: 
2 42 
SL = ay ee 
Cry Cay) 

3. The planes: B= Ww. 

ac is the distance between the foci of the confocal ellipses and hyperbolas: 

4. Gu, 

5. y=tVe-—1 V1I—v. 

pa eee ae 6. fe re (uw? — v), hg = 1. 

1 = arts: SS oO 2 a2 0. g 2 3 ] OA, 

a div A= Ga) (2 (vi v A.) a =. ( “u—v A.) ip ait 

(er) <q wu? = E Be (ea ab =) ae ico 

~ A(a — v) \auw av] ae 

curl, A = ————_ ——- - — 
Vue—v dv 3 

9 ei ee a 

02 tw — OU 

__t_f4/f __, 0 ar curl, A = ACE a (Vi — 7 An) oe (vir —v Au) } , 

§.31 Parabolic Cylinder Coérdinates. 

The three orthogonal surfaces are the two parabolic cylinders: 

E. y? = 4cux + 4cu?. 

op y? = —4cvx + 4c70". 
And the planes: 
2. a iD): 

4. x =c(v— 4). 

= y = 2cr/ U0. 

tr 4 6. pe eg pee ent 

Uu eo (EG8)-208)) 
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| u OA, \/ u. OA; 
Q. curl, A= OE - ’ 

_ vu Yi \/ v rf) \/ u )} 
four. a = 2" | 2 ( wea 4s)-F( anak 

5.40 Helical Codrdinates. (Nicholson, Phil. Mag. 19, 77, 1910.) 

A cylinder of any cross-section is wound on a circular cylinder in the form of 

a helix of angle @. a = radius of circular cylinder on which the central line of 

the normal cross-sections of the helical cylinder lies. The z-axis is along the 
axis of the cylinder of radius a. 

u = pandv = @are the polar codrdinates in the plane of any normal section 

of the helical cylinder. @ is measured from a line perpendicular to z and to the 

tangent to the cylinder. 

w = 0 = the twist in a plane perpendicular to z of the radius in that plane 
measured from a line parallel to the x-axis: 

x= (a+ pcos) cos 8+ psina sin 6 sin d, 
Te y = (a+ pcos ¢) sin 8 — psina cos 6 sin 9, 

(z=a0tana+pcosasin ¢. 

hy = TI, as 
p 

I 

~ a? sec? @ + 2ap cos + p*(cos’ b + sin? @ sin’) | 

5.50 Surfaces of Revolution. 

Z-axis = axis of revolution. 

p, 8 = polar coérdinates in any plane perpendicular to z-axis. 

i. ds? = dz’ + dp? + pd@? 

duz dv du? 

he The he 
In any meridian plane, z, p, determine uw, v, from: 

a f(e+ip) = u+ 2. 

ey w= 0. 

Then u, 2, @ will form a system of orthogonal curvilinear coérdinates. 
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5.51 Spheroidal Coérdinates (Prolate Spheroids): 

is z+ 4p = c cosh (# + 1). 

{ 2 = cosh u cos 2, 

| p =c sinh wu sin 2. 

The three orthogonal surfaces are the ellipsoids and hyperboloids of revolution, 

and the planes, 6: 
2 . p? = 

c cosh? uw ' c sinh? u é 
3: 2 2 Ze ae Date 

ee COS: 21) eG. Sine y 

With cos uw = A, cosv=p: 

f z=c\y, 
4. ha? ea 

p = cvV/( — 1) (1- p’). 

MT teensy Oe I 
Lie mae VR Ap on US = ee 

5 REO Py co (— wr) AV Geel) 

5.52 Spheroidal Codrdinates (Oblate Spheroids): 

i p + iz = c cosh(u + 1). 

z=c sinh yw sinv. 

7 p = c cosh u cos v. 

2. coshu =A, cosv= UM. 

Pee ile = I 
. h 2 = SCO EN he? = <A Dee One, h 2 = SRC a Le ee ee Oe C0 pn) ear) Gr) 

5.53 Parabolic Codrdinates: 

it 2+ ip = c(u + iv)”. 

: : z= c(u? — v), 

; p = 2cuv. 

3: uw = r, P= M. 

With curvilinear codrdinates, A, mw, 0: 
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I ON I Me I , Te ig Os gy Ca eee 
: ; t/a a “bo j 2cV” Aw 

5.54 Toroidal Codrdinates: 

oe Z2+a+ip 
Zr. i te ama ae 

a sinh u 

cosh u — cos v 

asin v 

cosh # — cos v 

cosh u — cos v cosh “ — cos v 
3- hy = hh = —————_ hs; = —————__ 

a a sinh u 

The three orthogonal surfaces are: 

(a) Anchor rings, whose axial circles have radii, 

a coth u, 

and whose cross-sections are circles of radii, 

a csch 4; 

(b) Spheres, whose centers are on the axis of revolution at distances, 

+ a cot 2, 

from the origin, whose radii are, 

a CSC 2, 

and which accordingly have a common circle, 

P S40 1% =O; 

(c) Planes through the axis, 
w = 6 = const. 
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6.00 An infinite series: 

2 Un = Mm ++ ust. soc 
n= 

is absolutely convergent if the series formed of the moduli of its terms: 

[a |+|w|+tl|ml|+.... 
is convergent. 

A series which is convergent, but whose moduli do not form a convergent 
series, is conditionally convergent. 

TESTS FOR CONVERGENCE 

6.011 Comparison test. The series Zw, is absolutely convergent if | w, | is 
less than C | v, | where C is a number independent of 7, and 2, is the nth term 

of another series which is known to be absolutely convergent. 

6.012 Cauchy’s test. If 
I 

Limit fea | Le 

N— @ 

the series Zw, is absolutely convergent. 

6.013 D’Alembert’s test. If for all values of ” greater than some fixed value, 7, 

Untl 
the ratio is less than p, where p is a positive number less than unity 

n 

and independent of 7, the series Zw, is absolutely convergent. © 

6.014 Cauchy’s integral test. Let f(a) be a steadily decreasing positive function 

such that, 
FM) 2 Gn: 

Then the positive term series Ya, is convergent if, 

| f(x)dx, 
m 

6.015 Raabe’s test. The positive term series Da, is convergent if, 

is convergent. 

n( sr r)>1 where />1. 
. . . On+1 

It is divergent if, 
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6.020 Alternating series. A series of real terms, alternately positive and nega- 
tive, is convergent if dn4i1<a, and 

. 

limit 

ae) 22) 

n = 

In such a series the sum of the first s terms differs from the sum of the series by 
a quantity less than the numerical value of the (s + 1)st term. 

limit 
1? 

Unt+1 
7, = 1, the series 2, will be absolutely convergent if 6.025 If : 

there is a positive number c, independent of 7, such that, 

-1| =-I-C. 
limit Mes nl | ent 
n— © n 

6.030 The sum of an absolutely convergent series is not affected by changing 

the order in which the terms occur. 

6.031 Two absolutely convergent series, 

S=m+uw+ug+..... 

T=%y+w+pet+..... 

may be multiplied together, and the sum of the products of their terms, written 

in any order, is ST, 
ST = mv, + Mey + Ug +..... 

6.032 An absolutely convergent power series may be differentiated or inte- 

grated term by term and the resulting series will be absolutely convergent and 

equal to the differential or integral of the sum of the given series. 

6.040 Uniform Convergence. An infinite series of functions of x, 

S (0) = u(x) + ue(x) + g(x) +. 2.2... 

is uniformly convergent within a certain region of the variable x if a finite number, 
N, can be found such that for all values of 2 N the absolute value of the remain- 

der, | R, | after 2 terms is less than an assigned arbitrary small quantity e at 

all points within the given range. 

Example. The series, 
co 

x2 

yore + 92)” 
n=O 

is absolutely convergent for all real values of x. Its sum is 1 + 2” if x is not Zero. 

If x is zero the sum is zero. The series is non-uniformly convergent in the neigh- 

borhood of « = o. 
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6.041 A uniformly convergent series is not necessarily absolutely convergent, 

nor is an absolutely convergent series necessarily uniformly convergent. 

6.042 A sufficient, though not necessary, test for uniform convergence is as 

follows: 

If for all values of x within a certain region the moduli of the terms of the 

series, 
S = ue) me) +... .. 

are less than the corresponding terms of a convergent series of positive terms, 

T=M,+ Mo+M34+.. 

where J/,, is independent of x, then the series S is uniformly convergent in the 

given region. 

6.043 A power series is uniformly convergent at all points within its circle of 

convergence. 

6.044 <A uniformly convergent series, 

S = my ("+ ue(m) +... 2... 

may be integrated term by term, and, 

Sag — > N ta Ga uke 

6.045 A uniformly convergent series, 

S = u(x) + w(x) +... 

may be differentiated term by term, and if the resulting series is uniformly 

convergent, 

d Sid 
ae = Duis Un). 

6.100 Taylor’s theorem. 

i; , hi? = / n 

f(a +h) = f(x) + ai (”) + = (Grae See f(a) + Rn. 

6.101 Lagrange’s form for the remainder: 
n+l 

R, = ft») (x + Oh)- an DP OO <r 

6.102 Cauchy’s form for the remainder: 

= f+) (x + Oh) ad exper 
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6.103 ; 
x~ = — f)n ita) = 70) +0) 2" ay" SS 4. ba eam +R 

(x = (n-++1) ae Pe ee R, =f {h+ 0 («—h)} ae =" o<O6<1. 

6.104 acum theorem: 
oo 

fle) =f) +O) G+ SOF +... +f) FR 
antl 

— f(n-+1) eed eae aes Ne Ry = ft» (Ox) Cy (1 — 0)"; o<O<1. 

6.105 Lagrange’s theorem. Given: 

y= 2+ xy). 
The expansion of f(y) in ae of x is: 

fy) =/@ + =@/'@ +5 SOOO] 
Ve dts 

Te: wen Benge pr wees (z)}"f’@)]4+.. 

SYMBOLIC REPRESENTATION OF INFINITE SERIES 

6.150 The infinite series: 

f(x) =14+ax+—5 j aa $y att + + pout +. 

may be written: 
Hie) ves 

where a* is interpreted as equivalent to ay. 

6.151 The infinite series, written without factorials, 

f(x) =1tae+anv?+....... +ayxFteo.... 

may be written: 

f(x) = 

where a* is interpreted as equivalent to ay. 

6.152 Symbolic form of Taylor’s theorem: 
(a) 

f(e +h) = e" dx f(x). 

6.153 Taylor’s theorem for functions of many variables: 

h B + hea oes 
f(a LL hy, Xe + he, A oc ) = 6 9x1 Sear (cGre CDs aatie .) 

ee ge = f(a, 2, 3) + hy Ox, + laa + 

me ef he af 
ea ale One ae at ay Ox2 para Ox? 

+ .. 
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TRANSFORMATION OF INFINITE SERIES 

Series which converge slowly may often be transformed to more rapidly 

converging series by the following methods. 

6.20 Euler’s transformation formula: 

S = Ao t+ axe t+ ax? + 

k 
1E uf x ; 

= ay + x3) A* ao, 
1h SB Ib == 8G I == 46 

where: Aay = a — 4, 

Atay = Aa, — Aap = ag — 20; + a ? 

Atay = Aa, — A®ay = a3 — 3d2 + 301 — Ao, 

The second series may converge more rapidly than the first. 

Example tf. = 
S = = k : 5) 

pay v) 2k+1 

ae 
ol De OES TR 

I . k! 5-13 2 dad T° 375 (2k + 1) 

Example 2 2 
S= > (2) = = lhoyes oe 

k=o 

WG Pe PTO 

I 

Sey at 
k=1 

6.21 Markoff’s transformation formula. (Differenzenrechnung, p. 180.) 

3 ack — (= a 2 vtAna, = > ea eau ‘dy — eee Es an ———— A*an. 
k=o 

a et 
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6.22 Kummer’s transformation. 

Ao, Ai, Ao, . . . . is a sequence of positive numbers such that 

Qm+1 

we, = Ars Fan, Ami ) 
Um 

and 
Limit 

my 
m— 

approaches a definite positive value. Usually this limit can be taken as unity. 

If not, it is only necessary to divide A,, by this limit: 

Limit 
— A m Qm- 
MmM— @o 

Then: 
leo} [oo] 

D> am = (Andn — &) + > (t — Am)am 
m=n m=n 

Example 1. 

I oe m 
m=1 

m Limit 
A = m, NS =e ) = I, 

m+1 m—>o 

a=0o0 

CO co 

= ST . 

nD) m (m + 1)m? 
m=t1 m=t1 

Applying the transformation to the series on the right: 

m m 

2’ ee yt a? 

ae pe i. a ? 
Mme ae m?(m + 1) (m+ 2) 

m=t1 m=t1 

Applying the transformation » times: 

a (Soy 

co lee) 

Dy "Dy —— — pe So —_—————— ° 

m n2(m +1) (m+2)....(m4+n) 
m=n-+1 m=1 

Example 2. 
c 

I 
— ah —1)™1! 

a) 2m — 1’ 
m=t1 

I 2m 
An = = Nin a » a= Od, 

2 am +1 

= I < eX m—1 aie Ltt ax 

S=5+ | r) 4m? — I 
m=t1 
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Applying the transformation again, with: 

I2m+t1 4n? +1 

aaa 22m—1 9” gam—1 ae 

> m—t\ I = 

aa Civ yd (4m — 1)? 
m=t1 

Applying the transformation again, with: 

a ae eS ns 

2 2m — 3 4m? — 9 

4 I 
S=- + 2 » —j)m—1 aoe ENT 

3 i "Gan — 1 (an 9) 

Example 3. 

»> I 
_ —\ ma) = ae 

oi 7 ee (2m — 1)” 

2m — 1 4m? —4m+1 

~ 2(2m—3) ~”™ (am—3) (2m +1)’ Fae 

— 5 = m—1 : 3 

ae ae +) t) (2m — 1) (2m + 3) (2m+4+1)? 

6.23 Leclert’s modification of Kummer’s transformation. With the same 

notation as in 6.22 and, 
Limit 

(ae w, 
m— © f 

foe) { foe) 

Ady a », I I 

Qn = ao + ae ar ( = 5) Amst Om+1: - 
> Mt (63) Neu Ss 
n=O m=1I 

Example tf. 
Cc 

I 5 Yeo (—1) 21 — ie 
n=T1 

Ne 
oon at? 

fae > (=1)"> 

m=t1 

m(2m + 1) (m+ 1) 
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Applying the transformation to the series on the right, with: 

am + 1 a) (2m + 1)? 

m—-1? ~™ (m—1) (m+ 2)’ 
q=0, An= oO — 4) Qo, 

yee Ba ete We We ee ee WY Ek 
erin 2 t) m(m + 2) (2m + 1)? (2m + 3)? 

6.26 Reversion of series. The power series: 

Z= © — bx? — box® — bext —. 2. we 

may be reversed, yielding: 

6 = Ss? - cog? Hast Ee ee 
where: 

1 = by, 

Co = bo + 2b,?, 

c3 = b3 + 5bibo + 50,3, 

C4 = b4 + 6bib3 + 362? + 21b;7bo + 14b,', 

5 = bs + 7(bibs + babs) + 28(b:°b3 + bio”) + 84b13b2 + 421°, 

Ce = bg + 4(2b1b5 + 2bob4 + 03?) + 12(3012b4 + 6b1b2b3 + be) 

+ 60(2613b3 + 3b:2bo”) + 330b;4b2 + 13205, 

Cz = b; + g (dibs + babs + b3b4) + 45 (0175 + bis? + be%b3 + 2b1bob4) 

+ 165 (b15b4 + bibs? + 3b°bebs) + 495 (bi4bs + 2015b>") 

+ 1287b)°b2 + 4290,.7 

Van Orstrand (Phil. Mag. 19, 366, 1910) gives the coefficients of the reversed 

series up to Cy. 

6.30 Binomial series. 

_ I) ae n(n — 2B — 2) ieee 

! 3! 

n! : " TNA MN Soee of P\ 5 (;) f 
Gp IEte tee cert (“het (7 +(")s Sees aA mb +.. 

(I+a)"=1+5R4 
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6.31 Convergence of the binomial series. 

The series converges absolutely for | «| <x and diverges for | x| >t. 

When x = 1, the series converges for 7 >—1 and diverges for n<—1. It is abso- 

lutely convergent only for m>o0. 

When x = —1 it is absolutely convergent for n>o, and divergent for n<o. 

6.32 Special cases of the binomial series. 

(a+b)"= an(1 + Al - ar(r + ae 

b b. See Me 4 (GX 
If Hee put # =~ in 6.30; if Hee put «=> in 6.30. 

6.33 

Ti a a oa 

be alt 4 a $ (=) See een, x 

.. (EBS Sen ene ae ae ae 
B (ta) = 1 — 26 + 3x7 — 4x? + 5x4 — 

a ViFaa reba Eley Ee Ea, 
5 Mamet aaa - Tercue’ 

c Weaken fen gee uae gee 
7 ep ee ear oe 

8 (K+a)i=r+2e4S> ere Sas oat ta 3. Bts m3 ae ea 

2 * I #3) e7 3 (UL a4 
Io. ‘= = i — x 3 Oe Ges (1 + x) aig ss er SoH 

a8 I 5 aa 195 ita (tb -+- x)? =r—=-*4+— 2 — 7) x4 
a ) ; ee 120) nay 

BoM Grae a )Fo, 1 ot gh 
5 2 
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I3. (Garba t fe Se 
5 25. ron 625 

re Tes Sol) SOO ee eae ane 
Tae (t +a)! r+¢e 7a eae 31104 

Nati Se Tne, COS 3 1729 oe 15. (1-+2) et ee 

6.350 

ee 2x 4x4 Saxe : 
Le re FT Se ye ie! (Lens alae fae <<a 

2 a i Se if ae 
2 

ee ea eee eee oi? See [<r]. 

La Nii 2 4 2 

SOS S peel nani 2 SOS omc ty Be ee ie [azeaall: 

6.351 

——— n a n\ 2 

I. eee | =o {rtn(2) +" 9) 

\ J 4 2! 4 

nn — nN — x\3 Be CEE ape) rj. 
nm may be any real number. 

n 2 Zlaat _.52 Zlage —§ pe Wen Ae 

2. (v+ vite) = ig US 128) sy EL 2) LS: 
$! 4! 6! 

WR NW = See nt eT) a 3) oe 
aha Shen Sah, Tae a ee ae SRS [ee <a 

6.352 If a is a positive integer: 

Ee Bale gt aa Lie _G@-oIf,, Se) 
7 ee aes ree) aa Drape a) es fe ae 

6.353 If a and bd are positive integers, and a<6: 

a(a+1) , a@+1) (@+2) , 
bG is) BG Drees) ees 

b —1\ { (*1)'* log (1 — a) aS -6-0()~*) . (x2) 

x > ay! ae Jos] 

(Schwatt, Phil. Mag. 31, 75, 1916) 
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POLYNOMIAL SERIES 

Bo + bx + box? + bgxF +... I 
360 $$ = (Fro +n ter? te. 

6 Go + ax + ax agit... a sist ), 

(ey) = bo = 0, 

CoQ, 
a +——bh=0, 

ao 

Ca, CoQ + 4 _ 5, =o, 
ao Qo 

C904 CO, a2 Cog 

3 ok ale a — b3 = 0. 
ao ao ao 

ere (—1)” (aybo = ob) ao Oh A Geao thi ic 12) 

e A” (dabo — adobe) ay Wile ire te fe) 

(azbo = y)3) ag Gi. Go 6 op Go [e) 

(An—1b9 == Ab n-1) an-2 QO G io Gs ONO ao 

(dnbo = Abn) An-1 Ohno Go Oo Go 6 ay 

6.361 
(ot axtaert... .)™ =e +0x%4+ 4+... 

Co = ao”, 

Qo, = NACo, 

2d oC. = (M — 1)ayC, + 2NACo, 

30C3 = (NM — 2)a\Cg + (2M — 1) doc + 3NA3C0. 

Rai wes cf. 6.37. 

6.362 
y = ax + ax? + avi t.... 

byy + bey’ + bay? +... 2S et eM + ett... 

Ci ayb,, 

C2 = dob, + abe, 

C3 = d3by + 2a1d2b2 + a,%ds, 

C4 = A4by + ae2bo + 2a :d3b2 + 30;7d2b3 + ay4hs. 

6.363 
eux + ax? + asad +.... = i Eee tee ae 

qj = QQ, 

@ = a+ -ar, 
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i383 
C= + de +e a, : 

LER nies Bite a es C4 = Og + 103 + — Ae + — Oy" + — ay. 
2 2 24 

6.364 
log (1 + aquw + aoa + agv? +...) = ae t+ ovr? +o +t... 

Y= Gy, 

20, = cy + 202, 

303 = AoC, + 204Co + 363, 

4Q4 = A3C, + 2A2C2 + 303C3 + 404. 

q = gh, 

i 
62 = & — ~ Oa, 

2 

I 2 
C3 = a3 — — C102 — — CoM, 

3 3 
I 2 3 

C4 = A4 — — C103 — — Coa — — C3Q. 

4 4 4 

6.365 
y = x + aon + av +... 

Z = bye + box? + dex +... 

yo = oon? + cyx3 ++ cuvt* +... 

C2 = ah, 

C3 = Ayby + ashi, 

= ab3 + Gaby + aabr. S > 
| 

Q1b;,4 + debp_2 + Asbr_3 +. . . rid. is) > ll 

6.37. The Multinomial Theorem. 

The general term in the expansion of 

(a) (aq 4 ae + aoe” + ag 

where 2 is positive or negative, integral or fractional, is, 

(2) n(n —1)(m—2)...(p +1) 
QpPAy"'de"ag". . . eteertsert | | 

C1 !€2!c3! dion 6 

where 
DP iG) Co Al (G3) ar sateutss oe i = 

Gl; Gy 63,4 2» » are positive amtegers. 

If 1 is a positive integer, and hence p also, the general term in the expansion 

may be written, 
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nl 
C177.C27,.63 aert2c2+3e3+ 

(3) pl cil ce! me pores Qa mg eae iesnisnc > Ao 

The coefficient of x* (k an integer) in the expansion of (1) is found by taking 

the sum of all the terms (2) or (3) for the different combinations of p, ¢1,¢, 

Ge. = » whiga satisfy 

Cy + 202 + 363 + go 0 G5 wis 

ptatatat....=%. 
cf. 6.361. 

In the following series the coefficients B, are Bernoulli’s numbers (6.902) 

and the coefficients Z,, Euler’s numbers (6.903). 

6.400 
: x3 x? gent , 

Ti sinzex- 545-5 =o carey [ne < «il! 

xy xt yen 
2. COS % = r-545-5 ow ani [ine <a: 

3 epee ee ign 3 02 94 
15 315 2835 

ee gem : 
is (2n)! 4 

= se eet ae 
3. 45 945 4725 

I DEH] B} 
et ay ES nM V2n—1 2 2 ve Tone [ie <a] 

Ls oes 6184. = Oren T 
5. sec x = eae it Z (Gat 2 [e<™| 

6 csc#=— + a+ L_ x3 4 ST aS 4 
3: Sey Sul 

= - : 2(2nt = 1) -2n+1 2 2 =F oman [<n], 

6.41 

2. Sie Ree ae ae a ge [<x]. 2°32 2h As 2° "0-4, 4 
co 

et coss lan 2 foment C2 NEE yon tl, 
2 2?" (n!)? (2m + 1) 
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I 1 ies I 
2. tan 4 =n4—-4°+-—-r ——a'+.... 

7 
(Gregory’s Series) 

1+ 2 | 2 OT jie s\r+ 2 

o x es) ane 
(2 5 ) 

Tse (20 + 1)! 2 

2 x aye Bae nal 

“ae Ze " ? (2m + cepa 

Breede Kage wt eee 
3 I ISOs ae. 

a SG Bs 2 x 2°3 x3 2°4°5 x? 2°4:6°7 Ry ies 

a eens intel 2 (2n)! oa 
CSE Xx 2 22n(y!)2 (on uf 1) x 

6.42 
“4 : 6 , 3 

(sin a)? = x2 aL 2X 
2 4 x A 6 x 

ae 2in nel)? 
n+2 

(2n + 1)! +1) - 

x < Ol 

mt 
2a (Sinaae xn) k= ye 4p 2 #(+ ) a #e(r+54 5) v7 + Ea 

: 5) 
(oe) pei p—1 fka—t 

kon ree I I 
—l1 y)p = ! — ‘Goa eee ——— ee 

3. (tan™ x) oD, | 1) 2ky + p — 2 4- (Sata) 

(Schwatt, Phil. Mag. 31, p. 490, 1916). 

oe 2 2°4 
Vi —-xsint*=x*-—+—=- Bw. ee 

: Eh) oa 
— < n Ge ae eile 2n+1 | 2 | = 0+ DiC 19) =e Chas an 

Sinn, & 2 2°4 2:4°6 
oo Et — 8 4 a st Ce 

: Via ae 3 BS) oa 

2°” (m1)? enti 2 | = ‘(en sf ae <I 
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6.43 

1. log sin x = log x — pope pe a spell 8S 
I I 
6 180 2835 

= g2n 1 

= logx — 8 a 
8 n(2n)! 

n=T1 

It I I I 

2. log cos x = — — 27 — — x* — — af - Titres 

a 12 45 2520 

iS oe g2n-1 oyu ars (Castes Oey = 1) IB ea 

n(2n)! 

ey log tan x = loge +2 w+ Cot ott 

2n—1 __ 2n 

= log x + Gas (eee Byae” 
n(2n)! 

—— 

n=I1 

4. log cos. = — £4 sin? + Ein! x +S sin? a a 

co 

I TYP. 2 
=== 7 Sin". 

2 head 1 
n=1 

6.44 

I I I 
t. log (r+a“) =x-—-#4+-n42-—-x!+... g (1 + «) ; . : 

co 

yn 
= =. nL 

> ( 1) nN 
N=1 

{log (r+ x)}” see 7.369. 
Tgs Teese S 

2. log («+ Vi+#) =~ ——— a3 4 ~~ 3 5 _ ES aoe 
23 2°4°5 2°4:°6°7 

Rena) 
att 

=x+ » (—1) g2n—-ly! (n— rye (2n a8 t) 

n=TI 

oN Dee oe ST ae ONS Soe 5 

ee ae Vt) Laie ea Soe LS eS 

(on — 1)! yen 
= log 2 — > —{)"— 

"4 (4) genlylin — 1)! 2n 
n=I1 

123 

|- Pay < |. 
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ee ep 

aA Gt 

(RC Ree 

Tame aR a 2°32 2 

Ge ois ea 1)! yen 25 

= log « + - or g2n— 22"-In! (n — 1)! 1)! (2n + 1) ae 

5. log = (w— 1) — 7 (@- 1 +7 @— 2) 

Ae log (1 + Vi + #*) = loge + — — 

n=O 

Sei ecg MI EMRE IAS | 
ome | 2B 

= 2D) F_ 42nt! [<x 
= 2n + I 

% + I I 120 it it 

oh Lg eomn (i+t 3b teat | 

= Ba 2 f 
zi D2) (2m + 1)a274 E >| 

1-2 1-2: 
10. Vi+ Ba Ae) oi aE? tg ee eae 

(Gee mn 
=» eo OC al ane a <tr e 

ae : iG Mog Ce INAL SRD) D2 ea gered Oo ae SN 
Vi+x2 3 S25 Sayer) 

2) yon v2 A -- 22 Geo +1 C7 

| nn = tat aa! 24h 12. | Toe ee VE a ee hee a 

P deo 2 ei —1)! a [<r] 



INFINITE: SERIES 125 

3. 3 { log (+4) } Ser ah ta eee |e<x]- 
2 3 4 

where See es NS, eg (See 1.876). 
Eee 3 n 

= { log (t + ) VP aE 2 sas 2(Es +s) Pea * 5% 
I 

+2/ Sit at 2) ah a }e<x| 
5 4 

log (1 + x) (2+ I )= 

tS: (x + x)” = Osis) n me 2! 

I I sey Oe Ek A 
+ n(n +1) (n+ 2) Set a ea a TM 

6.445 (See 6.705.) 

3 (r= x)" I I p ce 
5, SS Se SSE = = = CC OT | 

Ae 20 2x Ste 123 eae 2A 

Ele x oar I 4 
2. — —lo eens 1-1)-2} = + 
EN VJ Xx Sey g ( ) ESA 32455 

x2 

a =f | o<<r] 
5°6°7 

ene =——- oi 
Ser, «| 

B: Papa 

6.455 
am bea ee 

T; “log (1 + 2)-log (x a) = 8+ (r- 544)" 

T fest) OU he a \ ee 
+(r-242-242)54 BS a Se Dy je<r| 

2A Ba An ENS ES 
6 -10 

2 Ftan-ty-log SF * nae (1 - E42 )E 4 (1-2 42-24 
2 Lo a 57'S B53. 0 Gy a5 

ae. [Rear 

ee ae ee (pee (pel vl et\e 2 3. 5 tan vlog (r+ 38) = (1 +2)" (r+ 54 ie ley je<1] 

6.456 
Z 2 ( 2 i 

1. cos blog (e+ VF) } = 1 -Sep Sete 

2 ( p2 2 2 2 uid Uae EE ee oe 
6! 
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k may be any real number. 

: a kh GED 
2. sin | blog (@+-Vr4=) | = Sx epee | 

2 ( p2 2 2 2 

+ ete xy — 

6.457 
co 

ee Re Pa n ie Anx 
I— 2xcosa+ x? 

n=1 

where, 

Aon = (-1) i(-9) (" 2 ) (2: casya)7*; 
2k 

k=o 

rsa aay aa ae 
Aont = (—1) pay T) (“Ate (@tosta) "35 

6.460 

Me eed gn 
Mm em =a +44 a eete 1m Se RS 2s 

2 3: n! 
n=O 

2 a 3 

2. a7=1+xloga+ (ele a)” | (log a) : 
2! ll 

3 ew ne(rtet Sarg Sat y Baty ) 
2: 3: 4. 

sin x a BX 8a 3 aa" 56x" 

4. € ye ape y ae ers ail 7a ci 

— Gs at Maas Bee =e(1-5 44 Sy 

2 ye “4 5 
6 marty pops yO Sry 

21P ete 4! 5! 

eS Lee 505° hase 
ile Coe aN aig aisha ans 2 7a epioricnvonks 

. oe . 

2 3 4 
8 giowtn = ay ae (Eee heat. foe 

6 24 

6.470 

a? 7 = ent 
I iui ee ee a = 

. Se Gh RUE GS 5 era a 

<n 

[<1] 

WK » |: 

[<=] 

[e<e |. 
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x2 x8 yen , 

= cosh 4 = I tot aa (+5 ae Je<@ 

; tanh « = « —— 2° nly, yo — a Ce Ua ae 
3 15 315 

ys Ne gl is ie T) 2n—1 2 =|. Ye T) SGA. Bik ee : 

, meat «= 4 2a? = — ‘ene: =. 
3 45 945 

277B, 

= aa” [e<r| 

6 = E, : 
. sech + = 1 — ae Pi ea eo +>) (Sean ae je<= |]. 

2 24 720 hon (2)! 4 

Bcc = ya bt | 
6 360 15120 oes 

: = 2(22n-1 _ t) z a F 

=I+ 2 (—1)” eo Brae [3t<a| 

6.475 
22 4 2 

; cosh x cose = 1——at+—aS—— a? +, 
4! 8! r2! 

2 4 6 
De 2 2 

2. sinh xsinx = —x27 —— «46 +— x _-..... 2! 6!- Tol 

6.476 
foe} 

: x"cos nO 
e789 cos (x sin #) = sae 

n=O 

foe} 

j ; x” sin 28 
e788 sin (x sin 0) = yo 

n! 
n=1 

(2n)! 
n=O 

co 

42"+] cos (2n + 1)0 
. sinh (« cos 8)-cos (x sin 8) = > 

n=O 

(2n + 1)! 

c 

x2"+] sin (2m + 1)0 
. cosh (x cos 8)-sin (« sin @) = > 

n=O 

(on + 1)! 

x2” sin 2n8 

(2n)! 

. cosh (x cos )-cos (« sin 8) = eee Ee 

. sinh (x cos @)-sin («sin 8) = >a 
n=1 
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6.480 

1. sinh-? x = « — — x3 + sa eye 5 
22 Dir Anois 

>2 (=i yn Seen gent 

22"(n!)? (2n + 1) 

2. sinh— ly = log 2x +~—, - ~4 ts ‘ 
22g" “32-4 As 

. Pll CO ee 
peer ya 2 2°" (n!)?2n % 

n=0O 

itp coils : h 1 xis ] aS SS eS SS 3. cosh™ x = log 2x — None ee 

x (2n)! ane 

pee > 22"(n!)?2n = 
n=0 

: r gent 

4e- tan = ea = 2 7 an+1 
n=O 

ie See I I 
- Ina! = —— a) | Geen e 5. sin x 2 308 24 5a 

(2n)! = Sits oes =9)) — 2 

2 - 4 

6. cosh7! — =lo aor gat 
22 2°44 

= a ee 2 a) >= 2n 

sech™ « = log x 2°" (n Non 
n=0O0 

2) i, ot en eae 
. sinh! — = log—+4+ —— — —~ — 7. sin 85 =e He ag 

(2n)! 1 Zs oes i See 
=> csch> Xx log = =F > ( I) 22" (n!)22n Ne Qn x 

Seatanhe) = eer one 
ee ya vee Ge 

coth! 4 = 2, des 
< an +1 

n=0 

[>] 

[<r] 

| 

Ps) 

fe 
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6.490 
es) 

I eevee = e~t(2n +t). 
2 sinh x = 

n=O 

foo} 

I 
2. ohne. Shes —{)” e7x(2n- +1) | 

2 cosh x D>, (-) 
n=0o 

2 : (tanh x — 1) = (=1)* ex. 

n=1 

Lee} 

1 4p i 

6 — ie lo tanh == e7e (2n-+1).. 

2 S 2 wy an+1 
n=0o 

6.491 

I eee _()’ 5 
AOD e ep a 4 

By means of this formula a slowly converging series may be transformed 

into a rapidly converging series. 

6.495 
iL a I ns if " ) 

ity (tahol 4 = eee 1 \2 ° Si \e ; 57 \2 : ° 

Fel map —— | = % 2) a a 

2 2 2 

co 

8x 

(2n — 1)?m — 40° 
n=I 

co 

t : 22 ay 2% 5 

Ho ODA a Uo TY gan et ae ae nT eC eee eet 

Di ee a 7p) ae (3p) ec x near — x 
n=1 

a ismt, | Se\! a G+ @)--" By 2 2 2 

co 

_, 4(2n — 1) 
a ee (2n — 1)?a? — 4x 
n=1 

; 2x 2% ont 
_ ey SS t  S  Se 

Cc 

I 2x 

x (1) nen — x 
n=T1 

By replacing x by ix the corresponding series for the hyperbolic functions 

may be written. 
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INFINITE PRODUCTS 

I, sin x=% I— =): 
Po 

I+ 
n aa) 

n=t1 

IL 

IL (: 
ses + TT (- 

I (: 

n=I1 

2. snhx=% 

(20 + a=! 

4. cosh x = es 7 ama) 

6.51 ; 

sin x 
age = Il cos = 

6.52 

i ne Qn 2 ies =e: y: fie oral: 

6.53 
Ee 2 

1. cosh x — cos y = 2 («+ =) sine? ; I(:s SS (: ort >) 

Ex = nia a? 2 Bs ( — —*~—)( — oa 2. COS#—COSy=2 (: “) sin ; l : (on + y)? (2nm — y)? 
I tj 

6.55 The convergent infinite series: 

It+tm+wt+..- 21+ te 
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may be transformed into the infinite product 

(r+) (1 +m) (IT +%)..... 

= ll (x +n), 

n= 1 

where 

Un 
US = a ey 

T+m+t+ Mt... et Un-1 

6.600 The Gamma Function: 

T(z) opt 

m=I T+-— 

nN 

z may have any real or complex value, except 0, —I1, —2, -3,.-... 

6.601 

To = |] (: + =), 5 

6.602 
oe Limit if ae = 1 
Brgy sls | WBA we SIG lige te og m 

00 ent ent 

-f {—— - = | dt = osrzarsy. bus 

6.603 
V(z +1) =sI'(z), 

7 
REG = Z) = aia ae 

6.604 For z real and positive = x: 

I(x) = uh Cutan uce: 
fe} 

jog P(r +a) = (0+ 5) loge a4 Flog emt f Pc itifen@. 
e—I 

6.605 If z=, a positive integer: 

T'(n) = (n — 1)}, 

r(n +7) = pgs. + Gna) Mies 
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6.606 The Beta Function. If « and y are real and positive: 

BGs, 9) = Bo, a) = pe, 
B(x, y) = foe (1 — 4)¥—"' dt, 

Bi + 159) = = Bow»), 

B(x, 1 — x) = 
sin 7x 

6.610 For x real and positive: 

Wa) = FS = -y- Ds 1), 

6.611 

We +1) == + W(x), 
W(r — x) = W(x) + 1 cot Tx. 

6.612 

W() = —Y — 2 log 2, 
W(t) a 

W (2) = 2 6 

V3) =1+5-7, 
I i 

¥(4) =1 Seeman 

Gis" |. Tall tee 
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6.620 f 

So 
B() = ae +n 

I Lt % 

Sh Arp v3) 
6.621 

B(w + 1) + BQ) = = 
T 

B(x) + Bia — x) = Sala 

6.622 
B(2) eS log 2, 

t\ 7% 

gee 

6.630 Gauss’s II Function: 
k 

n 
meld: (b,:2). = sO es 

Mebiiee es +) IT (een). — 
sa +2 

k 

Limit 
=) ie eS puare II (&, 2). 

4. II () =T (+1). 

s. II (-z) I ( — 1) = wesc 72. 

6. II (=) 5 i/r. 
2 2 

6.631 If z is an integer, x, 

II (n) =n! 

DEFINITE INTEGRALS EXPRESSED AS INFINITE SERIES 

x BEeED, Fs 7 (—1)k 9k 

6.700 ue e~* dx = >> RIG 

k=0 

2S gky2kt1 
=e” ——————— 

beg 5.2 22k E'S) 
k=0 
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Darling (Quarterly Journal, 49, p. 36, 1920) has obtained an approximation 

to this integral: 

Fresnel’s Integrals: 

6.701 i cos (a7)a4— 2 esntarey or i 

aces?) > (Vs a re NGreas) 

+ sin (2?) 0D (1) 

6.702 iL ‘sin (a°)dx = > HTD ih 

= sin («?) 2 Ga) berm areal er ae +1) ee 

— cos (x*) y2 (CG ee 

6.703 {5 dt = 2 ues rer 

oe : Sy ae 
sn 

¥ “< (a+ nb) (a+nb+1) (a+nb+2)...(a+nb+hk—1) 

[b> on a2 <u: 
(Special cases, 6.445 and 6.922). 

hee gnty wins i 6.705 fre ty" dt = > (-1 ye: ay Rae PIE reyes 
n=0 

6.706 If the sum of the series, 
co 

f(x) = Ds» CuX” [o< x <1] 
n=0o 

is known, then 

Cnt” 

2 (a + nb) (a + nb +1) (@+nb+ 2/0... (a+ nb+k—1) [b>0] 

ats 3) ‘e1(1 — FY (bP). 
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>}? Tit ee ee — 6.707 i f(a) Dy = sin ne-de = + al (m — 1) Y) f+ 2nm)-a. 
n=1 n=0 

Example 1. (OQ) 2S 28s [k>o]. 

I - I ebm 1. e—kar 

2 a 2D) ee” kt ee 

Replacing k by 4 and subtracting, 

I I 27r 

¢ k u >) (=) Ren? et — em hr 

Example 2. With f(x) = e~** cos wx and e~ sin px. 

d = d d msinh 2\t 
3: Tee | M+ Ga es | ~ cosh 2Am — cos 2u7r 

mM >>) n— fi. n+ be Is sin 271 

a Ne pe ha ge ea, Pew tw | cosh 2A\7 — cos 27 

6.709 If the sum of the series, 

f(x) = ee AnXx", 

is known, then 7 

med) as 
Go + ay + ay(y +1) + ayy +1) (yt+2)+..-.. Jeo, 

DP () 
6.710 The complete elliptic pia of the first kind: 

I 

a cere - Tm 

Flees Gea] 
Efe Seeeees tye) eg 

If peace Ma 
Hist Vb nuk 

c= FEED. (hues (Shues...} 
Mme) fi 35- a em) 
“i 2 i> BOA Ole va, oe Ait Ve 
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| 
| 6.711 The complete elliptic integral of the second kind: q 

bf Rab a0 

2 pe 2 pA 2-2 (1 (yee ae 
2 2/ 1 2°4/ 3 

Pia se se Oey at, 
2h, pail 2°4°6 .2n | 2mnm—1 

If pee eat de deel 
Tara Teepe 

NS - 

b= TORE) 1 ofthat o(S3) eet. oy 

ee ~ 16395. (2a) Pon a + Dean + 0/ 2°4°6...2n Jem} \ 
pcr Ge erie wlan din = 

| ety (tee De ee ae 

FOURIER’S SERIES 

6.800 If f(x) is uniformly convergent in the interval: 

—¢<4< + .C 

4 ; TX 
f(t) = Xho + b: cos = + bo cos T+ by cos = +. sey 

C 
+e sBaet 

= an f(x) cos oS dx 

MTX 
on = — =m i f(x) sin —— de. ) 

6.801 If f(x) is uniformly convergent in the interval: 

Oo<4*<CO 

31X 

C 

bm 

é 7 OTx 
f(a) = = bo + by cos 22* + by cos == + Bs cos = +. oe 

4 2TH ao) AML an One 
ACR SUN rae gy 02 \S1 Gigs ot ea Sidec 

bn = 2 f 10) Ae 

iC 
2 . 2MTX 

Om = = af f(x) sin ; dx. 



tea ee en a 
ty > i, ‘ i aL, ; " wh 

: : ut 3 Gust souk ye tien Tarn a 
" aig i radia thal ep uw 

F “ . 

} y 
f 

z a 

i 
q 

a 1 

d 

r 

7 ' 

j » 

. 

q 

. 

: 4 

® 

. ; 

- | 
’ 

' 

‘ e e 

: t 

- ‘ 

4 

. 

e 

> 1 1 
be” 
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6.802 Special Developments in Fourier’s Series. 

f(s) =e from’ # = ke to x = (+ Je, 

f(x) = -—a@ from x = (k + ae to x = (k+1)¢, 

where & is any integer, including o. 

Wee 42 ty 2 (20) ar 
fg) Pa Digess G i 

6.803 f(x) = mx, ea 
4 4 

= -m(x—5), DU es eae 
2 4 4 

=| wale — c)) BK es 
4 4 

=— m( x — ¥), ae SiS le 
2 4 4 

AQ > (-1)-1 I a 2(an — 1) 

T° hom (2n — 1)? C ; 

C C 
6.804 yh) = Vee mer Sut 3 

=m(a-0), +4+2<"<% 
ae: 2 

/ a = 7 fey = 2) SP sin 
T dd C 

6.805 he) = a, —5b <x < — 30, 

= 5 («+ 28), —3b<x<¢-), 

i a, — b < x < + b, 

- —>(@ 2b), Cae 20s 

=-4, 30S 4 < .5p 

8/24 Tiere I 2G al Ge aT 
x — 2 Sg SS f(x) 7 f ap a TE ae Bi a 

137 
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6.806 WG) = a a3 eae 

8b~ I Tx 
Fs) = wid Gap (2n + > 

6.807 f(x) = 5 o<xXb, 

ile g b<x<l 
a ae, >" L—-b’ ‘ 

2al? - I ST 
ne) TE — PoC) 2 i sin —— ae yr 

= (—1)=-1 

6.6105 x4 — Pea sin nx -1<x<a]: 

eon 
6.811 cos ax = = sin an 74 De cos na} | -7<x<a]- 

: Bir (=) ta ee. 
6.812 sin ax = — sin iS - = n sin nx —T<N<T |: 

7 af na 

6613 x= 72 > — [o<w<en]. 
2 in 

6814s og ee > BOS Jo<w<on]: 
2 2(1 — cos x) n 

n=1 

esis 7-7, ye | Jo<x< on]. 
6 2 4 ms n* 

24 2 3 SN si nx 
esis == 7 1 _ys Jo<*< en], 

ao 4 r2 ~ n 

Tae aT eee = cos nx 
6.817 — — + -_- >)“ OS ko rae 

go 2 2) 48 n 
n=I1 

4. DIS 4 A) cs 1 6.818 eau ue gS Eee 

go 36 48 240 n° 
n=1 



6.820 

6.821 

6.822 

6.823 

6.824 

6.825 

6.830 

6.831 

6.832 

6.833 

6.834 
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foe} 

2 2 n—1 Cc 4¢ (—1) NTX 
a cos —— By ete | 

$) alg n C 
n=1 

co 

ee E I NIX 
———_-_ = —-  —- € =i n—1 = - os 

e—e* 2G > ( ) (nr)? + ¢ c C 

n=T1 

si 7-1)" Z spn eh eal 

n=1 

2C€ I I 

eo = — eo — iI Sar tia —I n—1 = - cos nx ° Ae , 

x ' as a ) C+ <4 <7 
n=t1 

ue i + * 9 LCOS 2 x 

SUS Ze @ ze »)sin 2x +- sin” x log (4sin* x) = 3) "08 2 (w+ 1)x 

= n(n + 1) 
n=t1 

lo = x < 7m]. 
sin 2x — (m — 2x)sin®? x — sin x cos « log (4sin? x) 

n=I1 

n(n + 1) 
E 0 < 

co 

Lele ee COS 21x 

2 4 ee (2m — 1) (2n +1) 
n=1 

A Loe} 

rsin x Boke 

See ae yd) n nx pices 
I—2rcosx+r 

<< 
n=1 

~ 

=i] 7 SIN. X I - 

fan = — 7” sin nx ee 
I—rcosx n 

n=tT1 

i. [oe] 

I _, 27 sin % yen 

a To sin(2n — 1)x 
2 1 2n — 1 

Cc 

I—r cos x 
Cy Tener a aor 7” COS NX 
I — 2vcosx+/?7? 

n=O 

[oe] 

; I > 7 
og 

- — — yn cos nx 

Vt — 2r cos x +r n 
n=1 
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6.835 : tan foes = > (ante 5 60s (2n — 1)x [<a]; 

NUMERICAL SERIES 
6.900 

Ss-atatatat...-=De I 2 3 4 Fmd k 

qr® 

S; = 0 Ss = —— = I.0173430620, 
945 

5 eee 668 S as 2= — = 1.0449340 1 aR CTS 1.0083492774 

7 7 
= —— = I.2020560032 Sg = —— = 1.0040 62 25.79430.- 59903 8 9450 40773502, 

ae 8 iS a eee ee = —— = [.0020082028 4 90 3232337 9 29749.35 .- 3926, 

po adel aN Sio = 1.0009945751, 
Bb 205.1215 Bie e0 iin oe Sir = 1.0004941886. 

6.901 : : : a0 Shige Pee yey Sh carota 
a isi 7 hand ( ) (2k 4b r)" 

T 
“=> 

4 

U2 = 0.9159656... 

Us = 0.08804455 5c. 

Us = 0.99868522.. 

A table of wu, from n = 1 to m = 38 to 18 decimal places is given by Glaisher, 

Messenger of Mathematics, 42, p. 49, 1913. 

6.902 Bernoulli’s Numbers. 

3 siti a poy aS Sev pa es 
. (2n)! n ~~ q2n gen gan 4?” egies e* te, Ben 

aor 

(2" = 1) 742” I I I , To) : 

eee ee a Br = Se eae 

Aaa) a a (2k + 1)" 

(27a Ge Las I I I I > es! 
3 (2n)! nT qin nan =- ye gee +. = (=a) = 

=a 

: 
I 

B — it } 
il ee 

; 6 
Bs Ae 

Bias ed 

30 Bs 
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aes 2 g0my 
Boas 66. PT 510 

pe eor 43807 
P= 3730 He oTpBe 

ial eel 740r8 
By; = 6 By = on 

6.903 Euler’s Numbers 

rent ' T I T 

22"+2 (27)! FE ae gent oR sent a pant T = Yoon ai = Galore: 

Ef, =, E4 = 1385, 

Ez = 5, i SOG aT, 

EH Or Eg = 2702765. 

6.904 
oe HS 1) jee 2n(2n — 1) ati 2) 277 ane 3) ee 

! 4! 

Eat Ny AT +(-1)"=0 
6.905 ° 

2m (222 — 7) Mees, Syne (2n — 1) (2n = 2) (2n — 3) Sus 

2n 3! 

an — 1) (2m — 2) (2m — 3) (2n — on — Hod It Jat : 3) ( 4) ( 1S Sane yee 

6.910 

n™ 

Sr = Dae 

Sie, Shee a 

Se = 26, Se = 203¢, 

Ske Be. 7 = 107 7e, 

4) — Ge, 3s = AEAGe: 

6.911 

I 

SON eryT 
Si r Se See ST 

2 64 

Ge T? — 8 ie Ts 30m = Bod" 
16 a 768 
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1. log 2 3 aaa 
ie md 11-2" 

pm an = > xe 
= Paes oe pee md 2" 

6.913 

2log 2-1 = >» a2 ee, 
af 6 hand n(4n® — 1) 

3 ene 4 [ee Nea 
2 Co) n(gn? — 1) 

n=1 

See 5 gc BR Soe 2. 3 +5 log 3 + 2 log 2 ener, 

a n=T1 : 

6.914 5 -> (3 A ee ates eran) ae) 

: ij DAS Ae. oh 2n an+r 
N= 

Ug = OLOE 500501. 4 (see 6.901) 

So = 2 log 2- +m, Sa=1-5 

4 I pa 
laa Som 78 2 eg ee ee 

Scien. Sa eee fee 

i 2 3 (ONG 

We: HOE gas 0s eee 53 = ie (2u2 + 1) ; Sen rs log 2+ “ie (182 + 13), 

Sys cone, eee we 

on 84 5 225 

ers he = ee) (is | 
Soe 327 Crs) 5 Ss 128 p08 2a Te36 Tae (sows + 43). j 

Ss Papers 4 
225m © | 

& _i i Sr = ag (Som + 43) - 2 
When 7 is a negative even integer the value 2 = = is to be excluded in the 

summation. | 

6.915 . 
ae (2n — 1) (2n — 1)! 

SA err Wer cae aia bs 2 ee 
: 6. . &.2n 2?7-n!(n — 1)! 

oy 4 "4? — 1 
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Loe] 

ee a .--tfe= A,—— 
oe "on +1 

n=1 

foe} 

I 
ae log(r t= Vg) = 5 ->- 1)” A Sor 

n=I1 

Eee 5 4n+ 1 : 

ra D4 (2n — 1) (2n + 2) 
n=1 

ae area AC Ee 
® Tens a r) 2 Gas Dp) (2n + 2) 

(—1)"A,3(4n + 1). | 
| 1 IM: 

aoe a4. i i 4n+1 7 

es De ire my (2n — 1) (2n+ 2) 

6.916 ° 
If m is an integer, and ” = m is excluded from the summation: 

Ls 2 i am > = 9 4m m — n* 
n=1 

= ae n—l 

aoe >. =) ~-  (m even). 
4m ad mm” — n° 

6.917 

>» =i 
et — 

n!} 
n=2 

2 an? = 7 
n=1 

2lor 2 = >> _T2n* 1 
3: et ad 11(4n” — 1)? 

2 r+ 3 . Be An abe an 1. 6.918  —lo S see) er epee eee tee 
V3 : V/2 “= Ce BGT. ue (Zee), 20 

I an +1 
6.919 aut — log 2) = eS nlog( = ++) —I : 

n=t1 

6.920 

Tr e=t+—+—+54.... = 2.71828. 
Beas (ait 
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2. -=1- 5 +5 Ai = 0.36788. 

I I I I 
as (e+ t)ar4+ 5 +54 » = 1.54308. — 

I I I 
4. (e— :) = ie aT wetee « = E.L75201. 

Es COS, I = 1 — 45 = 0.54030. 
Bile cea! 

6. sini = nea = 0.84147. 

6.921 

iss ee een 
5 Des 2D 

Do ey a te Se 
10 orl P See 

Peony pee ete SS 17 tee . 

De if I I 
4. Caimi Bt 5 mia 

6.922 ae erm ae Oh e281 IG) = 20250. memes 

6.923 “(Special cases of 6.705): 

— RO Ae = log 2 — - 
L293 3. ai Gi! oe Out 

I I 

peg yas) 5o7” Bea et, 
2. SRS a ee SOC 

2c SoA PANS Ok COR TCS 4 

I I I I 

toga 4561 O78 Tee 
I I ny PL 

& Tag tas6 17890 5-83) 
I I I ea 

; di3c4q * 69-8 Os TT" ae Sgr ge 

I I E I 7 

M Taga) 4567 78-910" = lt aq) ges 
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Vis (SPB CLAL. APPLICA TIONS OF 

SNPS Gol liss 

7.10 Indeterminate Forms. 

7.101 = If MOS (x) assumes the indeterminate value = — for « = a, the true value 
F(x) 

of the quotient may be found by replacing f(#) and F(x) by their developments 
in series, if valid for x = a. 

Example: 
sin? # 

I — COS X]n=0 

x3 2 2 2 a bode) (Sr) pee gee al Ne Ors ne ett A) 3 
I — cos x i I i 

miles ol Simtical, 1 Deh 2 ara 
Therefore, 

sin? x 
— = 2. 
Eo cosee—o 

7.102 L’Hospital’s Rule. If f(a +) and F(a +h) can be developed by Taylor’s 

f(x) Theorem (6.100) then the true value of F(x) fOr ais, 

f'(a) 
F’(a) 

provided that this has a definite value (0, finite, or infinite). If the ratio of the 

first derivatives is still indeterminate, the true value may be found by taking 

that of the ratio of the first one of the higher derivatives that is definite. 

7.103 The true value of Ste) fOree = a aseuhe, limit,-fon 4 10)! oF 
P(x) 

Goa if) (a) 

pi” * Fa) 
where f ‘?) (a) and F “ (a) are the first of the higher derivatives of f() and F(x) 

that do not vanish for « = a. The true value of f(x) 
F(x) 

ay if (ie mick 

for x =a isoif p>q, © if 

p<q, and equal to 

145 
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sinh x — x coshx —x sinh x 

sin % — % COS:% (|s=0 a sinew a s=o; 

sinh x cosh x 
=| — ——— =} — = —I, 

Sin ey all p COS Woale=5 

7.104 Failure of L’Hospital’s Rule. In certain cases this rule fails to determine 

the true value of an expression for the reason that all the higher derivatives 

vanish at the limit. In such cases the true value may often be found by factoring 
the given expression, or resolving into partial fractions (1.61). 

Example: 

Example: 

—- pee eran Nor 
eal 8 z=a 

7.105 In applying L’Hospital’s Rule, if any of the successive quotients contains 

a factor which can be evaluated at once its determinate value may be substituted. 

(1 — x)e*—1 —xe* 

tan? x 220 2 tan x sec? x |z=0 

x 
=f. 

tan x |z=0 

er I 

25eC?% | 2=0 2 

7.106 If the given function can be separated into factors each of which is 
indeterminate, the factors may be evaluated separately. 

(e* — 1) tan?x 3 (e * em — ‘| Sed 

e Te « eae 

Example: 

Hence the given function is, 

Example: 

7.110 =. if for. v=": m takes the form =, this quotient may be 

written: 
I 

F(x) 

Lan, 
7) 

which takes the form = for x = a and the preceding sections will apply to it. 

7.111 L’Hospital’s Rule (7.102) may be applied directly to indeterminate forms 

— if the expansion by Taylor’s Theorem is valid. 
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x it 
= = | — = 0. 
Cx z=0o Qe z=0 

7.112 If f(x) and x approach © together, and if f(w + 1) — f(x) approaches a 

definite limit, then, 

Example: 

Limit | is Limit 

xX CO av xXx— oC 
| fe + 2) - 700) 

m120° oo . | If, for + = ¢, fix) X F(a) takes the form o X ~, this product 

may be written, 

f(x) 
i 

tes 
F(x) 

which takes the form = (7.101). 

Limit Limit 
7.130 o-oo. If, be f(x) =@ and pe F(x) = o, 

F(x sx) ~ Fa) = fla) [1-7 |. 
Bimit, 4G). : ; Z é eel tah 

If Re FD) is different from unity the true value of f(a) — F(x) for x =ais o. 

If es a = + 1, the expression has the indeterminate form © x o which 

may be treated by 7.120. 

7.140 102,09, ©. If {F(«)}%™) is indeterminate in any of these forms for x = a, 

its true value may be found by finding the true value of the logarithm of the 

given expression. 

Example: — 

I tan x 

(*) =y; logy = —tan «-log x, 
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I 

log x xe sin x 
tan x-log « = =) = =| ——-sinx = 0, 

= COUsNs=0 CSC Neg x pen 

guia 
7.141 If f(«) and « approach © together, and ines a) 

limit, then, 

Hence, 

+ 1) 
f(x) 

Sai Wale Limit f(x + 1) 
x a gc f(x) 

approaches a definite 

7.150 Differential Coefficients of the form = In determining the differential 

coefficient iy from an equation f(x, y) = o, by means of the formula, 
dx 

of 
dy Ox 
de > OF (1) 

oy 

it may happen that for a pair of values, x = a, y = J, satisfying f(x, y) = 0, 

o) takes the form =. 
dx fo) 

Writing 2 = y’, and applying 7.102 to the quotient (1), a quadratic equation 

is obtained for determining y’, giving, in general, two different determinate values. 

If y’ is still indeterminate, apply 7.102 again, giving a cubic equation for deter- 

mining y’.. This process may be continued until determinate values result. 

Example: 
F(x, 9) = @? + 97)? — exy =o, 

40a + 99) — ey, 
i 4y (a? + 9") — Ox 

For « = 0, y=0, y’ takes the value = 

Applying 7.102, ; 
Qe ee aCe Cy 

* ay’ G2 + 39°) + 8xy — 2 
Solving this quadratic equation in y’, the two determinate values, y’ = 0, y’ = &, 

result for x = 0, y = 0. 
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7.17 Special Indeterminate Forms and Limiting Values. In the following the 
notation [ f(:) ],. means the limit approached by /(x) as « approaches a as a limit. 

LL 
G x 

ie (: +f <| | = (c a constant). 

2.. (Vx +¢—Vily =o. 

3. [Vee+0 - «Jo = c. 

AV Gee cae ae) le = (Gy a). 

Ise Vic: Gi) (ei +) teh (& -ErG,,): = als = (ci Got os n)s 

Ga 

Io. E =o (a>1). 
LES 

a” : ie or 
eer. = 9 (x a positive integer). 

2% 

Me Cc dL ie) | =C (Gor 

«[GteFh-- ° Peehes anes 

16. E ae - log (a + ie) | = 3 

D7: | (a aa bx) rd ef (m>o). 
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(>) (e) nm 
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° 

pulsing See SC Ota i ae 

ye 

Lan 

eau 

g. 

si} 

3 
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I ei 
- 

N 

aera 

> job) =} = 

t=] So 

ll Lo we 
| ea 

ot jab) =] 

ey 

a 
I 

7.174 

vig ich lpsaeie hs [=] =i. 
x 0 

2 [FFM] ool 8. [em logay=0  (m>0), 
0 

| sere=s| ae [ea] 2 
: | to és Cares 

I ss 
4. E log | —6 (m 21). 10.4 [e* |p) =". 

x Jo 

5. [log cos x - cot «]o = 0. | et —e-* | 
11. | ———— | = 2 

log (1 + x) Jo ‘ 

6. toe tan (Z ao "| - cot | =i £2. | = 1. 
An 52 0 log tan « Jo 
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7.175 

8 Ea == 5: | cos ® —-tan al =o 
1 € 256 

2. [(@ — 2x)tan x]r = 2. GG eet) tata c% 

x\ ‘ TX mere 2x\ tan x = emesis a [e-2 
. Tx 2 oe jtan2c] 2 

+ | — e*)tan F | ee 8. [[Cansa) Je : 

7.18 Limiting Values of Sums. 

mete ae re te) ges Det 
nk+l i REET ~ 4-0 

Limit (4 o I i I 2 4, I ) 

 n>eolna ' na +6 na+2b °° ~ na+(u—r1)b 

_ log (a+ 6) — loga 
5 (a, b>0). 

el n— 1? = n — 2" n — 3" 

3° n>@ 1-2:(w +1) ne ae 3°4° (a + a 

dal er p 
| n-(n+1):-(n+n)] B 

Teas A a\2 ABN REND 
A. rami | (a +o) +(@40~) +(a+0~3) te wen tae 

n— © n n n 
a) a p2 

SN | COREA (0) eae Ai n T—@ 5 2 
if aisa posters proper fraction. 

Limit 
5. Say en ay eee +y/ar42|=0 
N— © 

if b>o and a is a positive proper fraction. 

Limit Le a8 b 
6. a+ + e araeenieg OS So A 6 OSE a” + 

N7O 3°n n-n 

if b>o and a is a positive proper fraction. 

jamjr + Eat eel ee |- as - 
> ee ee iy Cl ye ks 

(6.602). 
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7.19 Limiting Values of Products. 

mt) (e+) (+ C )Qr+—) (r+ C az 
<a n— © n n+1 a) ee Py eate 8 Jelly Wh g 

sip, (oO 

A amy (2+) (x4 C )( ¥ C («+ c ) . 

“1-0 na na+b ‘ NE 20) na + (n—1)b 4 

if a, b, c are all positive. ; 

am +1)(m+2)..... (m+n — a] 2 

3+ 40 m + 3(n — 1) Se ; 

if m>o. 

Limit 2¢ 4c 6¢ 2nc : 
4. aaa (ee Sea piety | hari eat Sy eer tee 

n— n n n n ; 

7.20 Maxima and Minima. 

7.201 Functions of One Variable. y = f(«) is a maximum or minimum for the 

values of x satisfying the equation, f’(«) = a = 0, 

provided that /’(«) is continuous for these values of «. 

1.202 @ 11, tor” = a; {'(a)\=<o; 

y = f(a) is a maximum if /’’(a)<o 

y = f(a) is a minimum if f’(a@)>o0. 
Example: 

x 
er epee Soe hb Mayo > ’ 

7 P+ ax + fe} Ree 
; a4 dt 

fe) = 2 
(x? + aw + B)” 

f'(«) =0 when x = +/B, 

17  2%% — 68x — 208 
i (x) a, (x? + ax + B)3 

= 2 I 
F = VB, "(x) = ee oe%—+V Pp, jf @) VE O75 Las Maximum, 
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Sake NN OS AD 

VB (2/8 - &? 
For « = —V8, Ae) Minimum, 

Ss I 
Vmax = a + 24/8 

I 
Vnin = avs : 

7.203 If for x =a, f(a) =o and f’’(a) =0, in order to determine whether 

y = f(a) isa maximum or minimum it is necessary to form the higher differential 
coefficients, until one of even order is found which does not vanish for x = a. 

y = f(a) is a maximum or minimum according as the first of the differential 

coefficients, f’’(a), fiv(a), fri(a@),..... of even order which does not vanish 

is negative or positive. 

7.210 Functions of Two Variables. F(x, y) isa maximum or minimum for the 

pair of values of x and y that satisfy the equations, 

oF OF 
an = & oy = 105 

and for which 
( or ) Oe oe 

dx dy) = Aa? A? 
FR ay . : : ; 

g g are negative for this pair of values of « and y, F(x, y) is If both aa and ay 

a maximum. If they are both positive F(x, y) is a minimum. 

7.220 Functions of 2 Variables. For the maximum or minimum of a function 

mie, variables, f(%, a... .. « ,,), it is necessary that the first derivatives, 

OF OF OF : : : 
a a ; all vanish; and that the lowest order of the higher deriv- 
Oxy OX O57 

atives which do not all vanish be an even number. If this number be 2 the 

necessary condition for a minimum is that all of the determinants, 

D, = fu fre eoitiserel (cl Js RE pee ela 2 te, alia, 

far OA COMI GOP AC fo, 

Sia Fie ONG sO Oe eo Sik 

where 
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shall be positive. For a maximum the determinants must be alternately negative 
9 

F ; 
_ 9 megative, 

ai = alo : ) 
and positive, beginning with D, = ae 

vy 

7.230 Maxima and Minima with Conditions. If F(a,2,...... ; %n) 1Sote 
be made a maximum or minimum subject to the conditions, 

Oi bite, ae in) =O 

do (a1, X25 ep ie./\0. 2 ae ) ) =0O 

Ba yee ntitaii lage tay 

fe (ahieeGass iat cen itn) =O; 

where k<n, the ee conditions are, 

a : 
2. os = 4 = AAO OES 

where the )’s are & undetermined multipliers. The 7 equations (2) together with 

the k equations of condition (1) furnish k + 2 equations to determine the k + ” 

Quantities, a, 42) ars os cue Magee SONTAG Gee es ele 5 aN 

Example: 

To find the axes of the ellipsoid, referred to its center as origin, 

AX” + Aoyy” + A332" + 2dixy + 2de3VZ + 2d13v3 = I. 

Denoting the radius vector to the surface by r, and its direction-cosines by 
1, m, n, so that x =I/r, y = mr, 2 = nr, it is necessary to find the maxima and 9 

minima of 
I 

~~ Qyl? + adem? + adagn? + 2d1m + 229m + 2d13lnn’ 
2 Y 

subject to the condition 

o(l,m,n) =P +n?4+n? -—1=0. : 

This is the same as finding the minima and maxima of 

F(l, m,n) = ayl® + adem? + a33n” + 2d12lm + 2do3mn + 2dy3ln. 

Equation (2) gives: 
(ay. + AM + aoem + ayn = 0, 

Ayol + (dx + A)m + ao32 = 0, 

Ay3l + dogm + (a33 + A) 

Multiplying these 3 equations by /, m, m respectively and adding, 

I 

Neer 

7 a) 

ry Oe 
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Then by (1. 1.363) the 3 values of r are given by the 3 roots of 

iT 
ay — 2 ay 43 = 0. 

i 
2 Ye, ro) 23 

I 
a3 23 a33 — 

7.30 Derivatives. 

7.31 First Derivatives. 

dx” ee dx* 2x , gem fe A (1 + log x). 

. Us ae _ d loga ee as _ loga e 

7 at alae oe ax G cloga «x 

de* ie aloe et 

Ea ae ae : ee. es 

log ax 

a == 2p eat logo: 

d(log x) 7 
8. a = (log «)*+ {1 + log «- log log x}. 

oy 
aes Es (*) log x I ae = —CSc? x-cos x 

9 dx € eee 5° dx . i 

d sin x @ sin-* x ad COSm I 
Io. ——— = cosx. 16. ———— _ = — ——— = —.. 

dx dx dx Jt — x 

aa d cos x OU : ad tan: ! x ee @: COta % bie 

* . dx a ie ax, dx 1+2 

d tan x 3 d sec"! x ace % I 
12. = Sec? x. Thay a = 

dx dx dx ar/ x2 Tf 

: dcotx pres. d sinh x h 
a: eat tee ‘ TO: 7 = cosh x 

dsec x : d cosh x 
14. ——— = sec’ x:sin x. 2 O. = sinh x. 

dx dx 
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d tanh « he d-tanh> % ..d' cothna I 

TS a ea 20 die) die ae eee 

sil 

BO: eeu = — csch? w. 28. eSrenae hee eae 
dx dx xvV/1 aw x 

d sech x ed esche s oe 
23, = — sech «: tanh ». 0. == 

dx dx at + 2 

24. G = * = — esch «-coth x, 30. oad x = Sech x: 

ae, ¢Sinhie a eas ane 
5: deny SA) pear. bear ead ek 

d cosh! x I 
20 a ———$— ; 

dx Vx? — 1 

7.32 

Cros... Yn) _ (: dy, 1 dys t dyn 

- dx eee” y, dx” 4p te teat Vn = 

a(t) it .# det 
Vi, we dx Wiccan hie 

gus? 

da* du df(u) _df(u) du 

den aa RE oS Up Ae de Pode 

7.33 Derivative of a Definite Integral. 

p (a) 
(a) 

1 Fad, fer Oe = (0), ) TIO — (0H), i 4 dal ode 
a 

bs < i Aine y a). 3: < ve oie ON 

7.35 Higher Derivatives. 
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7.351 Leibnitz’s Theorem. If ~ and v are functions of x, 

d” (uv) dy _n dud” vy n(n —1) du d”v 

dx dx» * t!dx dx" 2! dx? dx 

n(n — 1) (m — 2) d*ud *y d"u 
ain 3! ae oe ae a re 

7.352 Symbolically, 
d"(uv) cn), 
cre = (wu + v) 

where 
ee ov 

de*y e d n 

7.353 maar’ (« + =) u. 

7.354 If o(=) is a polynomial in Me 
: dx oe dx’ 

(germ = ep (« + ag 

7.355 Euler’s Theorem. If « is a homogeneous function of the mth degree of r 
wariables, 2%, “2, . . - Xr; 

€ 20) + x =e bh + x rac my 
Me Ox, "es OX, ca a ey OX, - F 

where m may be any integer, including o. 

7.36 Derivatives of Functions of Functions. 

i If As = F(y), and y = gon 

Io yi yr Up 

eee Ge <P’ (y) +2 ae) +e FY) cies. Maecteren, 121), 

where 
o” kb) id” k(kR—=1) 3 0 oe Te 2 RARE SL LR a WO PS IN ase 

Bee ax"? 11> ann? oF 2! OA Maier nee 

7.362 

(2) ca Meise LF -0(2 ) 
ef ant 

ne =) (OM — a For-2) (*) af 
Jy OT an Bd an Seam Aaa eemneR RNS y fe lageL gel ef’ se) eg yie x2 

2 (nF et = Eee ( (2)" soa (" 

+ (m — 1) (n— 2) aeae a 

2 ry ip oe 1 = Ee 2) Nie 

+ (n — 1) (n — 2) (n — 3) - (") ope 
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7.363 

7 & Fs) = (2x)"F (x2) + ane) (2x) "2 Fr—-D (42) 

a SS (2x) 4 Fron) (42) 

ae n(n za t) (n mas 2) . et 3) (n as 4) (n ao 5) (o4)n-8 F(n-8) (42) ai ,:. 

‘ge ee Rea n(n —1) , n(n — 1)(m — 2)(m — 3) 

eying S Cor | Tre igaa): 1!(4ax”) 2!(4ax")? 

eS 1) (m — 2)(m — 3)(m — 4)(m— 5) a 
3!(4ax")? a 

2) qu 33 & “ (q + ax”) 

_ Mi —1)(H— 2)... Mant ee T+ mn —1) (t+ ax’) 
(1 ri ae)" I-(u—n+1) 4ax 

n(n — 1)(n — 2)(m — 3) (? + sy Me : 

. ai(u—n+1)(u—n+ 2) \ 4ax? ea ys 

q™— Naat poe pai yes eel 2a Ae os 
Ae as (x — x?)™-4 = (— 1) ETP ih Tee (m cos x). 

7.364 
n _ fn) = (n—1) By d F(Vi _ FO) _ n(n Ne TONGUES) 

dx” (2V/x)” 1! (2\/x)"H 

ele + 1)n(n — 1)(n — 2) FEI Gam 
2! (2V/x) nr? 

a pyteen BESS a rele 2) = 2 . 2. Ta (rx + av/x) = a5 RE: =F 

7.365 

1 F(e*) = — e*F’(e*) + — a 2B "(¢ z) ta oF 6828" Za 

where 
k 

2. a 1)” + ——_+ a =a!) (k — 2)” — 

n 1 —lp—= —lp—2« s le I or sin (2 tan—le i ae (@taniatem) 
dx" 1+ 2 Ja + 2? VJ (i + 23 

] aalipe _ Eee sin (4 tan—e—*) 
V (1 |. ee 

n x D —|— = 
‘ de a tr cos (2 tan—le Me Fee 205 (ettan= ee) 

dx” I+ e* VJ (1 + e*)? V (1 + e*)3 

Gos! (4tanén =) 
al E3e°* ——————$—S 

VAL) 
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7.366 
qd” F Tt f n fn) n a n yey \ 

I. 7a F (log x) = a Co (log «) — CLF (log x) + CoP") (log #)—.... j . 

Co= I, 

r n(n — 1) CS Se Se + (nm — 1) Eee 

Me 1-21-34 -4+...... + 1:(m—1) 

ee ROA LI. 5 Ms ose + 2:(”2 — 1) 

So ae rr +3:(1—1) 

SE OES ret, Aan Se ee 

5 mica eS IG 
24 

n-+-1 n n 

2. (Cy = Cy + nC. 

—n —(n—1) —n 

BG, — C, = 1Cz-1. 

n k —n —I 

Ci er — 0: Cis Said 

2 3 a 2 -—3 —4 

Crean — 3° Ci =.6; Ch CS iis) 
3 4 —2 -3 —4 

G@=2 C,=11, C7 Gs — 95 3. 05" 
4 ee —3 —4 

C3; =6 Cy — ns Gz — 00 C2250: 

7.367 Table of Cr. 

85 | 175 

225 | 735] 1960] 4530 

I7OI] 301 Pie) eee ee tee 274 |1624| 6769] 22440 

7770| 966 ee iicean asa <iieya| eee. | L2ONT OA mare Onan. 

34105] 3025] 127 Pa temet aiall ct tassel Korero) seek ee OOOO S| IT Ol aA! 

145750] 9330] 225 Bell eegcreee| ne |f oe ee l/c a Mieatall ate nee PPGOAOIMOOGO4 

Cg = |611501|28501| 511 
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7.368 
n es n—1 n de 

1 Fog x)” = <2 | Cy sp(log 2) 9-! ~ Cx-2P(b ~ 1) (log 2)? 

+ Cob DG = alan yeee ae i 
where is a positive integer. If <p there are m terms in the series. If 

n2hp, 
n ae nm—L n n 

2. g (log «)? = wali | Crip (log x)?! — Cr2p(p — 1) (log x)? 
dx” idk i 

2 ee 4-'( — 2) et! CL 0p — 1) 2 ae 

7.369 . ’ p é a qth a x Pp t2 

D t = P— 7S ae. a ae an nN ae wo GS cea mina ire (sera eaes 
—-I<*<4+i1. 

7.37 Derivatives of Powers of Functions. If y = (a). 

ee ne p\ | -(") I Say (") I Lyd tae 
oy? = P| n y A are AG Mon pees die ae 

a ae -(\22-()S o+(") Ty ee eG, 

3 dan 8 Y Ni) t-y dan \2/ 2-¥* dur " \3/ 3-98 dam 7 7 TS 

7.38 

Te Pie + be =m(m—1)(m—2)...... (m — [nu — 1]) b"(a + bx)™—. 

d"(a + bx). enon 

me dx” et (a + bax)? 

d"(a + bx)? _ eS eee ee 
3: dx” = ( es T) 2"(a ae bu) "+2 6". 

d" log (a + bx) _ og (t= 1) 1b? 

- dx” nena, (a . bx)” 

ane = qrert 

°° axe ’ 

GF Site vb Brg i 
6. age an (Anum + x). 

d” cos x 
i. age 8 (Anam + x). 
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Sle 

d” (log x\ _ EOE da (: a *) 
£2 Pc) pe | OES Mi ie 

" as OO aie see (a7) Ne I (") k= =| 
dx” an(r — Ae VPaH ae Tenth) Bea 

1-3 (") (=) 1°3°5 

en — 1)(2n — 3) I+” (2n — 1)(2n — 3)(2n — 5) 

EG per is LN ( af *) bag (anzx), = (— 1) ee (pa sin (2 tan 

7.39 Derivatives of Implicit Functions. 

Woot Tf y is a function of x, and f(«, 4) =o. 

oe 
dy ox 

ax of 

Oy: 

nee 8) 2 
Py Oy] Oa? ~~ Ox OY OxdY ax] dv 

— 3 oy 

Wo92, if z isa tunction off% and. y, and’ /(x, 4,2) = 0. 

af eee 
g OA Oke, Cen ON 

Ox of” | dy CH 
Oz Zz 

a) O° f os. Of df am (34) 
OZ dz) Ox2 ~ Ox Ox Oxdz dx} 02 

oO i9g2 > (zy 
Oz 

pea eet (ary 
O82 \02/ so dz dy dydz ' \dy ae 

a (3) OZ 

ea pees re aor a 
Oe _ \dz/ Oxdy dz \dx dydz dy 0x02 Ox Oy O22 

= Oxdy ( sy OZ 

1601 



VITT.. _DIFFERENTIAL YS EOUATION. 

8.000 Ordinary differential equations of the first order. General form: 
“ 

= f(x, 9). 

8.001 Variables are separable. /(«, y) is of, or can be reduced to, the form: 

ened 
where X is a function of « alone and Y is a function of y alone. 

xact [vae=c 

8.002 Linear equations of the form: 

2 + PO)y = O(a). 

The solution is: 

Solution: 

v= eS Pia)de foce sree dx +C |. 

8.003 Equations of the form: 

dy Ase rea yin Fmer P(x)y = y"Q(x). 

Solution: 

ee te (n cs ) foe Je (n- NS Pla\degy — C. 

8.010 Homogeneous equations of the form: 

dy ___—~P(x, y) 
i OG) 

where P(x, y) and Q(x, y) are homogeneous functions of « and y of the same 

degree. The change of variable: 
y —_ Ux, 

dv 
J ra theese 

OG 
162 

gives the solution: 
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8.011 Equations of the form: 

dy _ax+byte 

dx ax+by+c 

If ab’ — a’'b #0, the substitution 

x= x +, y=" +9, 

where 
ap+bq¢+c=o, 

ap+b'q+c' =0, 

renders the equation homogeneous, and it may be solved by 8.010. 

If ab’ — a’b = 0 and Bb’ + o, the change of variables to either « and z or y 
and z by means of 

z= ax + by, 

will make the variables separable (8.001). 

8.020 Exact differential equations. The equation, 

P(x, y)dx + Q(x, y)dy = 0, 
is exact I, 

The solution is: 

fre syd f [2c y) = ay f PG 2dr} ay =C, 

foe y+ f | PG, y) - 2 f ot, s)dy b de =. 

8.030 Integrating factors. v(x, y) is an integrating factor of 

E P(x, 9) dx + Q(x, 9) dy =0, 
te) ) 
ae) ay (vP). 

8.031 If one only of the functions Px + Oy and Px — Qy is equal to o, the 
reciprocal of the other is an integrating factor of the differential equation. 

8.032 -Homogeneous equations. If neither Px + Oy nor Px — Oy is equal to 0, 

I 
Pe Oy is an integrating factor of the equation if it is homogeneous. 
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8.033 An equation of the form, 

P(x, y)y dx + Q(x, y)x dy = 0, 
has an integrating factor: 

I 
xP — yO 

8.034 If 

eg 
Oy Ox Eee ve 

Q 
is a function of « only, an integrating factor is 

eS F(x) dx, 

8.035 If 

LOE 
ax dy 
ape a 

is a function of y only, an integrating factor is 

eS Fiy)dy, 

8.036 If 
oP) 90 
Oy Clee 

is a function of the product xy only, an integrating factor is 

eS F (xy)d (xy) | 

8.037 If 

2 (x t ) 
EGON) & F(2) 

Px t+ Oy 9 \% 

: : Saga dy: ; : , 
is a function of the quotient = only, an integrating factor is 

ay 

ef F(3)a()- 

8.040 Ordinary differential equations of the first order and of degree higher 

than the first. 

Write: 

General form of equation: 

I(x; 9; p) = 0 
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8.041 The equation can be solved as an algebraic equation in p. It can be 
written 

(p — Ri) (p — Re) ey ieee vis et (Pees) ==. 0. 

The differential equations: 

p = Ri(a, y), 

p= Ro(x, 4"), 

©) fe) (ww, e jo 46 

may be solved by the previous methods. Write the solutions: 

OG —VOs. ah. VG) ON ae hace ine. 4 

where c is the same arbitrary constant in each. The solution of the given 
differential equation is: 

MCC G) Ia Ge Wy G)ie om wes cats jn@&, J, 6) =0. 

8.042 The equation can be solved for y: 

I. y = f(%, p). 
Differentiate with respect to x: 

pee 2. Pp a, v (2, p, 2) 

It may be possible to integrate (2) regarded as an equation in the two variables 

x, p, giving a solution 

3. P(x, p, 0) = 0. 
If p is eliminated between (1) and (3) the result will be the solution of the given 
equation. 

8.043 The equation can be solved for x: 

114 VS Ge p). 

Differentiate with respect to y: 

, I 4 
2: == == IP 

p ¥( P dy 
If a solution of (2) can be found: 

3: p (y, P; c) =O. 

Eliminate p between (1) and (3) and the result will be the solution of the given 
equation. 

8.044 The equation does not contain x: 

| f(y, p) =o. 
It may be solved for /, giving, 

dy 
dx = F(y), 

which can be integrated. 
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8.045 The equation does not contain y: 

f(a, p) = O- 

It may be solved for , giving, 
dy _ : 
dx = F(x), 

which can be integrated. 

It may be solved for x, giving, 

nS F(p), 
which may be solved by 8.048. 

8.050 Equations homogeneous in x and y. 

F(p, | = (ey 

(a) Solve for p and proceed as in 8.001 

General form: 

(b) Solve for =: 

y = af(p). 
Differentiate with respect to «: 

dx _ f'(p)dp 
“a  p—f(p)’ 

which may be integrated. 

8.060 Clairaut’s differential equation: 

7 et saye: y= px + fle), 
the solution is: 

y= cx + f(c). 

The singular solution is obtained by eliminating » between (1) and 

2. x + f'(p) =0. 

8.061 The equation 

I. y = xf(p) + b(). 
The solution is that of the linear equation of the first order: 

e dz £0), ¥@) 
dp p-—f(p)”  p—f(d)’ 

which may be solved by 8.002. Eliminating p between (1) and the solution of 

(2) gives the solution of the given equation. 
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8.062 The equation: 

xp(p) + yW(p) = x(P), 
may be reduced to 8.061 by dividing by W(f). 

DIFFERENTIAL EQUATIONS OF AN ORDER HIGHER THAN THE FIRST 

8.100 Linear equations with constant coefficients. General form: 

d”y d"—ly d”-2y 

Fie te pee Si OP peerage as Sy at On), — V (x). 

The complete solution consists of the sum of 

(a) The complementary function, obtained by solving the equation with 
V(x) = 0, and containing » arbitrary constants, and 

(b) The particular integral, with no arbitrary constants. 

8.101 The complementary function. Assume y =e. The equation for 

determining 2 is: 
NG aN ee da NOs ee es Ge + dn = 0. 

8.102 If the roots of 8.101 are all real and distinct the complementary function 

is: 
y = ceM™ + cee 4... . + enedn®, 

8.103 For a pair of complex roots: 

M+, 

the corresponding terms in the complementary function are: 

e=(A cos vx + B cos vx) = Ce#* cos (vx — 8) = Ce#* sin (vx + 8), 

where 
Fe Re B 

C= / A? + B?, tan re 

8.104 If there are r equal real roots the terms in the complementary function 
corresponding to them are: 

C= (Ane Ase + Acct. 2. .  Alat), 

where J is the repeated root, and A;, A2,..... ,A,are ther arbitrary constants. 

8.105 If there are m equal pairs of complex roots the terms in the complementary 
function corresponding to them are: 

eF =) (A, + Aow + Agr? +... . + Ame™") cos vx 

+ (B,- Box + Bee... 2 + Be”) sin vex} 

eH=iC, cos (vx —0;) +- Cox cos (vr — 02.) +... . . +C,x%"— cos (vx — O,)} 

e#={C, sin (vx + 0;) + Cox sin (vx + 02) +..... +- Cyx™— sin (ve + On)} 
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where A + iu is the repeated root and 

Ch = VAR + Br, 

B,. 
tan 6;, = Pe 

The particular integral. 

Db jae eves? 
8.110 The operator D stands for a? D? for Epo ye our 

The differential equation 8.100 may be written: 

(D* + a, D®4 +a, DP? +e + an)y = f(D)y = V(a) 

_ Via) 

7 BY. 
FD) =" SACD Xs) eee (D — X,), 

where Aj, Ae,. . . ... -, An are determined as in 8.101. The particular integral is: 

y = eM = fbr=dr feo) oA Rue MDE fem V (~)dx. 

iD may be resolved into partial fractions: 

ae Ns 
iD) D2 “D2. aware 

The particular integral is: 

y = Ne af eh2V (x)dx + Noe uf oN AUC ee ee 

+ Nrern? He eAn2V (x)dx. 

8.111 

THE PARTICULAR INTEGRAL IN SPECIAL CASES 

8.120 V(x) = const. = c, 

Y= 

an 

8.121 V(x) is a rational integral function of « of the mth degree. Expand 

FD) in ascending powers of D, ending with D”. Apply the operators D, D, 

Etre ayo , D” to each term of V(x) separately and the particular integral will be 

the sum of the results of these operations. 







7 
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8.122 Vice b= ces 

= ed kx 

Saiki) aay 
unless & is a root of f(D) =o. If k isa multiple root of order r of f(D) = 0 

“Sager” 

| YS rey (y’ 
where 

f(D) = (D — k)"Y(D). 
8.123 V (w) = c cos (kx + a). 

If zk is not a root of f(D) = 0 the particular integral is the real part of 

ph. eilk e+e), 

f(ik) 
If zk is a multiple root of order r of f(D) = o the particular integral is the real 
part of 

cx elk x+a) 

FOUR) ? 

where f{‘) (ik) is obtained by taking the rth derivative of f(D) with respect to D, 

and substituting 7k for D. 

8.124 V(@) = csin (kx + a). 

If zk is not a root of f(D) =o the particular integral is the real part of 
— ic eilkxte) 

fk) 
If 7k is a multiple root of order r of f(D) = 0 the particular integral is the real 

-part of 
a 1cx ek z+Q) 

FOUR) 
8.125 V (&) = ce®?-X, 

where X is any function of x. 

i Ce ay ; 
[(D + k) 

If X is a rational integral function of x this may be evaluated by the method 

of 8.121. 

8.126 V (= 6 cos (ka)? x; 

where X is any function of x. The particular integral is the real part of 

ik 2+ar) Z a an 

(eer 
8.127 V (@) =e sin (kx + a)-X. 

The particular integral is the real part of 

I E 

jD + ik) 
= tcek z+a) 
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8.128 V(x) = ce®* cos (kx + Q). 

If (6 + zk) is not a root of f(D) = o the particular integral is the real part of 

‘Geet ace 
ti (cr) 

If (8 + 2k) is a multiple root of order r of f(D) =o the particular integral is 

the real part of 
ceilket+@)y7eB x 

fO(B + tk)’ 

where f”) (8 +k) is formed as in 8.123. 

8.129 V = ce8 sin (kx + QQ). 

If (8 + zk) is not a root of f(D) = o the particular integral is the real part of 

— iceilkz+@)e Br 

f(B+ ik) 
~ Tf (8 + ik) is a multiple root of order 7 of f(D) =o the particular integral is the 

real part of 
ail! IcEek=t+@) x7 @ Br 

OG 

8.130 
V (x) = amX, 

where X is any function of x. 

om ra ke mit) in| a2 eae 

y= wm ae X + mand \aD AD) (7? aly.” lab! 4) oe 

The series must be extended to the (m+ 1)th term. 

8.200 Homogeneous linear equations. General form: 

d"y ' ad’ y 
(Or 

x” dx” + ax dx at 

Denote the operator: 

dy 
+ naw 7 + day = V (x). 

= 6(@—1)(@—2)..... (@—m+1). 
«“™ aa am 

The differential equation may be written: 

F(@)-y = V(a). 

The complete solution is the sum of the complementary function, obtained by 

solving the equation with V(«) = 0, and the particular integral. 
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8.201 The complementary function. 

y= Ge + gat... + Cnt, 

mere WA, Age. 5 = = -'. , An are the 2 roots of 

F(A) =o 
if the roots are all distinct. 

If A; is a multiple root of order 7, the corresponding terms in the comple- 

mentary function are: 

ot {br + bz log x + bs (log x)? +... . +b, (log x)"}. 

If \ = w+iv isa pair of complex roots, of order 7, the corresponding terms 

in the complementary function are: 

“"{[A,+ Ae log « + A; (log x)? +....+ A, (log x)"—"] cos (v log x) 

+ [B, + By log x + B; (log x)? +....+ B,(log x)’"!] sin (v log x)}. 

8.202 The particular integral. 

If 
F(@) = (0 — di)(@— ds)... .. (0 — Xz), 

y=am ui ahs Mil dig A Te ea clea i ohn Ans-l V (4) dx, 

8.203 The operator 7 may be resolved into partial fractions: 

I MN, N. INES 

[MO ENO Gn Gea TO eae 

y = Nyx™ f a-™—1V (x)dax + Nox™ if a1 (x) dx 

a Agee +N px fe a lV (x) dx. 

The particular integral in special cases. 

8.210 V(x) = ext, 

ee pk 
Ee 

unless & is a root of F(@) =o. 

If k is a multiple root of order 7 of F(A) = o. 

_ ¢ (log x) 
FO (R) ’ 

where F”)(k) is obtained by taking the rth derivative of F(6) with respect to 0 
and after differentiation substituting k for 6. 
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8.211 V (x) = cx*X, 

‘ where X is any function of x. ay I 
y= 0 pate) 

8.220 The differential equation: 

nro e (gpg eeel e + (a+ bx)a Sa y = V(x) 
oat CE Oaraet DR Ase Ba pepe ae : 

may be reduced to the homogeneous linear equation (8.200) by the change of 
variable 

g=a+bx. 

It may be reduced to a linear equation with constant coefficients by the . 

change of variable: 
EF = 0)-- bx. 

8.230 The general linear equation. General form: 
d"y aay : dy @ 

JE Reena 2 eres hae SA6 -+ Prag + Pn = Ve 

where 15: iin wc , P,, V are functions of « only. 

The complete solution is the sum of: 

(a) The complementary function, which is the general solution of the equation 
with V = o, and containing arbitrary constants, and 

(b) The particular integral. 

8.231 Complementary Function. If 41, ve, ... . , Yn are 2 independent solu- 

tions of 8.230 with V = 0, the complementary function is 

v= Oia Gye 4, 5. A + CnVn- 

The conditions that yy, ye, ...., Yn be 2 independent solutions is that the 

determinant A + o. 

A= | d™1y, d™—y. a" Nn 
tae eat BT) NE 2 ant 

dn, "AY d"—*y 

dx” dx-2 ta | sie se ie dx” 

dy dys dVn 

dx dx dx 

Al V2 Vn 

When A+ 0: 
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n—1 bs 

8.232 The particular integral. If A; is the minor of om in A, the par- 

ticular integral is: 

=f bade tos [pode + +y VAn iy 
SY Wl PA x iyo, BeaNet es Fen beaie Vn P,A Xe 

8.233 If y, is one integral of the equation 8.230 with v = 0, the substitution 

=), p= ay 
ca i eee ee 

will result in a linear equation of order » — 1. 

CT a) i ee , Yn—1 are 2 — t independent integrals of 8.230 with 

V = o the complete solution is: 

nN—I nN—TI A. a Pr ie 

WS >» Crk ati Gn > Vi ie e SP, dx 

: k=1 r—x 

where A is the determinant: 

A = at 1 d” Vo Ge Nia 

GigE Al hts: Ch any Geta 
ad” 34), d” V0 d™—3y) 4 

dx"—-3 dx”—3 pil eee Gad dx n—3 

dy; dyo yer 
ae Fig ke Boe aE 

M1 MWD 6 6 6 6 6 Oo « Vn-1 

. . HON. . 

and A; is the minor of ese A, 

SYMBOLIC METHODS 

8.240 Denote the operators: 
d 
Ae D 

d 

8.241 If X is a function of «x: 

[ (D —m)— X = em? f e-m= Xx. 

2. (D — m)0 = ce™®. 

2: (0 —m)2X = x™ fam Xdx. 

4. / @-—m)1o = cx. 
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8.242 If F(D) is a polynomial in D, 

ip F(D)em= = e”*F(m). 

2. F(D)e™*X = e™*F(D + m)X. 

cP e™*F(D)X = F(D — mje™=X. 

8.243 If F(8) is a polynomial in 6, 

- F(0)x™ = x™F(m). 

2. F(O)a"X = «"F(0 + m)X. 

Be x™F (0)X = F(60 — m)x™X. 

8.244 uno ee tC ee (GAG 

INTEGRATION IN SERIES 

8.250 If a linear differential equation can be expressed in the symbolic form: 

[xF (0) + f(8)] y= 0, 

where F(@) and f(@) are polynomials in 0, the substitution, 

leads to the equations, 

aof(p) = 9, 

aol (p) + a f(p +m) = 0, 

a,F(p + m) + a2 f(p + 2m) =0, 

a2F(p + 2m) + a3 f(p + 3m) =o. 

8.251 The equation 

f(p) = 9, 
is the ‘“‘indicial equation.”’ If it is satisfied a) may be chosen arbitrarily, and the 

other coefficients are then determined. 

8.252 An equation: 
d™ 

| 7) + 60) F | y=0, 
may be reduced to the form 8.250, where, 

f(0) = 6(0— m) 0(8 — 1) (@-—2)..... (O.= na) 

If the degree of the polynomial f is greater than that of F the series always con- 

verges; if the degree of f is less than that of F the series always diverges. 
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ORDINARY DIFFERENTIAL EQUATIONS OF SPECIAL TYPES 

8.300 
dq” 

BLpe x 

dx” 4 
where X is a function of «x only. 

L 7 = n— n—2 5 y= Gam f &-) Edt 4 Gxt a cont 4a Gk 4 Cn, 

where JT is the same function of ¢ that X is of x. 

8.301 

where Y is a function of y only. 

If 

YO) = 2f Yay, 

PE et 
anerae soe 

the solution is: 

8.302 
d”y omy 

dx" : (i=). 
Put 

(hee slr Sal es a - 

dx7! Y; dx F(Y), 

dV ; 
ata= fay - HM) 

Y= b(x ote (1), 

dy 

at = $e ta), 
and this equation may be solved by 8.300. 

Or the equation can be solved: 

vs EO he vdy 
pai Ey GD. Ps if FQ)’ 

where the integration is to be carried out from right to left and an arbitrary 

constant added after each integration. Eliminating Y between this result and 

Y = $(x+ a1) 
gives the solution. 

8.303 
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Put 
ee ta 
dye % 
aY , 
axe a F(J yy 

which may be solved by 8.301. If the solution can be expressed: 

Y= p(x), 

n — 2 integrations will solve the given differential equation. 

Or putting 

W(y) = 2 f ¥ dy, 

dV dV 
Y dV »~ farvom wave Sor 

where the integration is to be carried out from right to left and an arbitrary 

constant added after each integration. The solution of the given differential 
equation is obtained by elimination between this result and 

VY = d(x). 

8.304 Differential equations of the second order in which the independent 
variable does not appear. General type: 

2 

Fn? oa) =0 

Put 

A differential equation of the first order results: 

dp 
F (ob bo) =o. 

If the solution of this equation is: 

P= WO); 
the solution of the given equation is, 

° dy 

X+Q= mats 

F(y) 

8.305 Differential equations of the second order in which the dependent variable 
does not appear. General type: 

Put 
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A differential equation of the first order results: 

F (1, p; 4 = 0, 

If the solution of this equation is: 

b = f(x), 
the solution of the given equation is: 

y=o4+ ff(x)dx. 

8.306 Equations of an order higher than the second in which either the inde- 
pendent or the dependent variable does not appear. The substitution: 

oe 
dx 

as in 8.304 and 8.305 will result in an equation of an order less by unity than the 
given equation. 

8.307 Homogeneous differential equations. If y is assumed to be of dimensions 

: : dy d’y 
n, x of dimensions 1 «* of dimensions (n — 1), =a of dimensions (2 — 2), bf Fe: 

Sea ente then if every term has the same dimensions the equation is homogeneous. 

If the independent variable is changed to @ and the dependent variable changed 
to z by the relations, . 

sane 8 ll os} Xe 

the resulting equation will be one in which the independent variable does not 

appear and its order can be lowered by unity by 8.306. 

dy dy 

dx’ dx? * . 

equation is homogeneous, the substitution: 

bigeye . are assumed all to be of the same dimensions, and the 

= d y = ef % 

will result in an equation in w and x of an order less by unity than the given 

equation. 

8.310 Exact differential equations. A linear differential equation: 

d"y Oey dy 
Patt Pra gaat: - pas ate + Po=P, 

whenerl, Po Py, 6. «3. P,, are functions of x is exact if: 

@Py + .d*Ps GP x 
ie dx =e dx MO “Cy Cee CHRO +- (—1)” dx” = 
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The first integral is: 

d”— =! qd? yy 
~ 

Oe dx” = is On Fas dx” 2 afte kd + Ov oa ie dx + C1, 

where, 
OF lea 

are 
On = beer sy ied 

aP yi id ee 

Qn-2 ~ Py» i dx Ar dx ’ 

dP, EP; ap, 
QP tae ee ae eee 

If the first integral is an exact differential equation the process may be con- 
tinued as long as the coefficients of each successive integral satisfy the condition 

of integrability. 

8.311 Non-linear differential equations. A non-linear differential equation of 

the nth order: 

dx” dx" re nv ‘dpe oe 

to be exact must contain os in the first degree only. Put 

le a aS Mg 
dpta) 2" an” Bak 

Integrate the equation on the assumption that p is the only variable and 

iy Nie , : b al ae 
ae its differential coefficient. Let the result be Vj. In V dx — OV ieee 1s 

the highest differential coefficient and it occurs in the first degree only. Repeat 

this process as often as may be necessary and the first integral of the exact dif- 

ferential equation will be 
Vist Ve +o sete sce S07. 

If this process breaks down owing to the appearance of the highest differential 

coefficient in a higher degree than the first the given differential equation was 

not exact. 
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8.312 General condition for an exact differential equation. Write: 

d zy ie 
= =’ A ede eee oe ==) 

In order that the differential equation: 

Vous Se bis cs 8 Be) oy 

be exact it is necessary and sufficient that 

avs 0 (0V. a /(oV 0" aa 

ay 7 Belay) te (ay?) + 1)" (ayn) 2 

8.400 Linear differential equations of the second order. 

General form: 
dy 
4 Pe ~ + Oy=R 

where P, Q, R are, in general, functions of x. 

8.401 If a solution of the equation with RK = o: 

See 

can be found, the complete solution of the given differential equation is: 

dx dx 
= cow +cqw | eS? —+w | eS? — | wReSP% dx. y we we 

8.402 The general linear differential equation of the second order may be 
reduced to the form: 

dv 
gee Re, 

where: Viet oe 

Tere oT 
Re Olas geo A ie: 

8.403 The differential equation: 

d*y 

dx 

by the change of independent variable to 

z= feSPd dy, 

becomes: d’y 
de 

By the change of independent variable. 

dz = Oe Px dx, 

+P24+Qyn0, 

ab OeS Pay = ©). 

it becomes: 
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8.404 Resolution of the operator. The differential equation: 

pia dy 

“Te dx 

may sometimes be solved by resolving the operator, 

+ wy =0, 

u ut + 3u, iss + w 
dx” dx ; 

(rat) lrarts) Bag an aes 

The solution of the differential equation reduces to the solution of 

into the product, 

dy me face 
rat sy = Ge Spe 

The equations for determining p, 7, g, Ss are: 

pr = 4, 

dr 
aie Peres iy 

ds 
s+ po =w 

8.410 Variation of parameters. The complete solution of the differential 

equation: 

a+ Po tT Oy=R 

is 
I a § be y= afte) rahi) +2 f RQ” B fals\filG) — fila)fl®) | a 

where fi(«) and fe(x) are two particular solutions of the differential equation 
with R =o, and are therefore connected by the relation 

— Pdx df _ 2 

C is an absolute constant depending upon the forms of f; and f2 and may be 

taken as unity. 

8.500 The differential ee 

(do + ba) aa (a, + ba) 2 = x + (ao + box)y = 0. 

8.501 Let 
D = (dob, = bq) (aybe == ayb;) = (aqbe = d2b9)?, 
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Special cases. 

8.502 bo = by = bo = 0. 

The solution is: 
yy = cye® 4 Coe, 

where: 

aS cea ay +JS/a? — 4002 | 

de 209 

wpos JD =o, bk =0, 

= erd*« Ge af ertinenmed | , 

where: 

8.504 D=o0, h+o0: 

y = et ae a f Hera os bx)mae | , 

where 

and \ is the common root of: 

ad + aN + dp = O, 

bod? + BAN + by = 

8.505 D+0,h=b,=0. If 4 =/(& is the complete solution of: 

| 2 

a 

get in=o, 

i te a+ Bx 

age ( Bi ) 
where 

oy BN OS pee eee 
4a” 2 2d 

8.510 The differential equation 8.500 under the condition D + o can always 
be reduced to the form: 

EGat P+q +8) Get pb =o, 

8.511 Denote the complete solution of 8.510: 

© = FUE}. 
8.512 6 =b, =0: 

y = derurrot Po(u + vx), 
where: 

es _ a? — 4dr (#2) 

2 ae a Aa? gby?/) ’ 
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8.513 db =0, bh} -o: | a 
= tN (ay + Dix 2 

Wim on ie | a a ’ 

where: ? é ; ; 
0 _ 401 — 20200 cel 

oN eS by Q) = dob, , By dy? 

a dab.” — ayboby + and? 

ig ry 26,3 ; 

eh. q=*->. 
bi? 8.514 by +0, bb=—: 
Abe 

‘ y = edetVutvr Fl 2n/y + vex}, 

where: 

Noes by ae 4qbo” — 24bb2 + arab? 
ars 2b» M a 2, bot ) 

4d ob.” — 2a;bib2 + dsb? 
p= Baa rea ae ic 

abo — dob, =i 
p == be? a 2 

Shine oe 
4b 2) 

y = eR ean Box) 

where Q2 = dz, Bo = be, Bi = 2b. + 6, and XJ is one of the roots of 

by? + ON +- by = 0. 

ae aod +. aA + do abe as dob, te p 
? C= ee RAR OREN be 

8.520 The solution of 8.510 will be denoted: 

= F(p, q, 6). 

F(p, q; £) = es F(q, Pp, es £). eH 

2. F(p,q, — §) =& F(q, 2, ) 

2 Figp pact jen> EO,.g, — =) 
4. Ep, 9, g)s= 6-2 -¢F (1 —g — 4 ). 

5. F( — p, — 4, & = & +2 F(a +¢,1+4 A, &). 

1 Foam, 8 = (— net | &F(p, 9, 8 | 
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8.521 The function F (pf, g, £) can always be found if it is known for positive 
proper fractional values of p and g. 

8.522 and q positive improper fractions: 

. p=m+r, gq=an+s 

where m and are positive integers and r and s positive proper fractions. 

Fom+ rn ts, = (oe Pat Fs} |. 

8.523 p and q both negative: 

p=—(m-1+7r) q=-(-1+5), 

PC mes —r=nt1—5,8-(- greens Ft fa Fr 8 | | 
8.524 / positive, q negative: 

ete g=-n+5S, 

F(m+r,—n+s,&) = = | = Pies 7 |: 

8.525 p negative, q positive: 

Pie Ge IS, 

F(—m+r,n+5, § = (= 2)rte ef S| Emr oe F(r1—s,1—y7, »} |. 

8.530 If either p or q is zero the relation D = o is satisfied and the complete 
solution of the differential equation is given in 8.502, 3. 

8.531 If p =m, a positive integer: 

Om ae ‘ d™ ail 5 

ob = F(m, % 8) = 4 Emi 3 [ &* t fee Sdé | + fom | E qe ‘| 

8.532 If p =m, a positive integer and both g and E are positive: 

o = F(m, q, §) = at um (x — u)2 1" du + ce fo + u)™ 9 eS du, 

8.533 If gq = 7, a positive integer: 
qd" Z n—1 

b= Fen, 8 = a0 Fol evd f ertetat| + at S| eve], 
8.534 If g =n, a positive integer and both p and E are positive: 

ob = F(p, n, &) = af uw?*(1 — uw)" Ye =" du + & et [iG + 4)? yr e—* dy, 
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8.540 The general solution of equation 8.510 may be written: 

p oe F(p, q; é) Eo aM + oN, 

M - { 6 — u)Ie-*udy ae 

N = ah “r+ 0) Pye OH dy hag 

TOr@s. eo & p@4+n2 pot+nbt+e2) 
ae T'(s) rete ete Car) 2! s(s+41)(s +2) e+... 

Si Piao, 

valet {+ i VE 1g, @= = alg + abe) 
&4 1lé 2! 

es ie) Se (p—n—1)(g(q+1)..... (q+n-—2) 
(n — 1)!é"-4 

p(p—1)(p—2)....(p—ngqqtn(g+2)....@+n—-1)) 

* nie [he 

where o < p <1 and the real part of € is positive. 

THE COMPLETE SOLUTION OF EQUATION 8.510 IN SPECIAL CASES 

8.550 p>o, g>o, real part of &>o0: 

F (p,q, &) =a uh ‘uP-\(1 — 0) 1e-Edu + cet Hf (x + u)? yt eSedy, 

8.551 p>o, g>o, E<o: 

MO Ae sp WPA(1 =u) e-Erdu + re “uP ¥(n + 0) ee du, 

8.552 p<o, g<o, &>0: 

JOC AU HES) i sa {a fC n-ne tedntee tf u-?(1 +u)-tertedu | : 

8.553 p<o, q<o, E<o: 

F(p, 9, &) = f-?-4 4 af (xu)? 40" du + uh (r+ u)-r-ett an | 

8.554 p>o, g<o 

p=m-+yr, where m is a positive integer and 7 a proper fraction. 

Fm +1548) = 4 pen rae \, 
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E>o: F(r —r,1 —q, &) = a ere — u)~%*" du 

+ ct [°C + u)—u-%-*" du, 

E<o: F(r—7r,1-q, 8 = a fw — u)~%*"du 

+ a fw + u)—%" du, 

8.555 p<o, g>0, 

g =n-+5, where m is a positive integer and s a proper fraction. 

— p= a” | 1—p-—s Jf Ea. \ 
Br Eye Bn ee TAT Shae Pla? 

Bo. (t= 5,1 — p, £) = a [wc — u)~PeS" du 

+ ce Ae (1 + u)~*u-Pe*" dy, 

E<o: F(r—s,1—,6 = a fe — u)-Pe-= du 

+ af u-*(t + u)~PeE“du, 

8.556 & pure imaginary: 

p =r, d= 5, where r and s are positive proper fractions. 

Tn i 

F(r, s, &) = a fw — u)*e-*" du 
° 

+ 1-7-8 oh u-*(1 — u)e 8" du. 

r+s=1: 

F(r,s,§ =a if ‘w*(1 — u)6-& du 

sts a fw — u)tte-e log | £u(1 — u) | du. 

8.600 The differential equation: 

ay as) 
(if 

is satisfied by the confluent hypergeometric function. The complete solution is: 

y= aM (a, Y,*) + ex!¥M(a-y+1,2- 7,«) = M(a, y, 2), 

dy 
MN a ig C=O 
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where 

eee) 22 en ee vit y(y+n 2! yvtny7 +2) 3! 
The series is absolutely and uniformly convergent for all real and complex values 

of a, Y, x, except when y¥ is a negative integer or zero. 

When vy is a positive integer the complete solution of the differential 

equation is: 

i {ci + clog} af(oy 2) +02| SE(E - X- a) 
NNO 

a(a+1) x#?/1 I I I 1 

VY+D ae ra Hee ae 
a(a+1)(a+2) 3/1 T I I I I Tied 

me Pic ean Gi die y oy ee a) 

8.601 For large values of « the following asymptotic expansion may be used: 

M(q, ¥; %) 
a (- a) | x Se 1, a(ati)(a-y+i)(a—y+2) E 

~ T(y-a) a 2! a 

PO) eyaty | SOS) tye ee iis CNG te Og) ee ae 
T(a) r. rae zs ag i 

8.61 
it M(a, ae x) = e* M(y- a, Y; —*). 

2. I-YM(a- +1, 2-7, 2) = e%'YM(1-— a, 2- ¥, —2). 
2 7 M(a+n, Y +1, 2) = M(a+1, Ys x) — M(a, Y> ae 

4. aM(a+1, y+1, x) =(a-y)M(a, y+1, + YM (a, ¥, x). 

5. (a+e)M(a+1, ¥+1,%) = (a-yM(a, Y+1,4)+ YM(a +1, ¥, x). 

6. ayM(a+1, y, x) = ¥(a+x)M(a, y, x) —x(y —a)M(a, y +1, *). 

7, aM(a+1, Y, x) = (x +2a— y)M(a, y, x) + (vy - @)M(a—-1, ¥, *). 

oe “aM (a, y+13,%) = («+ ¥-DM(a, 7,2) + 2- YM (a, Y-1, #). 

8.62 

d a 
He qn Me, Y; xX) Se CE +1, x). 

2. a) fata, Y «) dx = (zr — y)M(e@ —-1, Vo x) + (Y — 1). 
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SPECIAL DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS IN TERMS OF M(aq, y, x) 

8.630 

a ee a) 2 Free 4agq + p — gm? + 29x(p + gm) y 

y= en (ptam)z (a, = —q(x = m)*), 

8.631 

dy dy 2_ 2p a ad | a de + (2942 1944p Garin. Vp + yi — 2at) >y =0, 

y = ete M (a, y, 2tx). 

8.632 

d’y Sats Pl Te ane a(p+ an) 2 qg+c(1 — 4a) + (p+ gx)? — 2 (a — m)? i y = 0, 

Wi ee ee ces M (, = c(a — m)*): 

8.633 

dy Df path - cat) + 4,( )(2-a-7) ly = 
ae +(2p+! z) praeecnes pat+ yt 2a ee ae a2 Gy, (Cone 

2 (iat 
Vem Pura 2 i Coney, ore). 

aa 

_— ee. res. ae) ~ + 2a + 2(b Oe a 

e [aera + (a2 + 2by — 4ac) + 2a(b — c)x + (6 — 20) | y=10) 

iene M (ay, cx). 
8.635 

UES epee dy T+ 2 (ope ap UL = ise ae 

+ Z| a ot rpg yt aa)ar += Py I Xt) 9) ly =0, 

ETD ep Ee sr 
rr i "it (a, ¥, ). 

8.640 Tables and graphs of the function M(a, y, «) are given by Webb and 
Airey (Phil. Mag. 36, p. 129, 1918) for getting approximate numerical solu- 
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tions of any of these differential equations. The range in # is 1 to 10; in © 
a, +0.5 to +4.0 and —o.5 to —3.0; in y, 1 to 7. For negative values of x the 

equations of 8.61 may be used. 

SPECIAL DIFFERENTIAL EQUATIONS 

8.700 
d*y 
ca + wy = X(x) 

where X(«) is any function of «. The complete solution is: 

y = ce"* + coe—?* 4 if *© sinh n(a — &) dé. 

8.701 
d’y dy ; 
<a + ee a ag x(a): 

The complete solution, satisfying the conditions: 

ySo y = Yo, 

d 
x=0 = = Yo’, 

y= e72ke | yo. —— sin = x + Vo (cos nx + = sin n'x) 

a0 =: ah “eete-£) sin my! (~ — &)X (&) dé, 
° 

8.702 

f+ (2) 2 + a(x) (2) =o, 
eS S(x)dx dy 

Jf att
i Ae + A + C2. 

8.703 

ze 2 + fly) (= a + g(y) =0, 

% = + TRL lets a ae 
“ {C1 — 2f eS su)dy g (vy) dy}

} Qe 

8.704 

. _ +41) 2 ae (2) =0, 

eS glu)dy dy 

r ee — fel Wudy f(y) Re a 
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8.705 
Aa £2 + se) 2 + 60)(2) =o, 

oe (wu dy = OS eS f@rdx dy + cp, 

8.706 

d*y 
7 + (a+ ba) 2 + adsy= O. 

M= 6s ie too few dx}: 

8.707 
d’y 
e+ (a+ bx) 2 * + aby = 0, 

y =e {ato fue dx} 

8.708 

Ss Rie) ao 
di eax 2 Ae eae 

r. (a@—1?>4b;  A=2 V(a=1) = 4b 

y = ales + co} 

2. (a — 1)?<4b; = : V4b — (a — 1) 

i Caaac. cos (A log x) + c2 sin (A log x)}- 

BH(@ — 1)? = 4b 

y=) 2 (4 + & log x). 

8.709 

ss 3 + aby O = + (OE ree) Key 

Tao, A= Vb—- a, 

bx? 

y= cul 2 (ce a coe?) , 

Ze a>b, r = Va b, 

bx? 

y =e 2(c, cos Ax + c sin Aq). 

8.710 

dy ,) x f(«) aac (a + bx) et by = 0, 

Goa 
ee Ey = OG 

y= cla + bx) + | e — (a+ bs) faze ae | ax } 
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8.711 

(a? — re = + 2(u— ee — M(M— 1)y =0, 

— x)z-1 

= cea an fetta 

8.712 : 
dy  2dy a 

cae a ae 

Tah : a 
ea LCOS A TST ES eae 5 

8.713 

dty es cae dy s 
ig ge de 0 eaten wee 

y = ce P'*{ py sin (wx + G1) + 1 Cos (x + a4)} 

+ C2e~P?* { Oy SiN (Wex + Ae) + We COS (Wex + A2)}, 
where: 

4w2=2+¢-20+4+2V2—4a—-2dvV2—c+@, 

4? =2+¢—- 2d — ava — 4a + 2dVe— c+ @, 

2pi.=d+ 2 aa 

2pz=d—-WJ/z—c+e, 
and z is a root of 

2° — cz — 4(a — bd)z + 4(ac — ad? — 6?) = 0. 

(Kiebitz, Ann. d. Physik, 40, p. 138, 1913) 
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(continued ) 

9.00 Legendre’s Equation: 

Eh tee OV cn 7 * (1 — x”) Te 7 2* ae +n(n+1)y=0. 

9.001 If x is a positive integer one solution is the Legendre polynomial, or 

Zonal Harmonic, P,,(x): 

(enh fn. 2 =) MNOS TK 2) 3) 7, Pe) = 2"(nly2 | ~ *  Silefh age) 2-4: (2m — 1)(2n — 3) ae. AN \. 

9.002 If xz is even the last term in the finite series in the brackets is: 

ie +3 (n!)8 

ic ) (2n) ; 

9.003 If 2 is odd the last term in the brackets is: 

tena (n!)?(n — 1)! 

Sa ae@= iC 

anr-2 + 

9.010 If x is a positive integer a second solution of Legendre’s Equation is the 

infinite series: 

2"(n!)? ee ene Me TCE 2) (n+) 
CO (2n + 1)! | 2(2n + 3) 

(n+ D+ 2)nt data) L 
A 2-4-(2n + 3)(2n + 5) eae g 

9.011 
! 2 

P2,(cos 8) = (iu | sin?” 9 — ae sin2"=2 0 cos? 0 

2 eae 252 
+....+(—1)" keman oan + 4? cos?” a 

9.012 

Poni (cos 8) = ene ore sin?” @ cos 9 — a sin2"-2 @ cos? 6 

CRP Or a eae ea 
(2n +1)! se seule 

(Brodetsky: Mess. of Math. 42, p. 65, 1912) 
Igt 

ap etoprig allay 
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9.02 Recurrence formulae for P,(x): 

(n + 1)Prui + mPra = (20 + 1)"Pp. i. 

2. 

rh 

OP is at dP ra 

Cn oe dx dx 

eta = es 
GaP, dP ra 

ae dx dx 

(2n + 

= (n+ 1)(@P, — Pri). 

. = n(Pr1 = tPR): 

GWE 
ae n(n + 1)(Pra — Pay). 

9.028 Recurrence formulae for Q,(«). These are the same as those for P, (2). 

9.030 Special Values. 

9.031 

Po(x) = 1, 
Pi(«) = x, 

P2(x) = 3(3x* — 1), 
P3(x) = 3(sx* — 32), 
Pia) = 45x! — 300" + 3) 
P5(x) = $(63x° — 7ox? + 154), 
Pe(x) = pe(23ta* — 31544 + 105%? — 5), 
P;(x) = qs(429x" — 693x° + 315x% — 35x), 
Ps (x) = x45 (643548 — 12012%° + 6930a4 — 1260x7 + 35). 

Qo(x) = = log =, 

I oT 
Qi(x) = 3° log oo 

Q2(x) = ~ P(x) Oe rere See = =a, 

je SAG dn ee, Ot iy 2 Q3(x) = 5 Pala) log wr > a mt : 
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9.032 | ’ 

bay tess Ho 
Pon(o) = (—1) 2°4:6. Pane? 

Pon4i(o) = 9, 

JE (Ge) sy ae, 

P,,(—x) = (—1)"P2(x). 

9.033 If z=r cos@: 

OF,(cos 0) 4-1 

dz eae 
P,(cos 8)Pn(cos 0) — Prn4i(cos 8) 

Lx nate P,1(cos 6) — Pasi(cos 6) 3 

9.034 Rodrigues’ Formula: 

eGo 
Ay dx” 

9.035 If z=r cos @: 

P(cosg) = =i peti < (*): 

(er 

9.036 If m< un: 

PAC) Pe) = 

k=0 

AmrArA nx (= +2m—4k+1 

an + 2m — 2k + *)Potm-au (x), A nt+m—k 

where: 

Aras ih ae tee 
r! 

MEHLER’S INTEGRALS 

9.040 For all values of n: 
Pune) = 2 £9 cos (n+ 2)odp 

o V2(cos @ — cos 8) 

9.041 If m is a positive uteet 
P,,(cos ) = Pein (n + z)pdp 

+/2(cos 8 — cos ob) 

LAPLACE’S INTEGRALS, FOR ALL VALUES OF ” 

9.042 

P,,(x) = £ fics a/x2 — 1 cos h}" dd. 

Me mcm Or 8: 00's. 
Qala) = a {x + Wx? — 1 cosh f} +! 
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INTEGRAL PROPERTIES 
9.044 

41 
ih Pn@)Pa(x) dk =01 mn 
a 

oat 
= pee if m=n. 

9.045 

(m—n)(m+n+ yf Pye) Pads 

= 41 Pl (a + in) apa) = ME AU = PL (m + re) Een) = MP m— |} ° 

9.046 

(2n + df P(x) de= 3 — oP — 2a(P2 + PP? ee eee) 

SO Pals aang SP oo Peee 

EXPANSIONS IN LEGENDRE FUNCTIONS 

9.050 Neumann’s expansion: 
foo} 

fe) = DjanP (a), 
n=0 

Eee if = (DPS G@ide: 

1 +1 iiss a. f(x) +(x — 22)" dav. 
ay | 

9.051 Any polynomial in « may be expressed as a series of Legendre’s poly- 

nomials. If /,(«) is a polynomial of degree 2: 

n 

ful) = DyauP r(x), 
k=o 

41 
ay = ae ok Fi @yPe da. 

SPECIAL EXPANSIONS IN LEGENDRE FUNCTIONS 

9.060 For all positive real values of n: 

I. cosn@ = — ieee | Palcos 0) + aS P,(cos 6) 

gn? (n? — 2?) I — cos nx [ 
TCTERES [ere — 3) PXCos'0) sae | - Ste ees 0) 

te) t1(n? — 1”) (n? — 3?) 
oS ear CD P3(cos 8) + = 2) G26). P;(cos 0) ONC 5 
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2. sinnO = — - a | Palcos 6) + are ay Pa(cos 6) 

+ Gp Gey Palos ) +. f+ E EBAE J 574 (cos 8) 

” jen = a P3(cos 8) + Ta ay P;(cos 6) +. | ! 

9.061 If n is a positive integer: 

1. cos 10 = if tee (Creer ene G) 

ton ofa tet 
[n? — (n + 1)?] [v? — (n — 1)? ] 

+ (2n — 7) ie = abe = @ Sa IPSN (CoRE)) AeA }, 

IE: n—2 (cos 0) 

2. sin 20 = TES§ mS (2n — 1)Pn1(cos 0) 

+ (20 + 3) Le = 6 mi 7 P41(cos 8) 

[n? — (wn — 1)?] [n? — (n+ 1)?] ; 

5 : i. Die — (n+ 2)7] [W? -— (n 4+ 4)7] ee ae ] 
9.062 

T 7 (42 —1) /1-°3°5. oa 
I. aay yaaa Se On an ) Par-a(cos 6), 

oa ea) (PAS ; . (2n — oy 

a ee (2m — 1) (2n + 2) oem Lon Psn(cos 8). 

code eS — 1) (= Be ane. (20 — ay Pim (cese). 

(2n — 1) 2-0 6 5 2 2H 

4. csc 8 = — r 45 2 (4 + 1) feiss. Gn= P2,(cos 8). 

9.063 

1 + sin - 
i eae as = “De ane P,,(cos 0). 

eee 
. 2 

2. log ae —log sin? — log (: + sin =) = ae Peas): 

9.064 K(k) and E(k) denote the complete elliptic tategrals of the first and 
second kinds, and k = sin 0: 

Te K(k) = a => (—1)"(4n +1) (ERS a2 Ps, (cos 8) 
A 2-4:6....2n oe : 
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Se ry ph (4n + 1) (ernie 8 

Bgl ae Tay) (2n — 1) (2n+ 2) 2 APO On ) Pan(cos 8). 

(Hargreaves, Mess. of Math. 26, p. 89, 1897) 

9.070 The differential Pas 

dy m? 
(1 28) 9 — op 2 4 + {nt - 3 hyn. 

If m is a positive integer, and —1>x> +1, two solutions of this differential 
equation are the associated Legendre functions 

m mf P(g 
les (x) = (1 - Ve) ee ) 

On (a) = (x — 2) SOR). 
9.071 If”, m, r are positive eee and 2>m, r>m: 

+l om m 
if P,, (@) 2, @) d& = 0 tf 74, 

2 th) re 

an+1(n—m)! heey 

9.100 Bessel’s Differential Equation: 

Py _idy ( Nae 

de zdx 1— Sy so. 

9.101 One solution is: 

ee V+2k 

x os) = y Soo) ica a eS ee ee 
ee) on ey) ave ily +k+1) 

9.102 A second independent solution when vp is not an integer is: 

: ya Hx (x). 

91037 TE vy — 7, an integer: 

J_n(%) = (—1)"7J n(x). 

9.104 A second be er solution when v = n, an integer, is: 

R an er ! 2k—n 

mY n(x) = 2J4(x) log > — an ka () 

i pa st sae 
| | Wk+1)+W(k+n+41)

 

“(see 6.61). 
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9.105 For all values of v, whether integral or not: 

iL 
Y,(x) = ers (cos vaJy(x) — J» ()), 

J_»(x) = cos vrJ,(x) — sin vrY,(x), 

Y_,(x) = sin vrJ,(x) + cos vTY,(x). 

9.106 For v =n, an integer: 

| V_n(x) = (—1)"Yn(@). 

9.107 Cylinder Functions of the third kind, solutions of Bessel’s differential 

equation: 

1. H, (x) = Iy(«) + iV (2). 

2. Hat) 5 I8@)— Vy): 

4 His (x) = et H,(a). 

me H_y (x) = eH, (x). 
; ied (noe 

9.110 Recurrence formulae satisfied by the functions Jy, Vy, Hy, Hy, Cy 

represents any one of these functions. 

d 
St. Cyal(xe) — Crsa(x) = 2 Fy ©?) 

Bi Cra) Cae = C(x). 

d v 
ce 7g 6?) = Cpe) — or): 

d v 
4. Frac (2 yor) =O ye) 

d 
5. ae ae Cr z) = 47 Gra (%): 

PCy (x) 1 ; : | 
6. ae = A Cy42(x) aa Cy-2(x) = 2C p(x) f 

9.111 a) (a) 
dY,(x dJy (x 2 Romeo Ste ote a ON 

Bey) GO) ue Fvy(®) Vox) — Jo() Vou (@) = 

ASYMPTOTIC EXPANSIONS FOR LARGE VALUES OF % 
9.120 

esp (x) = v2i P (x) cos (x ~ vt, | — Qy(x) sin (x = == zd r) I, 

2 V,(x) = V5) P,(x) sin (x - ee r) + Q,(x) cos (x - tin) \ 
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an Hy (x) = ie 4 = { Po + iQp(x) \ 

gp Hata) = Dy) { Pye) - ion }, 
where 

— (Cap? re) ange oe ey a ; 
P(x) = 1 +2 (=) EO ge ee, 

. (qv? — 2) (4 — 3%)... (qv? — 4k 3) O18) = De ees eae 

SPECIAL VALUES 

9.130 
Ne Te Vf BN ey LAN 

Ile) = x GG) + ae (2) - Ge G) + 
Ct FIC i We (*) nits (*) (2) , 

a ie de a ale + 3B! \2 ~ 3il4tle isa tcas 

+ Fonte) 
cet eiaiee 

u (log® + 7) Fola) + 4 ae EIalt) +E IaCa)= Hs 

| 
4. “YV,(x) = (log = + 7) Tine = Jo(x) = = I— = (: a 5) () 

Han ( te ree 

= (log § + 1) Ja) ~ Ele) + Sa) - Fal) 

YY = 0.5772157 (6.602). 

9.131 Limiting values for x =o: 

J (x) — TT, 

Ji (x) = Oh 

aC ee & Vo(x) = 2 (log = +), 
2 

Y,(x) => ae 
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9.132 Limiting values for «= ©: 

eg in(v-4) BOS sin (« — — 

J (x) — aa —— a Y o(x«) ee 

sl |x 
2 \ 

sin (x - =) cos (x af =) 

Ji (x) = a d Y,(x) =— 

Tx 

9.140 Bessel’s Addition Formula: 

TeG ony = (ee + =) > ee ya (2 2k =) Toll 

24, 

9.141 Multiplication formula: 

Wen oe c are y fone): 

9.142 

M+V+2k 

Iy(ax)Iu(Bx) = >) (ni (% =) ; 
k=o 

where 
k 

. ck 8% 

Ae Dae Be Gees et) (eee sea) 

9.143 

ae - (ne w+p 2k B4v+2k 

Joa) Su) gers nGra | k )G) 

DEFINITE INTEGRAL EXPRESSIONS FOR BESSEL’S FUNCTIONS 

9.150 

Se ae fe cos (x sin @) cos” @-dd¢. 
val(y aia =| 5 

9.151 

ae fF 0s (x cos @) sin?” h-d@. 
vaT(v +2) ‘ 
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9.152 i 
Z 

Jy(x) = — : a ets? sin’h-d@. 

val (v+5) 7° 
If is an integer: 

9.153 

Jen) — = ane (x sin d) cos (2n)dd = | fo 

9.154 J, a 

Jon(x) = =e a cos (x cos @) cos (2nd)dg = ew) Se : 

9.155 
* 

Jonui(x) = £ [sn (x sin @) sin (2n + 1) ddd = 2 [> 

9.156 
Jonyi(%) = oan (x cos Pd) cos (2n + 1)hdd = ae 

9.157 
. 5 +1 I 27 

ie apart —ind+iz sind Jd = — —ingtizsin® dd, 0) =f Penbretoag a Z [embrinine ag 
INTEGRAL PROPERTIES 

9.160 If C,(ux) is any one of the particular integrals: 

Jr(us), Vr(ux), Hy (uc), Hy (ux), 
of the differential equation: 

d’*y d y 
tet (w—B)y=0, ied eas Tile 

J Cy (max) Cy (min)axdx 
; 

= eae E MiCy (Mase) Cy! (Max) — MxCy (Mix) Cy (uaa) | 5 ME Mae 

9.161 If wu, and mw are two different roots of 

5 Cy (ub) nz 

vs Cy (Max) Cr(mix)x dx = ae MiCv(Mia)Co’ (Mea) — MiCr (Mea)Cy’ (Mia) ; 

9.162 If uw, and mm are two different roots of 

ae. (ua) ia 

Cer ae 1 
and Cy(ub) = 0, 

b 

[ ColusyCy(wex)nde = pCo(uia)Co( Ha). 
hoy, = (ies 

b 2 
f Colensycu(n as = - BPCy’? (Mid) — a?Cy” (una) — (« be 7 )C(aa) i 

k 







& 
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EXPANSIONS IN BESSEL’S FUNCTIONS 

9.170 Schlémilch’s Expansion. Any function f(«) which has a continuous 
differential coefficient for all values of « in the closed range (0, 7) may be expanded 

in the series: 

f(a) = ao + Dy anJo(ke), 
k=1 

where 

ay = f(0) aa ufor (u sin 0)d0du, 

i — ae u COS buf 2s'(u sin 0) d@du. 

9.171 ‘ : 

f(s) = cox" +> Ard n( zx) Oi <1, 

k=1 

where 

Fonsi (x) =F, 

dy = 2(n+ df hed ere eth 

2 I 

a, = acer Mia ea Out) Oa: 

(Bridgman, Phil. Mag. 16, p. 947, 1908) 
9.172 

(eo) = Dy AvTo( et) C<aL<: 

k=i 

where: : 
Jo (uy) es aR 

To(uaa) ~ PET yy” 
and J (Mxb) =O; 

, Sof @)Fo(waee)dae — pha) Jo(ura) 
BS * PTo™(uid) — Fo? (ua) — (+ 2p) TP (una) 

(Stephenson, Phil. Mag. 14, p. 547, 1907) 

SPECIAL EXPANSIONS IN BESSEL’S FUNCTIONS 
9.180 

foo} 

" I. sins = 2), (—1)*Jo,41(x), 

k=0 

2. cosx = Jo(x) + Da (—1)*Jox, (x). 

ket 
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9.181 

1. cos («sin 6) = Jo(x) + 2), Jxj,(”) cos 2k8, 
k=1 

2. sin (x sin @) = 2>) Sox 41(x) sin (2k + 1) 0. 
= 

9.182 

«an 

2 of B- en (2). 

9.183 

_ = | 1og.$ —-v+ )} J (x) we 1)*- er Fp 

= J,(x) log : >? 1) RB V@e RSs) (5) (see 6.61) 

9.200 The differential equation: . 

Py 2 dy 2 un+1)\ _ 

dx? 2+ (u ge \y=0 

with the substitution: 

z= yVx, px = p 
becomes: 

Ca el (: ot 5 =o 
dp’ pdp p> 

which is Bessel’s equation of order » + = 

9.201 Two independent solutions are: 

2 = Ini3(p). 

The former remains finite for p = 0; the latter becomes infinite for p =o. 
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9.202 Special values. 

0G) — \/— sin x, 

J (a) = Vas a 2 (= * — cos x), 

2 

mee 
x2 i) _ r) sin ~ Sos } Val 

JEKG2) V2{(8- 2) sin x ~ (3 - 1) cos} 

J 
x | 

J3(x) = ee (#25 — 45.4.1) sin x — (25 - 2) cose} 
Nie fs x I 

9.203 al 

JA) 5a COS x, 

J =5(0)— 2 (sin x + 5), 

ao k= / jSsine + (5 —_ ) cos x } 

ra) = Z| (5 r) sin x + (45—°) cosa}, 

ray = V¥2{ (28 ~ 22) sin x + (295 ~ 45 +1) cose} 

9.204 is 

H;(x) = —i\/ ae 

Ha --VEe(4 
H,(«) ae Zon { 3448 - :)}- 

9.205 
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9.210 The differential equation: 

2 
dat" = devi \ ey oe 

with the substitution, 
Meee 

becomes Bessel’s equation. 

9.211 Two independent solutions of 9.210 are: 

Ly ao) = ta Spe), 

v+t1 

K” (x) =€ 2 a = H, (ix). 

9.212 Ii vy =n, an integer: 

co 

a ba, Rk! aa a(%) 
k=o 

K,, (a) = i" = HE (a), 

9.213 

Is (8) = Sepoey (2) f tosh (o cos d) sine dae => SS 
Cc fn 

; Vales eye. ete ) 

_ Vi (:)’ fs oe 
Ky (x) = TGs) 3 sinh de dd. 

9.214 If x is large, to a first approximation: 

Tn (x) = (27x cosh B)-? et (cosh B— B sinh B) 

K, (x) = 1 (27x cosh B)—te-* (cosh B — B sinh B), 

n = x sinh B. 

9.215 Ber and Bei Functions. 

ber « + i beix = I (xv/1), 

ber x — ibeix = Iy(ixv/i), . 

berv= 1-74 (SJ 4c (%) -. 

mie () an tan) 
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9.216 Ker and Kei Functions: 

ker x +ikeix = Ko(xv/i), 

ker « — ikeix = Ko(ixv/i), 

ker + = (log? — ) bers += ae en; () () 

ary ae a 7d oes 
\2 \6 

Kene — (tog? — y) beiw — 7 ber x + (3) . Sole +24 2\(3) ze 

9.220 The Bessel-Clifford Differential Equation: 

7 

With the substitution: 

STS “= 2/%x, 

the differential equation reduces to Bessel’s equation. 

9.221 Two independent solutions of 9.220 are: 

Cola) = 3Se V3) = D(a = +1) 
k=0 

D,(x) = «7-3 V)(2Vx). 

9.222. 

GG) === Cle), 

¥Cyi2(%) = (V + 1)Crui(x) — C,(2). 

9.223 If v =n, an integer: 

ei 

Co(2) = er a 

9.224 Changing the sign of v, the corresponding solution of: 

j dy a eat iY) a t= ©, 

Vie ae 

to 
On 
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9.225 If v is half an odd integer: 

sin (20/x + 35 
C3(x) = SE 

i! Sea eee \ _ sin (2Vx+6) cos (2Vx+4+ €) 
C; (x) ioe dx te: (x) a ee) jo ee cae TIRES a 

C;(x) = £ x(x) = Eee (2x ate €) — 3 cos (av/x + €) 

4a 

C_i(x) = —cos (2Vx + ©), 

Clo 2£GG@, 

C_5(x) = «°C,(zx). 

€ is arbitrary so as to give a second arbitrary constant. 

9.226 For x negative, the solution of the equation: 

e+ (svt) 2-y=o, 

when » is half an odd integer, is obtained from the values in 9.225 by changing 
sin and cos to sinh and cosh respectively. 

9.227 

(m+ 0-3) f Cuin(a)Cuin(2) dv = — xCmsala)Coinls) — Cnl)Cnla), 

Gn at + 1) ae Ce Cae) da = a maa (a) Crsi(e) + Cr EL) . 

9.228 
= f (CACGEE = AG 

oe fi iB WGN Grav) PN eno 

3. J Cole sin?) sin $ db = Cy(a), 

ie i, "Cie ae Oo 

. [Cute sin? 4) sin dg = LOB 2VE, 
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9.229 Many differential equations can be solved in a simpler form by the use 

of the C,, functions than by the use of Bessel’s functions. 

(Greenhill, Phil. Mag. 38, p. 501, 1919) 

9.240 The differential equation: 

dy _ 2(n+1) dy 

dx” ny dx oy 

with the change of variable: 
Se 

becomes Bessel’s equation 9.200. : 

9.241 Solutions of 9.240 are: 

I. y= art Ings (a). 
2. i= Cota? Ves). 

3. yaar He y(z). 

4. youn? W(x). 

9.242 The change of variable: ; 
x = 27/32, 

transforms equation 9.240 into the Bessel-Clifford differential equation 9.220. 
This leads to a general solution of 9.240: 

nds 

=€: i). »y Ne; 

When z is an integer the equations of 9.225 may be employed. 

G (=) _ sin (x + €) 

4 3 

C (=) 2sin (*+e€) cos(#+e) 

? 

x3 x ; 

9.243 The solution of _ 
dy | 2(n +1) dy 

de x dx 7 

may be obtained from 9.242 by writing sinh and cosh for sin and cos 

respectively. 

y =O; 

9.244 The differential equation 9.240 is also satisfied by the two independent 

functions (when 7 is an integer): 

n(x) = (- ray sin
 « 

x 

x k -_ te 
Loa 50 - (20 + 1) ed 7h 2M GY oe) ea (2n + 2k +1) 
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“COS 
W(x) = (- :<) x 

pceors e+: (2 = '3) S pA 
zs yen tl aes a*k\(1 — 2m) (3-2)... . (2k — 2n—1) 

9.245 The general solution of 9.240 may be written: 

rad \t Ae = Bem 
y = {| —-—]} —uwu“—- 

0 0% x 

9.246 Another particular solution of 9.240 is: 

Fd NGO ; y = fala) = (- 4 £)— = VAG)- ale), 
x 

4ne—# n(n + Dual (n — 1)n(n +1) (n+ ane 

fale) = at an Seg en, aaa an 

9.247 The functions W,,(x), V(x), f.(«) satisfy the same recurrence formulae: 

ee =— xWnti(x), 

eee aL (2n Be DWn (x) = Wn1(x). 

9.260 The differential equation: 
@’y n(n+t1) 

dx? eo 

with the change of variable: 
y = ux 

: : : I 
is transformed into Bessel’s equation of order m + = 

9.261 Solutions of 9.260 are: 

: 
Di me 1 — yntl { _ toy s

in x 
I SAUe) = / 3 i ars (x) =X ( aoe - 

Tx 
ad 

Bae 
a = nll ea 

: Ca(x) = (-1) — Jn4(@) x ( aohe x 

E,(x) = Ca(x) — iSa() = 94 (- I <\ ay 3: n(x) = Cn seals see 

9.262 The functions S,,(«), Cn(x), En(x) satisfy the same recurrence formulae: 

: AS n(X) _ n+tI 

ot td 
Sn (x) = Sn4s(*). 
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dS n(x) _ E Rare 
a a Ha) = na). 

ao ns) = Lines Si Sue) 
x 

9.30 The hypergeometric differential equation: 

ad? dy 
x(1 = x) 55 + (1 -(a+ B+} — aBy =o, 

9.31 The equation 9.30 is satisfied by the hypergeometric series: 

eB amen BG+D , 
ee eas Sion Ay 

4 ola + 1) (@ + 2) BIB + 1) (8 + 2) 
or te ce ae ee 

1223 vy+n(yt+2)°° 

The series converges absolutely when x<1 and diverges when x>1. When 

« = +1 it converges only when @ + B — y<o, and then absolutely. When 

“= -1 it converges only when a+ $8-—y-—1<o, and absolutely if 

a+B-y<o. 

9.32 B 
d a 
i eg (igi ay 2 2). 

Tiyly-e- Hig 6 qs 
N(y — aT (y - B) 

9.33 Representation of various functions by hypergeometric series. 

(1 + x)” = F(—n, B, B, —x), 

log (2 + *) = «FG, 1, 2, —x), 

Limit 
Ca tapes ales nal 
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ae on a a 7 ie Lape ja ah os (r+%)"+ (1 — 4) = 2F( 5? +3504), 
2 

1+%* ae be 
lo = 24F \-,1,5) 4 B= a, 2’ Poy d 

(> Tae 
cos nx = F\-, — -, -, sin? x], 

a 29 

; : N+Ii-n 3 
sin nx = n sin xF pot ea = sin? *), 

Limit 
Cosh t= Gs ie F(a ool 

sin! 4% = «F @ a = *), 

I 
tang 4 — a ( i 3 - '), 

Deo 

P(x) = F(- n,n+t1, I, = = *\, 

Val(n+1) 1 — SI Nig ") 
Tes ’ 9) he Te my ay 

Tn + 5] 4 
2 2 Dein 

9.4 Heaviside’s Operational Methods of Solving Partial Differential Equations. 
é 

On (x) = 

9.41 The partial differential equation, 

vo u ou 

"Ox OL’ 

where a is a constant, may be solved by Heaviside’s operational method. 

Writing <= p, and E = g’, the equation becomes, 

Ou 

Ox? i 

whose complete solution is « = eA + e-*B, where A and B are integration 
constants to be determined by the boundary conditions. In many applications 

the solution u = e~%B, only, is required: and the boundary conditions will 

lead to u = e~*f(q)uo, where uo is a constant. If e~%f(g) be expanded in an 

infinite power series in g, and the integral and fractional, positive and negative 

powers of # be interpreted as in 9.42, the resulting series will be a solution of 

the differential equation, satisfying the boundary conditions, and reducing to 

u=oatt=o. The expansion of e~%f(q) may be carried out in two or more 
ways, leading to series suitable for numerical calculation under different 

conditions. 
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9.42 Fractional Differentiation and Integration. 

In the following expressions, 1 stands for a function of ¢ which is zero up 

to ¢ = 0, and equal to 1 for #>o. 

9.421 

ay — es 

P Vt 

I atest Tis 35s) el (2M ak) 
7 = a 2 ~=(—1)"— — 

p aty/ tt p ( I) 2" \/ at 

4. = outs 
P 2P/ Tt 

9.422 
pri=o 

7. —o pt 0 
Pr=o 

9.423 

p= = 2 ie 
7 

ey a 25 Oe te o See ae cS 2 te OOP Vio AS es MG 
p /4 : ToC (2 Ey ab 

Si 

. I 
Ww N, nls all> 

9.424 

ee ee 
py Vat) 

where vy may have any real value, except a negative integer. (Conjectural.) 

9.425 

ieee 

I= : (est — 1) 

9.426 With p = aq’, 

Ga 

(at) 
n! 

yn £:3°5 ... (2% —1) 

(2at)"»/ Tat 

Ga" t= 



22 MATHEMATICAL FORMULZ AND ELLIPTIC FUNCTIONS 

9.427 

ge" 1 = Time 4at 

x 
9.428 If z= ary 

eo = —— * dy 
TT Jz 

2 ae ee fia dv 
q JT z v 

9.43 Many examples of the use of this method are given by Heaviside: Electro- 

magnetic Theory, Vol. II. Bromwich, Proceedings Cambridge Philosophical 

Society, XX, p. 411, 1921, has justified its application by the method of contour — 

integration and applied it to the solution of a problem in the conduction of heat. 

9.431 Herlitz, Arkiv for Matematik, Astronomi och Fysik, XIV, 1919, has 

shown that the same methods may be applied to the more general partial \ 

differential equations of the type, 

< OP) 
Dyes) a(x Ox@ Ox% ah 

and the relations of 9.42 are oe 

9.44 Heaviside’s Expansion Theorem. 

The operational solution of the differential equation of 9.41, or the more 
general equation, 9.431, satisfying the given boundary conditions, may be 

written in the form, 

where F(p) and A(p) are known functions of p = ay Then Heaviside’s 

Expansion Theorem is: 

2 F(o) > EG) es 
(onee | Ato) | Meda Aa)” |’ 

where @ is any root, except 0, of A(p) = 0, A’(p) denotes the first derivative of 

A(p) with respect to p, and the summation is to be taken over all the roots of 
A(p) =o. This solution reduces to u = 0 at t=0. 

Many applications of this expansion theorem are given by Heaviside, 
Electromagnetic Theory, II, and III; Electrical Papers, Vol. II. Herlitz, 9.431, 

has also applied this expansion theorem to the solution of the problem of the 

distribution of magnetic induction in cylinders and plates. 

9.45 Bromwich’s Expansion Theorem. Bromwich has extended Heaviside’s 

Expansion Theorem as follows. If the operational solution of the partial 

differential equation of 9.41, obtained to satisfy the boundary conditions, is 

Se) 
= Kg) ©) 

—! 
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where G is a constant, then the solution of the differential equation is 

( F(a) \ 
= ) N a ee pat \ Cae ipa r+ a2 A"(a) ° i 

where No and JN, are defined by the expansion, 

FO) = 2 ‘ X(p) =No+ Mip+ Nop? +...; 

a is any root of A(p) = 0, A’(p) is the first derivative of A(p) with respect to p, 

and the summation is over all the roots, a. This solution reduces to u = 0 at 

t=o. Phil. Mag. 37, p. 407, 1919; Proceedings London Mathematical Society, 
a5, DP. 401, 1916. 

9.9 References to Bessel Functions. 

Nielsen: Handbuch der Theorie der Cylinder Funktionen. 

Leipzig, 1904. 

The notation and definitions given by Nielsen have been adopted in the pres- 
ent collection of formulae. The only difference is that Nielsen uses an upper 

index, J"(x), to denote the order, where the more usual custom of writing J,,(«) 

is here employed. In place of Hy” and H»,” used by Nielsen for the cylinder 

functions of the third kind, H,! and H,"! are employed in this collection. 

Gray and Mathews: Treatise on Bessel Functions. 

London, 1895.! 

The Bessel Function of the second kind, Y,(x), employed by Gray and 
Mathews is the function 

~ Va(x) + (log 2 — ¥)Ja(x), 
of Nielsen. 

Schafheitlin: Die Theorie der Besselschen Funktionen. 

Leipzig, 1908. 

Schafheitlin defines the function of the second kind, Y,(«), in the same way 

as Nielsen, except that its sign is changed. 

Note. A Treatise on the Theory of Bessel Functions, by G. N. Watson, Cambridge 

University Press, 1922, has been brought out while this volume is in press. This Treatise gives 

by far the most complete account of the theory and properties of Bessel Functions that exists, 

and should become the standard work on the subject with respect to notation. A particularly 

valuable feature is the'Collection of Tables of Bessel Functions at the end of the volume and 

the Bibliography, giving references to all the important works on the subject. 

9.91 Tables of Legendre, Bessel and allied functions. 

(0) (9.001). 

1 A second edition of Gray and Mathews’ Treatise, prepared by A. Gray and T. M. 

MacRobert, has been published (1922) while this volume is in press. The notation of the first 

edition has been altered in some respects. 
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B. A. Report, 1879, pp. 54-57. Integral values of m from 1 to 7; from x = 0.01 H 
to « = 1.00, interval o.o1, 16 decimal places. 

Jahnke and Emde: Funktionentafeln, p. 83; same to 4 decimal places. 

P,,(cos 0) 

Phil. Trans. Roy. Soc. London, 203, p. 100, 1904. Integral values of 2 from 

1 to 20, from 8 = 0 to 6 = go, interval 5, 7 decimal places. 

Phil. Mag. 32, p. 512, 1891. Integral values of m from 1 to 7, 6 =o to 
6 = go, interval 1; 4 decimal places. Reproduced in Jahnke and Emde, p. 85. 

Tallquist, Acta Soc. Sc. Fennicae, Helsingfors, 33, pp. 1-8. Integral values 

of n from 1 to 8; 6 = o to 8 = go, interval 1, 10 decimal places. 

Airey, Proc. Roy. Soc. London, 96, p. 1, 1919. Tables by means of which 

zonal harmonics of high order may be calculated. 

Lodge, Phil. Trans. Roy. Soc. London, 203, 1904, p. 87. Integral values of 

n from 1 to 20; 8 =0 to @ = go, interval 5, 7 decimal places. Reprinted in 
Rayleigh, Collected Works, Volume V, p. 162. 

dP, (cos 8) _ 

00 

Farr, Proc. Roy. Soc. London, 64, 199, 1899. Integral values of 7 from 1 to 7; 

6 = 0 to @ = go, interval 1, 4 decimal places. Reproduced in Jahnke and Emde, 
p. 88. 

a(e)cesu@) VO.101): 

Meissel’s tables, « = 0.01 to x = 15.50, interval 0.01, to 12 decimal places, 

are given in Table I of Gray and Mathews’ Treatise on Bessel’s Functions. 

Aldis, Proc. Roy. Soc. London 66, 40, 1900. x = 0.1 to x = 6.0, interval 

0.1, 21 decimal places. 

Jahnke and Emde, Funktionentafeln, Table III. « = 0.01 to x = 15.50, 
interval 0.01, 4 decimal places. 

Je) (9101). 

Gray and Mathews, Table II. Integral values of m from 2 = 0 to » = 60; 

integral values of x from « = 1 to x = 24, 18 decimal places. 

Jahnke and Emde, Table XXIII, same, to 4 significant figures. 

B.A. Report, 1615, p. 20,7 = 0, Lo = 13. 

f= O12 tO) % — eOr0 interval o.2 6 decimal places, 

t ="6:0 to) & = 10:0 interval 0.5 to decimal places. 

Hague, Proc. London Physical Soc. 29, 211, 1916-17, gives graphs of J,(x) 
for integral values of 7 from 0 to 12, and n = 18, x ranging from o to 17. 

= = Vo(x%) = Goa); _= Yi(4) = Gia). 

B. A. Report, 1913, pp.,116-130, %=l0,01 to % = 16.0, intervalvo.orsey 

decimal places. 

} 

1 
‘ 
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B. A. Report, 1915, x = 6.5 to x = 15.5, interval 0.5, 10 decimal places. 

Aldis, Proc. Roy. Soc. London, 66, 40, 1900: «= 0.1 to x = 6.0. Interval 

0.1, 21 decimal places. 

Jahnke and Emde, Tables VII and VIII, functions denoted Ko(x) and Ki(x), 

fo 10 x— 6.0, interval 0.1; x — 0.01 to x = 0.90, interval 0.01; x = 1.0 

to x = 10.3, interval 0.1; 4 decimal places. 

a ~ Y,(x) = Ga). 

B. A. Report, 1914, p. 83. Integral values of 2 from 0 to 13. « = 0.01 to 

% = 6.0, interval 0.1; x = 6.0 to x = 16.0, interval 0.5; 5 decimal places. 

= Yo(x) + (log 2 — y)Jo(x), Denoted Yo(x) and Y,(x) 

= Y,(x) + (og 2 — y)Ji(x). respectively in the tables. 

B. A: Report, 1914, p. 76, + = 0.02 to ¥ = 15.50, interval 0.02, 6 decimal 

places. 

Eee AmRepOLt LOLS, Pi 32, 6©—O.r tO %— 6.0, mterval o.1; x= 6.0 to 

% = 15.5, interval 0.5, 10 decimal places. 

Jannkevand= Emde, Table VI, x= 0.01 to x = 1.00, interval 6.01; x = 1.0 

to x = 10.2, interval 0.1, 4 decimal places. 

V(x), Vila). Denoted No(x) and N;(«) respectively. 

Jahnke and Emde, Table IX, x = 0.1 to x = 10.2, interval 0.1, 4 decimal 

places. 

= Y,(x) + (log 2 — ¥y) Jn(x). Denoted Y,(x) in tables. 

B. A. Report, 1915. Integral values of m from 1 to 13. * = 0.2 to x = 6.0, 

interval 0.2; x = 6.0 to x = 15.5, interval 0.5, 6 decimal places. 

Jn+4(X). 

Jahnke and Emde, Table II. Integral values of 1 from = 0 to n = 6, and 
n= —1 ton = —7; x =0 to x = 50, interval 1.0, 4 figures. 

Jy(x), F(a) 

Watson, Proc. Roy. Soc. London, 94, 204, 1918. 

x = 0.05 to * = 2.00 interval 0.05, 

%=2.0 to x= 8.0 interval o.2, 
4 decimal places. 

Talat), Sa1(Q) 

= “Ya(q), _2 mas (O3)e Denoted Ga(@) and Ga_1(@) respectively. 
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Vala) + (log 2 - y)Ja(@), 

m1 B13 Vos(a) + (log 2 — Y)Ja-(@). Denoted —Ya(a) and —VYoi(a). 

Tables of these six functions are given in the B. A. Report, 1916, as follows: 

From @ toa Interval 

I 50 Ta 

50 100 5 

100 200 ste) 

200 400 20 

400 1000 50 

1000 2000 100 

2000 5000 500 

5000 / 20000 1000 

20000 30000 10000 

100,000 

500,000 

1,000,000 

Ti). ne) O24). 

Aldis, Proc. Roy. Soc. London, 64, pp. 218-223, 1899; « = 0.1 to x = 6.0, 

interval 0.1; « = 6.0 to x = 11.0, interval 1.0, 21 decimal places. 

Jahnke and Emde, Tables XI and XII, 4 places: 

i 10:01 Ore — sero interval o.or, 

1g isle) 1) Go (OO) interval o.1, 

Ti (OO: NO eee interval r.o. 

I(x) (9.211). 

B. A. Report, 1896; x= 0.001 to *= 5.100, interval o.cor, 9 decimal 

places. . 

TiGaoseL2). 

B. A. Report, 1893; x = 0.001 to x = 5.100, interval 0.001, 9 decimal 

places. 

Gray and Mathews, Table V, x = 0.01 to x = 5.10, interval o.o1, g decimal 

places. 

Tn(%) (9:21). 

B. A. Report, 1889, pp. 28-32; integral values of m from o to 11, x = 0.2 
to x = 6.0, interval o>2, 12 decimal places. These tables are reproduced in 

Gray and Mathews, Table VI. 

Jahnke and Emde, Table XXIV; same ranges, to 4 places. 

Jo (xVi) = X -i¥, 

V 2J1 (xVi) 2 GEA 
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Aldis, Proc. Roy. Soc. London, 66, 142, 1900; x = 0.1 to ¥ = 6.0, interval 

0.1, 21 decimal places. 

yer and Emde, Tables XV and XVI, same range, to 4 Paes 

Gray and Mathews, Table IV; x = 0.2 to x = 6.0, interval 0.2, g decimal 

places. 

Yo(xv/i) (9.104) Denoted N,(xV/i) in table. 

Hyevi), Hy(xvi). 
Jahnke and Emde, Tables XVII and XVIII; «= 0.2 to x = 6.0, interval 

0.2, 4-7 figures. 

= Hix) = Kola), 
: (9.212). 

— = Aix) = Ki), 

Aldicem@orocsskoy. soc. London, 64, 219-223, 1800; «x ='0.1 to % = 12.0, 

interval 0.1, 21 decimal places. 

Jahnke and Emde, Table XIV; same, to 4 places. 

iH\(ix), —Hi(ix) (9.107). 

Jahnke and Emde, Table XIII; x = 0.12 to x = 6.0, interval 0.2, 4 figures. 

ber x, ber’ x, (9.215). 

bei x, bei’ x, 

B.A. Report, 1912; % = 0.1 to x = 10.0, interval o.1, 9 decimal places. 

Jahnke and Emde, Table XX; x = 0.5 to x = 6.0, interval 0.5, and x = 8, 

10, 15, 20, 4 decimal places. 

ker x, ker’ x, 

kei x, kei’ x, oe 

Baa Report, 1955; & — 0.1 to x — 16.0, interval \o.1, 7-10 decimal places. 

ber? « + bei? x, 

ber”? x + bei? x, 

ber x bei’ « — bei x ber’ x, and the corresponding ker and kei 

ber x ber’ x + bei x bei’ x, functions. 

B. A. Report, 1916; « = 0.2 to x = 10.0, interval o.2, decimal places. 

7G), (Sen) Log Sn (4), Logs’ nlx), 

Coe nth), lor C,(%), log C’ (x), . O261). 

Ao) en) log E,,(x), log: EB’. (x)), 

Bee sRepor, Lolo. integral values of 7 itom © to 10, %.= 1.1 to # = 1.0, 

interval o.1, 7 decimal places. 
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L PewEDN Ree I x 
G(x) = —V2 II |-) «4; (=) =— Lia | (=) (x) V2 4 ANG 0.78012 *\) 

ene DN alg eeN I ry, (% nee (-)orfl)e cecal 
Table I of Jahnke and Emde gives these two functions to 3 decimal places 

fot # = 0.2 to x = 8.0, interval’ o.2, and 4 — 8.0 to ® — 12,0, lterval erp: 

Roots of Jo(x) = 0. 

Airey, Phil. Mag. 36, p. 241, 1918: First 40 roots (p) with corresponding 

values of J;(p), 7 decimal places. 

Jahnke and Emde, Table IV, same, to 4 decimal places. 

Roots of J;(x) =o. 

Gray and Mathews, Table III, first 50 roots, with corresponding values 

of Jo(x), 16 decimal places. 

Airey, Phil. Mag. 36, p. 241: First 40 roots (7) with corresponding values 

of Jo(r), 7 decimal places. 

Jahnke and Emde, Table IV, same, to 4 decimal places. 

Roots of J,(x%) =o. 

B. A. Report, 1917, first 10 roots, to 6 figures, for the following integral 

values of 7: O—10, 15, 20, 30, 40, 50, 75, 100, 200, 300, 400, 500, 750, 1000. 

Jahnke and Emde, Table XXII, first 9 roots, 3 decimal places, integral 

values of m o-9. 

Roots of: 

(log 2 — y)Jn(x) + = V7 (oo: Denoted Y,,(x) = 0 in table. 

Airey: Proc. London Phys: Soc. 23, p. 219; torce—r1. ‘First 4o roots stog 

i — ©, 1, 2, 5 decimal places: 

Jahnke and Emde, Table X, first 4 roots for 7 = 0, 1. EE decimal places. 

Roots of: 

Yo(x) = 
ou) ie Denoted N,(x) and N,(«) in tables. 

Y1(x) = 0. 

Airey: |. c. First 10 roots, 5 decimal places. 

Roots of: 

Jo(x) + (log 2 — y)Jo(x) + = Y,(x) = 0. Denoted Jo(x) + Yo(x) = 0. 

Ji(x) + (log 2 — y)Ji(~) + ~ Yi(x) =0. Denoted Ji(x) + VYil(x) =o. 

Jo(x%) — 2(log 2 — y)Jo(x) + ~ Yo(x) =0. Denoted Jo(x) — 2Vo(x) =0. 

1oJo(x) + (log 2 — y)Jo(x) + - Yo(x) =o. Denoted 10Jo(x) + Yo(x) = 0. 
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Airey, |. c. First to roots, 5 decimal places. 

Roots of: 

Seale) 9 Teen) = 

TAG) IPED) 

pireyz i. c. ‘Hirst 10. roots: 2 = 0, 4 decimal places, 1 = 1, 2, 3, 3 decimal 

places. 

Jahnke and Emde, Table XXV, first 5 roots for x = 0, 3 for m =1, 2 for 

n = 2: 4 figures. 

Airey, l. c. gives roots of some other equations involving Bessel’s functions 

connected with the vibration of circular plates. 

Roots of: 
Jy(x) V(x) = Jy (kx) Y,(kx). 

Jahnke and Emde, Table XXVI, first 6 roots, 4 decimal places, for 

On 2, s 4/2 2.5/9: k= 1.2, 115, 2.0, 

Table XX VII, first root, multiplied by (& — 1) fork =1, 1.2, 1.5, 2—11, 

19, 39, ©: v same as above. 

Table XXIX, first 4 roots, multiplied by (& — 1) for certain irrational values 
of k, and » = 0, I. 
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INTRODUCTION 

Differential equations are usually first encountered in the final chapter of 

a book on integral calculus. The methods which are there given for solving 

them are essentially the same as those employed in the calculus. Similar methods 

are used in the first special work on the subject. That is, numerous types of 

differential equations are given in which the variables can be separated by 
suitable devices; little or nothing is said about the existence of solutions of 

other types, or about methods of finding the solutions. The false impression 

is often left that only exceptionally can differential equations be solved. What- 
ever satisfaction there may be in learning that some problems in geometry and 

physics lead to standard forms of differential equations is more than counter- 

balanced by the discovery that most practical problems do not lead to such 

forms. 

10.01 The point of view adopted here and the methods which are developed 
can be best understood by considering first some simpler and better known 

mathematical theories. Suppose 

i. Fie) = 2% 3 aye"! =p see e ms + dniXt + Gn =O 

is a polynomial equation in « having real coefficients a1, @,...,@n. If n is 
I, 2, 3, or 4 the values of x-which satisfy the equation can be expressed as explicit 
functions of the coefficients. If » is greater than 4, formulas for the solution 

can not in general be written down. Nevertheless, it is possible to prove that 

solutions exist and that at least one of them is real if m is odd. If the coefficients 
are given numbers, there are straightforward, though somewhat laborious, 

methods of finding the solutions. That is, even though general formulas for 

the solutions are not known, yet it is possible both to prove the existence of the 

solutions and also to find them in any special numerical case. 

10.02 Consider as another illustration the definite integral 

I. r= [f(s dz, 
where f(x) is continuous for a<a<b. If F(x) is such a function that 

2 Fee), 
220 
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then J = f(b) — F(a). But suppose no F(x) can be found satisfying (2). It 

is nevertheless possible to prove that the integral J exists, and if the value of 

(x) is given for every value of «x in the interval a< x <4, it is possible to find the 
numerical value of J with any desired degree of approximation. That is, it is 

not necessary that the primitive of the integrand of a definite integral be known 
in order to prove the existence of the integral, or even to find its value in any 
particular example. 

10.03 The facts are analogous in the case of differential equations. Those 

having numerical coefficients and prescribed initial conditions can be solved 
regardless of whether or not their variables can be separated. They need to 
satisfy only mild conditions which are always fulfilled in physical problems. 
It is with a sense of relief that one finds he can solve, numerically, any particular 
problem which can be expressed in terms of differential equations. 

10.04 This chapter will contain an account of a method of solving ordinary 
differential equations which is applicable to a broad class including all those 

which arise in physical problems. A large amount of experience has shown that 

the method is very convenient in practice. It must be understood that there is 

for it an underlying logical basis, involving refinements of modern analysis, 

which fully justifies the procedure. In other words, it can be proved that the 
process is capable of furnishing the solution with any desired degree of accuracy. 

The proofs of these facts belong to the domain of pure analysis and will not be 
given here. 

10.10 Simpson’s Method of Computing Definite Integrals. The method of 

solving differential equations which will be given later involves the computation 
of definite integrals by a special process which will be developed in this and the 

following sections. 

Let ¢ be the variable of inte- yf 

gration, and consider the definite 

integral 

i. F - {70 dt. 

This integral can be interpreted 

as the area between the /-axis and 

the curve y = f(f) and bounded 
by the ordinates¢ = a and ¢ = 3, 

figure r. yi 

Let bo = G,tn = b, Vi =A). and Oo 1 

divide the interval a <¢ <6 up into a b 
n equal parts, each of length h = Fic. 1 

(6 — a)/n. Then an approximate value of F is 

2. Fo = AGI =F Vo F656 oO 0 AP Vee 

This is the sum of rectangles whose ordinates, figure 1, are 1, yo, ... , Vu 

10.11 A more nearly exact value can be obtained for the first two intervals, 

for example, by putting a curve of the second degree through the three points 
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Yo, ¥1, ¥2, and finding the area between the f-axis and this curve and bounded 

by the ordinates ¢) and #2. The equation of the curve is 
I. y = ao + ay(t — to) + aa(t = to)?, 

where the coefficients a, a, and a, are determined by the conditions that y 
shall equal yo, y1, and y2 at ¢ equal to éo, 4, and ¢ respectively; or 

( Yo = 4, 

= 4 M1 = Go + a(t — to) + a(t — to)?, 

| Ve = do + Ai(te — to) + do(te — to)?. 

It follows from these equations and & — 4, = 4 — 4) = h that 

ado = Yo; 

i say ; ) Oh Fay) EY iat) 

| sy 
t ia ate eget + ye). 

. . le . . 

The definite integral if ydt is approximately 
lo 

le 
T= i E + a(t = to) + ay(t = 1°] dt = 2h E + ayh + ; alt'|, 

to 

which becomes as a consequence of (3) 

h 
3 

4. T =— (yo + 491 + 42). 

10.12 The value of the integral over the next two intervals, or from fy to ta, 

can be computed in the same way. If 7 is even, the approximate value of the 

integral from ¢ to ¢, is therefore 

I FP, = ; [yo a6 4y1 4- 2V2 -f- 43 + 24 = I= fee robots + 4Vn-1 in Mails 

This formula, which is due to Simpson, gives results which are usually remarkably 

accurate considering the simplicity of the arithmetical operations. 

10.13 Ifa curve of the third degree had been passed through the four points 

Yo, Vi, Yo, and ys, the integral corresponding to (4), but over the first three 

intervals, would have been found to be 

h 
I =" [yo + ay + 392 + 941. 

10.20 Digression on Difference Functions. For later work it will be necessary 

to have some properties of the successive differences of the values of a function 

for equally spaced values of its argument. 

As before, let y; be the value of f(é) for ¢ = ¢;. Then let 
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Aw = V1 — Yo, 

Avye = Yo = 41; 

Bin 6 a0) cep eiey 16) 

These are the first differences of the values of the function y for successive values 

of ¢. All the successive intervals for ¢ are supposed to be equal. 

10.21 In a similar way the second differences are defined by 

Aoye = Ave = Aw, 

Aoys = Avy — Ai», 

one. Jetie mie | 04 0). 4,6 "109 07 0) 

10.22 In a similar way third differences are defined by 

Azys = Aoys = Aoye, 

Asya = Aoy4 = Aoys, 

Asyn = Aoyn aY Aoyn-1, 

and obviously the process can be repeated as many times as may be desired. 

10.23 The table of successive differences can be formed conveniently from the 

tabular values of the function and can be arranged in a table as follows: 

TABLE. I 

Nee ee 

y Avy Avy Asy 

Yo 

V1 Aw 

y2 Avys Asys 

V3 Avys Aoys A3y3 

mhelielialiet eMegeltuiiat'c) ie fli) .e\\4. 0: a) a eee lete offelo: 015) {fs e.0) 016) ©, ele) ee syeiel.e,e %\])) © aj.a)'a)"eri6) 0) @4'e),4) 6) 0110) (8 

In this table the numbers in each column are subtracted from _ those 

immediately below them and the remainders are placed in the next column to 

the right on the same line as the minuends. Variations from this precise arrange- 

ment could be, and indeed often have been, adopted. 
10.24 A very important advantage of a table of differences is that it is almost 

sure to reveal any errors that may have been committed in computing the yi. 

If a single y,; has an error €, it follows from 10.20 that the first difference Ayy; 

will contain the error +€ and Ajy;+4 will contain the error —€. But the second 

differences Aoy;, Avy;i:, and Ayy;+2 will contain the respective errors +€, —2€, 
+e. Similarly, the third differences Ay;, Agyi41, Asyiz2, and Asy;+3 will contain 

the respective errors +€, —3€, +3¢, —e. An error in a single y; affects 7 +1 

differences of order 7, and the coefficients of the error are the binomial coeffi- 

cients with alternating signs. The algebraic sums of the errors in the affected 
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numbers in the various difference columns are zero. Now in such functions 

as ordinarily occur in practice the numerical values of the differences, if the 

intervals are not too great, decrease with rapidity and run smoothly. If an 

error is present, however, the differences of higher order become very irregular. 

10.25 As an illustration, consider the function y = sin ¢ for ¢ equal to 10°, 
1 The following table gives the function and its successive differ- 

ences, expressed in terms of units of the fourth decimal:! 

TABLE II 

t sin é A, sin ¢ Ag sin ¢ A; sin ¢ 

son 1736 
15 2588 852 
20 3420 832 —20 
25 4226 806 —26 —6 

30 5000 774 —32 ao) 
35 5736 736 moe —6 
40 6428 692 —44 —6 

45 7071 643 —49 15) 
50 7660 589 —54 =5 
55 SIOI 531 ee =4 
60 8660 469 —62 —4 

65 9063 403 00 a 
7° 9397 334 —69 =3 

oe 

Suppose, however, that an error of two units had been made in determining 

the sine of 45° and that 7073 had been taken in place of 7071. Then the part 

of the table adjacent to this number would have been the following: 

TABLE III 

t sin ¢ A, sin As sin é A; sin ¢ 

25° 4226 

30 5000 774 
35 5736 730 38 3 
40 6428 692 —44 — 6 

45 7973 645 —47 28 
5° 7660 587 —58 —II 
55 8IgI 2H —56 + 2 
60 8660 469 —62 — 6 

65 9063 403 —66 SA 

The irregularity in the numbers of the last column shows the existence of an 

error, and, in fact, indicates its location. In the third differences four numbers 

1 Often it is not necessary to carry along the decimal and zeros to the left of the first 

significant figure. 

| 
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will be affected by an error in the value of the function. The erroneous numbers 

in the last column are clearly the second, third, fourth, and fifth. The algebraic 

sum of these four numbers equals the sum of the four correct numbers, or —18. 

Their average is —4.5. Hence the central numbers are probably —5 and —4. 

Since the errors in these numbers are —3€ and +3¢, it follows that € is probably 

42. The errors in the second and fifth numbers are +€ and —e respectively. 

On making these corrections and working back to the first column, it is found 

that 7073 should be replaced by 7071. 

10.30 Computation of Definite Integrals by Use of Difference Functions. 

Suppose the values of /(¢) are known for ¢ = tn», tn, tn, and trys. Suppose 

it is desired to find the integral 
tn+1 

rT: i MO dt. 

The coefficients bo, 61, b2, and 63 of the polynomial can be determined, as above, 

so that the function 

os y = bo + bi(t — tn) + bolt — tn)? + d3(t — tn)? 

shall take the same values as f(£) for ¢ = tn_e, tnt, tn, and tn41. 

With this approximation to the function /(é), the integral becomes (since 

‘int 

. eae Hs [he Seen 72 ete 651d 

= fllby 2 = bil 4a bx 4 = bP 
2 3 aa 

The coefficients bo, 61, 62, and 6; will now be expressed in terms of yn41, Avn4, 

Asyny, and Agynii. It follows from (2) that 

( Yn—2 = by — 2b,h + Abyh? = 8bsh3, 

4 
Yn = bo — bik + doh? — bsh3, 

1 Bi es bo, 

[ Vat = bo + dik + beh? + b3h?. 

Then it follows from the rules for determining the difference functions that 

( AWn- = bih = 3b2h? + 7b3h', 

Be 1 Ayn = bik — beh? + bh, 

| Away = bih + boh? + bsh?. 

5: ee abel? — 6b3h%, 
AoVnti = 2boh?. 

a Asynyi = Ob3h3. 
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It follows from the last equations of these four sets of equations that 

bo = Wipf = Aint, 

bih = Ayay = : AoVn4i a 6 Dents 

boh? = = Aoyn41; 

b3h* = = As nts: 

Therefore the integral (3) becomes 

I I I 
9. I, = abe = Ave = olen = rea = S590 6 | 

The coefficients of the higher order terms Ayyny; and Asyny; are — 39 and 

ia respectively. 

10.31 Obviously, if it were desired, the integral from ¢,_2 to ¢,-1, or over any 

other part of this interval, could be computed by the same methods. For example, 

the integral from ¢,_1 to ¢, is 

tn 

i SO dt, 
n—1 

I 
a Al yo 7 SAvynts lg = Avnet ate rea Ip tetauet le | 

NUMERICAL ILLUSTRATIONS 

10.32 Consider first the application of Simpson’s method. Suppose it is required 
to find 

55° 55° 
f= i sin tdi = — cos | = 0.3327. 

250 25° 

On applying 10.12 with the numbers taken from Table I, it is found that 

i= [4226 + 2.0000 + 1.1472 + 2.5712 + 1.4142 + 3.0640 + .8191 ], 

which becomes, on reducing 5° to radians, 

i= "Ora2 oF. 

agreeing to four places with the correct result. 

10.33 On applying 10.11 (4) and omitting alternate entries in Table IJ, it is 

found that 
45° 2 

p= | sin ¢ dt = = [4226 + 2.2944 + .7071 | = 0.1992, 
one 

which is also correct to four places. These formulas could hardly be surpassed 

in ease and convenience of application. 
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10.34 Now consider the application of 10.30 (9). As it stands it furnishes the 
integral over the single interval /, to ¢,4:. If it is desired to find the integral 
from f, tO fn4m, the formula for doing so is obviously the sum of m formulas 

such as (9), the value of the subscript going from m + 1 tom +m +1, or 

I 

T .; ne il (yes ae Cech yr OerO ae atm] va = (Avy sr wast OMe ON SC a Asyntm] 

3 = (Ayn +... et Asyntmts) _ £ (Aaya +....+ Asynim] +.. | 

On applying this formula to the numbers of Table I, it is found that 

= isin t dt = 5°[(.5000 + .5736 + .6428 + .7071 + .7660 + .8191) 

a = (074 + .0736 + .0692 + .0643 + .0589 + .0531) 

ae = (.0032 + .0038 + .0044 + .0049 + .0054 + .0058) 

fh fi (.0006 + .0006 + .0006 + .0005 + .0005 + .0004) } 

= O33275 

agreeing to four places with the exact value. When a table of differences is at 
hand covering the desired range this method involves the simplest numerical 

operations. It must be noted, however, that some of the required differences 

necessitate a knowledge of the value of the function for earlier values of the 

argument than the lower limit of the integral. 

10.40 Reduced Form of the Differential Equations. Differential equations 
which arise from physical problems usually involve second derivatives. For 

example, the differential equation satisfied by the motion of a vibrating tuning 

fork has the form 

cae —kx 
dt? ay 

where & is a constant depending on the tuning fork. 

10.41 The differential equations for the motion of a body subject to gravity 

and a retardation which is proportional to its velocity are 

(dix ds 
dt’ dis 

a dy 
ee fap 

where ¢ is a constant depending on the resisting medium and the mass and shape 
of the body, while g is the acceleration of gravity. 
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10.42 The differential equations for the motion of a body moving subject to— 
the law of gravitation are 

dx we 

dei am ios 

dy ioe 
oF we yr? 

dz ee 

de 7 7? 

Pave P+ 2. 

10.43 These examples illustrate sufficiently the types of differential equations — 
which arise in practical problems. The number of the equations depends on 

the problem and may be small or great. In the problem of three bodies there 

are nine equations. The equations are usually not independent as is illustrated 

in 10.42, where each equation involves all three variables x, y, and z through r. 

On the other hand, equations 10.41 are mutually independent for the first does 

not involve y or its derivatives and the second does not involve « or its deriva- 

tives. The right members may involve x, y, and z as is the case in 10.42, or 

they may involve the first derivatives, as is the case in 10.41, or they may | 

involve both the codrdinates and their first derivatives. In some problems 

they also involve the independent variable ¢. ‘ 

10.44 Hence physical problems usually lead to differential equations which are 

included in the form 

dx _. “deady 

antl y) dt? 2), 

Dy ints  Ceey 
de = a(x, y, dt’ Ft), 

where f and g are functions of the indicated arguments. Of course, the number 

of equations may be greater than two. 

10.45 If we let 
dx dy at BEE eet) 

ae ph) ay? 

equations 10.44 can be written in the form 

dx’ 
“di. me Ges y; Di, yl, t), 

os = g(x, y, x,y’, 2). 
<< SSS 

=| 
| 

~— 
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1046 Tf we let x =, x’ =%2, y= %3, y’ = 4%, ... 2. equations 10.45 are 

included in the form 
dx 
rT = fi, %2>- + © > Xn; t), 

iin 
dt 

This is the final standard form to which it will be supposed the differential 

equations are reduced. 

Ste bie Vom ws avant). 

10.50 Definition of a Solution of Differential Equations. For simplicity in 
writing, suppose the differential equations are two in number and write them in 

the form 
dx 
7 19); 

dy 
dt i SG, y, t), 

where f and g are known functions of their arguments. Suppose x = a, y = b 

ap ¢=0. Then 
x=), 

s ly =v, 
is the solution of (1) satisfying these initial conditions if @ and wy are 

such functions that 
o(o) = os 

Y(0) = b, 

3. 1? (6, W0, 

a = g(, Y, t), 

the last two equations being satisfied for allo< t< T, where T is a positive con- 

stant, the largest value of ¢ for which the solution is determined. It is not neces- 

sary that @ and w be given by any formulas — it is sufficient that they have 

the properties defined by (3). Solutions always exist, though it will not be 
proved here, zf f and g are continuous functions of t and have derivatives with respect 

to both x and y. 

10.51 Geometrical Interpretation of a Solution of Differential Equations. 

Geometrical interpretations of definite integrals have been of great value not 

only in leading to an understanding of their real meaning but also in suggesting 
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practical means of obtaining their numerical values. The same things are true 
in the case of differential equations. 

For simplicity in the geometrical representation, consider a single equation 

dx 
I. dt = F(x, t), 

where x = a at ¢=0. Suppose the solution is 

2. We pi), 

Equation (2) defines a eurve whose coérdinates are x and ¢. Suppose it is repre- 

sented by figure 2. The value of the tangent to the curve at every point on it 

X is given by equation (1), for there 

is. corresponding to each point, a 

pair of values of x and ¢ which gives 
dx 

dt 
substituted in the right member of 

a equation (tr). 

Consider the initial point on the 

CUIVe, V1Z. 4) = a, 7 = on) hestan 

gent at this point is f(a,0). The 
re) tt T curve lies close to the tangent for a 

at se short distance from the initial point. 

Hence an approximate value of x 

at ¢ = h, 4 being small, is the ordinate of the point where the tangent at a 
intersects the line ¢ = 4, or 

, the value of the tangent, when 

ie, 2 

Mi 7a O)er 

The tangent at 4, ¢, is defined by (1), and a new step in the solution can be made 

in the same way. Obviously the process can be continued as long as x and ¢ 

have values for which the right member of (1) is defined. And the same process 

can be applied when there are any number of equations. While the steps of this 

process can be taken so short that it will give the solution with any desired 

degree of accuracy, it is not the most convenient process that may be employed. 

It is the one, however, which makes clearest to the intuitions the nature of the 

solution. 

10.6 Outline of the Method of Solution. Consider equations 10.50 (1) and their 
solution (2). The problem is to find functions @ and y having the properties 

(2). If we integrate the last two equations of 10.50 (3) we shall have 

o=a+ { 16, ¥,0 de 

v= 0+ [s(b,¥,0 dt 
The difficulty arises from the fact that @ and wW are not known in advance and 

the integrals on the right can not be formed. Since @ and w are the solution 

values of x and y, we may replace them by the latter in order to preserve the 

original notation, and we have 
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t 

=a-+ fte.y,0 a, 
° 

t 

bya b+ flea ae 

If x and y do not change rapidly in numerical value, then f(«, y, ¢) and g(x, y, ¢) 

will not in general change rapidly, and a first approximation to the values of x 

and y satisfying equations (2) is 

v1 

t 

at f f(a,6,0 dt, 

t 

M1 b+ f(a, b,0 dt, 

at least for values of ¢ near zero. Since a and 0 are constants, the integrands in 

(3) are known and the integrals can be computed. I the primitives can not be 

found the integrals can be computed by the methods of 10.1 or 10.3. 
After a first approximation has been found a second approximation is given by 

t 

Ee = Uc [io y1, ¢) dt, 

4. 1 

[% =b+ ec Vi, t) dt. 

The integrands are again known functions of ¢ because «, and yy, were determined 
as functions of ¢ by equations (3). Consequently x, and y. can be computed. 

The process can evidently be repeated as many times as is desired. The mth 

approximation is 
t 

n= a+ pice: Vn-1y t) dt, 

ft 

b ae fslou, Vn—-1) t) ate 

There is no difficulty in carrying out the process, but the question arises whether 

it converges to the solution. The answer, first established by Picard, is that, 

as m increases, x, and y, tend toward the solution for all values of ¢ for which all 

the approximations belong to those values of x, y, and ¢ for which f and g have 

the properties of continuity with respect to ¢ and differentiability with respect 

Es 

toxandy. If, for example, f = ined and the value of x, tends towards zero 

for ¢ = T, then the solution can not be extended beyond ¢ = T. 

It is found in practice that the longer the interval over which the integration 

is extended in the successive approximations, the greater the number of approxi- 
mations which must be made in order to obtain a given degree of accuracy. In 

fact, it is preferable to take first a relatively short interval and to find the solution 

over this interval with the required accuracy, and then to continue from the end 
values of this interval over a new interval. This is what is done in actual work. 

The details of the most convenient methods of doing it will be explained in the 

succeeding sections. 
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10.7 The Step-by-Step Construction of the Solution. Suppose the differential 
equations are 

dx 
[= = f(x, y; i), 

I 

Gye ya 
[4 a g(x, y) t), 

with the initial conditions x = a, y= 6 att#=o. It is more difficult to start a 

solution than it is to continue one after the first few steps have been made. There- 

fore, it will be supposed in this section that the solution is well under way, and 

it will be shown how to continue it. Then the method of starting a solution will 

be explained in the next section, and the whole process will be illustrated 

numerically in the following one. 

Suppose the values of x and y have been found fort =t,h,....,¢n. Let 

them be respectively 1, yi; 2, Yo} . - -3 Xn) Yn, Care being taken not to confuse 

the subscripts with those used in section 10.6 in a different sense. Suppose the 

intervals fp — h, ts — hb, . . . , fs — ns are all equal to # and that it is, desired 

to find the values of x and y at fais, where fnyi —tn =. 

It follows from this notation and equations (2) of 10.6 that the desired 

quantities are 
tn+1 ue 

Xnp1 = Xn + i (a, y; t) dt, 
tn 

tn+1 

Ynt1 = Yn +f fy (%, y, t) dt. 

The values of « and y in the integrands are of course unknown. They can be 

found by successive approximations, and if the interval is short, as is supposed, 

the necessary approximations will be few in number. 

A fortunate circumstance makes it possible to reduce the number of approxi- 

mations. The values of x and y are known até = tn, tri, tne, . - . From these 

values it is possible to determine in advance, by extrapolation, very close approxi- 

mations to x and y for ¢ = fry. The corresponding values of f and g can be 
computed because these functions are given in terms of «, y, and ¢. They are 

aIRO CINeD MOM — ial anita pee Consequently, curves for f and g agreeing 

with their values at ¢ = tnii, tn, tnt, - - . - can be constructed and the integrals 

(2) can be computed by the methods of 10.1 and 10.3. 

The method of extrapolating values of 2,4: and y,4: must be given. Since 

the method is the same for both, consider only the former. Since, by hypothesis, 

« 1s known .for ¢=%,, tn, fr2, ..... the values ‘of 4,,0 Aina ote oe 
A;«, are known. If the interval /# is not too large the value of Asvn4: is very 
nearly equal to A;x,. As an approximation A;«,,: may be taken equal to Asp, 
or perhaps a closer value may be determined from the way the third differences 







7 ee) 
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Astn—s, As%n—2, Astn1, and A;x, vary. For example, in Table IT it is easy to see 
that A; sin 75° is almost certainly —3. It follows from 10.20, 1, 2 that 

Avtnw = Asinq1 ae Ast, 

Bs Aitnvs = Aetars = Ax%n; 

{ ni = Aitny + Xn. 

After the adopted value of A;x,4: has been written in its column the successive 

entries to the left can be written down by simple additions to the respec- 

tive numbers on the line of ¢,. For ,example, it is found from Table II that 

We sin 75. = —72, Aisin 75° = 262, sin 75, = 9659. This is, indeed, the correct 
value of sin 75° to four places. 

Now having extrapolated approximate values of #4: and y,4: it remains to 

compute f and g for * = %n4y1, V = Ynu1, £ = tnys. The next step is to pass curves 

through the values of f and g for ¢ = tna, tn, fn, . . . . and to compute the inte- 

grals (2). This is the precise problem that was solved in 10.30, the only difference 

being that in that section the integrand was designated by y. On applying 
equation 10.30 (9) to the computation of the integrals (2), the latter give 

I i 1 
ni =4n+h irae = 3 i > Aofnys a 24 Asfn41 eicile i; 

4. 
I I I 

Vnti = Vn+ h [on4t = pA = a ASn41 = 24 Asgn41 5 00 i} 

where 

fru =f (Gaga, Vn; tn4s), 
e5- 

Snir = £(Kn41, Vat, bn4)- 

The right members of (4) are known and therefore x4: and yny are 
determined. 

It will be recalled that f,4; and g,4: were computed from extrapolated values 

Of Xn41 and y,4:, and hence are subject to some error. They should now be re- 

computed with the values of x,41 and y,41 furnished by (4). Then more nearly 
correct values of the entire right members of (4) are at hand and the values of 

¥n41 and yny1 Should be corrected if necessary. If the interval / is small it will 

not generally be necessary to correct #41 and yny1. But if they require correc- 

tions, then new values of f,4: and gn; should be computed. In practice it is 

advisable to take the interval / so small that one correction to fry: and gn4i is 

sufficient. 

After #,4: and y,4: have been obtained, values of « and y at ¢,42 can be found 

in precisely the same manner, and the process can be continued to ¢ = fn4s, trys, 

If the higher differences become large and irregular it is advisable to 

interpolate values at the mid-intervals of the last two steps and to continue with 

an interval half as great. On the other hand, if the higher differences become 

very small it is advisable to proceed with an interval twice as great as that used 

in the earlier part of the computation. 

The foregoing, expressed in words, seems rather complicated. As a matter of 

fact, it goes very simply in practice, as will be shown in section 10.9. 
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10.8 The Start of the Construction of the Solution. Suppose the differential 

equations are again 
f dx 
dt = ti (x, y; t), 

dy ela a . 
(ai g(x, y, t), 

with the initial conditions x = a, y = batt =0. Only the initial values of « and 

y are known. But it follows from (1) that the rates of change of x and y att =o 

are f (a, b, o) and g (a, 6, o) respectively. Consequently, first approximations to 
values of x and y at¢=t =h are 

{ x = a + hf(a, b, 0), 
| 1 = b + g(a, b, 0). 

Now it follows from (1) that the rates of change of x and y at x = m1, y = yn, 
t = t, are approximately f(a, y.%, #4) and g(a, y:., 4). These rates will be 

different from those at the beginning, and the average rates of change for the 

first interval will be nearly the average of the rates at the beginning and at the 

end of the interval. Therefore closer approximations than those given in (2) to 

the values of « and y at ¢ = #, are 

3- | 4) Sag ah eg a, b, o) + f(a, yi), t) |, 

\ n = 6 + $h[g(a, b, 0) + g(a, yi, t1)]. 

The process could be repeated on the first interval, but it is not advisable when 
the interval is taken as short as it should be. 

The rates of change at the beginning of the second interval are approximately 

f(a, y.™, 4) and g(a, y,©, t:) respectively. Consequently, first approxima- 
tions to the values of x and y at ¢ = tf, where #, — 4, = h, are 

4. fx = 21° + bfx, , tr), 
{2 = y.® + hg (a, y., hh). 

2. 

With these values of « and y approximate values of f/f, and g. are computed. Since 
fo, £03 fi, 1 are known, it follows that Aifs, Aig.; Avf2, and A,g, are also known. 
Hence equations (4) of 10.7, for 7 + 1 = 2, can be used, with the exception of 

the last terms in the right members, for the computation of x, and 42. 

At this stage of work xo = ad, Yo = 03 %1, V1; %2, y2 are known, the first pair 

exactly and the last two pairs with considerable approximation. After f. and g» 

have been computed, «, and y, can be corrected by 10.31 for = 1. Then ap- 

proximate values of x; and y; can be extrapolated by the method explained in 

the preceding section, after which approximate values of /; and g; can be com- 

puted. With these values and the corresponding difference functions, a, and yz 

can be corrected by using 10.31. Then after correcting all the corresponding 

differences of all the functions, the solution is fully started and proceeds by the 

method given in the preceding section. 

10.9 Numerical Illustration. In this section a numerical problem will be treated 

which will illustrate both the steps which must be taken and also the method of 
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arranging the work. A convenient arrangement of the computation which pre- 

serves a complete record of all the numerical work is very important. 

Suppose the differential equation is 

d’x 

é 4 
: dx 

[ Se pm otal =O. 

= —(1 + K2)x + 2x3 
b 

The problem of the motion of a simple pendulum takes this form when expressed 

in suitable variables. This problem is chosen here because it has an actual physi- 
cal interpretation, because it can be integrated otherwise so as to express ¢ in 

terms of x, and because it will illustrate sufficiently the processes which have 
been explained. 

Equation (1) will first be integrated so as to express ¢ in terms of x. 

On multiplying both sides of (1) by 2 bes and integrating, it is found that the 
dt 

integral which satisfies the initial conditions is 

ENE 3 
2. (=) =r x2) (1K). 

On separating the variables this equation gives 

; if - dx 

=e J VE ®) GO — 2) 

Suppose x” <1 and that the upper limit x does not exceed unity. Then 

Eee ght DE Det See ae, 2). O56 As ata si ag aera a ae 

where the right member is a converging series. On substituting (4) into (3) and 

integrating, it is found that 

5. €=sin x + 4L—aV 5 — a? + sin x Jk? + 3 —a8V'1 — 2? — 8xc(1 — 2°)! 

eet i — a? 2 sin wiKt es ee alt 

When « = 1 this integral becomes 

2 fone 32.c\2 
6. - 2x4 (sje + (E3)e 4 (Soa) 4... |, 

2 2 2°4 2:4:6 

Equation (5) gives ¢ for any value of x between —1 and +1. But the problem 
is to determine « in terms of ¢. Of course, if a table is constructed giving ¢ for 
many values of x, it may be used inversely to obtain the value of « corresponding 

to any value of t. The labor involved is very great. When x’ is given numerically 

it is simpler to compute the integral (3) by the method of 10.1 or 10.3. 
In mathematical terms, ¢ is an elliptical integral of x of the first kind, and the 

inverse function, that is, x as a function of ¢, is the sine-amplitude function, which 

has the real period 47. 
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Suppose x? == and let y = . Then equation (1) is equivalent to the 

two equations 

(dx _ 
; Aaa 

ae 
which are of the form 10.50 (1), where 

(f=%, 

8. See 
And 3 /=10, We— ieee — 10. 

The first step is to determine the interval which is to be used in the start of 
the solution. No general rule can be given. The larger f, and g the smaller 

must the interval be taken. A fairly good rule is in general to take h so small 

that ff, and /g, shall not be greater than 1ooo times the permissible error in the 

results. In the present instance we may take h = o.1. © 

First approximations to « and y at ¢ = o.1 are found from the initial conditions 
and equations 10.8 (2) to be 

I 
I 

Eo =o + — I = 0.1000, 
ite) 

9. | I 
it 5 == 6) I.0000. 

IO 

It follows from (8) and these values of «, and y,; that 

ies yi, t:) = 1.0000, 
10. 

g(a, v1, 1) = —0.1490. 

Hence the more nearly correct values of «; and y,, which are given by 10.8 (3), are 

es orl 
ID 10 ae ar [1.0000 + 1.0000] = 0.1000, 

yi) = 1+ = [0.0000 — 0.1490] = 0.9925. 

Since in this particular problem « = fy dé, it is not necessary to compute 

both f and g by the exact process explained in section 10.8, for after y has been 

determined « is given by the integral. It follows from (7), (8), (10), and (11) 

that a first approximation to the value of y at ¢ = # = 0.2 is 

re yo) = 0025 — = .1490 = .9770. 

With the values of y at o, .1, .2 given by the initial conditions and in equations 

(9) and (12), the first trial y-table is constructed as follows: 
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First Trial y-Table 

t y Av Avy 

fo) I .0000 

oi .9925 — .0075 

eZ .9776 —.0149 | —.0074 

Since y = f it now follows from the first equations of (11) and 10.7 (4) for m = 1 

that an approximate value of «, is 

13 x2 = 0.1000 + Bal .9776 + 2 .O149 + = 0074 |= -1080. 
aa ie) 2 1, Te 

With this value of «2 it is found from the second of (8) that g. = .2901. Then 

the first trial g-table constructed from the values of g at ¢ = 0, 0.1, 0.2, is: 

First Trial g-Table 

fo) . 0000 

eal = J1490 — .1490 

52 = 2001 =n tahini + .0079 

Then the second equation of 10.7 (4) gives for m = 1 the more nearly correct 

value of ye, 
I I I 

14. Yo = .9Q25 + ae | --2001 ae mA SANs a ao 0079 = .9705. . 

This value of yz should replace the last entry in the first trial y-table. When 

this is done it is found that Avy, = —.0220, Avy, = —.o145. Then the first equa- 
tion of 10.7 (4) gives 

eee: I I 
15: #2 = .1000 + —— | -9705 sh SO220 stole or45| OOS 

The computation is now well started although 4, 41, «2, and y, are still subject 

to slight errors. The values of «, and y, can be corrected by applying 10.31 for 

n=1. Itis necessary first to compute a more nearly correct value of g. by using 

the value of x, given in (15). The result is g, = —.2896, Aig, = —.1406, 
A.g, = +.0084. Then the second equation of 10.7 (4) gives 

I I i = .9925 + —| —.2896 + = .1406 — — .0084| = .97 16 ye = 9925 + =| OO ia MOOS =. 0084 | 9795; 

agreeing with (14). This value of y. is therefore essentially correct. An applica- 
tion of 10.31 then gives 

Aes ap 3 paps ree g bles L7: X1 = .00O0O + = | 9705 Sr 5 .0220 ae o1s| = .0997, 
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after which it is found that g: = —.1486, Aig, = —.1486. Now the first trial y-table 

can be corrected by using the value of 2 given in (14). The result is: 

Second Trial y-Table 

In order to correct 2 and y, by the same method, which is the most convenient 

one to follow, it is necessary first to obtain approximate values of g; and y;. The 

trial g-table can be corrected by computing g with the values of x given by (17) 

and (15). Then the line for g; can be extrapolated. The results are: 

Second Trial g-Table 

Y g Aig A.g 

fe) . 0000 

t — .1486 — .1486 

M2 — .2896 —.1410 + .0076 

.3 — .4230 — .1334 + .0076 

Then the second equation of 10.7 (4) gives for n = 2, 

I I I 
18. V3 = .9705 + = | --4250 Freeh Bata - 0076 | = .9348. 

When this is added to the second trial y-table, it is found that 

IQ. y3 = .9348, Avys = —.0357, Avys = —.0137, Asys = +.0008. 

Now x, and y, can be corrected by applying 10.31 to these numbers and those 

in the last line of the second trial g-table. The results are 

I I 
2 = .0907 + ea 0548 + : 0357) — = 0137 + Pe 0008 | = .1980, 

Nd 1& 

L 5 Ye = .9925 + = | --4230 + =.1334 + 5 0076 = .9705. 

The preliminary work is finished and x and y have been determined for ¢ = 0, 

.I, and .2 with an error of probably not more than one unit in the last place. As 

the process is read over it may seem somewhat complicated, but this is largely 

because on the printed page preliminary values of the unknown quantities can 

not be erased and replaced by more nearly correct ones. As a matter of fact, the 
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first steps are very simple and can be carried out in practice in a few minutes if 

the chosen time-interval is not too great. 

The problem now reduces to simple routine. There are an x-table, a y-table 

(which in this problem serves also as an f-table), a g-table, and a schedule for 

computing g. It is advisable to use large sheets so that all the computations 

except the schedule for computing g can be kept side by side on the same sheet. 

The process consists of six steps: (1) Extrapolate a value of gn, and its 
differences in the g-table; (2) compute y,4: by the second equation of 10.7 (4); 

(3) enter the result in the y-table and write down the differences; (4) use these 

results to compute x,4: by the first equation of 10.7 (4); (5) with this value of 

Xn4i compute gn41 by the g-computation schedule; and (6) correct the extrapolated 
value of gn: in the g-table. 

Usually the correction to g,4: will not be great enough to require a sensible 

correction to Yn41. But if a correction is required, it should, of course, be made. 

It follows from the integration formulas 10.7 (4) and the way that the difference 

functions are formed that an error € in gn4: produces the error 3/€ in yn41, and 

the corresponding error in #;41 is A h’e. It is never advisable to use so large 

a value of / that the error in x,4: is appreciable. On the other hand, if the differ- 

ences in the g-table and the y-table become so small that the second differences 
are insensible the interval may be doubled. 

The following tables show the results of the computations in this problem 
reduced from five to four places. 

Final «-Table 

I 0997 0997 
2 . 1980 .0983 — .OO14 

3 . 29034 -0954 — .0029 OOS 

4 3847 .0913 — .0041 — .O0O0I2 

as .4708 .O861 — .0052 — .OoIl 

.6 5508 .0800 — .oo61 — .0009 

v7 .6243 .0735 — 0605 — .0004 

8 .6909 .0666 — .0069 — .0004 

9 »7505 .0596 — .0070 — .O0OI 

TO 8030 10525 — .0071 — .OOOI 

iti .8486 .0456 — .0069 + .0002 

1.2 .8877 .0301 — .0065 + .0004 

nae .9205 .0328 — .0063 + .0002 

1.4 .9472 .0267 — .0o61 + .0002 

Bes .9682 .O210 — .0057 + .0004 

1.6 .9837 JOn55 — .0055 + .0002 

Te] -9Q40 -O103 OOS 2 + .0003 

TE ote .9993 .0053 — .0050 + .0002 

1.9 .9995 .0002 — .0051 — .OOO1 
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Final y-Table 

OMI ANAWHHOO OY ANEW HH pape Pee ee dpa si a 

Final g-Schedule 

log x | 8.9989 | 9.2967 | 9.4675 | 9.5851 | 9.6728 | 9.7410 | 9.7054 | 9.8304 | 9.8753 

log x? | 6.9967 | 7.8901 | 8.402 8.7553 | 9.0184 | 9.2230 | 9.3862 9.5182 9.6259 

3x .2992 59041 .8802 | 1.1541 | 1.4124 | 1.6524 | 1.8720 2.0727 2.2515 

ig F —.1496 | —.2970 | —.440r | —.5770 | —.7062 | —.8262 | —.9365 | —1.0364 | —1.1257 

x .OO10 .0077 .0252 .0569 .1044 -1671 .2434 3298 A2Oy 

g —.1486 | —.2893 | —.4149 | —.5201 | —.6018 | —.6591 | —.6931 | — .7066 | — .7030 
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Final g-Table 

D+++4+¢ 454444 

mile 

5 

3 
4 
+5 
6 
yf 
"Ss 
9 
.O 

or 

ate, 

3 
4 
5 
6 
7 
& 
9 Ln oe Ne Oe Oe | feared efeeoe eee Ie 

Final g-Schedule — Continued 

9:9047 | 9.9287] 9.9483] 9.9640] 9.9764] 9.9860] 9.9929] 9.9974] 9.9997] 9.9998 

9.7141 | 9.7861 | 9.8449] 9.8920] 9.9292} 9.9580] 9.9787] 9.9922] 9.9991] 9.9904 

2.4090] 2.5458] 2.6631] 2.7615 | 2.8416] 2.9046] 2.9511] 2.9820| 2.9979] 2.9985 

—1.2045 | —1.2729 | —1.3316 | —1.3807 | —1.4208 | —1.4523 | —1.4756 | —1.4910 | —1.4989 | —1.4992 

5178 -OIII .6996 -7799 .8498 .9076 9520 .9822 .9978 .9984 

— .6867 |— .6618]— .6320]— .6008|— .5710|— .5447|—..5236|— .5088]— .sor1r|— .5008 
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As has been remarked, large sheets should be used so that the «, y, and g-tables | 

can be put side by side on one sheet. Then the ¢column need be written but once — 

for these three tables. The g-schedule, which is of a different type, should be on — 
a separate sheet. 

The differential equation (1) has an integral which becomes for Kk? = iq 

d - Xx 
; 

and armed 

Di go Dies pare aT ci 

and which may be used to check the computation because it must be satisfied at — 

every step. It is found on trial that (21) is satisfied to within one unit in the — 

fourth place by the results given in the foregoing tables for every value of ¢. 

The value of ¢ for which « = 1 and y = 0 is given by (6). When & = $ it is 
found that T = 1.8541. It is found from the final x-table by interpolation based 

on first and second differences that x rises to its maximum unity for almost exactly 

this value of ¢; and, similarly, that y vanishes for this value of ¢. 
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INTRODUCRION TO THE «TABLES OF, ELLIPTIC 

FUNCTIONS 

By Str GEORGE GREENHILL 

d ze 
In the integral calculus, jlegee and more generally, foes 

VX P+0VX 

where M, N, P, Q are rational algebraical functions of «, can always be expressed 

by the elementary functions of analysis, the algebraical, circular, logarithmic or 

hyperbolic, so long as the degree of X does not exceed the second. But when 

X is of the third or fourth degree, new functions are required, called elliptic 

functions, because encountered first in the attempt at the rectification of an 
ellipse by means of an integral. 

To express an elliptic integral numerically, when required in an actual 

question of geometry, mechanics, or physics and electricity, the integral must 

be normalised to a standard form invented by Legendre before the Tables can 

be employed; and these Tables of the Elliptic Functions have been calculated 
as an extension of the usual tables of the logarithmic and circular functions of 

trigonometry. The reduction to a standard form of any assigned elliptic integral 
that arises is carried out in the procedure described in detail in a treatise on the 
elliptic functions. 

I 

11.1. Legendre’s Standard Elliptic Integral of the First Kind (E. I. I) is 

Oe Or olan dx 
A J V1 — K sin? d |e — x°)(x — Kx?) eee 

defining ¢ as the amplitude of u, to the modulus x, with the notation, 

od=am u 

x = sin @ = sinam 4 

abbreviated by Gudermann to, 

iss 

cos @ = cn u 

Ag= Via — kK sin? d) = Aamu = dnu, 

and sn uw, cn u, dn w are the three elliptic functions. Their differentiations are, 

dp _ damu _ 
dn 7 OP or =dnzu 

d sin d dsnu _ 
Ty 7 008 Ad OMS ae =cnudnu 

245 
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d cos @ ; dcnu _ 
= — sing Ad OL. Ss =—snudnu 

dAd _ d dn u 
=— K*snucnu = — k’sin@cos®@ or 

du du 

11.11. The complete integral over the quadrant, 0o< @< 2 o<x <1, defines 

the (quarter) period, K, 
T aT 

Hn te aa 
making 

sn K =1 

cn K =o 

dn K = xk’. 

kK’ is the comodulus to k, kK? + kK” = 1, and the coperiod, K’, is, 

Maat i dp 
Se ee 

11.12. 
sn? u + cn? u = 1 

cn? w+ K*sn?u =1 

dn? uw — Kcn?u = K?, 

Sn © = (0, en so-—.dine Ole 

snK=1, cK =0, dn K =x’. 

11.13. Legendre has calculated for every degree of 0, the modular angle, 

kK = sin 0, the value of /¢@ for every degree in the quadrant of the amplitude @, 

and tabulated them in his Table IX, Fonctions elliptiques, t. II, 90 x 90 = 8100 

entries. 

But in this new arrangement of the Table, we take u = F@ as the independent 
variable of equal steps, and divide it into 90 degrees of a quadrant K, putting 

u= eK =— Kk, 7¥° = 00-€. 

As in the ordinary trigonometrical tables, the degrees of y run down the left of 

the page from o° to 45°, and rise up again on the right from 45° to 90°. Then 
columns II, III, X, XI are the equivalent of Legendre’s Table of F@ and @, 

but rearranged so that F@ proceeds by equal increments r° in 7°, and the incre- 

ments in @ are unequal, whereas Legendre took equal increments of @ giving 

unequal increments in # = Fd. 

The reason of this rearrangement was the great advance made in elliptic 

function theory when Abel pointed out that F¢@ was of the nature of an inverse 

function, as it would be in a degenerate circular integral with zero modular 

angle. On Abel’s recommendation, the notation is reversed, and @ is to be 
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’ considered a function of «, denoted already by @ = am 4, instead of looking 

at u, in Legendre’s manner, as a function, P¢, of ¢. Jacobi adopted the idea 

in his Fundamenta nova, and employs the elliptic functions 

sin @ = sinam u, cos @ = cos am 4u, Ad = Aamu, 

single-valued, uniform, periodic functions of the argument u, with (quarter) 

period K, as @ grows from o to 37. Gudermann abbreviated this notation to 

the one employed usually today. 

11.2. The E. I. I is encountered in its simplest form, not as the elliptic arc, 

but in the expression of the time in the pendulum motion of finite oscillation, 

unrestricted to the small invisible motion of elementary treatment. 

The compound pendulum, as of a clock, is replaced by its two equivalent 

particles, one at O in the centre of suspension, and the other at the centre of 
oscillation, P; the particles are adjusted so as to have the same total weight as 

the pendulum, the same centre of gravity at G, and the same moment of inertia 
about G or O; the two particles, if rigidly connected, are then the kinetic equiva- 

lent of the compound pendulum and move in the same way in the same field of 

force (Maxwell, Matter and Motion, CXXI). 

Putting OP = I, called the simple equivalent pendulum length, and P starting 

from rest at B, in Figure 1, the parti- 
cle P will move in the circular arc 

BAB‘asif sliding downasmooth curve; 

and P will acquire the same velocity 

as if it fell vertically KP = ND; this 

is all the dynamical theory required. 

(velocity of P)? = 2g-KP, 

(velocity of N)?= 2g-ND-sin?AOP 
J P2 

See ND 8? D.NA-NE, 

and with AD =h,.AN =¥4, ND 

=h—y, AE =2l, NE = al — y, 

Ra ame 523 

where Y isacubicin y. Then fis given 
by an elliptic integral of the form 

dy 

VY 
E. I. I by putting y= sin?.¢, making AOQ=¢, h-y=h cos? ¢, 
al — y = 21 (1 — K* sin? ), 

This integral is normalised to Legendre’s standard form of his 

k is called the modulus, AEB the modular angle which Legendre denoted 
by 6; V(1 — «sin? d) he denoted by Ad. 
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With g = /n’, and reckoning the time ¢ from A, this makes 

? dob 
ni = ; Aue 

in Legendre’s notation. Then the angle ¢ is called the amplitude of nt, to be 

denoted am nt, the particle P starting up from A at time f = 0; and with u = nt, — 

ee Se OR enh 
of 2 AD a0) 

Be) pu wee CD CAD Che ea) 

EP NE 
dnu = 7a dn’ u = AH 

Velocity of P = n-AB-cn u = VBP: PB’, with an oscillation beat of T seconds 
in w= eke ¢= 2t/7; 

11.21. The numerical values of sn, cn, dn, tn (w, x) are taken from a table 

to modulus x = sin (modular angle, 0) by means of the functions Dr, Ar, Br, 

Cr, in columns V, VI, VII, VIII, by the quotients, 

VK sn eK = D 

B 
cnek = D 

dneK C 

ake 
; A 

Vk’ tn eK = 3 

To =" DONG 

w= eK. 

These D, A, B, C are the Theta Functions of Jacobi, normalised, defined by 

Ou Hu 
D(r) = (Sve A(r) = HK’ 

B(r) = A(go° — 7) C(r) = D(go° — r). 

They were calculated from the Fourier series of angles proceeding by multiples 
of r°, and powers of gq as coefficients, defined by 

q=eE 
Ou = 1 — 2q cos 27 + 29g cos 4r — 2g? cos6r +.... 
Hu = 2g‘ sinr — 2qg' sin 3r + 2g* sin5r—.... 

11.3. The Elliptic Integral of the Second Kind (E. I. IT) arose first historically 

in the rectification of the ellipse, hence the name. With BOP = ¢ in Figure 2, 

the minor eccentric angle of P, and. s the arc BP from B to.P at x =a sin @, 

y = bcos@, 
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Ue cnet oe Hsiao = oA(d,*0), 

to the modulus x, the eccentricity of the ellipse. 8 

Then s=a Ed, where {,°Ag-d is denoted by E@ 

in Legendre’s notation of his standard E.I. II; N 

it is tabulated in his Table IX alongside of F¢ 

for every degree of the modular angle 0, and to 

every degree in the quadrant of the amplitude ¢. —o mA 
But it is not possible to make the inversion 

and express @ as a single-valued function of E@. er? 

11.31. The E. I. II, E£@, arises also in the expression of the time, é, in the oscil- 

lation of a particle, P, on the arc of a parabola, as F@ was required on the arc 

L ofa circle. Starting from B along the parabola 

BAB’, Figure 3, and with AO =h, OB =b, 
BOQ = @, AN = y=h cos? ¢, NP = x=6 cos 

@ and with OS = 2k =6 tan a, OA’ =SB 

= b sec a, the parabola cutting the horizontal 

at B at an angle a, the modular angle, BRA’B’ 

is a semi-ellipse, with focus at S, and eccen- 

tricity K = sina. 

: dx\?  /dy\? 
i 2 . (Velocity of P)? = (5) + (7) 

= (0? cos? @ + 4h’ sin? d cos? ) (=) 

2 

a(x — sin? @ sin? d) cos’ (F) = 2gy = 2gh cos’? 

= COs i@. 

if V denotes the velocity of Pat A,and OA’ = a. Then withs the elliptic arc BR, 

at ds 
dp — dp 

and so the point K moves round the ellipse with constant velocity V, and ac- 

companies the point P on the same vertical, oscillating on the parabola from B 
to B’. 

In the analogous case of the circular pendulum, the time ¢ would be given 

by the arc of an Elastica, in Kirchhoff’s Kinetic Analogue, and this can be placed 
as a bow on Figure 1, with the cord along AE and vertex at B. 

Legendre has shown also how in the oscillation of R on the semi-ellipse BRB’ 
in a gravity field the time ¢ is expressible by elliptic integrals, two of the first 

and two of the second kind, to complementary modulus (Fonctions elliptiques, 
if, p. 183). 

Vi aAg = a—, Vt=s, 
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11.32. In these tables, Ed is replaced by the columns IV, IX, of E(r) and | 

G(r) = E(g0 — r), defined, in Jacobi’s notation, by 

E(r) = zn eK = Ed — eE 

G(r) = zn (1 —e)K, r= goe. 

This is the periodic part of E@ after the secular term eE = ou has been set 

aside, E denoting the complete E. I. I, 

E = Ein = {*"Ad-do. 
The function zn u, or Zu in Jacobi’s notation, or E(r) in our notation, is 

calculated from the series, 

oy = BN ee ; Er = Zu ree Fi ioe + gm 4 g™4. . . .) sin 2mr. 

m=t K m=1 

This completes the explanation of the twelve columns of the tables. 

11.4. The Double Periodicity of the Elliptic Functions. 

This can be visualised in pendulum motion if gravity is supposed reversed 

suddenly at B (Figure 1) the end of a swing; as if by the addition of a weight 

to bring the centre of gravity above O, or by the movement of a weight, as in the 

metronome. The point P then oscillates on the arc BEB’, and beats the elliptic 
function to the complementary modulus x’, as if in imaginary time, to imaginary 
argument nti = fK’i: and it reaches P’ on AX produced, where tan AEP’ 
= tan AEB-cn (nti, k), or tan EAP’ = tan EAB-cn (nt', x’); or with nt’ = 2, 

DR’ = DB-cn (i, x’), DR = DB-cn (v, x’), with DR- DR’ = DB’, EP’ crossing 

DB werk? 
I 

cn (iv, kK) = cn (0, K’) 

sn (2v, K) = ee = itn (y, x’) 

dna ie eee 
en (ek) © sak) 

/ where K’ denotes the complementary (quarter) period to comodulus x’. 
If m, m’ are any integers, positive or negative, including 0, 

sn (4+ 4mK + 2m'iK’) = snu 
cn [w+ 4mK + 2m’(K +7K’)] = cnu 
dn (uw + 2mK + 4m'iK’) = dnw# 

11.41. The Addition Theorem of the Elliptic Functions. 

snucnvdny+snvenudnu 
sn (# +2) = 5 

I — K* sn? usn2v 

chnucnv*snudnusn Gn (at 1) 2 ey ee 
I — K*sn?usn2v 

dnudnv+xk?sn u 1 dn (v + 4) = cn usnvecny 

I — K* sn? 4 sn? v 
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11.42. Coamplitude Formulas, with v = + K, 

cn u 
sn (K —u) = 7 = sn (K + u) 

/ 

cn (K — u) = = cn (K +4) = — “= 

dn (K - u) => — = dn (K +) 

I > 
pe 4) = a bn ly ees 

11.43. Legendre’s Addition Formula for his E. I. IT, 

Eo = fAd-dd= fadn?u-du, b= fdnu-du=amu. 

Ed + EW — Eo = &singsiny sin o, Y = amz, 6 = am (v + u) 

or, in Jacobi’s notation, 

zu+znv—zn(u+v) = snusnysn(v+ 4), 

the secular part cancelling. 
Another form of the Addition Theorem for Legendre’s E. I. I, 

— 2k*sinW cosy Ay sin? d 
1 — K’sin?@ sin? p 

Eo — E@ — 2Ep = 

or, in Jacobi’s notation, 

, 9 =am (v — un) 

— 2K?snyvcnvdniysnu 
zn (v + “) + zn (v — 4) — 2znv = I — K2sn? 4 sn? 9 

11.5. The Elliptic Integral of the Third Kind (E. I. ITI) is given by the next 
integration with respect to u, and introduces Jacobi’s Theta Function, Ou, 

defined by, 
d log Ou 

du 

2 = Xp. fan u-du. 

= Zu=2n4u 

Integrating then with respect to 1, 

log 8 (v + u) — log O (v — u) — 2uznv = HL 

and this integral is Jacobi’s standard form of the E. I. II, and is denoted by 

— 2II (wu, v); thus, 

Ksnvcnvdnyvsn? u Ov—4u 

1 (a0) = fe eee du =u ane + Blog Gea gy 
Jacobi’s Eta Function, Hz, is defined by 

Hv — 
Gas kK sn v, 

— 2K2snvcnvdnv sn? u 

I — K* Sn? “sn? 
o) 

and then 
dlog Hv _ cnvdnyv 

a oe + zn v, denoted by zs 2; 
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so that 
cnvdnv 
————du 

snv J ee ») 

o I — K* sn’ usn*v sn v ; 

1, O@-u) 
= UZSV+ Bop euane 

* log 9 O (v — u) u) e2u-Zsv 

FO +u) (v+ u) ° 

This gives Legendre’s standard E. I. II, 

ie M do 
1+nsin?d Ad’ 

where we put 2 = — k*sn?v = — k’sin’y, 

e@ cos pA*y — cn?v dn? v eee a eS bi : 
as (r+ my) +) sin? py snzy ” 

the normalising multiplier, /. 

The E. I. III arises in the dynamics of the gyroscope, top, spherical pendulum, 

and in-Poinsot’s herpolhode. It can be visualized in the solid angle of a slant 

cone, or in the perimeter of the reciprocal cone, a sphero-conic, or in the mag- 

netic potential of the circular base. 

11.51. We arrive here at the definitions of the functions in the tables. Jacobi’s 
Ou and Hu are normalised by the divisors O90 and HK, and with r = goe, 

Ock Hek 
D(r) denotes ~— OR’ A(r) denotes HK 

while B(r) = A(go— 17), C(r) = D(go— 17), and B(o) = A(go) = D(o) = C(go) 

= 1, C(o) = D(go) = v7 

Then in the former definitions, 

aoe) sn u = Vx’ sneK 
D(r) — D(9o) 
B(r) _ Blo) 
Dir) 7 6) Cn 7 — chick 

Cy) Ele) dn eK 
Dir) = D(o) dn u = Fe . 

Then, with u = eK, v\= fK, r = o0¢, Ss = oof, 

(u,v) = eK zn fK + slog Bs oR 

Pye 1, D(s—7r) 
= eK E(s) + > log Dis+n 

an fi = E,(s), zn (1 —f) K = E(g0—s) = G(s). 
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‘The Jacobian multiplication relations of his theta functions can then be 

rewritten 
DG + s)D(r — s) = Dr D*s — tan? 0A?rA?s, 

A(r+s)A(r — s) = A*rD*s — D*rA?s, 

Bir + s)B(r — s) = B’rB*s — A?rA?s. 

But unfortunately for the physical applications the number s proves usually 

to be imaginary or complex, and Jacobi’s expression is useless; Legendre calls 

this the circular form of the E. I. III, the logarithmic or hyperbolic form corre- 

sponding to real s. However, the complete E. I. III between the limits o <@ <$7, 

or o<u<K, o<e <1, can always be expressed by the E. I. I and I, as Legendre 

pointed out. 

11.6. The standard forms are given above to which an elliptic integral must be 

reduced when the result is required in a numerical form taken from the Tables. 

But in a practical problem the integral arises in a general algebraical form, and 

theory shows that the result can always be made, by a suitable substitution, to 

depend on three differential elements, of the I, II, HI kind, 

ds” 

JS 

1a @- 3) — 

I ds 
ET Bole) V5 

where S is a cubic in the variable s which may be written, when resolved into 

three factors, 
S = 4:5 — SS — S°5 — 83 

in the sequence «>5,>52>53> — o, and normalised to a standard form of 

zero degree these differential elements are 

N/ Sessa 

V/S 

Meee oe 
V5) — 53 V/S 

L/S ds 
Th 2 oe 

So. 47S: 

> denoting the value of S when s =o. 
The relative positions of s and o in the intervals of the sequence require 

preliminary consideration before introducing the Elliptic Functions and their 

notation. 
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11.7. For the E. I. I and its representation in a tabular form with 

Ke 32. Sa: K!2 $1 — S2 
— as —— ae — | 

51 > 33 S1 — S3 

K 0,52 4/5, — $5 ds. K? ans A/S = "Se ds 
S1, 53 4/5) 52, —©O N/fERS 5 

and utilizing the inverse notation, then in the first interval of the sequence, 

e>s>sy 

vaca A yo BOSS By See 
eK = pes ey ee oe = 

Sus sy = OR = Se 

hake =) = 5 ee se 
(1 —e)K = Joe = sn yea = n/t = dn- ere: 

S1 Ay == Sy) SS Sp Sih = Spey = 

indicating the substitutions, 

= ¢ Ay Sy ‘ : 
——— = sin? @ = sn’ eK = sin? y = sn? (1 — ‘ A= = sin? o , 224 = sink -  @ - OK 

In the next interval S is negative, and the comodulus xk’ is required. 

Sy >S >So 

Sa/Si = 53 ds _ 225 ss 
jie pes ——' = dn" ——— 

; A/S ea _ or 51 = S2 Sivan eso 

ie —. ds ah SSS SS SS 
1—f)K’= = ‘sn ——_——— = cn Sa 

Sf SS) SH Sit Swe Ss: == Si 

S is positive again in the next interval, and the modulus is xk. 

Soe Saea03 - 

(1 —e)K = pees cae = sn! iy) EE LES priya ses 8 me 
SY SAO NS, SS Shy SS Soir = SS 

ied 

Sy a) Se oS ee 

mat SS 

= én se 

ANT Ay 

Ae = [ess a n/8 = Se onn/* Teck any ae 
% AS Sg — $3 so — $3 Si, = Si 

aay eee os a © 
iy A hi a, 

indicating the substitutions, 4 
" 

S1 — Se : S— $3 
——— = A’f = dn? (1 — e)K = sin? @ = sn? aS = AMY = dnt )K, = = sin? p = snteK ; 

4 S = Ss. sin? @ + 53 cos? d. 

ee a 
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S is negative again in the last interval, and the modulus x’. 

Sj Sh > 6s) 

£ “34/51 — Sq ds Res Hea Spee Saosin, Cr ie ee SS nig) Ste ag) 2S S32 
‘ f= 8 SOs Sos) Sy — 53°So — S 

fk = [ ee i) /S3— $ an-y/2=8 

—o A aS Si SS wy =o 
e 

11.8. For the notation of the E. I. II and the various reductions, take the 

treatment given in the Trans. Am. Math. Soc., 1907, vol. 8,p.450. The Jacobian 

Zeta Function and the Er, Gr of the Tables, are defined by the standard integral 

S SS S 
a Ag-dp=E - fi 2(eK)-d(eK) = Eam eK = eH Ke —— -{° o:dbd= Ed = n?(eK)-d(eK) = Eame eH + zne 

or, 
TOs — Ss do i 7 7h r r 

———— dn? ( fK’)-d( K’) —wam pe = pH" 7m Ke | a eae A Ip up JPR f 

where zn is Jacobi’s Zeta Function, and H, H’ the complete E. I. II to modulus 

K, K’, defined by, 

H = f2A(G, x) dg = *dn? (¢K)-d(eK) 

= [7 A(d, «’) db = f'dn? (fK’)-d(fK’). 

The function zn w is derived by logarithmic differentiation of Ou, 

d log Ou 
du 

nu = , or concisely, 

Ou = exp. fan u-du, 

and a function zs uw is derived similarly from 

_ dlog Hu 

© da 

_ dlog Ou v4 dlog sn u 
© ida du 

cn uw dn u 
SSN 1 eet 

sn u 

For the incomplete E. I. II in the regions, 

© >S$>S81 >So >5 >S3 

and 

= (ea 88} Sim S38 
sn? eK = ——— or ) 

Soe ve Sy =" 48} 
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San. [eat VES = 0-H tk Ene S— 53 WSS 

f= a Lp [ae ee = — (1 — e)(H — k?K) + zs eK 
V 51 — $3 /'S Soares vs 

i= A [Ba VARS gs = (4 - (K - H) + 25K 

V/s — 53 VS Sac rne VS 

the integrals being ~ at the upper limit, s = ~, or at the lower limit, s = 53 

where e = 0 and zseK = &. 

So also, 

[Oe esas J 5% 3 —s ds eH +z2neK 

eed ae eSS i TaN/ ia/s 2s VS Ge Or “me 

ft a- fe= ds — (H — ?K) + meK 

s—S3 VSS V/s —s3 VS (= eH = K2K) = mek 

| ee 5S — $3 ds _e&K-H)-zek 

aise aps N/ 5 se VS) See) mens 

Similarly, for the variable o in the regions 

SiiesiGi Sa) S3 ee On 

> negative, and 
S; — 0 t Si — S3 

Si — +52 Si = or 

ae Sie do =f" 4 $1 — 2 VS1— Sg SCS) — zap 

an Vy —-3V—- > YJ-2%06I-F fz (t—f)(K’-B’) +a fk’ 

[= do SS 
Wael ae s- 6 fod. i= fee ae 

[= do cies ane 

A/S es Ve i =F yf 29D) (x — f)H’ — am fK’ 

Snyiee— 

C5) — 59 V5 — Ss - [=e ! ! ! J =55- ee + f)(K' — H’) +2asfK 

ct [Pe VIS ao = [AEX » - pia eR) +s fk 
SV ny Se 

Sg — O VS — Ss i do ; ; 
do = 2 ee ES —f)H Ke feet eis - [Seo 4G -- 0 pH tes 

these last three integrals being infinite at the upper limit, o = 5, or lower limit 

Go = — , where f =o, zsfK’ = 
Putting e = 1 or f = 1 any ne ieee forms will give the complete E. I. II, 

noticing that zn K’ and zs K’ are zero. 
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| 
‘11.9. In dealing practically with an E. I. III it is advisable to study it first 

in the algebraical form of Weierstrass, 

i 1/2 ds 

G= ows 

where S = 4-5 — 51:5 — Sy:5 — 53, Z the same function of o, and begin by ex- 
amining the sequence of the quantities s, o, si, Se, 53 

Then in the region 
SPS, >5S2>0 >S3, 

put 
Sia 53 Soi—n8 

5S — 53 =—,—, O — Sz = (sp — 53) sn? v, K? = ———) 
sn? uw oy, = OB 

51 — $3 V5 — 53 ds 
s— 0 =——- (1 — K* sn? uw sn? v), ————— _ = du, 

sn? u VS 

VD = Vs — 53 (S2 — 53) sn vcnv dn», making 

1/7 ds Ksnvcnvdnvsn? 4 
je vate ——_______ du = II (u, v). 

Sa 04/5 Tat Ke Se eesilard) 

But in the region, 
On Sie So Se S35 

Si Sae Ea ,cnvdny 
5 — 53 = (Ss, — 53) sn? u, o — 53 = ——, -V2 = (51 — 53)3 ——» 

sn2y °° 2 sn? y 

Ay, = A 
g—-s=—— (1 -— Kk’ sn? usn’*), 

sn? v 
making, 

cnvdnyv 

A/S ds sn v ue cnvdn 2 v 
v2 == —.—_— = The Iu, 2) + u--——-- 
Fee /S I — K°sn? 4 sn? 9 sn v 

In a dynamical application the sequence is usually 

SS SCO. So SS > S3 

or 
SS SSS Sur 

making 2 negative, and the E. I. III is then called circular; the parameter v 

is then imaginary, and the expression by the Theta function. is illusory. 
The complete E. I. III, however, was shown by Legendre to be tractable 

and falls into four classes, lettered (2’) (m’), p. 138, (7), (R’), pp- 133, 134 (Fonc- 

tions elliptiques, I). 

SL >0 >So 

= = wy 
ye ———— 

or, — dy 

0 — So 
Gie i = 

Si ——" Se 

= Ge Ss dn = 
Si = SB 
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A. (ig ee ds AAS ; 
Ser ee O75 A FT ae coat 

B. “21./— > ds 
S2>S >si f REPS VS = BC fK’) = 30f + K zn fK’ 

A+B=}4r. 
533>0> — © 

su? fK! = 
53 — O 

en ike Ree 

dn? fK’ a gut 

C. oiv/ —2 ds o>s>sif =e ip tn pa hs al =) 

ie S/ = ds 3 

s>soa ae Vs ee 

D—C =n. 
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260 ELLIPTIC FUNCTION © 
K = 1.5737921309, K’ = 3.831742000, E = 1.5678090740, E’ = 1.012663506, — 

r Fo co) E(r) D(r) A(r) 

fo) 0.00000 00000 Ono: 0.00000 00000 I.00000 00000 | 0.00000 00000 
I 0.01748 65792 I O 0.00006 64649 1.00000 05812 | 0.01745 23906 

2 0.03497 31585 2510 0.00013 28485 1.00000 23240 | 0.03489 94650 

3 0.05245 97377 el) 0.00019 90699 1.00000 52264 | 0.05233 59088 

4 0.06994. 63169 A 0 0.00026 50480 1.00000 92847 | 0.06975 64107 

5 0.08743 28962 Ie 0.00033 07023 I.Q0000I 44942 | 0.08715 56642 

6 0.10491 94754 (ye 0.00039 59525 I.00002 08483 | 0.10452 83693 
7 0.12240 60546 rp A 0.00046 07190 I.00002 83393 | 0.12186 92343 

8 0.13989 26338 ie) 0.00052 49226 1.00003 69582 | 0.13917 29770 

9 0.15737 92131 oyu 0.00058 84849 1.00004 66945 | 0.15643 43264 

10 0.17486 57923 LOV et 0.00065 13283 1.00005 75362 | 0.17364 80247 
II 0.19235 23716 II I 0.00071 33760 I.00006 94702 | 0.19080 88283 

12 0.20983 89508 2 eT 0.00077 45523 1.00008 24819 | 0.20791 I5I101 
13 0.22732 55300 13 I 0.00083 47824 1.00009 65555 | 0.22495 08603 

14 0.24481 21092 r4y 2 0.00089 39929 I.OOOII 16738 | 0.24192 16887 

15 0.26229 86885 LER § 3 0.00095 21114 1.00012 78184 | 0.25881 88257 

16 0.27978 52677 LOR 0.00100 90670 1.00014 49696 | 0.27563 71244 

7 0.29727 18469 7p ak? 0.00106 47903 1.00016 31066 | 0.29237 14618 

18 0.31475 84262 Louee O.OOIII 92132 1.00018 22072 | 0.30901 67404. 

19 0.33224 50054 19 2 0.00117 22694 1.00020 22482 | 0.32556 78900 

20 0.34973 15846 20m 2 0.00122 38941 I .00022 32051 | 0.34201 986908 
21 0.36721 81639 21 2 0.00127 40244 1.00024 50525 | 0.35836 76658 

22 0.38470 47431 222 0.00132 25992 1.00026 77636 | 0.37460 63009 

23 0.40219 1322 Bere 0.00136 95594 I.00029 13109 | 0.39073 08277 
24 0.41967 79016 24 2 0.00141 48476 1.00031 56657 | 0.40673 63347 

25 0.43716 44808 2 3 0.00145 84087 I .00034 07982 | 0.42261 79464 
26 0.45465 10600 2053 0.00150 01897 1.00036 66779 | 0.43837 08251 

27 0.47213 76393 2 3 0.00154 01398 I .00039 32731 | 0.45399 01723 
28 0.48962 42185 28 3 0.00157 82103 I.00042 05516 | 0.46947 12303 

29 0.5071I 07977 29 3 0.00161 43549 1.00044 84801 | 0.48480 92833 

30 | 0.52459 73770! 30 3 0.00164 85297 | 1.00047 70246 | 0.49999 96593 
20 0.54208 39562 Bi 4 0.00168 06931 1.00050 61502 | 0.51503 77311 

2 0.55957 05354 225 32. 0.00171 08062 1.00053 58215 | 0.52991 89180 

33 0.57705 71147 21 Yue} 0.00173 88322 1.00056 60024 | 0.54463 86870 

34 0.59454 36939 343 0.00176 47373 1.00059 66561 | 0.55919 25543 

35 0.61203 02731 3500s 0.00178 84901 1.00062 77451 | 0.57357 60867 
36 0.62951 68524 363 0.00181 00617 1.00065 92318 | 0.58778 49028 

oi 0.64700 34316 37 es 0.00182 94261 1.00069 10776 | 0.60181 46744 

38 0.66449 00108 35) 3 0.00184 65599 1.00072 32438 | 0.61566 11280 
39 0.68197 65900 39 «3 0.00186 14423 1.00075 56912 | 0.62932 00458 

40 0.69946 31693 40 3 0.00187 40556 1.00078 83803 | 0.64278 72670 || 

41 0.71694 97485 41 4 0.00188 43845 I.00082 12712 | 0.65605 86895 

2 0.73443 63278 2a 0.00189 24166 1.00085 43239 | 0.66913 02706 

43 0.75192 29070 43 4 0.00189 81424 1.00088 74981 | 0.68199 80287 |} 

44. 0.76940 94862 Aah» al 0.00190 15552 1.00092 07533 | 0.69465 80439 

45 78689 60655 45 4 0.00190 26510 1.00095 40492 | 0.70710 64600 |f 

90°r Fy y G(r) C(r) B(r) 
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‘TABLE 6 = 5° 261 ‘q= 0.000476569916867, © 0 = 0.9990468602, H(K) - 0.2955029021 

.OO19O d : 00000 -57379 

.OO190 : 63384 - 55630 

.OO19O : 25961 . 53881 

.OO190 : 86928 . 52133 

.0O189 45481 . 50384. 

.0O189 ; 00820 - 48635 

.00188 : 52149 . 46887 

.00187 ; 98676 . 45138 

.00187 I14 : 39616 . 43389 

.0O186 fs 74190 . 41641 

01626 

21163 

32046 

33534 

24894 

.00185 

.00183 

.OO182 

OO18I 

.00179 

. 39892 

38143 

- 36395 
. 34646 

. 32898 (Oe) Teo) (S) (oftoy fer doy fo) oe = ee = = = Se 

.00178 

.00176 

.OO174 £ 

.0O172 

.OO170 

05409 
74371 
31089 

74885 
05097 

- 31149 
. 29400 
.27652 

- 25903 
-24154 Sy (SES) OHS) (©) te) ©) CS) No wHNN | 

21081 

22208 

07868 

77470 

30440 

00168 

00166 

.OO164 

.OO16I 

.OO159 2 

.22406 

.20657 

.18908 7 

. 17160 

.15411 ooo0o°9o 

O. 

oO. 

oO. 

Oo. 

O. ®NN NN | 

66228 
84301 

84151 

65289 
27250 

.O0156 

.OO154 

.OOI51 

.00148 

.00145 

. 13662 

.IIQ14 
. 10165 

.08416 

.06668 (9) (2) (oS), ©) =} fe) (©) eS) WWW WwW W Se ee Oe 

.00143 

.OO140 

.00137 

.00134 

.OOI131 

69592 
91897 
93771 
74846 
34776 

-04919 
.03170 
.O1422 

-99673 
-97924 le) ie) 12) Ke) (2) {a} (2) Ke) {e) QO WWW Ww COCOn He 

.00128 
00124 88666 

.OOI2I 70208 

.OOI18 48546 

.OOII5 24072 

.96176 

-94427 
.92678 

.90930 
. 89181 

73244 
89958 
84651 

57085 
07047 (2) (2) (©) He}, (©) (2) {©} (e) [e) (2) DO WW GW W (2) {s) (©) fe) (©) 

.OOIII 97181 : 34353 .87432 
00108 68272 : 38846 .85684 

20395 
78900 

14287 

26510 
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262 ELLIPTIC FUNCTION 

r Fé p E(r) D(r) A(r) 

0 | 0.00000 00000 (oy? oy! 0.00000 00000 1.00000 00000 | 0.00000 00000 
I 0.01758 7142 1 10) 0.00026 61187 I.00000 23404 | 0.01745 21509 

2 0.03517 42845 2 0.00053 19095 I.00000 93587 | 0.03489 89861 
3 | 0.05276 14268 Zee 0.00079 70448 1.00002 10463 | 0.05233 51918 
4 | 0.07034 85691 40 2 0.00106 11979 1.00003 73890 | 0.06975 54570 

5 0.08793 57113 a2 0.00132 40433 1.00005 83670 | 0.08715 44758 
6 0.10552 28536 OF 3 0.00158 52573 1.00008 39546 | 0.10452 69489 
7 0.12310 99959 Ge} 0.00184 45182 I.OOOII 41206 | 0.12186 75849 
8 0.14069 71382 8 4 0.00210 15066 1.00014 88284 | 0.13917 I1019 
9 0.15828 42804 Ones 0.00235 59064 1.00018 80356 | 0.15643 22298 

IO 0.17587 14227 Io 65 0.00260 74044 1.00023 16945 | 0.17364 57109 

II 0.19345 85650 TDS 625 0.00285 56913 1.00027 97518 | 0.19080 63023 
12 0.21104 57072 T2005 0.00310 04619 I .00033 21491 | 0.20790 87771 
13 0.22863 28495 iiey tipo) 0.00334 14153 1.00038 88224 | 0.22494 79261 

14 | 0.24621 99918 Wh 0.00357 82555 1.00044 97028 | 0.24191 85595 

15 0.26380 71340 im 7 0.00381 06920 I.00051I 47160 | 0.25881 55080 
16 0.28139 42763 Wey) 0.00403 84394 1.00058 37829 | 0.27563 36252 
17 0.29898 14186 1 fe m7) 0.00426 12186 1.00065 68193 | 0.29236 77883 

18 0.31656 85609 its) fs) 0.00447 87567 1.00073 37362 | 0.30901 29003 

19 0.33415 57031 TOS 0.00469 07873 1.00081 44399 | 0.32556 38912 

20 0.35174 28454 20 78 0.00489 70511 1.00089 88322 | 0.34201 57197 

21 0.36932 99877 2G 0.00509 72961 1.00098 68100 | 0.35836 33745 
22 0.38691 71299 22179 0.00529 12778 1.00107 82664 | 0.37460 18764 

23 0.40450 42722 22509 0.00547 87596 1.00117 30898 | 0.39072 62791 

24 0.42209 14145 24 10 0.00565 95131 1.00127 11647 | 0.40673 16711 

2 0.43967 85568 25 10 0.00583 33185 1.00137 23717 | 0.42261 31771 

26 | 0.45726 56990 26 10 0.00599 99643 1.00147 65874 | 0.43836 59597 
27 0.47485 28413 Pip Ati 0.00615 92485 1.00158 36848 | 0.45398 52206 
28 0.49243 99836 25) it 0.00631 09780 1.00169 35336 | 0.46946 62019 

29 | 0.51002 71258 20) Ur 0.00645 49693 1.00180 59998 | 0.48480 41881 

30 | 0.52761 42681 Bi) es 0.00659 10484 I.00192 09464 | 0.49999 45073 
31 0.54520 14104 Bi 173 0.00671 90513 1.00203 82334 | 0.51503 25321 
32 0.56278 85526 22) 12 0.00683 88242 1.00215 77178 | 0.52991 36820 
23 0.58037 56949 227 12 0.00695 02232 1.00227 92542 | 0.54463 34239 

34 0.59796 28372 S42 0.00705 31150 1.00240 26944 | 0.55918 72740 

35 0.61554 99795 35 12 0.00714 73769 1.00252 78880 | 0.57357 07990 
36 0.63313 71217 eX) 168) 0.00723 28968 1.00265 46826 | 0.58777 96173 

a7 0.65072 42640 SYP is 0.00730 95735 1.00278 29236 | 0.60180 94008 

38 0.66831 14063 aye) 1} 0.00737 73166 1.00291 24548 | 0.61565 58756 
39 0.68589 85485 30) 13 0.00743 60469 1.00304 31183 | 0.62931 48239 

40 0.70348 56908 40 13 0.00748 56962 1.00317 47551 | 0.64278 20847 
Al 0.72107 2833! ATs) 0.00752 62073 I .00330 72046 | 0.65605 35555 

42 0.73865 99754 42 13 0.00755 75345 1.00344 03056 | 0.66912 51936 
43 0.75624 71176 43 13 0.00757 96433 1.00357 38959 | 0.68199 30169 
44 | 0.77383 42599 44 13 0.00759 25102 1.00370 78127 | 0.69465 31055 

45 0.79142 14022 45 13 0.00759 61235 1.00384 18928 | 0.70710 16026 

90-r Fy yp G(r) C(r) B(r) 
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TABLE 6 = 10° 

‘q = 0.00191359459017, 0 0 = 0.9961728108, HK = 0.418305976553 

(S) ae) (2) (2) ©) (2) Keja(@) (2) 1) 

(©) (ey Key (2) 

Oo. 

Oo. 

O. 

O. 

oO. 

(OYE) (©) (2) KC) 

(©) Tee) ©) ©) 

(So) ere ©) ©) 

oo999 oo090 0 io} {2} (oe) [oj (e) (o) (2) Ye) fe) 1) fe) te) (e) (e) (©) oh fe), ©), ©) 

oo0o00 

00000 
40908 

78635 
10004. 
31846 

41001 

34327 
08697 

61008 

88183 

87173 
54962 
88572 

85063 

41538 

55150 
23098 

42636 

11077 

25790 

84209 
83836 

22237 

97955 
06006 

46884 
17561 

15997 
40232 
88398 

58716 

49498 
59154 
86187 

29201 

86900 

58089 

41679 
36683 

42224 

57531 
81941 
14902 

55973 
04823 

RWW N 

DauMNf- 

ooNNN 

OR Fe Se ee le | st OO ee a | ee ieee in ae ot 

o9090 

85198 

13775 
42353 

70930 
99597 
28084 

56662 

85239 

13816 

42394 
709971 
99548 
28125 

56703 
85280 

13857 
42435 
71012 

99589 
28167 

56744 
85321 
13898 

42476 
71053 
99630 
28208 

56785 

85362 

13940 
42517 
71094 
99671 

28249 

56826 

85403 
13981 

42558 

71135 
99712 
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264 ELLIPTIC FUNCTIO 
K = 1.5981420021, K’ —Kv3 —2.7689631454, E —1.5441504939, E’ - 1.076405113, 

D(r) A(r) 6. Fo 

° .00000 00000 
.00000 53258 

.00002 12966 

.00004. 78929 

.00008 50825 

.00000 00000 

-O1745 10959 
.03489 68785 

-05233 20359 
.06975 12596 

.00000 O0000 

-O1775 71334 
.03551 42667 

05327 14001 

.07102 85334 OVO sOROR© 2) 12} (2) SS ooo0o 0 

.08714 92460 
10452 06976 

12186 03254 

13916 28498 

15642 30024 

.08878 56668 
10654 28002 

- 12429 99335 
.14205 70669 
.15981I 42002 

00013 28199 
.OOOI9 10470 
.00025 96929 

.00033 86738 

.00042 78937 Oo On an &®NH O (Ss) (2) ©) ey) oOo9000 ooo0°0 

.00052 72438 

.00063 66031 

.00075 58383 

.00088 48041 

.OO102 33434 

17363 55278 
19079 51850 

20789 67491 

22493 50127 

24190 47877 

-17757 13336 
.19532 84669 

.21308 56003 

.23084 27336 

.24859 98670 (o} fe) ©) ©} 2) ee © 2) © oOo9000 

.OOII7 12875 

.00132 84561 

00149 46577 
.00166 96898 
.00185 33392 

.25880 09068 

.27561 82249 

29235 16211 

- 30899 59997 
.32554 62922 

.26635 70004 

.28411 41337 

.30187 12671 

.31962 84004 

-33738 55338 (o) (e) ©) fe) 2) 2) ©) Ce) -©) (oy te} (2) (2) () 

-34199 74584 
-35834 44886 
-37458 24043 
.39070 62603 
.40671 11462 

.00204 53820 

.00224 55845 

.00245 37025 

.00266 94826 

.00289 26619 

.35514 26672 

.37289 98005 

39065 69339 
.40841 40672 

.42617 12006 fo) (ce) fe) (e) ©) (c) (2) te) (ce) (e) (Pte (oy LO} (2) 

.00312 29684 

.00336 O1217 

.00360 38326 

.00385 38044 

.00410 97324 

.42259 21874 

-43834 45471 
45396 34276 
-46944 40717 
.48478 17640 

-44392 83339 
.46168 54673 

.47944 26006 

-49719 97340 
51495 68674 © O'S) O19 (2) (2) (2) (©) (©) © (ORO 1O) SO 

49997 18327 
51500 96510 

52989 06380 

54461 02607 

55916 40350 

-00437 13049 
.00463 82031 

.0049I OLOIQ 

.00518 66701 

.00546 75706 

.53271 40007 

-55047 T1341 
.56822 82674 

.58598 54008 

.60374 25341 omomomeome) o0o00o000 (2) fe) te) (eye) 

.00575 24612 

.00604 09949 

.00633 28201 

.00662 75813 

.00692 49193 

-57354 75273 
-58775 63556 
.60178 61912 
.61563 27596 
.62929 18421 

.62149 96675 

.63925 68009 

65701 39342 
7477 10676 

.69252 82009 (ey te) (e) (e) ©) (se), (eS) fe) fe) ©) (jie) [e) fe Te) 

.71028 53343 / : .00722 44718 .64275 92769 

.72804 24676 : .00752 58740 .65603 09607 

87587 
27567 
74977 

_——$—<$ | ff SS 
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TABLE @ = 15° 265 
q = 0.004333420509983, © 0 - 0.9913331597, HK - 0.5131518035 

00000 .59814 20021 

.00058 94801 ; 48688 

.OOII7 82606 : 77354 

.00176 542 06021 

.00235 : ! 34687 

24037 .00293 63353 
41766 00351 / / : 92020 

55307 .00408 ; 20686 

65496 .00465 49353 
73297 .00522 : 78019 

06685 

35352 
64019 

92685 

21352 

-00577 
.00633 

.00687 51750 

.00741 08412 

.00793 76880 

79795 
86202 

93849 
04190 

18796 op tay te} fe} fe) + 

50018 

78684 

07351 
36017 

64684 

.00845 50845 

.00896 24102 

.00945 90560 

-00994 44245 
.O1041 79308 

39354 
67668 
05651 

55329 
18834 (o} (2) (S&} OS) fe) Te) (e} fe} f) Ls A eee A oe oe 

.01087 90033 

.O1132 70844 69 

.O1176 16310 68 

.O1218 21151 

.01258 80246 

93350 
22016 

50683 

79349 
o8016 

98405 
96380 
15198 

57396 
25602 (Meee ope) See ee 

Oo. 

Oo. 

;| O. 

OF 

Oo. 

01297 88640 

01335 41547 
01371 34359 
O1405 62649 
.01438 22180 

36682 

65348 
94015 
22681 

51348 

22536 
51003 
13892 

14174 
54893 (2) f=) Mo} (o)) (s} (o) fo) (@) tay Fe) ee | 

80014 
o8681 

37347 
66014 

94680 

.01469 08906 

.01498 18982 

.01525 48767 

.01550 94825 

-O1574 53939 

39167 
70184 

STI95 
85512 

76507 (S) 2)..e) ©) 2) ol (oy Key (eji(2) ont | 

23346 
52013 

80679 

09346 
38012 

01596 23105 

-O1615 99545 
.01633 80704 

01649 64258 

.01663 48119 

27599 
42262 

24009 

5 76397 
03017 (o} ee), (SS) fey (2) fe) (2) ) le) (2) Xe) {e) fe) 

07491 .01675 30432 : 66678 

93468 -O1685 09584 | < : 95345 

SMITHSONIAN TABLES 



266 ELLIPTIC FUNCTIO 

K = 1.6200258991, K’ =2.5045500790, E = 1.5237992053, E’ = 1.118377738 

r Fo co) E(r) Dir) 

(0) 0.00000 00000 O: 70; 0.00000 00000 I.00000 09000 | O. 
I 0.01800 02878 iM 0.00106 89581 1.00000 96218 | O. 

2 0.03600 05755 2 aA 0.00213 65522 1.00003 84757 | O. 

3 0.05400 08633 210 0.00320 14202 1.00008 65263 | 0. 
4 0.07200 II5II 4 7. 0.00426 22042 1.00015 37152 | O. 

5 0.09000 14388 5 BO 0.00531 75519 I .00023 99605 | O. 

6 0.10800 17266 6) SLE 0.00636 61189 I .00034 51572 | O. 

7 0.12600 20144 7) 0.00740 65708 I.00046 91770 | O. 

8 0.14400 23021 Sp ls 0.00843 75848 1.00061 18689 | O. 

9 0.16200 25899 oy ay 0.00945 78515 1.00077 30591 | O. 

10 0.18000 28777 LO) LO 0.01046 60772 I .00095 25510 | O. 

II 0.19800 31655 Dr 20 0.01146 09855 I.OOII5 O1262 | O. 

12 0.21600 34532 12) 722 0.01244 13188 1.00136 55438 | O. 

13 0.23400 37410 i024 0.01340 58406 1.00159 85414 | O. 

14 0.25200 40288 14 25 0.01435 33370 1.00184 88351 | O. 

15 0.27000 43165 5 27 0.01528 26180 1.00211 61200 | O. 
16 0.28800 46043 16 28 0.01619 25197 I.00240 00704 | O. 

Ly, 0.30600 48921 Gf EXO 0.01708 19057 1.00270 03405 | O. 
18 0.32400 51799 Toms2 0.01794 96683 1.00301 65642 | O. 

19 0.34200 54676 19 33 0.01879 47304 I .00334 83565 | O. 

20 0.36000 57554 20) 35 0.01961 60466 I .00369 53131 | O. 
21 0.37800 60431 21 36 0.02041 26046 I.00405 7OII2 | O. 

22 0.39600 63309 22) 37 0.02118 34268 1.00443 30101 | O. 

2 0.41400 66187 23, 30 0.02192 75711 1.00482 28518 | O. 

24 0.43200 69064 24 40 0.02264 41321 1.00522 60614 | O. 

25 0.45000 71942 25 AI 0.02333 22426 1.00564 21475 | O. 
26 0.46800 74820 2ome42 0.02399 10740 1.00607 06033 | O. 

27, 0.48600 77697 27 44 0.02461 98378 I.00651 09067 | O. 

28 0.50400 80575 28 45 0.02521 77862 1.00696 25213 | O. 

2 0.52200 83453 29 46 0.02578 42130 1.00742 48968 | O. 

30 0.54000 86330 30 46 0.02631 84541 1.00789 74700 | O. 

31 0.55800 89208 208 A7, 0.02681 98888 1.00837 96651 | O. 
32 0.57600 92086 2 48 0.02728 79396 1.00887 08946 | O. 

33 0.59400 94963 33 49 0.02772 20732 I .00937 05600 | 0. 
34 0.61200 97841 34 50 0.02812 18009 1.00987 80525 | O. 

35 0.63001 00719 35. 50 0.02848 66791 I .01039 27539 | O. 

36 0.64801 03597 36 «SI 0.02881 63091 I.OI1OQI 40371 | O. 

ayy 0.66601 06474 By 0.0291I 03382 I.O1144 12669 | O. 

38 0.68401 09352 38" 52 0.02936 84591 TLOMO7. ZoOLr ||/20r 

39 0.70201 12230 B0ur52 0.02959 04103 1.01251 09908 | O. 

40 0.72001 I5107 40 53 0.02977 59763 I.01305 21815 | O. 

41 0.73801 17985 ATS) 0.02992 49874 1.01359 67138 | O. 

2 0.75601 20863 2 53 0.03003 73198 I.O1414 39245 | O. 

43 0.77401 23740 43° 53 0.03011 28953 1.01469 31466 | Oo. 

44 0.79201 26618 44 53 0.03015 16811 T-OU524) 3770025) (0F 

45 | 0.81001 29496 | 45 53 0.03015 36896 | 1.01579 49474 | O. 

90-r Fy yp G(r) C(r) 
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TABLE @ = 20° 

q = 0.007774680416442, O00 = 0.9844506465, HK = 0.5939185400 

I .0O0000 

0.99984 
0.99939 
0.99862 

0.99756 

.99619 

-99451 
-99254 
.99026 

.98768 (ee) {e) te} 2) 

.98480 

.Q8161 

.97813 

-97435 
.97028 e) fe} ©) ©) ©) 

.96591 

.96124 

.95628 

.95103 

-94549 ©) (ee) Ce) 

.93966 

-93355 

-92715 
.92047 

-91350 OV KoNMey 1e) He) 

.90626 

.89875 

. 89096 

. 88290 

87457 (Sy (2), fey ie) 2) 

.86597 

.85711 

.84799 

.83861 

.§2897 Chie} fe} ~) KS) 

.81908 

. 80894 

-79856 
-78793 
-77797 Ss) SE OOS) 

.760596 

-75463 
-74306 

Tei, 

-71925 (2) fer ©) el ©) 

° . 70702 

C(r) G(r) Fy 90-r 

03158 99246 0.00000 00000 | 90° 0’ 1.62002 58991 | 90 

03158 0302 0.00103 62474 89 2 1.60202 56113 |} 89 |f 

03155 14488 0.00207 12902 88 4 1.58402 53236 | 88 

03150 33980 0.00310 39250 S7 Oo 1.56602 50358 | 87 

03143 62088 0.00413 29509 SOM 1.54802 47480 | 86 | 

03134. 99632 0.00515 71704 85 9 1.53002 44603 | 85 

03124 47661 0.00617 53910 SA etn 1.51202 41725 | 84 

03112 07458 0.00718 64259 Sous I.49402 38847 | 83 

03097 80534 0.00818 90957 82 15 1.47602 35970 | 82 

03081 68627 0.00918 22293 81 16 1.45802 33092 | 81 

03063 73701 0.01016 46651 80 18 1.44002 30214 | 80 

03043 97942 0.O1TI3 52523 79 =20 1.42202 27337 | 79 
03022 43759 0.01209 28519 Ghsi A I.40402 24459 | 78 

02999 13775 0.01303 63381 Wah Pe 1.38602 21581 | 77 

02974 10829 0.01396 45994 70 525 I.36802 18704 | 76 

02947 37972 0.01487 65396 Teed, I .35002 15826 | 75 
02918 98458 0.01577 10793 74 28 I .33202 12948 | 74 

02888 95748 0.01664 71568 Fey XO) I.31402 10070 | 73 

02857 33501 0.01750 37292 Her BME I.29602 07193 | 72 

02824 15568 0.01833 97739 lense 1.27802 04315 | 71 

02789 45992 0.01915 42895 OMA I .26002 01437 | 70 

02753 28994 0.01994 62967 69 306 1.24201 98560 | 69 

02715 69001 0.02071 48399 68737, 1.22401 95682 | 68 

02676 70574 0.02145 89881 67 38 1.20601 92804 | 67 

02636 38468 0.02217 78360 66 40 1.18801 89927 | 66 

02594 77596 0.02287 05049 65 4I 1.17001 87049 | 65 

02551 93029 0.02353 61442 64 42 1.15201 84171 | 64 

02507 89985 0.02417 39320 63 43 1.13401 81294 | 63 
02462 7382 0.02478 30767 62 44 I. 11601 78416 | 62 

02416 50064 0.02536 28172 61 45 I.09801 75538 | 61 

02369 24323 0.02591 24248 60 46 1.08001 72661 | 60 

02321 02363 0.02643 12037 59 47 1.06201 69783 | 59 || 

02271 90060 0.02691 84920 58 48 1.04401 66905 |} 58 

.0222I 93398 0.02737 36626 5m 49 I.02601I 64028 | 57 |} 

.O2171 18465 0.02779 61243 56 49 1.00801 61150 | 56 

.O2TI9 71444 0.02818 53227 55 50 0.99001 58272 | 55 

.02067 58606 0.02854 07409 54 51 0.97201 55395 | 54 

.02014 86302 0.02886 IQooI 53 «SI 0.95401 52517 | 53 

.OI961 60955 0.02914 836II 52 52 0.93601 49639 | 52 

.01907 89054 0.02939 97245 5r (52 0.91801 46761 | 51 | 

.01853 77143 0.02961 56313 508 53 0.90001 43884 | 50 | 

.01799 31816 0.02979 57642 49 53 0.88201 41006 | 49 | 

-01744 59707 | 0.02993 98477 | 48 53 0.86401 38129 | 48 
.O1689 67484 0.03004 76489 AS 0.84601 35251 | 47 

.01634 61837 0.03011 89783 46 53 0.82801 32373 | 46 

-01579 49474 | 0.03015 36896 | 45 53 0.81001 29496 | 45 

D(r) E(r) Fo r 

00000 
76215 

05327 
88734 
28767 

28686 
92682 
25876 

34315 
24970 

05736 
85429 
73781 
81442 
19968 

01827 

40390 

49924 

45595 

43456 

60449 
14391 
23977 
08768 

89187 

86515 

22880 

21252 

05436 
00067 

30595 
23285 

05205 
04218 

48973 

68896 

94182 

55784 
85407 
15491 

79209 
10450 

43814 
14598 
58784 

13033 

A(r) 

= = = = me — ot = = = = = = 

ee | 
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268 

K = 1.6489952185, K’ 
ELLIPTIC FUNCTION 

= 2.3087867982, E = 1.4981149284, 

00000 

21691 

43382 

65073 
86764. WN HO 

08455 
30145 
51836 

73527 
95218 oo90900 

16909 

38600 

60291 
81982 

03673 (2), (2) )} e) 

25364 

47955 
68746 

90437 
12128 999000 

4 33819 
55510 
77201 
98892 

28582 

OF 

O. 

0.2 

Oo. 

Oo. 

42273 
63964 
85655 
07346 
29037 (ey fe) 2) (2) ©) 

50728 

72419 
g4110 
15801 

37492 CeOFORORS 

59183 
80874 

2 02565 

A 24256 

45947 ye} (©) ) 1S) 

67638 
89328 

I1OIQ 
32710 

54401 

CHORCEORS oo0900 ooo ome) (ey Key (2) fe} (S) leyoy 18) ©) (fe) (e} Ke) (eh ie) 

(oye) ey (2) IS) 

22622 

77678 

E’ = 1.1638279645, 

o99000 oOo90900 oo0 00 (ey {2} e) (©) e) © eile) ©) 2) fo} e) te) (ce) (2) (ey (2) ) (2) 712) 

eF eye) fe) ©) 

21991 

75973 
91274 
IQ107 
09808 

14352 

84064 |} 

70635 
26140 

03045 
54231 

32999 
93092 
88703 

74492 
05600 

37662 

26819 

29737 
03611 

06189 

95777 

31255 
72089 

78347 
10704 

30463 
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TABLE 6 = 25° 269 
g = 0.012294560527181, ©0 =0.975410924642, HK = 0. 666076159327 

I .00000 00000 I (0) fe) 
0.99984. 75111 I O 3 

0.99939 O0QI2 1.05035 65652 0.00318 96046 88 6 

0.99862 78812 I fo) 9 

0.99750 I11I58 I O 2 

00794 24686 | 85 15 -55738 43730 | 85 
.00951 1162 84 17 .53906 22039 | 84 

.99619 01235 I 
I 

.O1106 90855 83. 20 1.52074 00348 | 83 

I 
I 

fe) I 

0.99451 53263 I 
0.99253 72400 1.04966 91533 
(0) I .O1261 44653 82 23 .50241 78657 | 82 
fe) I .O1414 55416 81 26 .48409 56966 | 81 
99025 64734 .04944 14129 
.98767 37287 .04918 41489 CEOROROES 

0.98478 98010 1.04889 76746 0.01566 05663 80 29 1.46577 35275 | 80 || 

0.98160 55779 1.04858 23391 0.01715 78054 79 31 1.44745 13584 | 79 
0.97812 20395 1.04823 85265 0.01863 55407 78 34 I.42912 91893 | 78 
0.97434 0257 1.04786 66559 0.02009 20712 Ti Ooi I.41080 70202 | 77 

0.97026 13962 1.04746 71802 0.02152 57149 7ON 39 1.39248 48511 | 7 

0.96588 67101 1.04704 05862 0.02293 48102 75 42 1.37416 26821 | 75 |j 

0.96121 75452 | 1.04658 73936 | 0.02431 77177 | 74 44 I.35584 05130 | 74 || 
0.95625 53377 | 1.04610 81546 | 0.02567 28218 | 73 47 1.33751 83439 | 73 |] 
0.95100 16139 1.04560 34530 0.02699 85322 ZAG I.31919 61748 | 72 

0.94545 79893 | 1.04507 39038 | 0.02829 32857 | 7I 52 I .30087 40057 | 71 

0.93962 61686 1.04452 O1522 0.02955 55477 70 54 1.28255 18366 | 70 |} 

0.93350 79444 1.04394 28728 0.03078 38140 69 56 I .26422 96675 | 69 

0.92710 51976 I .04334 27690 0.03197 66123 68 58 1.24590 74984 | 68 

0.92041 98958 1.04272 05719 0.03313 25038 68 Oo 1.22758 53293 | 67 

0.91345 40932 1.04207 70396 0.03425 00853 YB I.20926 31602 | 66 

0.90620 99299 I.04141 29561 0.03532 79902 66 4 1.19094 OQQII | 65 

0.89868 96309 1.04072 91305 0.03636 48907 65 6 1.17261 88220 | 64 

0.89089 55058 I.04002 63960 0.03735 94992 64 8 1.15429 66529 | 63 

0.88282 99477 1.03930 56088 0.03831 05700 63 10 I.13597 44838 | 62 

0.87449 54326 1.03856 76470 0.03921 69009 (init it s1yhos, Zhi? |) (yt 

0.86589 45184 1.03781 34098 0.04007 73349 OL 13 1.09933 O1456 | 60 

0.85702 98444 1.03704 38161 0.04089 07619 60 14 1.08100 79765 | 59 

0.84790 41300 I .03625 98035 0.04165 61200 59 16 1.06268 58075 | 58 

0.83852 01744 1.03546 23272 0.04237 23976 Sex 119/ I.04436 36384 | 57 

0.82888 08549 1.03465 23588 0.04303 86345 7 ite) 1.02604. 14693 | 56 

0.81898 91269 1.03383 08852 0.04365 39236 | 56 I19 1.00771 93002 | 55 
0.80884 80221 1.03299 89073 0.04421 74127 5520 0.98939 71311 | 54 

0.79846 06482 1.03215 74386 0.04472 83056 54 21 0.97107 49620 | 53 

0.78783 01874 I.03130 75044 0.04518 58637 5A Oe 0.95275 27929 | 52 

0.77695 98956 1.03045 O1401 0.04558 94076 222 0.93443 06238 | 51 

0.76585 31015 1.02958 63905 0.04593 83183 rie 28 0.91610 84547 | 50 

0.75451 32053 HAO287 0 73077, 0.04623 20386 50 2 0.89778 62856 | 49 |] 

0.74294 36775 | 1.02784 39507 | 0.04647 00744 | 49 24 0.87946 41165 | 48 | 
0.73114 80583 1.02696 73835 0.04665 I9961 48 24 0.86114 19474 | 47 

0.71912 99561 1.02608 86741 0.04677 74393 WG] Bayh 0.84281 97783 | 46 

0.70689 30463 1.02520 88930 0.04684 61065 | °46 24 0.82449 76092 | 45 

A(r) D(r) E(r) p Fo r 
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270 ELLIPTIC FUNCTION : 
K = 1.6857503548, K’ -2.1565156475, E = 1.4674622093 E’-1.211056028, 

00000 : ; a 

2 48763 
64683 

. 14977 
22380 ; 66975 

88178 

46319 
09412 

45813 
24269 

27975 
33570 
39165 
44760 
50355 (2) (el ey ei) OLOVORORO 

13976 
84626 

06459 
50312 

87664 

55950 
61545 
67140 

72734 
78329 (o) orc) {eo} Ke) 2} lehle) (e)5e) (2) Xe) fe) fey) 

90685 
32272 
86097 

26642 

4 29236 

83924 
89519 
95114 
00709 

06304. 00000 (2) te) (eye (e) e) (2) (eo) (e)-fe) ©) 

70092 

26335 
76034 
9822 

72958 

11899 

17494 
23089 

28684 

34279 (ey (ey{e) (CMS) oo0000 

OF 

OF 

0.2 

oO. 

Oo. 

81275 

05273 
28100 

3397 
08204 

39874 
45469 
51064 

56659 
62254 ep ey (ey fe} 12) () ey ie), (2) 2) (a) Tole) ye) 

37181 
08407 

10486 

33138 
67191 

67849 
73444 
79039 
84634 
90229 o0o00o000 (s} (2) ey ey ©) oo990 0 

04587 
38375 
62710 

72843 
65112 : 25714 

95824 
O1419 
O7014 
12609 

18204 (eye) (e) te) & oOo9900 (Moy o} {ec} (e) 

36938 00797 
06666 : 54771 
06687 .03¢ 71976 

06699 .03¢ 36674 
06703 ; 33070 

23799 
29394 
34989 
40584 
46179 le) fepey fe) te) ep oy (oe) 2) (ee) ©) Xe) 2) 

° ° o .06698 72¢ : 45330 

G(r) 

51774 
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TABLE 6 = 30° 271 
g = 0.017972387008967, ©0 =0.9640554346, HK = 0. 7325237222 

B(r) 

00000 .68575 

68053 .66701 

11469 . 64828 

05625 .62955 

25936 . 61082 

.00000 00000 : 99318 

.99984 73018 : 72183 

.99938 92548 91054 
99862 60018 : 56761 

99755 77806 : 70687 (2) o)s(ey ey 1] ° ooo 0 

47869 . 59209 
46957 57336 
98823 55463 
79196 - 53590 
63924 Ppl 727i 

99618 49242 34764 
-99450 78603 51471 
.99252 7III5 , 23837 

.99024 32948 . 55426 

.98765 71218 : 50344 ORCEONO=S oo9000 

28998 -49844 
50568 -47971 
04961 . 46098 

68702 -44225 
18529 -42352 

-98476 93979 13226 
.98158 10224 : 49236 

.97809 29880 : 64055 

-97430 63806 ; 63881 

.97022 23787 : 55414 (S) (2) (©) (©) IS) oO9909009 

31417 - 40479 
84594 . 38606 

55593 - 36733 
22123 . 34860 

62389 . 32986 

.96584 22530 : 45853 

.Q6116 73661 3 42887 

.95619 91719 4 54682 

-95093 92151 . 89874 
-94538 91306 ; 57559 CROROROEO (e} fe) ©) ) ©) 

54809 ay lsleles 

78194 . 29240 
11731 F273 Or 

35012 - 25494 
28052 . 23621 

.93955 06429 5; 67280 

93342 55657 29016 
.92701 58009 ; 53170 

.92032 33381 : 50556 

-91335 02539 . 32387 ie) fe) (2) (©) ©) (oy (es) {e) Te) 2) 

71313 .21748 

45728 - 19875 
32725 . 18002 

14248 . 16129 

72783 . 14256 

.90609 87113 : 10260 

.89857 09587 : 96142 

.89076 93291 2 02357 

.88269 62394 ; 41567 

87435 41897 : 26763 fe) (2) (2) tek ©) ey te) fe) (ye) 

91384. . 12383 

53094. . 10510 

43970 -08637 
47110 .06764 
48679 .04891 

86574 57620 : 71242 

85687 36199 , 88596 

84774 05068 : 92695 
.83834 924061 ; 97665 
.82870 27391 : 17878 oooo°o (a) (2) fe) teh (=) 

34927 .03018 
92824 O1145 

10074 y -99271 

75150 -97398 
77310 -95525 

.81880 39648 : 67930 

.80865 59785 : 62525 

.79826 19108 : 16953 

.78762 49668 ? 46080 

-77874 84245 : 65320 oye) Ye) fe) ©) oo0909 

06627 .93652 

54011 -91779 
11230 . 89906 
70938 . 88033 

26693 .86160 

-76563 56343 . g0T25 
-75429 OO174 -04247 36057 
-74271 50649 : 18779 
-73091 43366 : 54029 
.71889 14599 : 57601 oom oom) fe) fe} fe) () ©) 

° .70065 01282 45330 72981 .84287 

A(r) Fo 

2 
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272 ELLIPTIC FUNCTION | 

K = 1.7312451757, K’ = 2.0347153122, E = 1.4322909693, E’ =1.2586796248, © 

Fé D(r) A(r) 

.00000 OO0O00O 

.00003, 19451 

.OOO12 77415 

.00028 72724 

.O0051 03436 

.00000 00000 

.O1740 QIII5 

.03481 29991 

.05220 64403 

.06958 42154 

00000 00000 
01923 60575 

.03847 21150 

.05770 81725 

.07694 42300 ©7 Oo OVOro oo0o0o0 ooo0o°0 
bk ® Nw O 

09618 02875 

11541 63450 
13465 24025 
15388 84600 

.17312 45176 

.00079 66833 

.OOII4 59427 

.OO0155 76965 

.00203 14429 

.00256 66050 

.08694 11086 

.10427 19100 

.12157 14162 

.13883 44322 

.15605 57726 (ey Loy (eo fe} (>) O10 (Oo) 1 OVO (OOr® 

.00316 25308 

.00381 84944 

.00453 36968 

.00530 72668 

.00613 82620 

.17323 02632 

.19035 27418 

.20741 80603 

.22442 10857 

.24135 67013 

19236 05751 

21159 66326 

.23083 26901 

25006 87476 
.26930 48051 le) (2) (2) (2) ©) oOo 6 © 6 ooo0o°0 

.28854 08626 

30777 69201 
32701 2977 
34624 90351 
.36548 50926 

.00702 56701 

.00796 84103 

.00896 53340 

.OI1O0I 52268 

.OIIII 68099 

.25821 98088 

.27500 53288 

.29170 82026 

- 30832 33939 
32484 58897 oye) (ey Ke} {e) oo0o00 fey fe) &) (2) ©) 

.01226 87413 

.01346 96177 

.01471 79763 

.O1601 22964 

.01735 10012 

.38472 II501 

-40395 72077 
.42319 32652 

-44242 93227 
.46166 53802 

34127 07019 
35759 28687 
37380 74559 
38990 95585 
40589 43019 

oO 

10) 

O 

oO 

10) ooo 098 (=) (2) (el ©) 

42175 68435 
43749 23737 
45309 61179 
-46856 33375 
-48388 93314 

.01873 24599 

.02015 49897 

.O2161 68576 

.02311 62828 

.02465 14386 

.48090 14377 
- 50013 74952 
-51937 35527 
.53860 96102 

55784 56677 oo0o0o0 oo0o0o°0 (o) (ole); (eo) ) 

.02622 04548 

.02782 14201 

.02945 23841 

.O31II 13599 

.03279 63263 

-49996 94371 
-51409 90330 
-52897 35386 
.54368 84170 

-55823 91754 

.57708 17252 

59631 77827 
.61555 38402 

-63478 98977 
65402 59552 Se Cre) © © ie) fe) (fe) ©) ©) (oy fe) 2) fe) ©) 

67326 20128 
.69249 80703 

.71173 41278 

-73097 01853 
.75020 62428 

.57262 13672 

.58683 05928 

.60086 25017 

.61471 27930 

56283757207) 

.03450 52308 

03623 59914 
03798 64996 
.03975 46228 

.04153 82068 (2), (2) fe) _(e) ©) © 6 Oo 0 © (es) (2) (©) fe) 2) 

.64185 15792 

-65513 17355 
.66821 35999 

31428 

63926 

04333 50787 
-04514 30495 
-04695 99164 
.04878 34660 

.O5061 14765 

-76944 23003 
.78867 83578 

80791 44153 
82715 04728 

.84638 65303 (2) (2) ©) fe) ©) (2) (2) (2) fe ©) (oy (2) (eo) 2)" ©) 

° .86562 25878 ° ° .05244 17208 

Fy C(r) 
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TABLE 6 = 35° 273 
q = 0.024915062523981, 00 = 0.9501706456, HK = 0.7950876364 

B(r) C(r) G(r) Fy 90-r 

I .00000 00000 1.10488 66859 0.00000 00000 (yoy? (0¥/ 1.73124 51757: | 90 

0.99984 69394 1.10485 47369 0.00300 62320 89 6 1.71200 91181 | 89 

0.99938 78065 1.10475 89287 0.00600 93218 Some 1.69277 30606 | 88 

0.99862 27471 1.10459 93781 0.00900 61288 colyf | 1U7/ 1.67353 70031 | 87 

0.99755 20048 1.10437 62795 0.01199 35156 86 23 1.65430 09456 | 86 

0.99617 59200 1.10408 99048 0.01496 83495 85 29 1.63506 48881 | 85 

0.99449 49305 1.10374 06029 0.01792 75043 84 35 1.61582 88306 | 84 

0.99250 95707 I .10332 87996 0.02086 78620 83 40 1.59659 27731 | 83 

0.99022 04719 1.10285 49965 0.02378 63141 82 46 1.57735 67156 | 82 

0.98762 83615 Te TO2a te O77 Ui 0.02667 97640 Sle Si 1.55812 06581 ! 81 

0.98473 40633 Te LOL72377.50 0.02954 51279 80 57 1.53888 46006 | 80 

0.98153 84966 I.10106 77362 0.03237 93372 80 2 1.51964 85431 | 79 

0.97804 26763 1.10035 24524 0.03517 93404 79 8 I.50041 24856 | 78 

0.97424 77117 | 1.09957 87957 | 0.03794 21046 | 78 13 1.48117 64281 | 77 
0.97015 48073 1.09874 77089 0.04066 46178 Gal ANS) 1.46194 03706 | 76 

0.96576 52612 1.09786 02047 0.04334 38907 76). 2A) 1.44270 43130 | 75 

0.96108 04649 | 1.09691 73646 | 0.04597 69592 | 75 2 1.42346 82555 | 74 
0.95610 19028 I .09592 03375 0.04856 O8861 TAs I.40423 21980 | 73 

0.95083 I1516 1.09487 03382 0.05109 27637 Fe ex3) 1.38499 61405 | 72 

0.94526 98796 1.09376 86463 0.05356 97161 7243 1.36576 00830 | 71 

0.93941 98461 I .09261 66042 0.05598 89014 71 AS 1.34652 40255 | 70 

0.93328 29005 1.09141 56156 0.05834 75147 70) G2 1.32728 79680 | 69 

0.92686 09817 1.09016 71440 0.06064 27902 69 56 1.30805 I9105 | 68 

0.92015 61173 1.08887 27107 0.06287 20041 69 I 1.28881 58530 | 67 

0.91317 04228 1.08753 38930 0.06503 24775 68 5 1.26957 97955 | 66 

0.90590 61007 1.08615 23221 0.06712 15792 67 9 I .25034 37380 | 65 

0.89836 54396 1.08472 96815 0.06913 67285 66 12 1.23110 76805 | 64 

0.89055 08135 1.08326 77048 0.07107 53988 65 16 L 20087 162307 | (63 

0.88246 46805 1.08176 81732 0.07293 51200 64 19 1.19263 556055 | 62 

0.87410 9582 1.08023 29140 | - 0.07471 34824 63 23 1.17339 95080 | 61 

0.86548 81427 1.07866 37978 0.07640 81398 62 26 1.15416 34504 | 60 

0.85660 30670 1.07706 27365 0.07801 68127 6rn) 2 1.13492 73929 | 59 

0.84745 71408 1.07543 16809 0.07953 72924 60) 131 1.11569 13354 | 58 

0.83805 32290 | 1.07377 26184 | 0.08096 74440 | 59 34 T.09645 52779 | 57 
0.82839 42745 1.07208 75705 0.08230 52102 58 36 1.07721 92204 | 56 

0.81848 32973 1.07037 85902 0.08354 86152 57 39 1.05798 31629 | 55 

0.80832 33933 | 1.06864 77599 | 0.08469 57684 | 56 41 1.03874 71054 | 54 
0.79791 77333 | 1.06689 71884 | 0.08574 48680 | 55 43 I.O1951 10479 | 53 
0.78726 95615 1.06512 90086 0.08669 42053 54 44 I .00027 49904 | 52 

0.77638 21945 I .06334 53750 0.08754 21680 53 406 0.98103 89329 | 51 

0.76525 90201 1.06154 84606 0.08828 72448 2 48 0.96180 28754 | 50 

0.75390 34961 1.05974 04548 0.08892 80287 51 49 0.94256 68179 | 49 

0.74231 91490 1.05792 35605 | 0.08946 32214 | 50 49 0.92333 07604 | 48 

0.73050 95727 | 1.05609 99913 | 0.08989 16370 | 49 50 0.90409 47028 | 47 
0.71847 84273 1.05427 19690 0.09021 22056 48 50 0.88485 86453 | 46 

0.70622 94378 I.05244 17208 0.09042 39779 47 51 0.85562 25878 | 45 

A(r) D(r) E(r) Fé r 
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274 ELLIPTIC FUNCTION 
K = 1.7867691349, K’ = 1.9355810960, E = 1.3931402485, E’ = 1.3055390943, 

ef ns —— Oe Oe 

00000 - : 00000 00 00000 
29904 : 25767 : 34107 

.03970 59807 : 86910 ; 35897 

.05955 89712 4 18945 03787 

.O7941 I9615 d j 57081 F 35136 
FwWHHO 

.09926 49519 ; 39351 : 26253 

.IIQII 79423 : 00761 72398 

.13897 09327 79420 67791 

.15882 39231 : 13683 3 05620 

.17867 69135 : 42875 Z 78042 

ones) | 

onl 

ooo0o0 

07422 ; 76203 

48973 90239 
10519 : 09295 

36499 21534 
72913 4 14154 

19852 99039 
.21838 28943 

.23823 58847 

.25808 88751 

27794 18655 SI le) (2), eS) o0o00o00 

67422 73402 
8 69435 84592 

30203 ‘ 32120 

02895 99487 
42673 : 69318 

-29779 48558 
.31764 78462 

33750 08366 

.35735 38270 

.37720 68174 o0o00o00 ic) fe) (e) ere) oo0o0o$o 

06754 : 23379 
54475 42606 
47336 : 07123 
49046 : 96267 

255604 : 88616 

-39705 98078 
.41691 27981 

.43076 57885 

.45661 87789 

.47647 17693 (eo) (2) (e) fe) (2) fe} (2) eye) 

oO 

oO 

oO 

oO 

10) 

45123 : 62012 

78252 : 93589 

97792 . 59801 
78905 03141 36450 
990975 : 49 98717 

.49632 47597 

.51617 77501 

53603 07405 
55588 37309 
.57573 67212 Cre) CMe) Se} el oe ere (oF fe} (e) (e) (©) 

38101 ‘ 21191 

78092 .03780 77899 
10829 03444 .04002 42340 
10983 00821 .04227 87515 

I1122 59132 .04456 85961 

-59558 97116 
.61544 27020 

63529 56924 
.65514 86828 
67500 16732 (e) fe) fe) fe) S) oo 900 } “el (e) f2)"S) 

11247 69491 .04689 09786 

11358 25187 .04924 30699 

11454 21645 .05162 20047 

11535 56375 .05402 48851 
. 11602 28932 .05644 87839 

.69485 46636 

71470 76540 
-73456 06443 
75441 36347 
77426 66251 o0o0o00o00 (oy Ke) Te) (2) ©) (eo) ey fe), CPS) 

.11654 40861 .05889 07481 

. 11691 .06134 78029 

11714 2 .06381 69550 

ELIZ 23957 .06629 51962 

mei .06877 95074 

-79411 96155 
.81397 26059 

.83382 55963 

.853607 85867 

-87353 15771 (=) (ey ley fey ©) (ey Te) {e) jo) (2) (Sey fe! ye) 

i) . 11697 : .07126 68617 ie) ° .89338 45674 

G(r) C(r) 
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TABLE 6 = 40° 

q = 0.033265256695577, 00 = 0.9334719356, HK = 0.8550825245 

32628 

14726 Se) (2)\C) (2) 

64560 
91652 

06509 

20616 

4 46432 ) 1), fe )xe) (e) 

97386 
87866 

33213 
49716 
54604 oOo900 

66032 

03082 

85744 
34913 
72377 

oO. 

(0) 

oO. 

Oo. 

Oo. 

20807 

03745 
45598 

208 71618 

07901 JNO} 2) 4S) xe) 

81367 

1975! 

91593 
06220 

13739 Cy CC) “e} ) 

05020 
11684 

66091 

01322 

51173 (2) (2) - COS) 

50133 
33376 
36742 

4 96728 

50468 CHSC) ), ©) 

42177 
07942 

05769 

37243 
05008 

12760 

3 65243 
68243 

28584 

54113 

53698 
37211 

15521 

00476 

04893 

42539 
28116 

77242 

06433 
33082 

75438 
52584 
84414 
91607 

95604 

18582 

83422 

13690 

33599 
67986 

42279 
82465 

15061 

67080 

-09796 65999 

-09564 39724 
.09329 16556 

.O9O9I 25160 

.08850 94525 

.08608 53932 

.08364 32917 

.O8118 61237 

.07871 68830 

.07623 85782 

.07375 42288 

.07126 68617 

Jee oe © oomeomome) 

e) fe) ©) &) © 

e) (9), ©) ©) ©) 

(a (2) (eo) fe) fe) 

° 

(ey fe) (2) ) © 

(eo) te) fe) eye) 

(2) 2) 2) (2) ©) 

.00382 

.00765 

.O1147 

.O1527 

.O1906 

.02283 

02658 

03030 
03400 

03765 
.04128 

04485 
-04839 
05187 

.05530 

.05868 

.06200 

.06525 

.06843 

.O7155 

-07459 
-07755 
08043 

.08323 £ 

08594 
08856 
09108 

09350 
09583 

09805 
. 10016 

10216 

. 10405 

. 10582 

.10748 

. 10901 

. 11042 

. 11170 

. 11286 

. 11388 

11477 
.11553 
11615 

. 11663 

. 11697 

E(r) 

.68750 

.66765 

-64779 
-62794 
. 60809 

. 58823 

. 50838 

- 54853 
52868 
. 50882 

.48897 

. 46912 

-44926 
.42941 
. 40956 

. 38970 

91349 
61445 
31541 
01637 

71733 

41829 

11926 

82022 

52118 

22214 

92310 
62406 

32502 
02598 

72694 

42791 
12887 

82983 

53979 
23175 

93271 
63367 
33463 
03560 

73056 

43752 
13848 

83944 
54040 
24136 

94233 
64329 
34425 

2 04521 

.05220 

.03235 

.O1250 

.99264 

-97279 

-95294 

-93309 

-91323 

.89338 

Fo 

74017 

44713 
14809 

84905 
55001 
25098 

95194 
65290 

35386 
05482 

75578 

45674 

78676 
. 76691 

-74706 
272i 

-79735 
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270 ELLIPTIC FUNCTION 
K = K’ = 1.8540746773, E = E’ = 1.3506438810, 

r Fo oy) E(r) D(r) A(r) 

fe) 0.00000 00000 On a0) 0.00000 00000 1.00000 00000 | 0.00000 00000 
I 0.02060 08297 Dae Lee 0.00559 22185 1.00005 76114 | 0.01732 23240 

2 0.04120 16595 222 0.01117 56998 I .00023 03752 | 0.03463 96092 

3 0.06180 24892 BUNS 2 0.01674 17286 1.00051 80814 | 0.05194 68175 

4 0.08240 33190 4 43 O 02228 16343 1.00092 03796 | 0.06923 89126 

5 0.10300 41487 5 54 0.02778 68124 1.00143 67802 | 0.08651 O8611 

6 0.12360 49785 ape el 0.03324 87460 1.00206 66547 | 0.10375 76329 

7 0.14420 58082 8 15 0.03865 90273 1.00280 92364 | 0.12097 42023 

8 0.16480 66380 9 25 0.04400 93780 I .00366 36213 | 0.13815 55494 

9 0.18540 74677 10 36 0.04929 16689 I.00462 87696 | 0.15529 66598 

10 0.20600 82975 Te 46 0.05449 79400 1.00570 35065 | 0.17239 25270 

II 0.22660 91272 I2 56 0.05962 04166 1.00688 65237 | 0.18943 81524 
12 0.24720 99570 i 56 0.06465 15306 1.00817 63813 | 0.20642 85463 
13 0.26781 07867 I5 15 0.06958 39334 I.00957 I509I | 0.22335 87294 

14 0.28841 16165 TO 2 0.07441 05129 I.O1107 02088 | 0.24022 37330 

15 0.30901 24462 17 34 0.07912 44078 1.01267 06562 | 0.25701 86008 
16 0.32961 32760 18 43 0.08371 90207 I.01437 09030 | 0.27373 83893 
07) 0.35021 41057 Ig 52 0.08818 80301 I.01616 88793 | 0.29037 81691 
18 0.37081 49355 21 I 0.09252 54012 1.01806 23965 | 0.30693 30262 
19 0.39141 57652 22 9 0.09672 53955 I .02004 91494 | 0.32339 80622 

20 0.41201 65950 23) 617, 0.10078 25794 I.02212 67193 | 0.33976 83967 
21 0.43261 74247 242 0.10469 18308 1.02429 25769 | 0.35603 91671 

22 0.45321 82545 25) 33 0.10844 83455 1.02654 40853 | 0.37220 55308 

23 0.47381 90842 26 40 0.11204 76417 1.02887 85035 | 0.38826 26656 

2 0.49441 99139 | 27 47 0.11548 55630 | 1.03129 29893 | 0.40420 57714 

2 0.51502 07437 28 54 0.11875 82813 1.03378 46028 | 0.42003 OO7II 

26 0.53562 15734 30 «2~—O 0.12186 22978 I .03635 03103 | 0.43573 08120 
2 0.55622 24032 gi 0.12479 44425 1.03898 69880 | 0.45130 32670 
28 0.57682 32329 32) 12 0.12755 18736 1.04169 14251 | 0.46674 27359 

29 0.59742 40627 Shey ay 0.13013 20757 1.04446 03288 | 0.48204 45468 

30 0.61802 48924 BA. 22 0.13253 28561 1.04729 03271 | 0.49720 40572 

31 0.63862 57222 AS) 27/ 0.13475 23413 1.05017 79739 | 0.51221 66556 

2 0.65922 65519 BOmes2 0.13678 89725 I.05311 97528 | 0.52707 77628 

33 0.67982 73817 By KS) 0.13864 14993 I.05611 20812 | 0.54178 28334 

34 0.70042 82114 38 39 0.14030 89744 1.05915 13149 | 0.55632 73569 

35 | 0.72102 90412 | 39 43 0.14179 07457 | 1.06223 37524 | 0.57070 68597 
36 0.74162 98709 40 46 0.14308 64509 1.06535 56397 | 0.58491 69061 

207 0.76223 07007 41 48 0.14419 60059 1.06851 31742 | 0.59895 31001 

38 0.78283 15304 2 51 0.14511 96000 1.07170 25103 | 0.61281 10868 

39 | 0.80343 23602 | 43 54 0.14585 76849 | 1.07491 97630 | 0.62648 65539 

40 0.82403 31899 44 54 0.14641 09671 1.07816 10137 | 0.63997 52334 

41 0.84463 40197 45 55 0.14678 03964 I.08142 23139 | 0.65327 29030 

42 0.86523 48494 46 56 0.14696 71583 1.08469 96910 | 0.66637. 53880 
43 0.88583 56792 AT 57 0.14697 26631 1.08798 91523 | 0.67927 85625 

44 0.90643 65089 48 57 0.14679 85365 1.09128 66907 | 0.69197 83514 

45 | 0.92703 73387 | 49 57 0.14644 66094 | 1.09458 82886 | 0.70447 07318 

90-r Fy yp G(r) C(r) Bir) 
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TABLE @ = 45° 

gq =e 7 = 0.04321391826377, 00 = 0.9135791382, 

.00000 

99984 
-99938 
.99860 

99752 

.99613 

-99444 

99243 
ggol2 

98750 (Se) (©) fos [o) 

.98458 

.98136 

-97783 
-97400 
-96987 (opie! (ch oy {e) 

-96544 
.96071 

-95569 
-95037 
-94477 (e) ef fe) ee) 

.93887 

93268 

.92621 

91945 
gI241 

10) 

Oo. 

oO 

Oo. 

Oo. 

go510 

.89750 

. 88963 

88149 

.87308 (2) (elroy te) fe) 

86441 

85547 
84627 
83681 

.82710 (e) (e) () {2} (2) 

81714 
80693 

79647 
.785758 

-77485 (oye) fe), fe} “e) 

.76368 

.75228 

. 74.066 

.72881 

71675 (oy fo}, (2) fe} (©) 

° 70447 

00000 

54246 
17514 
91406 

78584 

82775 
08767 

62407 

59593 
81276 

63450 
O7151 

23446 
24430 
23216 

33929 
71696 

52639 
93863 
13447 

30433 
64814 

37526 
70430 
86305 

08831 

62579 
72995 
66386 
69906 

11542 
20099 
25182 

57184 
47269 

27355 
30099 
888381 

37785 
11587 

45735 
76332 
40121 

74469 
17348 

07318 

A(r) 

38846 

53339 
26928 

95480 
95477 

63970 
2 39537 

97231 
58542 
81342 

64844 
48548 
72199 
75735 
99237 

82886 

oOo 990 le) Se) eo ©) ooo 9098 is) ©} ©) fe) © (2) ©) ©) 2) ©) ©) ©) fe) ©) (@) (s)) (2) {e) (S) 

(2) te) (s) 2) () 

S 

00000 

60108 

76502 

05467 
8 03289 

4. 26255 

30653 

72774 
O8916 

95382 

88487 

44575 
19994 

8 71139 
54439 

26379 
43506 
62449 
39933 
32799 

98027 

92756 
74315 
00252 
28362 

16727 

23752 
08206 

29266 

46567 

20252 
11025 
80211 
89815 

02588 

82099 

92789 
00077 

709407 
71344 

71663 

41415 
52037 
76436 
89078 

66094 

. 58626 

. 50566 

- 54506 
. 52446 

. 50386 

.48325 

.46265 

-44205 
.42145 
.40085, 

. 38025 

35965, 47 

- 33905 

-31845 
.29785 

.27725 

.25665 

. 23604 

-21544 
19484 
17424 
15364 

- 13304 
. 11244 

09184 

.07124 

.05064 

.03004 

-00944 
.98883 

.96823 

-94763 

-92703 

Fo 
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278 ELLIPTIC FUNCTION 

K = 1.9355810960, K’ = 1.7867691349, E = 1.3055390943, E’ = 1.3931402485, 

00000 OC : 00000 
645606 : ; 17831 
29132 2 : 032 86990 
93699 d ; F ; 58810 

2 58265 : : ; 84630 

22831 

87397 
51963 
16530 

81096 

15805 

03795 

99725 

55283 
21831 (e) fe) (ey ie) ©) 

45662 
.23657 10228 

.25807 74795 
-27958 39361 
.30109 03927 

50856 
93888 

02505 |f 

28335 
23067 () fee) ©) (e) ooo meme) 

38457 
26330 

38591 
27234 
44344 

32259 68493 
-34410 33059 
.36560 97626 

.38711 62192 

.40862 26758 (oye) (2) e}, 2) le) te) ©) e} 2) SS} © fe) 

43012 91324 

-45163 55891 
47314 20457 
-49464 85023 
-51615 49589 

42110 

72832 

88930 

42953 

87589 

10) 

10) 

oO 

oO 

oO ome) vey (ele) (}) fey fe) (ee) 

75678 
60218 

94381 
31522 

25191 

53766 14155 
.55916 78722 

.58067 43288 

.60218 07854 

.62368 72420 (2) Xe) {e) () ©) ae ec eo 2 (oy (ey ©) 

29148 

97376 
84091 

43761 
-55455 31119 

-64519 36987 
.66670 01553 

.68820 66119 

.70971 30685 

-73121 95251 (oy 12) (ce) ()) fe) oo9900 

(2) ©) fe) ©) 

° 

0.56893 O1177 
0.58314 09242 

0.59718 10935 
0.61104 62201 

0.62473 19335 

.75272 59818 

-77423 24384 
-79573 88950 
.81724 53516 

83875 18083 CuOuOeOn© (S) fej te) (ey) 

86025 82649 

88176 47215 

90327 11781 

92477 76347 
94628 40914 

0.63823 38991 

0.65154 78204 
0.66466 94406 

0.67759 45449 
0.69031 89618 ic) (2) () te) ©) (eo) fen te} fob) 

(e) ° .96779 05480 .17860 61952. : Oo. 83 85652 

G(r) B(r) 
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TABLE @ = 50° 

q = 0.055019933698829, ©0 = 0.8899784604, HK = 0.9715669451 

. 00000 

99984 
99937 
-99859 
99750 

.99610 

-99439 
.99236 

.99003 

98739 

98444 
.g8119 

97763 
97377 
g6961 (e) fe) (eo) (2) fe) 

96514 
.96038 

95531 
94996 
-94430 Clie) ly fee) 

.93836 

-93213 
.92561 

.91880 

.Q1172 

oO 

10) 

10) 

oO 

O 

-90435 
.89670 

.88878 

.88059 

.87213 () CMO) 

.86341 

85442 
84517 
.83566 
.82590 oo0o0o°0 

.81589 

.80564 

79514 
. 78440 

77343 ey ei CEe) S) 

.76222 

40186 

61319 
65127 

54487 

33424 
07108 

81849 

65093 
65416 

92517 
57210 

71417 
48160 

O1546 

46762 

00059 

78745 
O1167 

86698 

55727 
29639 
30802 

82552 

09173 

35883 
88815 

94998 
82341 
79612 

16420 

23195 
31166 

72345 
79506 

86161 

26543 
35583 
48891 

02735 

34019 
80264 

(e} (2) {e) (2) ©) (2) 12) ©) fe) 2) Se} CO © (eo) {e) fe) ©) ©) ° °° (2), Io) 

Oe; © CS) 

(Sy (e) (2) 12) (2) 

00000 

92362 

36482 

84106 

89646 

96670 

64884 

43123 
4 82835 

. 16666 

. 16883 

.17081 

.17261 

mL Ae 
.17562 

.17682 

.17781 

.17860 

35367 

51961 

83740 
81700 

96708 

79497 

80662 

50665 

39836 
98379 
76383 

23833 
90627 

26595 
81521 

05174 

47335 
57834 
86595 
83674 
99314 

83999 
88516 

64017 

62095 

34859 

35017 
15964 
31878 

37818 

89832 

45069 
61892 

00006 

20583 

86395 

61952 

81828 

17261 

52695 

88129 

23563 
58997 
94430 
29864 

65298 

00732 
36165 

71599 
07033 

42467 
77901 
13334 
48768 
84202 

19636 

55069 
90503 

25937 
61371 

96805 
32238 

67672 

03106 

38540 

73973 
09407 
44841 
80275 

15709 

51142 
4 86576 

22010 

57444 
92877 

28311 

63745 
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i * 

280 ELLIPTIC FUNCTION 

K = 2.0347153122, K’ =1.7312451757, E = 1.2586796248, E’ = 1.4322909693, 

|: Fo Fs E(t) Dir) A(r) 
(0) 0.00000 00000 O°, oO" 0.00000 00000 I .00000 00000 | 0.00000 00000 
I 0.02260 79479 1) 0s 0.00862 00346 I.00009 74600 | 0.01712 13223 

2 0.04521 58958 2) 925 0.01722 45749 1.00038 97217 | 0.03423 80342 

3. | 0.06782 38437 3-53 0.02579 81795 | 1.00087 64305 | 0.05134 55249 
4 0.09043 17916 LO 0.03432 55123 1.00155 69957 | 0.06843 91832 

5 | 0.11303 97395 6 28 0.04279 13942 | 1.00243 05914 | 0.08551 43971 
6 0.13564 76875 AAS 0.05118 08539 I.00349 61575 | 0.10256 65538 

7 0.15825 56354 Oe. 0.05947 91769 1.00475 24006 | 0.11959 10390 

8 0.18086 35833 Io 19 0.06767 19530 1.00619 77962 | 0.13658 32373 

9 0.20347 15312 Te so 0.07574 51216 1.00783 O5901 | 0.15353 85318 

10 | 0.22607 94791 12) 52 0.08368 50144 1.00964 88003 | 0.17045 23039 
II 0.24868 / 74270 14 9 0.09147 83960 1.01165 02201 | 0.18731 99332 

12 0.27129 53749 I5 25 0.099II 25013 I.01383 24199 | 0.20413 67975 
13 0.29390 3322 16 40 0.10657 50694 I.01619 27508 | 0.22089 82730 

14 0.31651 12708 17 56 0.11385 43755 I.01872 83473 | 0.23759 97340 

15 0.33911 92187 Lope iT 0.12093 92580 1.02143 61311 | 0.25423 65532 

16 0.36172 71666 20 25 0.12781 91435 I.02431 28147 | 0.27080 41017 

17 | 0.38433 51145 | 21 40 0.13448 40670 | 1.02735 49050 | 0.28729 77496 
18 0.40694 30624 22 54 0.14092 46901 1.03055 87080 | 0.30371 28656 

19 0.42955 10103 2A 57, 0.14713 23140 1.03392 03331 | 0.32004 48178 

20 0.45215 89583 | 25 20 0.15309 88906 1.03743 56974 | 0.33628 89743 

21 0.47476 69062 26 33 0.15881 70288 I.04110 05314 | 0.35244 07031 

22 | 0.49737 48541 | 27 45 0.16427 99989 | 1.04491 03831 | 0.36849 53729 
23 0.51998 28020 28 56 0.16948 17327 1.04886 06244 | 0.38444 83538 

24 0.54259 07499 BONS 0.17441 68208 1.05294 64558 | 0.40029 50181 

25 0.56519 86978 ait ats} 0.17908 05075 1.05716 29130 | 0.41603 07408 

26 0.58780 66457 32))25 0.18346 86827 1.06150 48720 | 0.43165 09003 

2 0.61041 45937 3357 35 0.18757 78710 1.06596 70560 | 0.44715 O8801 

28 0.63302 25418 34 46 0.19140 52188 1.07054 40415 | 0.46253 606901 

29 0.65563 04895 3) OS) 0.19494 84794 1.07523 02647 | 0.47777 18627 

30 0.67823 84374 a7) 3 0.19820 59959 1.08002 00285 | 0.49288 36645 

31 0.70084 63853 38 10 0.20117 66827 1.08490 75092 | 0.50785 68872 

32 0.72345 43332 29) 16 0.20386 00053 1.08988 67634 | 0.52268 69541 

33 0.74606 22811 |. 40 2 0.20625 59591 1.09495 17358 | 0.53736 93004 

34 0.76867 02290 41 28 0.20836 50468 I.10009 62656 | 0.55189 93747 

35 0.79127 81769 A283 0.21018 82554 I.10531 40947 | 0.56627 26408 

36 0.81388 61249 127538 0.21172 7032 1.11059 88749 | 0.58048 45794 

37 0.83649 40728 44 41 0.21298 32611 1.11594 41760 | 0.59453 06894 

38 0.85910 20207 45 45 0.21395 92364 1.12134 3492 0.60840 64905 

39 0.88170 99686 46 48 0.21465 76400 1.12679 02542 | 0.62210 75244 

40 0.90431 79165 47 50 0.21508 15155 1.13227 78297 | 0.63562 93571 

41 0.92692 58644 48 51 0.21523 42440 1.13779 95386 | 0.64896 75812 

42 0.94953 38123 49 53 0.21511 95200 1.14334 86579 | 0.66211 78175 

43 | 0.97214 17602 | 50 53 0.21474 1327 1.14891 84299 | 0.67507 57177 
44 0.99474 97081 51 53 0.21410 39170 I.15450 20711 | 0.68783 69663 

45 1.01735 76561 5252 OF2I321 17813 I.16009 27802 | 0.70039 72833 

90-r Fy 7 G(r) C(r) B(r) 
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TABLE 04 O07 

‘gq = 0.069042299609032, O0 = 0.8619608462, HK = 1.0300875730 

.-00000 

-99984 
99936 
.99857 
-99747 

.99605 

-99431 
.99226 

.98990 

.98722 (©) fone) (ey) 

98424 
.98094 

-97734 

-97343 
.96921 2) Cy Cre) iS) 

96469 

95987 

-95475 

-94933 
.94361 (e} fe} (©) (©) fe) 

.93760 

.93130 

.92471 

91783 
.91067 

O 

O 

O 

oO 

oO 

.90323 

.89551 

88752 

87925 
.87071 (eo) (ehus) fe) (©) 

86191 

.85285 

84352 
83394 
.824I1 (2) (re) (e) ©) 

.81403 

.80371 

-79314 
. 78234 

.77130 fe), (©) e) tS) ©) 

76003 

74854 
-73683 
.72489 

-71275 fe) (ey fe) 2) Je) 

° . 790039 

00000 

19155 
77261 

76238 

19280 

10861 

56720 

63864 

40553 
96302 

41861 

89213 

51558 
43300 
80039 

78546 
56758 

33753 

29736 
66021 

65006 

50161 

45998 
78055 
72870 

57961 
61797 
13778 
44206 

84265 

65988 
22237 
86672 

93726 
78578 

77126 

25960 

62334 
24136 

49868 

78612 

o99090 ° ° ° o° oo990 0 fe) te) ©) (2) (oy fe) (2) fe Ie) e} (2) f) ©& fe) (o) (e) fe) (2) (2) 

Ce a) oe) 

© 

00000 
66917 

3 82806 
96606 

57182 

13295 
13564 

4 06434 
40144 
62693 

21812 

64934 

39167 
91270 

67629 

14240 
76688 
00133 

4 29301 

08473 

81487 

91731 
82153 

95267 
73172 

57566 

89777 
10790 

61290 

81701 

12244 

92991 
63935 
65064 

36444 

18312 

SLU) 

75927 

33955 

67279 

18688 
31885 

51650 

24001 

96376 

17818 

60935 
81456 

01977 
22497 
43018 

63539 
4 84060 

04581 

25102 

45623 

66144 

86665 
07185 

27706 

48227 

68748 
89269 

09790 
30311 
50832 

71353 
91873 
12394 
32915 
53436 

73957 
94478 
14999 
35519 
56041 

76561 

SMITHSONIAN TABLES 



282 ELLIPTIC FUNCTION 

K = 2.1565156475, K’ — 1.6857503548, E =1.211056028, E’ = 1.4674622093, © 

r Fo oy) E(r) D(r) A(r) 

(0) 0.00000 00000 Oya Ol 0.00000 00000 1.00000 00000 | 0.00000 00000 
I 0.02396 12850 I. 22 0.01050 21636 I.000I2 58452 | 0.01694 24822 

2 0.04792 25699 2e As 0.02098 36904 1.00050 32288 | 0.03388 07351 

3 0.07188 38549 4 Wi 0.03142 40274 1.00113 16945 | 0.05081 05279 | 

4 0.09584 51399 5) 29 0.04180 27880 I.0020I 04822 | 0.06772 76275 | 

5 0.11980 64248 6. 51 0.05209 98337 1.00313 85295 | 0.08462 77970 

6 0.14376 77098 Omens 0.06229 53533 1.00451 4472 0.10150 67944 

| 0.16772 89948 9 35 0.07236 99392 1.00613 66468 | 0.11836 03717 

8 0.19169 02798 10 56 0.08230 46606 1.00800 309II | 0.13518 42734 

g-+} 0.21565 15647 NG] 0.09208 11326 I.O10II 15480 | 0.15197 42358 

10 0.23961 28497 13 38 0.10168 15801 1.01245 94672 | 0.16872 59855 

II 0.26357 41347 14 58 0.11108 88976 I.01504 40088 | 0.18543 52386 
12 0.28753 54197 16 18 0.12028 67034 1.01786 20463 | 0.20209 76999 
it 0.31149 67046 17, he) 0.12925 93879 I.0209I OI70I | 0.21870 g0619 

14 0.33545 79896 18 57 0.13799 21563 1.02418 46923 | 0.23526 50037 

15 0.35941 92746 20 16 0.14647 10652 1.02768 16504 | 0.25176 IIQII 

16 0.38338 05595 OT 35 0.15468 30530 1.03139 68120 | 0.26819 32750 

17 0.40734 18445 22053 0.16261 59647 1.03532 50803 | 0.28455 68916 
18 0.43130 31295 2A lO 0.17025 85702 1.03946 34991 | 0.30084 76617 

19 0.45526 44145 25 26 0.17760 05773 1.04380 52583 | 0.31706 11903 

20 0.47922 56994 26 42 0.18463 26382 1.04834 57003 | 0.33319 30665 

21 0.50318 69844 27 58 0.19134 63517 1.05307 93260 | 0.34923 88634 
22 0.52714 82694 2X0) Mi} 0.19773 42593 1.05800 O4010 | 0.36519 41381 

23 0.55110 95544 Bore 0.20378 98371 1.06310 29632 | 0.38105 44318 

24 0.57507 08393 aie AL 0.20950 74827 1.06838 08291 | 0.39681 52701 

25 0.59903 21243 32) 54 0.21488 24988 1.07382 76019 | 0.41247 21633 

26 0.62299 34093 34 7 0.21991 10718 1.07943 66784 | 0.42802 06069 

27, 0.64695 46942 35 18 0.22459 02484 1.08520 12575 | 0.44345 60826 

28 0.67091 59792 Zon 2 0.22891 79082 I.O91II 43480 | 0.45877 40585 

2 0.69487 72642 | 37 39 0.23289 27342 | 1.09716 87771 | 0.47396 99905 

30 0.71883 85492 38 49 0.23651 41807 1.10335 71989 | 0.48903 93230 

31 | ' 0.74279 98341 | 39 58 0.23978 24399 | 1.10967 21031 | 0.50397 74905 
2 0.76676 IIIQI Ai 26 0.24269 84060 I. 11610 58243 | 0.51877 99184 

33 0.79072 24041 42 13 0.24526 36394 1.12265 05510 | 0.53344 20249 
34 0.81468 36890 i133, FXO} 0.24748 03283 1.12929 83350 | 0.54795 92224 

35 0.83864 49740 44 26 0.24935 12513 1.13604 I1010 | 0.56232 69191 

36 0.86260 62590 Ae Si 0.25087 97387 1.14287 06563 | 0.57654 05212 

37 | 0.88656 75440 | 46 35 0.25206 96336 | 1.14977 87007 | 0.59059 54347 
38 0.91052 88289 AT, 39 0.25292 52540 1.15675 68364 | 0.60448 70673 

39 | 0.93449 01139 | 48 42 0.25345 13545 | 1-16379 65783 | 0.61821 08313 

40 0.95845 13989 49 44 0.25365 30884 1.17088 93642 | 0.63176 21451 
41 0.98241 26838 50 45 0.25353 59713 1.17802 65652 | 0.64513 64364 
2 1.00637 39688 51 46 0.25310 58450 1.18519 94959 | 0.65832 91446 

43 I .03033 52538 52 46 0.25236 88429 1.19239 94253 | 0.07133 57232 
44 | 1.05429 65388 | 53 45 0.25133 13558 | 1.19961 75873 | 0.68415 16433 

45 1.07825 78237 54 44 0.25000 00000 1.20684 51910 | 0.69677 23959 
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TABLE 6 = 60° 7 283 
q = 0.085795733702195, ©0 = 0.8285168980, HK = 1.0903895588 

00000 .4I4 35624 : 15651 56475 

87925 79799 ; D .13255 43625 

52434 - 01492 35 -10859 30775 

95732 : .02237 2 08463 

21491 ‘ .02980 .06067 

34843 : 257 .03721 95889 03670 
42378 : .04460 67701 .O1274 
52135 5? .05196 28815 .98878 
73588 r 722 .05928 26440 ; .96482 — 

17641 : 51 .06656 07336 .94086 is} (eo), (e}, (2), (©) 

96610 : -07379 17757 -91690 
24210 ; .08097 03401 . 89294 

15541 : .08809 09364 . 86898 

87065 : .09514 80095 .84501 

56591 10213 59353 82105 () (ey) (ey (2) 

43250 
67478 
50985 
16738 

88926 

- 10904 90175 -79799 
.11588 14840 us 

12262 74837 -74917 
.12928 10844 .72521 

.13583 62697 .70125 Oe) C) (SS) ee} © Clie) 

.14228 69378 .67728 

.14862 68991 65332 

-15484 98749 62936 
. 16094 94967 .60540 

16691 93054 .58144 

92941 
55342 
03829 

67210 

75372 

Oo. 

Oo. 

O. 

O. 

O. () te) fe) fe) (2) 

17275 27505 55748 
-17844 31913 ; 53352 
18398 38964 - 50956 
.18936 80462 .48559 

-19458 87340 46163 

59245 
50771 
82868 

89396 
05122 (2) Ee} CVS) (Ss) Xopele) (eye) 

65682 

07549 
67990 
85036 

97438 

19963 89691 -43767 
16802 ) PAS 70 

97204 38975 ¢ 
58722 -36579 
28546 .34183 (ey (2) (©) 12S) fo) fe fo) fe) ie) 

33313 . 31787 
99196 - 29390 
52018 . 26994 

17372 -24598 
20761 . 22202 

44636 
66719 

04386 

98915 
92120 e) (2) 2) er ©) fe) oe) te) (2) 2) 

87758 . 19806 

44177 : -17410 29636 
16265 .15014 16787 

30908 .12618 03937 

15864 . 10221 

26317 : 67937 
44290 : 39504 
89253 : 66025 

04816 .22129 35025 

34952 : 34320 (ey ©) eyeye} Se) ©} &) CY ©) 

ie) io} 69677 23959 51910 

A(r) Fo 

00000 .07825 78237 
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284 ELLIPTIC FUNCTION 
K = 2. 3087867982, K’ = 1.6489952185, E = 1.1638279645, E’ = 1.4981149284, 

Fo A(r) 5 

.00000 00000 

.01667 62945 

.03334 89266 

.O500I 42309 

.06666 85367 

00000 

71437 
65870 

07622 

23651 

00000 00000 
.02565 31866 

-05130 63733 
-07695_ 95599 
.10261 27466 BwNHO loop eh (2) ‘2; (e) tek (ojte)s fe) (OI Mole toy Yo) ts) 

.08330 81651 

.09992 94260 

. 11652 86159 

.13310 20150 

.14964 58850 

44839 
07235 
53252 
32800 

04341 

.12826 59332 

-15391 91199 
-17957 23085 
.20522 54932 
.23087 86798 (2) fe} (ey 42) ©) 2) (2) (eo) Kee) is) (2) ©) (2) 2) 

. 16615 64662 

.18262 99754 

.19906 26038 

21545 05144 
23178 98405 

35875 
05824 

03827 

31436 
02705 

.25653 18665 
28218 50531 

30783 82398 

-33349 14264 
-35914 46131 oooo°o oo0o0o 0 e\ioh ie) {so} [e} 

.24807 66833 
26430 71105 

28047 71545 
29658 28110 

31260 00376 

44678 
97766 
16024 

67323 

33427 

38479 77997 
41045 09864 

43610 41730 
46175 73596 
.48741 05463 ooo O° Cy E)ls6}) ©) ©) GO Oe) © 

32858 47528 
-34447 28350 
.36028 O1217 

.37600 24088 

39163 54503 

09968 

06338 

45496 
63696 

IOI51 

.51306 37329 

.53871 69196 

. 56437 01062 

.59002 32929 

.61567 64795 oo0o000 (2) fe) (or () (2} fey te) ©) ©) 

-40717 49584 
.42261 66028 

-43795 60117 
45318 87717 
.46831 04285 

64132 96662 
66698 28528 

69263 60395 
71828 92261 

74394 24127 

46626 
46988 

2 96698 

92271 

40704 (e) (eye) 2} 2) (o} fe)-(e) Toe) (e} fey (ey fe) {2} 

.48331 64880 
49820 24170 

51296 36449 
52759 556047 
-54209 35352 

58872 

72920 

17629 

35786 

77551 

-76959 55994 
.79524 87860 

.82090 19727 

-84655 51593 
.87220 83460 (eo) Te) {e) {©} ie) le) ©) ey ©) (So) oystey te) te) 

.556045 28523 

.57066 89018 

.58473 68614 

.59865 20033 

.61240 95465 

.89786 15326 

-92351 47193 
-94916 79059 
.97482 10926 

.00047 42792 

99830 
65659 
43597 
O7141 

34159 Pat (2) (2) (6) {o) fo) (ey [e) fe) 1S) ORONO NORC 

.02612 74659 : 06347 : .62600 46907 

.05178 06525 ; 08705 : : .63943 26185 
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TABLE 6 = 65° 
q = 0.106054020185994, O00 = 0.7881449667, HK = 1.1541701350 

.00000 

-99983 
-99933 
.99850 

-99734 

-99585 
99403 
.99189 

.98941 

.98661 (eyre) se) fe) fe) 

.98348 

.98003 

.97626 

LOvV2U7, 
.96776 lo} te) (©) fe) 

. 96304 

95801 

.95266 

-94701 
-94105 (2) ete) ) 

93480 
.92824 

-92139 
91425 
.g068I oye) fe) (2) 2) 

. 89910 

. 89110 

. 88283 

.87428 

.86547 (eyoy (o> (ee) 

.85639 

84704 
-83745 
.82760 

.81750 (e) te) (©) fe) (2) 

.80715 

.79657 

78576 

77471 

76345 OxOnOnor© 

.75196 

-74025 
Wi ZOQS 

.71621 

- 70389 (o)_} (ey CS) 

° 69137 

00000 

41412 

66526 

77970 
80125 

79109 
82778 

00707 
44182 

26176 

61339 
65970 
57996 
56947 
83924 

61576 

14060 

67013 

47511 
84035 

06429 

45859 
34772 
06851 

96968 

41140 

76479 
41144 
74294 
16034 

07366 

90138 

06991 

O1310 

17168 

99276 
92934 
43973 
98708 

03889 

06646 

54443 
95027 
76383 
46686 

54254 

A(r) 

47447 

83232 

75281 

45843 
21140 

31340 

10514 

96596 
31329 
60218 

32466 

00916 

21977 
55559 
64993 
16947 

81348 

31288 

42933 
95424 
70781 

53793 
31916 

95162 

35981 
49149 

I.40320 31647 

Ir. 39496 82541 
.38658 02852 

-37804 95440 
. 36938 64865 

.36060 17261 

.35170 60205 

.34271 02582 

- 33362 54449 
. 32446 26900 

-31§23 31927 
.30594 82284 

.29661 91348 

.28725 72976 

-27787 41372 

.26848 10938 

D(r) 

ee) oOo 9900 o9o90909 (c) fe) fe) (|) ©) lo) Ie) (2) ) 2) (eo) fe) 2) ©) (2) 

o0o0o0o00 

° 

00000 

87781 

26008 

65041 

55975 

46052 

87582 

28855 

18564 

04819 

35068 

56016 

13547 
52642 

17308 

50500 

94047 
88583 

73477 
86769 

65105 

43683 
56190 

34763 
09933 

10594 
63966 

95570 
29211 
86968 

4 89197 
54536 
99932 
40676 

90447 

61379 
64133 
O8001 

O1oI2 

50065 

2 61086 

39198 
88920 

14388 

19600 

o86g9I 

29589 
97723 
65856 

33991 
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286 ELLIPTIC FUNCTION 

K = 2.5045500790, K’ = 1.6200258991, E = 1.1183777380, E’ = 1.5237992053, 

E(r) D(r) A(r) 

00000 00000 .00000 

01539 55735 -00021 
03075 31429 .00085 

04603 49252 .OO192 

06120 35769 .00342 

.00000 00000 

.01627 42346 

.03254 50619 

.04881 14698 

.06506 88358 

00000 

83342 
5 666084 

50026 
33368 eye), (eo) folie) ie) (=} fe) fe) 12) 

.O8131 49227 

09754 68734 
.11376 18057 

.12995 68083 

.14612 89355 

16710 

00053 

83395 
2 66737 

59079 

07622 24069 .00534 

O9105 55815 .00768 

.10566 83193 01045 

.12002 70732 01362 

.13409 96984 .01722 (ey) (Se) 1S), (Oy (2) ooo meme) 

.16227 52029 

.17839 25828 

.19447 80006 

.21052 83297 

.22054 03885 

.14785 56040 .O2121 

.16126 58874 .02562 

.17430 34501 .03042 

.18694 30948 .03561 

.19916 16028 .O4119 

33421 
16763 

OO105 

83447 
66790 (2) ey (ye) 12) (S) 1S), (2) ()9 (2) (2) (2) (©) {e) (2) 

.24251 09363 

.25843 66697 

.27431 42196 

.29014 01480 

-30591 09453 

.21093 77918 .04715 

.22225 25549 .05348 

.23308 88806 .06018 

-24343 18557 06723 
.25326 86498 .07464. 

50132 

33474 
16816 

00158 

83500 (o} (2) (©) (eo) 2) @) fe) ey (ey 2) io) We) Tey (2) ) 

66842 

50184 

33526 
16869 
oo211 

.26258 84862 .08238 

.27138 25968 .09045 

-27964 41653 09885 
.28736 82581 .10755 

.29455 17462 . 11656 

.32162 30277 

-33727 27349 
.35285 63285 

. 36836 99898 

.38380 98186 oo90900 ey fe) ©) Ie) ©) ie} (2) fe) SVS) 

39917 18323 
-41445 19649 
.42964 60668 

-44474 99043 
-45975 91601 

.30119 32185 .12585 

30729 28884 13543 
-31285 24953 -14527 
.31787 52022 .15536 

.32236 54911 .16570 

83553 
66895 

59237 
33579 
16921 oo9900 ©) 2}, 2) (ey ©) ©*o' O1 OO 

-47466 94339 
.48947 62428 
.50417 50229 
.51876 11309 

53322 98456 

‘(00263 

83605 

66948 

50290 

33632 

32632 90569 ALO27, 

32077 27014 . 18706 

.33270 42283 . 19806 

33513 23398 - 20924 
.33706 65364 .22061 Oro LOROr © (SJ OR el oy 2) (o) (ey (©) 2) 

54757 63701 
56179 58348 
57588 32996 

-58983 37576 
.60364 21381 

.33851 70194 .23214 

-33949 45975 . 24382 
.34001 05978 .255604 

.34007 67814 .26758 

.33970 52640, .27962 

16974 
00316 

4 83658 
67000 

59342 = Ss SH O for (aja tey (oye) (ome) (oy fo.ie) 

.61730 33109 

.63081 20897 

64416 32373 
-65735 14695 
.67037 14605 

.33890 84414 .29176 

-33769 89203 - 30398 
33608 94543 31627 
33409 28851 .32860 5 

.33172 20892 .34097 2 

33684 
17027 
00369 

83711 

67053 Se eee (a) (ones oho) (oF foie eyo) 

fo) .68321 78479 coal ie) 59395 .32898 99283 35335 

G(r) C(r) B(r) 
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TABLE 6 = 70° 

q = 0.131061824499858, O00 = 0.7384664407, HK -= 1. 2240462555 

1.00000 00000 
0.99982 71058 

0.99930 85325 
0.99844 46074 
0.99723 58755 

0.99568 30984 

0.99378 72533 

0.99154 95309 

0.98897 13334 
0.98605 4272 

-98280 O1661 

.97921 10356 

.97528 91023 

-97103 67835 
.96645 66885 EOS) io} (S) 

.96155 16144 

95632 45409 
-95077 86259 
.94491 71996 
-93874 37597 oooo°o 

.93226 19647 

-92547 56289 
.91838 87155 

.QII00 53304 

90332 97156 (2) ©} (©) f=) (2) 

.89536 62423 

.88711 94043 

.87859 38106 

.86979 41783 

.86072 53257 (ey (©) (©) 2} Je} 

.85139 21644 

.84179 9692 

.83195 29861 

.82185 71938 

.81151 75269 oom omeome) 

80093 92537 
79012 76914 
77908 81986 

76782 61683 

-75634 70207 (Sy Eley 2) 2) 

-74465 61957 
-73275 91466 
.72066 13327 

.70836 82126 

.69588 52382 OE Spp(2) (HA) 

° .68321 78479 

= = = = me Le Oe ee = = = = = = Se = = = eS = = = = 

on A ee ee 

- 79447 
.70208 

.69927 

. 69604. 

.69238 

.68832 

.68384 

.67896 

.67368 

.66801 

66195 

.65552 

.64872 

64157 

.63406 

.62620 

.61802 

.60952 

.60070 

.59158 

.58218 

-57249 
56254 
-55234 
.54190 

.53123 

.52035 2 

.50926 & 

-49799 
.48055 

-47494 7° 
.46319 88 

.45131 

-43932 
.42722 

.41504 

.40278 

35651 

53883 
11308 

I6110 

SIQI7 

27784 
78163 

62875 
17067 

81168 

(s} fe) te) fe} (eo) (2) (2) (2) fe) ©) 

(2) (ee) ey 2) 

(2) te) ©) fe) ©) 

(2) te)" e) ©) ©) 

ie} (ey (oF fe) (©) 

(ey (a) ey fe) 12) 

2) (e} (2) te) ©) 

————EEEE—EEEEE snc SS EEE 

70991 

70969 
. 70904 

.79795 

. 70642 

v 

Oe Se Oe Oe Se ee oe Hee ee =H NNN N bo wow HN ND NNN N WN 

S = = So 

00790 

17448 
34106 

50764 
67422 

84079 
00737 
17395 

2 34053 
9 50711 

67369 
84027 
00685 

17343 
34000 

50658 

67316 

83974 
00632 

17290 

33948 
50606 

67264 

83921 

00579 

17237 
33895 
59553 
67211 

83869 

00527 
17185 

33842 
50500 

67158 

83816 
00474 
WE 

33790 
50448 

67106 

83763 

00421 

17979 

33737 

59395 
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Ae 
288° ELLIPTIC FUNCTION 
K = 2.7680631454 - K’\/3, K’ = 1.5981420021, E = 1.076405113, E’ = 1.5441504969, 

Fo E(r) A(r 

.00000 : 00000 

.01878 : 90226 

.03752 : 57568 
05014 : 92025 

07460 76935 

00000 00000 
01564 67728 

03129 20711 

04693 44040 
06257 22754 

.00000 OOO0O0O 

.03075 62572 

O6151 25143 

09226 87715 

12302 50287 oo9o90 0 O00 (O70 oooo°o 

09286 : 88997 
. 11084 : 98288 

. 12852 : 68295 

14584 : 55946 
.16275 : 11658 

07820 41558 

09382 84843 
10944 36574 
12504 80220 

. 14063 98665 

.15378 12859 

.18453 75430 

.21529 38002 

.24605 00574 

.27680 63145 CzZOTORONS oy oo oye(e) is) {ey {2} (eye) 

.15621 74137 

-17177 88130 

.18732 21327 

.20284 53538 

.21834 63622 

-17923 : 79374 
.19522 ; 96626 

.21070 : 94593 

. 22562 ; 98163 

. 23997 : 26010 

30756 25717 
.33831 88289 
.36907 50860 

-39983 13432 
.43058 76004 ooo0o°0 oo0o0o0o0 (Ss) tel 6) (2) ©) 

.23382 29430 

-24927 27739 
26469 34194 
.28008 23255 

.29543 68145 

.25372 : 90673 

. 26684 F 98642 

-27932 : 50446 
-2Q9114 . 49755 
. 30229 , 58484 

46134 38576 
.49210 OI147 
.52285 63719 

.55301 26291 |- 
58436 88862 oo0o0o00 (eye) (2) (e) fe) ley fe) (2) 2) 

. 31276 ; 86903 

32254 : 03756 
-33163 , 81382 

. 34003 ; 86847 

-34774 . 82078 

.31075 40803 

.32603 11842 

.34126 50509 

-35645 24653 
-37159 00694 

61512 51434 

.64588 14006 

.67663 76577 

-79739 39149 
.73815 O1721 (ey OOo ©) (oye) (es Teh ©) 

O 

10) 

10) 

10) 

oO 

38667 43599 
.40170 16862 

.41666 82489 

-43157 00988 

.44640 31361 

-35477 24008 
. 36112 : 64722 

. 36680 j 51612 

.37181 ; 27538 

.37618 ; 30995 

.76890 64293 

-79966 26864 
.83041 89436 

.86117 52008 

.89193 14579 (2) (S) 12) (eye) oy eh fe} ee) Sper) 2) 

.46116 31110 

-47584 56238 
-49044 61259 
-50495 99214 
.51938 21695 

37991 96285 
. 38302 : 53692 

.38552 : 29672 

38743 47038 
38877 : 25154 

.92268 77151 

-95344 39723 
.98420 02294 

.01495 64866 

04571 27438 [al Inintey (2) fe) fo) (ce) (eye) ©) Sy) ye) te) 

.53370 78866 

-54793 19494 
.56204 90989 

57605 39442 
.58994 09669 

.38955 . 80140 
. 38979 : 25072 

- 38950 ‘ 70195 
.38871 ; 23140 

-38744 89138 

.07646 QooIo 

.10722 52581 

13798 15153 
.16873 77725 
.19949 40296 Ss = = = = 00000 (eh fe) ©) yw) 

.60370 45267 

.61733 88663 

.63083 81179 

.64419 63092 

-65740 73705 

38569 ; 71251 

38350 
.38088 

37784 
- 37440 

.23025 02868 

.26100 65440 

.29176 28011 

.32251 90583 

-35327 53155 = = = = yo} (ey (2) (©) (eso (2) (e){2) 

(o) ° .67046 51423 _ . 38403 15727 -370959 

FY G(r) B(r) 
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TABLE 6 = 75° 

‘gq = 0.163033534821580, ©0 = 0.6753457533, HK = 1.3046678096 

I .00000 00000 
0.99981 60886 

0.99926 44975 
0.99834 56552 
0.99706 02753 

-99540 93546 

-99339 41714 
QIOI 62829 

98827 75221 

98517 99940 ON OVO! One 

Ne) 

.98172 60720 

-97791 83923 
98498 

-96925 35914 
.96440 30106 COZOROROeS 

\o NI oe) ~sI on 

-95921T 17405 
95368 36468 
94782 28200 

94163 35686 
.93512 04092 (o) {2} (>) Te) {2} 

.92828 80593 

.92114 14274 
56040 

.90592 58521 

.89786 75972 Cyr Te) 42), ©) (2) 

Xe) _ Ww OY co 

.88951 64174 

.88087 80328 

82952 
.86276 31773 

.85329 87622 (S) 1) ae) (2) XS) 

co QJ Lal Ne) on 

.84357 12322 

.83358 68580 

19876 
.81287 30353 

.80215 64710 (e) ey 42), fe) fe) 

(oe) LS) Ww (os) on 

-79120 88085 

-78003 65955 
64021 

-75704 48103 
-74523 84036 (ey (SC) foj fe) oe) 

~I 
[on oo OV as 

-73323 37566 
.72103 74248 

59347 
-69609 57739 
.68336 33823 io) op fe) Key“) 

ey 
° co OV on 

io) OV ~“I ie) Bs Oo 51423 

+ = = 

_ 

Le ee ee oe | 

Stes = Se 

ee a | Oo = Oe ein | 

See ee 

96563 05108 0.00000 00000 | 90° 0’ 2.76806 31454 | 90 
96533 12951 0.00989 91720 89 33 2.73730 68882 | 89 

96443 40309 | 0.01979 47043 | 89 5 2.70655 06310 | 88 
96293 98674 | 0.02968 29453 | 88 38 2.67579 43738 | 87 
96085 07176 0.03956 02195 88 10 2.64503 81167 | 86 

95816 92561 0.04942 28154 S 7 As 2.61428 18595 | 85 

95489 89147 0.05926 69738 S75 2.58352 56023 | 84 
95104. 38778 0.06908 88752 86 47 2.55276 93451 | 83 
94660 90763 0.07888 46278 86 19 2.52201 30880 | 82 

94160 01803 0.08865 02550 85 51 2.49125 68308 | 81 

93602 35909 0.09838 16828 85 22 2.46050 05736 |' 80 

92988 64309 | 0.10807 47268 | 84 54 2.42974 43165 | 79 
92319 65349 | 0.11772 50798 | 84 25 2.39898 80593 | 78 
91596 24373 0.12732 82981 83. 55 2.36823 18021 | 77 

90819 33609 | 0.13687 97883 | 83 26 2.33747 55450 | 76 

89989 92030 0.14637 47936 82 56 2.30671 92878 | 75 

89109 05214 0.15580 83802 82 25 2.27596 30306 | 74 

88177 85195 0.16517 54225 81 55 2.24520 67734 | 73 
87197 50301 0.17447 05894 8I 24 2.21445 05163 | 72 

86169 24991 0.18368 83293 80 52 2.18369 42591 | 71 

194. 39670 0.19282 28550 80 20 2.15293 80019 | 70 
974 30516 0.20186 81293 79 48 2.12218 17448 | 69 

82810 39279 0.21081 78488 79 #15 2.09142 54876 | 68 

81604 13089 0.21966 54291 78 Al 2.06066 92304 | 67 

80357 04247 0.22840 39887 Fou 7 2.02991 29733 | 66 

79070 70015 0.23702 63334 Ae a2 1.99915 67161 | 65 
77746 72401 |: 0.24552 49406 | 76 56 I.96840 04589 | 64 
76386 77929 | 0.25389 19433 | 76 20 1.93764 42017 | 63 
74992 57419 0.26211 91147 75 43 I.g0688 79446 | 62 
73505 85746 0.27019 78524 75 6 1.87613 16874 | 61 

72108 41609 0.27811 91636 Fak Ap 1.84537 54302 | 60 

70622 07286 0.28587 36500 73 48 1.81461 91731 | 59 

69108 68389 0.29345 14936 We ke 1.78386 29159 | 58 

67570 13618 0.30084 24433 72) 28 1.75310 66587 | 57 

66008 34507 0.30803 58026 tea G 1.72235 04016 | 56 

64425 25175 0.31502 04176 7I 4 1.69159 41444 | 55 
62822 82065 0.32178 46673 70 20 1.66083 78872 | 54 

61203 03692 0.32831 64547 69 36 1.63008 16300 | 53 

595607 90385 | 0.33460 32006 | 68 50 I .59932 53729 | 52 
57919 44025 0.34063 18384 63854) 1.56856 91157 | 51 

56259 67789 0.34638 88130 G7 LO 1.53781 28585 | 50 

54590 65890 0.35186 00808 66 28 1.50705 66014 | 49 

52914 43320 | 0.35703 11148 65 -38 1.47630 03442 | 48 
51233 05588 | 0.36188 69115 | 64 ‘ 47 1.44554 40870 | 47 
49548 58469 | 0.36641 20039 | 63 55 1.41478 78299 | 46 

47863 07744 | 0.37059 04774 | 63 2 1.38403 15727 | 45 

D(r) E(r) Fo r 
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290 ELLIPTIC FUNCTION 

K = 3.1533852519, K’ = 1.5828428043, E = 1.0401143957, E’ = 1. 5588871966, 

Fo E(r) A(r) 

.00000 00000 

.01460 06854 

.02920 20956 

.04380 49412 

05840 99043 

.00000 00000 .00000 00000 ‘ 00000 

.03503 76139 .02346 68886 : 13182 

.07007 52278 .04685 05457 : 48264 

.IO511I 28417 .07006 85417 91860 

.I4015 04556 .09304 00333 | ‘ 21668 co0o0oO 

.07301 76251 

.08762 86871 

.10224 36040 

. 11686 28061 

.13148 66263 

.17518 80695 .11568 65173 : 06485 
0.21022 56835 .13793 25365 é 06225 

.24526 32974 15970 63263 71948 

.28030 O9II3 18094 03901 : 45886 

31533 85252 20157 19949 . 61484 yey (2) [e) ey oh oy (or i=) 

14611 52882 

.16074 88922 

17538 74040 
19003 06422 

20467 82669 

.22154 35813 : 43440 

.24080 30831 : 07759 

.25930 41559 : 61800 

.27700 63163 . 04345 

29387 49943 25067 

-35037 61391 
- 38541 37530 
.42045 13669 

.45548 89808 

-49052 65947 ONO OF OS oy fe) 12) (Se) fe) lef fox Tey fey (e} 

.21932 97686 

-23398 44577 
.24864 14540 

-26329 96779 
-27795 78408 

30988 15035 : 07598 

.32500 29380 3 23622 

.33922 20017 : 38955 

.35252 67798 : 10647 

.30491 04618 t 87684 

52556 42086 

.56060 18226 

59563 94365 
63067 70504 
.66571 46643 oooco 0 ooy (2) (eye) ooooco 

-29261 44375 
30726 77376 
-32191 57797 
-33655 63638 
.35118 70467 

.37637 10249 : IIIOI 

.38691 08879 72 14105 

.39653 65430 : 47 22196 

40525 81757 . 53312 
41308 92784 17970 

70075 22782 

73578 98921 
-77082 75060 

.80586 51199 

.84090 27338 (fe) Key {e) (2) 1S) OVONG Oo; © (e) (ope) {te} () 

.36580 51367 

.38040 76896 

-39499 15050 
40955 31244 
42408 88287 

.42004 62655 ; 19421 

.42614 80965. : 53814 

-43141 59095 .28 10369 
-43587 26721 71557 
-43954 28505 : 2 13294 

-87594 03477 
-91097 79617 
-94601 55756 
.98105 31895 

O1609 08034 =} (2) (2) (2) {e) fe) (eye) (eye) OROvOnOne 

43859 46375 
45306 63090 
-46749 93405 
.48188 89699 

-49623 01775 

.44245 21005 : 05139 

.44462 69813 : 10508 

-44609 406931 86893 
.44688 28394 402 86089 

44701 92128 . 54443 

.O5112 84173 

.08616 60312 

.12120 36451 

.15624 12590 

.19127 88729 | en ee oe oe OTOsO2056 2p {OU (OOH {2} 

.51051 76900 

-52474 59832 
.53890 92878 

-55300 15938 
.56701 66575 

-44653 16053 33094 
-44544 76404 58241 
.44379 46284 ; 61410 

-44159 94403 ; 69731 
.43888 84024 : 06233 

.22631 64868 

.26135 41008 

-29639 17147 
.33142 93286 

. 36646 69425 Le oe oe oo 00 0 fof (2) fe) woe) 

.40150 45564 .43568 72080 : 90138 .58094 80084 || 

43654 21703 -43202 08450 37173 | 9.59478 89567 
35381 -61450 59885 
87053 67967 
89243 68595 

59112 
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TABLE 6 = 80° 
q = 0. 206609755200965, O00 = 0.590423578356, HK = 1.406061468420 

pm 

SAWS) VSS) Oo ome oe) 

SJ) Sei (S) 

oS Oneone 

(2) (2) eh ©) 2) 

37863 
34906 
91886 

94194 
27612 le) 18) Ch OVS 

78149 
31867 

74717 
92379 
70097 Sore oO 

92524 

43563 
4 0622 

62475 

93095 @) (ite) ©) S) 

° -64910 77548 

NNN NHN NNN NN 

N NNN N 

NNN NN 

NON 

SS = = = — =~ = 

= = = = et 

— 

NNN NN 

NN HNN 

.26181 

. 24609 

. 23090 

-21444 
-19735 
-17965 
16135 

.14249 
12308 

. 10316 

.08274 

.06186 

04054 

.O188I 

.99669 | 
97422 
-95143 2 

.92833 

-90497 
. 88137 

.85756 

- 83357 

.80942 

.78516 

.76081 

.73640 

.71196 

.68752 66770 

° oo0 0 ooo 90 0 le) (2) fe) le) fe) (Ss) oes Te) (2) ©) 12) Cre) 

fe} (©) (2) fo) 2) 

(e} (©) te) fey (e) 

fo) 

©) tel eee 

.35189 

-35971 

36731 
37468 

. 38181 

. 38867 

- 39526 
.40155 

-40753 

.41317 59112 

A(r) D(r) E(r) 

NN HH ND NNN N ND NO NNN ND 

NNN H ND 

.11834 

.08331 

.04827 

.01323 

97819 
94315 
.gO8I2 

.87308 

. 83804 

. 80300 

- 79797 

-73293 

.69789 

.66285 

.62782 

.59278 

-55774 
.52270 
.48767 

-45263 
-41759 
- 38255 
-34752 
.31248 

-27744 
.24240 

. 20736 

- 17233 
.13729 

.10225 

.06721 

.03218 

-99714 
.96210 

.92706 

. 89203 

. 85699 

.82195 

. 78691 

.75188 

.71684 

.68180 

.64676 

.61173 

. 57669 

76380 

00241 

24102 

47963 

71823 

95684 
19545 
43406 
67267 

91128 

14989 
38850 

62711 

86572 

10432 

34293 
58154 
82015 

05876 

29137 
53578 
77459 
01320 
25181 

49041 
72902 

96763 
20624 

44485 

68346 

92207 

16068 

39929 

63790 

87650 

II511 

35372 
59233 
83094 

06955 
30816 

54677 

78538 
02399 

26259 

Fo 
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292 . ELLIPTIC FUNCTIOI 
K = 3.2553029421, K’ = 1.5805409339, E = 1.033789462, E’ = 1,5611417453 

Dir) 

00000 00000 ) ; .00000 00000 
03617 00327 : .00044. 63617 
07234 00654 .00178 49728 
10851 OO98I ; .OO40I 44114 

14468 01308 ‘ .00713 23089 ooo0o°9 oo9o900 

° -OII13 53504 
.O160I 92772 
.02177 88885 

.02840 80440 

.03589 96677 

18085 01635 

21702 OI961 

.25319 02288 

.28936 02615 

-32553 02942 ooo900 OVOnOe©) oo0o00 

.36170 03269 

39787 03596 
43404 03923 
47021 04250 

50638 04577 

-04424 57511 
-05343 73577 
.06346 46282 

07431 67854 
.08598 21410 

. 18642 

.20082 (ey fo) Xe) (ey) fo) Te} {ey fe} ©) oy (e)(ey ele) 

09844 81017 
SILLZO) LL 775 
.12572 69891 
.14051 02773 
.15603 49127 

.21524 

. 22967 

.24411 

.25856 

-27303 

-54255 04904 
.57872 05230 

.61489 05557 

.65106 05884 

.68723 06211 (sj Xe) “o) (Ss) (>) [o} (ee) ©} ©) fe) te} fe) fe) ©) 

.17228 39058 

.18923 94189 

.20688 27779 

22519 44855 
-24415 42355 

. 28750 
. 30197 

-31645 
- 33094 
34543 

72340 06538 
75957 06865 
79574 07192 
83191 07519 
.86808 07846 ey ey ©) © oy feji(e) 2) Te) 

oO. 

oO. 

O: 

oO. 

10) 

26374 09274 
.28393 26825 

.30470 68611 

.32604 00803 

-34790 82334 

-35991 
-37439 
. 38887 

- 40333 
-41779 

.90425 08173 

.94042 08500 

.97659 08826 

01276 09153 

.04893 09480 Hm Oo © 6 o990900 (2) (2) Ye) ©) 

.08510 09807 

.12127 10134 

.15744 10461 

.19361 10788 

.22978 IIII5 

.37028 65097 

-39314 94160 | 
-41647 07992 
.44022 38696 
.46438 12257 

.43222 

-44663 
.46101 

-47537 
.48969 = = = = ooo0oc 90 2} fe} 12) (e) e) 

.48891 48802 

.51379 62870 

-53899 63693 
-56448 55491 
59023 37776 

. 50396 

. 51819 

53236 

.54648 

. 56053 

.20595 11442 

.30212 11769 

.33829 12095 

.37446 12422 

.41063 12749 SS = = = (oP (ey ©) je) ©) (slo) eh fee te) 

.44680 13076 

-48297 13403 
-51914 13730 
-55531 14057 
-59148 14384 

.61621 05676 

.64238 50248 

.66872 58833 

-69520 15399 
-72178 00903 

-57451 
. 58841 

.60222 

-61594 
.62955 = = Oe gle) (©) Ye) 2) Orono ole 

4 ° io) .74842 93662 

C(r) 

14711 
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TABLE @ = 81° 

“gq = 0. 217548949699726, 0 0 = 0. 5693797108, HK = 1.4306906219 

00000 
22836 

93515 
18540 

08734 

79213 
4 49353 

42745 
87139 
14382 

60344 
64836 
71520 

27806 

84748 eo © ©) © 

96925 | 
22318 

22181 

60898 

05843 (of (e) Tejh (e) Xe) 

27230 

97950 

93417 

91397 
71836 

oO. 

De 

Oo. 

oO. 

Oo. 

16690 

09743 
36425 
83633 
39541 (ey fen (Se), IS) 

93416 
35429 
56467 
47945 
01623 (e} (2) fe)efe) (2) 

OO4II 

63194 
54642 
75939 
15096 (ey (e} te) 3 Ie) 

64787 
13178 

48256 
56781 

24120 (oy ej fe) (2) fe) 

[e} 34108 

N NHN WN 

He ee ND NNN NN NO NNN ND N NNN ND Nw HNN 

= = = 

Lal 

.24612 

.22485 

.20302 £ 

. 18065 

15778 

- 13444 
. 11064. 

.08643 

06184 

.03689 

.O1162 

.98606 

.96025 

-93421 
.90798 

. 88159 

.85508 

.82847 

. 80181 

STS 

.74842 

D(r) 

oo90900 oe) oOo990 ie} fe) (ey ©) (ey ie) fe) fe) © Cy fe) fe) ©) ©) (o) (oy fe) {o) Te) 

(oJ (eo) Te) Ce) 

2 

Ny 

bd A 

bBo bo HH bo 

en le NO wNHN ND N NNN ND Nw HHN NR wNH ND N NHN ND NNW & WH 

= = = = 

= 

29421 

29095 
28768 

28441 

2 28114 

27787 
27460 

27133 
4. 26806 

26479 

26152 

25825 

25499 
25172 

24845 

24518 

24191 
23864 

23537 
23210 

22883 

22556 

22230 
21903 
21576 

21249 

20922 

20595 
20268 

19941 

19614 

19287 

18960 

18634 

18307 

17980 

17653 
17326 

16999 
16672 

16345 
16018 

15691 

15365 
15038 

14711 
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204 ELLIPTIC FUNCTION 

K = 3.3698680267, K’ =1.5784865777, E = 1.027843620, E’ = 1.5629622295, 

r Fé p E(r) D(r) A(r) 

fe) 0.00000 00000 On MRO! 0.00000 00000 1.00000 00000 | 0.00000 00000 
I 0.03744 29781 2 9 0.02600 53438 1.00048 71379 | 0.01396 87846 

2 0.07488 59561 7 N74 0.05190 80180 1.00194 80481 | 0.02793 96081 
2 0.11232 89342 6 26 0.07760 64875 1.00438 12208 | 0.04191 44920 

4 | 0.14977 19123 8 35 0.10300 14601 1.00778 41400 | 0.05589 54231 

5 0.18721 48904 IO 40 0.12799 69416 1.01215 32844 | 0.06988 43359 
6 0.22465 78084 I2 46 0.15250 12188 1.01748 41292 | 0.08388 30956 
7 0.26210 08465 TA 5 0.17642 77402 1.02377 11470 | 0.09789 34813 

8 0.29954 38246 16 55 0.19969 58914 1.03100 78103 | O.I11I9I 71690 
9 0.33098 68027 18 58 0.22223 16400 1.03918 65941 | 0.12595 57152 

10 0.37442 97807 20 59 0.24396 80481 1.04829 89781 | 0.14001 05412 

II 0.41187 27588 22 58 0.26484 56468 1.05833 54510 | 0.15408 29167 
12 0.44931 57369 24 56 0.28481 26740 1.06928 55135 | 0.16817 39451 

13 0.48675 87150 26 52 0.30382 51779 1.08113 76835 | 0.18228 45483 

14 0.52420 16930 28 46 0.32184 69961 I .09387 95005 | 0.19641 54524 

15 0.56164 46711 30 38 0.33884 96193 1.10749 75312 | 0.21056 71740 

16 0.59908 76492 2225 0.35481 19530 I.12197 73762 | 0.22474 00071 

17 0.63653 06273 245 LO 0.36971 99918 1.13730 36763 | 0.23893 40100 

18 0.67397 36053 308 62 0.38356 64197 1.15346 01207 | 0.25314 89941 

19 0.71141 65834 37 46 0.39635 01539 1.17042 94549 | 0.26738 45123 

20 0.74885 95615 30) 27 0.40807 58450 1.18819 34902 | 0.28163 98484 

21 0.78630 25396 AT <6 0.41875 33497 1.20673 31139 | 0.29591 40077 

22 0.82374 55176 AD 42 0.42839 71871 1.22602 82998 | 0.31020 57076 

23 0.86118 84957 44 16 0.43702 59916 1.24605 81209 | 0.32451 33701 

24 0.89863 14738 45 48 0.44466 19725 1.26680 07616 | 0.33883 51142 

25 0.93607 44519 47 18 0.45133 03888 1.28823 35321 | 0.35316 87494 
26 0.97351 74299 48 45 0.45705, 90462 1.31033 28836 | 0.36751 17704 

27 1.01096 04080 50 10 0.46187 78212 1.33307 44242 | 0.38186 13526 

28 1.04840 33861 Sr 32 +0.46581 82181 1.35643 29365 | 0.39621 43484 

29 1.08584 63641 5252 0.46891 29597 1.38038 23962 | 0.41056 72843 

30 1.12328 93422 54 10 0.47119 56148 1.40489 59917 | 0.42491 63594 

31 I.16073 23203 55 26 0.47270 02620 1.42994 61457 | 0.43925 74448 

32 | 1.19817 52984 | 56 39 0.47346 11908 | 1.45550 45373 | 0.45358 60835 
33 | 1.23561 82764 | 57 50 0.47351 26377 | 1.48154 21259 | 0.46789 74917 
34 1.27306 12545 59 Oo 0.47288 85574 1.50802 91764 | 0.48218 65611 

35 1.31050 42326 GOsmar/] 0.47162 24256 I .53493 52855 | 0.49644 78621 

36 1.34794 72107 61 12 0.46974 70729 I .56222 94100 | 0.51067 56480 
27 1.38539 01887 62ne D5 0.46729 45464 1.58987 98960 | 0.52486 38600 

38 I.42283 31668 OB 1 0.46429 59969 1.61785 45092 | 0.53900 61335 
39 1.46027 61449 64 15 0.46078 15892 1.64612 04680 | 0.55309 58052 

40 1.49771 91230 65 12 0.45678 94338 1.67464 44762 | 0.56712 59210 

41 | 1.53516 21010 | 66 7 0.45232 05363 | 1.70339 27583 | 0.58108 92454 
2 | 1.57260 50791 | 67 1 0.44742 87637 | 1.73233 10960 | 0.59497 82708 

43 1.61004 80572 67 53 0.44213 08242 1.76142 48657 | 0.60878 52287 

44] 1.64749 10353 | 68 44 0.43645 12599 | 1.79063 90777 | 0.62250 21016 

45 | 1.68493 40133 | 69 32 0.43041 34495 | 1.81993 84164 | 0.63612 06349 

90-r Fy yp G(r) C(r) B(r) | 
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TABLE 6 = 82° 295 
q = 0.229567159881194, ©0 = 0.5464169465, HK - 1.4575481002 

4. 03437 : 00000 
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ELLIPTIC FUNCTION | 

K = 3,5004224992, K’ = 1.5766779816, E = 1.022312588, E’ — 1. 5649475630, 

E(r) A(r) 

.00000 00000 ; 00000 

-02751 52459 : 54142 
.05491 49171 : 11230 
08208 48196 f 55243 

IO89I 34862 : 59486 

.00000 00000 

.01357 81428 

.02715 91294 

-04074 57840 
.05434 08922 

.00000 00000 

03889 355833 
.07778 71666 

. 11668 07500 

-15557 43333 oo0o00 oom omome) 

.06794 71815 

.08156 73027 
09520 38101 

.10885 91438 
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13529 34531 86590 
16112 24388 y 88518 

.18630 43989 3 06577 

-21075 04315 71422 
-23437 95237 : 03072 

° .19446 79166 

.23336 14999 
9.27225 50833 

31114 86666 

- 35004 22499 (el te}e (2) Xe) eo) fe} te) teh ©) 

13623 53681 

14996 04030 
16371 25182 

17749 33141 
19130 41733 

.25711 91248 : 10924 

.27890 55463 93774 

.29968 41874 : 39836 

31940 95974 26769 
33804 53836 : 21710 

- 38893 58332 
.42782 94166 

.46672 29999 

.50561 65832 

.54451 01605 oooo0oo oo0o0 0 QTOTOTOTO 

.20514 62446 

.21902 04287 

23292 73637 
.24686 74120 

.26084 06476 

35550 39822 : 81308 

37194 63079 ; 51764 
.38718 13038 : 68883 

40126 54102 ; 58124 
41420 19722 5 34668 

58340 37499 
.62229 73332 

66119 09165 

.70008 44998 

.73897 80832 ooo 00 (oye (e) (eye) fe} (2) tel fe) fe) 

42600 06064 : 03483 

43667 65427 59404 
.44624 99581 : 87226 

45474 53170 61798 
46219 07281 f 48135 

.27484 68440 
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30295 56475 
.31705 62057 

.33118 56095 

.77787 16665 
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.85565 88331 

89455 24165 
93344 59998 (eo) (2) fe) Xe) 2) (SPY (9) TS) ) 
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oO 

oO 

oO 

46861 73287 : 01537 

.47405 87042 67728 
47855 03463 82994 
.48212 91569 : 74348 

48483 29959 : 59703 

-34534 19839 
.35952 31012 

-37372 63757 
-38794 88593 
.40218 72381 

-97233 95831 
.O1123 31664 

.05012 67498 

.08902 03331 

.12791 39164 = Ss Ss eS oO oOo 990 98 (oye e} (er } 12) 

.48670 02770 ; 48057 

.48776 96093 . 39701 

.48807 94838 E 26433 

.48766 80032 : 91792 

.48657 26520 : Ds iy, 

.41643 78306 

.43069 65861 

-44495 90849 
.45922 05390 
-47347 57948 

.16680 74997 

.20570 10830 

-24459 46664 
.28348 82497 

.32238 18330 oo0oc0c0o (SJale) (eye) ) 

.48483 01039 F 52804 

.48247 60647 : 76598 
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.51614 74196 

. 53031 91603 

-54445 35952 fej op tey (C2) oo00 0 
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.57258 12511 

58655 90333 
.60046 86540 

.61430 16549 

-55574 33330 
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-63353 04996 
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.71131 76663 

46761 89121 : 58318 

46270 17621 . 60110 

45736 17475 67918 
45162 56249 : 99362 
44551 87962 67513 ley (2) ©) (2 ONS ORONO 

° .75021 12496 ° -43906 53283 81344 

G(r) B(r) 

.62804 93057 

SMITHSONIAN TABLES 











TABLE @ = 83° 
q = 0.242912974306665, ©O0 = 0.5211317465, HK = 1. 4872214813 
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81718 
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63318 
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53067 
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80901 
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93822 
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A 22578 
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70724 
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82479 
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.03369 

-99480 
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-64476 
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33361 
29472 
.25582 

. 21693 « 
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208 | ELLIPTIC FUNCTION 
K = 3.6518559695, K’ — 1.5751136078, E = 1.017236918, E’ = 1.5664967878, 

r F¢ p E(r) Dir) A(r) 

fo) 0.00000 00000 OF. 1: 0.00000 00000 I .00000 00000 | 0.00000 00000 
I 0.04057 61774 2 I 0.02925 15342 1.00059 38572 | 0.01311 92586 

2 0.08115 23549 A 29 0.05837 13484 1.00237 48641 | 0.02624 22974 
3 0.12172 8532 6 55 0.08722 94380 I .00534 13262 | 0.03937 28749 

4 0.16230 47098 g 16 0.11569 91812 1.00949 04192 | 0.05251 47063 

5 0.20288 08872 Hien 23 0.14365 89152 1.01481 81886 | 0.06567 14426 

6 0.24345 70646 1g, 710) 0.17099 33783 1.02131 95491 | 0.07884 66485 

7 0.28403 32421 ROwe eA: 0.19759 49853 1.02898 82841 | 0.09204 37819 
8 0.32460 94195 Lito) 17 0.22336 49075 1.03781 70450 | 0.10526 61731 

9 0.36518 55969 20 29 0.24821 39381 1.04779 73504 | 0.11851 70041 

10 0.40576 17744 22 39 0.27206 31341 1.05891 95857 | 0.13179 92889 
II 0.44633 79518 24 46 0.29484 42309 1.07117 30024 | 0.14511 58534 
12 0.48691 41293 20552 0.31649 98365 1.08454 57174 | 0.15846 93168 

13 0.52749 03067 28 56 0.33698 34175 I.09902 47131 | 0.17186 20726 
14 0.56805 64841 30 58 0.35625 90959 1.11459 58374 | 0.18529 62711 : 

15 0.60864 26616 2 55 0.37430 12782 1.13124 38038 | 0.19877 38016 

16 0.64921 88390 34 «51 0.39109 41430 1.14895 21925 | 0.21229 62758 

17 0.68979 50165 36 44 0.40663 10147 1.16770 34514 | 0.22586 50123 

18 0.73037 11939 38 36 0.42091 36481 1.18747 88983 | 0.23948 10211 

19 0.77994 73713 40 24 0.43395 14533 1.20825 87235 | 0.25314 49894 

20 0.81152 35488 A249 0.44576 06829 1.23002 19929 | 0.26685 72683 

21 0.85209 97262 Ay 0.45636 36044 1.25274 66524 | 0.28061 78600 

22 | 0.89267 59037 | 45 31 0.46578 76783 | 1.27640 95335 | 0.29442 64067 |f 
23 0.93325 20811 Aan nS 0.47406 47564 1.30098 63590 | 0.30828 21794 

24 | 0.97382 82585 48 42 0.48123 03147 1.32645 17509 | 0.32218 40690 

25 I.01440 44360 99 «13 0.48732 27312 I.35277 92393 | 0.33613 05773 
26 1.05498 06134 51 42 0.49238 26159 1.37994 12721 | 0.35011 98097 

Dy 1.09555 67908 Biel ice! 0.49645 21966 1.40790 92268 | 0.36414 94689 

28 | 1.13613 29683 | 54 31 0.49957 47663 | 1.43665 34239 | 0.37821 68497 
2 1.17670 91457 BG il 0.50179 41897 1.46614 31412 | 0.39231 88350 

30 | 1.21728 53232 | 57 9 0.50315 44701 | 1.49634 66307 | 0.40645 18927 
31 1.25786 15006 ou 2 0.50369 93739 I.52723 11369 | 0.42061 20743 

2 | 1.29843 76780 | 59 38 0.50347 21104 | 1.55876 29167 | 0.43479 50141 
33 1.33901 38555 60 48 0.50251 5062 1.59090 72622 | 0.44899 59303 
34 1.37959 00329 61 56 0.50086 95651 I .62362 85241 | 0.46320 96265 

35 1.42016 62104 6252 0.49857 57270 1.65689 01387 | 0.47743 04952 

36 1.46074 23878 G4 5 0.49567 22903 1.69065 46558 | 0.49165 25218 

37 1.50131 85652 65 7 0.49219 65260 1.72488 37696 | 0.50586 92908 

38 | 1.54189 47427 | 66 6 0.48818 41583 | 1.75953 83514 | 0.52007 39919 
39 | 1.58247 09201 | 67 3 0.48366 93168 | 1.79457 84847 | 0.53425 94285 

r 40 I .62304 70975 67 58 0.47868 45099 1.82996 3502 0.54841 80268 

41 I .66362 32750 68 51 0.47326 O6189 1.86565 20265 | 0.56254 18461 

42 1.70419 9452 69 42 0.46742 69071 I.9QO160 20099 | 0.57662 25903 

43 1.74477 56299 On 130 0.46121 10428 1.93777 07807 | 0.59065 16209 

44) 1.78535 18073 | 71 19 0.45463 91336 | 1.97411 50881 | 0.60461 99704 

45 1.82592 79847 125 0.44773 57684 2.01059 II517 | 0.61851 83573 

90-r Fy yp G(r) C(r) B(r) 
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TABLE 6 = 84° 

q = 0.257940195766337, 0 0 = 0.4929628191, HK = 1.5205617314 
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(oy (2) Ke} Xe) Xe) 
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85345 
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43731 
91660 

99255 
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68040 

63172 

85562 

O8161 

02013 

36088 

77081 

89218 

34034 
79143 

34606 

63287 

83335 
34722 
52753 

67705 
2 04449 

82039 

13287 

04313 

54063 
53814 
86651 

26919 

39659 

80023 

4 92673 
T1165 

SIRES) 
40667 

57684 
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to ot ON 

_ 

38884 
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15335 
53561 
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ELLIPTIC FUNCTION 

] 

300 

K = 3.8317419998, K’ = 1.5737921309, E = 1.0126635062, E’ = 1.5678090740, 

r Fo ) E(r) D(r) A(r) 

O 0.00000 00000 OO 0.00000 00000 I .00000 00000 | 0.00000 00000 
I 0.04257 49III 2 26 0.03129 75841 1.00066 67396 | 0.01256 98450 
2 0.08514 98222 A 52 0.06244 25476 1.00266 63652 | 0.02514 45765 

3 0.12772 47333 (ike 0.09328 44601 1.00599 79974 | 0.03772 90570 
4 | 0.17029 96444 9 43 0.12367 72052 1.01065 59692 | 0.05032 81006 

5 0.21287 45555 12) 6 0.15348 09749 1.01663 88247 | 0.06294 64495 
6 0.25544 94667 14 29 0.18256 40780 I .02394 03165 | 0.07558 87497 

of 0.29802 43778 16 50 0.21080 45154 1.03255 39030 | 0.08825 95281 
8 0.34059 92889 LON 19 0.23809 12866 1.04247 18453 | 0.10096 31685 

9 0.38317 42000 21 26 0.26432 54039 1.05368 52030 | 0.11370 38895 

10 0.42574 QIIII Daa AD 0.28942 06026 1.06618 38299 | 0.12648 57214 

II 0.46832 40222 ZI SE 0.31330 37505 1.07995 63700 | 0.13931 24846 

12 0.51089 89333 2 Ss 0.33591 49667 1.09499 02519 | 0.15218 77682 

13 0.55347 38444 30 13 0.35720 74739 1.41127 16844 | 0.16511 49087 
14 0.59604 87555 227 10S 0.37714 72117 1.12878 56513 | 0.17809 69700 

15 0.63862 36666 Yl AT 0.39571 22464 1.14751 59063 | 0.19113 67239 

16 0.68119 85777 AS) 20) 0.41289 20138 1.16744 49685 | 0.20423 66315 

nz 0.72377 34889 ais) ty 0.42868 64336 1.18855 41178 | 0.21739 88246 
18 0.76634 84000 | 40 II 0.44310 49337 1.21082 33907 | 0.23062 50891 

19 0.80892 331II AQY Wi 0.45616 54173 I .23423 15771 | 0.24391 68485 

20 0.85149 82222 43 49 0.46789 32075 1.25875 62174 | 0.25727 51484 
21 0.89407 31333 AUS 338) 0.47831 99952 1.28437 36007 | 0.27070 06428 

22 0.93664 80444 47 15 0.48748 28142 1.31105 87634 | 0.28419 35800 

23 |. 9.97922 29555 | 48 53 0.49542 30625 | 1.33878 54900 | 0.29775 37910 
24 1.02179 78666 50 28 0.50218 55842 1.36752 63142 | 0.31138 06778 

25 1.06437 27777 52h O 0.50781 78217 1.39725 25218 | 0.32507 32040 

26 I. 10694 76888 53 29 0.51236 90454 I .42793 41552 | 0.33882 98857 

27 | 1.14952 25999 | 54 56 0.51588 96635 | 1.45954 00195 | 0.35264 87839 
28 I.19209 75110 56 19 0.51843 06138 I.49203 76904 | 0.36652 74982 

29 1.23467 24222 57, 39 0.52004 28338 1.52539 35243 | 0.38046 31619 

30 | 1.27724 73333 | 58 59 0.52077 68087 | 1.55957 26706 | 0.39445 24378 
31 1.31982 22444 60 12 0.52068 21896 1.59453 90851 | 0.40849 15164 
2 1.36239 71555 Or 024 0.51980 74799 1.63025 55479 | 0.42257 61140 

23 1.40497 20666 62 34 0.51819 97811 1.66668 36814 | 0.43670 14735 

34 | 1.44754 60777 | 63 41 0.51590 45944 | 1.70378 39728 | 0.45086 23658 

35 1.49012 18888 64 46 0.51296 56697 1.74151 57980 | 0.46505 30926 

36 | 1.53269 67999 | 65 48 0.50942 48984 | 1.77983 74487 | 0.47926 74909 
37 1.57527 17110 66 48 0.50532 22421 1.81870 61627 | 0.49349 89386 

38 1.61784 66221 67, AG 0.50069 56936 1.85807 81564 | 0.50774 03615 

39 1.66042 15332 68  4I 0.49558 12646 1.89790 86607 | 0.52198 42419 

40 1.70299 64444 69 35 0.49001 29952 1.93815 19599 | 0.53622 26281 

AI | 1.74557 13555 | 70 26 0.48402 29824 | 1.97876 14331 | 0.55044 71457 
42 1.78814 62666 7p ie} 0.47764 14227 2.01968 95998 | 0.56464 90099 

43 1.83072 11777 2 12 0.47089 66670 2.06088 81669 | 0.57881 90394 

44 1.87329 60888 2749 0.46381 52836 2.10230 80805 | 0.59294 76712 

45 | 1.91587 09999 | 73 33 0.45642 21286 | 2.14389 95792 | 0.60702 49768 || 

90-r Fy y G(r) C(r) B(r) 
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TABLE 6@ = 85° 301 
q = 0.275179804873563, O0 = 0.4610905222, HK = 1.5588714533 

I.00000 00000 | 3 ) 33 

0.99976 05041 | 3. ) 3 
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K = 4. 0527581695, 

ELLIPTIC FUNCTION 

K’ = 1.5727124350, E = 1.0086479569, E’ = 1. 5688837196, 
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TABLE @ = 86° 303 

. ¢ = 0.295488385558687, O00 = 0.4242361430, HK = 1. 6043008048 
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304 ELLIPTIC FUNCTION " 
K = 4.3386539760, K’ = 1.5718736105, E = 1.0052585872, E’ = 1.5697201604, — 
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TABLE, 6 = 87° 305 
q = 0.320400337134867, ©0 = 0.3802048484, HK = 1. 6608093153 
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306 ELLIPTIC FUNCTION 

K = 4. 7427172653, K’ = 1.5712749524, E = 1.0025840855, EE’ = 1.5703179199, 
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TABLE 6 = 88° 307 
q = 0.353165648296037, © 0 - 0.3246110213, HK - 1.7370861537 
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308 ELLIPTIC FUNCTION 
K = 54349098296, K’ — 1.5709159581, E -1.0007515777, E’ = 1.5706767091, 
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NEW TIMALINE BIRDS FROM THE EAST INDIES 

BY dIARRY, CG. OBE RHOLSER 

Various investigations in the ornithological collection of the United 

States National Museum have resulted in the discovery of a number 

of undescribed forms. These birds are chiefly the result of Dr. W. L. 

Abbott’s indefatigable collecting activity, and are mostly from the 

East Indies and the Malay Peninsula, with a few from outlying 

localities. Those described in the present pamphlet belong to the 

family Timaliidae. 
All measurements are in millimeters, and have been taken as 

explained in the author’s previous papers. Names of colors are based 

on Mr. Robert Ridgway’s recently published “ Color Standards and 

Color Nomenclature.” 
Furthermore, the writer’s thanks are, as always, due Dr. Charles W. 

Richmond for numerous courtesies. 

ALCIPPORNIS, nom. nov. 

Type—Alcippe cinerea Blyth nec Eyton (=Hyloterpe brunnet- 
cauda Salvadori.’ ) 

The above proposed name is intended to apply to the group com- 

monly known as Alcippe, but which is now found to be without a 

tenable generic designation. This genus was first instituted by Blyth 

in 1844° by whom the following species were then included: 

“Alcippe cinerea? (Eyton)” 

Trichastoma afine Blyth 

Timalia potoicephala Jerdon 

Brachypteryx atriceps Jerdon 

?Brachypteryx sepiaria Horsfield 
?Brachypteryx bicolor Lesson 

No type was originally designated, nor is any species to be con- 

sidered type by tautonymy. The first legitimate type designation that 

I have been able to find is that of Gray, in 1846,° who selected 
Trichastoma afiine Blyth, whith is now a member of the genus Hori- 

gillas Oberholser (= Malacopteron Eyton). This means that Hori- 

*Ann. Mus. Civ. Stor. Nat. Genova, ser. 1, XIV, April 22, 1879, p. 210. For 

explanation of this identification, see the next heading. 

* Journ. Asiat. Soc. Bengal, XIII, pt. 1, No. 149, for May, 1844, p. 384. 

* Genera of Birds, I, December, 1846, p. 200. 
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gillas (olim Malacopteron) must now be called Alcippe Blyth, unfor- 

tunate as this transfer of name may be found to be. For Alcippe 

Auct. nec Blyth the name Alcippornis,’ nom. nov., may be used. The 

following species and subspecies are referable to this genus: 

Alcippornis nepalensis nepalensis (Hodgson) 

Alcippornis nepalensis fratercula (Rippon) 

Alcippornis nepalensis yunnanensis (Harington) 

Alcippornis peracensis (Sharpe) 

Alcippornis hueti (David) 

Alcippornis morrisonia (Swinhoe) 

Alcippornis poioicephala poioicephala (Jerdon) 

Alcippornis poioicephala phayrei (Blyth) 

Alcippornis potoicephala brucei (Hume) 

Alcippornis potoicephala haringtomiae (Hartert) 

Alcippornis poioicephala magnirostris (Walden) 

Alcippornis poioicephala davisoni (Harington) 

Alcippornis pyrrhoptera (Bonaparte) 

Alcippornis brunneicauda brunneicauda (Salvadori) 

Alcippornis brunneicauda hypocneca (Oberholser ) 

Alcippornis brunneicauda eriphaca Oberholser 

Alcippornis davidi (Styan) 

ALCIPPORNIS BRUNNEICAUDA ERIPHAEA, subsp. nov. 

Subspecific characters —Similar to Alcippornis brunneicauda brun- 

neicauda from Sumatra and the Malay Peninsula, but upper parts 

much more rufescent, posteriorly brighter, the pileum not grayish, 

but brown; lower surface darker, duller, and much more rufescent 

(less grayish), particularly on sides, flanks, and eae 

Descripion—_ Type, adult male, No. 178218, U. S. Nat. Mus.; 

Liang Koeboeng (Grot), Borneo, March 25, 1894; os J. Buttikofer. 

Pileum between olive brown and hair brown; back and scapulars, 

rather rufescent saccardo’s umber; rump similar, but verging more 

toward the cinnamon brown of the upper tail-coverts; tail between 

prout’s brown and mummy brown, the outer edgings of basal portion 

of rectrices argus brown; wings fuscous, the outer edgings of quills 

cinnamon brown, of coverts buffy brown; sides of head grayish drab ; 

sides of neck rather brownish mouse gray; chin, throat, and upper 

breast, between tilleul buff and drab gray; sides of breast drab; sides 

of body similar, but tinged with buffy ; flanks and crissum, dull grayish 

cream buff ; lower breast and abdomen, dull buffy white ; under wing- 

coverts and axillars cream white, the latter posteriorly a little mixed 

with drab; iris blue-gray ; bill horn color; feet purplish gray. 

‘’A\xlirany, Alcippe; dpms, bird. 

ee ee 
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Measurements of type-—Wing, 70.5 mm.; tail, 57.5; exposed 

culmen, 11; height of bill at base, 4.5; tarsus, 19.5 ; middle toe without 

claw, 11.5. 

The very brownish pileum and cervix and the brownish anterior 

lower parts give this very well-characterized race the appearance of a 

distinct species. It differs from Alcippornis brunneicauda hypocneca 

of the Batu Islands, western Sumatra, in larger size, more brownish 

(less grayish) head and nape; more rufescent back and rump ; darker, 

duller, and more rufescent lower parts. 

This species has always been called Alcippe cinerea Blyth. The 

necessity for a change of its generic name has already been discussed 

above; but the readjustment of its specific designation also needs ex- 

planation. Blyth’s name Alcippe cinerea* was originally used not as a 

new specific designation, but to indicate a doubtful reference of the 

bird that he had in hand and described (1. e., the Alcippe cinerea of 

subsequent authors), to the Malacopteron cinereus of Eyton. It of 

course cannot, under such circumstances, be used for Blyth’s species. 

There are, however, two tenable names for this bird, not usually 

cited in its synonymy. The Napothera phaionota of Sharpe,’ is a 
manuscript name of Kuhl’s, found on a specimen in the Leyden 

Museum, of which Sharpe gives no description, but which he states 

“is identical with Alcippe cimerea Blyth.” This is thus virtually a 

naming of the bird described as Alcippe cinerea by Blyth. 

A still earlier name is Hyloterpe brunneicauda Salvadori, hitherto 

treated as though belonging to a form of Muscitrea grisola or a 

closely allied species. The brown tail, fuscous bill, and wing of 72 mm. 

show clearly, however, that it belongs rather to the species commonly 

known as Alcippe cinerea. In view of the above facts this species 

should now stand as Alcippornis brunneicauda. The forms at present 

recognized are: 

Alcippornis brunneicauda brunneicauda (Salvadori) 

Alcippornis brunneicauda hypocneca (Oberholser) 

Alcippornis brunneicauda eriphaea Oberholser 

MIXORNIS GULARIS CHERSONESOPHILA, subsp. nov. 

Subspecific characters —Similar to Mirornis gularis connectens, 
from southern Tenasserim, but larger; upper paris darker; flanks 

1“ Alcippe cinerea? (Eyton) ” Blyth, Journ. Asiat. Soc. Bengal, XIII, pt. 1. 

No. 149, for May, 1844, p. 384 (“ Singapore”’). 
? Cf. also Blyth, loc. cit. p. 383. 
* Notes Leyden Mus., VI,"July, 1884, p. 178. 

* Ann. Mus. Civ. Stor. Nat. Genova, Ser. 1, XIV, April 22, 1879, p. 210 (Ajer 

Mantcior, western Sumatra). 
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rather more deeply colored; and with the streaks on the throat much 

broader. 
Description——Type, adult male, No. 160543, U. S. Nat. Mus.; 

Trang, Lower Siam, February 14, 1897; Dr. W. L. Abbott. Crown 

and forehead chestnut, the latter slightly mixed with dark grayish; 

rest of upper surface between medal bronze and citrine, but upper 

tail-coverts between mummy brown and dresden brown; tail between 

prout’s brown and mummy brown, with numerous shadowy darker 

bars, but the basal portion of the outer pairs of rectrices margined 

interiorly with rather pale brownish, and the rectrices edged basally 
on outer webs with brown between mummy brown and dresden 

brown; wings fuscous, the edgings of quills and superior coverts 

cinnamon brown; lores dusky ; a narrow supra-loral stripe, extending 

to the posterior edge of the eye, citron yellow with obscure streaks of 

dusky; cheeks light yellowish olive, streaked obscurely with oliva- 

ceous; posterior sides of head and sides of neck, light citrine drab ; 

lower surface citron yellow, paler posteriorly and shaded with gray 

on jugulum, the throat and jugulum streaked with brownish black ; 

sides, flanks, and crissum, light citrine drab ; lining of wing massicot 

yellow; “ upper mandible dark leaden; lower mandible leaden blue ; 

feet fleshy brown tinged with green.” 

Measurements of type-—Wing, 59.5 mm. ; tail, 53 ; exposed culmen, 

14; tarsus; 19: 

This new subspecies, though intermediate between Mixornis gularis 

connectens of southern Tenasserim and Mivorms gularis pileata of 

Singapore, is yet sufficiently different to be worthy of recognition by 

name. 

MIXORNIS GULARIS ARCHIPELAGICA, subsp. nov. 

Subspecific characters—Similar to Mixornis gularis chersone- 

sophila, from Trang, Lower Siam, but upper parts much paler and 

more grayish (less rufescent) ; sides and flanks lighter; streaks on 

anterior lower parts much narrower. 

Type—No. 173211, ‘U. S. Nat. Mus.; Domel Island, Mergui 

Archipelago, February 27, 1900; Dr. W. L. Abbott. 
Measurements of type-—Wing, 61 mm. ; tail, 54.5; exposed culmen, 

13.5; tarsus, 18. 

‘his race, which is apparently confined to the islands of the Mergui 

Archipelago, differs from Mixornis gularis connectens of the northern 

Malay Peninsula and Tenasserim (type locality, 10° North Latitude ) 

in its larger size, lighter, much more grayish upper parts, and rather 

paler flanks. 

ee ee ee ee ae 
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MIXORNIS GULARIS INVETERATA, subsp. nov. 

Subspecific characters—Similar to Mixornis gularis connectens, 

but larger ; paler and less rufescent (more grayish) above. 

Type.—No. 249030, U. S. Nat. Mus.; Koh Kut Island, southeast- 

ern Siam, December 25, 1914; C. Boden Kloss. “ Iris, yellow ; upper 

mandible black ; lower mandible plumbeous blue ; feet greenish ochre.” 

Measurements of type—Wiing, 60.5 mm.; tail, 55 ; exposed culmen, 

13; tarsus, 19; middle toe without claw, 13.5. 

This race has been included with Mivornis gularis connectens, but 

comparison shows it separable on the above given characters. It 

resembles Mixornis gularis chersonesophila, from the southern and 

central Malay Peninsula, but differs in its paler, less rufescent (more 

grayish) upper parts, and somewhat narrower streaking on the 

anterior lower surface. 

MIXORNIS GULARIS VERSURICOLA, subsp. nov. 

Subspecifiic characters ——Resembling Mixornts gularis inveterata 

from Koh Kut Island, southeastern Siam, but smaller; upper parts 

darker and somewhat more rufescent (less grayish) ; and streaks on 

the anterior lower parts averaging heavier. 

Type.—Adult male, No. 278480, U. S. Nat. Mus.; Da Bau, South- 

ern Annam, March 22, 1918; C. Boden Kloss. “Iris pale yellow; 

maxilla black ; mandible plumbeous; feet ochreous brown.” 

Measurements of type.—Wing, 56.5 mm.; tail, 49.5; exposed cul- 

men, 13.5; tarsus, 21 ; middle toe without claw, 12.5. 

This new race differs from Mixornis gularis connectens in its more 

heavily streaked anterior lower parts, darker, more grayish sides and 
flanks, somewhat darker upper parts, and rather larger size. 

Some years ago the present writer called attention* to the pre- 

occupation and consequent invalidity of the name Motacilla gularis 

Raffles... This was done on the supposition that Motacilla gularis 

Raffles was the earliest published technical name for the species up to 

that time commonly called Mixornis gularis, and its name was accord- 

ingly changed to Mixornis pileata Blyth. A recent examination, 

however, of Horsfield’s “‘ Researches in Java”’* brought to light the 

fact that Horsfield, in describing this bird as Timalia gularis* (taking 

* Smithsonian Misc. Coll., vol. LX, No. 7, October 26, 1912, p. 9. 

edians eins SOC eonds oll. pt. 2) 1e22) arters October, p. 312! 

* Cf. Oberholser, Proc. Biol. Soc. Wash. XXXIV, December 21, 1921, pp. 

163-166. 
* Zool. Researches in Java, pt. III, February, 1822, pl. [42], fig. [2], and text 

De Galislind of Sumatra)! 
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the specific name from Motacilla gularis in the manuscript of Raffles’ 
paper about to be published in the Transactions of the Linnaean 

Society of London’), anticipated Raffles’ name, because the part of 
‘“ Researches in Java” containing the description and plate of 7imalia 

gularis appeared in February, 1822, in advance of that part of the 

Transactions of the Linnean Society containing this portion of 

Raffles’ article, which followed in November or December, 1822. The 

specific name gularis must, therefore, be credited to Horsfield instead 

of to Raffles; and since Timalia gularis Horsfield is not preoccupied 

by Motacilla gularis Gmelin,’ as is Motacilla gularis Raffles, nor found 
otherwise untenable, it must be continued in use for the species. 

MIXORNIS BORNENSIS RUFICOMA, subsp. nov. 

Subspecific characters.—Similar to Mixornis bornensis bornensis, 

but paler, and usually more reddish brown above, especially on the 

pileum ; and with the streaks on the anterior lower parts averaging 

narrower. 
Description—Type, adult male, No. 180591, U. S. Nat. Mus.; 

Tanjong Tedong, Banka Island, June 4, 1904; Dr. W. L. Abbott. 

Forehead deep mouse gray, the shafts of the feathers blackish ; crown 

and occiput between chestnut and auburn; rest of upper parts between 

auburn and amber brown, but upper tail-coverts auburn; tail between 

fuscous and sepia, but the outer edges of basal portion of rectrices 

auburn; wings fuscous, the inner margins of the quills basally tilleul 

buff, the outer edgings of quills and coverts auburn; eyering, lores, 

and subocular region deep mouse gray; posterior sides of head be- 

tween chestnut and auburn; sides of neck like the back; chin and 

throat, creamy white, streaked with brownish black ; middle of breast 

and of abdomen barium yellow, the former broadly, the latter very 

narrowly, streaked with reddish brown and olivaceous; sides and 

flanks, grayish olive, obscurely streaked with darker ; crissum grayish 

olive, the centers of the feathers darker and brownish; lining of 

wing pale ivory yellow. 

Measurements of type-—Wing, 61 mm.; tail, 56; exposed culmen, 

14.5; tarsus, 19. 

MIXORNIS BORNENSIS PONTIA, subsp. nov. 

Subspecific characters.—Resembling Mivornis bornensis bornensis, 

but with the streaks on the lower parts much narrower. 

*From this manuscript Horsfield quotes as follows: “ Motacilla gularis, 

Sir T. S. Raffles’s MS. Cat. of a Zool. Coll. made in Sumatra.” 

* Syst. Nat., I, pt. 2, 1789, before April 20, p. 997. 

a 
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Type.—Adult female, No. 181538, U. S. Nat. Mus., Pulo Laut, off 

southeastern Borneo, December 18, 1907; Dr. W. L. Abbott. 

Measurements of type-—Wing, 62.5 mm. ; tail, 57 ; exposed culmen, 

13; tarsus, 20.5. 

This race may be distinguished from Mivxornis bornensis ruficoma, 

of Banka Island, by its darker, duller, less rufescent (more sooty) 

upper surface, paler lower parts, and narrower streaks on the throat 

and breast. It is apparently confined to Pulo Laut. 

STACHYRIS NIGRICEPS DIPORA, subsp. nov. 

Subspecific characters —Resembling Stachyris nigriceps nigriceps, 

from Nepal, but bill stouter; lower parts paler; and upper surface 

lighter, more grayish. 

Description.—Type, adult male, No. 169865, U. S. Nat. Mus.; 

Khaw Sai Dow, Trang, Lower Siam, February 2, 1899; Dr. W. L. 

Abbott. Pileum fuscous black, conspicuously streaked with dull 

white; remainder of upper parts between brownish olive and light 

brownish olive, the rump and upper tail-coverts a little paler; tail 

olive brown, the outer edges of the rectrices somewhat more rufescent ; 

wings fuscous, but the outer edgings of quills and coverts like the 

back; lores mouse gray; auriculars and subauricular region tawny 

olive ; sides of neck like the back; chin pale mouse gray ; upper throat 

mouse gray, with on each side a dull white spot, all bordered laterally 

and posteriorly by a line of chaetura drab ; remainder of lower surface 

light buckthorn brown, but paler on abdomen, and shading to isabella 

color on flanks and erissum ; lining of wing dull warm buff mixed with 

light brownish gray; “upper mandible black; lower mandible dark 

horny bluish.” 

Measurements of type-—Wing, 59 mm.; tail, 51.5 ; exposed culmen, 

15; height of bill at base, 6; tarsus, 21 ; middle toe without claw, 13. 

This subspecies may be distinguished from Stachyris nigriceps 

davisont by its lighter, less tawny (more grayish) upper and lower 

parts, and less rufescent edges of the secondaries. From Stachyris 

migriceps coltarti it is readily separable by its pale throat alone. 

CYANODERMA ERYTHROPTERA ERIPELLA, subsp. nov. 

Subspecitic characters —Similar to Cyanoderma erythroptera ery- 

throptera, from Singapore, but upper surface decidedly darker ; 

anterior lower parts darker, more blackish; posterior lower parts 

darker and more dingy. 

Description—Type, adult male, No. 181301, U. S. Nat. Mus.; 

Upper Siak River, northeastern Sumatra, November 23, 1906; Dr. 
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W. L. Abbott. Sinciput dark neutral gray; remaining upper parts 

rather light and somewhat reddish argus brown, but the upper tail- 

coverts chestnut; tail bister, the basal portion of outer edges of 

rectrices chestnut ; wings fuscous, but tertials bister, the outer edges 

of all the quills chestnut, the superior wing-coverts burnt sienna ; 

sides of head and of neck, with chin, throat, and jugulum, dark neu- 

tral gray; breast and sides of body neutral gray, posteriorly washed 
with pale isabella color ; abdomen pale isabella color tinged with gray- 

ish; crissum isabella color ; lining of wing pinkish buff ; “ orbital skin 

cobalt ; gular skin pale turquoise.” 

Measurements of tvpe-—Wing, 60 mm. ; tail, 50.5 ; exposed culmen, 

13.5; height of bill at base, 5.5; tarsus, 19; middle toe without claw, 

iP ites 

CYANODERMA ERYTHROPTERA APEGA, subsp. nov. 

Subspecific characters Similar to Cyanoderma erythroptera eri- 

pella, from Sumatra, but with wing and tail shorter ; crown nearly all 

plain slate color ; rest of upper parts of a lighter, brighter ferruginous ; 

throat and breast somewhat lighter; posterior lower surface darker 

and duller. 

Type—Adult male, No. 180588, U. S. Nat. Mus.; Tanjong Te- 

dong, Banka Island (southeast of Sumatra), June 3, 1904; Dr. W. 

L. Abbott. 
Measurements of type —Wing, 57 mm.; tail, 44.5 ; exposed culmen, 

14, height of bill at base, 6; tarsus, 19; middle toe without claw, 13. 

The original description of Cyanoderma erythroptera* was based 

on the bird from Singapore, and it therefore must be applied to the 

race inhabiting the Malay Peninsula. Synonymous are Timalia pyr- 

rhophaea Hartlaub, Brachypteryx acutirostris Eyton, and Timalia 
pyrrhoptera Bonaparte.’ 

The generic name Cyanoderma is commonly used as of neuter gen- 

der, and as such was originally proposed, but being a compound appel- 

lative, can be only masculine or feminine. Its first usage as either 

of these genders was feminine by Hume and Davis,’ and as such it 

thus should therefore remain. 

*Tlimalia]. erythroptera Blyth, Journ. Asiat. Soc. Bengal, XI, pt. IJ, No. 

128, August 1842, p. 794 (“ Singapore’’). 

? Rev. Zool., VII, for November (—December), 1844, p. 402 (“ Malacca. 

Sumatra”; we select Malacca as the type locality). 

* Ann. and Mag. Nat. Hist., ser. 1, XVI, October, 1845, p. 228 (“ Malacca”). 

*Consp. Gen. Avium, I, June 24, 1850, p. 217 (Boie MS.) (based on 

“TTimalia] erythroptera Blyth—Journ As. Soc. XI p. 794”; therefore the type 

locality is the same, 7. e., Singapore). 

° Stray Feathers, VI, June, 1878, p. 260. 

Ee 
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ANUROPSIS MALACCENSIS DRYMODRAMA, subsp. nov. 

Subspecific characters —Similar to Anuropsis malaccensis malac- 

censis from the southern Malay Peninsula, but upper surface very 

much darker, and lower parts brighter. 

Description.—Type, adult male, No. 181304, U. S. Nat. Mus.; 

Sungei Mandau, eastern Sumatra, November 29, 1906; Dr. W. L. 

Abbott. Upper surface brussels brown, but the head darker, with 

blackish shaft stripes, the extreme anterior portion of forehead dull 

grayish, the upper tail-coverts between auburn and chestnut; tail 

between mars brown and prout’s brown, the broad outer edges of the 

rectrices basally like the upper tail-coverts; wings fuscous, the edg- 

ings of quills and coverts brussels brown, but the lesser coverts 

lighter and more grayish; lores between smoke gray and pale mouse 

gray; superciliary stripe, suborbital region, and sides of head except 

auriculars, deep mouse gray; auriculars dark mouse gray, but inferi- 

orly blackish mouse gray merging into a blackish rictal streak ; sides 

. of neck like the cervix, but more grayish inferiorly; lower parts 

white, but jugulum, sides of breast and of body, together with flanks, 

crissum, under wing-coverts and axillars, cinnamon buff, paler and 

duller on jugulum and sides of breast, the sides of breast and of jugu- 

lum a little washed with brownish gray. 

Measurements of type-—Wing, 69 mm.; tail, 37; exposed culmen, 

15; tarsus 28. 

This well-marked race seems to be confined to the mainland of 

Sumatra, since birds from the adjacent islands belong to different 

subspecies. 

ANUROPSIS MALACCENSIS DRIOPHILA, subsp. nov. 

Subspecitic characters —Similar to Anuropsis malaccensis malac- 

censis, but paler above and below. 

Type.—Adult male, No. 169877, U. S. Nat. Mus.; Khaw Sai Dow, 

Trang, Lower Siam, February 19, 1899; Dr. W. L. Abbott. 

Measurements of type -—Wing, 67.5 mm.; tail, 35 ; exposed culmen, 

162 tarsus, 28. 

This is the palest of all the forms of the species. It differs from 

the Sumatra bird above described as Anuropsis malaccensis drymo- 

drama, much as does Anuropsis malaccensis malaccensis, but even 

more decidedly. It apparently extends geographically no farther south 

than Lower Siam, for birds from Pahang, though somewhat inter- 

mediate, belong with the Malaccan race. 
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ANUROPSIS MALACCENSIS DOCIMA, subsp. nov. 

Subspecific characters —Resembling Anuropsis malaccensis dry- 

modrama, from Sumatra, but upper parts, including the wings, much 

less rufescent (more slaty brown), and rather darker ; sides of head | 

darker ; the ochraceous of sides and flanks much.deeper and brighter. 

Type.—Adult female, No. 180584, U. S. Nat. Mus.; Tanjong 

Tedong, Banka Island (southeastern Sumatra), June 1, 1904: Dr. 

W. L. Abbott. 

Measurements of type—Wing, 61.5 mm.; tail, 26.5; exposed cul- 

men, 14; tarsus, 28. 

This race is very different from all the other forms of Anuropsis 

malaccensis in its much more slaty (less rufescent) upper parts, being 

in this respect more like the Bornean bird than like any other. 

DRYMOCATAPHUS NIGROCAPITATUS NYCTILAMPIS, subsp. nov. 

Subspecitic characters —Similar to Drymocataphus nigrocapitatus 

nigrocapitatus from the Malay Peninsula, but with the upper parts 

darker and duller. 

Description.—Type, adult male (?), No. 180572, U. S. Nat. Mus. ; 

Bukit Parmassang, Banka Island, June 15, 1604; Dr. W. L. Abbott. 

Pileum dull black; cervix, back, and scapulars, mars brown; rump 

and upper tail-coverts, auburn; inner webs of rectrices blackish mars 

brown, their outer webs mars brown; wings sepia, the exposed por- 

tions when closed mars brown; bend of wing russet; sides of head, 

including lores, deep mouse gray, streaked obscurely with black and 

finely with whitish, similar whitish streaks forming a fairly well- 

defined superciliary stripe; sides of neck like the back; chin and 

throat, white; jugulum, breast, and middle of abdomen, between 

tawny and ochraceous tawny ; sides of body, flanks, crissum, and lin- 

ing of wing, between russet and prout’s brown. 

Measurements of type—Wing, 68 mm.; tail, 52.5; exposed cul- 

men, 15.5; tarsus, 19; middle toe without claw, 16.5. 

Representatives of Drymocataphus nigrocapitatus from Sumatra 

belong also to this new subspecies. 

All the synonyms of Drymocataphus nigrocapitatus known to the 

writer belong under the typical race, so the Banka bird is apparently 

unnamed. These names, including that of the typical form, are: 

ee ee a a a a 
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Brachypteryx nigrocapitata Eyton;* Bessethera barbata Cabanis ;* 

and Turdirostris nigrocapistratus Bonaparte.’ 

MALACOCINCLA ABBOTTI ERITORA, subsp. nov. 

Subspecific characters——Similar to Malacocincla abbotti baweana 

Oberholser,’ but upper surface darker, more rufescent (less grayish) ; 

sides of head and neck less grayish; lower parts darker and duller, 

the flanks, with sides of breast and of body, much more strongly 

tinged with dull buffy brown; crissum duller. 

Description.—Type, adult male, No. 180586, U. S. Nat. Mus.; 

Buding Bay, Billiton Island, August 6, 1904; Dr. W. L. Abbott. 
Upper surface between brownish olive and olive brown, becoming 

somewhat darker on the pileum (where the feathers have pale buffy 

shaft streaks), and slightly more rufescent on the rump; upper tail- 

coverts cinnamon brown; rectrices sepia; primaries, secondaries, and 

primary coverts, brown, between olive brown and fuscous, their outer 

webs, together with both webs of tertials, greater, median, and lesser 

wing-coverts, brown like the back; lores and superciliary stripe, 

between mouse gray and deep mouse gray, mixed more or less with 

pale mouse gray; rest of sides of head and of neck buffy brown, the 

auriculars somewhat streaked with the brown of the back, and with 

narrow, inconspicuous shaft markings of pale buffy ; chin and throat, 

grayish white, the latter buffy grayish on its sides; upper breast dull 

light pinkish buff ; lower breast dull cream color, deepening on lower 

abdomen into pale ochraceous buff ; crissum clay color ; sides of breast, 

sides of body, together with flanks and thighs, buffy brown; lining 

of wing light pinkish cinnamon, somewhat mixed with lhght brown- 

ish; inner margins of outer secondaries and inner primaries dull 

vinaceous buff; ‘* iris pale reddish brown; upper mandible dark horn 

brown ; lower mandible leaden ; feet pale purplish fleshy.” 

Measurements of type-—Wing, 74 mm.; tail, 49; exposed culmen, 

18; tarsus, 26.5; middle toe without claw, 16. 

* Proc. Zool. Soc. Lond., VII, for 1839 (November, 1839), p. 103 (“ Malaya” 

[= Malay Peninsula] ). 

* Blessethera| barbata Cabanis, Mus. Heinean., Theil I, 1851, after October 

23, p. 76 (in text of footnote) (“ wahrscheinlich von den Sunda Inseln oder 

Malacca.” We designate Malacca as the,type locality). 

* Compt. Rend. Acad. Sci., XXXVIII, No. 3, January 23, 1854, p. 59 (Ver- 

reaux MS.) (‘“ Malacca’). 

* Malacocincla abbotti baweana Oberholser, Proc. U. S. Nat. Mus., vol. 52, 

Feb. 8, 1917, p. 194 (Bawean Island, Java Sea). 
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With this addition there are now six races of Malacocincla abbotti: 

Malacocincla abbotti abbotti Blyth—Nepal and Assam to Tenasserim. 

Malacocincla abbotti olivacea (Strickland).—Malay Peninsula. 

Malacocincla abbotti sirensis Oberholser—Pulo Mata Siri, Java Sea. 

Malacocmcla abbotti biittikoferi Finsch—Borneo. 

Malacocincla abbotti eritora Oberholser.—Billiton Island. 

Malacocincla abbotti baweana Oberholser.—Bawean Island, Java Sea. ON Gu Oe Wiar 

AETHOSTOMA ROSTRATA AETHALEA, subsp. nov. 

Subspecific characters—Similar to Aethostoma rostrata buxtoni, 

of southern Sumatra, but less rufescent (more sooty) and somewhat 

darker above; and with the crissum a little more buffy. 

Description.—Type, adult male, No. 180268, U.S. Nat. Mus.; Pulo 

Karimon Anak, eastern Sumatra, June 3, 1903; Dr. W. L. Abbott. 

Upper parts between prout’s brown and mummy brown, becoming 

somewhat more rufescent on the rump and upper tail-coverts, the 

longest feathers of the latter, chestnut; tail dark bister, the outer 

edges except at tips broadly chestnut; wings between olive brown 

and clove brown, but the outer webs of the quills and edgings of 

the superior wing-coverts, mars brown, and the lesser coverts like the 

back ; inner edges of basal portion of quills dull tilleul buff ; lores light 

buff ; rest of sides of head light buffy grayish; sides of neck like the 

back; lower parts white, the sides of breast and of body, and the 

flanks, washed with light grayish; crissum pale warm buff; thighs 

buffy brown; lining of wing dull pinkish buff; “iris clear brown.” 

Measurements of type-—Wing, 75.5 mm.; tail, 53.5; exposed cul- 

men, 17; height of bill at base, 5; tarsus, 26; middle toe without 

claw, 16.5. 

Although this new race is apparently confined to Pulo Karimon 

Anak, off the eastern coast of Sumatra, it seems to be different from 

Aethostoma rostrata bustoni, with which we consider, at least for 

the present, the bird from the not far removed Great Karimon Island 

and the neighboring coast of Sumatra to belong. 

AETHOSTOMA ROSTRATA PAGANICA, subsp. nov. 

Subspecific characters —Similar to Aethostoma rostrata aethalea, 
from Pulo Karimon Anak, but smaller; upper parts, flanks, and par- 

ticularly the sides of head, darker. 

* The bird currently called Aethogtoma biittikoferi (Trichostoma biittikofert 

Vorderman, Natuurk. Tijdsch. Nederl.-Ind., LI [ser. 8, XII], 1892, p. 230; 

“ Lampongs, Zuid-Sumatra”’) should be known as Aethostoma rostrata buxtom 

Tweeddale (Brachypteryx buxtont Tweeddale, Proc. Zool. Soc. Lond., 1877, 

pt. 2, August 1, 1877, p. 367; “ District of Lampong, S. E. Sumatra’), since 

the latter name has priority and is of identical application; and the bird is 

clearly a subspecies of Aethostoma rostrata. 

— Oe ee ee ee 
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Type—Adult male, No. 181308, U. S. Nat. Mus.; Upper Siak 

River, eastern Suma‘ra, November 21, 1906; Dr. W. L. Abbott. 

Measurements of type-—Wing, 69 mm.; tail, 51; exposed culmen, 

17; height of bill at base, 5; tarsus, 26; middle toe without claw, 16. 

This race from northeastern Sumatra differs from Aethostoma 

rostrata buxtoni from southern Sumatra as from Aethostoma rostrata 

aethalea, though not quite so decidedly. 

With the above additions the recognizable subspecies of Aethostoma 

rostrata are as follows: 

1. Aethostoma rostrata rostrata (Blyth) —Singapore Island. 

2. Aethostoma rostrata leucogastris (Davison).—Southern Malay Peninsula 

to Tenasserim. 

3. dethostoma rostrata aethalea Oberholser—Pulo WKarimon Anak, eastern 

Sumatra, 

4. Aethostoma rostrata paganica Oberholser.—Northeastern Sumatra. 

5. Aethostoma rostrata buxtont (Tweeddale ).—Southern Sumatra. 

6. Aethostoma rostrata macroptera (Salvadori).—Borneo. 

The generic term Aethostoma Sharpe, though treated by its origi- 

nal proposer as of neuter gender, is not properly so used. Being a 

compound appellative, it must be either masculine or feminine; and, 

in view of the feminine form of its ending, is probably better used 

as of this gender. 
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REMAINS OF MAMMALS FROM CAVES IN THE 

REPUBLIC-OF HAITI 

By GERRIT:S:.- MILLER, Jr: 

On March 4 and 5, 1921, Mr. J. S. Brown and Mr. W. S. Burbank, 

while engaged in geological surveys for the Republic of Haiti, under 

the direction of the U. S. Geological Survey, examined two caves at 

the northwest end of the Republic of Haiti. Their object was not to 

undertake a thorough exploration of the deposits on the cave floors but 

merely to determine whether or not these deposits contained the 

remains of mammals representing a fauna older than that which has 

been found in the kitchen middens of the Dominican Republic.” Such 

older faunas are known in Cuba, Porto Rico and Jamaica, but none 

has hitherto been recorded from the island of Haiti. The bones 

obtained by Mr. Brown and Mr. Burbank have been submitted to me 

for examination and report. 
Concerning the caves Mr. Brown writes: 

The caves from which these bones were taken are located on the slopes of 

the mountains north of the northwest end of the central plain of Haiti, 

northeast of the town of St. Michel de l’Atalye, commonly known as St. 

Michel, and northwest of the large American-owned plantation, managed by 

Mr. H. P. Davis and commonly known to Americans as the Davis Planta- 

tion. By the Haitians this plantation is called l’Atalye. The distance from 

the caves to the coast in an air line is about 40 kilometers. 

The larger cave is about 3 or 4 kilometers northeast of St. Michel and an 

equal distance northwest of the Davis Plantation. Its altitude is about 600 

meters above sea-level, nearly 200 meters above the central plain. It is one 

of a large number of caves evidently formed at a fairly remote period when 

hydrologic conditions differed considerably from those obtaining at present. 

Many of the caves including the one here referred to are located high on 

the mountain slope without any apparent relation to present drainage, either 

surface or subterranean. The caves are dry, there is little evidence of active 

solution, and they are apparently being filled with residual clay, rain-wash, and 

general cave breccia material. Many of them contain a thick floor cover of 

guano left by the thousands of bats that now inhabit or recently have in- 

habited the caves. The large cave mentioned above is about 40 meters in 

length, and from 10 to 20 meters in width and height and contains several 

large columns formed by the juncture of stalactites and stalagmites. It has 

two large openings separated by a pillar, and a third small opening on the 

See Miller, Smithsonian Misc. Coll., Vol. 66, No. 12. December 7, 1016. 
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sloping hillside, which afford entrance nearly on the plane of the floor. Near 

the rear there is also an opening or skylight, about 5 meters in diameter, to 

the surface, through which long hanging roots of the figuier tree grow down 

into the cave. Rocks and surface wash falling down the skylight have made 

a small cone of coarse debris beneath it. The cave is the scene of occasional 

Voodoo ceremonies and contains a few sacred offerings of porcelain ware, 

food, and money left by the Haitians. Near the center of the cave in the 

middle of one of the largest open spaces an excavation 1.6 meters deep was 

made. The hole was a little more than a meter in diameter. Only firm, dry, 

reddish dirt with a rather granular appearance was encountered. There 

was very little guano and no bones whatever, the rock floor of the cave 

appears to be very deep down here, and was not approached by this pit. 

Another hole was made very near the extreme rear end of the cave about 

1 meter from the wall and 5 meters from the cone of debris beneath the 

skylight. This hole was about a meter in diameter and less than a meter 

in depth (2% feet). The material was full of rocks and boulders and hard 

to excavate. Near the surface a living root of a tree, 15 centimeters in diam- 

eters was encountered and the hole was dug partly around it. From very 

near the surface downwards the hole yielded bones of a small rodent, and 

about half a meter below the surface a larger vertebrate bone was found, 

The smaller cave is located about 2 kilometers northnorthwest of the Davis 

Plantation and perhaps 3 kilometers east of the larger cave. It is on the 

south side of a deep dry ravine. The present opening of the cave is some- 

what spherical in shape and its diameter is about 30 meters. The roof 

is arched, all in one chamber, and the floor is convex, the rear half being 

nearly bare rock, partly covered by a few inches of guano left by bats. The 

mouth, still large but originally much larger, is choked by a great pile of 

debris from the cliff that rises above it. This debris has rolled inward as well 

as outward, covering the floor of the front part of the cave. The excavation 

here was made at the lowest part of the cave, adjacent to one of the steep 

vertical rock walls, following down the wall for 1.6 meters. The hole was 

about 14 meters in diameter. At the bottom the rock wall sloped inward 

rapidly and when excavation was stopped the entire bottom of the hole was 

on rock. The material excavated was about 50 to 60 percent loose stones, 

with just enough dirt and guano to fill the space between. The upper half 

meter of this hole yielded no bones whatever, as the material was apparently 

debris recently slumped in. Below the half meter mark small rodent bones 

appeared in increasing numbers all the way to the bottom, many resting on 

the rock floor. At a depth of almost a meter several larger bones were found 

in undisturbed material, and near the bottom imperfect slivers of a longer 

bone apparently nearly replaced by calcareous material. In both caves the 

bones of the small rodents were abundant and many duplicate fragments 

were rejected. The larger bones, however, are rare, and thorough examina- 

tion probably would be necessary to secure a satisfactory collection. 

In addition to various fragments too imperfect to permit of exact 

determination the collection includes remains of the following mam- 
mals. 
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RODENTS 

ISOLOBODON PORTORICENCIS ALLEN 

Large cave: Mandibles, 3 (2 right, 1 left). Probably referable to 

this species are 2 femora (1 right, 1 left), 1 broken innominate, 3 

upper incisors and 6 lower incisors. 

Smaller cave: Mandibles, 9 (2 right, 7 left). Probably referable 

to this species are several fragments of long bones, 6 broken innom- 

inates, 2 broken scapulz, a few phalanges, 5 upper incisors, 9 lower 

incisors. 
APHZETREUS gen. nov. (Echimyide) 

Type—Aphetreus montanus sp. nov. 

Characters.— Mandible and its teeth resembling those of /solobodon 

or Plagiodontia. Mandibular cheekteeth prismatic, growing from 

persistent pulps, their essential structure as in the two related genera 

but the entire toothrow appearing as if compressed antero-posteriorly 

with the result that the dentine and cement spaces are narrowed, the 

enamel plates are brought closer together, and the crown of each tooth 

becomes obviously wider than long instead of apparently longer than 

wide; inner reentrant angle confluent with postero-external angle, so 

that the enamel pattern is made to consist of an anterior Y and a 

posterior J completely isolated from each other by a band of cement ; 
mz nearly as large as mo. 

Remarks.—While the general features of the mandible and teeth 

indicate that A phetreus is allied to Plagiodontia and Isolobodon the 

exact relationship of the genus cannot be determined until the max- 

illary teeth are known. The increased width and compact structure 

of the crowns, the large size of m ;, the narrowness of the dentine and 

cement plates, and the division of the enamel pattern into two separate 
parts are all specialized features as compared with the conditions 

found in the two better known genera. All but the last could have 

been derived with equal facility from a structure similar to that 

occurring in either genus; the peculiarity of the enamel pattern, 

however, appears to have come from a type resembling /solobodon 

rather than Plagiodontia. In these genera the maxillary teeth differ 

strikingly from each other but the mandibular teeth are scarcely 

distinguishable except by the relative depths of the inner and outer 

reentrant angles. The outer angle in Plagiodontia, extends across 

about one-third of the width of the crown, so that it meets the much 

longer posterior reentrant from the inner side at a point conspicu- 

ously ectad to the middle of the crown. In /solobodon, however, 

it extends more than half way across, so that its length is greater than 

that of the corresponding inner angle; the point of meeting is there- 
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fore entad to the middle of the crown. In Aphetreus the two opposed 

reentrants have joined so as to isolate the posterior segment of the 

enamel pattern, but there is a slight narrowing of the cement band 

and a bending toward each other of the enamel plates in the region 

where the points of the reentrants touch in /solobodon. Nothing 
of the kind occurs at the level where contact takes place in Plagio- 

dontia. Another feature which suggests /solobodon is the character 

of the cement surfaces exposed on the sides of the teeth. In 

Plagiodontia these surfaces are irregularly and minutely pitted; in 
Isolobodon and Aph&treus they are transversely ridged. 

Division of the enamel pattern of the lower cheekteeth into the 

elements seen in Aphztreus is unusual; but it occurs in various 

Hystricoid genera which are not necessarily near allies of the present 

genus or of each other, as Chinchilla, Dactylomys, Amblyrhiza and 

some species of Echimys. 

APHAETREUS MONTANUS sp. nov. 

Type——Mandible with full set of cheekteeth, No. 10733 U. S. 

National Museum. Collected in the larger of the two caves northeast 

of St. Michel de l’Atalye, northwest end of the Central Plain, Re- 

public of Haiti, by J. S. Brown and W. S. Burbank. 
Measurements—Type: from sigmoid notch to upper border of 

alveolus of incisor, 45 + mm. (alveolus slightly imperfect) ; depth at 

middle of ms, 6.4; diastema, 11 + ; mandibular toothrow (alveoli), 

20.0; mandibular toothrow (crowns), 20; crown of first lower molar, 

4.2.x 5.2 (5.2 x 5.0) ;° crown of second lower molar, 4.4x 5.4 (4.8 x 

4.8) ; crown of third lower molar, 4.8 x 4.8 (4.0 x 3.8). 

Specimens examined —Large cave: Mandibles, 2 (right), one with 

complete set of cheekteeth the other (No. 10734) lacking pm, and 

m,. Perhaps referable to this species are 2 femora, larger than those 

supposed to represent /solobodon. 

ITHYDONTIA gen. nov. (Echimyide) 

Type.—tIthydontia levir sp. nov. 
Characters —General structure of lower molars as in /solobodon 

and Plagiodontia, but shaft of tooth more compressed antero-pos- 

teriorly, and reentrant angle of outer side extending directly inward, 

without backward slant, its extremity coming in contact with anterior 

instead of posterior reentrant angle of inner side. Cement trans- 
versely ridged on exposed surface of shaft as in [solobodon. 

1 Measurements in parenthesis are those of a specimen of Plagiodontia 

(No. 200412) of approximately equal size. 
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Remarks.—Though this genus is based on two isolated teeth only 

its characters appear to be well defined. The curvature of the shaft 

and the position of the worn surface of the crown on the summit of 

the shaft exactly coincide with these features in the first and second 

lower molars of Jsolobodon. Oriented according to them the teeth in 

the two genera show no obvious points of difference except that the 

longitudinal ridges on the inner side of the shaft are wider in 

Tsolobodon. The enamel pattern, however, has the peculiar char- 

acters that have been described. As in /solobodon the anterior re- 

entrant fold is the longer of the two on the inner side, but instead 

of curving rapidly forward so as to come almost or quite in contact 

with the enamel of the anterior wall of the shaft, it extends obliquely 

inward and backward, meeting the tip of the outer reentrant at a 
point not far ectad to the middle of the crown. The postero- 

external fold is directed almost straight inward, without the forward 

curve which the same fold shows in /solobodon. 

That these peculiarities are not a mere abnormal individual develop- 

ment of /solobodon seems sufficiently indicated by their similarity in 

two teeth from opposite sides and from different individuals, as well 

as by the absence of tendencies of a similar kind in the 34 jaws which 

contain teeth among our series of /solobodon remains. 

ITHYDONTIA LEVIR sp. nov. 

Type—A right mandibular tooth probably m, or m2, No. 10735 

U. S. National Museum. Collected in the larger of the two caves 

northeast of St. Michel de l’Atalye, northwest end of the central 

Plain of Haiti, by J. S. Brown and W. S. Burbank. 

Characters.—An animal about the size of [solobodon portoricensis 

Allen; shaft of lower molar, type (right), 2.8x 4.0 mm., second 

specimen (left) 3.0 x 4.6. 

Specimens examined—Two lower molars (one right, one left), 

both from the larger cave. One (the type) was found loose among 

the small miscellaneous bones, the other was imbedded, near a broken 

mandible of /solobodon, in a small mass of matrix adhering to the 

dorsal vertebra of the ground sloth. The second specimen (No. 

10736) represents an older individual than the type. 

BROTOMYS VORATUS Miller (?) 

Larger cave: Three femora (2 right, 1 left). 

Smaller cave: A right upper incisor, and three imperfect humeri. 

In the absence of skulls and cheekteeth the identification of Broto- 

m\'s among the remains collected in the caves is uncertain. The 
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femora and humeri resemble specimens from the kitchen middens of 

San Pedro de Macoris, Dominican Republic, the only locality at 

which the species has hitherto been found. The incisor is smaller 

than the corresponding tooth of the type, but it shows no obvious 

peculiarities in structure. It is not the tooth of an introduced rat. 

GROUND SLOTH 

MEGALOCUUS? sp? 

Larger cave: One nearly perfect caudal vertebra, and one imper- 

fect vertebra probably a dorsal; also a fragment which appears to be 

the proximal end of the radius of a young animal. 

Smaller cave: Two imperfect caudal vertebree. The proximal end 

and a fragment of the shaft of a rib may have come from the same 

individual. 

The animal appears to be about the size of the Porto Rican Acra- 

tocnus, but the caudal vertebre differ in so many details of form 

from corresponding bones lent me by the American Museum of 

Natural History through Dr. Matthew and Mr. Lang that there is 

little probability of generic identity between the two sloths. Dr. 

Matthew has kindly examined the vertebra from the larger cave. He 

regards it as representing an animal nearly related to Megalocnus 

of Cuba, though not certainly a member of the same genus. Measure- 

ments: Largest caudal vertebra (from larger cave), probably about 

the sixth of the series (No. 10740); length of centrum, 18 mm. ; 

anterior face of centrum, 19 x 16; posterior face of centrum, 20.5 x 

15.5; neural canal, 6.5 x 4.4; greatest width from tip to tip of trans- 

verse processes, 46; width of transverse process at middle, 12; depth 

including posterior zygapophysis, 27. Dorsal vertebra (No. 10739) ; 

centrum, 24 x 19; neural canal, 23.6 x 15. 

MAN 

Smaller cave: The head of a left human femur (No. 10743) was 

found at a depth of about a meter in undisturbed material associated 

with the caudal vertebre of the Ground Sloth and the rib which I 

suppose to represent the same animal. Its substance is lighter and 

less infiltrated with mineral matter than the sloth bones. From the 

same excavation was taken a small fragment of chipped stone (chert ) 

which Dr. Walter Hough has identified as an artifact. The exact 

level at which this was found was not noted. 

Ratt 
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UNIDENTIFIED MAMMALS 

Smaller cave: Three fragments from a foot (No. 10744) and 

one piece of a large bone (No. 10745) represent mammals that [| 

have been unable to identify. 
The parts of the foot are a broken metapodial and two basal 

phalangeal extremities, probably the opposite ends of one bone. The 

piece of metapodial measures: Length 56 mm., greatest diameter 
of imperfect head about 10.5, least diameter of shaft 5.4. Phalanx: 

width at base, 11.0; height at base (median), 10.0; width of distal 

extremity, 9.2; depth of distal extremity at middle 4.6, at side 5.4; 

width of shaft 1o mm. behind extremity, 6+. In size and form the 

bones have some resemblances to the corresponding parts in man, 

seal, and capybara; but the differences from all three are such as to 

preclude identity. It seems not improbable that they represent a large 

unknown rodent. 

The fragment of large bone is 110 mm. long, 45 mm. wide and 

19 mm. thick. In general form it is not unlike a section from the 

rib of a small finback whale in the region of greatest curvature near 

the head, but its structure is obviously that of the bone of a land 

mammal. There is an inner area of loose spongy tissue and an 
outer dense wall from which, at the broken edges, the spongy material 

flakes along definite planes of cleavage. The wall varies in thickness 

from 2.5 to6 mm. This structure, as well as the condition of the 

bone, is essentially as in the rib of the small ground sloth from the 

same cave. A suggestion of ground sloth is also found in the form 

of the fragment when viewed from the broader side; the general 

outline is then somewhat like the median portion of the femur of 
Acratocnus in Anthony’s figure 2 of plate 73 (Mem. Am. Mus. Nat. 

Hist., N. S., vol. 2, 1918), though the size indicates an animal much 

larger than the Porto Rican sloth. The fragment is, however, 

actually as well as relatively narrower in its lesser diameter, while 
its surface is smoother and less marked by muscle attachments than 

that of the femur of dAcratocnus. While it seems evident that this 

bone represents a land mammal, perhaps a ground sloth, larger than 

any known member of the Haitian fauna it is not possible at present 
to form any clear idea as to what this animal may have been. 

OBSERVATIONS ON THE FAUNA REPRESENTED IN THE CAVES 

The known indigenous land mammals of the Island of Haiti, bats 

and Solenodon excepted, have been, up to the present time, the three 
Hystricoid rodents Plagiodontia, Isolobodon and Brotomys, each 

represented by a single species. The first was living in the early 

part of the nineteenth century, but recent attempts to find it alive 
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have failed. It has no known very near relative on any other island. 

The other genera are known from skeletal remains only ; /solobodon 

has been collected in Porto Rico and on two of the Virgin Islands ; 

Brotomys has not been found elsewhere than on Haiti, but there is a 

nearly related genus in the cave deposits of Cuba. That all three of 

these animals were used as food by pre-Columbian man is clearly 

shown by the frequency with which their bones occur in kitchen 

midden deposits. One of them, /solobodon, is the most abundant 

mammal among the specimens collected by Mr. Brown and Mr. 

Burbank, while another, Brotomys, is probably represented. That 

the caves were used by early man is indicated by the presence of the 

chert artifact and perhaps also by the occurrence of the human 

femur. The deposits in the caves have, however, none of the features 

commonly seen in heaps of human refuse, such as bits of broken 

pottery, and an abundance of remains other than mammalian. The 

considerable distance (about 40 kilometers) from the coast is a 

further reason for regarding the deposits as not to any important 

degree human in origin. Moreover, Mr. Brown tells me that he 

particularly considered the possibility of such origin, but that the 

evidence all appeared to. show that the deposits were the work of 

natural agencies. It therefore seems reasonable to assume that the 

assembling of the mammalian remains owes little if anything to 

the influence of man. Probably the rodents whose bones Mr. Brown 

found to be so abundant at all levels except in the superficial deposits 

were carried in for food by the giant extinct owl described by Dr. 

Wetmore in his report on the birds from the caves.’ 

While the cave fauna includes two of the mammals known from 

the kitchen middens of the Dominican Republic it also includes two 

genera of rodents, a small ground sloth, two large unidentified mam- 

mals and an extinct owl that have not been found in these obviously 

recent deposits. The two rodents have no known near relatives on 

other islands, but the ground sloth is allied to genera previously dis- 

covered in Cuba and Porto Rico. The former presence on other 

islands of an owl resembling in size at least the one now discovered in 

the extinct fauna of Haiti 1s indicated by the abundance in Cuban and 

Porto Rican caves of the remains of rodents too large to have been 

carried there by such owls as are now living. There seems no reason 

to doubt that the life represented by the remains from these two 

Haitian caves formed part of the same older, perhaps Pleistocene, 

vertebrate fauna whose presence on the other islands of the Greater 

Antilles has recently become known. 

*Remains of Birds from Caves in the Republic of Haiti, Smithsonian Misc. 

Coll., Vol. 74, No. 4, 1922. 
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RENEAINS OF -BIRDS° FROM CAVES IN THE 

REPUBLIC OF HAITI 

By ALEXANDER WETMORE, 

Biological Survey, U. S. Department of Agriculture 

In a small collection of bones, mainly of mammals, secured in two 

caves in the Republic of Haiti by Mr. J. S. Brown and Mr. W. 
Burbank, during geological studies under direction of the U. 

Geological Survey for the Republic of Haiti, are a few bones of 

birds that have been placed in my hands for study by Mr. Gerrit S. 
Miller, Jr. The caves from which the bones were taken, according 

to information supplied by Mr. Brown, are on the slopes of the 

mountains northeast of St. Michel de l’Atalye, and in a direct line 

are about forty kilometers from the coast. Two caverns were 

visited on March 4 and 5, 1921, and small collections made to 

determine whether more extended éxplorations were advisable. 

The larger of the caves under discussion lay between three and four 

kilometers from St. Michel at an altitude of about 600 meters above 

sea level. An excavation near the rear of the cave to a depth of less 

than a meter through reddish dirt containing many rocks yielded a 

number of bones. Additional material was collected from a smaller 

cave on the side of a deep, dry ravine about three kilometers east 

of the first site. Near the rear wall in this cavern a pit dug toa 

depth of 1.6 meters through a layer of stones, bat guano and earth 
yielded bones below a depth of half a meter. For more detailed 

information regarding these sites reference is made to the paper by 

Mr. Gerrit S. Miller, Jr.." in which descriptions of the mammal 

remains are given. The few bones of birds secured include only 
four species, three obviously recent and the fourth a remarkable 

owl whose existence has been wholly unsuspected. The latter is an 

indication of an extinct avifauna that with exploration may perhaps 

yield even stranger species. Study of extensive collections from 

caves in Porto Rico revealed seven species of birds not previously 
known from the island, six of them new to science and the seventh a 

species of rail described originally from kitchen midden deposits 

3 
S: 

*Remains of Mammals from Caves in the Republic of Haiti, Smithsonian 

Misc. Coll., Vol. 74, No. 3, 1922. 
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in St. Thomas and St. Croix.’ All of these apparently are now 

extinct, though one, a whippoorwill, is represented by a skin in the 
Field Museum. 

Proper identification of the specimens discussed below has been 
possible only through the fine series of bird skeletons collected by 

Dr. W. L. Abbott during his explorations in Haiti. 

COLUMBID/Z 

CHA-MEPELIA PASSERINA (Linnzus) 

A left humerus, entire save for the distal end, from the larger 

cave does not differ from that of a modern ground-dove. 

CUCULIDZ: 

CROTOPHAGA ANI Linnzus 

A left humerus was secured in the smaller cave. As this bone is 

obviously modern this record has no bearing on the supposition that 
the spread of the ani through the Antilles has taken place during 

recent times. 

TYR ONMD As 

TYTO OSTOLOGA sp. nov. 

Characters —Similar to Tyto perlata (Lichtenstein) but much 

larger (head of metatarsus one and one-half times as broad). 

Description—tType, U. S. Nat. Mus., Cat. No. 10746, proximal 

end of left metatarsus, from a large cave northeast of St. Michel de 

l’Atalye, Republic of Haiti, collected March 4-5, 1921, by J. S. Brown, 

and W. S. Burbank. 

Metatarsus with inner glenoid facet (fig. I) more extensive, 

somewhat more excavated than outer, irregularly quadrangular in 

outline, sloping toward rear, with posterior margin indented by outer 

margin of posterior semilunar groove; outer facet slightly more 

* See Wetmore, Proc. U. S. Nat. Mus., vol. 54, p. 516; Proc. Biol. Soc. Wash- 

ington, vol. 32, Dec. 31, 1919, p. 235, and vol. 33, Dec. 30, 1920, pp. 77-82. 

—— 
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elevated than inner, intercondylar tubercle broad, elevated inner side 

at anterior margin straight, outer side rounded, summit obliquely 

truncated toward outer side, sloping broadly in rounded outline 

posteriorly to terminate at the margin of the posterior semilunar sulcus 
so that it entirely separates the two glenoid surfaces ; anterior surface 

(fig. 2) excavated deeply and abruptly beneath the median tubercle, 
where there is a slight overhang, anterior end of groove in outline 

elliptical, with outer side more abruptly delimited, and inner with wall 
more sloping ; tubercle for tibialis anticus elongate, elliptical, slightly 

elevated, somewhat roughened; the two superior foramina slightly 

nearer to upper end of this tubercle than to proximal end of anterior 

groove, the outer foramen very slightly higher than the inner, and 

nearer the median line; both foramina small, placed in floor of 

anterior groove ; inner margin of bone below head with a sharp ridge 

marking a tendinal attachment, inclined inward to form an overhang 

over the margin of the anterior groove; anterior semilunar groove 

only slightly indicated ; posterior semilunar groove broad and deeply 

cut, slightly deeper at outer side ; external head of talon triangular in 
lateral outline, with tip rounded, slight in size; internal head of 

talon somewhat broken at margin and below but much more extensive 

than the external division, forming a plate-like projection, concave 

on outer face, sloping outward to join anterior margin at a clean cut 

angle ; outer superior foramen opening in posterior sulcus below and 

slightly within internal head of talon; inner superior foramen open- 

ing on outer face of outer head of talon not far from its center. 

Measurements.—(Of type) lateral diameter of head at proximal 

end 17.5 mm.; greatest width of anterior groove 9.5 mm., antero- 

posterior thickness through external head of talon 11 mm. 

Range—Known only from large cave between three and four 

kilometers northeast of St. Michel de l’Atalye, Republic of Haiti. 
(Extinct. ) 

Remarks.—In addition to the head of the metatarsus described as 

type this huge barn owl is represented in the bones from this same 

cave by second and fourth metatarsal trochlea (Cat. No. 10747), 

that in all probability formed part of the metatarsus described as 
the type, and by the distal end of a right radius. These frag- 

ments are similar in outline to those in the common barn owl (7 yto 

perlata) but, like the head of the metatarsus, are comparatively 
speaking of gigantic size. The fourth trochlea is 13.5 mm. in width 

from the external sulcus to its free end. The second trochlea 

measures 11.7 mm. from the internal sulcus to its posterior end. 

The expanded end of the radius is 9 mm. broad. 
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Ina series of six specimens of the common barn owl (Tyto perlata) 

the width of the proximal end of the metatarsus varies from 10.5 to 

11.8 mm. and the length (measured from the top of the intercondylar 

tubercle to the lower margin of the third trochlea) from 70.0 to 

82.0 mm. In Tyto glaucops these measurements are respectively 

10.0 mm. and 64.0 mm. and in T. bargei 8.0 mm. and 5.6mm, On this 

basis the tarsus in Tyto ostologa should have measured in the neigh- 

borhood of 120 mm. in length. The head of the tarsus is as robust 

as in a large snowy owl and was of course much longer. 
Though 7. ostologa may have possessed structural peculiarities of 

which we know nothing, the fragments at hand are so similar in 

conformation to the corresponding bones in Tyto perlata that there 

has been no hesitancy in placing the species in the genus Tyto.’ It is 

much larger than any previously described in this group and so adds 

another remarkable form to those previously known from Haiti. 

As a natural corollary to the occurrence of ostologa in this cave we 

may suppose that the large rodents, described by Mr. Miller from the 

same deposits, formed the prey of this owl, so that we are indebted 

to the owl for the formation of the bone deposits. These may be 

considered as remains from pellets regurgitated by the bird, as similar 

formations of smaller mammalian remains in Porto Rico are attrib- 

uted to the activities of Tyto cavatica Wetmore (extinct) and 

Gymnasio nudipes (Daudin). It may be remarked that Tyto glau- 

cops, the modern barn owl of Haiti, is smaller than T. perlata. 

TYRANNIDAZ 

TOLMARCHUS GABBII (Lawrence) 

A left humerus was secured in the smaller cave. 

°TIt may be noted that the genus Badiostes Ameghino (Bol. Inst. Geogr. 

Argentino, vol. XV, Nov. and Dec. 1894, p. 601) which has been attributed to 

the Tytonide, appears from the figures and description to be related to the 

Falconidz. Other extinct species ascribed to the Tytonide have been placed 

in the same genus as the barn owl and are all more or less similar to it in size. 
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EXPLORATIONS AND FIELD-WORK OF THE SMITH- 

SONTAN INSTITUTION IN 1922 

INTRODUCTION 

The present pamphlet, describing briefly the various explorations 

and field expeditions initiated, or cooperated in by the Smithsonian 

Institution and its branches, serves as an announcement of the results 

obtained, many of the investigations being later described more fully 

in other publications of the Institution. The collections resulting 

from many of these expeditions are shown to the public in the 

National Museum. 

Scientific exploration has always been an important phase of the 
‘ Institution’s work in the “ increase and diffusion of knowledge ” and 

during the 76 years of its existence practically every part of the 

globe has been visited by Smithsonian field parties and our knowledge 

of the regions increased. There will always be important work in 

the nature of scientific exploration to be done, and had the Institution 

the means at its command, more extended investigations of great 

value to science and interest to the layman could be undertaken. 

GEOLOGICAL EXPLORATIONS IN THE CANADIAN ROCKIES 

Secretary Charles D. Walcott continued explorations in the Cana- 
dian Rockies for evidence bearing on the pre-Devonian formations 

north of Bow Valley, Alberta, and south along the new Banff-Win- 

dermere motor road, which passes from the Bow Valley over Ver- 

milion Pass and down the Vermilion River Canyon to the Kootenay 

River and thence over Sinclair Pass to the broad Columbia River 

Valley north of Lake Windermere in British Columbia. 

The first half of the season was unfavorable owing to dense forest 

fire smoke and inefficient trail men, but the latter part of August and 
all of September fine weather and capable men enabled the party to 

push the work vigorously. <A fine section of pre-Devonian strata 

was studied and measured in the upper part of Douglas Lake Canyon 

Valley, and many fine photographs taken (figs. 3-12). This beautiful 

valley is only 12 to 15 miles (19.3 to 24 km.) in a direct line east and 

northeast of Lake Louise Station on the Canadian Pacific Railway, 

SMITHSONIAN MISCELLANEOUS COLLECTIONS, VOL, 74, No. 5. 
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but as far as known it had not been visited, except by trappers long 

ago, until the summer of 1921 when Walter D. Wilcox and A. L. 
Castle camped in it and photographed some of its more striking 

features. Wilcox called it the “ Valley of the Hidden Lakes,” * but 
for geologic description and reference “ Douglas Canyon” is more 

simple. 

Mount Douglas (10,615 ft., 3,018 m., figs. 2 and 3) towers for 

4,500 feet (1,371.60 m.) above the canyon bottom, and Lake Douglas 

Fic. 8—Lake Gwendolyn, the gem of the upland valley, with Bonnet 
glacier and the northwest cliffs of Bonnet Mountain. 

Locality: The lake is about 12.5 miles (20 km.) east-northeast of Lake 
Louise Station on the Canadian Pacific Railway, Alberta, Canada, and 7,500 
feet (2,250 m.) above sea level. (Mr. and Mrs. C. D. Walcott, 1922.) 

(fig. 1) fills the ancient pre-glacial channel for two miles or more. 

This superb canyon valley with its forests, lakes, glaciers and moun- 

tain walls and peaks (figs. 1, 3-10) should be opened up to the moun- 

tain tourist who has the energy to ride along a fine Rocky Mountains 

Park trail (fig. 12) from Lake Louise Station up the Pipestone and 

Little Pipestone rivers to the upper section of the Red Deer River, 

or from the Station by the way of Lakes Ptarmigan and Baker to the 

Red Deer camp and thence to Douglas Lake and Canyon Valley. 

“Bull. Geog. Soc. Philadelphia, Vol. XX, 1921. 
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The trail into Douglas Lake from the Red Deer River is not cut 

out for three miles, but 10 pack horses were led through the forest 

on a mountain slope without difficulty. This part of the trail should 

be opened up by the Rocky Mountains Park service and made part 

of the Pipestone-Red Deer-Ptarmigan circuit. 

Fic. 11.—Limestone rock fall from mountain side on right of picture. The 
horses and riders indicate the size of the blocks. 

Locality: Douglas Lake canyon about 1.5 miles (2.4 km.) above Lake 
Douglas and about 13 miles (20.8 km.) east-northeast of Lake Louise Station 
on the Canadian Pacific Railway, Alberta, Canada. (Mr. and Mrs. C. D. 
Walcott, 1922. 

Game is abundant. The party saw 144 mountain goats, many black 

tail deer, and marmots on the Alpine slopes of Douglas Canyon (figs. 

7 and 10), and at the head of the Red Deer-Pipestone divide, moun- 

tain sheep. 

The measured geologic section was from the base of the Devonian 

above Lake Gwendolyn across the canyon to the deep cirque below 

Halstead Pass where the great Lyell limestone forms the crest of 
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the ridge. (See fig. 10.) The section includes the Ozarkian Mons 

formation down to the Lyell formation of the Upper Cambrian.’ 

A short visit was made to Glacier, B. C., where Mrs. Walcott 

measured the recession of Illecillewaet glacier, which she began to 

record in 1887. The recession the past four years has been at the 

rate of 112.5 feet (34.29 m.) per year, and all of the lower mock 

slopes are now free from ice. (See figs. 13 and 14.) 

Fic. 12—Rocky Mountains Park trail on north side of head of Red Deer 
River, en route from Lake Louise to Douglas Lake canyon. 

Locality: Same as figure 2. 

On our way south from the Bow Valley no stops were made for 

photography or geologic study until camp was made on the Kootenay 

River about six miles (9.6 km.) below the mouth of the Vermilion 

River. The Kootenay Valley is deep and broad, with the high ridges 
of the Mitchell Range on the east and the Brisco Range on the west. 

(Figs. 15 and 16.) In places the old river terraces extend for miles 

along the river with a varying width. This greatly facilitated the 

1 Explorations and Field-work of the Smithsonian Institution in I1gI9, p. I5. 

Smithsonian Misc. Coll., Vol. 72, No. I, 1920. 
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Fic. 13.—Photograph of Illecillewaet glacier taken in 1898, for com- 
parison with one taken 24 years later in August, 1922. In this photograph 
the bare space between the glacier and the dark bushes represents the 
recession of the ice between 1887 and 1808. 

Locality: Two miles (3.2 km.) south of Glacier House, British Columbia, 

Canada. (George and William Vaux, 1808.) 

Fic. 14—Remnant of Illecillewaet glacier photographed in August, 1922 
Locality: Same as figure 13. (Mrs. C. D. Walcott, 1922. 

2 
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building of the motor road, as long, level and straight sections were 

readily surveyed and fine gravel was at hand for surfacing the 

road _ bed. 

Fic. 17.—Illustrating a thrust fault. The bedded limestones have been 
dragged and bent upward on the west (left) side of fault, the plane of which 
slopes northeast at about 45°. The thin layers of limestone above the thick 
strong layer which slid over the limestones beneath are broken and crowded 
against the massive bed on the upper side of the fault. 

Locality: North side of the Banff-Windermere motor road about one- 
half mile (.8 km.) below Radium Hot Springs, Sinclair Canyon, British 
Columbia, Canada. (Mr. and Mrs. C. D. Walcott, 1922.) 

Note face in upper left corner. 

A view in the forest section of the Kootenay Valley is shown by 

figure 20, and a more difficult section for road building by figures 
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15 and 16. The motor road is a fine public work and opens up for 

pleasure and business direct connection through the main ranges of 

the Rockies between the Bow and Columbia River valleys. 

The limestones and shales of both ranges are upturned and sheared 

and faulted so as to make it very difficult, without detailed areai maps 

and unlimited time, to work out the structure and the complete 
stratigraphic succession of the various formations. (See fig. 17.) 

Fic. 18.—West slope of Stanford range south of Sinclair Pass, with white 
quartzite band at base of Silurian limestones. About six miles (9.6 km.) 
above Radium Hot Springs, British Columbia, Canada. (Mr. and Mrs. 
C. D. Walcott, 1922.) 

The Silurian limestones, with their fossil coral beds above the white 

quartzite of the Richmond transgression (see fig. 18) were found in 

the upper portion of Sinclair Canyon, and not far away black shales 
full of Silurian graptolites (fig. 19). Lower down the canyon thin 

bedded gray limestones yielded fossils of the Mons* formation not 

unlike those so abundant at the head of Clearwater Canyon, 73 miles 

(117.4 km.) to the north, and Glacier Lake, 94.6 miles (152.21 km.) 

* Smithsonian Misc. Coll., Vol. 72, No. 1, p. 15, 1920. 
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north. It is evident that in the ancient and narrow Cordilleran Sea 

that extended from the Arctic Ocean 2,000 miles (3,218 km.) or more 

south between the coast ranges of the time and the uplands of the 

central portion of the North American continent, there was a simi- 

larity of Lower Paleozoic marine life along the shores and in its 

shallow waters. Evidences of this and of strong currents and per- 

sistent wave action occur all the way from central Nevada to Mount 

cS Lainey 

Fic. 19.—Graptolites that flourished on the muddy bed of the sea in 
Silurian time. The coiled form Monograptus convolutus Hisinger is found 
both in Europe and America. The straight form is very abundant in some 
of the partings of the shale. 

Locality: Sinclair Canyon about 3.25 miles (5.2 km.) above Radium Hot 
Springs, in cliff on south side of Banff-Windermere motor road, British 
Columbia, Canada. 

Robson in British Columbia. The record of the marine life and 

deposits of mud and sand is most complete, and it has been great sport 

running down the various clews that have been encountered from 

time to time. 
The lower Sinclair Canyon opens out into the Columbia River 

Valley through a narrow canyon eroded in the upturned and faulted 

limestones. Some conception of the character of the canyon may be 

obtained from figures 21-23. 



SMITHSONIAN EXPLORATIONS, 1922 19 NO. 
‘ezO1 

‘
J
O
N
T
V
M
 
“
C
D
 

‘SIN 
pue 

a
y
)
 

“ez 
‘c% 

SaiInsy 
v9G 

“epeuey 
‘eIquinjod 

Y
s
t
4
g
d
 

‘QSURY 
OISIIG 

‘“PpeOI 
1O}JOW 

I
J
O
W
A
O
P
U
T
A
A
 

-
j
u
e
q
 

uo 
u
o
d
u
e
)
 

AlepUIG 
0} 

9DURI}UN 
MOT 

-18U 
Y
S
N
O
I
Y
}
 
P
l
V
M
}
s
a
M
 
S
U
L
O
O
T
—
 Iz
 
“OMT 

(‘Zz61 
‘
3
0
9
]
2
 A 

‘
d
D
 

‘SAIN 
pue 

spy) 
‘“epeueg 

‘erquinjog 
y
s
i
i
g
 

‘sulsso1y 
J
O
A
 

Aeud}OOy 
MOTAq 

(
w
y
 

VPI) 
saptu 

6 
y
n
o
q
y
 

-AypDI0T 
‘peor 

1OJOUW 
919UI 

-JOPUIA\-Yue_ 
oY} 

JO 
Jussur} 

ev UO 
jsdI0f 

ay} 
Ysno1y} 
y
o
s
 

s
u
r
y
o
o
y
—
o
z
 

“ony 

Pee Sateen 



e
e
e
 

VOL. 74 SMITHSONIAN MISCELLANEOUS COLLECTIONS 

‘ez61 
4
0
9
7
2
 M 
“
C
D
 

‘SAIN 
Pure 

“IP) 
“Opts 

W
s
 

uo 
peoy 

o
e
 
jo 

a
y
o
i
d
 

‘apis 
}Ja] 

UO 
FfI]D 

FO 
GO} 

JeoU 
P
e
a
y
 

SUOl] 
FO 

v
[
y
O
I
g
 

‘epeuery 
‘eIquinjo) 

y
s
 

-lig 
‘oSuey 

OOslig 
‘PpeOI 

1
0
J
O
W
 
I
I
O
W
I
I
O
p
P
U
I
A
\
-
U
e
_
 

oY} 
UO 

u
o
k
U
R
D
 
T
I
I
U
I
G
 

0} 
dDULIZUD 

JSAM 
YonoOsY} 

suleyUNOPY 
Y
A
Y
 

-[9S 94} SpIVMO} JOsUNS Iva pABM]SIM SuLyOoT— es ‘OMT 

‘ 

‘Iz 
aINSY 

99g 
“ATT[VA 

JOALY 
erquinjod 

oy} 
wosy 

uCAUeD 
dy} 

0} 
ddURIQUA 

IY} 
IVIU 

PLOT 
10JOU! 

IIOWIIOPUIA\-uUe_ 
oY} 

WOIF 
AYS 

9y} 
JO 

MOIA 
YW—ZzZ 

“DI 



Fic. 24.—A beautiful cluster of white saxifrage in a sheltered spot among 
limestone boulders. 

Locality: South branch of the headwaters of Clearwater River, 22 miles 
(35.2 km.) north of Lake Louise Station on the Canadian Pacific Railway, 
Alberta, Canada. (Mrs. C. D. Walcott, 1922. 

A group of white heather, Bryanthus, growing on limestone Fic. 25. 
soil. 

Locality: Near head of Red Deer River 10.5 miles (16.8 km.) northeast 
of Lake Louise Station on the Canadian Pacific Railway, Alberta, Canada. 
(Mrs. C. D. ‘Walcott, 1922.) 
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Fic. 26—Purple gentian growing on a south slope of a limestone ridge at 
about 7,000 feet (2,100 m.) elevation. 

Locality: Same as figure 25. (Mrs. C. D. Walcott, 1922. 

Fic. 27.—A fine plant of Zigadenas growing on a slope of limestone débris. 
Locality: Same as figure 25. (Mrs. C. D. Walcott, 1922.) 
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Fic. 28.—Mrs. Walcott sketching a wild flower in water colors on a frosty 
morning in camp. The camp fire kept the open tent warm and comfortable. 

Locality: Vermilion River canyon between the Banff-Windermere motor 
road and the river, British Columbia, Canada. (C. D. Walcott, 1922.) 

Fic. 29.—Getting acquainted with a young broncho. Baby Nancy and her 
mistress at Hillsdale camp, Bow Valley, Alberta, Canada, “CG. Ds Walcott, 
1922. 
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The living evidence of the heat developed by the upturning and 

compression of the strata under the eastward thrust of the massive 
Selkirk Mountains is that of Radium Hot Springs in Sinclair Canyon, 
and Fairmont Hot Springs, 15 miles (24 km.) or more to the south. 

During the summer Mrs. Walcott sketched in water colors 24 

species of wild flowers, or their fruit, that were new to her collection 

now on exhibition in the great hall of the Smithsonian building. 

Some of her photographs of wild flowers are shown by figures 24-27, 

and sketching in camp by figure 28. 

The party at the end of the season camped on the eastern side of 

the Columbia River Valley at Radium Hot Springs postoffice, where 

the veteran prospector, John A. McCullough, has made his home for 
many years. He and Mrs. McCullough were most courteous and 

obliging to the party which then consisted of the Secretary and Mrs. 

Walcott, Arthur Brown, Paul J. Stevens, packer, and William Baptie, 

camp assistant. 

Familiar scenes in connection with the life on the trail are illus- 

trated by figure 209. 

The Commissioner of the Canadian National Parks, Hon. J. B. 

Harkin, and the members of the Parks service in the field, especially 

Chief Inspector Sibbald and Chief Game Warden John R. Warren, 

were most helpful, also the officials and employees of the Canadian 

Pacific Railway. 

PALEONTOLOGICAL FIELD-WORK IN THE UNITED STATES 

Dr. R. S. Bassler, curator, division of paleontology, U. S. National 

Museum, working in collaboration with the State Survey, was in the 

field six weeks in June and July, in a continuation of stratigraphic 

and paleontologic studies begun a year earlier in the Central Basin 

of Tennessee. This work is so extensive that a number of seasons 

of field-work will be necessary for its completion. In 1921 the study 

and mapping of the Franklin quadrangle, an area of about 250 

square miles, just south of Nashville, was well advanced but so many 

new stratigraphic problems arose that the State Geologist, Mr. Wilbur 

A. Nelson, suggested the field season of 1922 be devoted to the fur- 

ther study of the Franklin quadrangle and to stratigraphic studies in 

contiguous areas. Accordingly, the mapping of the Franklin quad- 

rangle was completed and data secured for the preparation of a geo- 

logical report upon the area, to be published by the State. Strati- 

graphic studies were then undertaken in the adjacent contiguous 
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areas and some of the classic geologic sections of Central Tennessee 

were visited and studied in detail. Dr. E. O. Ulrich, associate in 

paleontology in the National Museum, joined in this work on account 

of his life-long interest in the stratigraphy of Central Tennessee, and 

with the aid of his assistant, Mr. R. D. Mesler of the U. S. Geologi- 

cal Survey, numerous detailed sections and about a ton of carefully 

selected fossils were secured for the National Museum. 

The classic section at Nashville, Tennessee, in which the proper 

delimitation of the formations has long been in dispute, was studied 

Fic. 30.—Section at Nashville, Tennessee, illustrating sequence of 
Ordovician formations. (Photograph by Bassler.) 

with especial care and ample collections of fossils were secured to 

verify the stratigraphic results. 

The deep sea origin of all limestones has long been taught in spite 

of the trend of evidence that many limestone formations were laid 

down in shallow seas. The shallow water origin of limestone is 

well illustrated in the section of Ordovician strata exposed near the 

blind asylum at Nashville which has been studied by several gener- 

ations of geologists. At the base of this section, as shown in figure 

30, is the Hermitage formation which was evidently formed along 
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ancient shore lines because it is composed of beach worn fragments 

of shells and other fossils. Above this comes the Bigby limestone, the 

source of much of the Tennessee brown phosphate and which also is 

made up almost entirely of the comminuted remains of fossils. Next 

is the Dove limestone, an almost pure, dove-colored, lithographic- 

like limestone which shows its shallow water origin in the worm 

tubes penetrating it and its sun-cracked upper surface. A _ slab 

of this limestone a foot thick, as shown in figure 31 and now on 

Fic. 31.—Stratum of dove limestone showing sun-cracked upper surface 
and penetrating worm tubes, indicative of shallow water origin. (Photo- 
graph by Bassler.) 

exhibition in the National Museum, well illustrates the polygonal 

upper surface and the penetrating worm tubes, both features indica- 

tive of the origin of the rock on old mud flats which were periodically 

above water and thus became sun cracked. The succeeding Ward 

limestone is of the more typical blue variety but here the rock is filled 

with millions of fossil shells which under the influence of weathering 

are changed to silica and are left free in great numbers in the soil. 

This section is only a portion of the entire geological sequence at 

Nashville but it well illustrates the various types of limestone out- 

cropping throughout the Central Basin. 
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ASTROPHYSICAL FIELD-WORK IN CALIFORNIA, ARIZONA, 

AND CHILE 

The Astrophysical Observatory of the Institution did some notable 

work at Mount Wilson on the spectra of the sun and stars. Some 

discrepancy had appeared between the work of 1920 and the early 

work of the observatory prior to 1910 on the distribution of energy 

in the sun’s spectrum as it is outside the atmosphere. It appeared 

necessary to go over this ground again, as the result is used in every- 

day work at the two field stations in Chile and Arizona, in computing 

the solar constant of radiation, so the work was repeated by Messrs. 

Abbot and Aldrich with as much variety in conditions as was possible. 

The results of the different experiments were in close accord, and 

in accord with the work of 1920, so that the new determination is 

now going into effect in the computations in Arizona and Chile. 

At the invitation of Director Hale, of the Mount Wilson Observa- 

tory, Messrs. Abbot and Aldrich employed the great hundred-inch 

telescope there in connection with a special vacuum bolometer and 

galvanometer designed and constructed at Washington in order to 

measure the heat in the spectrum of the brighter stars. In other words, 

they attempted to investigate the distribution of radiation in the stellar 

spectra with the bolometer as they have long done with regard to the 

spectrum of the sun. When one thinks of taking the light of a star, 

which looks like a firefly up in the sky, separating it out into a long 

spectrum, and observing the heat in the different parts of the spec- 

trum, it seems a practical impossibility. Nevertheless, the observers 

succeeded in doing this for ten of the brighter stars, and they also 

observed the sun’s spectrum with the same apparatus. In this way 

it was possible to represent the distribution of radiant energy in the 

different types of stars from the bluest to the reddest ones, and to 

know the displacement of the maximum of energy from shorter to 

longer wave-lengths as the color of the stars tended more and more 

towards the red. 

The outlook for further investigations of this kind is hopeful, and 

it will have a notable value in the estimation of the temperatures of 

the stars and the study of stellar evolution. 

The two field stations at Mount Harqua Hala, Arizona, and Mount 

Montezuma, Chile, are continued in operation. The station on Mount 

Harqua Hala, under the direction of Mr. Moore, has been much im- 

proved during the year. Owing to the driving rains and high winds, 

it proved necessary to sheathe the adobe building there with galva- 
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nized iron. At the same time all cracks for the entrance of wind, 

snow, and noxious insects and animals were closed. A small building 

was erected to house the tools and electrical appliances used for 

charging storage batteries and other purposes, and in this was ar- 

ranged a shower bath ingeniously contrived to give a continuous 

shower as long as desired with only about a gallon of water. Cement 

water reservoirs for collecting and preserving the rain and snow 

water from the roofs have been constructed, with a total storage 

Fic. 32——Mount Harqua Hala Solar Observing Station, Arizona. 

capacity of about two thousand gallons. A small porch was attached 

to the dwelling quarters and the rooms have been neatly painted and 

curtained. A “listening in” wireless outfit has been erected, and a 

so-called “ Kelvinator” or sulphur dioxid refrigerating device for 

keeping provisions and cooling water for drinking purposes has been 

installed. 

The observatory owns a Ford truck which is kept in a small garage 

built at the foot of the trail, and weekly mail and supply service is 

maintained from Wenden to the mountain top. A telephone line is 

just being erected to connect from Wenden to the observing station. 
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The cost of these various improvements, which have made living on 

the mountain very much more comfortable, has been borne by funds 

provided for the purpose by Mr. John A. Roebling, of New Jersey, 

to whom the Institution is greatly indebted for his generous interest 

in its solar radiation program. 

A notable case of fluctuation in the solar radiation has recently 

been reported from the Arizona station. A fall of 5 per cent in 

the solar heat occurred, beginning about the 15th of October and 

Fic. 33.—Mount Harqua Hala and garage at foot, Arizona. 

reaching its minimum on the 21st, and then quickly recovering to 

the normal by the 25th. By inquiry at the U. S. Naval Observatory, 

it is learned that a very notable new group of sun spots was formed, 

the first indications appearing about the 17th of October and the group 

reaching great dimensions by the 21st when it neared the limb of the 

sun and shortly disappeared over the edge, due to the solar rotation. 

This occurrence is nearly parallel to that of March, 1920, when a 

similar great drop in the solar heat occurred and a very extraordinary 

sun-spot group passed over the sun. 
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EXPEDITION TO EXAMINE THE NORTH PACIRIC FUR SEAL 

ISLANDS 

The Department of Commerce wishing to obtain exact informa- 

tion as to the status of the fur seal herd on the Russian seal islands, 

situated off the coast of Kamchatka and known as the Komandorski 

or Commander Islands, with special reference to the effect of the 

treaty of 1911 entered into by the United States, Russia, Japan and 

Great Britain for the protection of the fur seals in the North Pacific 

Ocean, requested the detail of the head curator of biology of the 

Museum, Dr. Leonhard Stejneger, to accompany an expedition to 

Alaska and adjacent regions during the summer of 1922. The expedi- 

tion, under the immediate leadership of Assistant Secretary of Com- 

merce C. H. Houston, was primarily organized for the purpose of 

studying the conditions of the fisheries of Alaska as well as the other 

economic and commercial problems of that territory in so far as they 

are included in the activities of the Department of Commerce. Among 

others it included Mr. W. T. Bower, Bureau of Fisheries, Assistant 

in charge of Alaska, and Dr. Alfred H. Brooks, U. S. Geological 

Survey, in charge of Alaskan Geology. Capt. C. E. Lindquist was 

engaged as special assistant to Dr. Stejneger. 

The expedition left Seattle, Washington, in the U. S. Coast Guard 

Cutter Mojave, Lieut. Comm. H. G. Hamlet commanding, on June 
20, 1922, and proceeded by the inside passage to southern Alaska, 

making short stops at various places for inspection of canneries, 

hatcheries, factories, mines, etc. At Juneau, an excursion to Menden- 

hall glacier was undertaken. On June 27, Cape St. Elias, the “ land- 

fall” of Bering in 1741, was rounded, and the Mojave stopped at 

Cordova, the principal town in Prince William Sound. From here 

Mr. Huston and a small party went overland to Fairbanks, returning 

by the recently opened Central Alaska Railroad to Seward, where 

they again boarded the Mojave on July 4. The stay of the cutter at 

Cordova was taken advantage of by Stejneger and Lindquist to 

arrange a visit to Kayak Island. The Russian commander, Vitus 
Bering, in May, 1741, left Petropaulski, Kamchatka, on board the 

St. Peter under orders to sail eastward until discovering America. 

After a stormy voyage a cape with high land beyond was clearly made 

out on July 16, old style, and on July 20 the St. Peter came to anchor 

off an island which is now known as Kayak Island. Steller, who 

accompanied the expedition as a naturalist, was only allowed to go 

with the crew sent ashore in a boat to fill the empty water casks at 

a small creek on the western shore of the island. Accompanied by 
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Fic. 34.—U. S. C. G. C. Mojave in Dutch Harbor, Alaska. (Photograph 
by L. Stejneger. ) 

Fic. 35.—Steller’s landing place, Kayak Island, Alaska. (Photograph by 
L. Stejneger. ) 
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his cossack, he explored as much of the island as he could during the 

short stay of about 6 hours, collecting plants, birds and other natural 

history objects. This was the first landing of a scientific man in 

Alaska for the purpose of making observations and collections. 

The principal object of the trip to Kayak Island was to verify 

Steller’s description, to locate the place where he made his celebrated 

landing and where the water was obtained, and to make such collec- 

tions of natural history objects as circumstances would allow. Pas- 

sage for the 50-mile trip to Katalla was secured on the motor boat 

Pioneer. Leaving Cordova at 2 a. m. on June 29, it did not reach 

Katalla until 9.30 p. m. owing to its grounding at ebb tide on the 

extensive mudflats at the mouth of Copper River. Another motor 

boat was hired at Katalla, but it was not possible to leave until the 

following day, so that Kayak Island was not reached until 6.15 p. m. 

A landing was effected at the mouth of a creek which, from Steller’s 

description, can be none other than the one at which Bering’s crew 

took in water. Owing to the fast failing daylight, the party at once 

set out along the beach in the direction of the mainland for the distant 

hill described by Steller, but came to an abrupt halt after a laborious 

walk of about two miles along the bouldery beach at a compara- 

tively recent fall of huge blocks of conglomerate rock among which 

the ocean waves were breaking so furiously as to stop further progress. 

The remaining few moments before darkness set in were utilized in 

collecting a few plants accessible along the beach at the foot of the 

precipitous cliffs which prevented access into the interior of the island. 

Returning, Cordova was reached at 4 p. m. 

The fair weather which had favored the expedition hitherto 

changed to fog and rain after leaving Seward. Passing through 

Shelikof Strait opposite Katmai, a glimpse was had of the mountains 

on Kodiak Island still white, as if covered with snow, from the ash 

deposited during the eruption of the Katmai volcano in 1912. The 

passage through Unimak Pass was successfully accomplished in spite 

of the heavy fog on July 10, and the Mojave anchored off the Akutan 

Whaling Station which was visited. Two finback whales were stripped 

of their blubber during the inspection. Arriving at Unalaska at 3.30 

p. m. the outfit and baggage of Stejneger and Lindquist were at once 

transferred to the U. S. Coast Guard Cutter Algonquin which was 

lying ready to take Secretary Huston and Mr. Bower to the Pribilof 

Islands for an inspection of the fur seal rookeries there, leaving 

Unalaska the same evening. 
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Fic. 36.—Whaling station, Akutan, Alaska. (Photograph by L. Stejneger.) 

Fic. 37—Carcass of fin back whale, whaling station, Akutan, Alaska. 
(Photograph by L. Stejneger.) 
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The visit to the Pribilofs was favored with cool cloudy weather 

which showed up the rookeries to the best advantage. The increase 

in the number of seals on the beaches, a result of the elimination of 

pelagic sealing by the treaty of 1911 between the United States, Great 

Britain, Japan and Russia, was very remarkable, notwithstanding the 

handicap of the excessive increase of superfluous and therefore dis- 
turbing young males due to unfortunate legislation which stopped 
land killing for five years following the signing of the treaty. By 

drastic measures the proper numerical ratio between the sexes has 

almost been accomplished by now, and a complete restitution of the 

fur seal herd to its former maximum is confidently predicted for the 

not distant future, if pelagic sealing is not resumed. An improved 

method in stripping the skin from the body of the dead seal and 
subsequent cleaning of the skin was being tried out for the first time 
on an extensive scale and was shown to be a great improvement on 

the old method. Greatly improved methods were also observed in 

the handling of the blue foxes. The air of prosperity and progres- 

siveness pervading the whole establishment as compared with condi- 

tions 25 years ago was very notable, bearing testimony to the effi- 

ciency of the management of the islands by the Bureau of Fisheries. 

The Algonquin with Stejneger and Lindquist on board returned to 

Unalaska to fill up with fuel oil preparatory to the trip to the Com- 

mander Islands, a distance of approximately 1,100 miles. At Dutch 

Harbor, while the vessel was taking in oil, the opportunity was taken 

advantage of to examine the small group of Sitka spruce planted 

there nearly 100 years ago by the Russian Admiral Lutke while 

visiting the island in the corvette Seniavin. <A fire during the 

summer of 1896 came very near destroying the stand, but timely 

aid saved most of the trees. The little isolated grove, the only one 

west of Kodiak Island, showed the effects of the fire. There are 

now 15 trees left, all looking healthy, the foliage being dense and 

dark, and the lower branches sweeping the ground. The south side 

of the trees was covered with blossoms and last year’s cones, but no 

seedlings were seen anywhere. Among the large trees, however, there 

were a couple of saplings about 10 feet high, which had been 

smothered to death, but which show that fertile seeds have been pro- 

duced occasionally. The largest tree was measured and found to be 

8 feet in circumference 3 feet from the ground. About a foot higher 

it divides into three distinct trunks. 

The Commander or Komandorski Islands were reached on July 24. 

These islands form the most western group of the Aleutian Chain. 
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Fig. 38.—Wharf at Unalaska. (Photograph by L. Stejneger.) 

Fic. 39.—Dutch Harbor, Alaska, U. S. C. G. C. Algonquin taking in oil. 
(Photograph by L. Stejneger. ) 
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It consists of the two islands, Bering and Copper, situated about 100 

miles east of Kamchatka. They belong to Russia and at the time 

of the visit were controlled by the Vladivostock government under 

Miliukof. The conditions of the inhabitants were found to be better 

than expected. Perfect order was maintained, no foreign traders or 

disturbers were present, and the people, though reduced both in 

number and resources, were not starving thanks to the abundance 

of fish and the cargo of necessities which had been sent them in 

exchange for the furs of the past season. They were lacking, how- 

ever, in clothing, shoes and fuel. The party on the Algonquin was 

received with open arms, especially as the officers and crew of the 
a) 

Fic. 40.—Grove of Sitka spruce, Dutch Harbor, Alaska. (Photograph by 
L. Stejneger.) 

cutter supplemented the scanty stores of the communities with gen- 

erous donations of necessities and a few luxuries. Immediately after 

landing the baggage and outfit of the expedition, the Algonquin left 

for Unalaska. 

The first important business was the examination of the only re- 

maining fur seal rookery on Bering Island. The South Rookery had 

long since ceased to exist, and the great North Rookery, one of the 

most important on the islands had been greatly reduced. The actual 

state of affairs was found to be much worse than anticipated. At his 

last visit to this rookery which he had studied and mapped in 1882, 

1883, 1895, 1896 and 1897, Stejneger had estimated the number of 

breeding seals located there to be about 30,000. On July 28, 1922, 
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Fic. 41.—Preobrazhenski village, Copper Island. (Photograph by 
L. Stejneger. ) 

Fic. 42.Nikolski village, Bering Island. (Photograph by L. Stejneger.) 
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there were scarcely 2,000 left. Regular killing had been stopped and 

for the present the Komandorski seal herd is non-productive. 

The weather which had been stormy and foggy now settled down 

to a continuous fog and rain which interfered greatly both with ob- 

servations and collecting. The latter was confined mostly to insects 
and plants. An interesting addition to the flora of the Commander 

group was the finding of Cypripedium guttatum, apparently confined 

to a single locality on Bering Island on a hillside south of the great 

swamp back of the Nikolski village. 

On August 8, the first clear day for weeks, the Mojave arrived 

and after staying a couple of hours proceeded with the completed 

te nie 24: 
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Fic. 43.—Harbor of Petropaulski, Kamchatka. (Photograph by 
L. Stejneger. ) 

party to Petropaulski, the capital of Kamchatka. The delay had 

been caused by the necessity of the Mojave returning from Anadir 

to Unalaska for fuel oil. 

At Petropaulski the town was found to be in the possession of the 

“whites,” 1. e., the officials of the Vladivostock government supported 

by an “army ” of about 50 men, while the “reds,” s. e¢., the portion 
of the male population recognizing the authority of the Far Eastern 

Republic, were holding the hills about four miles out. Two days 

were spent here examining into the conditions and gathering statistics 

of various kinds. A member of the Swedish Scientific Kamchatka 

Expedition which has been collecting natural history objects for the 

National Museum in Stockholm for a couple of years, Dr. René 
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Malaise, a well-known entomologist, was met here and some of his 

interesting collections were examined. 

The next objective of the Mojave expedition was an inspection of 

the Japanese fur seal island off the eastern coast of Sakhalin in 

Okhotsk Sea, usually known as Robben Island. 
On August 13, the Mojave passed the Kuril chain through Amphi- 

trite Strait but on account of fog did not anchor off Robben Island 

until the 15th in the evening. The party was there met by three 

Japanese officials of the Karafuto provincial government who with 

the greatest liberality placed all the desired information and statistics 
at the disposition of the American investigators. Robben Island is 

Fic. 44.—Robben Island, Okhotsk Sea. Part of fur-seal rookery. Breeding 
place of innumerable murres. (Photograph by L. Stejneger. ) 

a small, elongated, flat-topped rock, nowhere higher than 50 feet, only 

1,200 feet long and less than 120 feet wide, surrounded by a narrow 

gravelly beach 30 to 120 feet wide, on which the rookery is located. A 

couple of low houses for the sealing crew, which is stationed here dur- 

ing the summer season, are located on the western slope. When Stej- 

neger visited and photographed the rookery in 1896 the seals occupied 

a small spot on the east side. Since the Japanese took over the island 
from the Russians in 1905, the number of fur seals has gradually 

increased until now the animals not only occupy the entire eastern 

beach but are extending the rookery at both ends on to the west side 

of the island. The Japanese have closely followed the methods em- 

ployed in managing the American seal herd on the Pribilof Islands, 
and the result has been equally gratifying. The history of the sealing 
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industry on this rock is most instructive as 1t proves in the most con- 

vincing manner that “‘ protection does protect.” After examining 

and photographing the rookery the party was entertained by the 

Japanese Commissioners with refreshments in a large tent erected 

for the occasion. 

From Robben Island the Mojave proceeded to Hakodate, Japan, 

where additional important information relating to the Russian fur 

seal islands was obtained from Mr. Koltanovski of Vladivostock, who 

was on his way to the Commander Islands with a staff of assistants 

to assume charge of the fisheries there during the coming winter. In 

A = < Q 
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Fic. 45.——Members of the expedition at Robben Island. (Photograph by 
L. Stejneger. ) 

E,. Takamuku, Chief of Fisheries Section, 
Karafuto Government. 

W. T. Bower, U. S. Bureau of Fisheries. 
C. H. Huston, Assistant Secretary of Commerce. 
L. Stejneger, U. S. National Museum. 
S. Okamoto, Otomari, Karafuto. 
K. Fujita, Karafuto Middle School. 
C. E. Lindquist, Oakland, Calif. 

. A. H. Brooks, U. S. Geological Survey. 
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Yokohama, the next stopping place, an interview with Col. Sokolnikof, 

who had been administrator of the Russian fur seal islands for ten 

years, was productive of valuable information, as was also a visit 

to the Imperial Fisheries Bureau in Tokyo, thanks to the kind assis- 

tance of Prof. K. Kishinouye of the Imperial University. Mr. K. 

Ishino, the fur seal expert of the bureau, was kind enough to allow 

inspection of a series of photographs which he had taken during the 
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trip to the Commander Islands in 1915 and 1916. An interesting 

excursion was also undertaken to the Biological Station at Misaki, 

but as the season had not opened yet, only the buildings and the 
apparatus of the station could be examined. 

Messrs. Stejneger and Lindquist having now completed the task 

of inspecting the fur seal rookeries, left the Mojave in Yokohama and 

took passage in the President Jefferson sailing for Seattle, Washing- 

ton, on September 2. Dr. Alfred H. Brooks returned in the same 

steamer. 

EXPLORATIONS IN AUSTRALIA AND CHINA 

Through the generosity of Dr. W. L. Abbott, Mr. Charles M. Hoy 

continued his work of collecting specimens of the very interesting 

fauna of Australia. The work was terminated during the winter 

and Mr. Hoy returned to the United States in May, 1922. The 

results of this expedition are of especial value for two reasons: First, 

the Australian fauna has heretofore been but scantily represented in 

the National Museum, and, second, the remarkable fauna of that 

continent is being rapidly exterminated over large areas. The speci- 

mens received during the year bring the total up to 1,179 mammals, 

including series of skeletal and embryological material; 928 birds, 

with 41 additional examples in alcohol, and smaller collections of 

reptiles, amphibians, insects, marine specimens, ete. The accom- 

panying photograph (fig. 46) shows part of an exhibition case in 
the National Museum with mounted specimens mostly from the 

Hoy collection. 

This expedition has been so important that the main features of 

its history may now be appropriately recapitulated. Doctor Abbott 

arranged early in 1919 to send Mr. Hoy to Australia. Departure 

from San Francisco took place early in May and collecting was 

begun at Wandanian, New South Wales, on June 19. From this 

time until the middle of January, 1922 Mr. Hoy was constantly in 

the field. The regions visited were as follows: New South Wales 

(June to December, 1919), South Australia, including Kangaroo 

Island (December, 1919, to the end of March, 1920), West Australia 

(May to September, 1920), Northern Territory (October to end of 

November, 1920), New South Wales (January and February, 1921), 

Tasmania (April to June, 1921), northern Queensland (July, 1921, to 

January, 1922). As the main object of the expedition was not to visit 

the unexplored portions of Australia but rather to secure material 

from regions where settlement of the country is producing rapid 
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change in the fauna, travel was of the ordinary kind, by boat, rail and 

wagon road. Tent life was an important element in the living condi- 

tions, and at times it was rendered difficult by the heavy rains which 

in some districts broke a long-continued drought just at the time 

of Mr. Hoy’s arrival. Detailed accounts of the work, with photo- 

graphs of many of the animals collected, and with passages from 

Mr. Hoy’s letters have been published in previous numbers of this 

series of Exploration pamphlets (Smithsonian Misc. Coll., vol. 72, 

No. 1, pp. 28-32; vol. 72, No. 6, pp. 39-43). 

Fic. 46.—Part of exhibition case in National Museum showing some of the 
kangaroos collected by Mr. Hoy in Australia. 

Dr. Abbott’s unfailing interest in the national collections is shown 

by the fact that he has now arranged to send Hoy to China for the 

purpose of obtaining vertebrates from certain especially important 

localities in the Yang-tze valley, a region with which Hoy has been 

familiar for many years. Departure for the field took place on 

December 15, 1922. 

Gerrit S. MILLER, JR. 

BIOLOGICAL EXPLORATIONS IN SOUTHEASTERN CHINA 

In the summer of 1921 Mr. A. de C. Sowerby returned to China 
to continue the work of exploration interrupted by the war. This 

work, which is made possible by the generosity of Mr. Robert S. 

Clark of New York, will now be carried on in the region south of 

the Yangtze, and the zoological results will come to the National 
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Museum. While it is too soon for any full report on the explorations 
in which Mr. Sowerby is engaged, the following passages from a 

letter dated December 1, 1921, give some idea of the conditions under 

which the work is being done. 

IN THE INTERIOR OF FUKIEN PROVINCE, 

©. 2, Cana, December 1, 1921. 

Here I am over 200 miles from the coast up a tributary of the 

Min River, right at the back of beyond of the province, as you might 

say. I couldn’t sit idle in Shanghai, so I decided to have a shot 
at this province. I took steamer to Foochow and was very fortunate 
in meeting a young American named Carroll, engaged in the lumber 

business, who was on his way to the very spot I had decided to visit, 

and he offered me the hospitality of his boat—an adapted river-boat, 

shallow draft, but comfortable—and his pleasant company. Natur- 
ally I accepted, and so here Iam. We went away up a side stream, 

too small for boat traffic—to a spot in the back hills—or mountains, 

about 5,000 feet—where his company is opening up a forest, and 

there we camped a week, scouring the whole neighborhood, and 

having a few good hard tries for serows. Though we failed to get 
anything big, I did pretty well with small mammals. Next we came 
back to the main stream, where I am camped, while he has gone on 

up stream to transact some business. He expects to return here 

to-morrow or the next day, when we will go down stream to a place 
where a couple of tigers have been killing a lot of people, and see 

if we can’t get a shot at them. Then on back to Foochow, whence I 

shall return to Shanghai for Christmas. After that I have fixed up 
with a party to go up the Yangtze as far as Wuhu, then inland to a 

place called Ning-kuo-fu, taking in some forested country on the 

way in the hopes of getting some Ccrvus kopschii, across the divide 

into Chekiang Province and down some stream to Hangchow. The 

other fellows are out for sport pure and simple, but I shall have 

time to do some collecting. So you see I am panning out pretty well. 

I shall come back to this province again as soon as possible, as it 

is simply full of stuff. The only trouble is that the cover is so dense 

that trapping and shooting are extremely difficult. I already have 

a collection of 94 mammals—including 14 species—some interesting 

birds, fish, frogs, ete. The rats are a puzzle. As far as I can make 

out I have five different species of Epimys. 

I have met Caldwell, the man who saw the famous “ Blue tiger,” 

and he tells me it was of such a color that he thought it was a chinaman 

in his blue coat in the brush. But he had a good enough view of the 
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animal to be perfectly certain of what it was. And the only reason 

why he did not shoot it was that it was just above two boys who were 

working in a field, and had he shot it it must have fallen on top of 

them. Indeed, it was actually stalking them when he saw it. Yen- 

ping-fu is a wonderful animal centre. Caldwell got a tufted muntjac 

and a leopard just back of his compound, and wild cats, palm-civets 

and what not actually in it. 

This is very, very beautiful country. I have never seen anything 

quite like it. The whole country is hilly and mountainous, and 

covered with heavy underbrush, and woods of spruce, pine, and 

deciduous trees. The rivers and streams are clear as crystal, studded 

with rock, and exquisitely beautiful. The underbrush is a terror to 

get through by reason of its denseness and the sword-grass that occurs 

everywhere and cuts like a razor. I like the people, and find them 

very friendly. At this moment I am camped in the local teniple of 

a small village, my things spread all over the place. I am the centre 

of interest for the whole countryside. People come and burn incense 

and chin chin joss, and then stop to look at me and have a good chin 

wag. It doesn’t seem to worry them that | have dead rats on the 

altar. And the small boys bring me in rats, and mice, and shrews, 

and bats. Truly they are a most remarkable people. And there have 

been ever so many cases of murdered missionaries in the province in 

bygone days. I don’t believe these people are pure Chinese. Some 

of them have most remarkably bushman-like faces. They say that 

there are real aborigines in the province, and the natives call them 

dog-faced men 

By the way, there was a tiger reported here this afternoon! One 

man came in and said he saw it take a chicken. And there isn’t any 

door to this temple. What would you do under the circumstances ? 

All the tigers in this province are man-eaters! I have made plans 

to try conclusions with this particular fellow to-morrow—but he may 

assume the offensive first. Don’t think me an alarmist. I’m not. 

I’m merely telling you the cold truth about things. The other day 

when we were on our way up here we pulled up for the night beside 

a village. And all along the shore were the fresh tracks of two 

tigers. There was a lovely stretch of white sand, and it was bright 

moonlight, and so I kept the cabin window open and my rifle handy 

. and I'll swear I woke up every 20 minutes and had a look out 

of the window. Next day we heard that 15 people had been killed 

by tigers in the neighborhood during the past month or so. 
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HEREDITY EXPERIMENTS. IN THE TORTUGAS 

Dr. Paul Bartsch, curator, division of mollusks in the Museum, 

has continued his heredity studies, for which mollusks of the genus 

Cerion are used as a basis. He visited the various colonies trans- 

planted to the Florida Keys from the Bahamas, Curacao, and Porto 

Rico and made a careful study of the new generations which have 

arrived since last year. He reports a loss of all the material which 

was placed in cages last year for the purpose of studying the crossing 

products of selected pairs. A little experimenting led him to believe 

that this loss was due to the fact that the fine screen Monel wire used 

for the cages, which not only covered the sides but also tops of these 

structures, prevented dew formation on the vegetation in the inside 

of the cages and thus inhibited the moisture required by these organ- 

isms. A heavy dew forms at the Tortugas during the night, the time 

during which Cerions are actively foraging for food, which is largely 

gained by plowing immediately below the surface for fungal mycelial 

threads. It is more than likely that the lack of dew also prevented 

the proper formation of mycelia in the area enclosed by the wire 
meshes and the Cerions may therefore not only have been famished 

for want of water, but likewise starved. 

Dr. Bartsch believes that these were the controlling factors for he 

found that by placing a piece of Monel wire over a board at some 
little distance from the board and leaving a portion of the same board 

uncovered, the part over which the wire was stretched was found dry 

in the morning, while the uncovered portion was duly covered with 

moisture. To overcome this all the tops of the cages were removed 

and a narrow fringe of wire, turned down at the distal edge, was 

placed around each to prevent the Cerions from escaping. The cages 

were then stocked with the same elements used a year ago. 

Two additional cages were built. The sides and top of one were 

covered with paraffine treated cheesecloth and in the other the sides 

only were covered with this material. In these, specimens were placed 
in order to make sure that the contentions expressed above were the 

active factors in the killing off of last year’s material, and that the 

attaching of the Cerions to the wire mesh of the sides of the cages, 

which become decidedly warm when the sun shines upon them, was 

not responsible. 

The Newfound Harbor hybrid colony was found flourishing. A 

lot of dead specimens was brought to Washington for record. 

Two new mixed colonies were established, consisting of 500 Florida 
grown specimens of Cerion viaregis Bartsch taken from Colony FE, 

4 
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Loggerhead Key, and 500 Cerion incanum Binney from Key West. 

It is hoped that these two colonies will reproduce the conditions 

existing in the hybrid colony on Newfound Harbor Key. It was 
deemed wise to establish these colonies so that in the event a fire 

should sweep over the Newfound Harbor colonies the experiments 
might be continued in these additional places. The first of these 

colonies was placed on the east end of Man Key in a small, low 
meadow, which suggested the conditions in which the hybrid colony 
on Newfound Harbor Key is existing. The other colony was estab- 
lished on the north end of the little key east of Man Key, which may 

be called Boy Key. 

Five hundred each of Cerion viaregis, Cerion casablancae and 

Cerion incanum were sent to Dr. Montague Cooke at Honolulu for 

colonization in the Hawatian Islands. 
Thanks to the good offices of the Navy Department, Dr. Bartsch 

was granted the use of a seaplane for a week. This was under the 
command of Lieut. Noel Davis and Lieut. L. F. Noble. By means 

of this plane Dr. Bartsch was able to fly at low altitude over 

all the keys between Miami, and the Tortugas and West Cape 

Sable and the eastern fringe of islands. During past years he had 
spent as much time as was available in the exploration of the Florida 

Keys, for the native Cerion incanum in order to establish the present 
extent of the colonies and to note what variation might exist in the 

members thereof. These colonies are usually found in the grassy 
plots on the inside of the keys and frequently in small grassy plots, 
which are difficult to discover as one approaches these mangrove 

fringed islands by water. To discover such colonies has usually 

meant cutting through the mangrove fringe to reach the interior, 
and there was danger of missing the smaller grassy plots. Flying 

over these keys made it easily possible to see all favorable places 
and to mark them on the charts. This will now permit a direct attack 

upon the places in question and determine positively the extent of 

existing colonies. Dr. Bartsch feels that at least a year of solid work 

was saved by the four days during which these explorations were 
made, to say nothing about saving an endless amount of punishment 

by mosquitoes which usually infest these mangrove fringed islands. 

This aerial survey of the Bay of Florida also adduced the fact 
that the milky condition of that stretch of water which has obtained 
for some time and was probably responsible for the killing off of the 
greatest part of the marine flora and fauna of the region, has sub- 

sided, a state of affairs also noted in the Bahamas last year. It was 
found that the water was clear everywhere and that the channels as 
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Fic. 47——A great white heron at Newfound Harbor Key. This is the 
younger brother or sister of the two now in the National Zoological Park 
sent there by Dr. Bartsch in 1920 and 1021. 
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Fic. 49—Upper figure showing the wave undermined condition of the war- 
den’s house on Bird Key before removal. \liddle figure, the new location of the 
warden’s house in the midst of the tern colony. Lower figure, Mr. Bethel, the 
warden, and his home in the new location. 

(49) 
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well as the shallow flats were being repeopled by plants and animals. 
It will be interesting to note what, if any, change in the flora or fauna 

may ensue ; that is, to what extent an additional West Indian element 

may be injected into the lower Florida reaches. The partial stamp- 

ing out of the old fauna without serious physiographic or oceano- 

graphic changes in the region as far as physical features are apparently 

concerned is a rather interesting phenomenon and the re-establish- 

ment of a new flora and fauna will be equally noteworthy. 

As heretofore, careful notes on the birds observed on the various 

keys visited were kept. One of the remarkable things resulting from 

the use of the seaplane was the finding of several colonies of the 

great white heron (Ardea occidentalis) which in previous years had 

been found breeding singly in the mangrove bushes. Two colonies 

of at least fifty each were found and several other colonies of lesser 
number. A photograph of a young of this year is shown in figure 47. 

During Dr. Bartsch’s stay at the Tortugas, the Navy Department, 

at the request of the U. S. Biological Survey, moved the warden’s 

house on Bird Key. This necessitated the removal of a large number 

of eggs of the breeding terns which were on the point of hatching. 

Dr. Bartsch staked out the place to be invaded and removed all these 

eggs, giving the terns breeding in the area adjacent to the marked 

place each an additional egg, which all the birds accepted without 

protest. In this way, 2,420 foster parents were established and it is 

hoped many young sooty terns saved. Of the nests destroyed, only 

eight contained two eggs. All the others had one only. Figure 48 

shows a photograph taken of Bird Key from the seaplane, by 

Dr. Bartsch, and figure 49 shows the old and new location of the 

warden’s house. 

There were but seven nests of the noddy tern in this region. The 

noddy tern on Bird Key is disappearing rapidly. Dr. Bartsch does 

not believe that there are 800 birds there at the present time. This 

is largely due to the fact that the vegetation was destroyed almost 

wholly by a hurricane a few years ago, and no serious efforts have 

been made to replace it. Unless some relief is found in this matter, 

both the sooty and noddy will undoubtedly become decidedly dimin- 
ished in numbers because the young birds will not find the shade 
essential to their protection. It is again suggested, as heretofore, that 

a row of Australian pines and coconut trees be planted all around 

Bird Key, preferably alternately, and that the pines be kept topped so 

that they will become bushy and furnish a nesting site for the noddies. 

These trees grow very rapidly and should, in a very little while, fur- 
nish adequate home sites for the noddy tern. At the present time 
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Fic. 50—Near view of two noddies on their tree nests, on Bird Key, taken 
five ‘years ago. 
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Fic. 51.—This illustration shows transition stages from the tree breeding habit to 
the sand breeding stage depicted on the next plate. The upper figure shows a nest 
of dead twigs placed on the ground. The middle figure shows a number of nests 
placed among débris and rubbish on the site of the blown down house, while the lower 
figure shows an egg placed on a board. 
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Fic. 52.—The upper figure showing the noddy terns breeding on the bare floor- 
ing, the major remaining portion of the structure of the blown down house. The 
middle picture shows a noddy and her egg on the bare sand, and the lower figure 
shows another pair in a similar location. 

(S38) 
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the noddy terns, which are tree and bush building birds, are making 

their homes in clumps of grass wherever these are available, or on 

old boards or even in bare sand. Their habits in the last 10 years 

have changed on this key almost completely, resulting in the shrinking 

of the colony from about 4,000 birds, as estimated by Dr. Watson, 

to about 800, Dr. Bartsch’s estimate, at present. Figures 50, 51, and 

52 show the changes that have taken place. The photograph of 

figure 50 was taken five years ago; the other two this year. 

Another interesting observation made on birds was the large num- 

ber of thrushes found, chiefly on Garden Key. These included the 
veery, the olive back, the hermit, Alice’s and Bicnell’s thrush, all 
rather emaciated. Evidently the place did not furnish adequate food 

for them. It was interesting to see these birds mingle with the 

colony of exceedingly active white rumped sand pipers, which fre- 

quented the outer sandy beach of Garden Key, and to watch them 

chase sand fleas on the beach for food. 

COLLEGRING: TRIP TO AM AICA 

In February, 1922, Mr. John B. Henderson, a Regent of the Smith- 

sonian Institution, desiring living specimens of Antillean Zonitid and 

Thysanophoroid landshells for anatomical study in connection with 

a monograph on these groups in preparation, proceeded to Jamaica to 
coliect them. He made trips to Bog Walk on the Rio Cobre River, 

to Holly Mount on the summit of Mount Diablo, to Momague and 

to Brownstown in the Province of St. Anns. From the latter point he 
proceeded to St. Acre to complete for the Museum its series of fossil 

land shells occurring there in a Pleistocene deposit. [F‘rom Browns- 

town he continued along the north coast to St. Anns Bay, collecting 

at numerous stations. A final trip was made to Morant Bay along 

the southeast coast. Although the time spent in the island was only 
a fortnight, the results were most satisfactory. About 40 species 
of land mollusks were expanded and preserved for study and as many 

more were collected for their shells only. Mr. Henderson also visited 
Panama for the purpose of learning the possibilities of obtaining 

suitable craft from the Canal Zone authorities for contemplated 
future dredging operations at Colon and Panama. 

THE MULFORD BIOLOGICAL EXPLORATION 

The National Museum has received the zoological material, other 

than reptiles, batrachians and fishes, collected by the Mulford Biologi- 

cal Exploration of the Amazon Basin, an expedition financed by 
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the H. K. Mulford Co. of Philadelphia. The party consisted of Dr. 

H. H. Rusby, of the College of Pharmacy of Columbia University, 

director and botanist, W. M. Mann, assistant custodian of hy- 
menoptera, National Museum, assistant director, N. E. Pearson of the 

University of Indiana, ichthyologist, O. E. White of the Brooklyn 
Botanic Garden, botanist, G. Schultz McCarty and two Bolivian 

students, Manuel Lopez and Martin Cardenas, who were detailed by 
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Bic. 53.—Start of mule tram, La Paz, Bolivia. 
(Photograph by N. E. Pearson.) 

the Bolivian Government to study entomology and botany with the 

expedition members, and was accompanied by Mr. Gordan MacCreagh 

and J. Duval Brown, moving picture photographers, representing the 

Amazon Film Company. 

The expedition left New York on June 1, 1921, and proceeded 

to Arica, Chile, and from there to La Paz, Bolivia, where arrange- 

ments were made for transportation across the mountains. At Pongo 
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de Quime (Alt. 11,500 ft.) above the timber line, a stop was made 

for several days and considerable zoological material gathered. [rom 

here to Espia the journey was by mule train. Fspia is a spot at 

the junction of the Megilla and La Paz rivers which form the Rio 
3opi. In August it was exceedingly dry and not very productive 

of specimens. 

Fic. 54.—Nest of Hoatzin, Little Rio Negro, Bolivia. 
(Photograph by Mann.) 

Mositana Indians at their village down the river built balsas or rafts 

and towed them up to where the party waited and the members 

floated down the Bopi into the Rio Beni and to Huachi, a small settie- 

ment, and remained in this vicinity for over a month, with several 

excursions to nearby regions, as Covendo where the mission is located, 

and up the Cochabamba River to Santa Helena, a locality visited 



Fz, Oo On Nn tS = I la Ha n (e) Z Loot > Zi A ie) loz (e) W > la ra 7 
DP 

= \O i) bo 1 N 

F1é.. 55.— Loading a balsa, Rio Bopi, Bolivia. (Photograph by 
N. E. Pearson.) 

Fic. 36—Camp of Balseros (raft men), Mositana Indians, Rio Bopi, 

Bolivia. (Photograph by N. E. Pearson.) 
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* 

Fic. 57,—Young tapir, Rio Beni, Bolivia. (Photograph 
by N. E. Pearson.) 

Fic. 58—Mositana Indian girl at loom, Covendo, Bolivia. (Photograph by 
Mann.) 
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rarely by the Indians on hunting trips. This hilly, forested country 

was rich in animal life and large collections were made. 

From Huachi the Beni was descended to Rurrenabaque, a short 

distance above the head of navigation on the Rio Beni, and over 

three months spent in this vicinity, with side trips across the pampa 

to Lake Rocagua, and to Tumupasa, a small village situated at the 
very edge of the Amazon Valley, and to Ixiamas, an isolated pampa 

region beyond Tumupasa. 

Dr. Rusby, director of the expedition was compelled to return to 

the United States from Rurrenabaque, because of bad health. The 

s, Be oll 

Fic. 59—Church music, Ixiamas, Bolivia. (Photograph by Mann.) 

party under Dr. Mann then went down river to Riberalta and after- 

ward returned as far as the Little Rio Negro, where they spent several 

days collecting, and making short trips in the vicinity of Cavinas and 

up the Rio Madidi. In the region near the Lower Madidi several 
villages of Gorai Indians were visited and a small lot of ethnological 

material gathered. 

A final stop was made at Ivon, at the mouth of the river of that 
name. Then the party proceeded to Cachuela Esperanza and from 

there to the Madeira-Mamore Railroad in Brazil where steamer was 

taken for Manaos and to New York. 
The collection of living animals made by Dr. Mann on this expedi- 

tion reached the National Zoological Park on April 15, 1922. In 
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Fic. 60.—Wasp nest made of clay, Rio Beni, Bolivia. Suspended from 
branch of tree over water. 
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addition to a few specimens lost from the effects of the journey the 

collection included 15 mammals, 50 birds, and 17 reptiles that arrived 

in perfect condition. Among these are a number of very rare species 

never before exhibited in the Zoological Park. The red-faced spider 

monkey, black-headed woolly monkey, pale capuchin, choliba screech 

owl, Bolivian penelope, short-tailed parrot, Maximilian’s parrot, blue- 
headed parrot, Cassin’s macaw, golden-crowned paroquet, Weddell’s 

paroquet, orange-crowned paroquet, and golden-winged paroquet are 

new to the collection. These and other rarities are mostly from Rio 

Beni, Bolivia, and the upper Rio Madeira, Brazil, localities from 

which animals seldom find their way into collections. Of special 
interest also are such rare birds as the festive parrot, Amazonian 

cacique, and white-backed trumpeter, and a number of reptiles. Very 

few collections containing so many rare species in such perfect con- 

dition have ever been received at the National Zooiogical Park. 

The collection of insects secured by Dr. Mann was one of the 

largest single accessions ever received in the Division of Insects of 

the National Museum, estimated at 100,000 specimens. Only a small 

part has yet been examined. Some rare wasps’ nests, made of carton 
and clay, were brought back in perfect condition. Ants received 

especial attention, and many biological observations were made upon 
them. 

BOTANICAL EXPLORATION OF THE DOMINICAN REPUBLIC 

Dr. W. L. Abbott spent the winter and spring of 1922 in further 

botanical exploration of the Dominican Republic, and was able not 

only to rework much of the region about Samana Bay, but to make 

a thorough investigation of the entire southern portion of the Pro- 

vince of Barahona, as well as the cordillera north of San Francisco de 

Macoris. In the Province of Barahona he visited Barahona City, 

Paradis, Trujin, Enriquillo (Petit Trou), Los Patos, Polo, Maniel 

Viejo, and Cabral. The first four are small villages on or near the 

seacoast, south of Barahona City. The land here is for the most 

part low, rocky, and semiarid, except in the immediate vicinity of 
occasional springs and streams, but rises rapidly toward the interior 

to the Bahoruco Mountains. As the rock is limestone, caves and 

underground streams are frequent. One cave in particular, situated 

near Los Patos, is regarded by Dr. Abbott as promising valuable 

results to the ethnologist. Trujin, the most southern station reached 

on this trip, is on a large salt lagoon. Herman’s coffee plantation, 

about 1,500 feet above Paradis, is of interest as being the source of 

earlier botanical collections by von Tuerckheim and by Fuertes. 
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Polo, a small settlement in the mountain region west of Barahona 

City, is situated on the edge of a long flat valley about one mile wide, 
evidently at one time the bottom of a lake. Just east of this village 

the Loma de Cielo rises to a height of 4,200 feet, while four miles 

northeast of Polo the Loma la Haut reaches an elevation of 4,500 

feet. The former is covered with wet forests, while the timber of 

the latter is rather poor, having suffered from both the hurricane 

of 1905 and numerous recent forest fires. [Forest fires have almost 

entirely destroyed the pine forests about Maniel Viejo, south of Polo, 

leaving nothing but dry scrubby thickets and bare slopes. 

Exploration in the region of San Francisco de Macoris was con- 

fined to the vicinity of Lo Bracito, a small village on the southern 

slopes of Quita Espuela. These slopes are covered by humid thickets 

and forests, having, in fact, a reputation of being one of the wettest 

spots in the Dominican Republic and consequently affording a flora 

rich in ferns and mosses. 

A collection of over 3,000 plants was procured, nearly 50 per cent 

of which are cryptogams. Many of the flowering plants collected 

represent shrubs and timber trees that are likely to prove of great 

interest. 

Although the results of this expedition were chiefly botanical, 

Dr. Abbott collected also in other branches of natural history, his col- 

lections including specimens of mammals, birds, reptiles, fish, land 

shells, insects, and earthworms, as well as a small assortment of 

archeological material. 

BOTANICAL EXPLORATION IN CENTRAL AMERICA 

Botanical exploration in Central America during 1921 and 1922 

was made possible by the cooperation of the Gray Herbarium of 

Harvard University, the New York Botanical Garden, Mr. Oakes 

Ames, the U. S. Department of Agriculture, and the National Mu- 

seum. It was undertaken in order to obtain material for use in the 

preparation of a flora of Central America and Panama, which is 

now under way. Mr. Paul C. Standley left Washington in December, 

1921, going by way of New Orleans to Guatemala, and directly to 

the Republic of Salvador. 

Salvador, although the smallest of the Central American republics, 

has been the least known botanically, and previously hardly any 

collecting had been done there. With the fullest assistance of the 

Salvadorean Department of Agriculture, especially that furnished 

by Dr. Salvador Calderon, it was possible to make extensive collections 
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Fic. 62—Scene near San Salvador, the Cerro de San Jacinto in the distance. 
The hills are composed wholly of volcanic ash. 

Fic. 63.—Amate or wild fig tree (Ficus sp.) in San Salvador. 
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of plants in widely separated localities, covering nearly all parts of 

the country. All except three of the 14 departments were visited, and 

collecting was carried on in most of them. Five months were spent 

in the work, and 4,000 numbers, represented by about 15,000 speci- 

mens of plants, were obtained. The central and western parts of the 

country are densely populated and intensively cultivated, the moun- 

Fic. 64.—Eruption from the secondary crater of 
the volcano of San Salvador in 1917. (Photo- 
graph by Dr. V. M. Huezo.) 

tains being given over to the culture of coffee, which is often planted 

up to the very summits of the highest voleanoes. On this account, 

most of the natural vegetation has been destroyed, and conditions 

are not so favorable for botanical work as in the other Central Amer- 

ican countries. There are forests still remaining on some of the vol- 

canoes, and in the mountain chain known as the Sierra de Apaneca, 

which lies close to the Guatemalan frontier, and here it is possibie 



66 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 74 

to get some idea of the former state of the vegetation. In eastern 

Salvador there are extensive areas still uncultivated, but this land 

lies at a low altitude, where the flora is less interesting than at 

higher elevations. The highest mountains, it should be noted, are 

much lower than those of the neighboring countries, the largest of the 

Salvadorean volcanoes attaining an elevation of less than 2,500 
meters. All the mountains are of comparatively recent volcanic origin, 

lic. 65.—Giant Ceiba tree in the city of San Salvador. 

and several of the volcanoes are still active, an eruption of the voleano 

of San Salvador having wrecked the capital in 1917. 

It is expected that there will be prepared for publication in Salva- 

dor a list of the species of plants obtained by this expedition, includ- 

ing also those collected by the Salvadorean Department of Agriculture, 

which is actively engaged in botanical exploration. Thus far only 

a small part of the collections has been studied critically, but it is 

already evident that a considerable number of undescribed plants is 
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contained in them, besides many that are rare and little known. The 

flora of Salvador is essentially like that of the Pacific slope of Guate- 
mala (which likewise has been but imperfectly investigated), but it 

is of great interest to find here many species that heretofore have not 
been known to extend north of Costa Rica and Panama. 

Particular attention was devoted to securing the vernacular names 

employed in Salvador, and many hundreds were obtained. A part 

Fic. 66.—Gathering Salvadorean balsam in for- 
ests of the Balsam Coast. (Photograph by Dr. 
V. H. Huezo.) 

of the country was occupied before the Spanish conquest by people 

who spoke a dialect of the Nahuatl language, the idiom spoken also 

by the inhabitants of the Valley of Mexico, although not or scarcely 

known in the intervening territory of Guatemala. A large part of 

the names now used here for plants are of Nahuatl origin, some of 
them being the same as those employed in Mexico, while others are 

quite different. Besides these philological notes, much information 
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was secured regarding economic applications of the plants of the 

country. Salvador is especially rich in valuable cabinet woods, a 
remarkably large number of plants with fruits or other parts that are 
edible occur, and hundreds, probably, of the native plants are em- 

ployed by the country people because of real or supposed medicinal 

properties. The most interesting of all the native plants is the balsam 

Fic. 67.—Basaltic formation in the Department of 
La Libertad, Salvador. 

tree (Yoluifera pereirac), from whose sap is secured the article 

known as Salvadorean balsam or sometimes, erroneously, as balsam 

of Peru, because of the former belief that it came from Peru. AI- 

though this tree is widely distributed in tropical America, the balsam 

is gathered almost exclusively in Salvador, and in a limited portion 

of the country, known as the Balsam Coast. Other noteworthy trees 

are the giant ceibas and the amates (Ficus spp.) or wild figs, which 

national tree” of Salvador. They are 
“e are sometimes called the 
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Fic. 68.—Coconut trees in a Salvadorean finca. 

en 

Fic. 69.—Coast of Salvador, in the Department of La Libertad. The 
rocks are mostly of recent volcanic origin. (Photograph by Dr. V. M. 
Huezo.) 
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common and characteristic features of the landscape, and almost 

every country dwelling has its particular amate tree. 

Mr. Standley left Salvador early in May and proceeded to the 

north coast of Guatemala, where superior facilities for work were 

furnished through the kindness of the United Fruit Company. About 

three weeks were spent at Quirigua, a locality long famous archeologi- 

cally because of the ruins of an ancient Mayan city which are located 

here. Over a thousand numbers of plants were collected, chiefly 

trees and shrubs, many of them of great interest. The most con- 
spicuous feature of the vegetation of this part of Guatemala is the 

enormous plantations of bananas which are grown to supply the 

markets of the United States. Adjoining these plantations are bound- 

less areas of swamp and hilly woodland which remain in their natural 

condition. [specially noteworthy are the “ pine ridges,” low hills 
covered with scattering pine trees and occasional groups of the cohune 

palm. The vegetation on these hills is strikingly like that of the Ever- 

glades region of southern Florida, and the whole country looks about 

as Florida might 1f it were crumpled up into hills, instead of being 

almost perfectly level. 

After leaving Quirigua, about a week was spent in collecting at 
Puerto Barrios, on the north coast of Guatemala. The land here is 

nearly all swampy, but at this time of the year (early June), at the 

end of the dry season, it was possible to walk about in the swamps 
and gather plants that at other seasons of the year are inaccessible. 

Altogether six months were spent in Salvador and Guatemala, and 

a collection of over 6,000 numbers of plants was obtained, which will 

add materially to previous knowledge concerning the Central Ameri- 

can flora. The data concerning distribution and the notes upon ver- 

nacular names and economic applications will contribute greatly to 

the completeness of the flora of Central America which it is proposed 
to publish. 

BOTANICAL EXPLORATION IN COLOMBIA 

Between the months of April and October, 1922, Dr. Francis W. 

Pennell, curator of the herbarium of the Philadelphia Academy of 

Natural Sciences, and Ellsworth P. Killip, of the Division of Plants, 

National Museum, carried on botanical exploration in the Republic of 

Colombia. The expedition was organized by the New York Botani- 

cal Garden, the Gray Herbarium of Harvard University, the Philadel- 

phia Academy of Natural Sciences, and the National Museum as part 
of a general plan, adopted in 1918, for botanical research in northern 

South America. Financial assistance was given also by Mr. Oakes 
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Fic. 70.—Arid valley of the Dagua River, Colombia. The transition from 
a luxuriant rain-forest to this dry “ pocket” is very abrupt. (Photograph 
bys Elazen:)) 

Fic. 71.—View to the north from La Cumbre, in the Western Cordillera, 
Colombia. The wooded valleys are filled with orchids. (Photograph by 
Tee elazene) 
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Ames. Mrs. Pennell accompanied her husband, returning in July, 

and Dr. Tracy E. Hazen, of the Biological Department of Columbia 

University, was a member of the party from July to September, giv- 

ing special attention to photography. 

Fic. 72.—Dense forest at La Cumbre, Colombia. 
Plants of the Tropical Zone here mingle with the 
subtropical vegetation. 

The Republic of Colombia occupies the northwestern corner of 

the continent of South America, facing both the Caribbean Sea and 

the Pacific Ocean. The Andes Mountain chain, extending northward 

in practically a single range from its origin in southern Chile, divides 
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at the southern boundary of Colombia into three branches, known as 

the Western, Central, and Eastern cordilleras. Between the Western 

and the Central cordilleras lies the valley of the Cauca River; be- 

tween the Central and the Eastern, the Magdalena River. On the 

present trip it was possible to visit only the Western and Central 

cordilleras, the Cauca Valley, the city of Bogota in the Eastern 

Cordillera, and one or two localities on the Pacific slope. The expedi- 

tion entered the country at Buenaventura, the principal seaport on 

the Pacific, and at once established headquarters at the village of 

La Cumbre, in the Western Cordillera, for the purpose of studying 

the vegetation of the central part of this range. Descending to the 

Fic. 73—View from the summit of the Western Cordillera toward the 
Pacific slope, Colombia. The peaks are more angular than noted in other 
regions. 

city of Cali the party proceeded up the Cauca Valley to Popayan, the 

southern portions of both the Central and the Western cordilleras 
being explored from this point. Subsequently trips were made to 

Salento, in the northern part of the Central range, and to Ibagué and 

Bogota, material being collected at historic localities along the Quindiu 

Trail. Dr. Pennell sailed from the north coast, after exploring the 

northern portion of the Western Cordillera, Dr. Hazen and Mr. 
Killip returning by way of Buenaventura and the Panama Canal. 

Approximately 7,200 numbers were collected, sufficient material being 

secured to make nearly equal sets for each of the institutions associated 

in the expedition. Particular attention was paid to orchids, a group 

in which Mr. Ames is especially interested. To dry these specimens 
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required the use of artificial heat, the plants being put between driers 

and corrugated boards, bound tightly in packages, and placed over a 

charcoal-burning heater. 

As might be expected from its physiography, the vegetation of 

Colombia is extremely diverse. Within a few miles may occur a 
luxuriant tropical flora, the more open woods of the temperate zone, 

and the low alpine growth familiar on our American mountain tops. 

Again, as in the Dagua Valley, one may ride through a dense rain- 

forest, filled with ferns, mosses, and aroids, to emerge suddenly in 

an arid, desert-like region where cacti and acacias are the conspicuous 

plants. 

Fic. 74.—Crest of the Western Cordillera at El Derrumbo, 9,500 feet alti- 
tude, Colombia. Here occurs the stunted growth of the temperate zone. 

Since Colombia lies between the first and eleventh parallels, the 

development of its vegetation is little influenced by latitude. The 

controlling factors are altitude and precipitation, the rainfall ranging 

from 400 inches a year to almost perpetual dryness. Four zones of 

plant life may be recognized, the limits being approximately as 

follows: Tropical, from sea-level to 5,000 feet; Subtropical, from 

5,000 to 9,000 feet; Temperate, from 9,000 to 12,000 feet ; Paramo, 

above 12,000 feet. The tropical forests are very dense; giant-leaved 

aroids, bromeliads, and heliconias are most abundant ; everywhere are 

palms and bamboos. In the subtropical forests orchids become more 

common, many of them being of great beauty ; tree trunks are densely 
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Fic. 75.—Raft-building on the Cauca River, Colombia. The ever-present 
bamboos and palms supply the material needed. 

Fic. 76.—Crossing the Vieja River, a tributary of the Cauca, Colombia. 
As there is no bridge at this point, cargo must be removed from the mules 
and transported in native dug-out canoes. 
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Fic. 77.—Village of Salento, in the Central Cordillera, Colombia. Through 
this town passes the historic Quindiu Trail, reaching from Cartago to 
Ibagué. 

Fic. 78.—Upper valley of the Quindiu River, Colombia. The forest iand is 
being cleared out for pasture. (Photograph by T. E. Hazen.) 
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covered with mosses, hepaticae, and ferns. In this zone occasionally 

occur oak forests, recalling vividly our northern woods, and _black- 

berries are to be found. The Temperate Zone is a region of small- 

leaved, usually dwarfed trees, of blueberries and other ericaceous 

shrubs, and of open hillsides, where geraniums and Andean genera 

of the rose family are numerous. The Paramo is the bleak open 

country between timberline and the snows. Here flourish densely 

woolly espeletias, bizarre senecios, and many other brilliantly flowered 

herbaceous plants. 

Travel in Colombia is by railroad, by boat, and by horse or mule. 

Railroad construction has necessarily been slow, no road having yet 

been built over the Central Cordillera, while only a single line crosses 

the Western Range. In the Cauca Valley construction is being 

pushed, though only a small portion of the line has been completed. 

Boat travel is fairly satisfactory, and the scenery along many of the 

streams is very picturesque. The Cauca, navigable for good-sized 

steamers between Cali and Puerto Caldas, winds its way down a broad 

valley, in the main keeping to the western side, the banks lined with 

palms and bamboos. On one hand are the hills of the Western 

Cordillera; on the other, the higher mountains of the Central range. 

But to the botanist travel by horse or mule, though slower, is far 

preferable, since it affords opportunity to collect thoroughly in speci- 

ally favorable places. So inadequately known is the flora of Colombia 

that even along the regular routes of travel many species are found 

that are either new, unrepresented in American herbaria, or known 

only from specimens preserved in [European collections. 

The Colombians are of Spanish descent and are mostly well edu- 

cated, many of them having studied in American and European 

universities. Even among the lower classes illiteracy was rarely met 

with. The Indians, found chiefly in the mountainous regions of the 

interior, seem to be peaceful and industrious. No “ wild savages ’ 

were seen, although members of the expedition reached remote cor- 

ners of the country. Indian women delight in gay colors, a blue waist 

and a scarlet dress being a particularly favorite combination; the 

men dress more somberly and more scantily, often wearing merely a 

black smock reaching barely to their knees. The negroes are confined 

mainly to the coastal strips and to the warmer parts of the main 

valleys. 

Perhaps the most lasting impression one brings back from Colombia 

is that of the unaffected friendliness of the people. Everyone, from 

6 
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Fic. 79.—Upper valley of the Quindiu River, Colombia. Part of the 
forest has been supplanted by pastures. The palm is Ceroxylon andicola, 
or a closely related species. 

Fic. 80.—Paramo above Bogota, Colombia. From this lake arises one of the 
important tributaries of the Orinoco River. 
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the highest official to the lowliest peon, showed marked courtesy and 
hospitality to the members of the expedition. Customs officials made 

entrance into the country easy; railroad men were most helpful in 

Fic. 81.—Apparatus for drying specimens. The 
bundle of plants rests upon two poles. From this, 
cloth is draped about the charcoal-burning heater, 
being lined with woven wire to prevent its being 
blown into the fire. 

every way; landowners continually were placing their haciendas at 

the disposal of the party. Much of the success of the expedition was 

due to this universal spirit of friendly cooperation. 
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VISIT TO EUROPEAN HERBARIA 

Mrs. Agnes Chase, assistant custodian of the Grass Herbarium, 

National Museum, visited several of the larger herbaria in Europe 

during 1922 for the purpose of studying the grass collections. Five 

weeks were spent in Vienna. The herbarium of Professor Eduard 

Hackel, whose work on the genera of grasses in Engler & Prantl’s 

Pflanzenfamilien is the accepted one in current use, is deposited in 

the Naturhistorisches Staatsmuseum, Vienna. Professor Hackel has 
described about 1,200 species from all parts of the world, probably 

half of them from South America. The types of all but about 50 were 

found. Most of the missing types were found later in the herbaria 

whence he had borrowed material. Besides this collection, of greatest 

importance to American agrostology, the Vienna herbarium was 

found to contain many American types of Weddell, Philippi, Doell, 

and Mez, as well as classic collections such as Lechler’s plants of 

Chile, D’Orbigny’s from the Andes, Mandon’s from Bolivia, and 

Spruce’s from the Amazon, upon which many species are based. 

A visit was made to Prof. Hackel at Attersee in western Austria, 

and important but unrecorded items in the recent history of agros- 

tology were secured. 

In Munich were found the types of Nees’s Flora Brasiliensis, a 

few of Doell’s and several of Mez’s. At the Museo e Laboratorio di 

Botanica in Florence, Italy, types of Poiret, Poiteau, and Bose were 

studied. Poiret was the author of the grasses in the supplement to 

Lamarck’s Encyclopedia. His descriptions, like Lamarck’s, are indefi- 

nite. It was necessary to see his plants to be certain of his species. 

Poiteau botanized in Santo Domingo in the latter part of the 18th 

century, and made a brief visit to the United States. Bosc was a 
friend of Michaux, and came to Charleston in 1798, where Michaux 

had established a propagating garden. During the next two years he 

collected in the Carolinas. In Pisa there is a small but very important 

collection, that of Joseph Raddi, whose Agrostografia Brasiliensis, 

published in 1823, is the earliest work devoted to South American 

grasses. These were collected by Raddi himself in 1817-18. The 

Agrostografia contains 64 species of grasses, of which 33 are de 

scribed as new. A number of these had never been identified. The 

specimens were found to be unusually ample and well preserved, and 

photographs were obtained of them. (Fig. 82.) 

Ten days were spent at the Delessert Herbarium at Geneva. This 

herbarium contains, besides full series of the more recent collections, 

several old herbaria. Of great importance to the agrostologist is 
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the herbarium of Palisot de Beauvois, whose small volume * Essai 

d’ une nouvelle Agrostographie,” published in 1812, has caused much 
trouble for the agrostologist, because of his misunderstanding of the 

structure of grasses. An examination of his specimens, fragmentary 

though they are, cleared up many difficulties. At Delessert a number 

Fic. 82—Raddia brasiliensis, named by Ber- 
toloni for Joseph Raddi in a preliminary paper. 
Raddi himself referred the species to Olyra and 
gave it a new species name. It is recognized 
today as Raddia brasiliensis. 

of grasses collected by Rafinesque in the United States were also 

found. Types of Nees, Schrader, Kunth, Willdenow, Sprengel, Link, 

Pilger, and Mez were studied at the herbarium of the Botanical Gar- 

den, Berlin. 

Visits were made to the Rijks Herbarium at Leiden, and to the 

herbarium of the Jardin Botanique d’ l'Etat at Brussels. 
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Two very profitable weeks were spent at the herbarium of the 
Paris Museum. In this institution the Lamarck Herbarium and that 

of Michaux are segregated. Dr. A. S. Hitchcock had studied these 

collections in 1907. Mrs. Chase made drawings and took some addi- 

tional photographs. The Paris Herbarium is exceedingly rich in 

early American collections, such as those of Humboldt and Bonpland, 

Poiteau, Gaudichaud, Bourgeau, and D’Urville. The Fournier Her- 

barium, the basis of Fournier’s Mexicanas Plantas, was of very great 
interest. 

An important early paper on American species of Paspalum was 

by LeConte, 1820, an American of French descent. His herbarium is 

deposited in the Academy of Sciences, Philadelphia. When the col- 

lection there was studied a few years ago some of his species were 

not represented. Dr. Asa Gray, in a biographical note on LeConte, 

states that LeConte took his collection with him on a visit to France 

and that he was very generous in allowing his friends to have speci- 

mens. It was a great satisfaction to find the missing LeConte speci- 
mens in the Paris Herbarium. 

Two weeks were spent in London, studying the grasses in the Kew 

Herbarium and in the herbarium of the British Museum. Both of 

these herbaria contain much that is of greatest importance to Ameri- 

can agrostology. 

Botanizing in herbaria does not afford the same pleasure as does 
botanizing in the field, but it is not without its thrills of discovery. 

Current concepts of several species were found to be erroneous; that 

is, our ideas were those of later authors instead of those of the 

original ones. 

RECENT DISCOVERIES OF ANCIENT MAN IN EUROPE 

Under a grant from the Joseph Henry Fund of the National 
Academy of Sciences, and upon the conclusion of his work as chair- 

man of the American Delegation to the XX International Congress 

of Americanists at Rio de Janeiro, Dr. Ales Hrdlicka proceeded to 

Europe to examine the more recent discoveries of skeletal remains 

of early man and several of the most important sites where these 

discoveries have been made. 

In this quest Dr. Hrdlicka visited Spain, France, Germany, Moravia 

and England. The important specimens. studied included the jaw of 

Bafolas in Spain; the La Quina site and specimens in southern 

France ; the La Ferrassie skeletons, now beautifully restored, in Paris ; 

the Obercassel finds in Bonn; the Ehringsdorf discoveries and site 
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at Weimar and at Ehringsdorf; the Taubach site near a village of 

that name, with the specimens at Jena; and the principal Predmost 

skeletons now preserved in the Provincial Museum at Brno, as well 

as the site of these important discoveries at Predmost (in northern 

Moravia) itself. In addition to these, thanks to the courtesy of Dr. 

Fic. 83.—Side view of the reconstructed La Quina skull. 

Smith Woodward, Dr. Hrdlicka was enabled to submit to a thorough 

study the Piltdown remains at the British Museum of Natural His- 

tory, and to see there the originals of the Boskop skull as well as the 

highly interesting Rhodesian skull and parts of skeleton, from South 

Africa. He was finally once more able to see, at the Royal College 

of Surgeons, London, the originals of the Galley Hill and Ipswich 

skeletal remains. 
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Itc. 84.—Top view of a cast of the intracranial cavity of the La 
Quina skull, showing the shape of the brain. The brain, compared with 
modern specimens, is small and especially low. 
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on 

The examination of the specimens and the visits to the sites where 

most of them were discovered, produced a deep impression on the 

one hand of the growing importance as well as complexity of the 

whole subject, and on the other of the vast amount of the deposits in 

western and central Europe bearing remains of early man and giving 

great promise for the future. It was also once more forcibly im- 

pressed upon the mind of the observer how much more satisfactory 

is the handling of the original specimens than of even the best made 

casts. 

So far as the scientific results of the trip are concerned, Dr. Hrd- 
licka feels confident that he was able to reach a definite conclusion and 

position as to the human nature of the Piltdown jaw; to satisfy him- 
self on the more or less intermediary nature, between Neanderthal 

and the present type of man, of the Obercassel, the Predmost and 

some other crania; and to see the admirable restorations of both the 

La Ferrassie and the very important La Quina discoveries, the latter 

including the highly interesting and, so far as ancient remains of man 

are concerned, unique specimen of a well-preserved skull of a child. 

Plaster casts of nearly all the important specimens not yet repre- 

sented in the U. S. National Museum were obtained for the 

Institution. 

MEETING: OF INTERNATIONAL CONGRESS OF AMERICANISTS 
IN BRAZIL 

The twentieth meeting of the International Congress of Ameri- 

canists at Rio de Janeiro, Brazil, was attended by Dr. Walter Hough 

and Dr. Ales Hrdli¢ka, who were delegated by the Department of 

State and the Smithsonian Institution. Through the aid of the Car- 

negie Endowment for International Peace means were supped for 

the journey of these delegates. A successiul meeting of the Congress 

is reported, the effect of which on the promotion of anthropological 

science in Brazil is believed by the delegates to be important. While 

there was not time to travel in Brazil more than in the environs of 

Rio, it was interesting to view the resources of the capital as an index 

to the progress of the country. In this center there is a historical 

department, a national library, a national museum, fine arts institu- 

tion, botanic garden, athletic club, and all the activities relating to 

engineering, sanitation, commerce, etc., reflecting modern conditions. 

There is seen a tendency at present to lay more stress on historical 

researches than on science, but the nucleus is here to be developed in 

such a way as the future affords. In some lines science is being ade- 

quately treated as in General Rondon’s work among the Indians, 
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which has resulted in the gathering of important collections and in 

the publication of valuable ethnological studies, especially by General 

Rondon’s assistant, Dr. E. Roquette-Pinto. 

BXPEORATION OF THE, RPALEOLITHIC REGIONS OF FRANCE 

AND SPAIN 

During the month of September, 1922, Mr. M. W. Stirling, aid 

in the Division of Ethnology, National Museum, in the company of 

of Mr. P. J. Patton, a student in the University of Paris, explored 

the paleolithic regions of southern France and northern Spain. All 

of the important sites where remains of ancient man have been dis- 

covered were visited, and in addition a great many caves unknown to 

science were entered. 

The idea has become prevalent in America that this region has 

been practically exhausted archeologically. Although the previous 

existence of paleolithic man in this locality has been known for half 

a century, it may be truly said that the work of exploration has hardly 

begun. 

The habitations of the Stone Age are closely linked with the lime- 

stone formation which overlies large areas in this part of Europe. 
These may be said to fall into two classes, 7. e., rock shelters and 

caverns. The former are undercuts in the limestone, made by the 

rivers during the early Pleistocene or late Pliocene. A general ele- 
vation of the land has caused the streams to deepen their channels, 

thus leaving the undercuts well above the surface of the water. 

These were utilized as dwelling places by paleolithic man and in many 

instances were artificially modified. There are literally miles of relic 

bearing deposits of this class that have not yet been touched. The 

possibilities in this field are very great. 

The caverns of the Dordogne region are for the most part com- 

paratively small, while those in the department of Ariege are immense 

caves of a most spectacular nature. Of the former class are the 

grottoes of Font du Gaume, Combarelles, La Mouthe, Marsoulas, 

Montesquieu, and others. Of the latter class are the immense caves 

in the neighborhood of Foix, as for example, Salignac, Ussat, and 

Niaux. The tunnel of Mas d’Azil is the remnant of such a cave. 

Many of these caverns have become blocked with sediment owing 

to the fact that they frequently slope downward from the entrance. 
Messers. Stirling and Patton entered at least a dozen such caves 

which had become sealed at varying distances from their mouths. 

The opening of such caves has heretofore been left almost entirely 

to chance. Scientific endeavor at this work should produce most 
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Fic. 86.—Pal, a typical village of Andorre, showing slate roofs and stone 
construction of houses. Note the terraces on the bare rock hillside back of 
the village. Every foot of soil is made available for cultivation. 

Fic. 87—An old bridge in Andorre. The verdure in this scene is exceptional. 
Andorre as a whole is practically treeless. 
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fruitful results. The sealing of these caves has been a fortunate 

accident of nature, since the contents are by this means preserved 

intact. 

Of the regions visited, that in the neighborhood of Altamira, in 

Spain, and Ussat, in France, give most promise of rich returns to 

the archeologist. 
A few days were spent in the republic of Andorre. This little 

semi-independent state contains much of interest to the ethnologist. 

Here one finds medieval customs and usages still functioning in the 

same manner that they did in the middle ages. 

Located in the rugged mountains between the Spanish province of 

Lerida and the French department of Ariege, it is very difficult of 

access. Preserved from innovations by rival jealous potentates as 

well as by the conservative temper of its inhabitants, it has kept its 

medieval institutions almost intact. The administration of minor 

matters of justice and legislation is in the hands of local councils 

chosen from the heads of families in each of the six parishes into 

which the state is divided. The central government is vested in two 

viguiers, one nominated by France and the other by the Bishop of 

Urgel in Spain. Serious crimes and important cases in dispute are 

brought before them for judgment. There being no written laws, 
their decisions are given according to their consciences, and are final. 

The population is entirely self-sufficient, and each family is an 

independent unit, raising their own produce, grinding their own meal, 

and making their own clothing. The primitive nature of their farm- 

ing and household implements and utensils make an interesting study. 

ARCHEOLOGICAL FIELD-WORK ON THE MESA VERDE 

NATIONAL PARK, COLORADO 

In the year 1922, from May to August, inclusive, Dr. J. Walter 

Fewkes, chief of the Bureau of American Ethnology, continued his 

archeological investigations, begun 15 years ago, on ruins of the 

Mesa Verde National Park, Colorado. The brief season’s work was 

financed with small allotments from the Bureau of American [thnol- 

ogy and the National Park Service. He had for assistants Messrs. 

W. C. McKern and J. H. Carter, who contributed much to the 

success of the summer’s work. The site of the field operations was 

the so-called Mummy Lake village, better named the Far View group 

of mounds (fig. 88) through which runs the government road to 

Mancos. The group is situated about 44 miles north of Spruce-tree 

Camp, contains 16 large stone buildings, many indicated by mounds 

of stone, sand, and a luxurious growth of sage brush. The three of 
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these which have thus far been excavated belong to different types ; 

but it is desirable to examine and repair them all in order to discover 

other types. Indian corn, the national food of the cliff-dwellers, 
should be again planted in this area so that the future student or 

tourist could behold a Mesa Verde village in approximately the same 

environment as in prehistoric times. The first of the mounds was 

excavated by the Bureau of American Ethnology in 1916, and was 

called Far View House, and the particular mound chosen for excava- 

tion in 1922 lies about 100 feet to the south of it (fig. 89) or on the 

southern edge of the sage-brush area. 

Fic. 91.—Distant view of Pipe Shrine House. This view shows the 
whole north wall and the east wall foreshortened. The group of men at 
extreme left are looking at skeleton in cemetery. (Photograph by Geo. L. 
3eam. Courtesy Denver and Rio Grande Western Railroad.) 

The only noticeable characters of the mound when work began 

were a saucer-like central depression, and an elevated rim, which led 

Dr. Fewkes to suspect a buried subterranean kiva surrounded by a 

series Of rooms above ground. The mound was covered by a dense 

growth of vegetation. No walls were seen when this was removed, 

and much accumulated sand, earth, and stone had to be removed 

before any masonry was visible. Complete excavation revealed a 

remarkable building or pueblo (figs. 89, 91) presenting to arche- 

ologists several new problems for solution. 

The large depression turned out to indicate a central kiva (fig. 92) 

quite unlike that of any other on the Mesa Verde National Park. 

This room has no central fireplace ; no ventilator or deflector to dis- 

i 
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ster 3 a 

Fic. 92.—Interior view of kiva of Pipe Shrine House, looking north, 
showing shrine where pipes were found on floor. The ruin in the distance 
is Far View House. (Photograph by Geo. L. Beam. Courtesy Denver and 
Rio Grande Western Railroad.) 
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tribute fresh air; but in place of these a segment of the floor was 

separated from the remainder by a low curved ridge of clay. This 
area was a fireplace, as indicated by the large quantity of ashes and 

burnt wood it contained, and many artifacts mixed with the ashes 

showed that it served also asa shrine. Among other objects in it were 

Fic. 93.—Several pipes from shrine on the floor of the 
kiva of Pipe Shrine House. Reduced a little less than 
one-half. 

a full dozen decorated tobacco pipes made of clay, some blackened by 

use, others showing no signs that they had ever been smoked. Sev- 

eral of these are figured in the accompanying illustration. There 

were fetishes, a small black and white decorated bowl, chipped flint 

stone knives of fine technique, and other objects. For many years 

it had been suspected, that the ancient inhabitants of the Mesa Verde 

cliff dwellings were smokers, but these pipes (figs. 93, 94) are the 
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first objective evidence we have to prove it, and the fact that these 

objects were found in the shrine of a sacred room would indicate 

that they were smoked ceremonially, as is customary in modern 

pueblo rites. [vidently the priests when engaged in a ceremonial 

smoke sat about this shrine and after smoking threw their pipes as 

offerings into the fireplace. Probably as with the Hopi every great 

Fic. 94.—Pipes and other objects in shrine, 
as found. In addition to pipes many other 
objects were found, among which may be 
mentioned small black and white bowl, flint 
knives, idols, and “ septarian nodule.” (Pho- 
tograph by J. W. Fewkes. ) 

ceremony opened and closed with the formal smoking rite at this 

shrine, and one can in imagination see the priests as they blew whifts 

of smoke to the cardinal points to bring rain. 

The discovery of pipes for ceremonial smoking in a Mesa Verde 

kiva is a significant one, indicating that the ancient priests of the 
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plateau, like the Hopi, smoked ceremonially. Moreover the forms 

of the prehistoric pipes (fig. 93) thus used differ materially from 

those of modern pueblos, in size and shape, although a few formerly 

used by the Hopi have much in common with them. 

The walls of the kiva show structural variations from a standard 

Mesa Verde kiva. There were eight instead of six small mural pilas- 

ters, an addition of two to the usual number ; evidently the roof of 

this subterranean chamber was vaulted and as its size was large it 

needed more than the regulation number of supports for the roof 

Fic. 95.—Interior of Pipe Shrine House looking southwest across the 
central kiva. (Photograph by W. R. Rowland, Durango, Colorado. ) 

beams. Although the means of entrance to the room is unknown 

there was probably a hatchway in the roof, but no sign of a ladder 

was discovered and no vertical logs to support rafters were seen. 

The stones and plastering of the inner walls of the kiva indicate 

everywhere a great conflagration; the beams of the roof had com- 

pletely disappeared, and the color of the adobe covering of the walls 

was a bright brick-red. The kiva measured about 24 feet in di- 

ameter and was about the same depth. Its roof served as the floor 

of a court surrounded by one-storied rooms. There was no large 

banquette on its south side (fig. 95) as almost universally occurs in 

a regular Mesa Verde kiva. A conspicuous slab of rock set in the 
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floor near the rim of the shrine was possibly reserved for an idol or 
the altar during ceremonies. 

Midway in the length of the west side of the ruin there remain 

foundations of a circular tower whose wall once rose, like a minaret, 

several feet above the roofs of surrounding rooms. The altitude of 

this tower was no doubt formerly sufficient for a wide outlook, and 

its top, rising above the cedars, served as the elevation from which 

the sun priests watched the sun’s position on the horizon at sunrise 

and sunset. It was perhaps built as an observatory for determining 

time for planting and other agricultural events, and may likewise 

have been used in certain solar rites. 

Fic. 96.—Storage jars in place as found in northeast corner room of Pipe 
Shrine House. Four of these made of corrugated and one smooth white 
ware with black decoration. (Photograph by J. W. Fewkes.) 

The chambers surrounding the central kiva do not appear adapted 

for habitations; several were more likely used for storage of food, 

or for other secular purposes. In a room situated on the northeast 

angle several pottery vessels were found arranged in a row (fig. 96). 

It would appear that the site of the kiva was dug out by the ancients 

before these rooms were built, and that the rooms forming the north 

side were built later than the others and constructed of poorer masonry 

than those of the south side, where the masonry compares very well 

with the best on the Mesa. The east rooms are well made and 

resemble those of Sun Temple. There are two entrances or passage- 

ways through the south side, midway between which on the outer 

surface there is set in the wall a large stone with a spiral incised figure 
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supposed to represent the plumed snake; and near the southwest 

corner there are smaller mural designs representing two snakes. 

The presence of shrines outside Pipe Shrine House is significant 

as the first of their kind ever found on the Mesa. On the northeast 

corner of the ruin there is a small square enclosure with walls on 

three sides, one of which is the wall of the northeast side of the ruin. 

Reset in the north wall of this enclosure is a stone, found a little 

distance away, bearing an incised circle or sua symbol; and within 

the shrine were found several waterworn stones; also an iron meteor- 

ite, a fossil nautiloid, and many stone concretions and waterworn 

Fic. 97——Mountain Lion Shrine, or Shrine of the South. Stairway con- 
structed by aborigines. Square enclosure is shrine as found. South wall 
of Pipe Shrine House shown above. (Photograph by Geo. L. Beam. 
Courtesy Denver and Rio Grande Western Railroad.) 

stones. A stone slab found nearby bears on its surface an incised 

circle, the symbolic representation of the sun, indicating the presence 

of a sun shrine nearby. Waterworn stones, by a confusion of cause 

and effect, are supposed to be efficacious in rain-producing. 

South of Pipe Shrine House the ground slopes gradually (fig. 97), 

the earth being held back by a retaining wall. Aboriginal stone 

steps lead down to an enclosure which was a shrine, rectangular in 

shape, built in a recess of the retaining wall opposite the western door- 

way on the south side of the ruin. Within this shrine were a number 

of waterworn stones sufficient to fill a cement-bag, surrounding a large 

crudely fashioned fragment of a stone idol of the mountain lion. AI- 
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though the head and forelegs were broken from the body the hindlegs 

were intact ; a long search for the broken anterior end of the idol was 

a disappointment. The indentations on the surface due to chipping 

were plainly seen; and the tail was especially well made, resting along 

the dorsal line. This position of the tail is, in fact, what led the 

writer to identify the rude image as a representation of the mountain 

lion, for among the Hopi a picture of the puma painted on the north 

side of the warrior chamber has a similarly placed tail. The Hopi 

priests say that a Mountain Lion clan formerly inhabited the same 

cliff dwellings in the north as the Snake people. The position of 

A B 

Fic. 98.—Stone idol of a bird. Views from front 4, and one-half lateral B. 
Pipe Shrine House. Size: 4% x 2% x 234 inches. 

this shrine and the accompanying idol would indicate that the puma 

was the guardian of the south while at Walpi this animal is associated 

with the north. Among the Hopi, the mountain lion is also the guard- 

ian of cultivated fields. 

Lest, in the future, vandals loot this shrine, it was protected by a 

wire netting set in cement spread on top of the walls, but the contents 

were left as originally found. South of the mountain-lion shrine, 

about 20 feet distant, was another enclosure, also a shrine, contain- 

ing Many waterworn stones, but its idol or guardian animal had dis- 

appeared. This receptacle was likewise protected by a wire net. 

Although it had no beast-god image; several stone idols (fig. 98) 

were found in the adjacent dump around Pipe Shrine House—evi- 
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dently belonging to other cardinal points—but no other shrines were 

discovered. 
The heads of two stone idols, homeless or without a shrine, were 

picked up outside the walls of Pipe Shrine House, on rock piles 

between the retaining wall and the south side of the ruin. One of 

these (fig. 99) is thought to represent the head of a mountain sheep, 

another a serpent, and a third (fig. 98) a bird. The instructive thing 

about these idols, next to their crude technique, is the fact that stone 

images rarely occur on the Mesa Verde, few similar stone idols or 

images having previously been reported from ruins on this plateau. 

Their crude form reminds one of pueblo idols. 

Fic. 99.—Stone idol of a mountain 
sheep. Pipe Shrine House. Size: 
2x5 Onn 

An aboriginal cemetery, ransacked of its mortuary contents years 

ago by vandals, was found near the southeast corner of Pipe Shrine 

House. The human skeletons found in this cemetery show the dead 

were buried as a rule in an extended position. In cave burials the 

bodies were flexed or in a seated posture. The accompanying 

pottery contained food and drink for the deceased. On the western 

fringe of this graveyard Dr. Fewkes discovered about a dozen human 

skeletons that had escaped desecration, one or two of which were 

buried only a few inches below the surface; the deepest grave was 

shallow, not more than three feet deep. All the skeletons that were 

found were well preserved, considering their antiquity, and had been 

buried in an extended position on a hard clay bed. They lay on their 

backs at full length with legs crossed and heads oriented to the east, 
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generally accompanied by mortuary vessels of burnt clay and other 
objects. Several whole pieces of typical Mesa Verde pottery were 

taken out of the soil of this and another cemetery southeast of Far 
View House. ‘These vessels once contained food and water, the 

spirit of which was thought to be suitable food for the spirit of 

the defunct. One of these skeletons (fig. 100) was as fresh as if 

buried a few years ago and the bones were so well preserved that they 

were left in situ. Every bone of one skeleton remains where it was 
found and was not raised from the position in which it was interred 

over 500 years ago. Walls of a stone vault (fig. 100) were con- 

structed around the skeleton, reaching to the surface of the ground, 

and to a wooden frame firmly set in cement was nailed a wire netting, 

above which one of the workmen constructed a waterproof wooden 

roof hung on hinges. By raising this roof the visitor may now behold 

the skeletal remains of a man about 45 years old, 5 feet 6 inches tall, 

as he was laid out in his grave centuries ago. Visitors called him a 

mummy ; his flesh had not dried as is sometimes the case with the 

cliff-dwellers, but turned into a brownish dust. So far as known this 

is the first time care has been taken to preserve a skeleton of a 

Pueblo in its aboriginal burial place so that it may be seen by visitors. 

It shows the environment of the defunct and satisfactorily answers 

the question whether the cliff-dwellers were pygmies. 

In a refuse heap a short distance east of the sun shrine of Pipe 

Shrine House were found a hundred worn-out grinding stones and 

metates with many stones once used for pecking, all evidently thrown 

in a heap when they were no longer needed. 

The grading of the area about Pipe Shrine House was a work of 

considerable magnitude, as the surface was very irregular and over- 

grown with vegetation. The soil, earth and stones fallen from the 

rooms had raised mounds of considerable magnitude around the ruin. 

Pipe Shrine House appears to have served as a ceremonial building 

rather than a habitation—a kind of temple, originally constructed for 

the accommodation of the inhabitants of the neighboring Far View 

House. The tower was probably devoted to the worship of Father 

Sun and other celestials ; the kiva to that of Mother Earth and terres- 

trial supernaturals. 

In the thick cedars south of Far View House there were two 

mounds, one of which (fig. 101) was completely excavated by Dr. 

Fewkes, who found in it a fine central kiva surrounded by low walls 

of rooms, the whole probably being the house of one clan, for which 

the name, One Clan House, seems appropriate. It was probably the 
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Shrine House, and two partial skeletons. The rock walls were built around 
the skeletons by Dr. Fewkes. (Photograph by Geo. L. Beam. Courtesy of 
Denver and Rio Grande Western Railroad.) 



(
p
e
o
s
l
e
y
 

Ut
I}

SO
A\

 
9p
ue
In
H 

OL
Y 

pu
e 

J
O
A
U
a
G
 

A
s
o
y
I
N
o
D
 

“W
ie

ag
 

“J
T 

‘O
95
 

Aq
 

Y
d
e
s
s
0
}
O
Y
g
)
 

‘
Y
O
U
 

Su
ry
oo
] 

‘o
sn
oz
y 

ur
ef

y 
s
u
Q
—
I
O
I
 

“O
1L
T 

VOL. 74 COLLECTIONS OUS LLANE MISC SMITHSONIAN 104 



‘NO. 5 SMITHSONIAN EXPLORATIONS, 1922 105 

residence of a single social unit having a men’s room or kiva in the 

center of the women’s rooms or those used for grinding and storage 

of corn, sleeping, cooking, and other purposes. 

The kiva (fig. 102) of this ruin is typical of a cliff-house sanctuary. 

Its architecture is normal, the floor being cut down a short distance 

into the solid rock and covered with a white earthy deposit. The 

roof was supported on six pilasters between each pair of which there 

is a banquette, that on the south side being Jarger than the others. 

In the floor there is a circular fire pit, near which is a deflector facing 

a ventilator. There is also a large sipapt or ceremonial opening in 

the floor. The surface of the north banquette has its ledge lowered 

to a level below that of the others, and in the wall above it 1s a recess 

that served, no doubt, for the idol. A slab of stone formerly used 

to close this recess lay on the kiva floor below it. A structural peculi- 
arity was observed in the wall of One Clan House. As a rule kiva 

walls are built of horizontal masonry, but here the walls above the 
banquettes were made of upright stone slabs. 

A weil-worn trail, probably originally made by Indians, connects 

Far View House, Pipe Shrine House, and One Clan House with 

Spruce-tree House. Since the Indians abandoned the Mesa this trail 

has been deepened by stock seeking water and by herdsmen; it was 

also formerly used by all early tourists who visited the ruin on horse- 
back before the construction of roads. 

An important result of the archeological work of the Bureau of 

American Ethnology at the Mesa Verde the past suimmer, 1922, is 

new information on the use of towers revealed by the excava- 

tion and repair of Far View Tower. This building (fig. 103) 1s 

situated north of Far View House, about midway between it and 

“Mummy Lake,” and when work began on it no walls were visible ; 

the site was covered with sage bushes, and fallen stones strewn over 

the surface had raised a mound a few feet high, which is now a fine 

circular tower surrounded by low walled basal rooms. Three kivas 

were revealed on the south side where formerly no evidences of their 

existence appeared. Two of these (figs. 104, 105) were completely 

excavated and a third showed evidences of a secondary occupation. 

After this kiva had been used for a time, no one knows how long, it 

was filled with debris and fallen stones on which new walls were built 

by subsequent occupants. The masonry of the rooms they built 1s 

much inferior to that of their predecessors, the original builders of 

the kivas, and probably contemporaneous with the low walls east and 

north of the tower. 
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Fic. 102.—Kiva of One Clan House, from the north. Showing two pilas- 
ters, ledge on banquette for altar, conical corn fetish, sipapu and mortar. 
(Photograph by Geo. 1.. Beam. Courtesy Denver and Rio Grande Western 
Railroad.) 

— 
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Fic. 104—Kiva A, Far View Tower, looking south, showing ventilator 
opening and large banquette. (Photograph by W. R. Rowland, Durango, 
Colorado. ) 

Fic. 105.—Kiva B, Far View Tower. (Photograph by W. R. Rowland, 
Durango, Colorado. ) 
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The main object in excavating Far View Tower was to discover the 

use of these buildings, many of which occur on the Mesa Verde and 

still more in the canyons and tablelands west of the park. These 

structures are commonly supposed to have been used to detect enemies 

approaching the settlements. This was one of their functions; they 

were undoubtedly constructed to enable the observer to see or signal 

along distance. Nordenskiold suggested that Cedar Tree Tower had 

a religious character, which appears feasible. It is believed that 

one of their uses, perhaps the main one, was to observe the position of 

the sun on the horizon and thus to determine the seasons of the year 

by noting the corresponding points of sunrise and sunset. The sun 

priests of the early cliff dwelling determined the time of planting and 

other necessary calendar data for the agriculturists in the same way 

as the Hopi who use the following method: The line of the horizon 

silhouetted against the sky between the rising of the sun at the sum- 

mer and winter solstices is divided into a number of parts each corre- 

sponding to a ceremony or other important event.’ The point of sun- 

set at the winter solstice is likewise used for the same purpose. Having 

determined in this way that the time for planting has come, the sun 

priest informs the speaker chief who makes the announcement stand- 

ing on the highest roof of the pueblo. These towers were not only 

lookouts from which by horizontal sun observations the seasons were 

determined, but likewise sun houses or chambers where certain sun 

rites were performed. There is a room dedicated to sun ceremonies 

connected with the Great Serpent worship among the modern Hop1; 

and it is instructive to note that incised spiral designs representing the 

vreat snake frequently occur on stones of which towers are built. 

These towers may be square, circular, or D-shaped in form; may have 

one or many chambers; and may be accompanied with kivas or desti- 

tute of the same. Commonly the rising or the setting sun illuminates 

their summits. Sun Temple, on the Mesa Verde, may be regarded 

as a complicated tower with many chambers but in function practi- 

cally the same as that of a simple one-chamber tower. The complex 

of rooms at Far View Tower should be looked upon as an architectural 

unit, composed of a tower, probably when in use as high as the tops 

of the neighboring cedars ; three subterranean ceremonial rooms, cir- 

cular in form and similar to cliff-house kivas ; and a cemetery situated 

on the south. The rooms for habitation surrounding the tower do 

‘Tt would be very instructive in this connection to determine by excavation 

whether the two towers known as Kuktichomo, on the East Mesa of the Hopi, 

were used for the same purpose as those at Mesa Verde. 

8 
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not belong to this complex but indicate a secondary occupation ; their 

masonry is crude; their number shows that the population was insig- 

nificant. The few people who occupied them came later than those 

who erected and used the tower. 

There remain several large mounds in the Mummy Lake area 

awaiting excavation: some of these cover pueblos or houses of many 

clans, others small one-clan houses. The superficial appearance of 

these mounds seems to indicate types somewhat different from any 

yet described. One of the most unusual is a mound lying a few 

Fic. 106.—Megalithic House. Mainly distinguished by walls made of 
huge stones on edge. (Photograph by Geo. L. Beam. Courtesy Denver 
and Rio Grande Western Railroad.) 

hundred feet north of Mummy Lake, near the government road. 

When discovered nothing appeared above ground except a row of 

large unworked stones set on edge, forming one wall of a small room. 

On excavation walls of other rooms appeared, one of which was paved 

with flat stones. The ruin had a single subterranean kiva, of regula- 

tion shape and size, the walls characterized by large stones. This 

ruin, called Megalithic House (fig. 106), belongs to a type which there 

is every reason to suspect is represented elsewhere on the Mesa. 

Cyclopean walls similar to those of Megalithic House have been pre- 

viously reported from the bluff overlooking the junction of the 

Yellow Jacket and McEImo Canyons, and at various places in the 
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Itc. 107.—Pottery from cemetery of Pipe Shrine House: a, Red food bow]; 
b, Coiled brown ware, archaic decoration; c, Effigy jar, black on white; d, 
Ladle, black on white: ce, Effigy jar, black on white; f, Vase, rough ware; g, 
Mug, gray with glossy black figures; h, Mug, gray with black decoration. 

a, Diameter 11”, height 4”; b, diameter 614”, height 3”; c, height 4%”, length 
Au 6”, width 4”: d, diameter 314”, handle 31%4” long; e, length 3%”, height 13% 

width 2”; f, height 334”; g, height 414” ue 

” 

- h, height 414”. 
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San Juan Valley. In some instances the walls are made of much 

larger stones, but always vertically placed. 

An examination of the numerous artifacts or small objects like 

stone implements, pottery (fig. 107), and the like, that were collected 

in the excavation of the rooms above mentioned, impresses one with 

the unique character of several, and the differences of the ceramics 

from those of Spruce-tree House and Cliff Palace. We find charac- 

teristic cliff-house forms of indented and corrugated ware differ from 

those of Far View Tower which more closely resemble those found at 

Pipe Shrine House; other forms do not occur in cliff houses. Many 

specimens of apparently coiled ware were decorated with stamps, one 

Fic. 108.—Stone with parallel 
grooves, possibly used as a pottery 
stamp. Pipe Shrine House. Size: 
234 x 234 x 5 inches. 

of which is shown in figure 108. Among pottery types may be men- 

tioned: a, food bowls with shiny black interiors and small grooves 

with corrugations on their exteriors; b, pottery showing coils (fig. 

109) on their exteriors and painted designs on their interiors. The 

black and white ware is coarse and the designs used in decoration are 

simple and not very artistic. Representations of a few of these 

archaic types appear in the accompanying figures. The excavations 

at Far View House, Pipe Shrine House, and other surface pueblos 

show that there are several divisions of corrugated ware which 

should be considered. We should not rely wholly on geography in 

a comparative study of ceramics in the Southwest; age may also 

be considered. It is probable that types of architecture have changed 
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since man settled on Mesa Verde, and that pottery also has changed 

seems probable, but direct observations regarding that change are 

necessary. Take for instance the type known as effigy jars and 

vases. No clay effigies of men or animals had been recorded from 

Mesa Verde before the present year. Jars representing birds, 

quadrupeds, and a clay representation of the foot of a human efhgy 

were excavated at Pipe Shrine House. A more archaic pottery dis- 

tinguished by black figures on white ware is not the same as the black 

on white ware found in cliff dwellings, which would appear to indi- 

cate that the pottery from the cemetery of Pipe Shrine House was 

earlier than that of Spruce-tree House, and yet we find at the former 

locality pottery fragments equal in technique and almost identical in 

Fic. 109.—Fragment of  corru- Fic. 110.—Stone with carved T- 
gated pottery. One-third natural doorway in intaglio. (Drawing by 
size. (Drawing by Mrs. George Mrs. George Mullett.) Size: 5%x 
Mullett.) 5 x 334 inches. 

ornament with the best taken from the latest cliff houses on the park. 

There is evidence from the character of the pottery that some of the 

Mesa Verde pueblos were inhabited later than Cliff Palace, rendering 

it easy to accept the theory that the Mesa Verde caves became so 

crowded with buildings that their inhabitants were compelled to move 

out and, having constructed pueblos, to settle on the mesa tops near 

their farms. 

Several objects, some of which are of doubtful use, were found 

near Pipe Shrine House. One of these is the stone shown in figure 

110, on which is engraved a T-doorway and roof beams, a speci- 

men which, so far as known, is unique. A bare mention of the 

various forms of stone weapons and mortars and pestles, imple- 

ments, pottery objects, bone needles, scrapers and the like would 



T14 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 74 

Itc. 111.—Fossil shell used as an arrow pol- 
isher. Pipe Shrine House. Size: 234 x 134 x 
13% inches. 

Itc. 112.—Cool Spring House on Cajon Mesa, Hovenweep National 
Monument. (Photograph by J. W. Fewkes.) 
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enlarge this report to undue proportions. An implement hitherto 

undescribed (fig. 111) is made of a fossil bivalve shell with two 

grooves for arrow polishing. This object 1s ornamental as the outer 

surface of the shell valves give it an artistic look. 

In order to protect them from the weather, the tops of the walls 

of rooms in Pipe Shrine House, One Clan House, Far View Tower 

and the kivas of the same were covered with a cement grout. The 

walls of Far View House were treated in the same way and it is 

to be hoped that these ruins will not need additional protection from 

the elements for several years to come. 

At the close of his season’s work on the Mesa Verde National 

Park, Dr. Fewkes visited Cool Spring House (fig. 112), a large un- 

described ruin on Cajon Mesa, in Utah, about 10 miles west of the 

junction of McEImo and Yellow Jacket canyons. Cool Spring House, 

like Cannon Ball Ruin, is situated about the head of a canyon 

and consists of several more or less isolated rooms. It takes its 

name from a fine spring below the mesa rim. This ruin is situated 

so far from white settlers that its walls are at present in no danger 
of being mutilated, but there is danger that the neighboring towers 

will soon be torn down, if not protected. As it is proposed that Cool 

Spring House be added to the towers in Square Tower Canyon and 

Holly Canyon to form the proposed Hovenweep National Monu- 

ment, it would be most unfortunate if these three groups of ruins 

should be allowed to be destroyed by vandals. 

OBSERVATIONS AMONG THE ANCIENT INDIAN MONUMENTS 
OF SOUTHEASTERN ABASKA 

In the spring of 1922, the Bureau of American [*thnology dis- 

patched a special investigator, Dr. T. T. Waterman, to examine the 

remains of native villages in southeastern Alaska. A number of these 

interesting old settlements were scrutinized, in the company of native 

informants. There 1s much of interest in and about these old-time 

villages, though signs of Indian occupancy are rapidly vanishing. 

The principal objects of remark are the totem-poles, for which this 

part of America is celebrated. [Every village site shows a number 

of these columns, though some have fallen, some have been cut down 

with axes, and some have been hauled away bodily as curiosities, 

sometimes to distant cities. In spite of the fact that they are carved 
out of nothing more enduring than wood (usually yellow cedar ) 

some of them are of such tremendous size and solidity that they have 

stood for many generations. Here and there on the old village-sites, 
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there still may be seen among the poles the framework of one of the 

old-time Indian houses. 

The area in which totem-poles were originally in use was very 

definitely limited. Nowadays small replicas are being cut for sale 

Fic. 113.—A fine example of totemic art, from the Alas- 
kan town of Howkan (central pole). Striking features 
of totemic art are, (1) the love of complexity, and (2) the 
fact that the whole pole is an artistic wit. A figure merges 
into the ones above it and below it in the most clever way. 
This is well shown in the splendid column in the center. 
(Photograph by Julius Sternberg, for the Smithsonian Insti- 
tution. ) 

out of all sorts of wood, and stone, by all sorts of people, many of 

whom have not the faintest notion of how to do it properly. Origi- 

nally, poles were not set up anywhere south of Frazer River. The In- 

dians of Puget Sound, for example, never heard of these columns 

until late years. The Indians of the east coast of Vancouver Island 
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had totemic columns, but the custom had never spread to the island’s 

western side. To the northward, totem-poles were carved by all the 

tribes as far north as the Chilkat (a Tlingit group living not far 

from Haines, Alaska). The Indians to the north and west of them, 

Fic. 114.—The degeneration of totemic art under civilized 
influences. It would be a pity to discuss this wretched 
thing, except to note that the clever joining of one figure 
to the next is completely forgotten. The carvings show (at 
the bottom) the Sun, above that two Beavers, and, at the top, 
an Eagle. The house behind it is called * Eagle-leg house.” 
The house-posts represent the legs and feet of the eagle. 
(Photograph by Julius Sternberg, for the Smithsonian 
Institution. ) 

however, knew nothing of such columns. Beyond these lived the 

Eskimo and Aleut, to whom the whole matter is absolutely foreign. 

The whole idea of art from which the totem-pole rose, was limited 

strictly to the coast region. 
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It is safe to say that totem-poles are peculiar. As a matter of fact 

they represent a very highly developed, and very highly perfected, 

art. For many generations the Indians hereabouts were developing 

a special “ knack,” and special ideas, and the matter has gone so far 

that other people (even some civilized artists) seem to have a hard 

time even in copying their handiwork. 

In looking over these monuments, one is impressed by the fact that 

there has been a gradual change in artistic style even on the part of 

the Indians themselves. Unfortunately, this change is in the wrong 

direction. The older monuments are much more interesting, and are 

better executed, than the later ones. In other words, the Indians 

themselves are forgetting their art. This matter is worth illustrating 

by photographs (figs. 113, 114). Monuments carved within the last 

40 years look (usually) rather staring and stiff, compared to the ones 

executed previously. With the increasing decay of the old land- 

marks, a unique style of work bids fair to pass as completely out of 

existence as though it had never been. 

This art consists almost solely in the representation of animals. In 

the second place, the carvings refer almost always to the parts which 

these animals played as actors in certain interesting old myths. The 

carving is meaningless, unless one understands the allusions. Per- 

sonal experiences are sometimes portrayed. This matter, also, can be 

very simply illustrated. In the third place, in making a representation 

of an animal the Indian has special stylistic devices. He puts in what 

he knows should be there (including at times things not visible at all). 

Finally, he often simplifies and distorts (according to certain def- 

nite rules), in the interest of getting in what he regards as im- 

portant. He actually loves artistic complexity. All of these tenden- 

cles prevent us from readily appreciating what is in many cases a 

genuine artistic masterpiece. These points may well be explained 

separately. 

The significance of the poles can scarcely be understood without 

taking into consideration the form of society which these Indians had 

developed. All of the tribes of the Northwest Coast are divided into 

what are usually called “clans.” This word is borrowed from the 

Scotch, and is a very poor term to describe the social groups of the 

Northwest Coast Indians, for here each group looks upon itself as 

related by blood to some particular animal. A tremendous mass of 

ideas and usages has grown up, involving kinship, rules of marriage, 

property, religious ceremonies, and descent, all centered about these 
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animal crests. To the Indian of this region, the most important thing 

in life is his animal crest or “ totem.’”’ All his ideas and ambitions 

center about this hereditary animal progenitor and protector, the 

similitude of which he carves on all his utensils, paints on his house- 

front, tattoos on his arms and chest, paints on his face, and repre- 

sents on his memorial column. Curiously enough (from our particu- 

lar point of view) these people reckon kinship through the mother 

only. This has some curious consequences. A man (to mention one 

consequence) sets up a memorial column, not for his father, but for 

his mother’s relatives, particularly her brother. Conversely, if a col- 

lector wishes to buy a pole for preservation, he ought logically to 

arrange matters, not with a dead chief’s son, but with the dead chief’s 

nephews; for a son has (according to the native idea) no connection 

with his father. It is to a maternal uncle that a boy or young man 

looks for guidance and counsel, and it to his maternal uncle's mem- 

ory that he owes respect and veneration. It 1s from this uncle only 

that he inherits property. .\ boy’s whole position in society, his rank, 

his outlook, his standing, and his prospect for a wife, all hinge upon 

the animal crest which he inherits from his mother’s brother. It is 

clear, therefore, that a “ totem-pole’’ will display to the public view 

all the animal crests which the Indian possesses, and all those with 

which his family (7. ¢., his maternal relatives) have been associated 

in the past. 

The importance of these animal crests to the Indian, may be illus- 

trated in an interesting way by the matter of personal names. Many 

of the names used within a group of kindred, refer to the qualities, 

or traits, or tricks of behavior, of those animals to which the group 

looks. Sometimes the names are highly figurative. Sometimes they 

are so pitilessly literal and Homeric in their directness that they 

almost disconcert us. Some very famous names, which have been 

used in certain families for generations, appear in the following list: 

NAMES IN THE RAVEN CLAN 

“ Raven's child.” 

“ Waddling.” ‘This refers to the raven’s gait when he walks on 

the ground. 

“ Treating-cach-othcr-as-dogs.” his alludes to the fact that when 

a raven dies, the other ravens pull the body about, dragging it here 

and_ there. 
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“ Big-doings.’ This refers to the fact that young ravens are noisy, 

in the nest. The native word means literally a celebration, or fiesta 

of some sort. 

“ Stinking-nation.” This epithet refers to the fact that the raven’s 

nest has a bad odor. 

NAMES IN THE EAGLE CLAN 

‘ Four-eggs,” an allusion to the eagle’s trait of laying always four 

eges in the nest. 

“ Tail-dragging,’ because the tail of the eagle drags when he walks. 

“ Flying-deliberately.” The eagle, with his great bulk and enormous 

wings, flies strongly but deliberately, unlike any of the smaller birds. 

The next point to be explained is the matter of mythology. The 

animals whose likenesses appear in the carvings are the heroes of 

endless mythical tales. It requires a good deal of erudition therefore 

to explain some of the carvings on the totem-poles. Only the old 

Indians can do it. In the first place, the animal may be represented 

either in human or in animal form, for any animal can take either 

form, as he pleases. A bear, for example, in his own den, takes off his 

bear-skin and hangs it up. What jooks like a lot of stones or branches 

is in reality the furniture and property in a fine house; and the 

bear himself appears there as human as you or I. Conversely, when 

the Indian artist is carving the likeness of a man, he is occasionally 

so moved by his feeling for that man’s totem or crest, that he intro- 

duces features of the crest-animal into the carving. The art is there- 

fore a bit abstruse; and the native sculptor seems in some cases to 

delight in border-line styles of execution. 

The carvings on a given pole, where they refer to the great animal 

heroes, usually allude to some certain episodes in the myth of that 
particular animal. Tor example, a certain family of Raven-people 

living at the town of Kasaan put up the pole shown in figure 117. It 

represents part of the legend known as “ Raven Travelling.” At the 

top is Raven himself, in human form. Below him is his likeness in 

bird form (and an impish look it has). Below this again is a fish 

called the sculpin or bull-head—an excessively ugly and repulsive 

looking fish. 

Bull-head used to be a beautiful fish, the prettiest of all that swam 

in the sea. Raven when walking along the shore saw Bull-head dis- 

porting himself, and called out to him, “ Come on shore one moment.” 

Bull-head paid no attention. ‘‘ Come ashore a moment,” said Raven, 

“vou look just like my grandfather.” “I know you,” said Bull-head, 
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“you might as well be still. Future generations also will know what 

kind of a person you are!” Bull-head was thus too smart to come 

ashore. “ Well then,” said Raven, “from this time on your head 

will be big, and your tail will be skinny, and you will be ugly.” That 

is why Bull-head is so ugly to-day. 

lic. 117.—A totem-pole at Kasaan Village, illustrating 
the myth of the adventures of Raven. (Photograph by 
Julius Sternberg, for the Smithsonian Institution.) 

An illustration of another kind of crest is supplied by the following 

picture (fig. 119). The carving at the top represents a man ina stove- 

pipe hat and a frock coat. An old lady belonging to the house in front 

of which this pole stood, was the first person in the village to en- 

counter a white man. She went to Sitka with some Indians, and 

there saw a ship with whites in it. The figure representing what she 

saw was accordingly put on her pole. Below this white man is a 
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splendid carving of Raven, and below him a figure representing a 

‘sea-lion rock.” The supernatural being who lives in the rock is 

pictured as a great beast, who embraces a sea-lion, the flukes of which 

are under his chin. Such a rock-being is called “* Grand father-of-the- 

sea-lions.”’ In this pole, carvings like the carving of the Raven, 

representing the ancestor of the owner’s family, are combined with 

Fic. 119.—A pole with a white man as a totem (cen- 
tral pole). An old lady who set up this pole was the first 
Indian of her group to see the whites, so she took a 
white man (in a frock coat and a stove-pipe hat) as her 
crest. (Photograph by Julius Sternberg, for the Smith- 
sonian Institution. ) 

a carving representing something in the history of the owner's wife, 

namely, that she was the first person in the village to come in contact 

with the whites. 

A totem-pole represents, really, a certain Indian’s claim to fame. 

His claim may be based either on his own experiences (like a dis- 



N@T5 SMITHSONIAN EXPLORATIONS, 1922 12 Loa | 

tinguished conduct medal is, with us) ; or it may be founded on his 

ancestry, as in the case of a title of nobility or a coat of arms. 
The idea that a pole always represents descent is therefore not 

quite accurate. It is more nearly correct to say that the pole repre- 

sents the Indian’s claim to fame, or the claim of his family, whatever 

that claim may be based on. Examples of both kinds of carvings are 

plentifully illustrated in the poles. 
.\ quaint example of a recently-acquired crest is shown in the next 

photograph (fig. 120). This specimen was described to me as “ the 

best totem-pole in Alaska.” As a matter of fact, it is not properly 

speaking an example of totemic art at all. The owner’s wife was an 

Ikagle woman, so the Eagle appears at the top of the pole. The 

owner himself many years ago, prior to the American occupation of 

Alaska, became converted to Christianity. The three figures on the 

body of the pole were copied, along with the scroll designs, from a 

Bible in the Russian church at Sitka. The bottom one represents, it 

is said, St. Paul. The pole, while it is not a totemic monument as 

far as the designs on it are concerned, illustrates how an individual’s 

inner experiences give rise to crests. This man gave a great “ pot- 

latch ” when he raised the pole, and thus endowed himself with title 

to these carvings, and made them his own. He was the first of his 

group to become a Christian. 

It will be seen that there are a variety of ways in which carvings 

come to be on poles. In one case I know of, a chief who belonged 

to the Raven side, gave a great feast to a rival chief, a man of the 

Killer-whale persuasion at Wrangell, and made him numerous gifts. 
This latter chief fell upon evil days (he became a drunken loafer, in 

fact) and was never able to return these gifts, in their equivalent. 

The first chief therefore put on his totem-pole his own crest, the 
Raven, represented as biting the dorsal fin of a Killer-whale. The 

rival chief resented the affront, but he had lost his property so what 

could he do? 

Some of the larger poles are 50 or 60 feet long. The tree is 

felled and transported to the village-site, often at great labor. Here 

it is blocked up, and an artist, hired for the purpose, works out the 

design. To carve an elaborate pole was often the work of several 

years. The back side of the pole was hollowed out, to lighten, as much 

as possible, the labor of erecting it. A large concourse of people 

assembled for the actual erection of the great column, and to partake 

of the accompanying feast. Tremendous amounts of property were 

distributed at such times, by the host and by his relatives, and such 

an occasion has ceme to be called a “ potlatch.” The rank of a family 

s) 
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Mic. 120.—A “ totem-pole” with figures copied from an old Russian Bible in 
the church in Sitka. The owner was the first inhabitant of the village to become 
a Christian. (Photograph by Bergstresser, Alaska.) 
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was greatly increased by this means. The size of a pole, and the 

style of the carvings, like the name assumed by the owner, were corre- 

lated to a nicety with the cost of the potlatch and the amount oi 

property disbursed. The noble families were very careful of their 

dignity. Once a young man who was preparing to take a swim, 

Fic. 121.—A pole at the village of Howkan, showing (near 
the top) a representation of the Czar of Russia who sold 
Alaska to the U. S. A. (Photograph by Julius Sternberg, 
for the Smithsonian Institution. ) 

slipped on a treacherous rock and capsized on this beach. His father 

at once ordered that a slave be killed, so that nobody would laugh at 

his son. Slave people, who merely represented objects of value, were 

often dispatched at potlatches, to add lustre to the occasion, and to 

show that the owner was so rich that the value of a slave was nothing 

to him. 
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In later times, after the first contact with civilization, it became 

difficult to kill slaves. The custom developed, therefore, of manu- 

mitting one or more slaves when a pole was set up. A figure repre- 

senting the slave who went free, was often carved on the pole. A 

very finely carved pole in Howkan (fig. 121) has an amusing figure 

on it. It represents the Czar of Russia who sold Alaska. It shows 

him with his military uniform, with epaulettes. An Indian made 
this pole soon after the transfer of Alaska to the United States. 

Concerning the Czar he said as follows: * We have now got rid of this 

fellow. We have let him go off about his business. Therefore, | 

will put him on my pole, in memory of the event.” 

A certain artistic style has become established in this region, which 

also tends to prevent the carvings from being readily recognized. 

Two tendencies especially may be recognized. In the first place, 

many parts of the animal are suppressed entirely, and selected fea- 

tures only are portrayed. In the second place, the Indian artist feels 

at liberty to rearrange the parts of the animal, to make the design fit 

the available space. Often the animal is reassembled in an entirely 

new way, the parts appearing in the most unexpected and incongru- 

ous way. ‘These two tendencies have been labelled by Boas the 

tendency toward symbolism, and the tendency toward distortion. 

Some of the important totem animals are symbolized by the follow- 
ing traits. When one or two of these traits are present, the animal 

may be readily recognized. 

Beaver. This animal is usually represented as sitting up, and 

gnawing at a stick, which he holds in his forepaws. The great 

incisor teeth of this rodent are always shown very plainly. 

Bear. The bear is usually in a sitting posture, usually holds some- 

thing between his paws, and usually has something protruding from 

his jaws (1f nothing else, then his tongue ). 

Eagle. The beak of the eagle curves over at the end, and has 

a characteristic shape. 

“ Thunderbird.” This bird (which does not appear in the natural 

histories) makes thunder by clapping his wings, and lightning by 

winking his eyes. He is carved very much like the eagle, but his beak 

is larger, and he wears a cloud hat. 

Hawk. The carving of the hawk may be distinguished by the fact 

that the beak curves over, and the point of it touches the mouth or 

chin. 

Shark. he characteristics emphasized in the shark-carvings are 

rather curious. The animal’s gill-slits (a row of openings on either 

side of the animal’s neck) are always shown by crescent-shaped 
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markings. When the shark is represented in human form, these 

marks appear on the cheek. The mouth is invariably curved down- 

ward at the corners, and is often furnished with sharp triangular 

teeth. The forehead of the shark always rises into a sort of peak. 

The principle of dissection is equally useful to the native artist. 

It may be illustrated not merely in the case of totem-poles, but with 

many varieties of objects. We may suppose for example that an 

Indian’s totemic crest happens to be the Killer-whale, and that this 

man is ornamenting a slate bowl with this family crest. The shape 

of the bowl is settled in advance; that is, being a bowl or dish, it is 

round. The nature of the design is also a cut-and-dried matter. The 

man in the nature of the case wishes to represent the Killer, for that 
is the crest he has inherited from his forebears. He therefore has to 

make a killer-whale pattern which will exactly fit into a round field. 
The Indian’s artistic ideal is quite different from our own. He feels 

(apparently) that certain essential traits (or ‘“ symbols”) of the 

animal must go in; and that the design when finished must neatly 

fill up the available space. 

The monuments left in Alaska are often in the last stages of 

neglect and decay. Worse than that, even, many of them are being 

deliberately destroyed. The Indians themselves, under the influence 

of the whites, learn to despise these monuments of their past, as being 

reminders of their state of unregenerate barbarism. One Indian 

chap, trained in the white man’s ways and “ educated ”’ perhaps some- 

what beyond his intelligence, cut down with an axe a lot of fine old 

totem-poles, sawed them into sections, and used them in building a 

sidewalk. (See fig. 122.) 

The fate which has for various reasons overtaken these monuments 

is best indicated by the accompanying photographs. The ruin and 

decay which has fallen upon all things simply beggars description. 
No work could be better than to preserve, somewhere in Alaska, at 

at least one house, with its totem-poles and carvings complete. This 

would at least serve to illustrate the kind of architecture which these 

Indians developed. Some of these native houses were of cyclopean 

proportions, the great beams being 3 and 4 feet in diameter. The 

older Indians themselves often have toward the whole matter what 

seems to be an apathetic attitude, but this is misleading. The 

real inner feeling seems to be that the old times are gone, and that 

these monuments of the vanished past should, in the nature of things, 

be allowed also to decay in peace and to vanish quietly from off the face 

of the earth. It would not be impossible to interest some of the more 

alert ones in the preservation of at least some of the ancient glories of 
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this region. In spite of all that has happened, there is much of great 

interest left, as the pictures show. No poles worthy of the name have 

been carved for 30 years, and for 20 years before that the art was 

degenerating. Some of the old columns are in a marvelous condition 

of preservation considering their age. The decay begins at the top, 

Ite. 124.—Interior of an abandoned native house, showing 
one of the totemic house-posts, portraying the Bear. (Photo- 
graph by Julius Sternberg, for the Smithsonian Insti- 
tution. ) 

where seeds also take root and sprout. Often when the top fgure 

is gone, the remainder of the carvings are fairly sound. At the town 

of Tuxekan an observer in 1916 counted 125 poles standing. In 

1922, only 50 were left. The information about the poles, also, is 

disappearing even more rapidly than the poles themselves, for only 

the old people know or care. 
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During the time the cbserver was in the field, a half dozen of the 

old village-sites were visited. Sketch-maps were prepared, showing 

the condition of the monuments. Quite extensive notes were taken 

from native informants, respecting the genealogies of the people who 

owned the houses, and the symbolism of the poles. A complete list 

Fic. 126.—Three Indians of a totem-pole tribe, in native garb. 

was made also of the geographical names along the coast from one 

village to the next. The native geography of extreme southeastern 

Alaska was therefore rather completely obtained. The number of 

place-names thus recorded, charted and analyzed, amount to several 

thousand. There is probably no region in North America where 

investigations can be carried out with richer results. 
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ARCHEOLOGICAL INVESTIGATIONS AT PUEBLO BONITO, 
NEW MEXICO 

During the months of May to September, inclusive, Neil M. Judd. 

curator of American archeology, U. S. National Museum, continued 

his investigation of prehistoric Pueblo Bonito, in behalf of the Na- 

tional Geographic Society... As in 1921, Mr. Judd’s staff consisted 

of seven trained assistants with about 20 Navaho and Zufi Indians 

employed for the actual work of excavation. 

Fic. 127,—Mr. R. P. Anderson, a former captain of engireers, A. E. F., 
at work on a topographic map of Chaco Canyon. This view, taken from 
above Pueblo Bonito, affords an excellent idea of the surroundings of the 
great ruin and the height of the canyon wall. Note the horses and one of 
the expedition’s test pits in the right foreground. (Photograph by Neil M. 
Judd. Courtesy of the National Geographic Society. ) 

In these recent explorations, attention was directed especially to 

the eastern part of the great ruin, a section which includes not only 

the finest masonry in the whole pueblo but which exhibits other evi- 

dence of relatively late construction. This entire section, although 

apparently erected last, was probably abandoned before the remainder 

of Pueblo Bonito. Because of this general abandonment, cultural evi- 

“Smithsonian Misc Coll., Vol. 72, Nos. 6 and 15. 
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dence is largely lacking in the several rooms but the information 

gathered has been sufficient, nevertheless, to afford accurate compari- 

son with that of other sections. It is now certain that Pueblo Bonito 

is not the result of a single, continuous period of construction, rather, 

that it took its final form after much building and rebuilding in which 

substantial homes were razed to make way for others. 

A deep trench was cut in the east refuse mound in order to obtain 

chronological data for use, with similar information gathered in the 

Tic. 128.—Part of the excavated northeast section of Pueblo Bonito at 
the close of the 1922 season. Most of these rooms had been abandoned 
prior to the general exodus from the village and were utilized as dumping 
places for refuse by families which continued to dwell nearby. (Photo- 
graph by Neil M. Judd. Courtesy of the National Geographic Society. ) 

west refuse mound during 1921, in tracing the cultural development 

of Pueblo Bonito and establishing relative dates, if possible, for the 

several foreign influxes already apparent. As has been previously 

noted, clans from the Mesa Verde, in Colorado, and from the valley 

of the Little Colorado River, in Arizona, and elsewhere, came to 

dwell at Pueblo Bonito at some time after the establishment of the 

great community house. The expedition seeks to isolate these outside 

influences and to determine the effect they exerted upon the distinc- 

tive local culture. 
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In addition to the purely archeological phase of the expedition, 

geophysical investigations were undertaken in an effort to trace cli- 

matic or other changes which may have taken place in Chaco Canyon 

since the occupancy of prehistoric Pueblo Bonito. Three test pits 

near the ruin, each more than 12 feet in depth, provided stratigraphic 

sections of the valley fill in addition to that already available in the 

arroyo. [rom the evidence disclosed in these pits, and elsewhere, it 

now appears that Pueblo Bonito was originally constructed on a slight 

elevation, superficial indications of which have since been entirely ob- 

literated through building up of the level valley floor by means of 

blown sand and silty deposits washed in from the sides of the canyon. 

These deposits vary in depth from 2 to 6 feet and frequently contain 

scattered objects of human origin. 

A pre-Pueblo ruin, the existence of which was disclosed only 

through caving of the arroyo bank, affords further evidence of the 

human occupancy of Chaco Canyon at a considerable period prior 

to the erection of Pueblo Bonito and the other major ruins, a similar 

structure having been excavated by the National Geographic Society's 

Reconnaissance Expedition of 1920. This ancient habitation consisted 

of a circular pit 12 feet 9 inches (3.9 m.) in diameter and about 4 

feet (1.2 m.) deep, excavated in the former valley floor; its roof 

was of reeds and earth supported by small poles which reached from 

the wall of the excavation to upright posts placed just within an 

encircling bench. A considerable quantity of potsherds, collected both 

from the debris which filled the pit and from the masses of adobe 

which had fallen away from the bank, established the period to which 

the dwelling belongs as “‘ early black-on-white,” a culture well known 

throughout the San Juan drainage. The fact that the floor of this 

ancient structure lay 12 feet below the present valley surface is evi- 

dence not only of the vast amount of silt which has been deposited 

since occupancy of the room, but carries the promise, also, that other 

similar lodges may yet be disclosed by excavation or through the 

gradual erosion of the valley. 

A topographical survey of that part of Chaco Canyon adjacent to 

Pueblo Bonito, completed by the 1922 expedition, affords the first 

accurate map of the principal portion of the Chaco Canyon National 

Monument. This survey correctly locates nine of the major ruins 

and indicates the relative position of most, but not all, of the smaller 

structures to be found, especially those along the southern side of 

the canyon. 



I'tc. 129.—A narrow, elevated passage-way constructed through one 
Pueblo Bonito room to connect the two adjoining chambers. The lintel 
poles of the nearer doorway are supported, on the right, by a hewn plank 
which rests upon an upright pine log partially imbedded in the wall. (Pho- 
tograph by Neil M. Judd. Courtesy of the National Geographic Society.) 

lic. 130.—The ceremonial rooms which belong with the characteristic 
Chaco Canyon culture are all very much alike. This view in Kiva G, at 
Pueblo Bonito, shows a portion of the encircling bench, one of the pilasters 
or roof supports and several charred posts which originally formed some- 
thing of a wainscoting behind the lower ceiling logs. (Photograph bv 
Neil M. Judd. Courtesy of the National Geographic Society.) 



Fic. 131.—Excavating one of Pueblo Bonito’s numerous kivas. Mule- 
drawn dump cars were used in connection with a portable steel track which 
could be shifted as the explorations progressed. Owine to the depth of 
some rooms it was necessary to pass the debris upward from one man to 
another before it reached the track level. (Photograph by Neil Ml. Judd. 
Courtesy of the National Geographic Society. ) 

Fic. 132.—Many instances of superposition have heen disclosed by the 
excavations at Pueblo Bonito. This particular view shows the disintegrat- 
ing masonry of a typical Chaco Canyon kiva resting directly upon the 
partially razed walls of a ceremonial room fundamentally different in con- 
struction and representing an entirely distinct culture. (Photograph by 
Neil M. Judd. Courtesy of the National Geographic Society.) 

(138) 
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Altogether, 35 secular rooms and six kivas were excavated in 

Pueblo Bonito during the past summer. Several of these, following 

abandonment of the eastern portion of the pueblo, had been utilized 

as dumping places by the families which still dwelt nearby. Rubbish 

from wall repairs, floor sweepings containing potsherds and other 

artifacts, cedar bark and splinters from old wood piles, etc., com- 

prised this debris. The doorways in many of these deserted dwellings 

had been blocked with stone and mud and the rooms themselves were 

Fic. 133.—Part of the excavated area of Pueblo Bonito at the close of 
the 1922 season, looking southeast across Kiva G (in the foreground). 
The upper walls in the three kivas shown here have been slightly repaired 
to prevent rain water from running into the open rooms. (Photograph 
by Neil M. Judd. Courtesy of the National Geographic Society.) 

entirely filled by masonry fallen from the upper stories and by the 

vast accumulation of blown sand and adobe. Indications of fire were 

encountered frequently but in most instances the conflagration ob- 

viously occurred at a considerable period following the general aban- 

donment inasmuch as blown sand and, sometimes, fallen wall material 

had accumulated upon the lower floors before the burning of the 

ceiling structure. From this evidence, it is certain that the fire which 

destroyed much of the woodwork in the eastern portion of Pueblo 

Bonito could have contributed in no wise to its desertion. Sections 
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of charred and other beams have been examined to determine the 

relative date of cutting and in the hope, also, that a means may yet 

be discovered for connecting the annual rings in these ancient timbers 

with those in trees still growing upon the northern New Mexico 

mesas. Inasmuch as the prehistoric Bonitians left no known calendar 

or other time record, an effort is to be made to correlate their dis- 

tinctive chronology with that of our own civilization through over- 

Fic. 134.—The high cliff behind Pueblo Bonito affords an exceptional 
vantage point from which to view the ancient ruin. In this photograph, 
taken at the close of the 1922 season, the relationship of the secular 
rooms and kivas is at once apparent. Note the cars and track by which 
debris was conveyed from the ruin for deposition in the arroyo; also the 
expedition camp in the upper right-hand corner. (Photograph by Neil M. 
Judd. Courtesy of the National Geographic Society. ) 

lapping series of growth rings in living trees, old logs and ancient 

beams. 

Investigations pursued beneath the floors of both dwelling rooms 

and kivas revealed, as in 1921, the remains of razed walls belonging 

to an earlier period of construction. The later habitations do not 

necessarily conform to the outline of those preceding; the masonry 
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itself is usually, but not always, different in type thus indicating that 

people with entirely distinct cultural customs reoccupied this section 

of the pueblo prior to its final abandonment. 
Among the artifacts collected during the past two years are speci- 

mens and many fragments of mosaic. These, with the number and 

Fic. 135.—A circular pre-Pueblo dwelling, 1 mile east of Pueblo Bonito, 
was cross sectioned by caving of the arroyo bank. Twelve feet of blown 
sand and water-deposited silt had accumulated upon the floor of the room 
whose furnishings included a central fireplace (above the Indian) and a 
semi-circular bench (at upper left). Charred fragments of roofing poles 
are plainly seen. (Photograph by Neil M. Judd. Courtesy of the Na- 
tional Geographic Society. ) 

variety of bracelets, pendants and other objects of personal adornment 

already recovered, tend to confirm the Navaho and other traditions 

relating to the great wealth of the ancient Bonitians. Pueblo Bonito 

is still identified among the Indians of northwestern New Mexico as 

a village where turquoise and rare shells were abundant. The pottery 

10 
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Fic. 136.—Dwellings in Pueblo Bonito were sometimes razed to permit of 
the construction of ceremonial chambers. The former ceiling beams shown 
in this illustration are here used both as braces for the curved wall of a 
kiva and as supports for a second-story room which was subsequently 
abandoned as its enclosing walls were still further altered. (Photograph 
by Neil M. Judd. Courtesy of the National Geographic Society. ) 
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of this ancient community is among the finest in the Southwest, no 

other prehistoric people within the borders of the United States hav- 

ing surpassed the ancient Bonitians in the beauty of form and decora- 

tion of their ceramic artifacts. 

INVESTIGATION OF PREHISTORIC QUARRIES: AND. WORK- 

SHOPS IN PENNSYLVANIA 

Mr. John L. Baer, acting curator of American archeology in the 

U. S$. National Museum during the absence of Mr. Neil M. Judd, 

curator, spent a part of April, 1922, and a number of week ends 

during the summer, along the Susquehanna River, where he investi- 

gated a number of prehistoric quarries and workshops for the Bureau 

of American Ethnology. 

On Mount Johnson Island, one mile above Peach Bottom, Lancaster 

Co., Pa., he has located a workshop where slate banner stones were 

made in quantity. These prehistoric objects, figures 137, 138, often 

of finest workmanship, are peculiar to the eastern part of the United 

States and their use has led to much speculation among archeologists. 

During the past few years more than 300 broken and unfinished ban- 

ner stones have been found here, from which a number of series have 

been assembled showing all stages of development from the split 

blocks of slate to finished banner stones. The series illustrated herein 

has been placed on exhibition in the Pennsylvania case in the Archeo- 

logical Hall of the U. S. National Museum. 

This workshop was conveniently located a short distance up the 

river fromm a large vein of slate which crosses the Susquehanna. A 

high cliff of exposed slate extends to within a few yards of the 

water’s edge on either side of the river. 

The large number of specimens broken in the early stages of manu- 

facture, found at the island workshop, and the scattered specimens 

showing more advanced work, picked up on nearby camp sites, indi- 

cate that many of the unfinished banner stones were blocked out and 

partly pecked at the workshop near the source of material and carried 

to distant camp sites to be completed there. As there was a famous 

shad battery on Mount Johnson Island, to which Indians from distant 

points came for supplies of shad and herring, it is probable that 

many of the slate banner stones scattered through Pennsylvania and 

Maryland may have been made, or at least started, at this workshop. 
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Fic. 137.—A series of unfinished banner stones. 
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Fic. 138.—Banner stones in series, and shaping tools. “ ’ ping 
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INVESTIGATIONS AMONG THE ALGONQUIAN INDIANS 

At the close of May, 1922, Dr. Truman Michelson, of the Bureau 

of American Ethnology, proceeded to Oklahoma to conduct researches 

among the Sauk and Kickapoo. The prime object was to secure data 

on the mortuary customs and beliefs of these tribes. From these 

data it is now absolutely certain that the mortuary customs and beliefs 

of not only the Sauk and Kickapoo but also those of the Fox for the 

Fox winter lodge, at Tama, Iowa. Fic. 130. 

greater part have been derived from a common source. Towards 

the end of June, Dr. Michelson went to Tama, Iowa, to renew his 

work among the Fox Indians. Many texts in the current syllabary 

were translated, some restored phonetically, fuller data on the mor- 

tuary customs and beliefs were obtained as well as new data on the 

ceremonial attendants and runners. 

In August, Dr. Michelson left for Wisconsin, where he spent a 

week of reconnaissance among the highly conservative Potawatomi, 
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near Arpin. He then visited the Ojibwa near Reserve, Wisconsin, 

to obtain some first-hand information on them, and afterwards the 

Ottawa of the lower Michigan peninsula. It appears that their lan- 

guage and folklore survive with full vigor, but their social organiza- 

tion has rather broken down. Dr. Michelson next visited the Dela- 

ware and Munsee of Lower Canada. It is clear that the Delaware 

and Munsee spoken in Canada are not the same as spoken in the 

United States; so that the term “ Delaware” is really nothing but 

a catch-all designation of a number of distinct though closely related 

languages. Finally, Dr. Michelson carried on investigations among 

Fic. 140.—Fox matting at Tama, lowa. 

the Montagnais, near Pointe Bleue, P. Q., for a few days. He found 

that although the language is distinctly closely related to Cree, never- 

theless it is decidedly more archaic than has been commonly supposed. 

FIELD-WORK AMONG THE YUMA, COCOPA, AND 

YAQUI INDIANS 

Miss Frances Densmore, collaborator of the Bureau of American 

Ethnology, conducted field-work among the Yuma and Cocopa In- 

dians living near the Mexican border in Arizona, and the Yaqui living 

near Phoenix, Arizona. Songs of the Mohave were recorded by 

members of the tribe living on the Yuma reservation, and a Mayo 

song was obtained from a Yaqui Indian. 
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The Yuma and Cocopa are the most primitive tribes visited by Miss 

Densmore and are probably as little affected by civilization as any 

living in the United States. The Yaqui are still citizens of Mexico 
though they have lived in Arizona for many years, their little settle- 

ment being known as Guadalupe Village. They obtain a scanty living 
by working for neighboring farmers and their chief pleasure is 
music, which is heard in the village at all hours of the day. They are 

governed by a chief and several captains, and seem contented and 

orderly. 

The field-work among the Yuma and Cocopa centered at the Fort 

Yuma Indian agency, situated on the site of Fort Yuma, in California. 

An opportunity presented itself to observe their custom of cremating 

the dead. The body of an Indian who had died in an asylum for the 

insane was brought to the reservation for cremation. When Miss 

Densmore went to the cremation ground in the morning the body was 

seen lying on a cot under a “desert shelter.”’” The relatives were 

crowded around it, sitting close to it and fondling the hands as they 

wept. The face of the dead man was covered. The wailing had been 

in progress all the previous night and the people showed signs of 

weariness. About 100 people were present, many being old men who 

sat with tears streaming down their faces while others sobbed con- 

vulsively. The cremation took place at about two o’clock in the after- 

noon. ‘The ceremony was witnessed from the time when the body 

was lifted for removal to the funeral pyre, until the flames had 

destroyed it. Clothing and other articles of value were placed with 

the body or thrown into the fire. The ceremony was given in its 
most elaborate form, the deceased being accorded the honors of a 

chief because he had, prior to his mental illness, been one of the two 

leading singers at cremations. The rattle used in the ceremony is 

said to be about 250 years old. It is made of the “ dew-claws” of 

the deer, one being added for each cremation in early times. It is 

now impossible to continue this as the deer are not available. 

Information concerning this ceremony was surrounded with the 

secrecy which envelopes this class of material among all Indian 

tribes. Many of the ceremonial songs were, however, recorded pho- 
nographically by the oldest man who has the right to sing them, and 

an account of the history of the custom was obtained, together with 

a description of the Kurok, or memorial ceremony which is held 

every summer. In this ceremony there is a public burning of effigies 

of the more prominent persons who have died during the year. The 

dead are never mentioned, this custom being rigidly observed. The 
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songs of the Kurok, and several cremation songs of the Mohave, 

which showed interesting differences from those of the Yuma, were 

recorded. 

Miss Densmore’s study included war customs, the songs used in 

treating the sick, those of the maturity ceremony of young girls, those 

connected with folk tales, and several long cycles of songs sung at 

Fic. 141.—Kachora, a Yuma. His long hair is wound like a turban around 
his head. (Photograph by Miss Densmore. ) 

tribal dances, or for pleasure without dancing. These songs are 

interesting, many of them being pure melody without tonality. The 

words are exceptionally poetic and concern birds, insects and animals, 

as well as rivers and mountains. The work among the Yuma was 

aided by Kachora (fig. 141), a prominent member of the tribe. 

A trip was made to a Cocopa village in the extreme southwestern 

portion of Arizona, near the Colorado River and only a few miles 
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from the Mexican border. In the work of recording songs it was 

necessary to employ two interpreters, Nelson Rainbow, who trans- 

lated Cocopa into Yuma, and Luke Homer who translated Yuma into 

English. In many instances it was necessary for the singer to ex- 

plain his material to Tehanna (fig. 142) who discussed it with Rain- 

Fic. 142—Frank Tehanna, a Cocopa. (Photograph by Miss Densmore.) 

bow, who in turn related it to Homer, after which it was translated 

into English. Under such conditions it was possible to make only a 

general study, but much interesting material was obtained. Two of 

the principal Cocopa singers were Clam and Barley (figs. 143, 144). 

The musical instruments of the Yuma and Cocopa are the gourd 

rattle, the morache (rasping sticks), the basket drum beaten with 

wooden drumming sticks or with bundles of arrow-weed, also a flageo- 
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Fic. 143.—Clam, a Cecopa. 

Fic. 144.—Barley, a Cocopa. 

(Photograph by Miss Densmore. ) 

(Photograph by Miss Densmore.) 
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let and a flute, the latter being the first wind instrument blown across 

the end which has thus far been obtained. Specimens of all these 

were secured and the playing of the flageolet and flute were recorded 

by the phonograph. In addition to her musical work, Miss Densmore 

made a phonograph record of the numbers from 1 to 30 spoken by 

an aged woman who knows the “ old language.” 

In April, 1922, Miss Densmore visited the Yaqui at Guadalupe 

Village, about 10 miles distant from Phoenix. She was present at 

the observances of the week preceding Easter, including the deer 

dance which was given on Good Friday. Similar, though more primi- 

tive, observances were attended at a Yaqui village near Tucson, in 

April, 1920. The Yaqui observance of Holy Week is a mixture of 

Roman Catholic influence and native ideas, customs, and dances. The 

singing is said to be continuous day and night from Good Friday to 

Easter. There is an evident fanaticism, and a certain hypnotic effect 
in Yaqui singing which suggests that, under some conditions, the people 

could work themselves into an irresponsible state of mind by its use. 
The melodies connected with the religious observance were less dis- 

tinctly native than those of the deer dance which was performed on 
the day before Easter by five men, all scantily clad. The leader of 

the dancers wore a head dress made of the head of a deer and his leg- 
wrappings were ornamented with hundreds of tiny pouches made of 

deer hide containing pebbles, forming a series of rattles. Two of 

the dancers carried rattles made of a flat piece of wood in which were 

set several small tin disks which vibrated as the rattles were shaken. 

In this dance they likewise used four half-gourds, of which one was 

placed hollow side downward on water in a small tub and another 

was inverted on the ground. These served as drums. The other two 

were placed on the ground and used as resonators for rasping sticks. 

A few days later Miss Densmore recorded the deer dance songs, 

given by an old man who was the leading singer at all the deer dances. 

She recorded also a deer dance song of the Mayo, living in Mexico. 

It was found there are two kinds of music among the Yaqui, one 

being the native, exemplified in the deer dance, and the other showing 

a Mexican influence, though the people stoutly asserted that it is 

Yaqui and “ different from Mexican music.” The songs of the deer 

dance are simple, with some characteristics not previously found in 

Indian music but appearing to be native concepts. These and similar 

songs are known to only a few of the old men. Songs of the second 

kind are sung by the younger men and are very pleasing, joyous 

melodies, usually accompanied by the guitar. 
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Instrumental music is highly regarded among the Yaqui, a favorite 

instrument being a short harp of native manufacture, which is played 

in an almost horizontal position, its base resting on a box in front 
of the seated player. 

Fig. 145—Manuel Ayala, a Yaqui, playing on flageolet and drum. (Photo- 
graph by Miss Densmore ) 

Among the musicians at the observance of Good Friday was Manuel 

Ayala who played the drum and the flageolet at the same time, each 

having its own rhythm (fig. 145). This flageolet had only two sound 

holes, and was made in two sections which could be taken apart. 
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DESIGNSJONSPREAISTORICT POTTERY (PROM (‘THE 

MIMBRES VALLEY; NEW MEXICO 

By J.. WALTER FEWKES* 

CHIEF, BUREAU OF AMERICAN ETH NOLOGY 

Before the year 1914 little was known of the manners and customs 

of the prehistoric inhabitants of the valley of the Rio Mimbres in 
southern New Mexico. Historical references to these people from 

the time this valley was discovered to its occupation by the United 

States are few and afford us scanty information on this subject. 
Evidence now available indicates that the prehistoric occupants had 

been replaced by a mixed race, the Mimbrefios Apache, of somewhat 

different mode of life. Until a few years ago the numerous archeo- 

logical indications of a prehistoric population were equally limited. 

Some of the earlier writers stated that there are no evidences of a 

prehistoric sedentary population occupying the area between Deming, 

New Mexico, and the Mexican border. 

In his pamphlet on the “ Archeology of the Lower Mimbres Valley, 

New Mexico,” published in 1914, the author reviewed the con- 

tributions of others on this subject up to that date, and the present 

paper offers, as a supplement to that preliminary account, descrip- 

tions of additional designs on pottery collected by several persons 

since the publication of the article above mentioned. The writer 

has laid special stress on the quality of realistic designs on pottery 

from this region, and has urged the gathering of additional informa- 

tion on their meaning and relationship. 

In the author’s judgment no Southwestern pottery, ancient or 

modern, surpasses that of the Mimbres, and its naturalistic figures 

are unexcelled in any pottery from prehistoric North America. This 

superiority lies in figures of men and animals, but it is also facile 

princeps in geometric designs. Since the author’s discovery of the 

1Smithsonian Misc. Coll., Vol. 63, No. 10. Supplementary additions were 

made in the “‘ Explorations and Field-Work of the Smithsonian Institutiori in 

1914,” pp. 62-72, Smithsonian Misc. Coll., Vol. 65, No. 6, 1915; and in the 

American Anthropologist, n. s. Vol. XVIII, pp. 535-545, 1916. 
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main features of this pottery the Mimbres Valley has come to be 

recognized as a special ceramic area. 

Specimens of this pottery were first called to the attention of the 

author in 1913 by Mr. H. D. Osborn, of Deming, New Mexico, who 

excavated a considerable collection of this ware’ from a village site 

near his ranch 12 miles south of Deming. Shortly after the discovery 

the author visited the location where it was found and excavated a 

small collection. From time to time since the author first announced 

the discovery of this material, years ago, other specimens of the same 

type have been described by him. These objects support early con- 

clusions as to the high character and special value of this material 

in studies of realistic decoration. New designs have been added to 

available pictographic material which justify these conclusions. 

In the past year (1921) Mr. Osborn has continued his excavations 

and obtained additional painted bowls, thereby enlarging still more 

our knowledge of the nature of the culture that flourished in the 

Mimbres before the coming of the whites. These newly discovered 

specimens are considered in the following pages.” 

A brief reference to a physical feature of the Mimbres Valley may 

serve as a background for a study of the culture that once flourished 

there. The isolation of this valley is exceptional in the Southwest. 

The site where the Mimbres culture developed is a plateau extending 

north and south from New Mexico over the border into Mexico. 

Ranges of mountains on the east side separate it from the drainage of 

the Gulf of Mexico and high mountains prevent the exit of its rivers 

on the west. Its drainage does not empty directly into the sea, but 

after collecting in lakes it sinks into the sands. The lowest point 

of this isolated plain in which are the so-called lakes, or “ sinks,” 

Palomas and Guzman, is just south of the Mexican line. The water 

of the Mimbres sometimes finds its way into the former, but is gen- 

erally lost in the sands before it reaches that point. The Casas 

*Many of these specimens were purchased by the Bureau of American 

Ethnology and are now in the U. S. National Museum, but the majority were 

later sold to Mr. George G. Heye and are now in the Museum ot the American 

Indian, New York. 

* Several other collectors have furnished me with data on Mimbres ware, 

among whom Mrs. Edith Latta Watson, and Mrs. Hulbert, of Pinos Altos, New 

Mexico, should be especially mentioned. On the very threshold of his descrip- 

tions the author desires to thank Mr. Osborn, Mrs. Hulbert and Mrs. Watson 

for permission to describe this new material. He desires also to commend 

the beautiful copies of photographs of the designs on these bowls, made by the 

artist, Mrs. George Mullett, of Capitol View, Maryland. 
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Grandes and tributary streams that lie in the basin south of the 
national boundary flow northward and finally empty into Lake 

Guzman. It is characteristic of the upper courses of these streams 

that they contain abundant water, while lower down they sometimes 

sink below the surface, but still continue their courses underground 

unless rock, clay or other formations that the water can not readily 

penetrate have pushed up their beds to the surface. 
Flowing water is constant in the upper Mimbres but lower down 

the valley it is subterranean, though rising at times to the surface. 

The river is indicated here and there by rows of trees or a series of 
ponds. Water is never found in great abundance, but there is always 

enough for trout and a few other fishes which the early inhabitants, 

judging from the number of these animals depicted on pottery, 

admired and greatly esteemed for food. 

There is more water in the Casas Grandes River and its tributaries 

than in the Mimbres, which is smaller and has fewer branches. 

There is a remarkable natural hot spring in the Mimbres Valley at 

Faywood, in which a large number of aboriginal implements and 

other objects were found when this spring was cleaned out several 

years ago, leading to the belief that it was regarded by the aborigines 

as a sacred spring. 

The forms of pottery found in the Mimbres Valley differ very 

little from those of the pueblo areas. Food bowls predominate in 

number, although effigy vases, jars, ladles, dippers, and similar objects 

are numerous in all collections from this locality. They belong to 

modified black and white ware, red on white, unglazed, generally 

two-colored types. There are also specimens of uncolored, corru- 

gated and coiled ware. 

As the author has elsewhere indicated, the figures on Mimbres 

pottery are largely realistic. A reference to an early account of the 

fauna might be instructive as an indication of the motives of the 

decoration of this pottery. 
“ The hills and valleys,” writes Bartlett,’ “ abound in wild animals 

and game of various kinds. The black-tail deer (Cervus lewisit) 
and the ordinary species (Cervus virgimianus) are very common. 

On the plains below are antelopes. Bears are more numerous than 
in any region we have yet been in. The grizzly, black, and brown 
varieties are all found here ; and there was scarcely a day when bear- 

1 Archeology of the Lower Mimbres Valley, New Mexico, Smithsonian Misc. 

Coll., Vol. 63, No. 10, 1914. 

* Personal Narrative, 1854. 
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meat was not served up at some of the messes. The grizzly and 

brown are the largest, some having been killed which weighed from 

seven to eight hundred pounds. Turkeys abound in this region, of 

a very large size. Quails, too, are found here; but they prefer the 

plains and valleys. While we remained, our men employed in herding 

the mules and cattle near the Mimbres often brought us fine trout 

of that stream, so that our fare might be called sumptuous in some 

respects.” 

The above mentioned animals and many others are represented 

on ancient Mimbres pottery. There are a few paintings of flowers 

but only rarely have natural objects such as sun, moon, mountains, 

or hills been identified. Of geometrical designs there are zigzags, 

terraces, circles, rectangles, spirals, and conventionalized heads, beaks, 

feathers and the like of birds; but food animals are the most 

abundant, deer, antelope, turkeys, rabbits and the like predominat- 

ing. We have every reason to suppose from the pictography on 

the pottery that animal food formed a considerable part of the 

dietary of the ancient Mimbrenos, but there is also abundant evidence 

that they were agriculturists and fishermen. 

As a rule the bowls on which the designs here considered are 

depicted were mortuary, that is, found buried with the dead under 

the floors of former houses. These bowls are almost universally 

punctured or “ killed” and are commonly found at the side of the 

skeleton, although when it is in a sitting posture, as often occurs, 

the bowl covers the head like a cap. 

The Mimbres pottery shows several designs representing com- 

posite animals, or those where one half of the picture represents 

one genus of animal and the other a wholly different one. Similar 

composite pictures are rarely found in American art, although there 

are several examples of feathered and bicephalic serpents, winged 

reptiles, and the like. Probably if we were familiar with the folk- 

lore of the vanished race of the Mimbres we would be able to 

interpret these naturalistic pictures or explain their significance in 

Indian mythology. 

The attention given to structural details in the figures of animals 

shows that the ancient inhabitants of the Mimbres who painted 

these designs were good observers, clever artists, and possibly drew 

these pictures from nature. There are, however, anomalies; pro- 

files of the tails of birds are drawn vertically and not represented 

horizontally; the feathers that compose them were placed on a 

plane vertical, not horizontal, to the body. Both eyes were rarely 
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placed on one side of the head as is so often the case with bird 

figures from the ancient pottery. They are often lozenge shape 

but generally round. Birds are the most common Mimbres animal 

paintings and the details of different kinds of feathers are often 

so carefully worked out that they can be distinguished. Many 

birds are represented as destitute of wings or have them replaced 

by geometrical figures of various angular shapes. 

The designs here described support the theagry already published, 

that the pottery of the Mimbres is related to that of Casas Grandes 

in Chihuahua, Mexico, but there are significant differences between 

the houses of the two areas. The Casas Grandes culture apparently 

extended northward into New Mexico and penetrated to the sources 

of the Mimbres River. In this uniquely isolated valley, whose 

rivers had no outlets in the sea, there developed in prehistoric times 

one of the most instructive culture areas of the Southwest. The 

geographical position renders it most important to investigate as it 

lies midway between the Pueblo and Mexican region, showing 

affinities with both. 

The majority of designs on Casas Grandes pottery are drawn 

on curved surfaces, as terra cotta vases, jars, and effigies, while 

those on Mimbres ware are depicted on a flatter surface—the 

interior of food bowls. For this reason the spaces to be filled on 

the former are more varied; but the style in the two types is 
practically the same. 

The designs of Mimbres ceramics are painted on the inside 

surface of clay bowls, the color of which is white, red, brown, 

or black. While the majority of the designs are depicted on the 

inside of Mimbres food bowls, similar geometric figures occur on the 

outside of Casas Grandes vases, dippers, ladles, cups, and other forms. 

A food bowl furnishes a plane inner surface but its rounded exterior 

is the least desirable for realistic figures. In these characters we 

have one of the important points separating the pottery of the Mimbres 

from that of Casas Grandes. 

Effigy jars and vases, predominating in collections from Casas 

Grandes, are rare in those from near Deming and on the upper 

Mimbres. The pottery from at least one village site of the Mimbres 

resembles that of the upper Gila and its tributaries; but both shards 

and whole pieces of pottery from the Gila are characteristic and can 

readily be distinguished from that of the Mimbres-Casas Grandes 

region. The decoration of Mimbres pottery is distinctive and very 

different from that on any other prehistoric pueblo ware, evidently 
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little modified by it. Although highly developed and _ specialized 

like modern pueblo pottery, it is quite unlike that from ancient 

pueblos of the Rio Grande region. 

We find in this pottery well drawn naturalistic pictures as well as 
geometric designs, but there is no new evidence that the former 

were developed forms of the latter. It is more than probable that 

both geometric and realistic types were made contemporaneously 

and originated independently. By many students geometric ceramic 

decorations are supposed to be older than realistic ; straight lines, dots, 

circles, stepped figures and spirals are supposed to precede life figures. 

Others hold that conventionalized designs follow naturalistic forms. 

It is sometimes supposed that in the growth of decorative art lines or 

dots are added to meaningless figures to make them more realistic. 

For instance, three dots were added to a circle to bring out a fancied 

human face, or representations of ears, nose, and other organs were 

annexed to a circle to make a head seem more realistic. Lines are 

thus believed to be continually added to a geometric meaningless figure 

to impart to it the life form. 

There is a certain parallelism in these figures to drawings made 

by children to represent animals, whose pictures are often angular 

designs rather than realistic portrayals of objects with which they are 

familiar. It may be pointed out that some children in their earliest 

drawings make naturalistic, others geometric figures. 

Naturally, when we contrast the designs on pottery from the 

Mimbres with that of the Mesa Verde, one great difference outside 

of the colors is the large number of realistic figures in the former 

and the paucity of the same or predominance of the geometric type 

in the latter. If we compare the designs of Sikyatki pottery with those 

on the Mimbres ware the differences are those of realism and con- 

ventionalism. The designs of Sikyatki pottery are mainly conven- 

tionalized animals, while those of the Mimbres are realistic. Geo- 

metrical designs from Mesa Verde are not conventionalized life forms ; 

neither are they realistic. The pottery of the Little Colorado is mid- 

way in type, so far as its decoration goes, between that of Sikyatki and 
Mesa Verde. It is not as realistic as the Mimbres, not as conven- 

tionalized as Sikyatki, nor as geometric as Mesa Verde. 

There seems much to support the theory that these three types of 

design, geometric, conventionalized, and realistic, are of equal age 

and developed independently. The author inclines to the belief that 

the primitive artist, having noticed certain resemblances in his geomet- 

ric designs to life forms, men or animals, helped out the fancied like- 
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ness by adding dots or lines for eyes, nose and mouth, wings, legs or 

tail, to a circular or rectangular figure, and thus made a head of a man 

or an animal, the result being a crude realistic figure. Subsequent 

evolution was simply a perfecting of this figure. The theory that 

the conventional figure was derived from the realistic also appeals 

to the author; and he further believes that there are many geometric 

decorations that have no symbolic significance. 

The naturalistic designs on pottery of the modern pueblos of 

Keresan stock resemble somewhat those of the Mimbres, or are closer 

to them than those of the modern Tewa, Zuni, or Hopi; while, on the 

other hand, ancient Tewa, Zuni, and Hopi wares are closer to Keresan 

than they are to modern pottery of the same pueblos. Ancient Hopi 

and Zuni designs resemble each other more closely than modern, 

a likeness due in part to their common relationship to the culture 

of the Little Colorado settlements, the differences being due to the 

varying admixture of alien elements. In fact, the archaic pottery 

symbols are simpler than the composite or modern. . 

Human figures on Mimbres pottery are as a rule cruder than 

those of animals and in details much inferior to those of birds. 

They represent men performing ceremonies, playing games, or engaged 

in secular hunting scenes, and the like." Now and then we find a 

representation of a masked man or woman in which the face is some- 

times decorated with black streaks as if tattooed or painted. Fre- 

quently there are representations of feathers or flowers on body, limbs 
or head. Both full face and profiles of men occur in these figures; 

even the hair dressing is shown with fidelity. Several styles of 

clothing are recognizable. Let us now proceed to discuss a series of 
these figures. 

HUMAN FIGURES 

Figure I represents men engaged in a hunt. A hunter carries in 

his right hand three nooses attached to sticks; in his left he holds a 

stick to which feathers or leaves are attached. The hunter’s hair is 

tied down his back; apparently he wears a blanket or loose fitting 

garment. Five groups of upright sticks support horizontal ones; 

that at the extreme right has attached to it a noose still set. Three 

captured birds are seen in the remaining nooses. The double row of 

dots represents a trail; two birds to the right of the human figure 

*Why the figures on Mimbres pottery should be more realistic than those 

from elsewhere in the Southwest is not apparent, unless the richness of the 

fauna has some connection with it. 
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face three sticks. The whole picture represents a method of snaring 

birds that was in vogue among the Mimbres ancients. 

Figure 2.is also instructive. It is evidently a gambling scene 

representing three men playing the cane dice game, widely distributed 

among our aborigines. Unfortunately almost a half of the picture 

is no longer visible, but three cane dice appropriately marked lie in 

the middle of what remains of a rectangular design on the bottom 

of abroken jar. As the game requires four cane dice, two are missing. 

On one side of the figure is what appears to be a basket of arrows, 

evidently the stakes. for which the game is being played. One of 

the seated human figures holds a bow and three or four arrows, while 

another has only one arrow. Rows of dots extending across the bowl 
are visible under the feet of the figure with one arrow. 

There are six human figures represented in figure 3, five of which 

in a row appear to be crawling up a ladder while a sixth, bearing in 

the left hand a crook, is seated in an enclosure near the end of the 

ladder. The attitude of the five climbing figures suggests men 

emerging from the earth; the chamber in which the sixth is seated 

resembles a ceremonial room or kiva. 

In figure 4 we have three human figures, two seated and one lying 

down. The difference between these figures is not great, but the two 

seated figures have their hair tied in a knob; the hair of the horizontal 

figure is straight. The left-hand figure bears a zigzag object in his 

hand that reminds one of a snake or lightning symbol. The right- 

hand figure appears to hold in his hand an implement represented 

by parallel lines and dots surmounted by an imitation of a head with 
feathers. This object calls to mind the wooden framework used by 

the Hopi in their ceremonies to imitate the lightning. 

In figure 5 there are four figures, all different ; two were evidently 

intended to represent men with human bodies and heads of animals. 

Each carries a rattle in one hand and a stick to the end of which is 

attached a feather, or a twig with leaves, in the other. 

The exact signification of the group of three figures, two male and 

one female, shown in figure 6, is not evident. The two men carry 

sticks with attached flowers, or figures of the sun or a star; the other 

figure, which represents a woman, has a crook in one hand. The 

frayed edge of the woven belt she wears hangs from her waist. 

The knees of the two human figures shown in figure 7 rest on the 

back of a nondescript animal. The figures are evidently duplicates, 

the only difference being in the forms of the geometric figures 
depicted on the bodies of the animals. 
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Two nicely balanced human figures shown in figure 8 are represented 

as resting on a quadrilateral object decorated with zigzag markings, 

like symbols of lightning. 
The heads in figure 9 are human but the body and limbs are more 

like those of quadrupeds. 

The method of drawing the human figure in figure Io is very charac- 

teristic. Here we evidently have a representation of a dancer, whose 

body is painted black, surrounded by a white border. 

The human figures thus far considered are drawn in colors on a 

white background. Not so those that follow. In figure 11 there are 

two negative figures, representations of human beings placed diametri- 

cally opposite each other, and, similarly arranged, two turkeys painted 

black on a white oval area, a very good example of the arrangement 

of double units. The human figures are white and have arms and legs 

extended. A black band in which are two eyes extends across the 

forehead. The lips are black; mouth white. This is a good example 

of one pair of units being negative, the other positive. There are 

four triangles with hachure in the intervals between the figures. 

An analysis of the design in figure 12 shows two human figures 

drawn opposite each other, with arms extended and legs similar to 
those of frogs. The complicated geometric figures vary considerably 

but can be reduced to about three units; but these units are not 

always repeated twice. 

In figure 13 there are two human figures, one seated on the 
shoulders of the other, who is prostrated and has head severed from 

body. The former apparently is holding a knife or pipe in his right 

hand and the hair of the decapitated head in the left. The head and 

back of this seated figure is covered with what appears to be a helmet 

mask and animal’s pelt. The mask resembles the head of a serpent 

or some reptilian monster that has a single apical horn on the head 
and jaws extended. Possibly the disguise represents the Horned 

Serpent or the same being as figure 41. The body of the man and 

the lower part of the face is black. The Snake priests at Walpi paint 
their chins black. 

ANIMALS 

Quadrupeds——Many of the animals depicted on the bowls are 

mammals distinguished by four legs, but often these present strange 

anomalies in their structure. In several pictures of rabbits and some 

other quadrupeds the lower fore-legs bend forward, and in one 

instance, a composite animal, the fore-legs are short and stumpy 

with no indication of a joint, but the hind-legs are slender, longer than 
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the fore-legs, and apparently belong to a different animal. The 

majority of all the mammals represented have geometric designs on 

the body. 

Variations in the form of the head and mouth are noticeable and are 

important in the determination of different genera to which these 

mammals belong. Figure 14 represents two quadrupeds with heads 

of lions and two geometric designs irregularly terraced, with white 

border. The interior is marked with parallel lines. The head is short 
and calls to mind that of a carnivorous animal; there is a white band 

about the neck; the tip of the tail is white. The rectangular body 

marking is lozenge-shaped with dots. 

Figure 15 represents an unknown quadruped resembling some 

carnivorous animal. The tail has a white tip like figure 14; the ears 

are more prominent and pointed. 
In figure 16 two men are dragging an animal by ropes tied to the 

neck of the captured beast. This is an effective way of leading a 
dangerous animal and preventing it from attacking either one of them. 

The head and fore-legs of figure 17 resemble those of the bison. 

The head has ears, a horn, and a cluster of five feathers that are 

grouped fan-shape. The rear end of the body and hind-legs are some- 
what like those of a wolf. This is a mythological composite animal 
or two different animals united. 

The animal shown in figure 18 is seated, and has tail and ears like 

those of a hare or rabbit. The head, however, resembles that of a 

human being, with two black marks on the white cheeks. The upper 

part of the head is black. The two marks on each cheek among the 
Hopi are symbols of the Little War God. 

Two exceptional animals with tails flattened like beavers are repre- 

sented in figure 19. Although the fore-legs bear claws the posterior 

legs are club-shaped or clavate. The distribution of white and black 

on the bodies indicates a partly negative and partly positive drawing. 
The mouth has the form of a snout. 

It would seem that figure 20 represents a carnivorous animal like 

a mountain lion. The tail is coiled, ending in a triangular appendage. 
Head, ears, and claws like a cat. The checkerboard periphery design 

is particularly effective. 

Figure 21 represents a rabbit or hare whose body is black and 

without ornament. The joints of the legs bend in an unnatural way. 

Ears, tail, and labial hairs recall a rabbit. 

Figure 22 represents two negative pictures of rabbits with charac- 
teristic ears and tails. They are separated by a band composed of 
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parallel lines, somewhat after the style of figure 9. Space between 

fore- and hind-legs is filled in with white zigzag lines. Two rabbits 

also appear in figure 23, the forms of ears, tail, and body being some- 

what different. 

Figure 24 is likewise a rabbit figure which resembles the preceding 
in color. Most figures of rabbits have black bodies without the decora- 

tions on other mammals. 

The food bowl illustrated in figure 25 has thirteen clusters of 

feathers, each cluster composed of four feathers, making an orna- 

mental periphery. These clusters are called feathers because of their 

resemblance to the feather in a bird’s wing depicted in figure 54. 

Although the two figures have rabbit features, the feet are quite 
different from those of that animal, the legs ending in sickle-like 

appendages. The reason for the strange shape of the fore and hind 
feet of this picture is unknown. 

The body of the quadruped shown in figure 26 appears to have 

been penetrated by four arrows, but the central portion of the bowl 

has been broken or “ killed” and an identification of the figure is 

impossible. The neck is long, quite unlike that of any animal known 

in the Mimbres fauna. 

The animal represented in figure 27 is probably a bat; in no other 

representation is a realistic zoic figure so closely related to the geo- - 

metric design. 

Figure 28 resembles a frog, and figure 28a suggests two tadpoles 

crossed over a disk on which are depicted eight small circles. The 

petal-like bodies radiating from the central disk are ten in number, 
four of which are primary, four double, and two single. A much 

better figure of a frog is shown in figure 29. 

Reptiles—Figures 30 and 31 have closer likenesses to turtles than 

to frogs. The resemblance to a turtle is very striking in figure 31. 

The tail, which is absent in pictures of frogs, is here well developed, 

and the eyes and legs differ from those of frogs. The carapace of 

figure 31 is covered with scales. 

Figures of a serpent and a mountain sheep are shown in figure 32. 

The two animals in figure 33 appear to be lizards outlined in white 

on a black ground; a kind of negative picture in which the body is 

filled in with black. 

The animal shown in figure 34 is apparently a lizard, but it differs 

from the other figures of lizards in the bifurcated head, lizards gener- 

ally being represented with lozenge-shaped heads. 
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The two reptilian figures shown in figure 35 have all the charac- 

teristics of lizards and the picture probably illustrates some myth or 

folk-tale. The mouths of the two lizards and that of the bird are 

approximated, which would suggest that the three were talking 

together. 

Fishes—The representation of a fish (fig. 36) between two birds 

suggests the aquatic habits of the latter. The form of the fish suggests 

the garpike, but the tail is more like that of a perch. The markings 
on the body are probably scales. Trout were formerly common in 

the Mimbres River, but none of the pictures on pottery from ruins in 

that valley have the adipose dorsal that distinguishes the trout family. 

There is a considerable variety in the pictures of fishes and probably 

more than one genus is represented. In no other ancient South- 

western pottery do we find as many different kinds of fishes repre- 

sented as in that from the Mimbres. 

Figure 37 represents a fish with pectoral, ventral, anal, and a single 

dorsal fin. The tail is uncommonly large. In figure 38 we have a 

fish accompanied by two birds; the body shows portions of the skin 

and also backbone and spines. The birds have long legs and necks, 

which are the structural features of aquatic birds. 

In figure 39 we have one of the best examples of Mimbres negative 
pictures or white on a black background. These negatives are without 

' outlines, their form being brought out by a black setting. Various 

anatomical structures are evident, as paired pectoral and ventral fins 

which are curved on one edge; pointed anal fin, small dorsal, cres- 

centic gill-slit, small eyes, no mouth. 

Figure 40 represents a sunfish, the body in profile being oval with 

long pointed dorsal fins and cross-hatched body. 

The form of figure 41 is serpentine with two pairs of fins on the 

ventral side and a single fin on the dorsal region. The body of this 

animal ends in a fish tail; the head, which is black, has no gill openings 

in the neck. There is a horn on top of the head which bends forward 

and terminates in a bunch of feathers. The eye is surrounded by a 
ring of white dots; teeth white; tongue black. 

The small fish represented in figure 42 has three fins on the ventral 

and one on the dorsal side. Through the whole length of this fish 

extends a white band, possibly the digestive organs. The fins of this 

particular fish have spines represented, whereas in other pictures these 

fins are solid black. 

Figure 43 shows two fishes which closely resemble each other in 

structure. One, however, is painted black, while the other is covered 
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with a checkerboard design. Each of these has a single ventral, dorsal, 

and pectoral fin, in which regard they differ from the specimens of 

fishes thus far known in Mimbres designs which commonly have 

paired pectoral and ventral fins. 

Birds—From their mysterious power of flight, and other unusual 

characteristics, birds have always been considered by the pueblos to be 
important supernatural beings and are ordinarily associated with the 

sky. We find them often with star symbols and figures of lightning 

and rain clouds. There is something mysterious in the life of a bird 
and consequently there must be some intimate connection between 

it and those great mysteries of climate upon which so largely depends 
the production of food by an agricultural people. 

In Mimbres ware, as is usually true in conventional or naturalistic 
figures on prehistoric pueblo ware, birds excel in numbers and variety 

all other animals, following a law that has been pointed out in the 

consideration of pottery from Sikyatki, a Hopi ruin excavated by the 
author in 1895." 

There is, however, a great difference between the forms of birds, 

conventional and realistic, from different areas of the Southwest, and: 

nowhere is the contrast greater than in those on the fine ware from 

Sikyatki and that of the Mimbres. The conventional bird and sky 
band, so marked a feature in the Hopi ruin, are absent in both the 

Little Colorado and Mimbres pottery. 

The wild turkey, one of the most common birds, associated by the 

Hopi with the sun and with the rain, is repeatedly figured on ancient 

pottery from the Mimbres Valley. 

Figure 44 shows three birds of a simple form from dorsal or ventral 

side, the head being turned so as to be shown laterally; but generic 
identification of these birds is difficult. 

Figure 45 represents the head, neck, and wing of a parrot. It is 

instructive as showing wing feathers with white tips and black dots 

on the extremities. The triangular geometrical figure near its head 

has six feathers with black dots near their extremities. 

Figure 46, one of the most realistic pictures in the collection, is 

evidently intended for a parrot and is one of the few representations 

of birds on Mimbres pottery in which the tail feathers are indicated 

by parallel lines. The special avian feature of this figure is the shape 

of the head and upper beak, which corresponds pretty closely with 

* Seventeenth Annual Report Bureau of American Ethnology, Washington, 

1808. 
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a geometric pattern called the “ club design ” used as a separate design 
in Casas Grandes pottery decorations. 

The appendages on the head of figure 47 are feathers recalling 

those of quails; the tail is destitute of feathers. 

The two wingless birds represented in figure 48 have a charac- 

teristic topknot on the head and a highly exceptional bodily decoration. 

Identification is doubtful. 

The bird (fig. 49), shown from one side, has a vertical conventional 

wing, long neck and legs adapted for wading. 

Although the tail of a bird shown in figure 50 resembles that of a 

turkey, the head and beak are similar to the same organs in a humming 

bird. Its beak is inserted into the petals of a flower, evidently for 

honey. The birds (fig. 51), among the simplest figures in the col- 

lection, have angular wings, the feathers being represented by ser- 

rations or dentations. There are figures of two birds drawn in a 

white dumb-bell-shaped area in figure 52. 

The bird (fig. 53) has outstretched wings with hanging feathers 

of exceptional form. Legs are not shown, which leads to the belief 

that the back of the animal is represented. The tail was obscurely 
shown in the photograph, which made it impossible to obtain a good 

drawing of this organ. This is one of the few dorsal representations 

of a bird, most of the others being shown from one side. The position 

of the hanging feathers of the wings is exceptional.’ 

The bodies of the four birds represented in figure 54 are oval, 

without wings or legs. Two of these bear triangular and cross 

designs, and two have lenticular markings. Between the beaks of 

each pair of birds there is a rectangular and three triangular designs, 

all terraced on one side. 

The tips of the tails of the birds represented in figure 55 are like 

that of a turkey but it is hardly possible to prove that this is a proper 

identification. 

The bird figure shown in figure 56 exhibits no wing or tail feathers, 

but the body is prolonged into a point. The head bears four upright 

parallel lines indicating feathers. Legs, short and stumpy. The 

object suspended like a necklace from the neck is not identified. 

There are several examples of wingless or tailless birds and a few 

are destitute of legs. The signification, if any, of this lack of essen- 

*On the reredos of the Owakulti altar at Sitcomovi on the East Mesa of the 

Hopi there is a similar figure with drooping wing feathers. Here it probably 

represents the Sky god, as there are several stars near it. 
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tial organs does not appear. Some of the birds have egg-shaped 

‘bodies ; the heads with long beaks. 

Figure 57 probably represents a turkey. The feathers of the tail 

are turned to a vertical position and the elevated wings have charac- 

teristic feathers. The legs end in conventionalized turkey tracks. 

There is a protuberance above the beak—a well known turkey feature. 

Figure 58 also represents a turkey, or rather three heads of the same 

animal with a single body. There are also three wings. The tail is 

turned vertically instead of horizontally and the claws are four in 

number—three anterior and one posterior. It has a single breast 
attachment. 

Feather designs—Among the modern pueblos the feather is one 

of the most prominent ceremonial objects and the specific variety used 

in their rites is considered important. Every Hopi priest in early 

times had a feather box, made of the underground branch of the 

cottonwood, in which he kept his feathers ready for use. The forms 

and decorations of Mimbres pottery would seem to indicate that 

feathers played a conspicuous role in the symbolic designs on pre- 
historic pottery. 

The importance of the feather as a decorative motive is somewhat 

less in Mimbres pottery than in Sikyatki, the symbolism of which is 

elsewhere’ considered; but the symbols for feathers in the two areas 

are different and might very readily be used to distinguish these areas. 

The types of the wings and tails of birds here considered were taken 

from the realistic representations on Mimbres pottery. We often 

find a dot indicated at the tip of a feather, a feature likewise seen 

in pottery from Casas Grandes in old Mexico and of wide distribu- 

tion in aboriginal North America. 

In order to be able to demonstrate that a geometrical decoration 

is a feather in Mimbres designs, the author has taken the representa- 

tions of the wings and tails of many pictures of birds and brought 

them together for comparison. A few of these different forms of 

bird feathers from the Mimbres are shown in the figures (59-92) 

that immediately follow. The different forms of tail feathers thus 

obtained are considered first and those from the wings follow. It is 

interesting to point out that the author’s identification of certain 

linear designs on Southwestern pottery as feathers was not obtained 

from the surviving Indians but by comparative studies. Starting 

* Thirty-third Annual Report Bureau of American Ethnology, Washington, 

1910. 
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with the thought that certain rectangular designs are feathers, we can _ 

demonstrate the theory by its application and association with other 

bird figures. 

Several forms of feather designs that appear quite constantly in 

the decoration of Sikyatki ware are not found on Mimbres ceramics, 

and vice versa. The Mimbres has several geometric feather designs 

peculiar to that valley. In the Sikyatki ware the relative number of 

feathers, free from attachment to birds, used in decoration is larger 

‘than in the Mimbres ceramics. Tail feathers have as a rule a different 

form from wing feathers and are more seldom used. Eleven different 

figures of birds’ tails are here given, and there are twenty-two designs 

that are supposed to represent wings of different birds. 

Tail feathers—One of the simplest forms of birds’ tails obtained 
in the way above mentioned is shown in figure 59, which represents 

five feathers. This feather type has square ends, each feather dif- 
ferentiated by lines as far as the body attachment. In figure 60 we 

also have four tail feathers, but the ends are rounded, and in figure 61 

there are four feathers having rounded tips; the two outer could 

better be regarded as incomplete feathers. There are likewise four 

feathers in figure 62, but, although the tips are rounded, the angles are 

not filled in with black as in the two preceding specimens. Here the 

four feathers are united by a broad black band. In figure 63 three 

whole and two half feathers are represented, united by two broad 

transverse bands and four narrow parallel lines also transverse ; and 

in figure 64 there are five whole feathers and two half feathers, whith 

are barely indicated, the lines that divide the two members being 

simply indicated. 

It is instructive to note how often this connecting black band 

appears on bird tails. Figure 65 is a case in point. Thus far also 

the feathers of birds’ tails considered are about equal in length. Here 

(fig. 65), however, the middle feathers are longer than the outer ; 

the line connecting the tips would be a curved one. 

An innovation is introduced in the tail feathers shown in figure 66. 

Their tips are rounded and there is a slight difference in general form 

between the three middle and the two outer members. The novel 

feature is the appearance of semicircular, or triangular black dots at 

their tips. Whether the existence of these differences means that 

another kind of feather is depicted or not the author is unable to say. 

In figure 67 the four feathers are characterized by black markings 

throughout almost their whole length. This variation may indicate 

a special kind of feather or a feather from a different bird. 
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Ving feathers ——The simplest forms of wing feathers are marginal 

dentations, serrations, or even parallel lines without broken borders. 

One of these last mentioned is figured in figure 68, where the wing 

is sickle-shaped and the feathers short, curved lines. In figure 69 

these lines are replaced by dentations, and in figure 70 we have three 

wings, each with dentations on one edge. 

The form of the wing has been somewhat changed in figure 71, 

but the feathers appear as dentations, while in figure 72 the feathers 

have become semicircular, each with a black dot. Wing feathers in 

figure 73 are simple triangles without designs, and in figure 74 they 

are semicircular figures, black at the base. 

Typical forms of wing feathers appear in figures 75-79, which differ 

somewhat in form but are evidently the same. One of the essential 

features of these wings, as shown in the four figures mentioned, is 

their division into two regions distinguished by the forms of feathers 

in each case. This is not as well marked in figure 75 as in figure 76, 

where the four primary and three secondary feathers on the same 

wing are distinctly indicated. The markings on these are similar, 

but the primary feathers are long and their extremities more pointed. 

In figure 77 we can readily distinguish primary and secondary feathers 

in the same wing by the absence of a black marking evident on all 

the others, and in figure 78 the three secondary feathers are distin- 

guished by dots near their tips; the primary wing feathers are 

here narrower and longer, the longest terminating in curved lines. 

Figure 79 represents a wing with seven feathers, of which the four 

secondary are distinguished by the existence of terminal dots. 

Neither figure 80 nor 81 shows distinction of primary and secondary 

feathers but .both have blackened tips. A like marking appears in 

figures 82 and 83, where it extends along the midrib of four feathers. 

Figure 84 represents a right wing of a bird with eight feathers. 

A similar representation is found on the left side and for comparative 

purposes a cluster of these designs from a bowl decorated with 

geometric designs is also introduced (fig. 85). 

Three feathers which have markings probably symbolic but different 

from any previously described are shown in figure 86. These were 

attached to a staff. Their identification is doubtful, which may like- 

wise be said of figures 87 and 88, the two latter being a very simple 

form of the feather symbol. The four: designs that appear in 

figures 89-92 are supposed to represent either tails or wings of birds 

in which individual feathers are not differentiated. 
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It is sometimes difficult to recognize the feather element in some 

of these and in others it is very well marked. These designs have 

been identified as feathers mainly on account of their connection with 

wings or tails of birds. 

Insects —The people of the ancient Mimbres probably did not 

recognize a sharp line of demarcation between birds and insects. 

Both were flying animals and can be distinguished in several figures. 

Figures 93-95 were evidently intended to represent insects, probably 

grasshoppers. The animal represented in figure 96 is enigmatical. 

It apparently represents an insect but has strange anatomical features 

for a member of this group. The head and antennae resemble those 

of other insects, but the two sets of leg-like appendages, three in each 

set, hanging from the ventral region distinctly resemble fins of fishes. 

We cannot identify this as a naturalistic representation of any known 

water insect. It is probably some conventionalized mythic animal. 

It is impossible to identify with any certainty several pictures that 

occur in the collection further than to recognize that they represent 

insects. There are several pictures of the grasshopper or locust, and 

the bee, dragon-fly, and butterfly can be recognized. The object 

shown in figure 97 looks like an insect but its structure is not suffici- 

ently marked to definitely determine the family. 

The insect shown in figure 98 has the wings and extremity of the 

abdomen similarly marked and recalls the dragon-fly. The head and 

legs differ considerably from those in figure 97. 

Figure 99 appears to represent a moth or butterfly. No identifica- 

tions were made of figures 100 and Iol. Figure 102 is a representa- 

tion of an animal with four pairs of legs, possibly the insect known as 

the “skater.” It has a head, thorax, and abdomen like an insect, 

legs like a grasshopper, and a tail like a bird. 

‘ 

The animals, and more especially the geometric patterns repre- 

sented on both Mimbres and Casas Grandes pottery, are often similar ; 

but this similarity in the beautiful pottery of the northern and 

southern regions of the Mimbres-Casas Grandes plateau is even 

stronger than the resemblances here pointed out would seem to in- 

dicate. The pottery of both regions, for comparative purposes,’ 

may be regarded as belonging to the same area. 

* The northern extension of typical Mimbres pottery is doubtful, but certain 

food bowls from Sapello Creek, a Gila tributary, bear figures that distinctly 

resemble those found near Deming. Vide: Hulbert and Watson Collections. 
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COMPOSITE ANIMALS 

One unusual feature of life figures on Mimbres pottery is the union 
of two genera of animals in composition in one picture, probably 

representing a legendary or mythological animal. The signification 

of such a union is not known, as the folk tales of the ancient 

inhabitants of the Mimbres are unrecorded; but it is instructive to 

note that similar composite animals are not commonly represented 

on pueblo pottery, ancient or modern, although we have pictures of 

reptiles and the like with feathers on different parts of their bodies. 

It is also instructive to note how many synchronous differences 

there are between prehistoric pottery and architecture. While there 

are evidences of interchange of material objects in two areas, we can- 

not say that the culture of the inhabitants of any two regions was 

identical until both have been studied. The occurrence of Casas 
Grandes pottery fragments in the Mimbres ruins or vice versa would 
indicate that the two cultures were synchronous. 

GEOMETRIC FIGURES 

The geometric designs on Mimbres pottery are as varied and 

striking as the life figures, and while they show several forms found 

on the pottery from Casas Grandes, a large majority are different 
and characteristic. The geometric decorations are confined for the 

most part to the interior surface of food bowls, but exist also on 

the outside of effigy jars and other pottery forms. The geometric 

designs on Mimbres pottery are not ordinarily complex but are made 

so by a repetition of several unit designs. 

The arrangement of geometric figures in unit designs is in twos, 

threes, and fours. When there are two different units they are 

found duplicated. There is seldom more than one unit in the arrange- 
ment by threes and very seldom an arrangement of units in fives, 

sixes, or higher numbers. It is instructive to notice en passant that 

while there are several designs on Mimbres food bowls representing 

stars, these stars generally have four points, but sometimes five. 

Great ingenuity was exercised in filling any empty spaces with some 

intricate geometric decoration. No two bowls out of over a hundred 

specimens examined bear identically the same pattern painted on 

their interiors. 

One small but important feature in encircling lines should not be 

passed in silence. There is no break in decorative lines surrounding 
the bowl. This is characteristic of the northern pueblo or cliff-house 

area known as the San Juan drainage, but not of pottery from the Gila 
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basin and the Little Colorado area as far north as old Hopi (Sikyatki). 
Much of the ancient decorated ware in the area between the Mimbres 

Valley and the Upper San Juan has surrounding lines broken. The 

broken line does not occur on the black and white type of ware, of 

which the Mimbres is a highly modified subtype. From the above 

facts regarding its distribution it appears that the “ line of life’”’* on 

Southwestern pottery can be traced to southern Arizona, and as black 

and white ware does not have this feature and is ranked as very old, 

the decorated pottery of Arizona and central New Mexico where it 

occurs should probably be ascribed to comparatively recent times. The 

Mimbres ware has no life line decoration and as this valley is only a 

short distance from the Gila settlements that show the line of life on 

their pottery the logical conclusion would be that the Mimbres pottery 

is archaic or probably older than that which has a life line. 

There is at least one ruin in the Mimbres in which pottery with the 

life line occurs. This pottery is so close in other respects to that of 

the Gila and so different from that of the majority of neighboring 

ruins in the Mimbres that we may suppose those who settled there 

came from the Gila valley. 

Underlying the pure pueblo or kiva culture of the San Juan and 

its tributaries is a prepueblo culture which differs in terms of archi- 

tecture * as well as in various types of artifacts. 

The unpolished pottery of the prepueblo culture in the Mesa Verde 

is distinguished by the varieties of corrugated, coiled and rough 

unpolished ware. One type has the neck and mouth of the jars formed 

of coiling while the body of the jar is rough without. Unlike food 

bowls from the Mesa Verde cliff dwellings, the Mimbres pottery is 

destitute of painted dots continuous or in clusters that are almost 

constantly found in this more northern area. The great difference, 

however, between the ancient pottery of these two regions is of 

course the absence of realistic figures in the northern and their great 

abundance in the southern prehistoric ruins. 

There are many bowls in the Mimbres ware that introduce areas, 

triangles, rectangles, and other geometrical figures across which 

*It does not seem probable that this line break originated independently in 

different ceramic areas of the Southwest. The pottery on which it occurs is 

supposed to be later than the Mesa Verde. 

* As elsewhere pointed out, the character of ancient dwellings in the Mimbres 

belongs to a more ancient epoch than the pueblos; it looks as if the absence 

of the life line on pottery supported the same theory, but the other features in 

decoration appear more highly differentiated and therefore more recent. 
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extend parallel lines or hachures. When triangles, these figures 

interlock with the same of solid black, leaving zigzag white designs. 

This is apparently a rare method of decoration of Mesa Verde 

pottery by indentations, and occurs at intervals down the San Juan 

to the great ruins of northern Arizona no less than in ruins at 

Aztec and in the Chaco. 

It seems to indicate an older state of culture as it universally 

underlies the true black and white or prepueblo culture which is 

missing in the Mimbres, Gila and Little Colorado regions. 

While a knowledge of the distribution of the broken encircling 

line in pottery from Southwestern ruins is not very extensive, those 

in which it has survived lie in contiguous areas. This feature is 

absent in the oldest ruins. In the area where pottery thus decorated 
occurs there survive few inhabited pueblos. Another point: the 

decorated pottery of the San Juan drainage, where corrugated ware 

is most abundant, has no life line; this is true likewise with the 

Mimbres Valley, where the most realistic decorated figures occur, cor- 

rugated ware being comparatively rare. The line of life does not 

ordinarily occur in black and white ware. Archaic ware, generally 

speaking, has no line of life, which leads me to suppose that the 

Mimbres ware is older than the Gila pottery. One of the peculiarities 

of Mimbres pottery is the use of geometric figures on the bodies of 

animals. These are practically the same as those used free from 

zoic forms. Their meaning in this connection is not known but 

several explanations, none of which are satisfactory, have been 

suggested to account for their existence on animal bodies. This is 
not common in the pueblo area but occurs in the region or regions 

that are peripheral in situation, two of which are the San Juan cliff 

houses and related ruins and the Mimbres; one north, the other south 

of the central or northern pueblo zone. The author is led to regard 

this feature as later in development or more modern. If earlier it 

would probably have been distributed over the whole area. From 

a study of houses the author was led to believe that the Mimbres 
settlements were older than the great highly differentiated cliff dwell- 

ings and pueblos. 

The geographical distribution of the ‘ ‘life line” is suggestive of 

its comparatively modern origin. It is found in ruins along the Gila 

and its great tributary, the Salt, in the ruins along the Little Colorado 

and its tributaries, at Sikyatki, Zuni and some of the Rio Grande ruins. 

The geometrical decorations on Mimbrenos pottery can generally 

be resolved into certain units repeated two or more times, forming 
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a complex figure. We have, for instance, a single type repeated four 

times, each unit occupying a quadrant. We have also another unit 

type repeated three times. In a fourth form we have two unit types, 

each repeated in opposite hemispheres, all together filling four quad- 

rants. In a fifth method we have three different unit types, each 
duplicated. . 3 

In the design represented in figure 103 we have what appears 

to be a sun symbol or a circle with checkerboard covering and four 

projecting appendages that resemble bird-tails arranged in pairs, 

the markings of the opposite members of each pair being practically 
identical. The geometrical designs on the periphery of the bowl 

consist of six units, in each of which pure black and hachure are 

combined. In figure 104 the design appears as a central circle with 

four radiating arms of a cross, each with checkerboard decoration. 

Oval white figures alternate with these arms and in each of these 

ovals is depicted a compound figure of six triangles. A similar 

design appears on ancient pottery from the Hopi ruin, Sikyatki, where 
it has been identified as a complex butterfly symbol, and on that from 

the cliff dwellings of the Mesa Verde. In Mimbres pottery it some- 

times occurs on the body of animal pictures, as the author has shown 

elsewhere.’ 
In the design (fig. 105) a central circle is absent but it has four 

arms like a cross with zigzag lines. The design (fig. 106) is made 

up of four S-shaped figures painted white on a black zone. From 
the inner ring there arise eight radiating lines which extend toward 

the center. Each of these radial lines has three parallel extensions 
at right angles. 

Figure 107 is a broad Maltese cross painted white on a black 

background, one edge of each arm being dentated. This figure may 

be classed among the negative figures so successfully used by the 

ancient Mimbrenos. 

A swastica design represented in figure 108 is so intricate that 

it is not readily described. In the middle there is a square on the 

angles of which are extensions that have a dentate margin. The 
designs placed opposite each other are more elaborate than the other 

four and are triangular with solid colors and hachures. 

Four triangular designs radiate from a common center on a white 

field in figure 109. Serrate marginal edges are used with good effect 

in this picture. 

*See plates 3, 4, Archeology cf the Lower Mimbres Valley, New Mexico. x 

Smithsonian Misc. Coll., Vol. 62, No. 10, pp. 1-53, 1914. 
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There are two pairs of rectangular designs in figure 110 arranged 

about a central circle with peripheral serration recalling a buzz saw. 

The combination of designs surrounding it is unique but the elements 

resolve themselves mostly into zigzag and checkerboard decorative 

elements. 

The extremities of the cross (fig. 111) are rounded; its arms 

arise from a central inner circle with figures in white on a black 

background. Two of the arms are ornamented with terraced rims 

and two have diamond figures separated by parallel zigzag lines 

forming bands in white on a black background. 

Three pairs of designs can be recognized in figure 112, one pair 

resembling flowers on stalks; the others, also paired, are octagonal 

in form, recalling flowers seen from above. An eight-pointed rosette 

forms the center of one, and a cross, white on black, the other. Six 

triangular designs in which hachures predominate decorate the 

periphery. 

Two pairs of geometric figures cover the interior of the bowl shown 

in figure 113. One pair is mainly a checkerboard design, the other 

chevrons on parallel lines. The central figure is surrounded by nine 

crosses on a white zone. Figure 114 has likewise two pairs of geo- 
metric units arranged about a central circular area which is white. 

Figure 115 also has two pairs of radically different units, one with 

two rectangular designs, the other with wavy lines having dentate 
borders. 

There is a trifid arrangement in the decoration of figure 116, 
consisting of three lozenge-shaped figures with dentate borders and 

parallel lines set in as many oval white areas. The central figure is 
a white circle with black border. 

Figure 117 is also made up of three unit figures, each of triangular 

shape with an elaborate border of solid triangles and hachure sur- 
rounding figures. 

Figure 118 is a very exceptional decoration and may be divided into 
six units arranged in pairs. There are four triangles, two pairs of 

which have a decorated border and two have not, but all alternating 

with a pair of five needle-like solid black pointed extensions reaching 
from the margin of the bowl inward. The most conspicuous figure 
is a unit design consisting of bands with two opposite figures united 

with the margin by a black line, each decorated with four frets. 

Figure 119 is an unique decoration made up of a central circle 

with five claws like birds’ beaks, each with an eye. The interior of 

each is a five-pointed star. 
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Figure 120 is a central four-terraced symbol from which extend 

many radiating feather-like designs. A central rosette in figure 121 

has eight petaloid divisions; it 1s white at the extremities, black at 

the center. 

The decoration of figure 122 consists of an intricate meander filling 

the peripheral space outside a circular central black area. 

In figure 123 the more striking parts are the five white circles, 

one centrally situated, and four equidistantly placed near the periphery. 

The main portion of the bowl is covered with figures consisting of 

rectilinear lines and spirals. 

The prominent design in figure 124 is a star with eight slender 

arms and exceptional peripheral decorations. 

The centrally placed design depicted in figure 125 is a quadruped 

with tail curved upward, recalling a conventional mountain lion. 

The peripheral figures are of two shapes, lozenge or angular, and 

semicircular with zigzag extensions. 

Two birds stand on an unknown object in figure 126, while in 

figure 127 we have a quadruple arrangement of parts, the same unit 

being repeated four times. The most striking designs are bundles 

of conventional feathers, four in each, arranged at intervals. These 

have been identified as feathers by a comparison of them with the 

wing feathers of an undoubted bird elsewhere considered. 

The designs shown in figures 128 and 129 are four-armed crosses. 

Between the arms of the last mentioned figure there are white 

designs on a black ground. 

Now and then we find in ancient Mimbres pottery the universal 

symbol called the swastica. Figures 130 and 131 are geometrical, 

the latter having three instead of four arms. Figure 132 represents 

a four-armed swastica in which the extremities of the arms are 

quite complicated. 

One of the most beautiful geometric designs from Mimbres pot- 

tery is shown in figure 133, where a combination of curved and 

‘linear figures, black, white, and hachure work, all combine to produce 

the artistic effect. Elsewhere * the author has figured a similar design 

with four S-figures around the periphery of a bowl. 

The design on the food bowl shown in figure 134 is very ornate 

and in a way characteristic of Mimbres ware. We have in its com- 

position solid black, hachure, and white rectangular lines and scrolls 

* Archeology of the Lower Mimbres Valley. Smithsonian Misc. Coll., Vol. 63, 

No. 10, pl. 8. 
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so combined as to give a striking effect and attractive harmony. 

Of all geometric figures this appears to the author to be one of the 
most artistic. 

In figure 135 is an artistic combination of a double ring of 

terraced triangular figures surrounding a central zone in white, and 

in figure 136 there is a composite decoration composed of a complex 

of triangular designs. In figure 138 there is a white square in the 

middle, around which are arranged eight figures of two kinds alter- 

nating with each other; four in each type. 

The design in figure 137 is simple, consisting of a number of white 

zigzag figures with intervals filled in with triangles, sometimes black 
and sometimes crossed by parallel lines. 

In figure 138 we have two groups of similar unit designs, four in 

each group, composed of triangular blocks terraced on one side 

and crossed by parallel lines. The simple designs on figures 139-140 
need no elaborate description. 

CONCLUSION 

The material here published is extensive enough to permit at least 

a preliminary estimation of the relation of Mimbres pottery to that 

of the so-called pueblo area on the north and that of Casas Grandes 

on the south. 

The Mimbres valley is an ideal locality for the development of 

an autochthonous and characteristic ceramic area. There is not 

sufficient evidence to prove that decorative elements in any con- 

siderable number from the North modified it to any great extent, 

for we find little likeness to pottery of the Tulerosa and other tribu- 

taries of the Gila and Salt. The pottery of the Mimbres had crossed 

the watershed and reappears in the sources of tributary streams 

that flow into the Gila. Examples of it have been found on Sapello 

Creek, which, so far as we know, is the northern extension of the 

Mimbres culture. The beautiful pottery collected by Mrs. Watson 

at or near Pinos Altos clearly indicates that Mimbres pottery was 

not confined to the Mimbres Valley. Limited observations often 

render it impossible to trace the extreme northern extension of the 

Mimbres pottery, but 1t seems to grade into ceramics from the upper 

Gila and Salt River tributaries. The southern migration of pueblo 

pottery appears to have been very small, but elements of foreign 

character worked their way into the Mimbres from the west, as is 

clearly indicated by shards from the ruin at the base of Black Moun- 



26 SMITHSONIAN MISCELLANEOUS COLLECTIONS - VOL. 74 

tain. The line of demarcation between the two on the west is 

clearly indicated by specific characters. 

The Mimbres pottery most closely resembles that from the Casas 

Grandes mounds in Mexico, on the south, but whether we may look 

to the south for the center of its distribution is not apparent. The 

mounds near Casas Grandes River are situated in the same inland 

plateau, and although Casas Grandes pottery excels the Mimbres in 

form and brilliant color, it is inferior to it in the fidelity to nature 

of its realistic pictures of animals. In this respect the Mimbres has 

no superiors and few rivals. 

We have found no evidence bearing on the antiquity of Mimbres 

pottery from stratification. It is not known whether it overlies a 
substratum composed of corrugated, coiled, or black and white ware 

as commonly occurs in the pueblo and cliff-house regions. Decorative 

features characteristic of it have been developed independently in this 

isolated region. A knowledge of the length of time required for its 

development as compared with that necessitated for the evolution of 

the Sikyatki designs must await more observations bearing on this 

subject. 

The animal designs were not identified by Indian descendants 

of those who made them. A determination of what they represent 

is based solely on morphological evidence. They are as a rule well 

enough drawn to enable us to tell what animal they represent. Very 

often the animal is recognizable by comparisons, for we can recon- 

struct a series reaching from a symbol made with a few lines to a 

well drawn picture. There is danger in supposing that a series thus 

constructed may always lead to accurate identifications as comparisons 

of symbols with decorative designs are often very deceptive. 

The break in decorative lines surrounding pueblo food bowls and 

other forms of pottery is absent in specimens from the Mimbres 

Valley. This is also true of the cliff house and other pottery of 
the San Juan Valley. 

Pottery from the Gila basin and the intervening area as far north 
as old Hopi ruins has this life line. Much of the ancient decorated 
ware found in the area between the Mimbres valley and the upper 

San Juan also have surrounding lines broken. 

* The author has already commented on this infiltration in his Archeology of 
the Lower Mimbres, op. cit. Mimbres and Casas Grandes pottery are readily 
distinguished. 
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OSBORN COLLECTION. 

1. Snaring wild birds. 4. Man shooting off the lightning. 
2. Game of chance. 5s. Two men and two animals. 
3. Men emerging from the underworld. 6. Two men and one woman. 



28 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 74 

OSBORN COLLECTION. 

7. Two men kneeling on quadrupeds. ro. Man dancing. 
8. Two men lying on table. 11. Two men dancing and two turkeys. 
9. Two men with bodies and limbs ot 12. Two human figures. 

animals (Hulbert collection). 
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OSBORN COLLECTION. 

Man representing plumed serpent, cut- 
ting off head of a victim sacrificed. 

14. Two carnivorous animals. 
15. OQuadruped (probably wolf). 

13. 16. 
Gp 

18. 

Two men dragging a quadruped. 
Horned composite quadruped with feath- 

er head-dress. 
Man with rabbit ears and body. 
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OSBORN COLLECTION. 

resembling 22. Negative pictures of two rabbits. 
23. Two rabbits. 

19. Two animals in white, 

24. Rabbit. 

beavers. 
o. Unknown quadruped 
t. Rabbit. 

(mountain lion?). 2 

21 
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a 28 29 

25. Two rabbits surrounded by a zone con- 27. Bat (Watson collection). 
taining thirteen bundles of feathers 28. Frog (Osborn collection). 
(Hulbert collection). 28a. Tadpoles (Osborn collection). 

26. Unknown animal (Osborn collection). 29. Turtle (Osborn collection). 
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30. Turtle (Osborn collection). 
31. Turtle (Osborn collection). 
32. Snake talking to a mountain sheep (Os- 

born collection). 

33. Iwo lizards with white outline (Osborn 
collection). 

34. Lizard (Hulbert collection). 
35. Two lizards talking to a crane (Osborn 

collection). 
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OSBORN COLLECTION. 

39. Two fishes drawn in white on _ black 36. Fish with two birds standing on it. 
37- Sun fish. ground. 
38. Two birds standing on a fish. 40. Sun fish. 

41. Serpent-like monster with horn on head. 
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42. Coiled fish (Hulbert collection). 
43. Two fishes symmetrically arranged. 
44. Three birds. 

SS 

COLLECTION. 

47 

45. Parrot. 
46. Well-drawn parrot. 
47. Quail. 
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48. Two birds on dumb-bell-shaped 
49. Bird with wings extended. 
50. Two birds taking honey from flowers. 

field. ST. 
52. 
ae 

Three birds. 4 : ' 
Two birds with triangular tails and wings. 
Sun bird., 
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Turkey with three heads. 
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54. Four birds with swollen bodies. 
g necks. Two birds with lon 

56. U 
55- 

nknown bird. 
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WING FEATHERS. 
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97 98 

OSBORN COLLECTION. 

93. Grasshopper with extended wings. : 96. Unknown animal. 
94. Four grasshoppers with extended wings. 97. Unknown animal. 
95. Locust. 98. Dragon fly. 
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99. Butterfly (Hulbert collection). : to2. Water bug (Osborn collection). 
100. Unknown animal (Osborn collection). 103. Sun emblem (Osborn collection). 
tor. Insect with extended wings (Osborn 104. Cross with butterfly symbols (Osborn 

collection). collection), 
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OSBORN COLLECTION. 

105. Cross painted white, alternating with 107. Maltese cross, modified. _ 
our zigzag lines 108. Rectangular re, modifie 
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117. Swastica with three points (Osborn 121. Radiating pear-shaped objects sur- 
collection). rounded by elaborate zone of compli- 

118. Figure of unknown meaning (Watson cated solid black and parallel lines 
collection). (Osborn collection). 

. Five heads of birds around a central 122. Figure of unknown meaning (Osborn 
circle (Osborn collection). collection). 

20. Radiating feathers (Osborn collection). 
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127 128 

123. Intricate design with five white circles 126. Two birds on an unknown weapon (Os- 
(Hulbert collection). born collection). 

124. Star with eight rays (Osborn collec- 127. Cross with four bundles of feathers 
tion). (vide fig. 53) (Osborn collection). 

125. Quadruped surrounded by zigzag lines 128. Rectangular cross around a circle, with 
E. White collection). elaborate peripheral design (Osborn 

collection). 
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Q sborn collection). 32. Swastica with zigzag exten (O 
Cross with arms of two types (Osborn born collection). 

Cc ction). 33. Combination of rectangular d spiral 
Three-pointed swastica (Osborn collec- designs (Osborn collection). 

ion 34. Complicated unknown fig (Wat 
llec ye 
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135. Rings of cerrated symbols surrounding 136 to 140. Geometrical ornamentations of 
a central white area (Watson collec- unknown meaning (136, 138, Wat- 
tion) s tion; 137, 139-140, Osborn 
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iit DISTRIBU TION-OF ENERGY INGLE SPECT RA 

OK TEE SUN AND. STARS 

By C/G ABBOT, EE, FOWLE Ann ly By ALDRICH 

Until recently, one could form an estimate of the temperatures 

prevailing in the sun and other stars only by a determination of the 

distribution of energy in their spectra and the application of the laws 

of the perfect radiator or absolutely black body. Although recent 

advances in the physics of the atom point to a new method of 

approach to this subject, the form of the energy curve still remains 

of great theoretical interest. 

In the measurement of the solar constant of radiation by the 

method of Langley, it requires us to determine the ratio of the areas 

of the energy curve of the sun at the earth’s surface and outside the 

atmosphere, and knowledge of the distribution of intensities of the 

solar rays is indispensable. To be sure, the values come in merely 

as a series of weights in forming a pair of sums, one in the numerator, 

the other in the denominator of the fraction which gives the ratio 

of the solar energy outside the atmosphere to the solar energy within 

it. Hence no very high degree of accuracy is needful for this pur- 

pose. This is fortunate, for so far as our experiments have gone 

we have never succeeded in obtaining so high a degree of accuracy as 

would satisfy us from the workmanlike point of view. 

This comes out clearly if one compares the results of our various 

determinations of the form of the solar energy curve as published in 

Volumes III and IV of the Annals of the Astrophysical Observatory. 

The divergence in these values is considerable, and when in 1920 

the experiments for the determination of the form of the sun’s energy 

curve were repeated, a still wider discrepancy appeared, so great 

that although these experiments of 1920 were ready at the time of 

printing of Volume IV of the Annals we hesitated to include them 

until they should be checked by other independent determinations. 

These proposed new determinations have been made at Mount 
Wilson during the summer of 1922, and form the first part of the 

present communication. The latter part includes the application of 

them to the spectra of ten of the brightest stars observed with a 

SMITHSONIAN MISCELLANEOUS COLLECTIONS, VOL. 74, No. 7 
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special bolometric outfit by Messrs. Abbot and Aldrich at Mount 

Wilson in 1922. The work was done in connection with the 100-inch 

telescope. 

We here return our thanks for the aid and encouragement fur- 

nished in the stellar work by Dr. Hale, Dr. Adams, and many of the 
staff of the Mount Wilson Solar Observatory. 

SOLAR SPECTRUM ENERGY CURVE 

A statement of the method adopted for the observations may be 
found in Volume II of the Annals of the Astrophysical Observatory, 

pages 24, 50-57. Briefly, it is this: 

At each of a number of wave lengths in the solar spectrum it is 

required to determine: (1) The intensity of the spectrum observed 

in the bolometer ; (2) the selective transmission of the spectroscope ; 

(3) the selective reflection of the coelostat; (4) the transmission of 

the atmosphere. The bolograph indicates the first, and the measure- 

ments on a series of bolographs taken at different zenith distances of 

the sun furnish the means of computing the last. The reflection of 

the coelostat is determined by taking bolographs (a) with the ordi- 

nary pair of mirrors, (b) with a substitute pair of mirrors, (c) with 

a combination of both regular and substitute mirrors. The selective 

transmission of the spectroscope is determined by first passing the 

ray through an auxiliary spectroscope, selecting certain wave lengths 

and observing their intensity, (d) as transmitted by the auxiliary 

spectroscope, (e) as transmitted by both spectroscopes. 

The observation (d) is made by setting the bolometer to occupy the 

position usually occupied by the slit of the usual spectroscope. In 

this position a number of settings of the auxiliary spectroscope are 

made, so as to determine the intensity of its radiation at a sufficient 

number of wave lengths. Then the slit of the usual spectroscope is 

restored to its proper position so as to permit nearly monochromatic 

beams of light to pass through the usual spectroscope after having 

been sorted out by the auxiliary one. The relative intensities of these 

nearly monochromatic beams are determined by taking bolographic 

energy curves of them. The areas included in these bolographic 

energy curves give the relative amounts of energy remaining in these 

wave lengths after having suffered absorption in the usual spectro- 

scope. Thus the galvanometer deflections with the bolometer at the 

slit divided by the areas of the corresponding energy curves formed 

by the bolometer in its usual position, give numbers inversely pro- 
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portional to the transmission of the usual spectroscope, and suitable 

to correct its losses. 

It will be noted that the procedure thus outlined takes no account 

of selective absorption by the bolometer for different wave lengths. 

If, for example, the bolometer should only absorb 50 per cent of the 
rays in the ultra-violet while it absorbed 95 per cent of the rays in 

the infra-red, the form of the energy curve would be quite erroneous. 

We confess that in even our present experiments the possibilities of 
error from this cause have not been eliminated, but as will appear 

we have at least shown that with several different bolometers, some 

camphor smoked, some painted with lamp-black, some in atmospheric 

pressure, and some in high vacuum, there is no certain difference 

beyond the experimental error, and we continue here, as heretofore, 

tacitly to make the assumption that the bolometer absorbs a uniform 

proportion of the rays throughout the region of spectrum we are 

concerned with, namely, from 0.3 to 3”. Our position is strength- 

ened by the fact that Angstrom, Coblentz, and others estimate the 
absorption coefficient of blackened surfaces for total solar radiation 

as high as 97 or 98 per cent. This leaves little room for selective 

absorption. 

Observations of 1920.—The determination of the transmission of 
the spectroscope was repeated in 1920 with new stellite mirrors, those 

used in 1917 and 1918 having gone to Chile. There is nothing new 

in the method employed, but the work was done with all possible 

care and with independent adjustments on July 16, 17, and 19, and 

August 18 and 19, 16 determinations in all. Ten points in the 

spectrum were observed in July and nine others alternating with 

them in August. The average probable error of the determination of 

relative spectroscopic transmission at these 19 points was 1.2 per 

cent. The results run as shown in table I. 

Combining these results with the determination of the reflecting 

power of the stellite-mirror coelostat made in 1918, and determinations 
of the form of the energy curve at the earth’s surface and of atmos- 

pheric transmission accompanying made at Mount Wilson on 10 

satisfactory days of 1920, of which five gave high, five low solar 

constants, we obtained the distribution of solar energy in the spectrum 

outside our atmosphere. These values will be given below. 

Observations of 1922.—All the apparatus used in 1920 having been 

removed to Mount Harqua Hala, we used an entirely new outfit. The 

coelostat mirrors were silvered but the main spectroscope had new 

stellite ones. 
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In repeating the work, we were well convinced that the principal 

uncertainty rested on the determination of the absorption of the 

spectroscope. So many closely agreeing observations have been made 

in former years of the transmission of the atmosphere, the results of 

which fall in so well with the theory of Rayleigh on the molecular 

TABLE I.—Spectroscopic Transmission. Observations of 10920 

193 | 104] 104] 195 | 106) 196] 107 
Place by (Hoybbayrisine 356 adores 18 00 45 | 30 I5 45 20 

Prismatic deviation from ,|224.6' 210.6’ |195.6' 180.6’ 165.6’ |155.6’ |144.0’ 

| 
\Vrarvemlenncthign mereka -355 | -370 | .391 | .412 | .441 74030) ea4o2 

Relative transmission .....| 194 | 243 297 | 291 B10 9325a esas 

Probable error, per cent...| 3-2] 3.0 1.8 | 0-4 Tyee ORAL BORO) 

Places ymCOunteiemaes seri 00 35 15 12 30 10 45 

Prismatic deviation from @,|130.6’ |119.0’|105.6'| 86.6’| 80.6'| 67.2’| 55.6’ 

Wavelength 2s. ..... 22) 2533) 3578 |..650 | <798.| 285o0n|fa4onmeans 

Relative transmission .....] 372] 378] 362 Burd | RS 205 201 

Probable error, per cent...| I.1 lie 0.9 be2 On3 5/029 0.7 

Place by counter. saeeer ee 00 00 30 00 50 

Prismatic deviation from w,| 50.6’) 30.6 

Wiavediength a. .c2 cess oso |e207 21504 lln733) 2a 1remi2a3r0 

Relative transmission .....4| 324 || 365) 383°) 35m 186 

Probableverror. peracemten. |) isOn| Lee exOnSulmnOnrilllmanenS 

scattering, that we could not doubt that the atmospheric transmission 

coefficients obtained on excellent days were abundantly accurate for 

the purpose here in view. At least this is true for the wave lengths 

greater than 0.44. In the ultra-violet, we are well aware that there 

is contamination of the spectrum by stray light from longer wave 

lengths, so that the atmospheric transmission coefficients determined 

for that region are too high, and the magnitude of this error increases 
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as the wave length diminishes. If that were the only effect of the 

stray light, it would tend to diminish the intensities of the solar energy 

spectrum outside the atmosphere in the region of the ultra-violet rays, 

but there are also two additional effects of stray light, both of which 

tend in the other direction. 

The first of these is the building up of the bolographic energy curve 

at the earth’s surface in the ultra-violet by these same stray radia- 

tions which, as we have just said, tend to raise the atmospheric trans- 

mission coefficients. Obviously the effect of this building up tends 

to make the ultra-violet too high. 

The third effect of stray light is in the determination of the trans- 
mission of the spectroscope. If the reader will go over the summary 

of procedure for that purpose, which has just been stated, he will 

perceive that the auxiliary spectrum which falls at the slit of the 
main spectroscope will be subject to contamination by the stray light. 

Monochromatic beams of energy result at the usual position of the 
bolometer, after the passage of the light through both spectroscopes, 

in which the stray ight will be practically eliminated. Consequently 

in the ultra-viclet the auxiliary spectrum will be relatively too bright, 

owing to the influence of stray light, while in the final spectrum 

represented by the little energy curves, the stray light will be elimi- 

nated. Hence, the ratios of the bolometric deflections at the focus 

of the auxiliary spectrum divided by the bolographic areas observed 
in the usual spectrum will be too large in the ultra-violet, indicating 

a greater absorption in the spectroscope than actually exists, and this 

will tend to make the ultra-violet part of the solar spectrum outside 

the atmosphere too high. We sha!l recur to this question of stray light 

a little later, and introduce an estimate of the combined effect of these 

three different influences. 

In considering the best means of assuring a trustworthy result, it 

seemed to us that great advantage would come from using several 

different prisms, both in the auxiliary and in the usual spectroscope, 

so that we could carry through the whole determination of the solar 

energy curve outside the atmosphere with instruments of very dif- 

ferent dispersion characteristics. In order to get these as decisively 

different as possible and at the same time to use materials of high 

transmissibility throughout the region of the spectrum we were con- 

cerned with, it occurred to us to use prisms of rock salt in substitution 

for the ultra-violet crown glass prisms we usually employ. Moreover, 

as the work of 1920 and some previous years had been done with ultra- 

violet crown glass prisms in both the auxiliary and usual spectro- 
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scopes, we determined to substitute in the auxiliary spectroscope a 

prism of ordinary flint glass which, as is well known, produces a far 

greater relative dispersion in the ultra-violet than the ultra-violet 

crown glass. 

It seemed to us that when these various modifications of the experi- 

ments had been made, namely, the use of bolometers in air, bolometers 

in vacuum, bolometers painted with lamp-black, and bolometers smoked 

with camphor smoke; when we had employed several different types 

of prisms; and when we had independently set up the apparatus with 

the greatest possible care on several different occasions ; then, if the 

results of all these modifications should agree among themselves and 

should agree either with the work of 1920 or with the work of the 

earlier years, as reported in Volumes III and IV of the Annals of 

the Astrophysical Observatory, the final result, supported by such far- 

reaching agreements, ought to be entitled to confidence. 

We now proceed to give in table 2 in abbreviated form the data 

of the observations and their results. 

As noted above, the measurements of the degree of uniformity of 

the galvanometer scale do not indicate appreciable corrections to be 

necessary. For though the increase of deflection for successive steps 

of one ohm diminishes slightly with increasing deflection, yet there 

should be a small change in this direction depending on the fact that 

a change of one ohm on a shunt of 1,937 ohms about a Wheatstone’s 

bridge coil of 56 ohms produces less current in the galvanometer 

than 1 ohm change on 1,930 ohms. With allowance for this, the read- 

ings differ by less than their probable error from linear relations. 

The deflections are governed by rotating sectors. As determined 

with automatic recording of deflections in numerous series, the de- 

flections for sectors are as follows: 

Sector No. , 3 2 I 0 

Wetlectionm ss sas cn re 1.000 3.159 Q.161 26 677 

IDSueC aon) (a ae eae ces 0.3748 1.184 3.434 10.000 

From this we derive factors of reduction: 

BRomeGeditcel ass 5 es) LOLO 2 too I to O 0 to oO 

JERIGION aR eo eae 26.68 8.445 2.913 1.000 

Momeducel ssa 53) tol 3 2aLONS 1 ton3 0 to 3 

INgiGitoe doseecs one 1.000 0.3166 0.1092 0.03748 
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Tas_e 3.—Ratios of Deflections of Various Bolometers as Reduced to Nearly 

Equal Scales 

A =old bolometer No. 20 in air, camphor-smoked. 

B=old bolometer No. 20 in air, lamp-black-painted. 

C = 1916 bolometer in air, lamp-black-painted, glass plate in front. 

D=-10916 bolometer in vacuum, lamp-black-painted, glass plate in front. 

E = 1922 bolometer in vacuum, lamp-black-painted, glass plate in front. 

Speen lenge A/C |.0B/E:| DYE \\"a0/C | D/C =|a9 76 A ee ae 

microns, | 

06:00 | 0.37 | 89 | 105 my? |) IKONS 90. || LOZ) > gs 04 

04:30 | 0.40 | 100 gl 100 106 103 104 1.032 108 

03:15.) 0.46 / 100 | 100 | 104 | 101 LOOM. OON | ae OlOneTOS 

02:00 | 0.53. 103 | 106 05 OOF |) 200% || 0s .997 | 102 

00: 45 | 0.65 | 102 | Too | 102 88* | 95 100 992 99 

99:50 | 0.86 | I10 100 105 100 08 IOI 1.010 100 

98:15, 1.22 ‘| 106. | “o94| To8 |. 100 99 | IOI 1.020 | 100 

97.00" 160. | TIT") Teo 89” 99 03 95 .970 | 103 
05200" |" 2ir2t | 10" | at05 +) 100! “102 93 98 .982 | 100 

* Omit. 

These figures perhaps show that the camphor-smoked bolometer 

No. 20 read low in the visible and ultra-violet spectrum as compared 

with the infra-red, but this result may have been produced by changes 

of sky between the two series of observations, which in this instance 

were not made on the same day. In all the other cases we incline to 

think there is nothing definite shown, and the fluctuations were due 

to slight differences of wave length between settings, or to changes 

in sky between observations, as well as to accidental errors of 

galvanometer readings, which latter were sometimes no doubt more 

than 1 per cent. The change between air pressure and evacuated 

condition of the 1916 bolometer seemed to us at one time real, but 

looking at the individual determinations we now incline to doubt it. 

In vacuum the 1916 bolometer was about five times as sensitive as 

in air. The observations in vacuum in each case were taken imme- 

diately preceding those in air, and at high sun. 

Reduction of the observations of spectroscopic absorption.—As a 

sample of the work we give the observations and reductions for 

September 2, first series. 
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TABLE 4.—Sample of Spectroscopic Absorption Work 

ls tor-f 23 3 . . | Sector-free areas H 
epee | Sector-free deflections and times | “Ew Ree : Sector- | oes 

second hate anes fase Sa 
spectro | | Gane BUG 
Sob iDetlec - Deflec- - | Mean ? tion Beane 

| tion Time Baa Time |measures| ime o 5 

la 

cm. cm. cm.2 

06: 00 O77 Ales. O77 OS 2 bale apse Mo704|) 3520" 0.645 | 327 

04: 30 5-54 4.95 16.10 5-25 325 
Og Teed s50O7. | 14-15 | 3050" 48.5 Br anh) T4602 302 

02500) |) 20:51 28.80 | 112.1 29.70 265 

00:45 | 56.58 54.89 204.5 55-73 273 
OOS Om nOs-20) 13°11, | 686.05" | 350 |) B23i0. 3% 30" 4185-72" 79 200 
98:15 | 91.20 g0.20 330.5 90.70 275 

97:00 | 60.63 61.16 236.2 60.90 258 

GesOoMi7ob )|* 8° 14™ |. 17.61) | 42 Or 51.7 Ba AO aie aeeOn 341 

Working along in this way, and reducing all of the ratios, deflec- 

tion divided by area, proportional to spectroscopic absorption, to the 

same scale of arbitrary units, we come at length to the following 

tables: 

Tasie 5.—Collected U.V. Glass Spectroscopic Absorption. First Places 

ince iby Dates of observation | apes Perici 

second ee probable 

BuEGINOSCope Aug. 28 Sept. 3-I Sept. 3-I] | cere 

05:15 518 431 417 455 4.2 
03: 45 495 480 484 486 06 
02: 40 448 | 446 437 444 0.4 
OI: 25 403 | 27. | 432 421 18 

99: 48 384 409 | 422 404 1.6 
08 : 30 Mee 428 425 426 

98 : 00 ae 437 420 428 if 

96 : 30 416 | 405 308 406 0.7 

94:10 | 703 WSS 419 
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Similarly for the other set of spectrum places we obtained: 

TaBLe 6—Collected U. V. Glass Spectroscopic Absorption. Second Places 

Place by Dates of observation 
j Per cent second | —_______) Mean yabte 

ets ts August | August | August | August Sept. Sept. oS error 
SCOR. 28 29-1 29-11 30 AM 2-1] 

06: 00 500 541 507 406 515 544 517 1.0 | 
| 

04: 30 508 458 495 368 B07. eazy 480 3.0 
03:15 | 466 | 461 452 400 | 471 | 473 454 1.3 
027 CONN ALO ass 426 307-0" “eAiZin|| S440 420 1.0 

00: 45 490 445 450 436 | 426.| 42r 445 1.2 
09: 50 408 413 400 428" Arar || 385 408 0.8 

98: 15 433 |) “428 419 422 426 | 436 427 0.3 
97 : 00 ae 377 370 481 402 | 398 406 2.5 

95 : 00 ae 553 7a) a5 OL 630 532 | 569 575 1.7 

In the same manner we arrived at the following results for the 

spectroscopic absorption values in arbitrary units applicable to the case 

of the rock salt prism replacing the U. V. crown glass prism in the 

TABLE 7.—Collected Rock Salt Spectroscopic Absorption 

Dates of observation 

Oye , | Mean | brobable 
spectroscope Sept. 5 | Sept. 6 Sept. 9 error 

| 
06 : 00 609 | 644 693 679 | 1.5 

05:15 | Bohr |. Pn SOT 513 5540 ° Sau noe 
04: 30 22 bimeggon Ml 476 512 1.6 
03:15 451 ab rare AS Sir Bat 412 434 1.6 
2: 00 | AII | 301 | 384 | 305 L2 

CORE f= 5 SAO) ply isis 208-6 ssn args 1.0 
99: 50 | 313 30500 327 315 1.2 
98:15 264 | 271 | 281 272 1.0 

97 : 00 230 | 260 270 256 uri 

95: 00 215 | 227 223 222 | 0.9 

04: 10 203 | 208 | oe 210 | 

second spectroscope. As we had no reason to expect absorption 

bands introduced by rock salt it was unnecessary to investigate so 

many places in the spectrum as were used for the U. V. crown 

glass prism which has several such bands. Eleven places were chosen 
including all the wave lengths of the “ Second Places” above and in 
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addition two others from the ‘“ First Places.’ For clearness we give 

the spectrum settings which the U. V. crown glass prism would have 
required at these wave lengths, so as to compare with those in the 

preceding tables. 

These determinations of spectroscopic absorption for the U. V. 

glass and for the rock salt spectroscopes were plotted on a large scale 

and smooth curves drawn to fix the best values to use for the absorp- 

tion coefficients at the wave lengths where bolographic ordinates are 

measured. These results will appear in a later table. 

Reductions of observations of coelostat absorption—On Septem- 
ber 5, and again on September 6, bolographs were taken to determine 

coelostat absorption. Thus, for instance, on September 5, after a 

series of four bolographs beginning at 6" 36" and finishing with the 
bolograph at 8"13™ taken to determine atmospheric transmission 

coefficients, two additional silvered mirrors were employed in con- 

nection with the bolographs as follows: 

Time of observation gh45m rohorm toh2a9m rohz9m 1ohygm 11ho3m 

Mirror arrangement 4mirrors Usual 4mirrors 2substitutes 2substitutes Usual 

These bolographs of the solar spectrum having been marked 
with smoothed curves as usual, were measured in ordinates at the 

usual places as in solar-constant determinations. The results were 

then combined in the following manner : 

From the usual bolographs taken at 8"13™, 10° o1™, and 11°03”, 

it was determined what would have been the usual ordinates at the 

various times when four mirrors and two substitute mirrors were 

employed, and thus the whole body of data could be brought to a 

common time and air mass. Mean values of ordinates for the four 

mirrors and for two substitutes were determined. Let A, B, and C 

be directly comparable ordinates at a certain wave length with usual, 

substitute, and four mirrors, respectively, then the correcting factor 

for the combined absorptions of the usual mirrors at this wave 

length is B/C. If that for the substitute mirrors was desired, it 

would be A/C. 

Proceeding thus in effect, we obtained the correcting factors for 

the absorption of the usual mirrors over the whole spectrum for 

both September 5 and September 6. The latter day’s values were 

obtained for slightly different wave lengths as observed with the 

rock salt prism. But the values were readily convertible to a com- 

parable basis, and were thus compared by plotting on a large scale. 

The two sets of data were in satisfactery accord throughout, but were 
mutually helpful in smoothing out accidental errors. This being 
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done, smoothed curves were drawn for each day separately and 

applied independently in the final computations of the energy curves 
of the two days. I*rom inspection of the results it is believed that 
the determinations of coelostat reflection are surely correct to within 

I per cent, except as far as they may be affected systematically in 
the violet by stray light as already referred to above. 

TABLE 8.—The Solar Energy Curve. U.V. Glass Prism. September 5, 1922 

Prlomatic a Dispersion | Coelostat Spectro- See anerer ane 
co a peeee coefhcient | reflection BoA ect oe | 5 ee 

| 

230’ 0.3504 1104 0.545 632 304 435 
220 0.3600 990 0 616 580 506 501 

210 | 0.3709 887 0.667 530 615 | 546 

200 | Otsa, “15 2788 0.705 490 San8 | 650 
190 is eOl074. Uh aG2 0.734 480 | 980 678 

180 04127 | 605 0.760 480 1445 875 
170 | 0.4307 | 520 0.784 487.) 82086 4 063 
160 0.4516 460 0.807 A7O 2350 1081 

150 0.4753 307.7 4.0820 450 | 2960 1175 
140 | -0,5026 338 0.850 430 3390 1146 

130 ie TOs s468ni| | e282 | 0.870 420 3806 | 1073 

120 0.5742 230 0.890 420 4500 1035 

115 0.5980 206 0.899 428 5002 1030 

I10 0.6238 183 0.907 440 5650 1034 

105 | 0.6530 162 0.915 444 6000 972 

100 | 0.6858 144 0.923 435 6400, 922 
95 | 0.7222 127 019380 420 6380 810 

90 | 0.7644 112 0.936 410 270) 702 ° 
85 | 0.8120 08.8 0.041 407 6250 618 

80 | 0.8634 86.5 0.945 410 6165 533 

75 | 0.9220 76.8 | 0.949 AZ") Sono; am 454 
70 | 0.9861 Tiss 0.953 418 | 5020)eeul| 402 

65 1.062 68.0 0.957 422 - | 5248 357 

60 1.146 66.0 0.960 420 | 4760s 314 
55 1.225 66.0 0.963 A209) 4400 290 

50 1.302 | 66.0 0.906 428 3850, 254 

45 || r.377 66.0 0.970 ADAMO tage een 218 
40 re S| 66.0 6:073') | an8e Cle Se88orad 190 
35 1.528% (4 60.4 0.075 4II 2460 163 

30 | eeGosts. 41 67.3. | 0.077 406 2164 146 
25 1.670 | 63.1) (|| (01078 55\— 4055 | 2013 137 

20 |. 1.739 690.6 | 0979 408 | 1774 123 

10 L870. VES 0.979 430 | 1390 100 

fe) 2.000 76.8 0.980 495 1088 84 

—I10 be 25, 83.0 0.980 574 662 55 

—20 | “eae. i. Soos 0.981 660 | 378 34 

\ 
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TABLE 9.—The Solar Energy Curve. Rock Salt Prism. September 6, 1922 

Prismatic Wave Di : @oelactat Spectro- Prismatic eee 
deviation length LSE SOD Og ose scope CeCe CG curve 
Fears Pi coefficient | reflection Coahicrent Pasa aeitside 

200’ 0.3749 1585 0.676 630 199 313 

190 | 0.3820 1484 0.699 502 193 286 

180 0.3881 1384 0.717 562 231 321 

170 | 0.3975 1280 0.735 $43 335 429 
160 0.4057 1193 0.751 526 420 500 

150 | 0.4145 1113 0.766 508 447 4090 
140 | 0.4242 1030 0.781 492 401 477 

130 _ 0.4350 958 0.796 476 524 502 
120 | 0.4463 886 o.811 463 620 549 

110 | 0.4590 817 0.825 450 672 540 
105 | 0.4652 785 0.831 443 676 530 

100 0.4720 750 0.839 436 745 558 
95 0.4790 714 0.845 430 826 590 
90 o 4860 679 0.852 42 867 5890 

85 0.4937 642 0.858 419 880 565 

80 0.5017 607 0.865 414 QI7 Riel 

75 0.5105 571 0.871 408 951 544 
70 0.5199 534 0.877 402 974 521 
65 0.5290 500 0.882 306 1020 510 

60 0.5400 406 0.888 302 1088 507 

55 0.5513 434 0 803 388 1165 506 
50 0.5638 404 0.898 384 1228 406 

45 |) 015767 377 0.902 379 1307 493 
40 | 0.5905 351 0.907 | 374 1426 501 
35 | 0.6052 323 0.910 368 1430 404 

30 0.6212 204 0.914 | 362 1482 435 

25 | 0.6380 267 0.917 355 I517 404 

20 | 0.6557 243 0.920 348 1648 400 
15 | 0.6784 222 0.923 341 1743 386 

10 0.7037 199 0.927 334 1843 306 
5 0.7302 174 0.930 326 1965 342 
O 0.7604 152 0.933 318 2087 317 

ao 0.7957 135 0.935 307 2170 203 
—I10 0.8321 117 0.937 208 2201 205 

05 | 0.8788 075 0.939 290 2306 234 
—20 0.9322 820 0.941 282 2514 206 

—25 0.9970 670 0.943 272 2076 179 

—30 1.093 527 0.045 262 2831 149 

—35 1.202 402 0.947 250 2807 Uae 

—40 1.332 300 0.940 242 2061 80 

——45 1.500 245 0.951 232 2047 72 

—50 1.751 216 0.953 222 2821 Or 

——55 2.070 208 0.954 212 1657 35 
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In further reduction we now include the mean result of 1920, the 

U.V. glass prism result of 1922, and the rock salt prism result of 
1922, with the object of comparing these several determinations, 

getting from them the best general representative values, and finally 

comparing these with the earlier results of 1903 to 1910, and 1916 

to 1918, respectively, given in Table 58 of Volume IV, Annals Astro- 

physical Observatory. In order to do this we first reduced the results 

of 1922 to the scale of those of 1920. In the following table we do 
not retain the individual wave lengths observed for rock salt, but 

have read off from a large scale plot the values which the rock. salt 

work would indicate for the wave length places used in U. V. glass 
work. 

We give in figure 1 the individual values found for the different 

wave lengths for the work of 1920 and the U. V. glass and rock salt 

prisms in 1922. As will be seen by inspection of the plot, when we 

consider all circumstances, particularly the wide differences in dis- 
persion characteristics, the agreement of the rock salt work of 1922 

with the U. V. glass work of 1920 1s little less than remarkable over 

the whole extent of spectrum covered. Agreement even descends to 

the details in the solar bands near wave lengths 0.386, 0.425, and 

0.535 micron. There are moderate divergences central at wave 

lengths 0.65 and 1.3 microns. The discrepancy beyond 1.7 microns 
is not surprising in view of the difficulty introduced by the water- 

vapor bands, and the approaching opacity of U. V. crown glass. 

Turning to the U. V. glass work of 1922, its agreement with 1920 

between wave lengths 0.5 and 1.7 microns is nearly perfect. At 

greater wave lengths than 1.7 it lies between the 1920 work and the 

rock salt work. For wave lengths less than 0.5 micron there is a 

pretty wide divergence, the 1922 U. V. glass work running smaller. 

The departure does not much exceed Io per cent until the wave length 

is less than 0.40 micron. 

We incline to attribute this ultra-violet discrepancy to the inferiority 

of the day, September 5, 1922, as indicated by the logarithmic plots 

of atmospheric extrapolation. These indicate that the sky was grow- 

ing less transparent towards noon, for the computed coefficients of 

atmospheric transmission in the infra-red are all closer to unity than 

they ought to be. This mediocre character, and the excessively high 

transmission coefficients, would scarcely affect the form of the energy 

curve for wave lengths greater than 0.6 micron, because here the 

atmospheric transmission is always above co per cent, so that changes 

of it affect the form of curve only slightly. But supposing the sky 
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TABLE 10.—Comparison of Normal Solar Energy Curves 

Energy curves outside the atmosphere 

Dis V. 

Ioneth plase.de; 1903-10 | z aN 
ie Hout 1920 1922 1922 1903-10 CES 1916-18 | 8 5 

Us Viz RSS: CU eon=-a= 
work tet 

| Hie | 
0.3415 | 240’ 262 226 | 263 262 

0.3504 | 230 307 200 as | 304 281 

0.3600 220 330 230 oes uo 330 207 

0.3709 | 210 340 251 325 342 | Naas si 318 
0.3853 200 304 209 300 344 B85; ule sor 
0.3074 ‘190 343 312 350 413 ste 4II | 340 
0.4127 | 180 484 403 513 506 500 567 480 

0.4307 | 170 482 443. | 495 535 506 518 | 479 
0.4516 160 569 4907 | 548 610 567 580 548 

0.4753 | 150 570 540 575 625 569 | 622 | 566 
0.5026 140 558 527 553 604 548 566 546 
0.5348 130 515 493 509 578 515 530 506 
0.5742 120 498 476 493 538 484 508 489 
0.5980 115 487 474 403 505 464, 482 485 
0.6238 110 466 475 430 472 434 450 457 
0.6530 105 446 447 400 424 400 423 431 
0.6858 100 419 424 384 384 370 301 409 
OW7222 1) 05 373 373 3500 2.338 340) |e S513), 366 
0.7644 90 332 323 315+ |. 208 B10. i) sigue i323 
0.8120 85 287 284 279 256 275 27 283 

0.8634 80 244 245 244 227 248 247 244 
e1g220 75 212 200 OEE 198 220 212 211 
0.9861 70 IQI 185 | 1091 172 200 187 189 

1.062 lise 105 182 164 162 144 180 165 169 

1.146 60 150 TANS Wa Sep lee LLO 153 135 143 

1.225 55 133 ie eaeld | hoe Ye | ai 0 £25 1) Ere 126 
1.302 50 113 Loz! © 4a6 89 06 101 109 

1.377 45 97 ICO.) 184 78 85 87 04 
1.452 40 87 87 76 68 75 75 83 
1.528 35 GL 74 72 59 C7 oil anO5 74 
1.603 30 68 67 68 52 57 57 68 

670M |) 82S 60 63 63 45 51 50 62 

iegson |) 20 53 7 GE 242 46 45 57 
TS7Oe 10 40 46 Tea, lit hese 38 31 46 
2.000 00 28 39 42 25 26 2 36 

2.123 —1I10 18 25 ..| 32 18 15 25 

2.242 —20 16 16 | 14 12 16 

2.348 —30 20 12 10 20 
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was actually growing worse, the effect on the wave lengths less than 

0.6 micron would be more and more serious, as indeed the energy 

curves of figure I indicate. 

The second day, September 6, is not subject to this criticism. The 

work of 1920 rests on many good days of observation. Accordingly 

we decided to give the 1920 work and the 1922 rock salt work each 

double weight for wave lengths less than 0.5 micron, and all three 

curves equal weight for greater wave lengths. With this convention 

we compute the weighted mean of table 10 as plotted in heavy full 

line in figure 1. 

This new result, namely the weighted mean of the 1920 and 1922 
observations, given in table 10 and in the heavy full line of figure 1, 

we regard as our best determination of the form of the solar energy 

curve outside the atmosphere. 

It rests principally on our very careful work of 1920, which, how- 

ever, on account of its divergence from our previously published 

work of 1903 to 1910 we had hesitated to publish until further tested. 

Now it is confirmed beautifully by the rock salt work of 1922, a 

determination as absolutely different as possible. The principal dif- 

ferences are: Silver in place of stellite at the coelostat; new stellite 

mirrors in the usual spectroscope; a flint glass prism of high disper- 

sion in place of the low dispersion U. V. crown prism in the auxiliary 

spectroscope; a rock salt prism of excessively different dispersion 
in place of the U. V. crown glass prism in the usual spectroscope; a 

new bolometer and new galvanometer. Also the U. V. crown glass 

work of 1922 is in almost perfect agreement over the whole range of 

longer wave lengths, and where it differs in the visible and ultra- 
violet it differs in the opposite sense to the 1903 to 1910 work. 

We place little confidence in our work of 1916 to 1918 on the form 

of the energy curve, for a reason already explained in Volume IV 

of the Annals. To avoid confusion we have not plotted it, although 

its mean result is given in table 10. The mean value of 1903 to 1910 

is given there and plotted in figure 1. As it rests on a great number of 

observations at different stations, and as these individual determina- 

tions differ widely among themselves, as given in the Annals, Vol- 
ume ITT, table 62, it is interesting to examine them separately and see 

if any class of the individual determinations would have tended to 

agree better with the new work. We are at once struck by the fact 

that it is the quartz prism work at Mt. Wilson and Mt. Whitney 

which has given most of the divergence, excepting of course the 

three short-wave values at the top of column 4 of the above cited 
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Table 62 of Annals, Volume III. These are very likely vitiated by 

stray light. The quartz prism was very imperfect, being greatly 

blemished by interior striae and a tinge of smokiness, and its defini- 

tion was so abominable that hardly any lines could be distinguished 

in its solar spectrum. Very possibly the determinations with quartz 

ought therefore to be rejected. 

If we should reject all of them, there would result the following 

modification of Table 62 of Annals, Volume IIT: 

WViaemilen otis ee. 2... |) O142) . O48 | 

| 
| 

Percentage correction by 
determinations I, 2, 3,4..—3.7 —4.8 |—6.1 |—8.7 --9.3 10.5/—I0.1 
ee a ees | a ———— | 

Corrected intensities......|506 |506 |366 |570 [550 BOSS sen 
| i | | | 

| | 

1 O0)— 2200 Weaviemlengthtr. s.c2--..-..| O70 
| 

Percentage correction by | 
feucererminations 1, 2;3,4..|—b.0. |-5-4: |-2.8 |--0-0 |--6.2 |4-3.2)| 

These corrected values are given in table 10 and are much closer to 

the new determination, indeed they are mainly in very good agree- 

ment. We therefore are the more confirmed in our view that the new 

values, the weighted mean of 1920 and 1922, are good, and that 

the old ones called ‘‘ Mean 1903 to 1910” were vitiated by the inclu- 

sion of the numerous quartz prism determinations. 

In figure I we have given in dot and dash lines the distribution of 

energy in the spectrum of the perfect radiator or “ black body”’ at 

6,000° absolute centigrade. It is apparent that closer agreement 

exists between this and the new curve of 1920 and 1922 than 

exists between it and the o'd one of 1903 to 1910. But still the 

observed solar energy curve is far from being of the “ black body ” 

form. In order to match the two from 0.6 to 2.0 microns, a higher 

“black body ” temperature than 6,o00° would be required, and then 

the visible and ultra-violet parts of the observed curve would lie far 

beneath the computed one. 

We have explained this kind of phenomenon by a double hypothesis. 
First, because we see deeper into the sun the longer the wave length, 

because long-wave rays are less scattered. Hence the infra-red 

region is supplied by a hotter, because deeper lying, layer. Secondly, 
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the profusion of Fraunhofer lines in the visible, and still more in the 

ultra-violet solar spectrum, must cut this part down very greatly. The 

purity of our spectrum does not suffice to enable us to restrict our 

measurements to spaces between the lines, as was done by Fabry and 

Buisson in their beautiful studies of the ultra-violet." They find even 
for the ultra-violet solar spectrum between wave lengths 0.394 and 

0.292 micron, the corresponding “ black-body”’ temperatures be- 

tween 6,020° and 5,970° K. These measurements, however, relate 

to the center of the solar image, while ours include the rays as mixed 
in ordinary sunlight and coming from all parts of the sun’s image. 
Ours is therefore a cooler source than theirs. 

Fabry and Buisson draw attention to our over-estimate of the 
transparency of the earth’s atmosphere for rays in this region, which 

indeed we have already admitted. As they point out, it is impossible 
to determine the atmospheric transmission correctly in this region 

without screening out stray light arising in the more intense spectrum 

regions. 

We may remark, however, that the high altitudes of our observing 

stations, as they tend strongly to build up the ultra-violet compared 
to other parts of the spectrum, are favorable to diminishing this 
source of error below what might appear from a mere inspection of 
Fabry and Buisson’s sea-level atmospheric transmission coefficients. 

As we have stated at the beginning, we have tried to estimate the 

effects of the three kinds of errors stray light produces in our work 

on the form of the ultra-violet solar energy curve outside the atmos- 

phere. Two of these tend to make our values in the ultra-violet too 

high, and the third acts oppositely. Assuming for the moment that 

the spectroscopic correction factor is right, suppose the true ordinate 

of the energy curve outside the atmosphere for a wave length A in 

the ultra-violet should be e;, but that in the ordinary bolographic work 
we determine this ordinate from observations as e-. The discrepancy 
is caused by stray light coming from another part of the spectrum, 

which increases the intensity observed at the wave length A, and also 

increases the apparent atmospheric transmission coefficient because 
the stray light being of longer wave length is of higher real trans- 

mission coefficient than the ray in question. Let e; be the intensity 

of the stray light outside the atmosphere, and as, a, and az be the 

true atmospheric transmission coefficient for stray light, the falsified 

computed one, and the true one for the wave length A. 

Astrophysical Journal, December, 1921, and Comptes rendus t. 175, p. 156, 

1922. 



20 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 74 

Then for air masses 2 and 1, respectively, the observed intensities 
will be: 

4 €1d1? + ess” } and 4 erat + esas. 

C101” + Ass” 
Therefore eS a ane oe — Cider Crd ee esas Cc cUe t fei sUs 

2 e a ds — A+ Whence Eee eee ee Ne 
Ce Qt As— At 

Judging from the visible appearance in the eyepiece of the 

bolometer, when the spectroscope is set for infra-red rays, where 

there is properly no visible light, the stray radiation there, and pre- 

sumably in the ultra-violet region as well, represents impartially the 

whole spectrum, for it appears in the infra-red as white light. If 

so, we may reasonably assign for as the value 0.90. Other lesser 

values, 0.80, 0.70, may also be used for illustrative purposes. 

Take now a wave length in the ultra-violet for which az is 0.60. 

This in ordinary Mt. Wilson observing is about A=0.35u. In the 

= 4 6 et : 
following table we give values of the expression — corresponding to 

eC 

assumed values of ds and a, a, being 0.60 in all cases. 

TABLE 11—Comparison of True and Measured Radiation 
; : - Ct 

Outside Atmosphere. Specimens of ratio ©. 
ec 

True transmission coefficient 
Stray light 

transmission 
0.55 0.50 0.40 

2 
| | 

0.90 | 0.93 | 0 90 | 0.90 

0.80 0.87 | 0.80 | 0.75 

0.70 0.73 0.60 0.50 
| 

These illustrations indicate that for the more probable conditions 

the ratio of real to bolographically determined radiation outside the 
atmosphere, so far as this depends on daily observations, is between 

0.8 and unity. It is of course easy to see why the ratio falls rapidly 

when the stray light is assumed to have nearly the same transmission 
coefficient as that observed, for it must then require a far greater 

dilution with the stray light to change equally the transmission co- 

efficient of the combination. 

Returning now to its influence on the spectroscopic correction fac- 

tors, we have already pointed out that it tends to make this correction 
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factor too large, but just how much we cannot tell. However, as it 

works in the same sense as the combined effects just tabulated, we 

can finally say that the complete tendency of stray light is to cause 

the ultra-violet region of our spectrum energy curve to be too high. 

The real values would be such as to give smaller intensities in the 

ultra-violet than our curve indicates. In other words, the real curve 

would deviate still further below the “ black-body” curve in the 
ultra-violet than figure I indicates. 

That the error is not so large as the figures of table r1 indicate, 

or as readers of Fabry and Buisson’s paper might suppose, seems 

apparent from computations by Fowle of the Rayleigh atmospheric 

transmission coefficients based on the number of molecules of air 

above Mt. Wilson. For comparison we give observed transmission 

coefficients of a good day, September 20, 1914, when we observed 

from sunrise until noon and also the mean of many good days of the 
years 1909 to 1912." 

TABLE 12.—Atmospheric Transmission Coefiicients. Mt. Wilson 

| | 

Wave-length in microns ....| 0.342 0-350 0.360, 0.371| 0.384] 0.397] 0.413| 
Se bare) iy es | 

Gonipit ed t0 te): to eke ——| 0.617| 0.650, 0.684) 0.719) 0.751 0.784 

Observed Sept. 20, 1914..... 0.615, 0.600 0.618 0.681 0.681) 0.743) 0.764) 
= z ad as au | 

| | 

Observed mean of many days| 0.604 0.605) 0.635 0.656 0.686) 0.726] 0.741 

Wave-length in microns ....| 0.431/ 0.452] 0.475] 0.503) 0-535] 0.574] 

Ramipiped ers yeo vaye'i sae iets 0.815 0.845 0.872) 0.807 0.919 0.939 

Observed Sept. 20, 1914..... 0.794| 0.820) 0.859) 0.881) 0.893 0.880 

Observed mean of many aays| 0.784 Are Ave Ree 0.882 ae 

Our observed transmission coefficients actually fall below the com- 

puted values for all wave lengths given in the table, which shows that 

even with the blue skies of excellent days on Mt. Wilson there is still 

some effect of haziness additional to molecular scattering. But we 

do not see that it is necessary to suppose that our observed values are 

greatly erroneous, at least for wave lengths above 0.350 micron. 

*See Annals Astrophysical Observatory, Vol. IV, p. 243, and Vol. III, p. 138. 
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Before leaving the subject of our solar work and its relations to the 

ultra-violet solar observations of Fabry and Buisson, we give in the 
following table 13 Fabry and Buisson’s determinations of atmos- 

pheric ozone for 14 days of the year 1920, and corresponding solar- 

constant values as determined by Smithsonian observers at Calama, 

Chile. In giving the solar-constant observations we add for three 

days corrected values. They are determined by drawing, in figure 2, 

a smoothed curve following the run of the numbers from day to day. 
In figure 3 we plot Fabry and Buisson’s ozone values as abscissae, with 

solar-constant numbers as ordinates. The observed values are given 

TABLE 13.—Ozone and the Solar Constant 

nae gerne: \iae eens 
Buisson Observed Smooth curve 

cm. cal. 

May 21 0.304 1.936 
28 0.310 lane agate al 1.950 
27 | 0.298 1.964 | 
28 | 0.290 | 1.952 | 
20 | 0.275 | “E.942 
31 | 0.306 1.952 

June 4 | 0.203 | 1.929 1.957 5 0.207 | 1.960 
> 0 325 | 1.938 
9 0.321 1.940 

10 | 0.335 | 1.933 
II | 0.314 1.943 
21 0.286 Bats 1.950 
23 0.289 1.947 

as circles, the corrected values as crosses. We believe readers who 

examine figure 2 will scarcely hesitate to think the three corrected 

values (the crosses) are probable ones. If that is admitted, we 
think the run of observations in figure 3 gives some indication that 
increasing values of the solar constant are associated with decreasing 

quantities of atmospheric ozone. 

If this is so, the important infra-red ozone band * at a wave length 

of about 10.4 microns, falling exactly in the region where terrestrial 
radiation is otherwise most freely transmitted by the atmosphere, 

very likely changes greatly its absorbing power for outgoing earth 

rays along with changes in the solar radiation, but in the sense to 

* See figure 41, Annals Astrophysical Observatory, Vol. IV, p. 285. 
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diminish terrestrial temperatures as solar radiation increases. This, 

if true, must be an important meteorological consideration. We hope 
soon to make an investigation of this ozone problem. 

STELLAR SPECTRUM ENERGY CURVES 

By invitation of Dr. Hale, given in the year 1916, we devised a 

spectro-bolographic outfit for obtaining spectrum energy curves of 
images of the brighter stars focused by the 100-inch telescope of the 

Mount Wilson Solar Observatory. The experiments were unavoid- 

ably postponed until the summer of 1922. We do not give here an 
extended account of them because we hope to repeat them with im- 

provements in sensitiveness and accuracy. We are convinced that 
though we succeeded in making a vacuum galvanometer of 11 ohms 

resistance with which we measured 5 x 10°'* amperes, and though in 

combination with the vacuum bolometer we measured with it a change 

of temperature of 110% degrees Centigrade, satisfactory stellar 

spectrum energy observations demand at least tenfold more sensi- 

tiveness with fivefold less disturbance than we could achieve in this 

way. Hence, although we observed roughly the distribution of 

energy in the spectra of 10 of the brighter stars, including nearly 

all of the principal Harvard classes, we propose to employ new devices 
in further experiments. 

Without the aid furnished by Dr. Stratton and the Bureau of 

Standards, Dr. Thomson and the General Electric Laboratory, at 
Lynn, Dr. Nichols and the Nela Research Laboratory, and especially 

Dr. Hale, Dr. Adams, and the staff of the Mount Wilson Solar 

Observatory, we could not have obtained these preliminary results. 

Figure 4 gives a general view of the arrangement of apparatus 

successfully employed after a failure of preliminary experiments at 

the Newtonian focus of the great telescope, due to electrical and 

temperature disturbances. The rays ab coming from the star were 

reflected from b backwards towards the focus of the 100-inch mirror 

and were reflected a second time at c by a convex mirror whose 

property it was to increase the focal length from 40 to 250 feet. 

There was a third reflection by a plane mirror at d, so that the rays 

came at length to the so-called Coudé focus at e, in the southern pro- 
longation of the equatorial axis of the telescope. 

Here the rays entered the nearly constant temperature room q, 

whose roof, walls, floors, and piers are so massively built of cement 

as almost to remind one of Egyptian pyramids. The star rays 

diverged to the concave mirror f (at 6 meters distance beyond the 
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Coudé focus) which brought them a second time to focus over a 

meter distant at the slit g. Thence they diverged to the collimating 

mirror /i, of 45 centimeters focus, proceeded parallel to the 18° 

N<—— Jost. —>S 

BELLA 

FIG. 4. 

ultra-violet crown glass prism i, and were returned nearly over the 

same path by a reflecting coat of silver on the back of the prism so 

that they came at last to focus on the special vacuum bolometer close 

to the slit g. 
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Electrical connections led from the spectrobolometer situated 6 

meters above the floor (but conveniently adjustable from the plat- 

form p, p) to the special magnetically shielded galvanometer j, whose 

tiny platinized mirror, m, reflected a beam of light from the brilliant 

special incandescent lamp k up to the photographic plate carrier 1, 

where bolographs of the stellar spectra were to be taken. The 

astronomical clock 0 was connected so as to move the prism and photo- 

graphic plate simultaneously for this purpose. ; 

In practise we found that owing (1) to a slow but persistent 

drift of the galvanometer due to temperature changes, and (2) to 

a continual oscillation of the galvanometer light spot over a range of 

from I to 5 millimeters, occasioned apparently by electrical oscilla- 

tions induced by power and light circuits, it was inadvisable to use the 

photographic recorder. All of our results were obtained by eye 

observing upon a ground glass scale drawn with luminous paint, and 

resting on the platform p, p, at 5 meters from the galvanometer. 

The procedure of observing was as follows: A selected star having 

been brought into focus at e by the night assistant at the telescope in 

the dome, r, r, the mirror, f, was adjusted so as to form its image 

centrally within the slit at g. The prism, previously set by means 

of a sodium flame exposed at e so that the D line fell upon the 

bolometer, was then rotated by turning the driving shaft which con- 

nected to the clock o through a certain number of turns sufficient to 

go beyond the region of spectrum where sensible heat could be 

observed. Then one observer (Mr. Aldrich) made successive settings 

of whole turns down through the star spectrum, and recorded the 

other observer’s (Mr. Abbot’s) galvanometer readings at these set- 

tings. Arrived at the other end of the spectrum region where sensible 

deflections were observed, a return series of settings was made at 

places half-way between those of the first series. Exposures in the 

spectrum were made by pulling a cord which lifted a shutter at ¢ 

near the Coudé focus. Frequently the slit g was inspected from a 

distance by a telescope so as to correct if necessary the position of the 

star image within its jaws. 
All of the observations of stellar spectra were made when the 

stars observed were within less than 50° of the zenith, so that the 

air-mass never exceeded 1.5. For the purpose of eliminating in one 

operation the selective losses in the atmosphere, the telescope, and the 

spectroscope, so far as necessary for such rough measures, it was con- 

trived to observe near midday with the same apparatus an image of 

the sun whose energy spectrum is known. For this purpose a screen, 

s, with eight symmetrically distributed quarter-inch holes was placed 
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over the top of the telescope tube, and a diaphragm of 4-inch aperture 
inserted at t. These reductions of the solar intensity sufficed, with 
a little series resistance added in the galvanometer circuit, to permit 

the solar spectrum to be observed on nearly equal terms with those 
of the stars. The factor of reduction to bring the sun down to about 

the intensity of Capella proved to be as expected a little more than 

26 magnitudes. 

Employing these solar comparisons together with the 1920 deter- 

mination of the forms of the sun’s energy curve outside the atmosphere 

both for the prismatic and the normal spectra, we have eliminated 

selective effects of absorption from the stellar spectra which follow. 

On various accounts we are unable to claim much accuracy for our 

results. They are to be regarded merely as a preliminary feeling-out 
of the problem. Better knowledge of the distribution of these stellar 

spectra has, we believe, already been obtained by Coblentz with his 
method of absorbing screens, also being employed by Pettit and 

Nicholson. But of course if the employment of a prism could be 
made satisfactorily, its results would be far preferable to those of 

absorption methods. Our experiments show us just what must be 

done to bring this about, and we now have great hope of succeeding 

in new experiments with modified instruments. 

In our experiments of 1922 the principal defects are these: 

1. Insufficient sensitiveness. It was impossible to measure the 

radiation, as weakened by increasing prismatic dispersion and increas- 

ing atmospheric and instrumental absorption, far enough towards 

the violet to follow with any accuracy the normal spectra of stars 
of types G, F, A, and B to their maxima. 

2. Insufficient accuracy of wave length. With the moderate dis- 

persion of what was practically a 36° crown glass prism, the wander- 

ings of the star image in the wide slit of the spectroscope were suf- 

ficient to produce uncertainties of wave length amounting roughly to 

as much as the distance from D to B in the orange-red of the spectrum. 

This defect could have been reduced greatly had we been able to con- 

tinue the experiments one or two more nights, and will easily be made 

small hereafter by better following devices. 
3. Insufficient accuracy of intensity measures. Owing to bad fol- 

lowing the image wandered sometimes partly onto the slit jaw before 

it was corrected. This would, of course, have been prevented had 

the work gone on. But more serious, because incessant, were the 

oscillations of the galvanometer light-spot on the scale, through 

amounts which, for some stars, were nearly as great as the observed 

maximum deflection in the spectrum. Though every deflection re- 
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corded is the mean of several trials, it cannot be hoped that these 
relatively large disturbances are eliminated satisfactorily. Moreover, 

“the uncertainties of wave-length settings mentioned above aggravate 

the errors of intensities, because the deflections, even if true, might 

have related to wave lengths somewhat different from those supposed. 

If the experiments on each star had been repeated several times on 

later nights very much greater accuracy could doubtless have been 

had in the final means. But, after all, the sensitiveness available was 

not adequate ever to give satisfactory results, and it would have been 

a waste of time to go on with the apparatus as it was in 1922. With 

these remarks we give the observations. We have arranged the stars 
in order of the Harvard spectrum classification, although the order 

of observing followed approximately the order of their right 
ascensions. 

The scale of galvanometer deflections differs on the three nights of 

observation and even at different hours of the same night according 

to the time of swing which was practicable at the time. Wherever 

there are two observations on one star we have reduced the smaller 

deflection data to the scale of the larger approximately and have given 
the observations of larger deflection greater weight in drawing 

smoothed curves. In view of what has been said of the sources of 

error always present, readers will not be surprised at the irregularities 
which the data present. 

As the work is altogether rough and preliminary we shall not take 

space to detail what steps were necessary to reduce the direct observa- 

tions for the selective losses in the atmosphere and the apparatus, 

merely repeating that these reductions depended on the solar-spectrum 

observations of 1920 taken together with those made on August 19, 

1922, with the great telescope and stellar spectro-bolometric outfit. 

In figure 5 we have given in smooth curves as well as we can the 

stellar distribution outside the atmosphere on the scale of the 36° 
ultra-violet crown glass prism, and in figure 6 the corresponding 

curves reduced to the normal or wave-length scale. In drawing the 
normal curves we were immediately made conscious that for the stars 

of types B, A, F, G, the original very small deflections in the shorter 

wave lengths lacked a sufficient degree of accuracy to warrant multi- 

plying them by the very large prismatic dispersion factors. Such 

results would have had no meaning and would have been apt to 

mislead. Accordingly we cut off all of these normal curves beyond 

wave length 0.5 micron, and omitted four stars of types B and A for 

which the observed deflections at maximum ordinate in the prismatic 

spectrum did not exceed 5 millimeters. 
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Obviously in order to determine at all satisfactorily by heat methods 

the spectrum distribution for stars of types B, A and F, it will be 

necessary to use apparatus of a decidely higher order of sensitiveness 
than ours. 

On the whole the positions of maximum ordinates in the prismatic 

spectra shift with spectrum type much as we should have expected. 

We . EOrionis |B, 4 

s Stellar Spectra SE Crown 
Rigel Bap 

3) Vega) Ag _ 

ae S 

| 3 Sirius |Ap 

t 4 

Altai r + + trAs., 
1 is me 
| = Rae 

: | ' | hella Gal ae 

| 

|= == a = i =p T 1 NJ | 

| 1 cane Aldebaran |Ko | 
1 
1 

4 is |__ 8 |Pegasi |Mb | 
1 

Bl | ane Mb 

3 -<! + + 

1 
1 ) : 

Betelgeus 

al Sia 

| | 
Bires 5: 

It is satisfactory that the curves for the sun and Capella agree so 

well. The several depressions in the infra-red of the solar curve are 

most likely real, as they coincide closely with great infra-red water 
vapor bands. The stellar curves would doubtless have shown them 

too if there had been enough energy so that they had been equally as 

accurate. 
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We attribute little weight to the circumstance that the maximum in 

the normal spectrum curve of a Herculis falls to the violet of that of 
a Orionis. That Aldebaran gives its maximum at shorter wave 

lengths than either, we think is real, but we do not feel confidence in 

the exact places for any one of the three. Greater accuracy is essential 
if real deductions as to star temperatures and their approach to 
“black body ” conditions are to be made. 

Though we have not concealed the shortcomings of these stellar ob- 

servations, they cost a great deal of effort. Fatalities seemed to lurk 

about the work to surprise us so that we were almost ashamed to meet 
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any one on Mount Wilson lest he should ask what new things had 

gone wrong that day. We made a list of all the serious mishaps, and 

they numbered nearly 30, some requiring a whole week to repair. But 

we feel after all that a decided step was made to have gotten from 
10 to 30 millimeters deflection in the fairly extended spectra of four 
of the brightest stars. For it was not many years ago that Boys failed 
to recognize stellar heat, and Nichols observed but one or two milli- 

meters in the total radiation of such stars. Naturally our success, 

such as it was, depended largely on the great size of the Mount Wilson 

telescope, but besides that it indicates a large gain in sensitiveness of 
apparatus. Furthermore, the experience gained clarifies the problem 

so exactly that plans for future experiments may now be laid with 

great certainty. 
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