sing

(2)
-.

1

METEOROLOGICAL TABLES

$\varepsilon_{\text {uncer }}$ SMITHSONIAN

Meteorological Tables

[BASED ON GUYOT'S METEOROLOGICAL AND PHYSICAL TABLES.]
(REVISED EDITION)

CITY OF WASHINGTON:

QC 873

PRINTED FOR THE SMITHSONIAN INSTITUTION
BY W. F. ROBERTS, WASHINGTON
1896

PREFACE TO REVISED EDITION.

The original edition of Smithsonian Meteorological Tables, issued in 1893, having become exhausted, necessitating a second edition, a careful examination of the original work has been made, at my request, by Mr. Alexander McAdie, of the United States Weather Bureau.

All errata thus far detected have been corrected upon the plates, and a few slight changes have been made. The International Meteorological Symbols and an Index have been added.
S. P. LANGLEY,

Secretary.
Smithsonian Institution, February 15, 1896.

PREFACE

In connection with the system of meteorological observations established by the Smithsonian Institution about 1850, a collection of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and published in 1852 as a volume of the Miscellaneous Collections.

Five years later, in 1857, a second edition was published after careful revision by the author, and the various series of tables were so enlarged as to extend the work from 212 to over 600 pages.

In 1859 a third edition was published, with further amendments.
Although designed primarily for the meteorological observers reporting to the Smithsonian Institution, the tables obtained a much wider circulation, and were extensively used by meteorologists and physicists in Europe and in the United States.

After twenty-five years of valuable service, the work was again revised by the author; and the fourth edition, containing over 700 pages, was published in 1884. Before finishing the last few tables, Dr. Guyot died, and the completion of the work was intrusted to his assistant, Prof. Wm. Libbey, Jr., who executed the duties of final editor.

In a few years the demand for the tables exhausted the edition, and thereupon it appeared desirable to recast entirely the work. After very careful consideration, I decided to publish the new tables in three parts: Meteorological Tables, Geographical Tables, and Physical Tables, each representative of the latest knowledge in its field, and independent of the others; but the three forming a homogeneous series.

Although thus historically related to Dr. Guyot's Tables, the present work is so substantially changed with respect to material, arrangement, and presentation that it is not a fifth edition of the older tables, but essentially a new publication.

BAROMETRICAL TABLES.-Continued.

Determination of heights by the barometer - English measures.
Values of $60368[\mathrm{r}+0.0010195 \times 36] \log \frac{29.90}{B}$. 100
20
Term for temperature 104 21
Correction for latitude and weight of mercury 106
22
108 23
Correction for an average degree of humidity
24 Correction for the variation of gravity with altitude 109
Determination of heights by the barometer - Metric measures.
Values of $18400 \log ^{760} B$ IIO
Term for temperature III
Correction for humidity II 2
Correction for latitude and weight of mercury II4
Correction for the variation of gravity with altitude II5
Difference of height corresponding to a change of o. I inch in the barometer - English measures I 16
31 Difference of height corresponding to a change of 1 millimetre in the barometer - Metric measures II 7
Determination of heights by the barometer.
Formula of Babinet II8
Barometric pressures corresponding to the temperature of the boiling point of water -
33 English measures II9
34Metric measuresII9
HYGROMETRICAL TABLES.
Pressure of aqueous vapor (Broch) -
35 English measures 122
36
Metric measures 128
37 Pressure of aqueous vapor at low temperatures (C. F. Marvin) - English and Metric measures I 30
38 Weight of aqueous vapor in a cubic foot of saturated air- English measures 132
39 Weight of aqueous vapor in a cubic metre of saturated air - Metric measures 133
Reduction of psychrometric observations - English measures. 134
Values of $0.000367 B\left(t-t_{1}\right)\left(\mathrm{I}+\frac{t-t_{1}}{\mathrm{I} 57 \mathrm{I}}\right)$ I36
41Relative humidity - Temperature Fahrenheit138
HYGROMETRICAL TABLES.-Continued.
Table page
Reduction of psychrometric observations - Metric measures.
43 Pressure of aqueous vapor 142
Values of $0.000660 B\left(t-t_{1}\right)\left(\mathrm{I}+\frac{t-t_{1}}{873}\right)$ 143
45 Relative humidity-Temperature Centigrade 144
Reduction of snowfall measurements.
46 Depth of water corresponding to the weight of snow (or rain) collected in an 8-inch gage 146
47 Rate of decrease of vapor pressure with altitude 146
WIND TABLES.
Mean direction of the wind by Lambert's formula-
Multiples of $\cos 45^{\circ}$; form and example of computation 148
Values of the mean direction (α) or its complement (90-a) 149
49 Values of the mean directio 154
51 Miles per hour into feet per second I 55
52 Feet per second into miles per hour I 55
53 Metres per second into miles per hour 156
54 Miles per hour into metres per second 157
55 Metres per second into kilometres per hour 158
56 Kilometres per hour into metres per second 159
57 Beaufort wind scale and its conversion into velocity 160
GEODETICAL TABLES.
58 Relative acceleration of gravity at different latitudes 162
59 Length of one degree of the meridian at different latitudes 164
60 Length of one degree of the parallel at different latitudes 165
61 Duration of sunshine at different latitudes 166
62 Declination of the sun for the year 1894 177
63 Relative intensity of solar radiation at different latitudes 178
CONVERSION OF LINEAR MEASURES.
64 Inches into millimetres 180
65 Millimetres into inches 187
66 Feet into metres 200
67 Metres into feet 202
68 Miles into kilometres 204
69 Kilometres into miles 206
70 Interconversion of nautical and statute miles 208
71 Continental measures of length with their metric and English equivalents 208
CONVERSION OF MEASURES OF TIME AND ANGLE.
CONVERSION OF MEASURES OF TIME AND ANGLE.
Table Page
72 Arc into time 210
73 Time into arc 211
74 Days into decimals of a year and angle 212
75 Hours, minutes and seconds into decimals of a day 216
76 Decimals of a day into hours, minutes and seconds 216
77 Minutes and seconds into decimals of an hour 217
78 Mean time at apparent noon 217
79 Sidereal time into mean solar time 218
80 Mean solar time into sidereal time 218
MISCELLANEOUS TABLES.
81 Density of air at different temperatures Fahrenheit 220
Density of air at different humidities and pressures-English measures.
82 Term for humidity : auxiliary to Table 83 221
Values of $\frac{h}{29.921}=\frac{b-0.378 e}{29.921}$ 222
83
84 Density of air at different temperatures Centigrade 224
Density of air at different humidities and pressures - Metric measures.
85 Term for humidity : auxiliary to Table 86 225
Values of $\frac{h}{760}=\frac{b-0.378 e}{760}$ 226
86
87 Conversion of avoirdupois pounds and ounces into kilogrammes 226
230
88 Conversion of kilogrammes into avoirdupois pounds and ounces
230
89 Conversion of grains into grammes
231
90 Conversion of grammes into grains
231
91 Conversion of units of magnetic intensity
232
92 Quantity of water corresponding to given depths of rainfall
232
93 Dates of Dove's pentades
94 Division by 28 of numbers from 28 to 867972 233
95 Division by 29 of numbers from 29 to 898971 234
96 Division by 31 of numbers from 3I to 960969 235
97 Natural sines and cosines 236
98 Natural tangents and cotangents 238
99 Logarithms of numbers 240
100 LIST OF METEOROLOGICAL STATIONS 243
APPENDIX.
Constants 258
Synoptic conversion of English and metric units 260
Dimensions of physical quantities 262
International Meteorological Symbols 263

INTRODUCTION.

DESCRIPTION AND USE OF THE TABLES.

THERMOMETRICAL TABLES.
COMPARISON OF THERMOMETRIC SCALES.

Conversion of readings of the Reaumur thermometer to readings of the Fahrenheit and Centigrade thermometers.

Table 1.
The argument is given for every Reaumur degree from $+80^{\circ}$ to -40° Reaumur, and the corresponding readings Fahrenheit and Centigrade are given to hundredths of a degree, permitting the exact values to be expressed. A column of proportional parts gives the values corresponding to tenths of a Reaumur degree. By the help of the column of proportional parts, the table is also conveniently used for converting Fahrenheit to Centigrade and Reaumur, and Centigrade to Fahrenheit and Reaumur throughout the thermometric scale from the boiling point of water to $-60^{\circ} F$. or $-51^{\circ} C$.

The formulæ expressing the relation between the different scales are given at the bottom of the table, where

$$
\begin{aligned}
& F^{\circ}=\text { Temperature Fahrenheit. } \\
& C^{\circ}=\text { Temperature Centigrade. } \\
& R^{\circ}=\text { Temperature Reaumur. }
\end{aligned}
$$

Examples:

To convert 18.3 Reaumur to Fahrenheit and Centigrade.

To convert $147^{\circ} .7$ Fahrenheit to Centigrade and Reaumur.

To convert $16^{\circ} 9$ Centigrade to Fahrenheit and Reaumur.
From the table,

$\begin{aligned} 16{ }^{\circ} 25 C & = \\ 0.65 & = \end{aligned}$	$\begin{aligned} 61.25 F & = \\ 1.17 & = \end{aligned}$	$\begin{aligned} & \text { ェ } 3 \text { ․o } R . \\ & 0.5 \end{aligned}$
9 C.	2.4 F.	13.5

TABLE 2. Conversion of readings of the Fahrenheit thermometer to readings Centigrade.

The conversion of Fahrenheit temperatures to Centigrade temperatures is given for every tenth of a degree from $+130.9 F$. to $-70.9 F$. The side argument is the whole number of degrees Fahrenheit, and the top argument, tenths of a degree Fahrenheit; interpolation to hundredths of a degree, when desired, is readily effected mentally. The tabular values are given to hundredths of a degree Centigrade.

The formula for conversion is

$$
C^{\circ}=\frac{5}{9}\left(F^{\circ}-32^{\circ}\right)
$$

where F° is a given temperature Fahrenheit, and C° the corresponding temperature Centigrade.

Example:

To convert 79.7 Fahrenheit to Centigrade.
The table gives directly $26.5^{\circ} \mathrm{C}$.
For conversions of temperatures above $\mathbf{I} \mathrm{I}^{\circ} F$, use Table I .
table 3. Conversion of readings of the Centigrade thermometer to readings Fahrenheit.

The conversion of Centigrade temperatures to Fahrenheit temperatures is given for every tenth of a degree Centigrade from +50.9 to -50.9 C . The tabular values are expressed in hundredths of a degree Fahrenheit.

The formula for conversion is

$$
F^{\circ}=\frac{9}{5} C^{\circ}+32^{\circ}
$$

where C° is a given temperature Centigrade, and F° the corresponding temperature Fahrenheit.

For conversions of temperatures above the upper limit of the table, use Tables I and 4.
table 4. Conversion of readings of the Centigrade thermometer near the boiling point to readings Fahrenheit.

This is an extension of Table 3 from 90.0 to roo. 9 Centigrade.
Example:
To convert $95^{\circ} \cdot 74$ Centigrade to Fahreuheit.
From the table,

$$
\begin{aligned}
95^{\circ} 70 C & =204^{\circ} .26 F . \\
0.04 & =\frac{0.07}{95^{\circ} .74} C
\end{aligned}=\frac{204^{\circ} .33}{} F .
$$

By interpolation,

Conversion of differences Fahrenheit to differences Centigrade. table 5.
The table gives for every tenth of a degree from 0° to $20.9 F$. the corresponding lengths of the Centigrade scale.

Conversion of differences Centigrade to differences Fahrenheit.
TAble 6.
The table gives for every tenth of a degree from 0° to $9.9 C$. the corresponding lengths of the Fahrenheit scale.

Example:

To find the equivalent difference in Fahrenheit degrees for a difference of 4.7° Centigrade.
From the table,

$$
\begin{aligned}
4^{\circ} .70 C & =8.46 F . \\
0.02 & =0.04 \\
\frac{4.72}{0.0} C & =\overline{8.50} F .
\end{aligned}
$$

From the table by moving the decimal point for 0.2,

REDUCTION OF TEMPERATURE TO SEA LEVEL.

English Measures.
Table 7.
Metric Measures.
Table 8.
These tables give for different altitudes and for different uniform rates of decrease of temperature with altitude, the amount in hundredths of a degree Fahrenheit and Centigrade, which must be added to observed temperatures in order to reduce them to sea level.

The rate of decrease of temperature with altitude varies from one region to another, and in the same region varies according to the season and the meteorological conditions; being in general greater in warm latitudes than in cold ones, greater in summer than in winter, and greater in cyclones than in anti-cyclones. For continental plateau regions, the reduction often becomes fictitious or illusory. The use of the tables theresore requires experience and judgment in selecting the rate of decrease of temperature to be used.

The tables are given in order to facilitate the reduction of temperature either upwards or downwards in special investigations, but the reduction is not ordinarily applied to meteorological observations.

The tables, 7 and 8, are computed for rates of temperature change ranging from I° Fahrenheit in 200 feet to I° Fahrenheit in 900 feet, and from I° Centigrade in 100 metres to I° Centigrade in 500 metres; and for altitudes up to 5,000 feet and 3,000 metres respectively.

Example, Table 7:

Observed temperature at an elevation of 2,500 feet,
Reduction to sea level for an assumed decrease in temperature of $r^{\circ} F$. for every 300 feet,
$+8.3$
Temperature reduced to sea level,

Example, Table 8 :
Observed temperature at an elevation of 500 metres, $12{ }^{\circ}{ }_{5} C$.
Reduction to sea level for an assumed decrease in temperature of $I^{\circ} C$. for every 200 metres,

$$
+2^{\circ} .5
$$

Temperature reduced to sea level,
I5.ㅇ C.

CORRECTION FOR THE TEMPERATURE OF THE MERCURY IN THE THERMOMETER STEM.

table 9. Fahrenheit thermometers; Centigrade thermometers.
When the temperature of the thermometer stem is materially different from that of the bulb, a correction needs to be applied to the observed reading in order to correct it for the difference in the length of the mercury column caused by this difference in its temperature. This correction frequently becomes necessary in physical experiments where the bulb only is immersed in a bath whose temperature is to be determined, and in meteorological observations it may become appreciable in wet-bulb, dew point, and solar radiation thermometers, when the temperature of the bulb is considerably above or below the air temperature.

If t^{\prime} be the average temperature of the mercury column, t the observed reading of the thermometer, n the length of mercury in the stem in scale degrees, and a the apparent expansion of mercury in glass for I°, the correction is given by the expression

$$
-a n\left(t^{\prime}-t\right)
$$

in which, for Centigrade temperatures, $a=0.000154$ or 0.000155 .
The average temperature of the mercury column can not be directly observed and is difficult to determine, for it differs from the temperature of the glass stem by an amount depending on the conduction of heat between the bulb and the mercury column. Practically however it is possible to use the actually observed temperature of the glass stem as the value of t^{\prime} by making a small compensating change in the value of a, and this appears to be the simplest method that has been proposed. Mr. T. E. Thorpe (Journal of the Chemical Society, vol. 37, 188o, p. 160) has determined by a series of experiments that the proper thermometric corrections will be obtained by this method if o.000I43 be used as a coefficient (for Centigrade temperatures) instead of the value of a given above, and this value has been adopted in the present tables.

The correction formulæ are, then,
$T=t-0.0000795 n\left(t^{\prime}-t\right)$ Temperature Fahrenheit.
$T=t-0.000143 n\left(t^{\prime}-t\right)$ Temperature Centigrade.
in which $T=$ Corrected temperature.
$t=$ Observed temperature.
$t^{\prime}=$ Mean temperature of the glass stem.
$n=$ Length of mercury in the stem in scale degrees.

When t^{\prime} is $\left\{\begin{array}{c}\text { greater } \\ \text { less }\end{array}\right\}$ than t, the numerical correction is to be $\left\{\begin{array}{c}\text { subtracted. } \\ \text { added. }\end{array}\right\}$ Example :

The observed temperature of a black bulb thermometer is $120.4 F_{\text {. , the }}$ temperature of the glass stem is $55^{\circ} 2 \mathrm{~F}$. and the length of mercury in the stem is $130^{\circ} F$. To find the corrected temperature.

With $n=130^{\circ} F$. and $-t^{\prime} t=[-] 65^{\circ} F$., as arguments, the table gives the correction $0^{\circ} .7 F_{\text {. , which by }}$, above rule is to be added to the observed temperature. The corrected temperature is therefore $121.1 F$.

BAROMETRICAL TABLES.

REDUCTION TO A STANDARD TEMPERATURE OF OBSERVATIONS MADE WITH barometers having brass scales.

The indicated height of the mercurial column in a barometer varies not only with changes of atmospheric pressure, but also with variations of the temperature of the mercury and of the scale. It is evident therefore that if the height of the barometric column is to be a true relative measure of atmospheric pressure, the observed readings must be reduced to the values they would have if the mercury and scale were maintained at a constant standard temperature.

This reduction is known as the reduction for temperature, and combines both the correction for the expansion of the mercury and that for the expansion of the scale, on the assumption that the attached thermometer gives the temperature both of the mercury and of the scale.

The freezing point is universally adopted as the standard temperature of the mercury, to which all readings are to be reduced. The temperature to which the scale is reduced is che normal or standard temperature of the adopted standard of length. For English scales, which depend upon the English yard, this is 62° Fahrenheit. For metric scales, which depend upon the metre, it is o° Centigrade.

As thus reduced, observations made with English and metric barometers become perfectly comparable when converted by the ordinary tables of linear conversion, viz.: millimetres to inches and inches to millimetres (see Tables 64,65), for these conversions refer to the metre at 0° Centigrade and the English yard at 62° Fahrenheit.

The general formula for reducing barometric readings to a standard temperature is

$$
C=-B \frac{m(t-T)-l(t-\theta)}{\mathrm{I}+m(t-T)}
$$

in which $C=$ Correction for temperature.
$B=$ Observed height of the barometric column.
$t=$ Temperature of the attached thermometer.
$T=$ Standard temperature of the mercury.
$m=$ Coefficient of expansion of mercury.
$l=$ Coefficient of linear expansion of brass.
$\theta=$ Standard temperature of the scale.
The accepted determination of the coefficient of expansion of mercury is that given by Broch's reduction of Regnault's experiments, viz :

$$
m\left(\text { for } \mathrm{r}^{\circ} C .\right)=10^{-9}\left(181792+0.175 t+0.035116 t^{2}\right) .
$$

As a sufficiently accurate approximation, the intermediate value

$$
m=0.00018 \mathrm{r} 8
$$

has been adopted uniformly for all temperatures in conformity with the usage of the International Meteorological Tables.

Various specimens of brass scales made of alloys of different composition show differences in their coefficients of expansion amounting to eight and sometimes ten per cent. of the total amount. The Smithsonian Tables prepared by Prof. Guyot were computed with the average value $l\left(\right.$ for $\left.\mathrm{I}^{\circ} \mathrm{C}\right)=0.0000188$; for the sake of uniformity with the International Meteorological Tables, the value

$$
l=0.0000184
$$

has been used in the present volume. For any individual scale, either value may easily be in error by four per cent.

A small portion of the tables has been independently computed, but the larger part of the values have been copied from the International Meteorological Tables, one inaccuracy having been found and corrected.

TABLE 10. Reduction of the barometer to standard temperature-Englis/h measures.

For the English barometer the formula for reducing observed readings to a standard temperature becomes

$$
C=-B \frac{m\left(t-32^{\circ}\right)-l\left(t-62^{\circ}\right)}{\mathrm{I}+m\left(t-32^{\circ}\right)}
$$

in which $B=$ Observed height of the barometer in English inches.
$t=$ Temperature of attached thermometer in degrees Fahrenheit.

$$
\begin{aligned}
m & =0.0001818 \times \frac{5}{9}=0.000101 \\
l & =0.0000184 \times \frac{5}{9}=0.0000102
\end{aligned}
$$

The combined reduction of the mercury to the freezing point and of the scale to 62° Fahrenheit brings the point of no correction to approximately
28.5 Fahrenheit, and this is therefore the standard temperature to which all readings are reduced. For temperatures above 28.5 Fahrenheit, the correction is subtractive, and for temperatures below $28^{\circ} .5$ Fahrenheit, the correction is additive, as indicated by the signs (+) and (-) inserted throughout the table.

The table gives the corrections for every half degree Fahrenheit from 0° to 100 . The limits of pressure are 19 and 31.6 inches, the corrections being computed for every half inch from 19 to 24 inches, and for every two tenths of an inch from 24 to 3 r. 6 inches.

Example :

Observed height of barometer	$=29.143$
Attached thermometer, $54^{\circ} 5 \mathrm{~F}$.	$=-0.068$
Reduction for temperature	$=\underline{29.075}$
Barometric reading corrected for temperature	$=$

TABLE 11.
TABLE 11. Reduction of the barometer to standard temperature-Metric measures.

For the metric barometer the formula for reducing observed readings to the standard temperature, $\circ^{\circ} C$., becomes

$$
C=-B \frac{(m-l) t}{1+m t}
$$

in which C and B are expressed in millimetres and t in Centigrade degrees.

$$
m=0.00018 \mathrm{I} 8 ; \quad l=0.0000184 .
$$

In the tables, the limits adopted for the pressure are 440 and 795 millimetres, the intervals being io millimetres between 440 and 600 millimetres, and 5 millimetres between 600 and 795 millimetres.

The limits adopted for the temperature are $0^{\circ}+$ and +35.8 , the intervals being 0.5 and 1.0 from 440 to 560 millimetres, and 0.2 from 560 to 795 millimetres.

For temperatures above 0° Centigrade the correction is negative, and hence is to be subtracted from the observed readings.

For temperatures below 0° Centigrade the correction is positive, and from $0^{\circ} \mathrm{C}$. down to $-20^{\circ} \mathrm{C}$. the numerical values thereof, for ordinary barometric work, do not materially differ from the values for the corresponding temperatures above $0^{\circ} \mathrm{C}$. Thus the correction for $-9^{\circ} \mathrm{C}$. is numerically the same as for $+9^{\circ} \mathrm{C}$. and is taken from the table. In physical work of extreme precision, the numerical values given for positive temperatures may be used for temperatures below $0^{\circ} \mathrm{C}$. by applying to them the following corrections :

Corrections to be applied to the tabular values of Table 11 in order to use them when the temperature of the attached thermometer is below 0° Centigrade.

Temperature.	PRESSURE IN MILITMETRES.							
	450	500	550	600	650	700	750	800
c.	mm.	mm .	mm.	mm.	mm.	mm.	mm .	mm.
$-\mathrm{I}^{\circ}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
- 9	.oo	. 0	.00	.00	. 0	. 00	. 00	. 0
- 10	0.00	0.00	0.00	0.00	0.00	+0.01	+0.01	+0.01
11	. 0	. 00	. 00	. 00	+0.01	. 01	. OI	. 01
12	.oo	. 00	. 00	+0.01	.or	.or	.or	.or
13	. 0	. 00	+0.01	.oi	.or	.or	. OI	.or
- 14	.00	+0.01	.or	.or	.or	. or	. OI	. or
-15	+0.01	+0.01	+0.01	+0.01	+ 0.01	+0.01	+0.01	+o.01
16	. 01	. Or	.or	. OI	. 0 I	.or	. 01	. OI
17	. OI	. OI	. OI	.or	.or	. Or	.or	. 02
18	. 01	. OI	.or	.or	. Or	. OI	.or	. 02
-19	.or	.or	.or	.or	.or	. OI	. 02	. 02
-20	+ 0.01	+0.01	+ 0.01	+0.01	+0.01	+0.02	+0.02	+0.02
21	.or	. OI	. OI	. 02	. 02	. 02	. 02	. 02
22	.or	.or	. 02	. 02	. 02	. 02	. 02	. 02
23	.oI	. 02	. 02	. 02	. 02	. 02	. 02	. 02
-24	.or	. 02	. 02	. 02	. 02	. 02	. 02	. 03

Example:

Observed height of barometer, $7^{6} 3 \cdot 17^{m m}$: Temperature of the attached thermometer, $-12^{\circ} \mathrm{C}$.
Numerical value of the reduction for $+12^{\circ} \mathrm{C}$.

Correction for temperature below $0^{\circ} \mathrm{C}$.
Reduction for $-12^{\circ} \mathrm{C}$.
Observed height of barometer
Barometer corrected for temperature

REDUCTION OF THE BAROMETER TO STANDARD GRAVITY AT LATITUDE 45°

The atmospheric pressure is measured by the weight of the mercurial column of the barometer, but by common usage the pressures are expressed in terms of the height of the barometric column instead of by its weight. The observed height however is not a true measure of the pressure, because it changes with the temperature of the mercury and with the variations in the value of gravity. Therefore to obtain a height that shall be a true relative measure of the atmospheric pressure, the observed height of the mercurial column must be reduced to that which would be measured at a standard temperature and under a uniform standard value of gravity.

The standard value of gravity adopted is that prevailing at latitude 45° and sea level. The reduction, accordingly, consists of two parts - a correction for altitude and a correction for latitude. The gravity correction for altitude is usually combined with the reduction of the barometer to sea level ; the gravity correction for latitude, which is here given, is commonly called simply the "gravity correction," or the "reduction to standard gravity."

If B_{ϕ} and B_{48} represent the barometric heights (corrected for temperature) at latitudes ϕ and 45°, and g_{ϕ}, g_{45} the acceleration of gravity at these latitudes, we have

$$
\frac{B_{\phi}}{B_{45}}=\frac{g_{45}}{g_{\phi}}
$$

and the correction to the observed height will be

$$
C=B_{45}-B_{\phi}=-B_{\phi}\left(\mathrm{I}-\frac{g_{\phi}}{g_{45}}\right)
$$

If the earth be an ellipsoid of revolution composed of homogeneous homofocal layers arranged according to any law of density,

$$
g_{\phi}=g_{45}(1-k \cos 2 \phi)
$$

in which k is a constant depending on the ellipticity of the earth; and the correction becomes

$$
C=-k \cos 2 \phi B_{\phi} .
$$

The value of k adopted here is that determined by Prof. Harkness,*

$$
k=0.002662
$$

The correction is the same numerically for $\phi=45^{\circ}+a$ and $\phi=45^{\circ}-a$. It is negative for latitudes below 45° and positive for latitudes above 45°

TABLES 12, 13.
Table 12 (English measures) gives the correction in thousandths of an inch for every degree of latitude and for each inch of barometric pressure from 19 to 30 inches.
table 13 (Metric measures) gives the correction in hundredths of a millimetre for each 20 millimetres barometric pressure from 520 to 770 millimetres.

Example:

Barometric reading (corrected for temperature) at Dodge City, latitude $37^{\circ} 45^{\prime}, \quad=27.434$
Gravity correction for latitude from Table 12,

$$
=-0.018
$$

Barometer reduced to latitude 45°, $=27.416$

[^0]
REDUCTION OF THE BAROMETER TO SEA LEVEL.

The fundamental formula for reducing the barometer to sea level and for determining heights by the barometer is the original formula of Laplace, amplified into the following form-

$$
Z=K(\mathrm{I}+a \theta)\left(\frac{\mathrm{I}}{\mathrm{I}-0.378 \frac{e}{b}}\right)(\mathrm{I}+k \cos 2 \phi)\left(\mathrm{I}+\frac{h+h_{\mathrm{o}}}{R}\right) \log \frac{p_{\mathrm{o}}}{\bar{p}}
$$

in which $h=$ Height of the upper station.
$h_{\mathrm{o}}=$ Height of the lower station.
$Z=h-h_{0}$.
$p=$ Atmospheric pressure at the upper station.
$p_{0}=$ Atmospheric pressure at the lower station.
$R=$ Mean radius of the earth.
$\theta=$ Mean temperature of the air column between the altitudes h and h_{0}.
$e=$ Mean pressure of aqueous vapor in the air column.
$b=$ Mean barometric pressure of the air column.
$\phi=$ Latitude of the stations.
$K=$ Barometric constant.
$a=$ Coefficient of the expansion of air.
$k=$ Constant depending on the figure of the earth.
The pressures p_{0} and p are computed from the height of the column of mercury at the two stations; the ratio $\frac{B_{0}}{B}$ of the barometric heights may be substituted for the ratio $\frac{p_{0}}{p}$, if B o and B are reduced to the values that would be measured at the same temperature and under the same relative value of gravity.

The correction of the observed barometric heights for instrumental temperature is always separately made, but the correction for the variation of gravity with altitude is generally introduced into the formula itself.

If B_{0}, B represent the barometric heights corrected for temperature only, we have the equation

$$
\frac{p_{\circ}}{\bar{p}}=\frac{B_{0}}{B}\left(\mathrm{I}+\mu \frac{Z}{R}\right)
$$

μ being a constant depending on the variation of gravity with altitude.

$$
\log \frac{p_{\circ}}{\not p}=\log \frac{B_{\mathrm{o}}}{B}+\log \left(\mathrm{r}+\mu \frac{Z}{R}\right)
$$

Since $\frac{\mu Z}{R}$ is a very small fraction, we may write

$$
\text { Nap. } \log \left(\mathrm{r}+\frac{\mu Z}{R}\right)=\frac{\mu Z}{R}, \text { and } \log \left(\mathrm{I}+\frac{\mu Z}{R}\right)=\frac{\mu Z}{R} M
$$

M being the modulus of common logarithms.

By substituting for Z its approximate value $Z=K \log \frac{B_{0}}{B}$, we have

$$
\log \left(\mathrm{I}+\frac{\mu Z}{R}\right)=\frac{\mu K}{R} M \log \frac{B_{\circ}}{B} .
$$

With these substitutions the barometric formula becomes

$$
\begin{gathered}
Z=K(\mathrm{I}+\alpha \theta)\left(\frac{\mathrm{I}}{\mathrm{I}-\mathrm{o} .378 \frac{e}{b}}\right)(\mathrm{I}+k \cos 2 \phi)\left(\mathrm{I}+\frac{h+h_{\mathrm{o}}}{R}\right) \\
\left(\mathrm{I}+\frac{\mu K}{R} M\right) \log \frac{B_{\mathrm{o}}}{B} .
\end{gathered}
$$

As a further simplification we shall put

$$
\beta=0.378 \frac{e}{b}, \gamma=k \cos 2 \phi \text { and } \eta=\frac{\mu K}{R} M,
$$

and write the formula-

$$
Z=K(\mathrm{I}+a \theta)\left(\frac{\mathrm{I}}{\mathrm{I}-\beta}\right)(\mathrm{r}+\gamma)\left(\mathrm{I}+\frac{h+h_{\mathrm{o}}}{R}\right)(\mathrm{r}+\eta) \log \frac{B_{0}}{B} .
$$

Values of the constants.-The barometric constant K is a complex quantity defined by the equation

$$
K=\frac{\Delta \times B_{n}}{\delta \times M} .
$$

B_{n} is the normal barometric height of Laplace, 760 mm .
Δ is the density of mercury at the temperature of melting ice. M. Marek (Travaux et Mémoires du Bureau international des Poids et Mesures, t. II, p. D 55) gives the value, $\Delta=13.5956$, and finds that different specimens of mercury purified by different processes differ from this by several units in the fourth decimal. The International Meteorological Committee have taken the value

$$
\Delta=13.5958,
$$

and for the sake of uniformity this value is here adopted.
δ is the density of dry air at $0^{\circ} C$. and under the pressure of a column of mercury B_{n} at the sea level and at latitude 45°. The value adopted by the International Bureau of Weights and Measures (Travaux et Mémoires, t. $\mathrm{I}, \mathrm{p}, \mathrm{A} 54$) is

$$
\delta=0.001293052
$$

M (the modulus of common logarithms) $=0.4342945$.
These numbers give for the value of the barometric constant

$$
K=18400 \text { metres. }
$$

For the remaining constants, the following values have been used :
$a=0.00367$ for r° Centigrade. (International Bureau of Weights and Measures : Travaux et Mémoires, t. I, p. A 54.)
$\gamma=k \cos 2 \phi=0.002662 \cos 2 \phi$. (Harkness : The solar parallax, etc., see p . xix.)
$R=6367324$ metres. (A. R. Clarke: Geodesy, 8°, Oxford, 1880.)
$\eta=\frac{\mu K M}{R}=0.002396$. (Ferrel : Report Chief Signal Officer, 1885, pt. 2, p. 393.)
In reducing the barometer to sea-level, $h_{\mathrm{o}}=0$, and the factor $\left(\mathrm{I}+\frac{h+h_{\mathrm{o}}}{R}\right)$ becomes $\left(\mathrm{r}+\frac{Z}{R}\right)$. Taking the product of this factor and $K(\mathrm{r}+a \theta)$ ($\mathrm{I}+n$), and neglecting the term in θZ, the formula becomes in metric measures

$$
Z \text { (metres) }=(\mathrm{I} 8444+67.53 \theta c .+0.003 Z)\left(\frac{\mathrm{I}}{\mathrm{I}-\beta}\right)(\mathrm{I}+\gamma) \log \frac{B}{B},
$$ and in English measures

$$
Z(\text { feet })=\left(56573+123.1 \theta^{\circ} F+0.003 Z\right)\left(\frac{\mathrm{I}}{\mathrm{I}-\beta}\right)(\mathrm{I}+\gamma) \log \frac{B_{0}}{B} .
$$

The form adopted for the tables is that of M. Angot.*
Taking the formula in English measures, let

$$
m=\frac{Z}{56573+123.1 \theta+0.003 Z} \cdot \frac{1}{1-\beta} .
$$

Then disregarding the small correction for gravity, $m=\log \frac{B_{0}}{B}$ gives an approximate value of B_{0}, and the correction to be added to the observed pressure to obtain the sea-level pressure is

$$
C=B_{\circ}-B=B\left(\mathrm{ro}^{m}-\mathrm{r}\right) .
$$

If m_{1} be the value of m corrected for gravity, we have

$$
m_{1}=\frac{m}{\mathrm{I}+\gamma} \text { or, approximately, }=m-m \gamma .
$$

The correction for gravity is therefore made by applying to the approximate value m the small correction $m \gamma$. With this corrected value of m, the reduction to sea-level is given by the expression

$$
B\left(\mathrm{ro}^{m}-\mathrm{r}\right) .
$$

The above fraction designated m contains the altitude Z, the mean temperature θ, and the humidity factor $\frac{\mathrm{I}}{\mathrm{I}-\beta}$. In the Smithsonian tables, meteorological and physical, by Dr. A. Guyot, the distinguished author

[^1]in treating of this humidity factor in connection with hypsometric tables took the following position :
"To introduce a separate correction for the expansion of aqueous vapor " is, in the writer's view, a doubtful improvement. The laws of the distri-
" bution and transmission of moisture through the atmosphere are too little
" known, and its amount, especially in mountain regions, is too variable, and
"depends too much upon local winds and local condensation, to allow a " reasonable hope of obtaining the mean humidity of the layer of air between " the two stations by means of hygrometrical observations made at each of "them. These doubts are confirmed by the experience of the author and " of many other observers, which shows that, on an average, Laplace's " method works not only as well as the other, but more uniformly well. At " any rate the gain, if there be any, is not clear enough to compensate for " the undesirable complication of the formula."

Since this position was taken by Dr. Guyot forty years ago, there has been no such advance in our knowledge as to impair the practical conclusion in conformity with which he constructed his hypsometric table. Accordingly in treating this portion of the formula in the construction of the present tables for the reduction of the barometer to sea level, it has been deemed advantageous to retain the method adopted by Guyot, and to incorporate the humidity factor in the temperature term, thereby assuming the air to contain the average degree of humidity corresponding to the actually prevailing condition of temperature.

In evaluating the humidity factor as a function of the air temperature, the tables given by Prof. Ferrel have been adopted (Meteorological researches. Part iii.-Barometric hypsometry and reduction of the barometer to sea level. Report, U. S. Coast Survey, 1881. Appendix io.) These tables by interpolation, and by extrapolation below $\circ^{\circ} F$., give the following values for β :

For Fahrenheit temperatures,

θ	β	θ	β	θ	β	θ	β
F.		F.		F.		F.	
-20°	0.00008	10°	0.00104	36°	0.00267	62°	0.00724
- 16	. 00020	12	.00111	38	. 00293	64	. 00762
- 12	.00032	14	. 00118	40	.00322	66	.0080I
-8	. 00044	16	. 00126	42	. 00353	68	. 00839
		18	.00134	44	. 00386	70	. 00877
-6	0.00050	20	. 00143	46	. 00421	72	. 00914
- 4	. 00056	22	.00153	48	. 00458		
-2	. 00062	24	.00163	50	. 00496	76	0.00990
0	. 00068	26	.00174	52	. 00534	80	. 01065
$+2$. 00075	28	.00187	54	. 00572	84	.OII4I
	. 00082	30	. 00203	56	.00610	88	.OI217
6	.00089	32	. 00222	58	.00648	92	
8	0.00096	34	0.0243	60	. 00686	96	. 01369

For Centigrade temperatures,

θ	β	θ	β	θ	β
c.		c.		c.	
-18°	0.0007	\circ°	0.0022	18°	0.0077
-16	.0008	$+2$. 0026	20	. 0084
-14 -12	.0009	4 6	.0031 .0037 .0031	22 24	.0091
- 12 - 10	. $01012+$	6	.0037	24 26	.00974
	. 0013	ı		28	. 0111
-6 -4	. 0015	12 14 14	. 0056	30 32	. 0118
- ${ }_{2}$. O . 019	14 16	. 0070	34 3	.0132
				36	.or39

The practical tables consist essentially of two mutually dependent parts:-the first gives values of 2000 m in a table of double entry of which the altitude of the station and the mean temperature of the air between the station and sea level are the arguments; the second gives the reduction to sea level in a table of double entry of which the arguments are 2000 m and the observed barometric height corrected for temperature. In addition, a subsidiary table gives the small correction for latitude to be applied to the values of 2000 m . This correction, while of theoretical interest, seldom becomes of practical importance, since its effect is in general overshadowed by the relatively large uncertainties incident to the determination of the true mean temperature.

The mean temperature of the air column is to be obtained from the observed temperature at the station by employing some assumption as to the rate of change of temperature with altitude. In the discussion of barometric observations made in the mountain and plateau regions of the United States, it has been found that this rate of change is a climatic factor which needs to be determined for every station for different seasons of the year, and for different atmospheric conditions. When the results of such investigations are embodied in tables for reduction to sea level, the tables and the method of their use may be simplified and the labor of obtaining the reduction greatly abridged; but in the nature of the case, these special methods can not be utilized in the construction of general tables which are to be applicable to all phases of topography and climate.

Whatever method be used for obtaining the mean temperature of the air column (θ) from the observed temperature at the station, the former and hence the latter is subject to the important condition that it shall not contain the diurnal fluctuation. Hence in reducing to sea level any indi--vidual observation of the barometer, the simultaneous observation of air temperature used in obtaining θ should be reduced to the daily mean by a correction, or, better, the actual mean temperature of the preceding twentyfour hours should be taken.

TABLES 14, 15, 16.
Tables 14,15,16. Reduction of the barometer to sea level-English measures.

Table 14 gives values of $2000 \times m$.

$$
m=\frac{Z}{56573+\mathrm{I} 23 . \mathrm{I} \theta+0.003 Z} \cdot \frac{\mathrm{I}}{\mathrm{I}-\beta}
$$

The temperature θ varies by intervals of 2° from $-20^{\circ} F$. to $96^{\circ} F$, except near the extremities of the table where the interval is 4° The altitude Z varies by intervals of 100 feet from 100 to 9000 feet. The values of 2000 m are given to one decimal.

In order to facilitate interpolations for sractions of a 100 feet in altitude, the tabular differences for 100 feet have been added on each line.

Table 15 gives a small correction to $2000 m$ for latitude, computed from the expression

$$
2000 m \times 0.002662 \cos 2 \phi
$$

The arguments are 2000 m , which varies by tens from 10 to 350 , and the latitude, which varies by 5° from 0° to 90°. The correction is to be subtracted for latitudes below 45° and added for latitudes above 45° The tabular values are given to one decimal.

Table 16, with the value of $2000 m$ thus corrected, gives the correction which must be applied to the barometric reading B (corrected for temperature) to reduce it to sea level. The arguments are B, which varies by 0.5 inch from 31.00 inches to 19.5 inches, and values of 2000 m , which are given for every unit from 1 to 334 .

The reduction values $B \circ-B$ are given to o.or inch.

Example :

Let $B=26.24$ inches be the barometric reading (corrected for temperature) observed at a station whose altitude is 3572 feet, and latitude 32. Suppose the mean temperature of the air column $\theta=63^{\circ} \circ \mathrm{F}$.

Table 14 gives (p. 63) with $Z=3,500$ feet and $\theta=62.8 \mathrm{~F}$., $2000 \mathrm{~m}=108.0$
The difference for 72 feet is
The approximate value of 2000 m is
IIO. 2

Table 15 , with $2000 m=110$ and latitude $=32^{\circ}$, gives the subtractive correction O.I. Hence the corrected value of 2000 m is IIo.i.

With $2000 m=$ IIo. I and $B=26.24$, Table 16 (p. 72) gives the reduction to sea level, 3.55 inches. Accordingly the barometric pressure reduced to sea level is

$$
B_{.}=26.24+3.55=29.79 \text { inches. }
$$

tables 17, 18, 19. Reduction of the barometer to sea level-Metric measures.
For reducing to sea level readings of the metric barometer, the barometric formula in metric measures derived on page xxii is treated in the same manner as the formula in English measures just described in detail, and the method of construction of the tables is the same.

Table 17 gives values of 2000 m .

$$
m=\frac{Z}{18444+67.53 \theta+0.003 Z} \cdot \frac{\mathrm{I}}{\mathrm{I}-\beta} .
$$

The temperature θ varies by intervals of 2° from $-16^{\circ} \mathrm{C}$. to $+36^{\circ} \mathrm{C}$. except near the extremities of the table where the interval is 4°. The altitude Z varies by io metres from io to 3000 metres. The values of 2000 m are given to one decimal.

Table 18 gives the small correction to $2000 m$ for latitude. The arguments are 2000 m , which varies by tens from 10 to 350 , and the latitude which varies by 5° from 0° to 90°. The correction is to be subtracted for latitudes below 45° and added for latitudes above 45°. The tabular values are given to one decimal. The value of 2000 m thus corrected is then used in entering Table 19.

Table 19 gives the correction which must be applied to the barometric reading B (corrected for temperature) to reduce it to sea level. The arguments are B, which varies by 10 mm . from 790 mm . to 480 mm ., and values of $2000 m$ which vary by units from I to 345 . The tabular values $B_{0}-B$ are given to 0.1 mm .

Example :

Let $B=648.7 \mathrm{~mm}$. be the barometric reading observed and corrected for temperature at a station whose altitude is I 353 metres and latitude 32° Suppose the mean temperature of the air column $\theta=14.3 \mathrm{C}$.
Table 17 gives (p. 83) for $\theta=14^{\circ}$ and $Z=1353, \quad 2000 m=138.6$
The proportional part for 0.3 is
Hence the approximate value of 2000 m is
Table 18, with $2000 m={ }_{1} 88$ and latitude 32°, gives the subtractive correction c.15. Hence the corrected value of 2000 m is I 38.3 . With this value and $B=649 \mathrm{~mm}$. as arguments, Table ig gives $B_{0}-B=112.0 \mathrm{~mm}$.

Accordingly the barometric reading reduced to sea level is

$$
B_{\circ}=648.7+112.0=760.7 \mathrm{~mm} .
$$

THE DETERMINATION OF HEIGHTS BY THE BAROMETER.
tables 20, 21, 22, 23, 24. English Measures.
The barometric formula developed in the preceding section (see p. xxi) is arranged in the following form for determining heights by the barometer.

$$
Z=K\left(\log B_{0}-\log B\right)\left[\begin{array}{l}
(\mathrm{I}+\alpha \theta) \\
(\mathrm{I}+\beta) \\
(\mathrm{I}+k \cos 2 \phi)(\mathrm{I}+\eta) \\
\left(\mathrm{I}+\frac{Z+2 h_{\mathrm{o}}}{R}\right)
\end{array}\right]
$$

in which $K\left(\log B_{0}-\log B\right)$ is an approximate value of Z and the factors in the brackets are correction factors depending respectively on the air temperature, the humidity, the variation of gravity with latitude, the variation of gravity with altitude in its effect on the weight of mercury in the barometer, and the variation of gravity with altitude in its effect on the weight of the air. With the constants already given, the formula becomes in English measures :

$$
Z(\text { feet })=60368\left(\log B_{0}-\log B\right)\left[\begin{array}{l}
{\left[\mathrm{I}+0.002039\left(\theta-32^{\circ}\right)\right]} \\
(\mathrm{I}+\beta) \\
(\mathrm{I}+0.002662 \cos 2 \phi)(\mathrm{I}+0.00239) \\
\left(\mathrm{I}+\left(\frac{Z+2 h_{\mathrm{o}}}{R}\right)\right.
\end{array}\right]
$$

In order to make the temperature correction as small as possible for average air temperatures, $50^{\circ} F$. will be taken as the temperature at which the correction factor is zero. This is accomplished by the following transformation :

$$
1+0.002039\left(\theta-32^{\circ}\right)=\left[\mathrm{I}+0.002039\left(\theta-50^{\circ}\right)\right]\left[\mathrm{I}+0.0010195 \times 36^{\circ}\right] .
$$

The second factor of this expresssion combines with the constant, and gives $60368\left(\mathrm{I}+\mathrm{o} .00\right.$ Io $\left.95 \times 36^{\circ}\right)=62583.6$.

The first approximate value of Z is therefore

$$
62583.6\left(\log B_{\circ}-\log B\right)
$$

In order further to increase the utility of the tables, we shall make a further substitution for $\log B_{\circ}-\log B$, and write

$$
62583.6\left(\log B_{\circ}-\log B\right)=62583.6 \log \left(\frac{29.9}{B}-\log \frac{29.9}{B_{\circ}}\right)
$$

Table 20 contains values of the expression

$$
62583.6 \log \frac{29.9}{B}
$$

for values of B varying by intervals of o.or inch from 12.00 inches to 30.90 inches.

The first approximate value of Z is then obtained by subtracting the tabular value corresponding to B_{0} from the tabular value corresponding to B (B and B_{0} obeing the barometric readings observed and corrected ior temperature at the upper and lower stations respectively).

Table 21 gives the temperature correction

$$
Z \times 0.002039\left(\theta-50^{\circ}\right) .
$$

The side argument is the mean temperature of the air column (θ) given for intervals of I° from 0° to $100^{\circ} \mathrm{F}$. The top argument is the approximate difference of altitude Z obtained from Table 20.

For temperatures above $50^{\circ} \mathrm{F}$., the correction is to be added, and for temperatures below $50^{\circ} \mathrm{F}$., the correction is to be subtracted. It will be observed that the correction is a linear function of Z, and hence, for example, the value for $Z=1740$ is the sum of the corrections in the columns headed 1000, 700, and 40.

In general, accurate altitudes can not be obtained unless the temperature used is freed from diurnal variation.

Table 22 gives the correction for latitude, and for the variation of gravity with altitude in its effect on the weight of the mercury. When altitudes are determined with aneroid barometers the second factor does not enter the formula. In this case the effect of the latitude factor can be obtained by taking the difference between the tabular value for the given latitude and the tabular value for latitude 45°. The side argument is the latitude of the station given for intervals of 2°. The top argument is the approximate difference of height Z.

Table 23 gives the correction for the average humidity of the air at different tem peratures; the values of the factor $(1+\beta)$ adopted by Prof. Ferrel and given on page xxiii have been used. This correction could have been incorporated with the temperature factor in Table 21, but it is given separately in order that the magnitude of the correction may be apparent, and in order that, when the actual humidity is observed, the correction may be computed if desired, by the expression

$$
Z\left(0.378 \frac{e}{b}\right)
$$

where e is the mean pressure of vapor in the air column, and b the mean barometric pressure.

The side argument is the mean temperature of the air column, varying by intervals of 2° from $-20^{\circ} F$. to $96^{\circ} F$., except near the extremities of the table where the interval is 4° The top argument is the approximate difference of altitude Z.

Table 24 gives the correction for the variation of gravity with altitude in its effect on the weight of the air. The side argument is the approximate difference of altitude Z, and the top argument is the elevation of the lower station h_{0}.

The corrections given by Tables 22, 23 and 24 are all additive.

Example:

Let the barometric pressure observed, and corrected for temperature, at the upper and lower stations be, respectively, $B=23.61$ and $B_{0}=29.97$. Let the mean temperature of the air column be $35^{\circ} \mathrm{F}$., and the latitude $44^{\circ} 16^{\prime}$. To determine the difference of height.

Table 20, argument 23.61, gives	$\begin{aligned} & \text { Feet. } \\ & 6420 \end{aligned}$
Table 20, " 29.97, "	64
Approximate difference of height (Z)	$=6484$
Table 21, with $Z=6484$ and $\theta=35^{\circ} \mathrm{F}$., gives	- 198
Table 22, with $Z=6300$ and $\phi=44^{\circ}$, gives	+ 16
Table 23, with $Z=6300$ and $\theta=35^{\circ} F$., gives	17
Table 24, with $Z=6300$ and $h_{\circ}=0$, gives	
Final difference of height (Z)	$=632 \mathrm{I}$

If in this example the barometric readings be observed with aneroid barometers, the correction to be obtained from Table 22 will be simply the portion due to the latitude factor, and this will be obtained by subtracting the tabular value for 45° from that for 44°, the top argument being $Z=6300$. This gives $16-15=1$.
tables 25, 26, 27, 28, 29. Metric Measures.
The barometric formula developed on page xxi is, in metric units,

$$
Z(\text { metres })=18400\left(\log B_{0}-\log B\right)\left[\begin{array}{l}
(\mathrm{I}+0.00367 \theta C .) \\
\left(\mathrm{I}+0.378 \frac{e}{b}\right) \\
(\mathrm{I}+0.00266 \cos 2 \phi)(\mathrm{I}+0.00239) \\
\mathrm{I}+\frac{\left(Z+2 h_{\mathrm{o}}\right)}{6367323}
\end{array}\right]
$$

The approximate value of Z (the difference of height of the upper and lower station) is given by the factor $18400\left(\log B_{\mathrm{o}}-\log B\right)$. This expression is computed by means of two entries of a table whose argument is the barometric pressure. In order that the two entries may result at once in an approximate value of the elevation of the upper and lower stations, a transformation is made, which gives the following identity:

$$
18400\left(\log B_{\circ}-\log B\right)=18400\left(\log \frac{760}{B}-\log \frac{760}{B_{0}}\right) .
$$

TABLE 25
Table 25 gives values of the expression $18400 \log \frac{760}{B}$ for values of B varying by intervals of I mm . from 300 mm . to 779 mm . The first approximate value of Z is then obtained by subtracting the tabular value corresponding to B_{0} from the tabular value corresponding to B (B and B 。 being the barometric readings observed and reduced to $o^{\circ} C$. at the upper and lower
stations respectively). The first entry of Table 25 with the argument B gives an approximate value of the elevation of the upper station above sea level, and the second entry with the argument B 。gives an approximate value of the elevation of the lower station.

Table 26 gives the temperature correction: $0.00367 \theta C . \times Z$.
The side argument is the approximate difference of elevation Z and the top argument is the mean temperature of the air column. The values of Z vary by intervals of 100 m . from 100 to 4000 metres and the temperature varies by intervals of 1° from $1^{\circ} C$. to $10^{\circ} \mathrm{C}$. with additional columns for 20°, 30°, and $40^{\circ} \mathrm{C}$. Attention is called to the fact that the formula is linear with respect to θ, and hence that the correction, for example, for 27° equals the correction for 20° plus the correction for 7°. When the table is used for temperatures below $\circ^{\circ} C$., the tabular correction must be subtracted from, instead of added to, the approximate value of Z.

Table 27 (pp. II2 and II3) gives the correction for humidity resulting from the factor $0.378 \frac{e}{b} \times Z=\beta Z$.

Page 112 gives the value of $0.378 \frac{e}{b}$ multiplied by 10000 . The side argument is the mean pressure of aqueous vapor, e, which serves to represent the mean state of humidity of the air between the two stations. $e=\frac{1}{2}\left(f+f_{0}\right)$ (f and f_{0}. being the vapor pressures observed at the two stations) has been written at the head of the table, but the value to be assigned to e is in reality left to the observer, independently of all hypothesis. The top argument is the mean barometric pressure $\frac{1}{2}\left(B+B_{0}\right)$.

The vapor pressure varies by millimetres from I to 40 , and the mean barometric pressure varies by intervals of 20 mm . from 500 mm . to 760 mm . The tabular values represent the humidity factor β or $0.378 \frac{e}{b}$, multiplied by 10000.

Page II3 gives the correction for humidity, with Z and $10000 \times 0.378 \frac{e}{b}$ (derived from page it2) as arguments.

The approximate difference of altitude is given by intervals of roo metres from 100 to 4000 metres, and the values of 10000β vary by intervals of 25 from 25 to 300 . The tabular values are given in tenths of metres to facilitate and increase the accuracy of interpolation.

Table 28 gives the correction for latitude, and for the variation of gravity with altitude in its effect on the weight of the mercurial column. When altitudes are determined with aneroid barometers, the latter factor does not enter the formula. In this case the effect of the latitude factor can be obtained by subtracting the tabular value for latitude 45° from the tabular value for the latitude in question.

The side argument is the approximate difference of elevation Z, varying by intervals of 100 metres from 100 to 4000 . The top argument is the latitude varying by intervals of 5° from 0° to 75°

TABLE 29.

Table 29 gives the correction for the variation of gravity with altitude in its effect on the weight of the air.

The side argument is the same as in Table 28 ; the top argument is the height of the lower station varying by intervals of 200 metres from o to 2000, with additional columns for 2500,3000 and 4000 metres.

Example:

Let the barometric reading (reduced to $0^{\circ} C$.) at the upper station be 655.7 mm .; at the lower station, 772.4 mm . Let the mean temperature of the air column be $\theta=12.3 C$., the mean vapor pressure $e=9 \mathrm{~mm}$. and the latitude $\phi=32^{\circ}$.
Table 25, with argument $655 \cdot 7$, gives
II79 metres.
Table 25, " " 772.4, "
Approximate value of Z
$=1308$
Table 26, with $Z=1300$ and $\theta=12 .{ }^{\circ} C$, gives
59
Table 27, with $e=9 \mathrm{~mm}$. and $Z=1370$, gives 7
Table 28, with $Z=1370$ and $\phi=32^{\circ}$, gives 5
Table 29, with $Z=1370$ and $h_{\circ}=0$, gives
Corrected value of $Z \quad=1379$ metres.
TABLE 30.
TABLE 30. Difference of height corresponding to a change of 0.1 inch in the barometer-English measures.
If we differentiate the barometric formula, page xxvii, we shall obtain, neglecting insensible quantities,

$$
d Z=-2628 \mathrm{I} \frac{d B}{B}\left(\mathrm{I}+0.002039\left(\theta-32^{\circ}\right)\right)(\mathrm{I}+\beta)
$$

in which B represents the mean pressure of the air column $d Z$.
Putting $d B=0$. I inch,

$$
d Z=-\frac{2628.1}{B}\left(\mathrm{I}+0.002039\left(\theta-32^{\circ}\right)\right)(\mathrm{I}+\beta)
$$

The second member, taken positively, expresses the height of a column of air in feet corresponding to a tenth of an inch in the barometer on the parallel of 45° latitude. Since the last factor $(I+\beta)$, as given on page xxiii, is a function of the temperature, the function has only two variables and admits of convenient tabulation.

Table 30 , containing values of $d Z$ for short intervals of the arguments B and θ, has been taken from the Report of the U. S. Coast Survey, 1881, Appendix 10,-Barometric hypsometry and reduction of the barometer to sea level, by Wm. Ferrel.*

[^2]The temperature argument is given for every 5° from $30^{\circ} \mathrm{F}$. to $85^{\circ} \mathrm{F}$., and the pressure argument for every 0.2 inch from 22.0 to 30.8 inches.

This table may be used in computing small differences of altitude, and, up to a thousand feet or more, very approximate results may be obtained.

Example:

Mean pressure at Augusta, October, 1891, 29.94 ; temperature, $\quad 60.8 \mathrm{~F}$.
Mean pressure at Atlanta, October, 1891, 28.97 ; temperature, 59.4
Mean pressure of air column, $\quad B=29.455$; $\quad \theta=60^{\circ}$.
Entering the table with 29.455 and 60° I as arguments, we take out 94.95 as the difference of elevation corresponding to a tenth of an inch difference of pressure. Multiplying this value by the number of tenths of inches difference in the observed pressures, viz. 97, we obtain the difference of elevation 92 I feet.

TABLE 31. Difference of height of air corresponding to a change of I millimetre in the barometer-Metric measures.

This table has been computed by converting Table 18 into metric units. The temperature argument is given for every 2° from $-2^{\circ} \mathrm{C}$. to $+36^{\circ} \mathrm{C}$.; the pressure argument is given for every millimetre from 760 to 560 mm .
table 32. Babinet's formula for determining heights by the barometer.
Babinet's formula for computing differences of altitude* represents the formula of Laplace quite accurately for differences of altitude up to 1000 metres, and within one per cent for much greater altitudes. As it has been quite widely disseminated among travellers and engineers, and is of convenient application, the formula is here given in English and metric measures. It might seem desirable to alter the figures given by Babinet so as to conform to the newer values of the barometrical constants now adopted; but this change would increase the resulting altitudes by less than one-half of one per cent without enhancing their reliability to a corresponding degree, on account of the outstanding uncertainty of the assumed mean temperature of the air.

The formula is, in English measures,

$$
Z(\text { feet })=52494\left[\mathrm{r}+\frac{t_{0}+t-64^{\circ}}{900}\right] \frac{B_{0}-B}{B_{0}+B} ;
$$

and in metric measures,

$$
Z \text { (metres })=16000\left[\mathrm{I}+\frac{2\left(t_{\mathrm{o}}+t\right)}{1000}\right] \frac{B_{\circ}-B}{B_{\circ}+B}
$$

in which Z is the difference of elevation between a lower and upper station at which the barometric pressures corrected for all sources of instrumental error are B_{o} and B, and the observed air temperatures are t_{o} and t, respectively.

[^3]For ready computation the formula is written

$$
Z=C \times \frac{B_{0}-B}{B_{0}+B},
$$

and the factor C, computed both in English and metric measures, has been kindly furnished by Prof. Cleveland Abbe. The argument is $\frac{1}{2}\left(t_{0}+t\right)$ given for every 5° Fahrenheit between 10° and $100^{\circ} F$., and for every 2° Centigrade between 10° and 40° Centigrade.

In using the table, it should be borne in mind that on account of the uncertainty in the assumed temperature, the last two figures in the value of C are uncertain, and are here given only for the sake of convenience of interpolation. Consequently one should not attach to the resulting altitudes a greater degree of confidence than is warranted by the accuracy of the temperatures and the formula. The table shows that the numerical factor changes by about one per cent of its value for every change of five degrees Fahrenheit in the mean temperature of the stratum of air between the upper and lower stations; therefore the computed difference of altitude will have an uncertainty of one per cent if the assumed temperature of the air is in doubt by $5^{\circ} \mathrm{F}$. With these precautions the observer may properly estimate the reliability of his altitudes whether computed by Babinet's formula or by more elaborate tables.

Example:

Let the barometric pressure observed and corrected for temperature at the upper and lower stations be, respectively, $B=635 \mathrm{~mm}$. and $B_{\circ}=730 \mathrm{~mm}$. Let the temperatures be, respectively, $t=15^{\circ} \mathrm{C}$., $t_{0}=20^{\circ} \mathrm{C}$. To find the approximate difference of height.
With $\frac{1}{2}\left(t_{0}+t\right)=\frac{20^{\circ}+15^{\circ}}{2}=17^{\circ} .5 C$., the table in metric measures gives $C=17120$ metres. $\quad \frac{B_{0}-B}{B_{0}+B}=\frac{95}{1365}$.
The approximate difference of height $=17120 \times \frac{95}{1365}=1191.5$ metres.

THERMOMETRICAL MEASUREMENT OF HEIGHTS BY OBSERVATION OF THE
TEMPERATURE OF THE BOILING POINT OF WATER.
When water is heated in the open air, the elastic force of its vapor gradually increases, until it becomes equal to the incumbent weight of the atmosphere. Then, the pressure of the atmosphere being overcome, the steam escapes rapidly in large bubbles and the water boils. The temperature at which water boils in the open air thus depends upon the weight of the atmospheric column above it, and under a less barometric pressure the water will boil at a lower temperature than under a greater pressure. Now, as the weight of the atmosphere decreases with the elevation, it is obvious that, in ascending a mountain, the higher the
station where an observation is made, the lower will be the temperature of the boiling point.

The difference of elevation between two places therefore can be deduced from the temperature of boiling water observed at each station. It is only necessary to find the barometric pressures which correspond to those temperatures, and, the atmospheric pressures at both places being known, to compute the difference of height by the tables given herein for computing heights from barometric observations.

From the above, it may be seen that the heights determined by means of the temperature of boiling water are less reliable than those deduced from barometric observations. Both derive the difference of altitude from the difference of atmospheric pressure. But the temperature of boiling water gives only indirectly the atmospheric pressure, which is given directly by the barometer. This method is thus liable to all the chances of error which may affect the measurements by means of the barometer, besides adding to them new ones peculiar to itself, the principal of which is the difficulty of ascertaining with the necessary accuracy the true temperature of boiling water. In the present state of thermometry it would hardly be safe, indeed, to rely, in the most favorable circumstances, upon quantities so small as hundredths of a degree, even when the thermometer has been constructed with the utmost care; moreover, the quality of the glass of the instrument, the form and substance of the vessel containing the water, the purity of the water itself, the position at which the bulb of the thermometer is placed, whether in the current of the steam or in the water, - all these circumstances cause no inconsiderable variations to take place in the indications of thermometers observed under the same atmospheric pressure. Owing to these various causes, an observation of the boiling point, differing by one-tenth of a degree from the true temperature, ought to be still admitted as a good one. Now, as the tables show, an error of one-tenth of a degree Centigrade in the temperature of boiling water would cause an error of 2 millimetres in the barometric pressure, or of from 70 to 80 feet in the final result, while with a good barometer the error of pressure will hardly ever exceed one-tenth of a millimetre, making a difference of 3 feet in altitude.

Notwithstanding these imperfections, the hypsometric thermometer is of the greatest utility to travellers and explorers in rough countries, on account of its being more conveniently transported and much less liable to accidents than the mercurial barometer. A suitable form for it, designed by Regnault (Annales de Chimie et de Physique, Tome xiv, p. 202), consists of an accurate thermometer with long degrees, subdivided into tenths. For observation the bulb is placed, about 2 or 3 centimetres above the surface of the water, in the steam arising from distilled water in a cylindrical vessel, the water being made to boil by a spirit-lamp.

Barometric pressures corresponding to the temperature of boiling water.
TABLE 33.
TABLE 34.
English Measures.
Metric Measures.

Table 33 is a conversion into English measures of Table 34. The argument is the temperature of boiling water for every tenth of a degree from $185^{\circ} \circ$ to 212.9 Fahrenheit. The tabular values are given to the nearest o.oI inch.

Table 34 is Regnault's table of barometric pressures corresponding to temperatures of boiling water, revised by A. Moritz (Acad. Sci. Bull., St. Petersburg, xiii., 1855 , col. $4 \mathrm{r}-44$). To the degree of precision here desired, these values do not differ from the more recent reduction by Broch. The argument is given for every tenth of a degree from 80.0 to 100.9 C . The tabular values are given to the nearest o. 1 mm .

HYGROMETRICAL TABLES.

PRESSURE OF AQUEOUS VAPOR IN SATURATED AIR.
Tables 35, 36, and 43, giving the pressure of aqueous vapor in saturated air, are based upon Dr. Broch's reduction of the observations of Regnault (Travaux et Mémoires du Bureau international des Poids et Mesures, t. I, p. A 19-39). This reduction assumes that the observations may be represented by the empirical formula

$$
F=A \times 10 \frac{b t+c t^{2}+d t^{3}+e t^{4}+f t^{5}}{1+a t}
$$

in which F is the pressure of aqueous vapor expressed in millimetres of standard mercury, that is at $0^{\circ} \mathrm{C}$. and at latitude 45° and sea level, its density being 55.59593 .
t, the temperature expressed in normal Centigrade degrees.

$$
\alpha=0.003667458
$$

By using the simultaneous values of F and t given by Regnault's observations, Dr. Broch obtained a series of observation equations whose solution by the method of least squares gave the following values for the coefficients :

$$
\begin{aligned}
A & =4.5686859 \\
b & =10^{-2} \times 3 . \mathrm{I} 34366 \mathrm{I} 74 \\
c & =-10^{-5} \times \mathrm{I} .4 \mathrm{I} 6 \mathrm{I} 2423 \\
d & =10^{-7} \times 1.935338308 \\
e & =-10^{-9} \times 2.646535 \mathrm{IO} 3 \\
f & =10^{-11} \times 1.139377 \mathrm{I} 58
\end{aligned}
$$

From this formula Broch's tables of vapor pressure were computed.

TABLE 35. Pressure of aqueous vapor-English measures.

This table is a conversion into English measures of Table 36. It gives the vapor pressure in saturated air for temperatures varying by $0^{\circ} .2$ from -20.0 to 214.0 Fahrenheit.

The tabular values are given in inches to four decimals.
A column of differences for $0 . r$ is added for convenience in interpolating.
tables 36, 43. Pressure of aqueous vapor.-Metric measures.
These tables, taken from Broch, give the pressure of aqueous vapor to hundredths of a millimetre for temperatures varying by 0.1 . C. from - 29°. to $100^{\circ} 9$ Centigrade. The values for temperatures between $0^{\circ} \mathrm{C}$. and $45^{\circ} \mathrm{C}$. are given in Table 43, the remainder in Table 36.
table 37. Pressure of aqueous vapor at low temperature.-(C. F. Marvin.)
Broch's vapor pressures at temperatures below $0^{\circ} C$. $\left(32^{\circ} F\right.$.) as given in Tables 35 and 36 , when compared with the actual observed values of Regnault are found to be systematically too large. This discrepancy signifies that the e-npirical formula adopted by Broch fails to represent accurately the law of variation of vapor pressure for temperatures both above and below the freezing point. Moreover, the failure in the application of the formula might be inferred from the laws of diffusion following from the kinetic theory of gases, for these give no reason to suppose that the function expressing the relation between vapor pressure and temperature is continuous between the two states of water and ice.

Under proper conditions water can be cooled far below $0^{\circ} C$. ($32^{\circ} \mathrm{F}$.) before solidifying, so that at the same temperature we may have it either in the liquid or the solid state, and experiments confirm the theory of diffusion in showing that the pressure of the vapor is different according as it is in contact with its liquid or its solid at the same temperature. The method hitherto employed of combining vapor pressures above and below freezing, and attempting to represent them by a single continuous function: must therefore be considered as radically erroneous.

Recognizing the systematic errors of the vapor pressures given by Broch's formula for temperature below freezing, the Chief Signal Officet lately authorized a new determination by direct observation. This experimental investigation has been carried out by Prof. C. F. Marvin, from the results of which (Annual Report Chief Signal Officer, 1891; Appendix No. ro,) Table 37 is reproduced. The interpolation between the observed pressures which were noted at intervals of about $5^{\circ} \mathrm{F}$., was effected graphically and not by mathematical formula.

The vapor pressures were determined for the case of the vapor in contact with ice and not a water surface. For the temperature of melting ice ($0^{\circ} \mathrm{C}$. or $32^{\circ} \mathrm{F}$.) all values agree. Below this temperature Marvin's vapor pressures are slightly smaller than Regnault's, but differ from the latter less than any other tabular values.

The argument of the table is given for every two-tenths of a degree Fahrenheit from -60.0 to 32.0 Fahrenheit. The tabular values are given in millimetres and inches to three and four decimals respectively.

TABLES 38, 39.
table 38. Weight of aqueous vapor in a cubic foot of saturated airEnglish measures.
table 39. Weight of aqueous vapor in a cubic metre of saturated airMetric measures.

The weight of aqueous vapor in a cubic metre of saturated air is given by the expression

$$
W=\frac{a \delta}{\mathrm{I}+a t} \cdot \frac{F}{760^{\prime}},
$$

a is the weight of a cubic metre of dry air (free from carbonic acid) at temperature $0^{\circ} \mathrm{C}$., and pressure of 760 millimetres of standard mercury at 45° latitude and sea-level : $a=\mathrm{r} .29278 \mathrm{~kg}$. (Bureau International des Poids et Mesures: Travaux et Mémoires, t. I, p. A 54.)
δ is the density of aqueous vapor: $\delta=0.622$ I
F is the pressure of aqueous vapor in saturated air whose temperature is t; Broch's values are adopted, expressed in millimetres.
a is the coefficient of expansion of air for I° C.: $a=0.003667$
t is the temperature in Centigrade degrees.
Whence we have

$$
W(\text { grammes })=1.05821 \times \frac{F}{1+0.003667 t} .
$$

Table 39 is computed from this formula and gives the weight of vapor in grammes in a cubic metre of saturated air for dew-points from -29° to $40^{\circ} \mathrm{C}$., the intervals from 6° to $40^{\circ} \mathrm{C}$. being 0.1 C . The tabular values are given to three decimals.

The weight W^{\prime} of aqueous vapor in a cubic foot of saturated air is obtained by converting the foregoing constants into English measures.

The weight of a cubic foot of dry air at temperature $32^{\circ} \mathrm{F}$. and at a pressure of 760 mm . or 29.92 I inches is

We have therefore,

$$
a^{\prime}(\text { grains })=\frac{1292.78 \times 15.43235}{(3.280833)^{3}}=564.94 .
$$

$$
\begin{aligned}
W^{\prime}(\text { grains })= & \frac{a^{\prime} \delta}{29.92 \mathrm{I}} \times \frac{F^{\prime}}{\mathrm{I}+a^{\prime}\left(t^{\prime}-32^{\circ}\right)} \\
& =11.7459 \frac{F^{\prime}}{\mathrm{I}+0.002037\left(t^{\prime}-32^{\circ}\right)}
\end{aligned}
$$

The temperature t is expressed in degrees Fahrenheit; the vapor pressure F^{\prime}, expressed in inches, is obtained from Table 35.

Table 38* gives the weight of aqueous vapor in grains in a cubic foot of saturated air for dew-points given to every 0.5 from - 19.5 to $115^{\circ} \mathrm{F}$., the values being computed to the thousandth of a grain.

The computation of Tables 38 and 39 has been furnished by Prof. Wm. Libbey, jr.

REDUCTION OF OBSERVATIONS WITH THE PSYCHROMETER AND DETERMINATION OF RELATIVE HUMIDITY.

The psychrometric formula derived by Maxwell, Stefan, August, Regnault and others is, in its simplest form,

$$
f=f_{1}-A B\left(t-t_{1}\right),
$$

in which $t=$ Air temperature.
$t_{1}=$ Temperature of the wet-bulb thermometer.
$f=$ Pressure of aqueous vapor in the air.
$f_{1}=$ Pressure of aqueous vapor in saturated air at temperature t_{1}.
$B=$ Barometric pressure.
$A=\mathrm{A}$ quantity which, for the same instrument and for certain conditions, is a constant, or a function depending in a small measure on t_{1}.
The important advance made since the time of Regnault consists in recognizing that the value of A differs materially according to whether the wet-bulb is in quiet or moving air. This was experimentally demonstrated by the distinguished Italian physicist, Belli, in 1830, and was well known to Espy, who always used a whirled psychrometer. The latter describes his practice as follows: "When experimenting to ascertain the dew-point by means of the wet-bulb, I always swung both thermometers moderately in the air, having first ascertained that a moderate movement produced the same depression as a rapid one."

The principles and methods of these two pioneers in accurate psychrometry have now come to be adopted in the standard practice of meteorologists, and psychrometric tables are adapted to the use of a whirled or ventilated instrument.

The factor A depends in theory upon the size and shape of the thermometer bulb, largeness of stem and velocity of ventilation, and different formulæ and tables would accordingly be required for different instruments. But by using a ventilating velocity of three metres or more per second, the differences in the results given by different instruments vanish, and the same tables can be adapted to any kind of a thermometer and to all changes of velocity above that which gives sensibly the greatest depression of the wetbulb temperature; and with this arrangement there is no necessity to measure or estimate the velocity in each case further than to be certain that it does not fall below the assigned limit.

[^4]The formula and tables here given for obtaining the vapor pressure and dew-point from observations of the whirled or ventilated psychrometer are those deduced by Prof. Wm. Ferrel (Annual Report Chief Signal Officer, 1886, Appendix 24) from a discussion of a large number of observations.

Taking the psychrometric formula in metric units, pressures being expressed in millimetres and temperatures in Centigrade degrees, Prof. Ferrel derived for A the value

$$
A=0.000656\left(\mathrm{I}+0.0019 t_{1}\right)
$$

In this expression for A, the factor depending on t_{1} arises from a similar term in the expression for the latent heat of water, and the theoretical value of the coefficient of t_{1} is o.ooris. Since it would require a very small change in the method of observing to cause the difference between the theoretical value and that obtained from the experiments, Prof. Ferrel adopted the theoretical coefficient 0.00115 and then recomputed the observations, obtaining therefrom the final value

$$
A=0.000660\left(\mathrm{I}+0.00 \mathrm{I} \mathrm{I}_{5} t_{1}\right)
$$

With this value the psychrometric formula in metric measures becomes

$$
f=f_{1}-0.000660 B\left(t-t_{1}\right)\left(\mathrm{I}+0.001 \mathrm{I}_{5} t_{1}\right)
$$

In order to adapt the formula to convenient tabulation, Prof. Ferrel substituted $t-t_{1}$ for t_{1} in the last factor, a modification which produces appreciable error only in extreme cases. The error in the computed vapor pressure will be

$$
E=0.00000076 B\left(t-t_{1}\right)\left(t-2 t_{1}\right) .
$$

Expressed in English measures, the formula is

$$
f=f_{\mathrm{r}}-0.000367 B\left(t-t_{\mathrm{r}}\right)\left[\mathrm{r}+0.00064\left(t_{\mathrm{r}}-32^{\circ}\right)\right]
$$

and with the same modification in order to render the formula more convenient for tabulation, we have

$$
f=f_{1}-0.000367 B\left(t-t_{1}\right)\left(\mathrm{I}+0.00064\left(t-t_{1}\right)\right),
$$

, n which $f=$ Vapor pressure in inches.
$f_{1}=$ Vapor pressure in saturated air at temperature t_{1}.
$t=$ Temperature of the air in Fahrenheit degrees.
$t_{1}=$ Temperature of the wet-bulb thermometer in Fahrenheit degrees.
$B=$ Barometric pressure in inches.
TABLES 40, 41.

Reduction of Psychrometric Observations-English measures.

table 40. Pressure of aqueous vapor.
TABLE 41. Values of $0.000367 B\left(t-t_{1}\right)\left(\mathrm{I}+\frac{t-t_{1}}{\mathrm{I} 57 \mathrm{I}}\right)$
These two tables provide for computing the vapor pressure and dewpoint from observations of ventilated wet- and dry-bulb Fahrenheit thermometers.

Table 40, with the wet-bulb temperature t_{1} as an argument, gives the value of f_{1}, the first term of the formula for the vapor pressure f, given above. It is simply an abbreviation of Table 35 for temperatures above $32^{\circ} F$., and of Table 37 for temperatures below $32^{\circ} F$., reprinted for convenience.

Table 41, with $t-t_{1}$ and B as arguments, gives the value of the second term of the formula, viz:

$$
0.000367 B\left(t-t_{1}\right)\left(\mathrm{I}+\frac{t-t_{1}}{\mathrm{I}_{57} \mathrm{I}}\right)
$$

The top argument is given for every half inch from 30.5 to 18.5 inches; the side argument, $t-t_{1}$, is given for every whole degree up to $40^{\circ} F$. Tabular values are given to thousandths of inches.

With the two tables we then have,

$$
f(\text { vapor pressure })=\text { Table } 40-\text { Table } 4 \mathrm{I} .
$$

The value of t in Table 40, corresponding to the vapor pressure thus obtained, is the dew-point.
Examples :

1. Given $t=84^{\circ} 3 ; t_{1}=66^{\circ} 7$, and $B=30.00$ inches, to find the vapor pressure and dew-point.
Table 40, with $t_{1}=66^{\circ} 7$, gives $f_{1}=0.654$ inches.
Table 41, with $t-t_{1}=84.3-66^{\circ}{ }^{\circ}=17.6$ and $B=30.00$ inches as arguments, gives 0.196 inch as the value of the last term of the expression above. Hence we have the vapor pressure $f=0.654-0.196=0.458$ inch. The temperature (Table 40) corresponding to this value of f is the dew-point, $d=56.6 \mathrm{~F}$.
2. Given $t=34.5 ; t_{1}=29^{\circ} .4$, and $B=22.3$ inches, to find the vapor pressure and dew-point.
Table 40, with $t_{1}=29^{\circ} 4$, gives $f_{1}=0.162$ inch.
Table 41, with $t-t_{1}=34^{\circ} 5-29^{\circ} 4=5 .{ }^{\circ}$ and $B=22.5$ inches (the nearest value in the table to 22.3 inches) as arguments, gives 0.042 inch as the value of the second term of the expression for f. Hence we have the vapor pressure $f=0.162-0.042=0.120$ inch.
The temperature in Table 40, corresponding to this value of f, is the dew-point, $d=22.0$.
Note-In using Table 40, the proportional part for tenths of the argument, $t-t_{1}$, may be easily obtained by taking one-tenth of the tabular value belonging to the same number of degrees; for instance, in the first example, the tabular value for 17° is 0.189 , and the proportional part for 0.6 is one-tenth the tabular value for $6^{\circ} 0^{\circ}$, viz., one-tenth of .066 , or .007 . Hence we get $0.189+0.007=0.196$.
table 42. Relative humidity-Temperature Fahrenheit.
Table 42 gives the relative humidity of the air in hundredths, having given the air temperature t and the dew-point d in Fahrenheit degrees.

It is computed by the formula

$$
\text { Relative humidity }=\frac{f}{F} .
$$

f and F are the maximum pressures of vapor corresponding respectively to the temperatures d and t as given in Table 35 for temperatures above $32^{\circ} \mathrm{F}$. and in Table 37 for temperatures below $32^{\circ} \mathrm{F}$.

The top argument is $t-d$, extending by half degree intervals from 0° to $15^{\circ} F_{\text {. }}$, and by increasing intervals from 15° to $75^{\circ} \mathrm{F}$.

The side argument is the air temperature t, given for intervals of four degrees from -32° to $120^{\circ} \mathrm{F}$.

Example:

Let the air temperature be $62^{\circ} F$. and the dew-point $5 I^{\circ} F$., to find the relative humidity.

With $t-d=1 I^{\circ}$ for the top argument, and $t=62^{\circ}$ for the side argument, the table gives 67.5 per cent as the relative humidity.

TABLES 43, 44.
Reduction of Psychrometric Observations-Metric measures.
table 43. Pressure of aqueous vapor.
TABLE 44. Values of $0.000660 B\left(t-t_{1}\right)\left(\mathrm{I}+\frac{t-t_{1}}{873}\right)$.
These two tables provide for computing the vapor pressure and dewpoint from observations of ventilated wet and dry-bulb thermometers Centigrade.

Table 43, with the wet-bulb temperature t_{1} as an argument, gives the value of f_{1}, the first term of the formula for the vapor pressure f, viz :

$$
f=f_{1}-0.000660 B\left(t-t_{1}\right)\left[\mathrm{r}+0.001 \mathrm{I} 5\left(t-t_{1}\right)\right]
$$

It gives the vapor pressure to hundredths of a millimetre from $-30^{\circ} .0$. to $45^{\circ} .9 \mathrm{C}$., the intervals being I° for temperatures below $0^{\circ} \mathrm{C}$. and $0 .{ }^{\circ} \mathrm{I}$ for temperatures above $0^{\circ} \mathrm{C}$.

Table 44, with the depression of the wet-bulb $t-t_{1}$, and the barometric pressure B as arguments, gives the value of the second term of the formula.

The top argument is given for every io millimetres from 770 to 460 mm ; the side argument $t-t_{1}$ is given for every whole degree up to 20. Tabular values are given to hundredths of a millimetre.

From the two parts of the table we then have
Vapor pressure, $f(\mathrm{~mm})=$ Table 43 - Table 44 .
The temperature in Table 43, corresponding to the vapor pressure thus. obtained, is the dew-point.

Example:

Given $t=10.4 \mathrm{C} . ; t_{1} \equiv 8 .{ }_{3}^{\circ} \mathrm{C}$. and $B=74 \mathrm{~mm}$., to find the vapor pressure and dew-point.
Table 43, with the argument $t_{1}=8.3{ }_{3} C$., gives $f_{1}=8.15 \mathrm{~mm}$.
Table 44, with $t-t_{1}=2.1$ and $B=740$ as arguments, gives 1.03 mm . as the value of the last term of the expression for f. Hence we have the vapor pressure, $f=8.15-1.03=7.12 \mathrm{~mm}$. The value of the temperature in Table 40 , corresponding to this vapor pressure, is the dew-point $d=6 .{ }_{3} C$.
table 45. Relative humidity-Temperature Centigrade.
Table 45 gives the relative humidity of the air in hundredths, having given the air temperature t and the dew-point d in Centigrade degrees.

It is computed by the formula

$$
\text { Relative humidity }=\frac{f}{F},
$$

f and F being the maximum pressures of aqueous vapor corresponding to the temperatures d and t as given in Tables 36 and 43.

The top argument is the dew-point d, extending by 5° intervals from -15° to $30^{\circ} \mathrm{C}$.

The side argument is the depression of the dew-point $t-d$, given for every $0.2 C$. from 0.0 to 10.0 ; for every 0.5 from ro.0 to 20.0 , and for every r° from 20.0 to 30.0 .

Example:
Given the air temperature $21^{\circ} C$. and the dew-point $17^{\circ} C$., to determine the relative humidity.
With $t-d=4^{\circ} C$. for the side argument, and $d=17^{\circ} C$. for the top argument, the table gives 78 per cent as the relative humidity.

TABLE 46. REDUCTION OF SNOWFALL MEASUREMENT.
The determination of the water equivalent of snowfall has usually been made by one of two methods: (a) by dividing the depth of snow by an arbitrary factor ranging from 8 to 16 for snow of different degrees of compactness; (b) by melting the snow and measuring the depth of the resulting water. The first of these methods has always been recognized as incapable of giving reliable results, and the second, although much more accurate, is still open to objection. After extended experience in the trial of both these methods, it has been found that the most accurate and most convenient measurement is that of weighing the collected snow, and then converting the weight into depth in inches. The method is equally applicable whether the snow as it falls is caught in the gage, or a section of the fallen snow is taken by collecting it in an inverted gage.

TABLE 46. Depth of water corresponding to the weight of snow (or rain) collected in an 8 -inch gagé.
The table gives the depth to hundredths of an inch, corresponding to the weight of snow or rain collected in a gage having a circular collecting mouth 8 inches in diameter - this being the standard size of gage used throughout the United States.

The argument is given in avoirdupois pounds, ounces and quarter ounces in order that it shall be adapted to the customary graduation of commercial scales.

Example:

The weight of snow collected in an 8 -inch gage is $2 \mathrm{lbs} .21 / 4 \mathrm{oz}$. To find the corresponding depth of water.
The table gives directly 1.18 inches.
TABLE 47.
table 47. Rate of decrease of vapor pressure with altitude.
From hygrometric observations made at various mountain stations on the Himalayas, Mount Ararat, Teneriffe, the Alps, and also in balloon ascensions, Dr. J. Hann (Zeitschrift für Meteorologie, vol. ix, 1874, p. 193-200) has deduced the following empirical formula showing the average relation between the vapor pressure f_{0} at a lower station and f the vapor pressure at an altitude h metres above it :

$$
\frac{f}{f_{0}}=10^{-\frac{h}{6557}} .
$$

This is of course an average relation for all times and places from which the actual rate of decrease of vapor pressure in any individual case may widely differ.

Table 47 gives the values of the ratio $\frac{f}{f_{0}}$ for values of h from 200 to 6000 metres. An additional column gives the equivalent values of h in feet.

WIND TABLES.

CALCULATION OF THE MEAN DIRECTION OF THE WIND BY LAMBERT'S FORMULA.

Lambert's formula for the eight principal points of the compass is

$$
\tan a=\frac{E-W+(N E+S E-N W-S W) \cos 45^{\circ}}{N-S+(N E+N W-S E-S W) \cos 45^{\circ}}
$$

a is the angle of the resultant wind direction with the meridian.
$E, N E, N$, etc., represent the wind movement from the corresponding directions East, Northeast, North, etc. In practice instead of taking the total wind movement, it is often considered sufficient to take as proportional
thereto the number of times the wind has blown from each direction, which is equivalent to considering the wind to have the same mean velocity for all directions.

If directions are observed to sixteen points, half the number belonging to each extra point, should be added to the two octant points between which it lies ; for example, $N N E=6$ should be separated into $N=3$ and $N E=3 ; E S E=4$ into $E=2$ and $S E=2$. The result will be approximately identical with that obtained by using the complete formula for sixteen points.

Table 48. Multiples of $\cos 45^{\circ}$; form for computing the numerator and denominator.
table 49. Values of the mean direction (a) or its complement ($90^{\circ}-a$).
Table 48 gives products of $\cos 45^{\circ}$ by numbers up to 209 , together with a form for the computation of the numerator and denominator, illustrated by an example. The quadrant in which a lies is determined by the following rule :

When the numerator and denominator are positive, a lies between N and E.

When the numerator is positive and the denominator negative, a lies between S and E.

When the numerator and denominator are negative, a lies between S and W.

When the numerator is negative and the denominator positive, α lies between N and W.

Table $49 *$ combines the use of a division table and a table of natural tangents. It enables the computer, with the numerator and denominator of Lambert's formula (computed from Table 48) as arguments, to take out directly the mean wind direction a or its complement.

The top argument consists of every fifth number from to to 200 .
The side argument is given for every unit from I to 50 and for every two units from 50 to 150 . Tabular values are given to the nearest whole degree.

Rule for using the table:
Enter the table with the larger number (either numerator or denominator) as the top argument.
If the denominator be larger than the numerator, the table gives α.
If the denominator be smaller than the numerator, the table gives $90^{\circ}-a$.
a is measured from the meridian in the quadrant determined by the rule given with Table 48.

* From Hand-book of Meteorological Tables. By H. A. Hazen. Washington, 1888. A corrected copy of the table has been kindly furnished for the present volume by the author.

Example :

$$
\begin{aligned}
\tan a & =\frac{-43}{-27} \\
90^{\circ}-a & =32^{\circ} \\
a & =S 58^{\circ} W
\end{aligned}
$$

Table 49 gives

NoTe.-If the numerator and denominator both exceed 150 or if either exceeds 200, the fraction must be divided by some number which will bring them within the limits of the table. The larger the values, provided they are within these limits, the easier and more accurate will be the computation. For example, let $\tan \alpha=\frac{-18}{14}$. The top argument is not given for 18 , but if we multiply by 5 or 10 and obtain $\frac{-90}{70}$ or $\frac{-180}{140}$, the table gives, without interpolation, $90^{\circ}-a=38^{\circ}$ and $a=N 52^{\circ} \mathrm{W}$.

CONVERSION OF VELOCITIES.

TABLE 50.
Synoptic conversion of velocities.
This table*, contained on a single page, converts miles per hour into metres per second, feet per second and kilometres per hour. The argument, miles per hour, is given for every half unit from o to 78 . Tabular values are given to one decimal. For the rapid interconversion of velocities, when extreme precision is not required, this table has proved of marked convenience and utility.

TABLE 51.
table 51. Conversion of miles per hour into feet per second.
The argument is given for every unit up to 149 and the tabular values are given to one decimal.

TABLE 62.
table 52. Conversion of feet per second into miles per hour.
The argument is given for every unit up to 199 and the tabular values are given to one decimal.

TABLE 53.
TABLE 53. Conversion of metres per second into miles per hour.
The argument is given for every tenth of a metre per second up to 60 metres per second, and the tabular values are given to one decimal.

TABLE 54.
table 54. Conversion of miles per hour into metres per second.
The argument is given for every unit up to 149 , and the tabular values are given to two decimals.

[^5]TABLE 55. Conversion of metres per second into kilometres per hour.
The argument is given for every tenth of a metre per second up to 60 metres per second, and the tabular values are given to one decimal.

TABLE 56. Conversion of kilometres per hour into metres per second.
The argument is given for every unit up to 200 , and the tabular values are given to two decimals.

TABLE 57. Beaufort wind scale and its conversion into velocity.
The personal observation of the estimated force of the wind on an arbitrary scale is a method that belongs to the simplest meteorological records and is widely practiced. Although anemometers are used at meteorological observatories the majority of observers are still dependent upon estimates based largely upon their own judgment, and so reliable can such estimates be made that for many purposes they abundantly answer the needs of meteorology as well as of climatology.

A great variety of such arbitrary scales have been adopted by different observers, but the one that has come into the most general use and received the greatest definiteness of application is the duodecimal scale introduced into the British navy by Admiral Beaufort about 1800.

The definitions of the successive grades of the Beaufort scale were made in terms of the effect of the wind on the sails of a full-rigged ship, so that navigators of all nations have generally acquired a very uniform and definite idea of their meaning and a very considerable expertness in the use of the scale. The Table gives the designations of the 12 grades together with several conversions of the scale into wind velocities as made by different meteorologists. A committee appointed by the Royal Meteorological Society to establish a conversion of the Beaufort scale into wind velocity made a preliminary report (Quart. Journal Roy. Meteorological Soc., vol. 13, 1887), but did not consider their work sufficiently complete to present a definite conversion table. \dagger

GEODETICAL TABLES.

TABLE 58. Relative acceleration of gravity at sea-level at different latitudes.
The formula adopted for the variation of gravity with latitude is that of Prof. Harkness*

$$
g_{\phi}=g_{45}(\mathrm{I}-0.002662 \cos 2 \phi)
$$

in which g_{ϕ} is the acceleration of the gravity at latitude ϕ, and g_{45} the acceleration at latitude 45°.

The table gives the values of the ratio $\frac{g_{\phi}}{g_{45}}$ to six decimals for every 10^{\prime} of latitude from the equator to the pole.

* Wm. Harkness : The solar parallax and its related constants. Washington, i8gr.
\dagger Modern steamships move with velocities sufficient to affect all wind observations aboard of them.

LENGTH OF A DEGREE OF THE MERIDIAN AND OF ANY PARALLEL.

The dimensions of the earth used in computing lengths of the meridian and of parallels of latitude are those of Clarke's spheroid of 1866.* This spheroid undoubtedly represents very closely the true size and shape of the earth, and is the one to which nearly all geodetic work in the United States is now referred.

The values of the constants are as follows:

$$
\begin{array}{ll}
a \text {, semi-major axis }=20926062 \text { feet } ; & \log a=7.3206875 . \\
b, \text { semi-minor axis }=20855 \mathrm{I} 2 \mathrm{I} \text { feet } ; & \log b=7.3192127 . \\
e^{2}=\frac{a^{2}-b^{2}}{a^{2}}=0.00676866 ; & \log e^{2}=7.8305030-\text { го. }
\end{array}
$$

With these values for the figure of the earth, the formula for computing any portion of a quadrant of the meridian is

$$
\begin{aligned}
\text { Meridional distance in feet } & =[5.5618284] \Delta \phi \text { (in degrees) }, \\
& -[5.0269880] \cos 2 \phi \sin \Delta \phi, \\
& +[2.0528] \cos 4 \phi \sin 2 \Delta \phi,
\end{aligned}
$$

in which $2 \phi=\phi_{2}+\phi_{1}, \Delta \phi=\phi_{2}-\phi_{1}, \phi_{1}, \phi_{2}=$ end latitudes of arc.
For the length of I degree, the formula becomes:
I degree of the meridian, in feet $=364609.9-1857.1 \cos 2 \phi+3.94 \cos 4 \phi$.
The length of the parallel is given by the equation

$$
\begin{aligned}
& \text { I degree of the parallel at latitude } \phi \text {, in feet }= \\
& 365538.48 \cos \phi-310.17 \cos 3 \phi+0.39 \cos 5 \phi .
\end{aligned}
$$

TABLE 59.
Table 59. Length of one degree of the meridian at different latitudes.
This gives for every degree of latitude the length of one degree of the meridian in statute miles to three decimals, in metres to one decimal, and in geographic miles to three decimals-the geographic mile being here defined to be one minute of arc on the equator. The values in metres are computed from the relation : I metre $=39.3700$ inches. The tabular values represent the length of an arc of one degree, the middle of which is situated at the corresponding latitude. For example, the length of an arc of one degree of the meridian, whose end latitudes are $29^{\circ} 30^{\prime}$ and $30^{\circ} 30^{\prime}$, is 68.879 statute miles.

TABLE 60.
TABLE 60. Length of one degree of the parallel at different latitudes.
This table is similar to Table 59.

[^6]table 61. Duration of sunshine at different latitudes for different values of the sun's declination.

Let Z be the zenith, and $N H$ the horizon of a place in the northern hemisphere.
P the pole;
$Q E Q^{\prime}$ the celestial equator;
$R R^{\prime}$ the parallel described by the sun on any given day;
S the position of the sun when its upper limit appears on the horizon;
$P N$ the latitude of the place, ϕ.
$S T$ the sun's declination, δ.
$P S$ the sun's polar distance, $90^{\circ}-\delta$.
$Z S$ the sun's zenith distance, z.
$Z P S$ the hour angle of the sun from meridian, t.
r the mean horizontal refraction $=34^{\prime}$ approximately.
s the mean solar semi-diameter $=16^{\prime}$

$$
z=90^{\circ}+r+s=90^{\circ} 50^{\prime}
$$

In the spherical triangle $Z P S$, the hour angle $Z P S$ may be computed from the values of the three known side by the formula
or

$$
\begin{gathered}
\sin \frac{1}{2} Z P S=\sqrt{\frac{\sin \frac{1}{2}(Z S+P Z-P S) \sin \frac{1}{2}(Z S+P S-P Z)}{\sin P Z \sin P S}} \\
\sin \frac{1}{2} t=\sqrt{\frac{\sin \frac{1}{2}(z+\delta-\phi) \sin \frac{1}{2}(z-\delta+\phi)}{\cos \phi \cos \delta}}
\end{gathered}
$$

The hour angle t, converted into mean solar time and multiplied by 2 is the duration of sunshine.

Table 6I has been computed for this volume by Prof. Wm. Libbey, jr. It is a table of double entry with arguments δ and ϕ. For north latitudes northerly declination is considered positive and southerly declination as negative. The table may be used for south latitudes by considering southerly declination as positive and northerly declination as negative.

The top argument is the latitude, given for every 5° from 0° to 40°, for every 2° from 40° to 60°, and for every degree from 60° to 80°.

The side argument is the sun's declination for every 20^{\prime} from $S 23^{\circ} 27^{\prime}$ to $N 23^{\circ} 27^{\prime}$.

The duration of sunshine is given in hours and minutes.
To find the duration of sunshine for a given day at a place whose latitude is known, find the declination of the sun at mean noon for that day in the Nautical Almanac, and enter the table with the latitude and declination as arguments.

Example:

To find the duration of sunshine, May 18, 1892, in latitude $49^{\circ} 30^{\prime}$ North. From the Nautical Almanac, $\delta=19^{\circ} 43^{\prime} N$.
From the table, with $\delta=19^{\circ} 43^{\prime} N$ and $\phi=49^{\circ} 30^{\prime}$, the duration of sunshine is found to be $15^{h} 3 \mathrm{I}^{\mathrm{m}}$.
table 62. Declination of the sun for the year 1894.
This table is an auxiliary to Table 6I, and gives the declination of the sun for every third day of the year 1894 . These declinations may be used as approximate values for the corresponding dates of other years when the exact declination can not readily be obtained. Thus, in the preceding example, the declination for May 18 may be taken as approximately the same as that for the same date in 1894, viz. $19^{\circ} 37^{\prime}$.

RELATIVE INTENSITY OF SOLAR RADIATION AT DIFFERENT LATITUDES FOR DIFFERENT SEASONS OF THE YEAR.
rable 63. Mean vertical intensity for 24 hours of solar radiation J and the solar constant A in terms of the mean solar constant $A_{\text {。 }}$.
This table is that of Prof. Wm. Ferrel, published in the Annual Report of the Chief Signal Officer, 1885, Part 2, and in Professional Papers of the Signal Service, No. 14, p. 427, where the formulæ and constants will be found.

It gives the mean vertical intensity for 24 hours of solar radiation J in terms of the mean solar constant A_{0} for each tenth parallel of latitude of the northern hemisphere, and for the first and sixteenth day of each month; also the values of the solar constant A in terms of A_{o}, and the angular motion of the sun in longitude for the given dates.

CONVERSION OF LINEAR MEASURES.

The relation here adopted between the metre and the English measures of length is that used and officially authorized by the U. S. Bureau of Weights and Measures, viz :

$$
\text { I metre }=39.3700 \text { inches }
$$

TABLE 64.

TABLE 64.

 Inches into millimetres.The argument is given for every hundredth of an inch up to 32.00 inches, and the tabular values are given to hundredths of a millimetre. A table of proportional parts for thousandths of an inch is added on each page.

Example:

To convert 24.362 inches to millimetres.
The table gives (p. 184)

$$
(24.36+0.02) \text { inches }=(618.75+0.05 \mathrm{~mm} .)=618.80 \mathrm{~mm} .
$$

TABLE 65.
Millimetres into inches.
From o to 400 mm . the argument is given to every millimetre, with subsidiary interpolation tables for tenths and hundredths of a millimetre. The tabular values are given to four decimals. From 400 to 1000 mm ., covering the numerical values which are of frequent use in meteorology for the conversion of barometric readings from the metric to the English barometer, the argument is given for every tenth of a millimetre, and the tabular values to three decimals.

Example:

To convert 143.34 mm . to inches.
The table gives
$143+.3+.04 \mathrm{~mm} .=5.6299+0.0118+0.0016$ inches $=5.6433$ inches.

TABLE $66 . \quad$ Feet into metres.

From the adopted value of the metre, 39.3700 inches-

$$
\text { I English foot }=0.3048006 \text { metre. }
$$

Table 66 gives the value in metres and thousandths (or millimetres) for every foot from o to 99 feet; the value to hundredths of a metre (or centimetres) of every 10 feet from 100 to 4000 feet ; and the value to tenths of a metre of every 10 feet from 4000 to 9090 feet. In using the latter part, the first line of the table serves to interpolate for single feet.

Example :

To convert 47 feet 7 inches to metres. 47 feet 7 inches $=47.583$ feet.

The table gives
By moving the decimal point,

$$
\begin{aligned}
& 47 \quad \text { feet }=14.326 \text { metres. } \\
& 0.583 ،=0.178
\end{aligned}
$$

$$
47.583 \text { feet }=14.504 \text { metres. }
$$

TAble 67.
Metres into feet.

$$
\text { I metre }=39.3700 \text { inches }=3.280833+\text { feet }
$$

From o to 500 metres the argument is given for every unit, and the tabular values to two decimals; from 500 to 5000 the argument is given to every ro metres, and the tabular values to one decimal. The conversion for tenths of a metre is added for convenience of interpolation.

Example :

Convert 4327 metres to feet.
The table gives

$$
(4320+7) \text { metres }=(14173.2+23.0) \text { feet }=14196.2 \text { feet. }
$$

TAble 68.
Miles into kilometres.
TABLE 68.

$$
\mathrm{I} \text { mile }=\mathrm{r} .609347 \text { kilometres } .
$$

The table extends from o to 1000 miles with argument to single miles, and from 1000 to 20000 miles for every 1000 miles. The tabular quantities are given to the nearest kilometre.
table 69.
Kilometres into miles.
TABLE 69.

$$
\text { I kilometre }=0.621370 \text { mile } .
$$

The table extends to rooo kilometres with argument to single kilometres, and from 1000 to 20000 kilometres for every rooo kilometres. Tabular values are given to tenths of a mile.
Example :
Convert 3957 kilometres into miles.
The table gives
$(3000+957)$ kilometres $=(1864.1+594.7)$ miles $=2458.8$ miles.
table 70. Interconversion of nautical and statute miles.
The definition of the nautical mile here used is that adopted by the U. S. Coast and Geodetic Survey.

A nautical mile is equal to the length of one minute of arc on the great circle of a sphere whose surface is equal to the surface of the earth.

Computed on Clarke's spheroid of 1866, the nautical mile thus defined equals 6080.27 feet. (Report, U. S. Coast Survey, 1881, page 354.)

The table gives, for nautical and statute miles from I to 9 , the equivalent in statute and nautical miles, respectively, to four decimals.

TABLE 71.
Table 71. Continental measures of length with their metric and English equivalents.
This table gives a miscellaneous list of continental measures of length alphabetically arranged, with the name of the country to which they belong and their metric and English equivalents.

CONVERSION OF MEASURES OF TIME AND ANGLE.

TAble 72. Arc into time.

$$
\mathrm{I}^{\circ}=4^{\mathrm{m}} ; \quad \mathrm{r}^{\prime}=4^{\mathrm{s}} ; \quad \mathrm{I}^{\prime \prime}=\frac{\mathrm{x}}{15} \mathrm{~s}=0.067
$$

Example :

Change $124^{\circ} 15^{\prime} 24^{\prime \prime} .7$ into time.
From the table,

124°	$=$	8^{h}	16^{m}	0^{s}
15^{\prime}	$=$		1	0
$24^{\prime \prime}$	$=$			1.600
$0^{\prime \prime} .7$	$=$.047
			8^{h}	17^{m}
	1.5647			

TAble 73.
Time into arc.

$$
\mathrm{I}^{\mathrm{h}}=\mathrm{I} 5^{\circ} ; \quad \mathrm{I}^{\mathrm{m}}=\mathrm{I} 5^{\prime} ; \quad \mathrm{I}^{\mathrm{s}}=\mathrm{I} 5^{\prime \prime}
$$

Example :

Change $8^{\mathrm{h}} \mathrm{I}^{\mathrm{m}} \mathrm{I}^{\mathrm{s}} 647$ into arc.

From the table,	$8^{\text {h }}$		120°		
	$17^{\text {m }}$		4	${ }^{15}$	
	$\mathrm{I}^{\text {s }}$	=			$15^{\prime \prime}$
	0.64				9.60
By moving the	t, .007				0.10

table 74. Days into decimals of a year and angle.
The table gives for the beginning of each day the corresponding decimal of the year to five places. Thus, at the epoch represented by the beginning of the 15th day, the decimal of the year that has elapsed since January r.o is computed from the fraction $\frac{14}{365.25}$. The corresponding value in angle obtained by multiplying this fraction by 360°, is given to the nearest minute.

Two additional columns serve to enter the table with the day of the month either of the common or the bissextile year as the argument, and may be used also for converting the day of the month to the day of the year, and vice versa.

Example:

To find the number of days and the decimal of a year between February 12 and August 27 in a bissextile year.
Aug. 27: Day of year $=240$; decimal of a year $\quad=0.65435$
Feb. 12: " " 43; " " " =0.11499
Interval in days $=197$; interval in decimal of a year $=0.53936$
The decimal of the year corresponding to the interval 197 days may also be taken from the table by entering with the argument 198.
table 75. Hours, minutes and seconds into decimals of a day.
The tabular values are given to six decimals.
Example:
Convert $5^{\mathrm{h}} 24^{\mathrm{m}} 23^{\mathrm{s}} .4$ to the decimal of a day :

$$
\begin{array}{rlr}
5^{\mathrm{h}} & =0.208333 \\
24^{\mathrm{m}} & = & 016667 \\
23^{\mathrm{s}} & = & 266
\end{array}
$$

By interpolation, or by moving the decimal for $4^{\text {s }} 0.4=\quad 5$
od. 22527 I
table 76. Decimals of a day into hours, minutes and seconds. Example:

Convert od ${ }^{2} 2527$ to hours, minutes and seconds :

$$
\begin{array}{ll}
0.22 & \text { day }=4^{\mathrm{h}} 4^{\mathrm{m}}+28^{\mathrm{m}} 48^{\mathrm{s}}=5^{\mathrm{h}} 16^{\mathrm{m}} 48^{\mathrm{s}} \\
0.0052 \text { day }=7^{\mathrm{m}} 12^{\mathrm{s}}+17^{\mathrm{s}} \mathrm{~S}_{2}= & 72^{29.28} \\
0.00007 \mathrm{I} \text { day }=6.05+0.09= & \frac{6.14}{5^{\mathrm{h}} 24^{\mathrm{m}} 23^{\mathrm{s}} .4}
\end{array}
$$

TABLE 76.

TABLE 77.
table 77. Minutes and seconds into decimals of an hour.
The tabular values are given to six decimals.
Example:
Convert $34^{\mathrm{m}}{ }^{285} 7$ to decimals of an hour.

$$
\begin{array}{rrr}
34^{\mathrm{m}} & = & 0^{\mathrm{h}} .566667 \\
28^{\mathrm{s}} & = & 7778 \\
0.7 & = & 194 \\
& \frac{0.574639}{}
\end{array}
$$

TAble 78.

Mean time at apparent noon.
This table gives the time that should be shown by a clock when the sun crosses the meridian, on the 1st, 8th, 16th, and 24th days of each month. The table is useful in correcting a clock by means of a sun-dial or noon-mark.

Example:

To find the correct mean time when the sun crosses the meridian on December 15, 1891.
The table gives for December $16, \mathrm{II}^{\mathrm{h}} 5^{6 \mathrm{~m}}$. By interpolating, it is seen that the change to December 15 would be less than one-half minute ; the correct clock time is therefore 4 minutes before 12 o'clock noon.

TABLE 79. Sidereal time into mean solar time.
table 80. Mean solar time into sidereal time.
According to Bessel, the length of the tropical year is 365.24222 mean solar days,* whence

$$
365.24222 \text { solar days }=366.24222 \text { sidereal days. }
$$

Any interval of mean time may therefore be changed into sidereal time by increasing it by its $\frac{1}{365.24222}$ part, and any interval of sidereal time may be changed into mean time by diminishing it by its $\frac{1}{366.24222}$ part.

[^7]Table 79 gives the quantities to be subtracted from the hours, minutes and seconds of a sidereal interval to obtain the corresponding mean time interval, and Table 80 gives the quantities to be added to the hours, minutes and seconds of a mean time interval to obtain the corresponding sidereal interval. The correction for seconds is sensibly the same for either a sidereal or a mean time interval and is therefore given but once, thus forming a part of each table.

Examples:
Change $14^{\mathrm{h}}{ }^{2} 5^{\mathrm{m}} 36^{5}{ }^{\mathrm{s}}$ sidereal time into mean solar time.

Given sidereal time		$14^{\text {h }} \quad 25^{\text {m }}$	$36{ }^{\text {s }} 2$
Correction for $14{ }^{\text {h }}$	$=-2^{m}{ }^{17}{ }^{\text {s }} 6 \mathrm{I}$		
$25^{\text {m }}$	4.10		
36.2	10		
	-2 21.8 I	-2	21.8
Corresponding mean time	=	$14 \quad 23$	14.

2. Change $13^{\mathrm{h}} 37^{\mathrm{m}} \quad 22^{5} .7$ mean solar time into sidereal time.

MISCELLANEOUS TABLES.

DENSITY OF AIR AT DIFFERENT TEMPERATURES, HUMIDITIES AND PRESSURES.

The following tables (8 I to 86) give the factors for computing the density of air at different temperatures, humidities and pressures.

The formula from which they have been computed is, in metric measures,

$$
\delta=\frac{0.00129305[7.1116153]}{1+0.00367 t}\left(\frac{b-0.378 e}{760}\right)
$$

in which δ is the weight of a cubic centimetre of air expressed in grammes, under the standard value of gravity at latitude 45° and sea level.
b is the barometric pressure in millimetres.
e is the pressure of aqueous vapor in millimetres.
t is the temperature in Centigrade degrees.
For dry atmospheric air (containing 0.0004 of its weight of carbonic acid) at a pressure of 760 mm . and temperature $0^{\circ} C$., the absolute density,
or the weight of one cubic centimetre, is 0.00129305 gramme. (International Bureau of Weights and Measures: Travaux et Mémoires, t. I, p. A 54.)

In English measures, the formula becomes

$$
\delta=\frac{0.00129305}{1 \times 0.0020389\left(t-32^{\circ}\right)}\left(\frac{b-0.378 e}{29.92 \mathrm{I}}\right)
$$

where δ is defined as before, but b and e are expressed in inches and t in Fahrenheit degrees. Thus by the use of tables based on these two formulæ, lines of equal atmospheric density may be drawn for the whole world (neglecting slight variations in gravity), whether the original observations are in English or metric measures. Prof. Cleveland Abbe has kindly furnished for the present volume the logarithms of the density given in the accompanying tables (8I to 86).

Table 81. Density of air at different temperatures Fahrenheit.
This table gives the values and logarithms of the expression

$$
\frac{0.00129305}{1+0.0020389\left(t-32^{\circ}\right)}
$$

for values of t extending from $-45^{\circ} F$. to $140^{\circ} F$., the intervals between $0^{\circ} F$. and $10^{\circ} F$. being I .

The tabular values are given to five significant figures.
TABLES 82, 83.
Density of air at different humidities and pressures-English measures.
table 82. Term for humidity; auxiliary to Table 83.
table 83. Values of $\frac{b-0.378 e}{29.921}$.
Table 82 gives values of $0.378 e$ to three decimal places as an aid to the use of Table 83 .

The argument is the dew-point given for every degree from $-40^{\circ} \mathrm{F}$. to $140^{\circ} \mathrm{F}$. A second column gives the corresponding values of the vapor pressure (e) according to Broch.

Table 83 gives values and logarithms of $\frac{h}{29.92 \mathrm{I}}=\frac{b-0.378 e}{29.921}$ for values of h extending from 10.0 to 31.7 inches. The logarithms are given to five significant figures and the corresponding numbers to four decimals.

Example :

The air temperature is $68^{\circ} F$., the pressure is 29.36 inches and the dewpoint $51^{\circ} F$. Find the logarithm of the density.
Table 81, for $t=68^{\circ}{ }^{\circ} F$., gives 7.08085-10
Table 82, for dew-point 51°, gives $0.378 e=0.14 \mathrm{I}$ inch,
Table 83, for $h=b-0.378 e=29.36-0.14=29.22$, gives 9.98941 - 10
table 84. Density of air at different temperatures Centigrade.
This gives values and logarithms of the expression

$$
\delta_{t, 760}=\frac{0.00129305}{1+0.00367 t}
$$

for values of t extending from $-34^{\circ} \mathrm{C}$. to $69^{\circ} \mathrm{C}$. The tabular values are given to five significant figures.

Density of air at different humidities and pressures-Metric measures.

table 85. Term for humidity: values of $0.378 e$.
TABLE 86. Values of $\frac{h}{760}=\frac{b-0.378 e}{760}$.
Table 85 gives values of $0.378 e$ to hundredths of a millimetre for dewpoints extending by intervals of I° from $-30^{\circ} \mathrm{C}$. to $50^{\circ} \mathrm{C}$. The values of Broch's vapor pressures (e) corresponding to these dew-points are given in a second column to hundredths of a millimetre. The table is thus conveniently used when either the vapor pressure or the dew-point is known.

Table 86 gives values and logarithms of $\frac{h}{760}=\frac{b-0.378 e}{760}$ for values of h extending from 300 to 800 mm . The barometric pressure b is the barometer reading corrected for temperature and $0.378 e$ is the term for humidity obtained from Table 85. The logarithms are given to five significant figures and the corresponding numbers to four decimal places.

TABLE 87. Conversion of avoirdupois pounds and ounces into kilogrammes.
The latest comparisons made by the International Bureau of Weights and Measures between the Imperial standard pound and the "kilogramme proto-type" result in the relation:

$$
\text { I pound avoirdupois }=453.5924277 \text { grammes. }
$$

This value has been adopted by the United States Bureau of Weights and Measures and is here used.

For the conversion of pounds, Table 87 gives the argument for every tenth of a pound up to 9.9 , and the tabular conversion values to ten-thousandths of a kilogramme.

For the conversion of ounces, the argument is given for every tenth of an ounce up to $\mathbf{1 5} .9$, and the tabular values to ten-thousandths of a kilogramme.

Table 88. Conversion of kilogrammes into avoirdupois pounds and ounces.
From the above relation between the pound and the kilogramme,

$$
\begin{aligned}
\text { r kilogramme } & =2.204622 \text { avoirdupois pounds. } \\
& =35.274 \quad \text { avoirdupois ounces. }
\end{aligned}
$$

The table gives the value to thousandths of a pound of every tenth of a kilogramme up to 9.9 ; the values of tenths of kilogrammes in ounces to four decimals ; and the values of hundredths of a kilogramme in pounds and ounces to three and two decimals respectively.

TABLE 89. Conversion of grains into grammes.
table 90. Conversion of grammes into grains.
TABLES 89, 90.

From the above relation between the pound and the kilogramme,
I gramme $=15.432356$ grains.
I grain $=0.06479892$ gramme.
Table 89 gives to ten-thousandths of a gramme the value of every grain from I to 99, and also the conversion of tenths and hundredths of a grain for convenience in interpolating.

Table 90 gives to hundredths of a grain the value of every tenth of a gramme from o. I to 9.9, and the value of every gramme from I to 99. The values of hundredths and thousandths of a gramme are added as an aid to interpolation.

The computation of these two tables has been furnished by Professor William Libbey, who has used the relation, I gramme $=15.432531$ grains. This value is practically identical with the relation above adopted, differing from it by about I part in 3,000,000.
table 91. Conversion of units of magnetic intensity.
TABle 91
This table gives the conversion factors from I to 9 for converting English measures of magnetic intensity into C. G. S. measures, and vice versa.

The English unit of magnetic intensity is the force which, acting for I second on a unit of magnetism associated with a mass of I grain, produces a velocity of I foot per second.

The C. G. S. unit of magnetic intensity is the dyne-the force which, acting upon one gramme for 1 second, generates a velocity of I centimetre per second. The Gaussian unit of magnetic intensity, which has been extensively used, is a force which, acting upon a mass of 1 milligramme for i second, generates a velocity of i millimetre per second.

By using the dimensions of magnetic intensity [$\mathrm{M}^{\frac{1}{2}} / \mathrm{L}^{\frac{1}{2}} \mathrm{~T}$], the interconversion of these units is easily made.

I C. G. S. unit $=\sqrt{\frac{1000 \mathrm{M}}{10 \mathrm{~L}}}$ Gaussian units

$$
=\text { Io Gaussian units }
$$

I C. G. S. unit $=\sqrt{\frac{\mathrm{r} 5.432356 \mathrm{M}}{.03280833 \mathrm{~L}}}$ English units

$$
=21.6882 \quad \text { English units }
$$

TABLE 92. Quantity of water corresponding to given depths of rainfall.
This table gives for different depths of rainfall over an acre and a square mile the total quantity of water measured in imperial gallons and tons respectively.

table 93. Dates of Dove's pentades.

For tabulating and averaging meteorological data, Dove divided the year into seventy-three intervals of five days each, which have been called Dove's pentades, and this system of averaging has been used in the publication of a very considerable amount of meteorological data. Table 93 gives the initial and terminal dates of each pentade throughout the year.

TABLE 94. Division by 28 of numbers from 28 to 867972.
TABLE 95. Division by 29 of numbers from 29 to 89897 I.
TABLE 96. Division by 3I of numbers from 31 to 960969.
The frequent occasion in meteorological work to divide by the numbers 28, 29 and 31 renders useful the division tables compiled by Mr. H. A. Hazen (Handbook of Meteorological Tables, Washington, D. C., 1888), the use of which has been kindly granted.

As here printed, the dividend is given in plain type and the quotient in heavy-face type, and in order that one shall never be mistaken for the other, a column is given containing the letters D and Q successively, which designates that all figures on a line with D are dividends, and all on a line with Q are quotients. The four columns to the right of this $D-Q$ column give the last two figures of the dividend and of the quotient, namely, the units and tens. The ten columns to the left side of the $\mathrm{D}-\mathrm{Q}$ column give the preceeding figures of the dividend, namely, the hundreds, thousands, and tens of thousands. These two parts of the dividend-to the left and right of the D-Q column-are always to be taken on the same horizontal line.

Each dividend is an exact multiple of the divisor, hence each quotient is exact or without remainder.

For example, the dividend 17360 in Table 94 is found in two parts; ${ }^{1} 73$ is found in the column headed 600 on the left-hand side of the $\mathrm{D}-\mathrm{Q}$ column, and 60 in the same horizontal row in the third column on the righthand side.

The hundreds figure of the quotient is given in bold-face type at the top, middle and bottom of the page, and each one obtains for all the dividend figures in its own column. The units and tens figures of the quotient are found, as already stated, on the right side of the D-Q column directly under the last two figures of the dividend. Thus in the above example, for dividend 17360 the hundreds figure of the quotient is 6 and the units and tens will be 20 , or the quotient of 17360 divided by 28 is 620 . When any given dividend
is not an exact multiple of the divisor, the nearest even multiple as given in the table must be used.

For example, $23979 \div 28=856$; the 8 is in the 9th column above 239 and the 56 is under 68, the nearest figure to 79 in the right-hand part of the table.

The last column, which is separated from the rest of the table by a triple line, is to be used when the quotient exceeds three figures, or 999.

The bold-face figures in this column give the thousands and tens of thousands figures of the quotient, and the plain figures are the multiples thereof by the divisor. To use the column, find in it the number which, with three ciphers added, comes nearest to (but is less than) the dividend; the heavy-face figures beneath it will be the first figures of the quotient. Subtract this multiple number from the given dividend, and with the remainder enter the main body of the table to obtain the last three figures of the quotient as already described.

For example: Divide 833885 by 28. The nearest figure to 833000 in the last column is 812000 and the quotient 29000. $833885-812000=21885$. Under 218 we have 7 , and under 96 , the nearest figure to 85 on the right, we find 82. $833885 \div 28=29782$.
table 97. Natural sines and cosines.
table 98. Natural tangents and cotangents.
TABLE 97.

TABLE 98.
table 99. Logarithms of numbers.
table 100. List of meteorological stations.
This list of meteorological stations has been compiled for this volume from data furnished by the United States Weather Bureau.

A geographical arrangement has been adopted as being most serviceable for the purposes for which the table will most generally be used.

In making the selection of stations from the vast number available, the object has been to choose such of the higher order stations as will fairly represent the varied climatic conditions of each country. With few exceptions, the stations are active ; in all cases there are published observations, which may generally be found in the monthly and annual reports of the national meteorological services of the countries in which the stations are situated, or by which they are politically controlled.

So far as known, the list contains all first order stations, i.e., those at which the principal meteorological elements are either recorded continuously and automatically, or are observed at hourly or bi-hourly intervals; such stations are designated by an asterisk (*).

The names of the stations have been given in the native orthography, which is in all cases the form adopted by the national meteorological service in its official publications.

GEORGE E. CURTIS.

THERMOMETRICAL TABLES.

Conversion of thermometric scales -
Reaumur scale to Fahrenheit and Centigrade Table I
Fahrenheit scale to Centigrade Table 2
Centigrade scale to Fahrenheit Table 3
Centigrade scale to Fahrenheit, near the boiling point of water TabLE 4

Differences Fahrenheit to differences Centigrade Table 5
Differences Centigrade to differences Fahrenheit Table 6
Reduction of temperature to sea level-English measures . Table 7
Reduction of temperature to sea level-Metric measures . . Table 8
Correction for the temperature of the mercury in the thermometer stem. For Fahrenheit and Centigrade thermometers

REAUMUR SCALE TO FAHRENHEIT AND CENTIGRADE.

$\begin{aligned} & \text { Reau- } \\ & \text { mur } \\ & \hline \end{aligned}$	Fahrenheit	Centigrade	Reaumur	Fahrenheit	Centigrade	Reaumur	Fahrenheit	Centigrade	Pro	Parts
¢180'	+-212000	+100.00	$+40^{\circ}$	+122.00	+50.00	$\pm 0^{\circ}$	+32.00	± 0.00		
79	209.75	98.75	39	119.75	48.75	- I	29.75	- 1.25		
78	207.50	97.50	38	II7.50	47.50	2	27.50	2.50		
77	205.25	96.25	37	II5.25	46.25	3	25.25	3.75	R. O.I	F.
76	203.00	95.00	36	II3.00	45.00	4	23.00	5.00	0.1	F. 225 .450
$+75$	+200.75	$+93.75$	+35	+110.75	+43.75	-5	+20.75	-6.25	. 4	. 675
74	198.50	92.50	34	108.50	42.50	6	18.50	7.50	. 5	1.125
73	196.25	91.25	33	106.25	41.25	7	16.25	8.75	6	1.350
72	194.00	90.00	32	104.00	40.00	8	14.00	10.00	. 7	1.575 r.800
71	191.75	88.75	31	10r. 75	38.75	9	11.75	11.25	0.9	1.800 2.025
$+70$	+189.50	$+87.50$	$+30$	$+99.50$	$+37.50$	-10	$+9.50$	-12.50		
69	187.25	86.25	29	97.25	36.25	II	7.25	13.75		
68	185.00	85.00	28	95.00	35.00	12	5.00	15.00		
67	182.75	83.75	27	92.75	33.75	13	2.75	16.25	R.	C.
66	180.50	82.50	26	90.50	32.50	14	+ 0.50	17.50	2	. 250
$+65$	+178.25	$+8 \mathrm{r} .25$	+25	$+88.25$	+31.25	-15	-1.75	-18.75	. 4	. 375
64	176.00	80.00	24	86.00	30.00	16	4.00	20.00	. 5	. 625
63	173.75	78.75	23	83.75	28.75	17	6.25	21.25	. 6	. 750
62	171.50	77.50	22	81.50	27.50	18	8.50	22.50	. 7	
61	169.25	76.25	21	79.25	26.25	19	10.75	23.75		1.125
$+60$	+167.00	$+75.00$	+20	+ 77.00	+25.00	-20	- 13.00	-25.00		
59	164.75	73.75	19	74.75	23.75	21	15.25	26.25		
58	162.50	72.50	18	72.50	22.50	22	17.50	27.50	F.	c.
57	160.25	71.25	17	70.25	21.25	23	19.75	28.75	0.25	0.14
56	158.00	70.00	16	68.00	20.00	24	22.00	30.00	. 50	. 28
+55	+ 155.75	+ 68.75	$+15$	+ 65.75	+r8.75	-25	-24.25	-31.25	.75 r. \%	.42 .56
54	153.50	67.50	14	63.50	17.50	26	26.50	32.50	1.25	. 69
53	151.25	66.25	13	61.25	16.25	27	28.75	33.75	1.50 I. 75 150	
52	149.00	65.00	12	59.00	15.00	28	31.00	35.00		
51	146.75	63.75	II	56.75	13.75	29	33.25	36.25		
$+50$	+144.50	$+62.50$	$+10$	$+54.50$	+12.50	-30	-35.50	-37.50		
49	142.25	61.25	9	52.25	11.25	31	37.75	38.75	c.	F.
48	140.00	60.00	8	50.00	10.00	32	40.00	40.00	0.05	0.09
47	137.75	58.75		47.75	8.75	33	42.25	4 I .25	.10	. 18
46	135.50	57.50	6	45.50	7.50	34	44.50	42.50	. 15	.27 .36
+45	+I33.25	+ 56.25	$+5$	$+43.25$	$+6.25$	-35	-46.75	-43.75	. 25	. 45
44	131.00	55.00	4	41.00	5.00	36	49.00	45.00	. 75	.90 1.35
43	128.75	53.75	3	38.75	3.75	37	51.25	46.25		1.80
42	126.50	52.50	2	36.50	2.50	38	53.50	47.50		
41	124.25	51.25	$+\mathrm{I}$	34.25	+ 1.25	39	55.75	48.75		
$+40$	+122.00	$+50.00$	± 0	+ 32.00	± 0.00	-40	-58.00	-50.00		
	$\begin{aligned} \mathrm{F}^{\circ} & =\frac{9}{5} \mathrm{C}^{\circ}+32^{\circ} \\ & =\frac{9}{4} \mathrm{R}^{\circ}+32^{\circ} \end{aligned}$			$\begin{aligned} \mathrm{C}^{\circ} & =\frac{5}{9}\left(\mathrm{~F}^{\circ}-32^{\circ}\right) \\ & =\frac{5}{4} \mathrm{R}^{\circ} \end{aligned}$			$\begin{aligned} \mathrm{R}^{\circ} & =\frac{4}{9}\left(\mathrm{~F}^{\circ}-32^{\circ}\right) \\ & =\frac{4}{5} \mathrm{C}^{\circ} \end{aligned}$			

TAble 2.
FAHRENHEIT SCALE TO CENTIGRADE.

Fahrenheit.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	c.									
$+130^{\circ}$	$+54.44$	$+54^{\circ} 50$	$+54^{\circ} 56$	$+54^{\circ} .61$	$+54.67$	$+54.72$	$+54^{\circ} 78$	$+54.83$	+54.89	$+54.94$
129	53.89	53.94	54.00	54.06	54.11	54.17	54.22	54.28	54.33	54.39
128	53.33	53.39	53.44	53.50	53.56	53.61	53.67	53.72	53.78	53.83
127	52.78	52.83	52.89	52.94	53.00	53.06	53.11	53.17	53.22	53.28
126	52.22	52.28	52.33	52.39	52.44	52.50	52.56	52.6 I	52.67	52.72
$+125$	$+51.67$	+ 51.72	$+51.78$	$+51.83$	+51.89	+51.94	+52.00	+52.06	+52.11	+52.17
124	51.11	51.17	51.22	51.28	5 I .33	51.39	5 I .44	51.50	51.56	51.6I
123	50.56	50.61	50.67	50.72	50.78	50.83	50.89	50.94	51.00	51.06
122	50.00	50.06	50.11	50.17	50.22	50.28	50.33	50.39	50.44	50.50
12 I	49.44	49.50	49.56	49.61	49.67	49.72	49.78	49.83	49.89	49.94
+120	+48.89	+49.94	+49.00	+49.06	+49.11	$+49.17$	+49.22	+49.28	+49.33	+49.39
119	48.33	48.39	48.44	48.50	48.56	48.6I	48.67	48.72	48.78	48.83
118	47.78	47.83	47.89	47.94	48.00	48.06	48. I I	48.17	48.22	48.28
117	47.22	47.28	47.33	47.39	47.44	47.50	47.56	47.6I	47.67	47.72
116	46.67	46.72	46.78	46.83	46.89	46.94	47.00	47.06	47.11	47.17
+115	+46. 11	$+46.17$	+46.22	+46.28	+46.33	+46.39	$+46.44$	$+46.50$	+46.56	+46.6I
114	45.56	45.6 I	45.67	45.72	45.78	45.83	45.89	45.94	46.00	46.06
113	45.00	45.06	45. II	45.17	45.22	45.28	45.33	45.39	45.44	45.50
I 12	44.44	44.50	44.56	44.61	44.67	44.72	44.78	44.83	44.89	44.94
III	43.89	43.94	44.00	44.06	44. I I	44.17	44.22	44.28	44.33	44.39
$+110$	+43.33	+43.39	+43.44	+43.50	+43.56	+43.6I	+43.67	+43.72	+43.78	+43.83
109	42.78	42.83	42.89	42.94	43.00	43.06	43.11	43.17	43.22	43.28
108	42.22	42.28	42.33	42.39	42.44	42.50	42.56	42.61	42.67	42.72
107	41.67	41.72	41.78	41.83	4 I .89	41.94	42.00	42.06	42.11	42.17
106	41. II	41.17	41.22	41.28	41.33	41.39	41.44	41.50	41.56	41.61
$+105$	$+40.56$	+40.6r	+40.67	+40.72	+40.78	+40.83	+40.89	+40.94	$+41.00$	+41.06
104	40.00	40.06	40.11	40.17	40.22	40.28	40.33	40.39	40.44	40.50
103	39.44	39.50	39.56	39.61	39.67	39.72	39.78	39.83	39.89	39.94
102	38.89	38.94	39.00	39.06	39. II	39.17	39.22	39.28	39.33	39.39
IOI	38.33	38.39	38.44	38.50	38.56	38.61	38.67	38.72	38.78	38.83
$+100$	$+37.78$	+37.83	+37.89	+37.94	+38.00	+38.06	+38.11	$+38.17$	+38.22	$+38.28$
99	37.22	37.28	37.33	37.39	37.44	37.50	37.56	37.61	37.67	37.72
98	36.67	36.72	36.78	36.83	36.89	36.94	37.00	37.06	37.11	37.17
97	36.11	36.17	36.22	36.28	36.33	36.39	36.44	36.50	36.56	36.61
96	35.56	35.6I	35.67	35.72	35.78	35.83	35.89	35.94	36.00	36.06
$+95$	+35.00	+35.06	+35. I I	+35.17	+35.22	+35.28	+35.33	+35.39	+35.44	$+35.50$
94	34.44	34.50	34.56	34.61	34.67	34.72	34.78	34.83	34.89	34.94
93	33.89	33.94	34.00	34.06	34.11	34.17	34.22	34.28	$34 \cdot 33$	34.39
92	33.33	33.39	33.44	33.50	33.56	33.61	33.67	33.72	33.78	33.83
91	32.78	32.83	32.89	32.94	33.00	33.06	33.11	33.17	33.22	33.28
+90	+32.22	+32.28	+32.33	+32.39	+32.44	+32.50	$+32.56$	+32.6I	$+32.67$	+32.72
89	31.67	3 I .72	31.78	3 I .83	31.89	31.94	32.00	32.06	32.11	33.17
88	3 I .11	3 I .17	31.22	3 I .28	31.33	31.39	31.44	3 I .50	31.56	31.61
87 86	30.56	30.61	30.67	30.72	30.78	30.83	30.89	30.94	31.00	31.06
86	30.00	30.06	30.11	30.17	30.22	30.28	30.33	30.39	30.44	30.50
$+85$	+29.44	+29.50	+29.56	+29.6I	+29.67	+29.72	+29.78	+29.83	+29.89	+29.94
84	28.89	28.94	29.00	29.06	29.11	29.17	29.22	29.28	29.33	29.39
83	28.33	28.39	28.44	28.50	28.56	28.61	28.67	28.72	28.78	28.83
82 81	27.78	27.83	27.89	27.94	28.00	28.06	28.11	28.17	28.22	28.28
	27.22 +26.67	27.28	27.33	27.39	27.44	27.50	27.56	27.61	27.67	27.72
+80	+26.67	+26.72	+26.78	+26.83	+26.89	+26.94	+27.00	$+27.06$	+27.11	$+27.17$
	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9

Smithsonian Tables.

TABLE 2.
FAHRENHEIT SCALE TO CENTIGRADE.

Fahrenheit.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
$+80^{\circ}$	$\begin{gathered} c . \\ +26.67 \end{gathered}$	$\begin{gathered} c . \\ +26.72 \end{gathered}$	$\begin{gathered} \text { c. } \\ +26^{\circ} .78 \end{gathered}$	$\begin{gathered} c . \\ +26.83 \end{gathered}$	$\begin{gathered} c . \\ +26^{\circ} .89 \end{gathered}$	$\begin{gathered} c . \\ +26.94 \end{gathered}$	$\begin{gathered} c . \\ +27.00 \end{gathered}$	$\begin{gathered} \text { c. } \\ +27.06 \end{gathered}$	$\begin{gathered} c . \\ +27^{\circ} . \mathrm{II} \end{gathered}$	$\begin{gathered} c . \\ +27^{\circ} \cdot 17 \end{gathered}$
79	26.11	26.17	26.22	26.28	26.33		26.44	26.50	26.56	26.61
78	25.56	25.61	25.67	25.72	25.78	25.83	25.89	25.94	26.00	26.06
77	25.00	25.06	25.11	25.17	25.22	25.28	25.33	25.39	25.44	25.50
76	24.44	24.50	24.56	24.61	24.67	24.72	24.78	24.83	24.89	24.94
+75	+23.89	+23.94	+24.00	+24.06	+24.II	$+24.17$	+24.22	+24.28	+24.33	+24.39
74	23.33	23.39	23.44	23.50	23.56	23.61	23.67	23.72	23.78	23.83
73	22.78	22.83	22.89	22.94	23.00	23.06	23.11	23.17	23.22	23.28
72	22.22	22.28	22.33	22.39	22.44	22.50	22.56	22.61	22.67	22.72
71	21.67	21.72	21.78	21.83	21.89	21.94	22.00	22.06	22.11	22.i7
+70	+21.11	+21.17	+21.22	+21.28	+2I.33	+21.39	+21.44	+21.50	+21.56	+21.61
69	20.56	20.61	20.67	20.72	20.78	20.83	20.89	20.94	21.00	21.06
68	20.00	20.06	20.11	20.17	20.22	20.28	20.33	20.39	20.44	20.50
67	19.44	19.50	19.56	19.61	19.67	19.72	19.78	19.83	19.89	19.94
66	18.89	18.94	19.00	19.06	19.11	19.17	19.22	19.28	19.33	19.39
+65	+18.33	+18.39	+18.44	+18.50	+18.56	+r8.6I	+18.67	+18.72	+18.78	+18.83
64	17.78	17.83	17.89	17.94	18.00	18.06	18.11	18.17	18.22	18.28
63	17.22	17.28	17.33	17.39	17.44	17.50	17.56	17.61	17.67	17.72
62	16.67	16.72	16.78	16.83	16.89	16.94	17.00	17.06	17.11	17.17
6 I	16.II	16.17	16.22	16.28	16.33	16.39	16.44	16.50	16.56	16.61
$+60$	+ r 5.56	+15.6I	+15.67	+15.72	+15.78	+15.83	+15.89	+15.94	$+16.00$	+r6.06
59	15.00	15.06	15.11	15.17	15.22	15.28	15.33	15.39	15.44	15.50
58	14.44	14.50	14.56	14.61	14.67	14.72	14.78	14.83	14.89	14.94
57	13.89	13.94	14.00	14.06	14.11	14.17	14.22	14.28	14.33	14.39
56	13.33	13.39	13.44	13.50	13.56	13.61	13.67	13.72	13.78	13.83
$+55$	+12.78	+12.83	+12.89	+12.94	+13.00	+13.06	+13.11	$+\mathrm{I} 3.17$	+13.22	+13.28
54	12.22	12.28	12.33	12.39	12.44	12.50	12.56	12.61	12.67	12.72
53	11.67	11.72	11.78	11.83	11.89	11.94	12.00	12.06	12.11	12.17
52	II.11	11.17	II. 22	11.28	11.33	11.39	11.44	II. 50	II. 56	11.61
51	10.56	10.61	10.67	10.72	10.78	10.83	10.89	10.94	II.OO	± 1.06
$+50$	+10.00	+10.06	+10.11	+10.17	+10.22	+10.28	+10.33	+10.39	+10.44	+10.50
49	9.44	9.50	9.56	9.6 I	9.67	9.72	9.78	9.83	9.89	9.94
48	8.89	8.94	9.00	9.06	9.1I	9.17	9.22	9.28	9.33	9.39
47	8.33	8.39	8.44	8.50	8.56	8.61	8.67	8.72	8.78	8.83
46	7.78	7.83	7.89	7.94	8.00	8.06	8.1I	8.17	8.22	8.28
+45	+ 7.22	+ 7.28	$+7.33$	+ 7.39	+ 7.44	$+7.50$	$+7.56$	$+7.61$	$+7.67$	+ 7.72
44	6.67	6.72	6.78	6.83	6.89	6.94	7.00	7.06	7.11	7.17
43	6.11	6.17	6.22	6.28	6.33	6.39	6.44	6.50	6.56	6.61
42	5.56	5.61	5.67	5.72	5.78	5.83	5.89	5.94	6.00	6.06
41	5.00	5.06	5.11	5.17	5.22	5.28	5.33	5.39	5.44	5.50
$+40$	+ 4.44	$+4.50$	$+4.56$	$+4.61$	+ 4.67	$+4.72$	$+4.78$	$+4.83$	+ 4.89	+ 4.94
39	3.89	3.94	4.00	4.06	4.11	4.17	4.22	4.28	4.33	4.39
38	3.33	3.39	3.44	3.50	3.56	3.61	3.67	3.72	3.78	3.83
37	2.78	2.83	2.89	2.94	3.00	3.06	3.11	3.17	3.22	3.28
36	2.22	2.28	2.33	2.39	2.44	2.50	2.56	2.61	2.67	2.72
+35	+ 1.67	+ 1.72	+ 1.78	+ 1.83	+ 1.89	+ 1.94	+ 2.00	+2.06	+2.11	$+2.17$
34	+1.11	+1.17	+ 1.22	+ 1.28	+ 1.33	+ 1.39	+ 1.44	+ 1.50	+ 1.56	+ 1.61
33	$+0.56$	+0.6I	+ 0.67	+0.72	+ 0.78	+ 0.83	+o.89	+ 0.94	+ 1.00	+ 1.06
32	0.00	+ 0.06	+0.II	+0.17	+ 0.22	+ 0.28	+0.33	+0.39	+ 0.44	$+0.50$
3 I	-0.56	-0.50	-0.44	-0.39	-0.33	-0.28	-0.22	-0.17	-0.11	- 0.06
$+30$	- I.II	- 1.06	-1.00	-0.94	-0.89	-0.83	-0.78	-0.72	-0.67	-0.6I
	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9

FAHRENHEIT SCALE TO CENTIGRADE.

Fahrenheit.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	c.									
$+30^{\circ}$	- İII	- I.06	$-\mathrm{I} .00$	-0.94	-0.89	-0.83	-0.78	-0.72	-0.67	- 0.61
29	1.67	1.61	I. 56	1.50	I. 44	I. 39	1.33	I. 28	I. 22	I. 17
28	2.22	2.17	2.11	2.06	2.00	1.94	1.89	r. 83	1.78	1.72
27	2.78	2.72	2.67	2.61	2.56	2.50	2.44	2.39	2.33	2.28
26	3.33	3.28	3.22	3.17	3.11	3.06	3.00	2.94	2.89	2.83
$+25$	-3.89	-3.83	-3.78	- 3.72	-3.67	- 3.61	-3.56	- 3.50	- 3.44	-3.39
24	4.44	4.39	4.33	4.28	4.22	4.17	4.11	4.06	4.00	3.94
23	5.00	4.94	4.89	4.83	4.78	4.72	4.67	4.61	4.56	4.50
22	5.56	5.50	5.44	$5 \cdot 39$	$5 \cdot 33$	5.28	5.22	5.17	5.11	5.06
21	6.11	6.06	6.00	5.94	5.89	5.83	5.78	5.72	5.67	5.61
+20	-6.67	- 6.6I	-6.56	-6.50	- 6.44	-6.39	-6.33	-6.28	-6.22	-6.17
19	7.22	7.17	7.11	7.06	7.00	6.94	6.89	6.83	6.78	6.72
18	7.78	7.72	7.67	7.61	7.56	7.50	7.44	7.39	7.33	7.28
17	8.33	8.28	8.22	8.17	8.11	8.06	8.00	7.94	7.89	7.83
16	8.89	8.83	8.78	8.72	8.67	8.6 I	8.56	8.50	8.44	8.39
$+15$	- 9.44	- 9.39	-9.33	-9.28	- 9.22	-9.17	-9.11	-9.06	-9.00	- 8.94
14	10.00	9.94	9.89	9.83	9.78	9.72	9.67	9.61	9.56	9.50
13	10.56	10.50	10.44	10.39	10.33	10.28	10.22	10.17	10.11	10.06
12	II.II	11.06	11.00	10.94	10.89	10.83	10.78	10.72	10.67	10.61
II	11.67	11.61	11.56	11.50	II. 44	II. 39	11.33	11.28	11.22	11.17
$+10$	-12.22	-12.17	-12.11	-12.06	-12.00	-II.94	-11.89	-11.83	-11.78	-11.72
9	12.78	12.72	12.67	12.61	12.56	12.50	12.44	12.39	12.33	12.28
8	13.33	13.28	13.22	13.17	13.11	13.06	13.00	12.94	12.89	12.83
7	13.89	13.83	13.78	13.72	13.67	13.61	13.56	13.50	13.44	13.39
6	14.44	14.39	14.33	14.28	14.22	14.17	14.11	14.06	14.00	13.94
$+5$	-15.00	-14.94	-14.89	-14.83	-14.78	-14.72	-14.67	-14.61	-14.56	-14.50
4	15.56	15.50	15.44	15.39	15.33	15.28	15.22	15.17	15.11	15.06
3	16.11	16.06	16.00	15.94	15.89	15.83	15.78	15.72	15.67	15.61
2	16.67	16.61	16.56	16.50	16.44	16.39	16.33	16.28	16.22	16.17
	17.22	17.17	17.11	17.06	17.00	16.94	16.89	16.83	16.78	16.72
$+0$	17.78	17.72	17.67	17.61	17.56	17.50	17.44	17.39	17.33	17.28
0	-17	-17.83	-17.89	-17.94	-18.00	-18.06	-18.11	-18.17	-18.22	-18.28
1	18.33	18.39	18.44	18.50	18.56	18.61	18.67	18.72	18.78	18.83
2	18.89	18.94	19.00	19.06	19.11	19.17	19.22	19.28	19.33	19.39
	19.44	19.50	19.56	19.61	19.67	19.72	19.78	19.83	19.89	19.94
4	20.00	20.06	20.11	20.17	20.22	20.28	20.33	20.39	20.44	20.50
-	-20.56	-20.6I	-20.67	-20.72	-20.78	-20.83	-20.89	-20.94	-21.00	-21.06
6	21.1	21.17	21.22	21.28	21.33	21.39	21.44	21.50	21.56	21.6I
7	21.67	21.72	21.78	21.83	21.89	21.94	22.00	22.06	22.11	22.17
8	22.22	22.28	22.33	22.39	22.44	22.50	22.56	22.61	22.67	22.72
9	22.78	22.83	22.89	22.94	23.00	23.06	23.11	23.17	23.22	23.28
-10	-23.33	-23.39	-23.44	-23.50	-23.56	-23.6I	-23.67	-23.72	-23.78	-23.83
II	23.89	23.94	24.00	24.06	24.11	24.17	24.22	24.28	24.33	24.39
12	24.44	24.50	24.56	24.6I	24.67	24.72	24.78	24.83	24.89	24.94
13	25.00	25.06	25.11	25.17	25.22	25.28	25.33	25.39	25.44	25.50
14	25.56	25.61	25.67	25.72	25.78	25.83	25.89	25.94	26.00	26.06
-15 -16	-26.11	-26.17	-26.22	-26.28	-26.33	-26.39	-26.44	-26.50	-26.56	-26.61
16	26.67	26.72	26.78	26.83	26.89	26.94	27.00	27.06	27.11	27.17
17	27.22	27.28	27.33	27.39	27.44	27.50	27.56	27.61	27.67	27.72
0	27.78	27.83	27.89	27.94	28.00	28.06	28. II	28.17	28.22	28.28
19	28.33	28.39	28.44	28.50	28.56	28.61	28.67	28.72	28.78	28.83
-20	-28.89	-28.94	-29.00	-29.06	-29. 11	-29.17	-29.22	-29.28	-29.33	-29.39
	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9

Smithaonian Tables.

FAHRENHEIT SCALE TO CENTIGRADE.

Fahrenheit.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	c.									
-20°	-28.89	-28.94	-29.00	29.06	-29.11	$-29^{\circ} 17$	$-29^{\circ} .22$	-29.28	$-29^{\circ} 33$	-29.39
21	29.44	29.50	29.56	29.61	29.67	29.72	29.78	29.83	29.89	29.94
22	30.00	30.06	30.11	30.17	30.22	30.28	30.33	30.39	30.44	30.50
23	30.56	30.61	30.67	30.72	30.78	30.83	30.89	30.94	31.00	3 T .06
24	31.11	31.17	31.22	31.28	31.33	31.39	31.44	3 I .50	31.56	3 I .61
-25	-31.67	-31.72	-31.78	-31.83	31.89	-31.94	-32.00	-32.06	-32.11	-32.17
26	32.22	32.28	32.33	32.39	32.44	32.50	32.56	32.61	32.67	32.72
27	32.78	32.83	32.89	32.94	33.00	33.06	33.11	33.17	33.22	33.28
28	33.33	33.39	33.44	33.50	33.56	33.61	33.67	33.72	33.78	33.83
29	33.89	33.94	34.00	34.06	34. II	34.17	34.22	34.28	34.33	34.39
-30	-34.44	-34.50	-34.56	-34.61	-34.67	-34.72	-34.78	-34.83	-34.89	-34.94
31	35.00	35.06	35.11	35.17	35.22	35.28	35.33	35.39	35.44	35.50
32	35.56	35.61	35.67	35.72	35.78	35.83	35.89	35.94	36.00	36.06
33	36.11	36.17	36.22	36.28	36.33	36.39	36.44	36.50	36.56	36.61
34	36.67	36.72	36.78	36.83	36.89	36.94	37.00	37.06	37.11	37.17
-35	-37.22	-37.28	-37.33	-37.39	-37.44	-37.50	-37.56	-37.61	-37.67	-37.72
36	37.78	37.83	37.89	37.94	38.00	38.06	38.11	38.17	38.22	38.28
37	38.33	38.39	38.44	38.50	38.56	38.61	38.67	38.72	38.78	38.83
38	38.89	38.94	39.00	39.06	39.11	39.17	39.22	39.28	39.33	39.39
39	39.44	39.50	39.56	39.61	39.67	39.72	39.78	39.83	39.89	39.94
-40	-40.00	-40.06	-40.11	-40.17	-40.22	-40.28	-40.33	-40.39	-40.44	-40.50
41	40.56	40.61	40.67	40.72	40.78	40.83	40.89	40.94	41.00	41.06
42	41.11	41.17	41.22	41.28	41.33	41.39	41.44	41.50	41.56	4 r .61
43	41.67	41.72	41.78	4 r .83	41.89	41.94	42.00	42.06	42.11	42.17
44	42.22	42.28	42.33	42.39	42.44	42.50	42.56	42.61	42.67	42.72
-45	-42.78	-42.83	-42.89	-42.94	-43.00	-43.06	-43.11	-43.17	-43.22	-43.28
46	43.33	43.39	43.44	43.50	43.56	43.61	43.67	43.72	43.78	43.83
47	43.89	43.94	44.00	44.06	44.11	44.17	44.22	44.28	44.33	44.39
48	44.44	44.50	44.56	44.61	44.67	44.72	44.78	44.83	44.89	44.94
49	45.00	45.06	45.11	45.17	45.22	45.28	45.33	45.39	45.44	45.5)
-50	-45.56	-45.61	-45.67	-45.72	-45.78	-45.83	-45.89			
51	45.11	46.17	46.22	46.28	46.33	46.39	46.44	46.50	46.56	46.6r
52	46.67	46.72	46.78	46.83	46.89	46.94	47.00	47.06	47.11	47.17
53	47.22	47.28	47.33	47.39	47.44	47.50	47.56	47.61	47.67	47.72
54	47.78	47.83	47.89	47.94	48.00	48.06	48.11	48.17	48.22	48.28
-55	-48.33	-48.39	-48.44	-48.50	-48.56	-48.6I	-48.67	-48.72	-48.78	-48.83
56	48.89	48.94	49.00	49.06	49.11	49.17	49.22	49.28	49.33	49.39
57	49.44	49.50	49.56	49.61	49.67	49.72	49.78	49.33	49.89	49.94
5	50.00	50.06	50.11	50.17	50.22	50.28	50.33	50.39	50.44	50.50
59	50.56	50.61	50.67	50.72	50.78	50.83	50.89	50.94	51.00	51.06
-60 61	-51.11 -51.67 5	-51.17	-51.22	-51.28	-51.33	-51.39	-51.44	-51.50	-51.56	-51.61
61 62	51.67 52.22	51.72 52.28	51.7	51.83 52.39	51.89 52.44	51.94 52.50	52.00 52.56	52.06 52.61	52.11 52.67	52.17 52.72
63	52.78	52.83	52.89	52.94	53.00	53.06	53.11	53.17	53.22	53.28
64	53.33	53.39	53.44	53.50	53.56	53.61	53.67	53.72	53.78	53.83
-65	-53.89	-53.94	-54.00	-54.06	-54.11	-54.17	-54.22	-54.28	-54.33	-54.39
66	54.44	54.50	54.56	54.61	54.67	54.72	54.78	54.83	54.89	54.94
67	55.00	55.06	55.11	55.17	55.22	55.28	55.33	55.39	55.44	55.50
68	55.56	55.61	55.67	55.72	55.78	55.83	55.89	55.94	56.00	56.06
69	56.11	56.17	56.22	56.28	56.33	56.39	56.44	56.50	56.56	56.61
-70	-56.67	-56.72	-56.78	-56.83	-56.89	-56.94	-57.00	-57.06	-57.11	-57.17
	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9

CENTIGRADE SCALE TO FAHRENHEIT.

Centigrade.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	F		F.							
$+50^{\circ}$	+122.00	+122.18	+122.36	+I22.54	+122.72	+122.90	+123.08			123.62
49	120.20	120.38	120.56	120.74	120.92	121.10	121.28	121.46	121.64	121.82
48	118.40	118.58	118.76	118.94	119.12	119.30	119.48	119.66	119.84	120.02
47	116.60	116.78	II6.96	117.14	117.32	117.50	117.68	117.86	118.04	118.22
46	114.80	114.98	115.16	II5.34	II5.52	115.70	115.88	116.06	116.24	116.42
+45	+113.00	-113.18	+113.3	113	+113.72	113.90	14.08	+II4.26		114.62
44	III. 20	111.38	111.56	111.74	111.92	II2.10	112.28	112.46	112.64	112.82
43	109.40	109.58	109.76	109.94	110.12	110.30	110.48	110.66	110.84	111.02
42	107.60	107.78	107.96	108. 14	108.32	108.50	108.68	108.86	109.04	109.22
41	$\underline{105.80}$	105.98	106.16	106.34	106.52	106.70	106.88	107.06	107.24	107.42
$+40$	+104.		04.	104.	-104.72	+104.90				105.62
39	102.20	102.38	102.56	102.74	102.92	103.10	103.28	103.46	103.64	103.82
38	100.40	100.58	100.76	100.94	IOI.12	101.30	IOI. 48	IOI. 66	IOI. 84	102.02
37	98.60	98.78	98.96	99. 14	99.32	99.50	99.68	99.86	100.04	100.22
36	96.80	96.98	97.16	97.34	97.52	97.70	97.88	98.06	98.24	98.42
+35	+95.00	+ 95.18	+95.3	+95.54	+ 95.72	+95.90	+96.08	+96.26	+96.44	+ 96.62
34	93.20	93.38	93.56	93.74	93.92	94.10	94.28	94.46	94.64	94.82
33	91.40	91.58	91.76	91.94	92.12	92.30	92.48	92.66	92.84	93.02
32	89.60	89.78	89.96	90.14	90.32	90.50	90.68	90.86	91.04	91.22
3 I	87.80	87.98	88.16	88.34	88.52	88.70	88.88	89.06	89.24	89.42
+30	+86.00	+86.18	+86.36	+86.54	+86.72	+86.90	$+87.08$	+87.26	$+87.44$	$+87.62$
29	84.20	84.38	84.56	84.74	84.92	85. 10	85.28	85.46	85.64	85.82
28	82.40	82.58	82.76	82.94	83.12	83.30	83.48	83.66	83.84	84.02
27	80.60	80.78	80.96	81.14	8 I .32	8 I .50	81.68	8 s .86	82.04	82.22
26	78.80	78.98	79.16	79.34	79.52	79.70	79.88	80.06	80.24	80.42
$+25$	+ 77.00	+ 77.18	+ 77.36	+ 77.54	+77.72	+77.90	+ 78.08	+ 78.26	+ 78.44	+ 78.62
24	75.20	75.38	75.56	75.74	75.92	76.10	76.28	76.46	76.64	76.82
23	73.40	73.58	73.76	73.94	74.12	74.30	74.48	74.66	74.84	75.02
22	71.60	71.78	71.96	72.14	72.32	72.50	72.68	72.86	73.04	73.22
21	69.80	69.98	70.16	70.34	70.52	70.70	70.88	71.06	7 I .24	71.42
+20	+68.00	+68.18	+68.36	$+68.54$	+68.72	+68.90	$+69.08$	+69.26	+69.44	+69.62
19	66.20	66.38	66.56	66.74	66.92	67.10	67.28	67.46	67.64	67.82
18	64.40	64.58	64.76	64.94	65.12	65.30	65.48	65.66	65.84	66.02
17	62.60	62.78	62.96	63.14	63.32	63.50	63.68	63.86	64.04	64.22
16	60.80	60.98	61.16	61.34	6I. 52	61.70	61.88	62.06	62.24	62.42
+15	$+59.00$	+ 59.18	$+59.36$	$+59.54$	+59.72	$+59.90$	$+60.08$	$+60.26$	$+60.44$	+60.62
14	57.20	57.38	57.56	57.74	57.92	58. 10	58.28	58.46	58.64	58.82
13	55.40	55.58	55.76	55.94	56.12	56.30	56.48	56.66	56.84	57.02
12	53.60	53.78	53.96	54.14	54.32	54.50	54.68	54.86	55.04	55.22
II	5 I .80	51.98	52.16	52.34	52.52	52.70	52.88	53.06	53.24	53.42
$+10$	$+50.00$	+ 50.18	$+50.36$	$+50.54$	$+50.72$	$+50.90$	$+51.08$	+51.26	+51.44	$+51.62$
	48.20	48.38	48.56	48.74	48.92	49.10	49.28	49.46	49.64	49.82
8	46.40	46.58	46.76	46.94	47.12	47.30	47.48	47.66	47.84	48.02
7	44.60	44.78	44.96	45.14	45.32	45.50	45.68	45.86	46.04	46.22
6	42.80	42.98	43.16	43.34	43.52	43.70	43.88	44.06	44.24	44.42
$+5$	+41.00	$+41.18$	+41.36	+41.54	+ 41.72	+41.90	+42.08	+ 42.26	+ 42.44	$+42.62$
4	39.20	39.38	39.56	39.74	39.92	40.10	40.28	40.46	40.64	40.82
3	37.4	37.58	37.76	37.94	38.12	38.30	38.48	38.66	3 S.84	39.02
2	35.60	35.78	35.96	36.14	36.32	36.50	36.68	36.86	37.04	37.22
	33.80	33.98	34.16	34.34	34.52	34.70	34.88	35.06	35.24	35.42
$+0$	$+32.00$	+ 32.18	$+32.36$	+32.54	+ 32.72	$+32.90$	+ 33.08	$+33.26$	$+33.44$	+33.62
	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9

Smithsonian Tables.

TABLE 3.
CENTIGRADE SCALE TO FAHRENHEIT.

Centigrade.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	F.	$\stackrel{\mathrm{F}}{\text { F }}$	${ }_{\text {F. }}^{\text {F. }}$	${ }_{\text {F. }}{ }^{\text {c }}$	${ }_{\text {F. }}^{\text {F. }}$	$\stackrel{\text { F. }}{\text { c }}$	${ }_{\text {F }}$	${ }^{\text {F. }}$	${ }_{\text {F. }}^{\text {F. }}$	${ }_{\text {F. }}$
$0{ }^{\circ}$	+32.00	+31.822	+31.64	+31.46	$+31.28$	+31.10	$+30.92$	$+30^{\circ} 74$	30.56	$+30^{\circ} 38$
1	30.20	30.02	29.84	29.66	29.48	29.30	29.12	28.94	28.76	28.58
2	28.40	28.22	28.04	27.86	27.68	27.50	27.32	27.14	26.96	26.78
3	26.60	26.42	26.24	26.06	25.88	25.70	25.52	25.34	25.16	24.98
4	24.80	24.62	24.44	24.26	24.08	23.90	23.72	23.54	23.36	23.18
- 5	+23.00	+22.82	+22.64	+22.46	+22.28	+22.10	+21.92	+21.74	+21.56	+21.38
6	21.20	21.02	20.84	20.66	20.48	20.30	20.12	19.94	19.76	19.58
7	19.4	19.22	19.04	18.86	18.68	18.50	18.32	18.14	17.96	17.78
8	17.60	17.42	17.24	17.06	16.88	16.70	16.52	16.34	16.16	15.98
9	15.80	15.62	15.44	15.26	15.08	14.90	14.72	14.54	14.36	14.18
-10	+14.00	+13.82	+13.64	+ 3.46	+13.28	+13.10	+12.92	+12.74	+12.56	+12.38
11	12.20	12.02	11.84	I1. 66	11.48	I1. 30	11.12	10.94	10.76	Io. 58
12	10.40	10.22	10.04	9.86	9.68	9.50	9.32	9.14	8.96	8.78
13	8.60	8.42	8.24	8.06	7.88	7.70	7.52	7.34	7.16	6.98
14	6.80	6.62	6.44	6.26	6.08	5.90	5.72	5.54	5.36	5.18
-15	+ 5.00	+ 4.82	+ 4.64	+ 4.46	+ 4.28	+ 4.10	+ 3.92	+ 3.74	+3.56	+ 3.38
16	+ 3.20	+3.02	+2.84	+ 2.66	+ 2.48	+2.30	+ 2.12	+ 1.94	+ 1.76	+ 1.58
17	+ 1.40	+ 1.22	+ 1.04	+ 0.86	+ 0.68	+ 0.50	+0.32	+ 0.14	- o. 04	- 0.22
18	- 0.40	- 0.58	-0.76	- 0.94	- 1.12	- 1.30	- 1.48	- 1.66	- 1.84	- 2.02
19	- 2.20	-2.38	-2.56	- 2.74	-2.92	- 3.10	- 3.28	- 3.46	-3.64	- 3.82
-20	-4.00	-4.18	-4.36	- 4.54	-4.72	-4.90	-5.08	- 5.26	- 5.44	- 5.62
21	. 80	5.98	6.16	6.34	6.52	6.70	6.88	7.06	7.24	7.42
22	7.60	7.78	7.96	8.14	8.32	8.50	8.68	8.86	9.04	9.22
23	9.40	9.58	9.76	9.94	10.12	10.30	10.48	10.66	10.84	11.02
24	11.20	11.38	11.56	11.74	11.92	12.10	12.28	12.46	12.64	12.82
-25	-13.00	-13.18	-13.36	-13.54	-13.72	-13.90	-14.08	-14.26		
26	14.80	14.98	15.16	15.34	15.52	15.70	15.88	16.06	16.24	16.42
27	16.60	16.78	16.96	17.14	17.32	17.50	17.68	17.86	18.04	18.22
28	18.40	18.58	18.76	18.94	19.12	19.30	19.48	19.66	19.84	20.02
29	20.20	20.38	20.56	20.74	20.92	21.10	21.28	21.46	21.64	21.82
-30	-22.00	-22.18	-22.36	-22.54	-22.72	-22.90	-23.08	-23.26	-23.44	-23.62
31	23.80	23.98	24.16	24.34	24.52	24.70	24.88	25.06	25.24	25.42
32	25.60	25.78	25.96	26.14	26.32	26.50	26.68	26.86	27.04	27.22
33	27.40	27.58	27.76	27.94	28.12	28.30	28.48	28.66	28.84	29.02
34	29.20	29.38	29.56	29.74	29.92	30.10	30.28	30.46	30.64	30.82
-35	-31.00	-31.18	-31.36	-31.54	-31.72	-31.90	-32.08	-32.26	-32.44	-32.62
36	32.80	32.98	33.16	33.34	33.52	33.70	33.88	34.06	34.24	34.42
37	34.60	34.78	34.96	35.14	35.32	35.50	35.68	35.86	36.04	36.22
38	36.40	36.58	36.76	36.94	37.12	37.30	37.48	37.66	37.84	38.02
39	38.20	38.38	38.56	38.74	38.92	39. Io	39.28	39.46	39.64	39.82
-40	-40.00	-40.18	-40.36	-40.54	-40.72	-40.90	-41.08	-41.26	-41.44	-41.62
4 I	41.80	41.98	42.16	42.34	42.52	42.70	42.88	43.06	43.24	43.42
42	43.60	43.78	43.96	44.14	44.32	44.50	44.68	44.86	45.04	45.22
43	45.40	45.58	45.76	45.94	46.12	46.30	46.48	46.66	46.84	47.02
44	47.20	47.38	47.56	47.74	47.92	48.10	48.28	48.46	48.64	48.82
-45	-49.00	-49.18	-49.36	-49.54	-49.72	-49.90	-50.08	-50.26	-50.44	-50.62
46	50.80	50.98	51.16	51.34	51.52	51.70	51.88	52.06	52.24	52.42
47	52.60	52.78	52.96	53.14	53.32	53.50	53.68	53.86	54.04	54.22
48	54.40	54.58	54.76	54.94	55.12	55.30	55.48	55.66	55.84	56.02
49	56.20	56.38	56.56	56.74	56.92	57.10	57.28	57.46	57.64	57.82
-50	-58.00	-58.18	-58.36	-58.54	-58.72	-58.90	-59.08	-59.26	$\underline{-59.44}$	-59.62
	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9

table 4.
CENTIGRADE SCALE TO FAHRENHEIT - Near the Boiling Point.

Centigrade.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
100°	$\begin{gathered} \text { F. } \\ 212.00 \end{gathered}$	$\begin{gathered} \text { F. } \\ 212 . \\ \hline \end{gathered}$	$\begin{gathered} \text { F. } \\ 212.36 \end{gathered}$	$\begin{gathered} \text { F. } \\ 212.54 \end{gathered}$	$\begin{gathered} \text { F. } \\ 2 \mathrm{I} 2 \cdot \mathrm{P}_{2} \end{gathered}$	$\begin{gathered} \text { F. } \\ 212.90 \end{gathered}$	$\begin{gathered} \text { F. } \\ 213.08 \end{gathered}$	$\begin{gathered} \text { F. } \\ 213.26 \end{gathered}$	$\begin{gathered} \text { F. } \\ 213.44 \end{gathered}$	$\begin{gathered} \text { F. } \\ 213.62 \end{gathered}$
99	210.20	210.38	210.56	210.74	210.92	211.10	211.28	211.46	211.64	211.82
98	208.40	208.58	208.76	208.94	209.12	209.30	209.48	209.66	209.84	210.02
97	206.60	206.78	206.96	207.14	207.32	207.50	207.68	207.86	208.04	208.22
96	204.80	204.98	205.16	205.34	205.52	205.70	205.88	206.06	206.24	206.42
95	203.00	203.18	203.36	203.54	203.72	203.90	204.08	204.26	204.44	204.62
94	201.20	201.38	201.56	201.74	201.92	202.10	202.28	202.46	202.64	202.82
93	199.40	199.58	199.76	199.94	200.12	200.30	200.48	200.66	200.84	201.02
92	197.60	197.78	197.96	198.14	198.32	198.50	198.68	198.86	199.04	199.22
91	195.80	195.98	196.16	196.34	196.52	196.70	196.88	197.06	197.24	197.42
90	194.00	194.18	194.36	194.54	194.72	194.90	195.08	195.26	195.44	195.62

TABLE 5.
DIFFERENCES FAHRENHEIT TO DIFFERENCES CENTIGRADE.

Fahrenheit.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	c.									
0°	0.00	0.06	0.11	-.17	0.22	0.28	0.33	0. 39	0.44	0.50
1	0.56	0.61	0.67	0.72	0.78	0.83	0.89	0.94	1.00	1.06
2	I.II	I. 17	1.22	1.28	1.33	1.39	I. 44	I. 50	1.56	1.61
3	1.67	1.72	1.78	1.83	1.89	1.94	2.00	2.06	2.11	2.17
4	2.22	2.28	2.33	2.39	2.44	2.50	2.56	2.61	2.67	2.72
5	2.78	2.83	2.89	2.94	3.00	3.06	3.11	3.17	3.22	3.28
6	3.33	$3 \cdot 39$	3.44	3.50	3.56	3.6I	3.67	3.72	3.78	3.83
7	3.89	3.94	4.00	4.06	4.11	4.17	4.22	4.28	4.33	4.39
8	4.44	4.50	4.56	4.61	4.67	4.72	4.78	4.83	4.89	4.94
9	5.00	5.06	5.11	5.17	5.22	5.28	$5 \cdot 33$	5.39	5.44	5.50
10	5.56	5.61	5.67	5.72	5.78	5.83	5.89	5.94	6.00	6.06
II	6.11	6.17	6.22	6.28	6.33	6.39	6.44	6.50	6.56	6.61
12	6.67	6.72	6.78	6.83	6.89	6.94	7.00	7.06	7.11	7.17
13	7.22	7.28	7.33	7.39	7.44	7.50	7.56	7.6I	7.67	7.72
14	7.78	7.83	7.89	$7 \cdot 94$	8.00	8.06	8.11	8.17	8.22	8.28
15	8.33	8.39	8.44	8.50	8.56	8.61	8.67	8.72	8.78	8.83
16	8.89	8.94	9.00	9.06	9.11	9.17	9.22	9.28	9.33	9.39
17	9.44	9.50	9.56	9.61	9.67	9.72	9.78	9.83	9.89	9.94
18	10.00	10.06	10.11	10.17	10.22	10. 28	10.33	10.39	10.44	10.50
19	10.56	10.61	10.67	10.72	10.78	10.83	10.89	10.94	I 1.00	11.06
20	II.II	11.17	II. 22	II. 28	II. 33	II. 39	II. 44	11.50	I 1.56	II.6I

TABLE 6.
DIFFERENCES CENTIGRADE TO DIFFERENCES FAHRENHEIT.

Centigrade.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
0°	$\begin{gathered} \text { F. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { F. } \\ 0.18 \end{gathered}$	$\begin{gathered} \text { F. } \\ 0.36 \end{gathered}$	$\begin{gathered} \text { F. } \\ 0.54 \end{gathered}$	$\begin{gathered} \text { F. } \\ 0.72 \end{gathered}$	$\begin{gathered} \text { F. } \\ 0.90 \end{gathered}$	$\begin{aligned} & \text { F. } \\ & \text { I. } 08 \end{aligned}$	$\begin{gathered} \text { F. } \\ \text { I. } 26 \end{gathered}$	$\begin{gathered} \text { F. } \\ \text { r. } 44 \end{gathered}$	$\begin{gathered} \text { F. } \\ \text { I: } 62 \end{gathered}$
0	1.80	1.98	2.16	2.34	2.52	2.70	2.88	3.06	3.24	3.42
2	3.60	3.78	3.96	4. 14	4.32	4.50	4.68	4.86	5.04	5.22
3	5.40	5.58	5.76	5.94	6.12	6.30	6.48	6.66	6.84	7.02
4	7.20	7.38	7.56	7.74	7.92	8.10	8.28	8.46	8.64	8.82
5	9.00	9.18	9.36	9.54	9.72	9.90	10.08	10.26	10.44	10.62
6	10.80	10.98	II. 16	III. 34	11.52	11.70	I 1.88	12.06	12.24	12.42
7	12.60	12.78	12.96	13.14	13.32	13.50	13.68	13.86	14.04	14.22
8	14.40	14.58	14.76	14.94	15.12	15.30	15.48	${ }^{1} 5.66$	15.84	16.02
9	16.20	16.38	16.56	16.74	16.92	17.10	17.28	17.46	17.64	17.82

Smithbonian Tables.

REDUCTION OF TEMPERATURE TO SEA LEVEL. ENGLISH MEASURES.

Table 8.
REDUCTION OF TEMPERATURE TO SEA LEVEL. METRIC MEASURES.

Rate of decrea temperature. $1^{\circ} \mathrm{C}$. forevery	DIFFERENCES BETWEEN THE TEMPERATURE AT ANY ALTITUDEAND AT SEA LEVFL.											
	ALTITUDE IN METRES.											
	100	200	300	400	500	600	700	800	900	1000	2000	3000
$\begin{array}{r} \mathrm{m} . \\ 100 \end{array}$	$\begin{gathered} \text { c. } \\ \text { r.oo } \end{gathered}$	$\begin{gathered} \text { c. } \\ 2.00 \end{gathered}$	$\begin{gathered} \text { c. } \\ 3.00 \end{gathered}$	$\begin{gathered} \text { c. } \\ \text { 4.00 } \end{gathered}$	$\begin{gathered} \text { c. } \\ 5.00 \end{gathered}$	$\begin{gathered} \text { c. } \\ 6.00 \end{gathered}$	$\begin{gathered} \text { c. } \\ 7.09 \end{gathered}$	$\begin{gathered} \text { c. } \\ 8.00 \end{gathered}$	$\begin{gathered} \text { c. } \\ 9.00 \end{gathered}$	$\begin{gathered} \text { c. } \\ \text { 10.00 } \end{gathered}$	$\begin{gathered} \text { c. } \\ 20.00 \end{gathered}$	c. 0.00
102	0.98	1.96	2.94	3.92	4.90	5.88	6.86	7.84	8.82	9.80	19.61	29.41
104	0.96	1.92	2.88	3.85	4.81	5.77	6.73	7.69	8.65	9.62	19.23	28.85
106	0.94	1.89	2.83	3.77	4.72	5.66	6.60	7.55	8.49	9.43	18.87	28.30
108	0.93	1.85	2.78	3.70	4.63	5.56	6.48	7.41	8.33	9.26	18.52	27.78
110	0.91	1.82	2.73	3.64	4.55	5.45	6.36	7.27	8.18	9.09	18. 18	27.27
115	0.87	1.74	2.61	3.48	4.35	5.22	6.09	6.96	7.83	8.70	17.39	26.09
120	0.83	1.67	2.50	3.33	4.17	5.00	5.83	6.67	7.50	8.33	16.67	25.00
125	0.80	1.60	2.40	3.20	4.00	4.80	5.60	6.40	7.20	8.00	16.00	24.00
130	0.77	1.54	2.31	3.08	3.85	4.62	$5 \cdot 38$	6.15	6.92	7.69	15.38	23.08
135	0.74	1. 48	2.22	2.96	3.70	4.44	5.19	5.93	6.66	7.41	14.81	22.22
140	0.71	1.43	2.14	2.86	3.57	4.29	5.00	5.71	6.43	7.14	14.29	21.43
145	0.69	1. 38	2.07	2.76	3.45	4.14	4.83	5.52	6.21	6.90	13.79	20.69
150	0.67	1.33	2.00	2.67	3.33	4.00	4.67	5.33	6.00	6.67	13.33	20.00
155	0.65	1.29	1.94	2.58	3.23	3.87	4.52	5.16	5.8I	6.45	12.90	19.35
160	0.62	1.25	1.87	2.50	3.12	3.75	$4 \cdot 37$	5.00	5.62	6.25	12.50	18.75
170	0.59	I. 18	1.76	2.35	2.94	3.53	4.12	4.70	5.29	5.88	11.76	17.65
180	0.56	I. 11	1.67	2.22	2.78	3.33	3.89	4.44	5.00	5.56	II.II	16.67
190	0.53	1.05	1.58	2.10	2.63	3.16	3.68	4.21	4.74	5.26	10.53	15.79
200	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	10.00	15.00
210	0.4	0.95	1.43	1.90	2.38	2.86	3.33	3.81	4.29	4.76	9.52	14.29
220	0.45	0.91	1. 36	1.82	2.27	2.73	3.18	3.64	4.09	4.55	9.09	13.64
230	0.43	0.87	1.30	1.74	2.17	2.61	3.04	3.48	3.91	$4 \cdot 35$	8.70	13.04
240	0.42	0.83	1.25	1.67	2.08	2.50	2.92	3.33	3.75	4.17	8.33	12.50
250	0.40	0.80	1.20	1.60	2.00	2.40	2.80	3.20	3.60	4.00	8.00	12.00
260	0.38	0.77	I. 15	1.54	1.92	2.31	2.69	3.08	3.46	3.85	7.69	Ir. 54
270	0.37	0.74	I.II	1.48	1.85	2.22	2.59	2.96	3.33	3.70	7.41	II.II
280	0.36	0.71	1.07	1.43	1.79	2.14	2.50	2.86	3.21	3.57	7.14	10.71
290	0.34	0.69	1.03	1.38	1.72	2.07	2.41	2.76	3.10	3.45	6.90	10.34
300	0.33	0.67	1.00	1.33	1.67	2.00	2.33	2.67	3.00	3.33	6.67	10.00
320	0.31	0.62	0.94	1.25	1.56	1.87	2.19	2.50	2.81	3.12	6.25	9.37
340	0.29	0.59	0.88	1,18	1.47	1.76	2.06	2.35	2.65	2.94	5.88	8.82
360	0.28	0.56	0.83	I.II	1.39	1.67	r. 94	2.22	2.50	2.78	5.56	8.33
380	0.26	0.53	0.79	1.05	1.32	1.58	1.84	2.10	2.37	2.63	5.26	7.89
400	0.25	0.50	0.75	1.00	I. 25	1.50	1. 75	2.00	2.25	2.50	5.00	7.50
420	0.24	0.48	0.71	0.95	I. 19	1. 43	土. 67	1.90	2.14	2.38	4.76	7.14
440	0.23	0.45	0.68	0.91	1.14	1.36	1.59	1.82	2.05	2.27	4.55	6.82
460	0.22	0.43	0.65	0.87	1.09	1.30	1.52	1.74	1.96	2.17	4.35	6.52
480	0.21	0.42	0.62	0.83	1.04	1.25	1.46	1.67	r. 87	2.08	4.17	6.25
500	0.20	0.40	0.60	0.80	1.00	I. 20	1. 40	1.60	r.80	2.00	4.00	6.00

Tabular values are to be added to the observed temperature to obtain the temperature at sea level.

Smitheonian Tables.

TABLE 9.
CORRECTION FOR THE TEMPERATURE OF THE MERCURY IN THE THERMOMETER STEM.
$T=t-0.0000795 n\left(t^{\prime}-t\right)-$ Fahrenheit temperatures.
$T=t-0.000143 n\left(t^{\prime}-t\right)$ - Centigrade temperatures.
$T=$ Corrected temperature.
$t=$ Observed temperature.
$t^{\prime}=$ Mean temperature of the glass stem and mercury column.
$n=$ Length of mercury in the stem in scale degrees.

Correction for Fahrenheit Thermometers.
Values of $0.0000795 n\left(t^{\prime}-t\right)$

n	$t^{\prime}-t$									
	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°
F.	F.	F.	F.	F.	F.	F.	F.	F.	F.	F.
10°	O.OI	0.02	0.02	0.03	0.04	0.05	0.06	0.06	0.07	0.08
20	0.02	0.03	0.05	0.06	0.08	0. 10	0. 11	o. 13	o. 14	0. 16
30	0.02	0.05	0.07	0. 10	0.12	0.14	0. 17	o. 19	0.21	0. 24
40	0.03	0.06	O.IO	0. 13	0.16	0. 19	0.22	0.25	0.29	0.32
50	0.04	0.08	0.12	0.16	0.20	0.24	0.28	0.32	0.36	0.40
60	0.05	0.10	0. 14	0.19	0.24	0.29	0.33	0.38	0.43	0.48
70	0.06	O. 11	o. 17	0.22	0.28	0.33	0.39	0.45	0.50	0. 56
80	0.06	0.13	o. 19	0.25	0.32	0.38	0.45	0.51	0.57	0.64
90	0.07	0. 14	0.21	0.29	0.36	0.43	0.50	0.57	0.64	0.72
100	0.08	0.16	0.24	0.32	0.40	0.48	0.56	0.64	0.72	0.79
110	0.09	O. 17	0.26	0.35	0.44	0.52	0.61	0.70		0.87
120	0.10	0.19	0.29	o. 38	0.48	0.57	0.67	0.76	0.86	0.95
130	0. 10	0.21	0.31	0.41	0.52	0.62	0.72	0.83	0.93	1.03

Correction for Centigrade Thermometers.
Values of o.000I43 $n\left(t^{\prime}-t\right)$

n	$t^{\prime}-t$							
	10°	20°	30°	40°	50°	60°	70°	80°
10^{c}	c. o. 1.1	C. 0.03	C.	c. 0.06	c. O옥	c. 0.09	c.	C.
20	0.03	0.06	0.09	0.11	O. 14	0. 17	0.20	0.23
30	0.04	0.09	0. 13	0.17	0.21	0.26	0.30	0.34
40	0.06	O. 11	0. 17	0.23	0.29	0.34	0.40	0.46
50	0.07	0. 14	0.21	0.29	0.36	0.43	0.50	0.57
60	0.09	0.17	0.26	0.34	0.43	0.51	0.60	0.69
70	0. 10	0.20	0.30	0.40	0.50	0.60	0.70	0.80
80	O. 11	0.23	0.34	0.46	0.57	0.69	0.80	0.92
90	0.13	0.26	0.39	0.51	0.64	0.77	0.90	1.03
100	o. 14	0.29	0.43	0.57	0.72	0.86	1.00	1.14

When t^{\prime} is $\left\{\begin{array}{l}\text { greater } \\ \text { less }\end{array}\right\}$ than t the correction is to be $\left\{\begin{array}{l}\text { subtracted } \\ \text { added }\end{array}\right\}$

BAROMETRICAL TABLES.

Reduction of the barometer to standard temperature - English measures Table 10
Metric measures II
Reduction of the barometer to standard gravity at latitude 45° - English measures Table 12
Metric measures 13
Reduction of the barometer to sea level - English measures.Values of 2000 mTABLE 14
Correction of 2000 m for latitude 15
$B_{\circ}-B=B\left(\mathrm{Io}^{m}-\mathrm{r}\right)$ 16
Reduction of the barometer to sea level - Metric measures.
Values of 2000 m TAble 17
Correction of 2000 m for latitude 18
$B_{\circ}-B=B\left(\mathrm{r}^{m}-\mathrm{r}\right)$ 19Determination of heights by the barometer - English measures.
Values of $60368[1+0.0010195 \times 36] \log \frac{29.90}{B}$ Table 20
Term for temperature 21
Correction for latitude and weight of mercury 22
Correction for an average degree of humidity 23
Correction for the variation of gravity with altitude. 24
Determination of heights by the barometer - Metric measures.
Values of $18400 \log \frac{760}{B}$ TAble 25
Term for temperature 26
Correction for humidity 27
Correction for latitude and weight of mercury 28
Correction for the variation of gravity with altitude 29
Difference of height corresponding to a change of 0.1 inch in the barometer - English measures Table 30
Difference of height corresponding to a change of 1 millimetre in the barometer - Metric measures TABLE 3I
Determination of heights by the barometer. Formula of Babinet TAble 32
Barometric pressures corresponding to the temperature of the boiling point of water -
English measures 33
Metric measures 34

TABLE 10.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Ther. mometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	19.0	19.5	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5
$\begin{array}{r} F \\ 0.0 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.050 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.05 \mathrm{I} \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.052 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.053 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.055 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.056 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.057 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.059 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.060 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.06 \mathrm{I} \end{gathered}$
+0.5 I.	+0.049 .048	+0.050 .049	+0.051 .050	$+\begin{array}{r}+0.053 \\ .052\end{array}$	+0.054	+0.055	+0.056	+0.058	+0.059	+0.060
1.0	. 048	. 049	.050	.052	. 053	. 054	.055	.057	. 058	.059
1.5	. 047	. 048	. 049	.051	. 052	. 053	. 054	. 056	. 057	. 058
2.0	. 046	. 047	. 049	.050	.05I	. 052	. 053	. 055	. 056	. 057
2.5	. 045	. 046	. 048	. 049	. 050	.05I	.052	. 054	. 055	. 056
3.0	+0.044	+0.046	+0.047	+0.048	+0.049	+0.050	+0.051	+0.053	+0.054	+0.055
3.5	. 043	. 045	. 046	. 047	. 048	. 049	. 050	.05I	. 053	. 054
4.0	. 043	. 044	. 045	. 046	. 047	. 048	. 049	. 050	. 052	. 053
4.5	. 042	. 043	. 044	. 045	. 046	. 047	. 048	. 049	. 051	. 052
5.0	.04I	. 042	. 043	. 044	. 045	. 046	. 047	. 048	. 049	. 051
5.5	+0.040	+0.04I	+0.042	+0.043	+0.044	+0.045	+0.046	+0.047	+0.048	+0.049
6.0	. 039	. 040	.04I	. 042	. 043	. 044	. 045	. 046	. 047	. 048
6.5	. 038	. 039	. 040	.04I	. 042	. 043	. 044	. 045	. 046	. 047
7.0	. 037	. 038	. 039	. 040	.04I	. 042	. 043	. 044	. 045	. 046
$7 \cdot 5$. 037	. 038	.038	. 039	. 040	.04I	. 042	. 043	. 044	. 045
8.0	+0.036	+0.037	+0.038	+0.038	+0.039	+0.040	+0.04I	+0.042	+0.043	+0.044
8.5	. 035	. 036	. 037	. 038	. 038	. 039	. 040	.04I	. 042	. 043
9.0	. 034	. 035	. 036	. 037	. 038	. 038	. 039	. 040	.04I	. 042
9.5	. 033	. 034	. 035	. 036	. 037	. 037	. 038	. 039	. 040	. 041
10.0	.032	. 033	. 034	. 035	. 036	. 036	. 037	. 038	. 039	. 040
10.5	+0.031	+0.032	+0.033	+0.034	+0.035	+0.035	+0.036	+0.037	$+0.038$	+0.039
11.0	. 030	. 03 I	. 032	. 033	. 034	. 034	. 035	. 036	. 037	. 338
11.5	. 030	. 030	. 031	. 032	. 033	. 034	. 034	. 035	. 036	. 037
12.0	. 029	. 030	. 030	.03I	. 032	. 033	. 033	. 034	. 035	. 036
12.5	. 028	. 029	. 029	. 030	. 03 I	. 032	. 032	. 033	. 034	. 034
13.0	+0.027	+0.028	+0.028	+0.029	+0.030	+0.03I	+0.031	+0.032	+0.033	+0.033
13.5	. 026	. 027	. 028	. 028	. 029	. 030	. 030	. 031	. 032	. 032
14.0	. 025	. 026	. 027	. 027	. 028	. 029	. 029	. 030	. 31	. 31
14.5	. 024	. 025	. 026	. 026	. 027	. 028	. 028	. 029	. 330	. 030
15.0	. 024	. 024	. 025	. 025	. 026	. 027	. 027	. 028	. 029	. 029
15.5	+0.023	+0.023	+0.024	+0.024	+0.025	+0.026	+0.026	+0.027	+0.027	+0.028
16.0	. 022	. 023	. 023	. 024	. 024	. 025	. 025	. 026	. 026	. 027
16.5	. 021	. 022	. 022	. 023	. 023	. 024	. 024	. 025	. 025	. 026
17.0	. 020	.021	. 021	. 022	. 022	. 023	. 023	. 024	. 024	. 025
17.5	. 019	. 020	. 020	. 02 I	.02I	. 022	. 022	. 023	. 023	. 024
18.0	+0.018	+0.019	+0.019	$+0.020$	+0.020	+0.02I	+0.021	+0.022	+0.022	+0.023
18.5	. 017	. 018	. 018	. 019	. 019	. 020	. 020	. 02 I	. 02 I	. 022
19.0	. 017	. 017	. 018	. 018	. 018	. 019	. 019	. 020	. 020	. $\mathrm{O2I}$
19.5	.O16	. 016	. 017	. 017	. 017	. 018	. 018	. 019	. 019	.02C
20.0	. 015	. 015	. 016	. 016	. 016	. 017	. 017	.or8	. 018	. 018
20.5	+0.014	+0.014	+0.015	+0.015	+0.016	+0.016	+0.016	+0.017	+0.017	+0.017
21.0	. 013	. 014	. 014	. 014	. O 5	. 015	. 015	. 016	. 016	. 016
21.5	.OI2	.or3	. 013	. 013	. 014	. 014	.OI4	. OI 5	. 015	. OI 5
22.0	. OII	. 012	. 012	. 012	. OI 3	.OI3	.OI3	.OI4	. OI 4	.OI4
22.5	.OII	.OII	. OrI	.OII	. OI 2	. 012	. OI 2	. OI3	. OI 3	. OI 3
23.0	+0.010	+0.010	+0.010	+o.010	+0.011	+0.011	+o.011	+0.012	+0.012	+0.012
23.5	. 009	. 009	. 009	. 010	. 010	. 010	. 010	. OII	. OII	. OI
24.0	. 008	. 008	. 008	. 009	. 009	. 009	. 009	.OIO	. 010	. 010
24.5	. 007	. 007	. 008	. 008	. 008	. 008	. 008	. 009	. 009	. 009
25.0	. 006	.006	. 007	. 007	. 007	. 007	. 007	. 008	. 008	. 008

table 10.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	19.0	19.5	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5
$\begin{array}{r} \text { F. } \\ 25^{\circ} .5 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.005 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.006 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.006 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.006 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.006 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.006 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.006 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.006 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +\mathbf{o . 0 0 7} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$
26.0	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 006
26.5	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 005
27.0	. 003	. 003	. 003	. 003	. 003	. 003	.003	. 003	. 003	. 003
27.5	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002
28.0	+0.001	+0.001	+0.001	+0.001	+0.00I	+0.001	+0.001	+0.001	+0.001	+0.001
28.5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
29.0	0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
29.5	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002
30.0	. 002	. 002	. 002	. 003	. 003	. 003	. 003	. 003	. 003	. 003
30.5	0.003	-0.003	-0.003	-0.003	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
31.0	. 004	. 004	. 004	. 004	. 005	. 005	. 005	. 005	. 005	. 005
31.5	. 005	. 005	. 005	. 005	. 005	. 006	. 006	. 006	. 006	. 006
32.0	. 006	. 006	. 006	. 006	. 006	. 007	. 007	. 007	. 007	. 007
32.5	. 007	. 007	. 007	. 007	. 007	. 008	. 008	. 008	. 008	. 008
33.0	-0.008	-0.008	-0.008	-0.008	-0.008	-0.009	-0.009	-0.009	-0.009	-0.009
33.5	. 008	. 009	. 009	. 009	. 009	. 010	. 010	.010	. 010	. 010
34.0	. 009	. 010	. 010	. 010	. 010	. 010	. OI I	. OII	. OII	. OII
34.5	. 010	. 010	.OII	.OII	. 011	. OII	. 012	. OI 2	. OI 2	. 013
35.0	. 011	. 011	. OI 2	. 012	. 012	. 012	. 013	. 013	. 013	. 014
35.5	-0.012	-0.012	-0.012	-0.013	-0.013	-0.013	-0.014	-0.014	-0.014	-0.015
- 36.0	. 013	. 013	.OI3	. 014	. 014	. O 4	. 015	.or5	. 015	. 016
36.5	. 014	. 014	. 014	. 015	. 015	. OI 5	. 016	. 016	. 016	. 017
37.0	. 014	. 015	. 015	. 016	. 016	. 016	. 017	. 017	.OI7	. 018
37.5	. 015	. 016	. 016	. 017	. 017	. 017	. 018	. 018	. 019	. 019
38.0	-0.016	-0.017	-0.017	-0.017	-0.018	-0.018	-0.019	-0.019	-0.020	-0.020
38.5	. 017	. 017	. 018	. 018	.OI9	. 019	. 020	. 020	. 02 I	. 021
39.0	. 018	. 018	.OI9	.O19	. 020	. 020	. 021	.02I	. 022	. 022
39.5	. 019	.019	. 020	. 020	.02I	. 02 I	. 022	. 022	. 023	. 023
40.0	. 020	. 020	. 021	. 02 I	. 022	. 022	. 023	. 023	. 024	. 024
40.5	0.020	-0.02I	-0.022	-0.022	-0.023	-0.023	-0.024	-0.024	-0.025	-0.025
41.0	. 021	. 02	. 0	. 023	. 024	. 024	. 025	. 025	. 026	. 026
41.5	. 022	. 023	. 023	. 024	. 025	. 025	. 026	. 026	. 027	. 027
42.0	. 023	. 024	. 024	. 025	. 025	. 026	. 027	. 027	. 028	. 029
42.5	. 024	. 025	. 025	. 026	. 026	. 027	. 028	. 028	. 029	. 030
43.0	-0.025	-0.025	-0.026	-0.027	-0.027	-0.028	-0.029	-0.029	-0.030	-0.03I
43.5	. 026	. 026	. 027	. 028	. 028	. 029	. 030	. 030	. 031	. 032
44.0	. 026	. 027	. 028	. 029	. 029	. 030	. 031	. 031	. 032	. 033
44.5	. 027	. 028	. 029	. 030	. 030	. 031	. 032	. 032	. 033	. 034
45.0	. 028	. 029	. 030	. 030	. 031	. 032	. 033	. 033	. 034	. 035
45.5	-0.029	-0.030	-0.031	-0.031	-0.032	-0.033	-0.034	-0.034	-0.035	-0.036
46.0	. 030	.03I	. 031	. 032	. 033	. 034	. 035	. 035	. 036	. 037
46.5	. 031	. 032	. 032	. 033	. 034	. 035	. 036	. 036	. 037	. 038
47.0	. 032	.032	. 033	. 034	. 035	. 036	. 037	. 037	. 038	. 039
47.5	. 033	. 033	. 034	. 035	. 036	. 037	. 038	. 038	. 039	. 040
48.0	-0.033	-0.034	-0.035	-0.036	-0.037	-0.038	-0.039	-0.040	-0.040	-0.04I
48.5	. 034	. 035	. 036	. 037	. 038	. 039	. 040	.04I	.04I	. 042
49.0	. 035	. 036	. 037	. 038	. 039	. 040	.041	. 042	. 042	. 043
49.5	. 036	. 037	. 038	. 039	. 040	. 041	. 042	. 043	. 044	. 044
50.0	. 037	. 038	. 039	. 040	.04I	. 042	. 043	. 044	0.45	. 046

Smithsonian Tables.

T'able 10.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE,
ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	19.0	19.5	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5
F.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.		Inch.	Inch.	Inch.
50.5	-0.038	-0.039	-0.040	-0.04I	-0.042	-0.043	-0.044	-0.045	-0.046	0.047
51.0	. 039	. 040	.04I	. 042	. 043	. 044	. 045	. 046	0.47	. 048
51.5	. 039	. 040	.04I	. 042	. 044	. 045	. 046	. 047	. 048	. 049
52.0	. 040	. 041	. 042	. 043	. 044	. 046	. 047	. 048	. 049	. 050
52.5	. 041	. 042	. 043	. 044	. 045	. 047	. 048	. 049	. 050	.051
53.0	-0.042	-0.043	-0.044	-0.045	-0.046	-0.047	-0.049	-0.050	-0.05I	-0.052
53.5	. 043	. 044	. 045	. 046	. 047	. 048	. 050	.051	. 052	. 053
54.0	. 044	. 045	. 046	. 047	. 048	. 049	.051	.052	. 053	. 054
54.5	. 045	. 046	. 047	. 048	. 049	. 050	. 052	. 053	. 054	. 055
55.0	. 045	. 047	. 048	. 049	. 050	.05I	. 053	. 054	. 055	. 056
55.5	-0.046	-0.047	-0.049	-0.050	-0.05I	-0.052	-0.054	-0.055	-0.056	-0.057
56.0	. 047	. 048	. 050	.05I	. 052	. 053	. 055	. 056	. 057	. 058
56.5	. 048	. 049	. 050	. 052	. 053	. 054	. 056	. 057	. 058	. 059
57.0	. 049	. 050	.05I	. 053	. 054	. 055	.057	. 058	. 059	. 060
57.5	. 050	.05I	. 052	. 054	. 055	. 056	. 058	. 059	. 060	.06I
58.0	-0.051	-0.052	-0.053	-0.055	-0.056	-0.057	-0.059	-0.060	-0.06I	-0.063
58.5	. 051	. 053	. 054	. 055	. 057	. 058	. 060	. 061	. 062	. 064
59.0	. 052	. 054	. 055	. 056	. 058	. 059	. 061	. 062	. 063	. 065
59.5	. 053	. 055	. 056	. 057	. 059	.060	.06I	. 063	. 064	. 066
60.0	. 054	. 055	. 057	. 058	. 060	.06I	. 062	. 064	. 065	. 067
60.5	-0.055	-0.056	-0.058	-0.059	-0.061	-0.062	-0.063	-0.065	-0.066	-0.068
6 I .0	. 056	. 057	. 059	. 060	. 062	. 063	. 064	. 066	. 067	. 069
61.5	. 057	. 058	. 060	.061	. 062	. 064	. 065	. 067	. 068	. 070
62.0	. 057	. 059	. 060	. 062	. 063	. 065	. 066	. 068	. 069	.071
62.5	. 058	. 060	.061	. 063	. 064	. 066	. 067	. 069	. 07 I	. 072
63.0	-0.059	-0.06I	-0.062	-0.064	-0.065	-0.067	-0.068	-0.070	-0.072	-0.073
63.5	. 060	. 062	. 063	. 065	. 066	0.68	. 069	. 071	. 073	. 074
64.0	.06I	. 062	. 064	. 066	. 067	. 069	. 070	. 072	. 074	. 075
64.5	. 062	. 063	. 065	. 067	. 068	. 070	. 071	. 073	. 075	. 076
65.0	. 063	. 064	. 066	. 067	. 069	. 071	. 072	. 074	. 076	. 077
65.5	-0.063	-0.065	-0.067	-0.068	-0.070	-0.072	-0.073	-0.075	-0.077	-0.078
66.0	. 064	. 066	. 068	. 069	.071	. 073	. 074	. 076	. 078	. 079
66.5	. 065	. 067	. 069	. 070	. 072	. 074	. 075	. 077	. 079	.08I
67.0	. 066	. 068	. 069	. 071	. 073	. 075	. 076	. 078	.080	. 082
67.5	. 067	. 069	. 070	. 072	. 074	. 076	. 077	. 079	.08I	. 083
68.0	-0.068	-0.069	-0.071	-0.073	-0.075	-0.077	-0.078	-0.08o	-0.082	-0.084
68.5	. 069	. 070	. 072	. 074	. 076	.078	. 079	.08I	. 083	. 085
69.0	. 069	. 071	. 073	. 075	. 077	. 079	.080	. 082	. 084	. 086
69.5	. 070	. 072	. 074	. 076	. 078	. 079	.081	. 083	.085	. 087
70.0	. 07 I	. 073	. 075	. 077	. 079	. 080	. 082	. 084	. 086	. 088
70.5	-0.072	-0.074	-0.076	-0.078	-0.080	-0.08I	-0.083	-0.085	-0.087	-0.089
71.0	. 073	. 075	. 077	. 079	. 080	. 082	. 084	. 086	. 088	. 090
71.5	. 074	. 076	. 078	. 079	.08I	.083	.085	. 087	. 089	.091
72.0 72.5	. 075	. 076	. 078	.080	. 082	. 088	. 086	. 088	. 090	. 092
72.5	. 075	. 077	. 079	.08I	. 083	. 085	. 087	. 089	.09I	. 093
73.0	-0.076	-0.078	-0.080	-0.082	-0.084	-0.086	-0.088	-0.090	-0.092	-0.094
73.5	. 077	. 079	.08I	. 083	. 085	. 087	. 089	.091	. 093	. 095
74.0	. 078	.080	. 082	. 084	. 086	. 088	. 090	. 092	. 094	. 096
74.5	. 079	.08I	. 083	. 085	. 087	. 089	.091	. 093	. 095	. 097
75.0	. 080	. 082	. 084	. 086	. 088	. 090	. 092	. 094	. 096	. 099

table 10.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	19.0	19.5	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5
F.	Inch.	Inch.	Inch	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch
75.5	-0.08I	-0.083	-0.085	-0.087	-0.089	-0.091	-0.093	-0.095	-0.097	-0.100
76.0	.08I	. 084	. 086	. 088	. 090	. 092	. 094	. 096	. 098	. IOI
76.5	. 082	. 084	.087	.089	.091	. 093	. 095	. 097	. 100	. 102
77.0	. 083	. 085	. 087	. 090	. 092	. 094	. 096	. 098	. IOI	. 103
77.5	. 084	. 086	. 088	.091	. 093	. 095	. 097	. 099	. 102	. 104
78.0	-0.085	-0.087	-0.089	-0.091	-0.094	-0.096	-0.098	-0.100	-0.103	-0.105
78.5	. 086	. 088	. 090	. 092	. 095	. 097	. 099	. 101	. 104	. 106
79.0	. 086	. 089	.09I	. 093	. 096	. 098	. 100	. 102	. 105	. 107
79.5	. 087	. 090	.092	. 094	. 097	. 099	. IOI	. 103	. 106	. 108
80.0	. 088	.091	. 093	. 095	. 097	. 100	. 102	. 104	. 107	. 109
80.5	-0.089	-0.091	-0.094	-0.096	-0.098	-0.101	-0.103	-0.105	-0.108	-0.110
81.0	. 090	. 092	. 095	. 097	. 099	. 102	. 104	. 106	. 109	. 111
81.5	.09I	. 093	. 096	. 098	. 100	. 103	. 105	.107	. 110	. 112
82.0	. 092	. 094	.096	. 099	. 101	. 104	. 106	. 108	. III	. 113
82.5	. 092	. 095	. 097	. 100	. 102	. 105	. 107	.109	. 112	. 114
83.0	-0.093	-0.096	-0.098	-0.101	-0.103	-0.106	-0.108	-0.111	-0.113	-0.115
83.5	. 094	. 097	. 099	. 102	. 104	. 107	. 109	. 112	. 114	. 117
84.0	. 095	. 098	.100	. 103	. 105	. 108	. 110	. 113	. 115	. 118
84.5	. 096	. 098	. 101	. 103	. 106	.108	. III	. 114	. 116	. 119
85.0	. 097	. 099	. 102	. 104	. 107	. 109	. 112	. 115	. 117	. 120
85.5	-0.098	-0.100	-0.103	-0. 105	-0.108	-0.110	-0.113	-0.116	-0.118	-0.121
86.0	. 098	. 101	. 104	. 106	. 109	. 111	. 114	. 117	. 119	. 122
86.5	. 099	. 102	. 105	. 107	. 110	. 112	. 115	. 118	. 120	. 123
87.0	. 100	. 103	. 105	. 108	. III	. II 3	. 116	. 119	. 121	. 124
87.5	. 101	. 104	. 106	. 109	. 112	. 114	. 117	. 120	. 122	. 125
88.0	-0.102	-0.105	-0.107	-0.110	-0.113	-0.115	-0.118	-0.12I	-0.123	-0.126
88.5	. 103	. 105	. 108	. 111	. 114	. 116	. 119	. 122	. 124	. 127
89.0	. 104	. 106	. 109	. 112	. 114	. 117	. 120	. 123	. 125	. 128
89.5	. 104	. 107	. 110	. 113	. 115	. 118	. 121	. 124	. 126	. 129
90.0	. 105	. 108	. 111	. 114	. 116	. 119	. 122	. 125	. 127	. 130
90.5	-0.106	-0.109	-0.112	-0.114	-0.117	-0.120	-0.123	-0.126	-0.128	-0.131
91.0	. 107	. 110	. II3	. 115	. 118	. 121	. 124	. 127	. 129	. 132
91.5	. 108	. III	. II3	. 116	. 119	. 122	.125	. 128	. 131	. 133
92.0	.109	. 112	. 114	. 117	. 120	. 123	. 126	. 129	. 132	. 134
92.5	. 110	. 112	. 115	. 118	. 121	. 124	. 127	. 130	. 133	. 135
93.0	O. I 10	-0.113	-0.116	-0.119	-0. 122	-0.125	-0. 128	-0.131	-0.134	-0. 137
93.5	. III	. 114	. 117	. 120	. 123	. 126	. 129	. 132	. 135	. 138
94.0	. 12	. 115	. 118	. 121	. 124	. 127	. 130	. 133	. 136	. 139
94.5	. 113	. 116	. 119	. 122	. 125	.128	.131	. 134	. 137	. 140
95.0	. 114	. 117	. 120	.123	. 126	.129	. 132	. 135	. 138	.141
95.5	-O.115	-0.118	-0.121	-0.124	-0.127	-0.130	-0.133	-0.136	-0.139	-0.142
96.0	. 115	. 119	. 122	. 125	. 128	. 131	. 134	. 137	. 140	. 143
96.5	. 116	. 119	. 122	. 126	. 129	. 132	. 135	. 138	. 141	. 144
97.0	. I17	. 120	.123	. 126	.130	. 133	. 136	. 139	. 142	. 145
97.5	. 118	. 121	. 124	. 127	. 130	. 134	. 137	. 140	. 143	. 146
98.0	-0.119	O. 122	-0.125	-0.128	-0.131	-0.135	-0.138	-0.141	-0.144	-0.147
98.5	. 120	. 123	. 126	. 129	. 132	. 135	. 139	. 142	. 145	. 148
99.0	. 121	. 124	. 127	. 130	. 133	. 136	. 140	. 143	. 146	. 149
99.5	. 121	. 125	. 128	. 131	. 134	. 137	.141	.144	. 147	. 150
100.0	. 122	. 126	. 129	. 132	. 135	. 138	. 142	. 145	. 148	. 151

table 10.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	24.0	24.2	24.4	24.6	24.8	25.0	25.2	25.4	25.6	25.8
$\begin{gathered} \text { F. } \\ 0.0 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.063 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.063 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.064 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.064 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.065 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.065 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.066 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.066 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.067 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.067 \end{gathered}$
+0.5	+0.06I	+0.062	+0.063	+0.063	+0.064	+0.064	+0.065	+0.065	+0.066	+0.066
1.0	. 060	.06I	.061	. 062	. 062	. 063	. 063	. 064	. 064	. 065
1.5	. 059	. 060	. 060	.06I	. 061	. 062	. 062	. 063	. 063	. 064
2.0	. 058	. 059	. 059	. 060	. 060	.06I	.06I	. 062	. 062	. 063
2.5	. 057	.058	. 058	. 059	. 059	. 059	. 060	. 060	.06I	.061
3.0	+0.056	+0.056	+0.057	+0.057	+0.058	+0.058	+0.059	+0.059	+0.060	+0.060
3.5	. 055	. 055	. 056	. 056	. 057	. 057	. 058	. 058	. 059	. 059
4.0	. 054	. 054	. 055	. 055	. 056	. 056	. 057	. 057	. 057	. 058
4.5	. 053	. 053	. 054	. 054	. 054	. 055	. 055	. 056	. 056	. 057
5.0	. 052	.052	. 052	. 053	. 053	. 054	. 054	. 055	. 055	. 056
5.5	+0.05I	+0.05I	+0.05I	+0.052	+0.052	+0.053	+0.053	+0.053	+0.054	+0.054
6.0	. 049	. 050	. 050	. 051	.05I	. 052	. 052	. 052	. 053	. 053
6.5	. 048	. 049	. 049	. 050	. 050	. 050	. 051	.05I	. 052	. 052
7.0	. 047	. 048	. 048	. 048	. 049	. 049	. 050	. 050	. 050	.05I
7.5	. 046	. 047	. 047	. 047	. 048	. 048	. 048	. 049	. 049	. 050
8.0	+0.045	+0.045	+0.046	+0.046	+0.047	+0.047	+0.047	+0.048	+0.048	+0.048
8.5	. 044	. 044	. 045	. 045	. 045	. 046	. 046	. 047	. 047	. 047
9.0	. 043	. 043	. 044	. 044	. 044	. 045	. 045	. 045	. 046	. 046
9.5	. 042	. 042	. 042	. 043	. 043	. 044	. 044	. 044	. 045	. 045
10.0	.04I	.04I	.04I	. 042	. 042	. 042	. 043	. 043	. 043	. 044
10.5	+0.040	+0.040	+0.040	+0.041	+0.04I	+0.041	+0.042	+0.042	+0.042	+0.043
11.0	. 039	. 039	. 039	. 039	. 040	. 040	. 040	.04I	. 041	. 041
11.5	. 037	. 038	. 038	. 038	. 039	. 039	. 039	. 040	. 040	. 040
12.0	. 036	. 037	. 037	. 037	. 038	. 038	. 038	. 038	. 039	. 039
12.5	. 035	. 036	. 036	. 036	. 036	. 037	. 037	. 037	. 038	. 038
13.0	+0.034	+0.034	+0.035	+0.035	+0.035	+0.036	$+0.036$	+0.036	+0.036	
13.5	. 033	. 033	. 034	. 034	. 034	. 034	. 035	. 035	. 035	. 036
14.0	. 032	. 032	. 032	. 033	. 033	. 033	. 034	. 034	. 034	. 034
14.5	. 031	.03I	.03I	. 032	. 032	.032	. 032	. 033	. 033	. 033
15.0	. 030	. 330	. 030	. 030	.031	.03I	. 031	.03I	. 032	. 032
15.5	+0.029	+0.029	+0.029	+0.029	+0.030	+0.030	+0.030	+0.030	+0.03I	+0.031
16.0	. 028	. 028	. 028	. 028	. 028	. 029	. 029	. 029	. 029	. 030
16.5	. 026	. 027	. 027	. 027	. 027	. 028	. 028	. 028	. 028	. 028
17.0	. 025	. 026	. 026	. 026	. 026	. 026	. 027	. 027	. 027	. 027
17.5	. 024	. 024	. 025	. 025	. 025	. 025	. 026	. 026	. 026	. 026
18.0	+0.023	+0.023	+0.024	+0.024	+0.024	+0.024	+0.024	+0.025	+0.025	+0.025
18.5	. 022	. 022	. 022	. 023	. 023	. 023	. 023	. 023	. 024	. 024
19.0	. 021	.02I	.021	. 022	. 022	. 022	. 022	. 022	. 022	. 023
19.5	. 020	. 020	. 020	. 020	.021	.021	.02I	. 021	. $\mathrm{O2I}$. 021
20.0	. 019	. 019	. 019	. 019	. 019	. 020	. 020	. 020	. 020	. 020
20.5	+0.018	+0.018	+0.018	+0.018	+0.018	+0.018	+0.019	+0.019	+0.019	+0.019
21.0	. 017	. 017	. 017	. 017	. 017	. 017	. 017	. 018	. 018	. 018
21.5	.016	. 016	.or6	.or6	. 016	. 016	. 016	.or6	. 017	. 017
22.0	. 014	. 15	.or5	. 015	. 015	. 015	. Or 5	. 015	. OI 5	. 016
22.5	. O 3	. 1013	.or4	. 014	. 014	. 014	. 014	. 014	. 014	. 014
23.0	+0.012	+0.012	+0.012	+0.013	+0.013	+0.013	+0.013	+0.013	+0.013	+0.013
23.5	. 011	. 011	.or 1	.ori	. 012	. 012	. O 2	. 012	. O 2	. OI 2
24.0	. 010	. 010	. 010	. 010	. 010	.OII	.OII	. Or 1	. Or I	.OII
24.5	. 009	. 009	. 009	. 009	.009	. 009	. 009	. 010	.oro	. 010
25.0	. 008	. 008	. 008	. 008	. 008	. 008	. 008	. 008	. 008	. 009

Table 10.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Ther. mometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	24.0	24.2	24.4	24.6	24.8	25.0	25.2	25.4	25.6	25.8
$\begin{gathered} \text { F. } \\ 25.5 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.007 \end{array}$
26.0	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006
26.5	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005
27.0	. 004	. 004	. 004	.004	. 004	. 004	. 004	. 004	. 004	. 004
27.5	. 002	. 002	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003
28.0	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001
28.5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
29.0	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	0.001	-0.001
29.5	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002
30.0	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003
30.5	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
31.0	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 006	. 006
31.5	. 006	. 006	. 006	. 006	. 006	. 007	. 007	. 007	. 007	. 007
32.0	. 007	. 007	. 007	. 008	. 008	. 008	. 008	. 008	. 008	. 008
32.5	. 008	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 009
33.0	-0.010	-0.010	-0.010	-0.010	-0.010	-0.010	-0.010	-0.010	-0.010	-0.010
33.5	.OII	. Or 1	. OI I	. OII	. OII	. 011	. OI 1	. OII	. OI I	. 017
34.0	. 012	. Or 2	.OI2	. 012	. 012	. 012	. 012	. OI 2	. 012	.OI3
34.5	.013	. OI 3	.OI3	. Or 3	. 013	. .oI3	. 013	. 014	. 014	. 014
35.0	. 014	. 014	. 014	. 014	. 014	. 014	. 015	. 015	. 015	. 015
35.5	0.015	-0.015	-0.015	-0.015	-0.015	-0.016	-0.016	-0.016	-0.016	0.016
36.0	. 016	. 016	. 016	. 016	. 017	. 017	. 017	. 017	. 017	. 017
36.5	. 017	. 017	. OI 7	. 018	. 018	.or8	.or8	. 018	. 18	. 18
37.0	. 018	. 018	. 019	. 019	. 019	. 019	. 019	.OI9	. 019	. 019
37.5	. 019	. 019	. 020	. 020	. 020	. 020	. 020	. 020	. 02 I	.02I
38.0	-0.020	-0.021	-0.021	-0.021	-0.021	-0.021	-0.021	-0.022	-0.022	-0.022
38.5	. 02 I	. 022	. 022	. 022	. 022	. 022	. 023	. 023	. 023	. 023
39.0	. 023	. 023	. 023	. 023	. 023	. 024	. 024	. 024	. 024	. 024
39.5	. 024	. 024	. 024	. 024	. 024	. 025	. 025	. 025	. 025	. 025
40.0	. 025	. 025	. 025	. 025	. 026	. 026	. 026	. 026	. 026	. 027
40.5	-0.026	-0.026	-0.026	-0.026	-0.027	-0.027	-0.027	-0.027	-0.028	-0.028
41.0	. 027	. 027	. 027	. 028	. 028	. 028	. 028	. 029	. 029	. 029
41.5	. 028	. 028	. 028	. 029	. 029	. 029	. 029	. 030	. 030	.030
42.0	. 029	. 029	. 030	. 030	. 030	. 030	.03I	.03I	. 31	.03I
42.5	. 030	.030	.03I	. 031	. 031	.03I	. 032	. 032	. 032	. 032
43.0	-0.031	-0.032	-0.032	-0.032	-0.032	-0.033	-0.033	-0.033	-0.033	--0.034
43.5	. 032	. 033	. 033	. 033	. 033	. 034	. 034	. 034	. 035	. 035
44.0	. 033	. 034	. 034	. 034	. 035	. 035	. 035	. 035	. 036	. 036
44.5	. 035	. 035	. 035	. 035	. 036	. 036	. 036	. 037	. 037	. 037
45.0	. 036	. 036	. 036	. 037	. 037	. 037	. 037	. 038	. 038	. 038
45.5	-0.037	-0.037	-0.037	-0.038	-0.038	-0.038	-0.039	-0.039	-0.039	-0.039
46.0	. 038	. 038	. 038	. 039	. 039	. 039	. 040	. 040	. 040	.04I
46.5	. 039	. 039	. 040	. 040	. 040	.04I	.041	.041	. 041	. 042
47.0	. 040	. 040	.041	. 041	.04I	. 042	. 042	. 042	. 043	. 043
47.5	.04I	. 041	. 042	. 042	. 042	. 043	. 043	. 043	. 044	. 044
48.0	-0.042	-0.042	-0.043	-0.043	-0.044	-0.044	-0.044	-0.045	-0.045	-0.045
48.5	. 043	. 044	. 044	. 044	. 045	. 045	. 045	. 046	. 046	. 046
49.0	. 044	. 045	. 045	. 045	. 046	. 046	. 047	. 047	. 047	. 048
49.5	. 045	. 046	. 046	. 047	. 047	. 047	. 048	. 048	. 048	. 049
50.0	. 046	. 047	. 047	. 048	. 048	. 048	. 049	. 049	. 050	. 050

table 10.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	24.0	24.2	24.4	24.6	24.8	25.0	25.2	25.4	25.6	25.8
$\stackrel{\text { F. }}{5}$	Inch.	Inch.	Inch.	Inch.	Inch.		Inch.		Inch.	
50.5	-0.048	-0.048	-0.048	-0.049	-0.049	-0.050	-0.050	-0.050	-0.05I	-0.051
51.0	. 049	. 049	. 049	. 050	. 050	.05I	.05I	. 051	. 052	. 052
51.5	. 050	. 050	. 051	. 051	. 051	. 052	. 052	. 053	. 053	. 053
52.0	.05I	.05I	. 052	. 052	. 053	. 053	. 053	. 054	. 054	. 055
52.5	. 052	. 052	. 053	. 053	. 054	. 054	. 055	. 055	. 055	. 056
53.0	-0.053	-0.053	-0.054	-0.054	-0.055	$\bigcirc 0.055$	-0.056	-0.056	-0.057	-0.057
53.5	. 054	. 055	. 055	. 055	. 056	. 056	. 057	. 057	. 058	. 058
54.0	. 055	. 056	. 056	. 057	. 057	. 057	. 058	. 058	. 059	. 059
54.5	. 056	. 057	. 057	. 058	. 058	. 059	. 059	. 060	. 060	. 060
55.0	. 057	. 058	. 058	. 059	. 059	. 060	. 060	.06I	.06I	. 062
55.5	-0.058	-0.059	-0.059	-0.060	-0.060	-0.061	-0.06I	-0.062	-0.062	-0.063
56.0	. 060	. 060	. 060	.06I	. 061	. 062	. 062	. 063	. 063	. 064
56.5	. 061	.06I	. 062	. 062	. 063	. 063	. 064	. 064	. 065	. 065
57.0	. 062	. 062	. 063	. 063	. 064	. 064	. 065	. 065	. 066	. 066
57.5	. 063	. 063	. 064	. 064	. 065	. 065	. 066	. 066	. 067	. 067
58.0	-0.064	-0.064	-0.065	-0.065	-0.066	-0.066	-0.067	-0.068	-0.068	-0.069
58.5	. 065	. 065	. 066	. 067	. 067	. 068	. 068	. 069	. 069	. 070
59.0	. 066	. 067	. 067	. 068	. 068	.069	.069	. 070	. 070	. 071
59.5	. 067	. 068	. 068	. 069	. 069	. 070	. 070	. 071	. 072	. 072
60.0	. 068	. 069	. 069	. 070	. 070	. 071	. 072	. 072	. 073	. 073
60.5	-0.069	-0.070	-0.070	-0.071	-0.072	-0.072	-0.073	-0.073	-0.074	-0.074
61.0	. 070	. 071	. 072	. 072	. 073	. 073	. 074	. 074	. 075	. 076
61.5	. 071	. 072	. 073	. 073	. 074	. 074	. 075	. 076	. 076	. 077
62.0	. 073	. 073	. 074	. 074	. 075	. 076	. 076	. 077	. 077	. 078
62.5	. 074	. 074	. 075	. 075	. 076	. 077	. 077	. 078	. 078	. 079
63.0	-0.075	-0.075	-0.076	-0.077	-0.077	-0.078	-0.078	-0.079	-0.08o	-0.080
63.5	. 076	. 076	. 077	. 078	. 078	. 079	. 080	. 080	.081	.081
64.0	. 077	. 077	. 078	. 079	. 079	. 080	.08I	.081	. 082	. 082
64.5	. 078	. 079	. 079	. 080	.08I	.08I	. 082	. 082	. 083	. 084
65.0	. 079	. 080	. 080	.08I	. 082	. 082	. 083	. 084	. 084	. 085
65.5	-0.080	-0.08I	-0.08I	-0.082	-0.083	-0.083	-0.084	-0.085	-0.085	-0.086
66.0	. 081	. 082	. 083	. 083	. 084	. 085	. 085	. 086	. 087	. 087
66.5	. 082	. 083	. 084	. 084	. 085	. 086	. 086	. 087	. 088	. 088
67.0	. 083	. 084	. 085	. 085	. 086	. 087	. 087	. 088	.089	. 090
67.5	. 084	. 085	. 086	. 087	. 087	. 088	.089	. 089	. 090	.09I
68.0	-0.085	-0.086	-0.087	-0.088	-0.088	-0.089	-0.090	-0.090	-0.091	-0.092
68.5	. 087	. 087	. 088	. 089	. 089	. 090	. 091	. 092	. 092	. 093
69.0	. 088	. 088	.089	. 090	.091	.091	. 092	. 093	. 093	. 094
69.5	.089	. 089	. 090	.091	. 092	. 092	. 093	. 094	. 095	. 095
70.0	. 090	.09I	.091	. 092	. 093	. 094	. 094	. 095	. 096	. 097
70.5	-0.091	-0.092	-0.092	-0.093	-0.094	-0.095	-0.095	-0.096	-0.097	-0.098
71.0	. 092	. 093	. 094	. 094	. 095	. 096	. 097	. 097	. 098	. 099
71.5	. 093	. 094	. 095	. 095	. 096	. 097	. 098	. 098	. 099	. 100
72.0	. 094	. 095	. 096	. 096	. 097	. 098	. 099	. 100	. 100	. 101
72.5	. 095	. 096	. 097	. 098	. 098	. 099	. 100	. IOI	. 102	. 102
73.0	-0.096	-0.097	-0.098	-0.099	-0.100	-0.100	-0.101	-0.102	-0.103	-0.104
73.5	. 097	. 098	. 099	. 100	. IOI	. 101	. 102	. 103	. 104	. 105
74.0	. 098	. 099	. 100	. IOI	. 102	. 103	. 103	. 104	. 105	. 106
74.5	. 100	.100	. 101	. 102	. 103	.104	.105	.105	. 106	. 107
75.0	. 101	. IOI	. 102	. 103	. 104	.105	. 106	. 106	. 107	. 108

TAble 10.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Ther-	HEIGHT OF THE BAROMETER IN INCHES.									
Fahren-	24.0	24.2	24.4	24.6	24.8	25.0	25.2	25.4	25.6	25.8
$\begin{array}{r} \text { F. } \\ 75.5 \end{array}$	$\begin{gathered} \text { Inch. } \\ -0.102 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -\mathrm{o.} \mathrm{103} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -\mathrm{o.} \mathrm{IO} \end{gathered}$	$\begin{aligned} & \text { Inch. } \\ & \text {-o. } 104 \end{aligned}$	$\begin{gathered} \text { Inch. } \\ -\mathrm{O} .105 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ - \text { o. } 106 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.107 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ - \text { o. } 108 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -\mathrm{o.} 108 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ \text {-0. } 109 \end{gathered}$
76.0	. 103	. 104	. 104	. 105	. 106	. 107	. 108	. 109	. 110	. 110
76.5	. 104	. 105	. 106	. 106	. 107	. 108	. 109	. 110	. III	. 112
77.0	. 105	. 106	. 107	. 108	. 108	. 109	. 110	. 111	. 112	. 113
77.5	. 106	. 107	. 108	. 109	. 110	. 110	. II I	. 112	. 113	. 114
78.0	-0.107	-0. 108	-0.109	-0.110	-O. 111	-0.112	-0.112	-0.113	-0.114	-0. 115
78.5	. 108	. 109	. 110	. 111	. 112	. 113	. 114	. 114	. 115	. 116
79.0	. 109	. 110	. 111	. 112	. 113	.114	, .115	. 116	. 117	. 117
79.5	. 110	. III	. 112	. 113	. 114	. II5	. 116	. 117	. 118	. 119
80.0	. 111	. 112	. 113	. 114	. 115	. 116	. 117	. 118	. 119	. 120
80.5	-0.112	-0.113	-O. 114	-0.115	-0.116	-0.117	-0.118	-0.119	-0.120	-0.121
8 I .0	. 114	. 115	. 115	. 116	. 117	. 118	. 119	. 120	. 121	. 122
81. 5	. 115	. 116	. 117	.118	. 118	. 119	. 120	. 121	. 122	. 123
82.0	. 116	. 117	. 118	. 119	. 120	. 12 I	. 122	. 122	. 123	. 124
82.5	. 117	. 118	. 119	. 120	. 121	. 122	. 123	. 124	. 125	. 126
83.0	-0.118	-0.119	-0.120	-0.12I	-0.122	-0.123	-0.124	-0.125	-0.126	-0.127
83.5	. 119	. 120	. 121	. 122	. 123	. 124	. 125	. 126	. 127	. 128
84.0	. 120	. 121	. 122	.123	. 124	. 125	. 126	. 127	. 128	. 129
84.5	. 121	. 122	.123	. 124	. 125	. 126	.127	. 128	. 129	. 130
85.0	. 122	.123	. 124	. 125	. 126	. 127	. 128	. 129	. 130	. 31
85.5	-0.123	-0. 124	-0. 125	-0. 126	-0. 127	-0.128	-0.129	-0.130	-0.13I	-0.133
86.0	. 124	. 125	. 126	. 127	. 128	. 130	. 13 I	. 132	. 133	. 134
86.5	. 125	. 126	. 128	. 129	. 130	. 131	. 132	. 133	. 134	. 135
87.0	. 126	.128	.129	. 130	. 131	. 132	. 133	. 134	. 35	. 136
87.5	. 128	.129	. 130	. 131	. 132	. 133	. 134	. 135	. 136	. 137
88.0	-0. 129	-0.130	-0.131	-0.132	-0.133	-0.134	-0. I35	-0.136	-0. 137	-0.138
88.5	. 130	. 131	. 132	. 133	. 134	. 135	. 136	. 137	. 138	. 139
89.0	. 131	. 132	. 133	. 134	. 135	. 136	. 137	. 138	. 140	. 141
89.5	.132	. 133	. 134	. 135	. 136	. 137	. 138	. 140	. 141	. 142
90.0	. 133	.134	. 135	. 136	. 137	. 138	. 140	. 141	. 142	. 143
90.5	-0.134	-0.135	-0.136	-0. I37	-OI. 39	-0.140	-0.141	-0.142	-0.143	-0.144
91.0	. 135	. 136	. 137	. 138	. 140	. 141	. 142	. 143	. 144	. 145
91.5	. 136	. 137	. 138	. 140	. 141	. 142	. 143	. 144	. 145	. 146
92.0	. 137	. 138	. 140	. 141	. 142	. 143	. 144	. 145	. 146	. 148
92.5	. 138	. 139	.141	. 142	. 143	. 144	. 145	. 146	. 148	. 149
93.0	-0. 139	-0.14I	-0.142	-0.143	-0.144	-0.145	-0.146	-0.148	-0.149	-0.150
93.5	. 140	. 142	. 143	. 144	. 145	. 146	. 148	. 149	. 150	. 151
94.0	. 142	. 143	. 144	. 145	. 146	. 147	. 149	.150	. 151	. 152
94.5	.143	. 144	. 145	. 146	. 147	. 149	.150	.151	. 152	. 153
95.0	. 144	. 145	. 146	. 147	. 149	. 150	. 151	. 152	. 153	. 154
95.5	-0. 145	-0.146	-0.147	-0.148	-0.150	-0.151	-0.152	-0.153	-0.154	-0.156
96.0	. 146	. 147	. 148	. 150	. 151	. 152	. 153	. 154	. 156	. 57
96.5	. 147	. 148	. 149	-. 151	. 152	. 153	. 154	. 156	. 157	. 158
97.0 97.5	.148 .149	.149 .150	. 150	152 .153	. 153	. 154	. 155	$\begin{array}{r}157 \\ . \\ \hline 58\end{array}$. 158	. 159
97.5	. 149	. 150	. 152	. 153	. 154	. 155	. 157	. 158	. 159	. 160
98.0	-0.150	-0.15I	-0.153	-0.154	-0. 155	-0.156	-0.158	-0.159	-0.160	-0.161
98.5	. 151	. 53	. 54	. 155	. 156	. 158	.159	. 160	.16I	. 163
99.0	.152	. 154	.155	. 156	. 157	. 159	. 160	.161	. 162	. 164
99.5 100.0	.153 .154	.155 .156	.156 .157	.157 .158	.159 .160	.160 .161	.161	.162 .163	.164 .165	. 165
	. 54	. 5	- 57						.165	

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	26.0	26.2	26.4	26.6	26.8	27.0	27.2	27.4	27.6	27.8
$\begin{gathered} \text { F. } \\ 0.0 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.068 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.068 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.069 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.069 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.070 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.070 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.07 \mathrm{I} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.07 \mathrm{I} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.072 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.072 \end{gathered}$
+0.5	+0.067	+0.067	+0.068	+0.068	+0.069	+0.069	+0.070	+0.070	+0.071	+0.071
1.0	. 065	. 066	. 066	. 067	. 067	. 068	. 068	. 069	. 069	. 070
1.5	. 064	. 065	. 065	. 066	. 066	. 067	. 067	. 068	. 068	. 069
2.0	. 063	. 064	. 064	. 065	. 065	. 065	. 066	. 066	. 067	. 067
2.5	. 062	. 062	. 063	. 063	. 064	. 064	. 065	. 065	. 066	. 066
3.0	+0.06I	+0.06I	+0.062	+0.062	+0.063	+0.063	+0.063	+0.064	+0.064	+0.065
3.5	. 059	. 060	. 060	. 061	. 061	. 062	. 062	. 063	. 063	. 064
4.0	. 058	. 059	. 059	. 060	. 060	.06I	.06I	. 061	. 062	. 062
4.5	. 057	. 058	. 058	. 058	. 059	. 059	. 060	. 060	.06I	.06I
5.0	. 056	. 056	. 057	. 057	. 058	. 058	. 059	. 059	. 059	. 060
5.5	+0.055	+0.055	+0.056	+0.056	+0.056	+0.057	+0.057	+0.058	+0.058	+0.059
6.0	. 054	. 054	. 054	. 055	. 055	. 056	. 056	. 056	. 057	. 057
6.5	. 052	. 053	.053	. 054	. 054	. 054	. 055	.055	.056	. 056
7.0	.05I	. 052	. 052	. 052	. 053	. 053	. 054	. 054	. 054	. 055
$7 \cdot 5$. 050	. 050	.05I	.05I	.052	.052	.052	. 053	. 053	. 053
8.0	+0.049	+0.049	+0.050	+0.050	+0.050	+0.05I	+0.051	+0.051	+0.052	+0.052
8.5	. 048	. 048	. 048	. 049	. 049	. 049	. 050	. 050	.05I	.051
9.0	. 046	. 047	. 047	. 048	. 048	. 048	. 049	. 049	. 049	. 050
9.5	. 045	. 046	. 046	. 046	. 047	. 047	. 047	. 048	. 048	. 048
10.0	. 044	. 044	. 045	. 045	. 045	. 046	. 046	. 046	. 047	. 047
10.5	+0.043	+0.043	+0.044	+0.044	+0.044	+0.045	+0.045	+0.045	+0.046	+0.046
11.0	. 042	. 042	. 042	. 043	. 043	. 043	. 044	. 044	. 044	. 045
11.5	.04I	.041	.041	.041	. 042	. 042	. 042	. 043	. 043	. 043
12.0	. 039	. 040	. 040	. 040	. 041	. 041	. 041	.04I	. 042	. 042
12.5	. 038	. 038	. 039	. 039	. 039	. 040	. 040	. 040	. 040	. 041
13.0	+0.037	+0.037	+0.038	+0.038	+0.038	+0.038	+0.039	+0.039	+0.039	+0.040
13.5	. 036	. 036	. 036	. 037	. 037	. 037	. 037	. 038	. 038	. 038
14.0	. 035	. 035	. 035	. 035	. 036	. 036	. 036	. 036	. 037	. 037
14.5	. 033	. 034	. 034	. 034	. 034	. 035	. 035	. 035	. 035	. 036
15.0	. 032	. 032	. 033	. 033	. 033	. 033	. 034	. 034	. 034	. 034
15.5	+0.03I	+0.031	+0.032	+0.032	+0.032	+0.032	+0.032	+0.033	+0.033	+0.033
16.0	. 030	. 030	. 030	. 031	. 031	. 031	. 031	. 031	. 032	. 032
16.5	. 029	. 029	. 029	. 029	. 030	. 030	. 030	. 030	. 030	. 031
17.0	. 027	. 028	. 028	. 028	. 028	. 029	. 029	. 029	. 029	. 029
17.5	. 026	. 027	. 027	. 027	. 027	. 027	. 028	. 028	. 028	. 028
18.0	+0.025	+0.025	+0.026	+0.026	+0.026	+0.026	+0.026	+0.026	+0.027	+0.027
18.5	. 024	. 024	. 024	. 024	. 025	. 025	. 025	. 025	. 025	. 026
19.0	. 023	. 023	. 023	. 023	.023	. 024	. 024	. 024	. 024	. 024
19.5	. 022	. 022	. 022	. 022	. 022	. 022	. 023	. 023	. 023	. 023
20.0	. 020	. 021	. 021	. 021	. 021	. 021	. 021	.02I	. 022	. 022
20.5	+0.019	+0.019	+0.020	+0.020	+0.020	+0.020	+0.020	+0.020	+0.020	+0.021
21.0	. 018	. 018	. 018	. 018	. 019	. 019	. 019	. 019	. 019	. 019
21.5	. 017	. 017	. 017	. 017	. 017	. 017	. 018	. 018	. 018	. 018
22.0	. 016	. 016	. 016	. 016	. 016	. 016	. 016	. 017	.OI7	. 017
22.5	. 014	. 1215	. 015	. 015	. 015	. 015	. 015	. 015	. 015	. 015
23.0	+0.013	+0.013	+0.014	+0.014	+0.014	+0.014	+0.014	+0.014	+0.014	+o.014
23.5	. 012	. 012	. 012	. 012	. 012	.oI3	.013	. 013	. 013	. 013
24.0	. OII	.OII	.OII	. 011	. 011	. Ol 1	. 011	. 012	. 012	. Ol 2
24.5	. 010	. 010	.OIO	. 010	. 010	. 010	. 010	. 010	. 010	. 110
25.0	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 009

table 10.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	26.0	26.2	26.4	26.6	26.8	27.0	27.2	27.4	27.6	27.8
$\begin{gathered} \text { F. } \\ 25^{\circ} .5 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$
26.0	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 007	. 007	. 007
26.5	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005
27.0	. 004	. 004	. 004	. 004	. 004	. 004	.004	. 004	. 004	. 004
27.5	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003
28.0	+.0.00I	+0.001	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002
28.5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
29.0	0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
29.5	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002
30.0	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003
30.5	-0.004	-0.004	-0.004	-0 005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
31.0	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006
31.5	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 007
32.0	. 008	. 008	. 008	. 008	. 008	. 008	. 008	. 008	. 008	. 009
32.5	. 009	. 009	. 009	. 009	. 009	. 009	. 010	. 010	. 010	. 010
33.0	-0.010	-0.010	-0.010	-0.01I	-0.01I	-0.011	-0.011	-0.011	-0.011	-0.011
33.5	. OII	. 012	. OI 2	. 012	. 012	. 012	. 012	. OI 2	. 012	. 012
34.0	.or3	. 013	.OI3	. OI 3	. 013	. 013	.or3	. OI 3	. OI 3	.OI4
34.5	. 014	. 014	. 014	. 014	. 014	.014	. 014	. OI 5	. OI 5	. 015
35.0	. 015	.015	. OI 5	. 015	. 015	. 016	. 016	. 016	. 016	. 016
35.5	-0.016	-0.016	-0.016	-0.017	-0.017	-0.017	-0.017	-0.017	-0.017	-0.017
36.0	. 017	. 018	. 018	. 018	. or 8	.oI8	. 018	. 018	. 018	. 019
36.5	. 019	. 019	. 019	. 019	. 019	.OI9	. 019	. 020	. 020	. 020
37.0	. 020	. 020	. 020	. 020	. 020	.02I	.021	. 02 I	. 021	.02I
37.5	. 021	.02I	. 021	. 021	. 022	. 022	. 022	. 022	. 022	. 022
38.0	0.022	-0.022	-0.022	-0.023	-0.023	-0.023	-0.023	-0.023	-0.023	-0.024
38.5	. 023	. 023	. 024	. 024	. 024	. 024	. 024	. 025	. 025	. 025
39.0	. 024	. 025	. 025	. 025	. 025	. 025	. 026	. 026	. 026	. 026
39.5	. 026	. 026	. 026	. 026	. 026	. 027	. 027	. 027	. 027	. 027
40.0	. 027	. 027	. 027	. 027	. 028	. 028	. 028	. 028	. 028	. 029
40.5	-0.028	-0.028	-0.028	-0.029	-0.029	-0.029	-0.029	-0.030	-0.030	-0.030
41.0	. 029	. 029	. 030	. 030	. 030	. 030	. 031	. 031	. 031	. 031
41.5	.030	.03I	. 031	. 031	. 031	. 032	. 032	. 032	. 032	. 032
42.0	. 032	. 032	. 032	. 032	. 033	. 033	. 033	. 033	. 033	. 034
42.5	. 033	. 033	. 033	. 033	. 034	. 034	. 034	. 034	. 035	. 035
43.0	-0.034	-0.034	-0.034	-0.035	-0.035	-0.035	-0.035	-0.036	-0.036	-0.036
43.5	. 035	. 035	. 036	. 036	. 036	. 036	. 037	. 037	. 037	. 037
44.0	. 036	. 037	. 037	. 037	. 037	. 038	. 038	. 038	. 038	. 039
44.5	. 037	. 038	. 038	. 038	. 039	. 039	. 039	. 039	. 040	. 040
45.0	. 039	. 039	- . 039	. 039	. 040	. 040	. 040	. 041	.04I	.04I
45.5	-0.040	-0.040	-0.040	-0.04I	-0.04I	-0.041	-0.042	-0.042	-0.042	-0.043
46.0	.041	.04I	. 042	. 042	. 042	. 043	. 043	. 043	. 043	. 044
46.5	. 042	. 042	. 043	. 043	. 043	. 044	. 044	. 044	. 045	. 045
47.0	. 043	. 044	. 044	. 044	. 045	. 045	. 045	. 046	. 046	. 046
47.5	. 045	. 045	. 045	. 046	. 046	. 046	. 047	. 047	. 047	. 048
48.0	-0.046	-0.046	-0.046	-0.047	-0.047	-0.047	-0.048	-0.048	-0.048	-0.049
48.5	. 047	. 047	. 048	. 048	. 048	. 049	. 049	. 049	. 050	. 050
49.0	. 048	. 048	. 049	. 049	. 049	. 050	. 050	.05I	. 051	.051
49.5	. 049	. 050	.050	. 050	.051	.051	.051	. 052	. 052	. 053
50.0	. 050	.05I	.05I	. 052	. 052	. 052	. 053	. 053	. 053	. 054

TABLE 10.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	26.0	26.2	26.4	26.6	26.8	27.0	27.2	27.4	27.6	27.8
F.	Inch.									
50.5	-0.052	-0.052	-0.052	-0.053	-0.053	-0.054	-0.054	-0.054	-0.055	-0.055
51.0	. 053	. 053	. 054	. 054	. 054	. 055	. 055	. 056	. 056	. 056
51.5	. 054	. 054	. 055	. 055	. 056	. 056	. 056	. 057	. 057	. 058
52.0	. 055	. 055	. 056	. 056	. 057	. 057	. 058	. 058	. 058	. 059
52.5	. 056	. 057	. 057	. 058	. 058	. 058	. 059	. 059	. 060	. 060
53.0	-0.057	-0.058	-0.058	-0.059	-0.059	-0.060	-0.060	-0.06I	-0.06I	-0.06r
53.5	. 059	. 059	. 059	. 060	. 060	.06I	. 061	. 062	. 062	. 063
54.0	. 060	. 060	.06I	.06I	. 062	. 062	. 063	. 063	. 063	. 064
54.5	.06I	.06I	. 062	. 062	. 063	. 063	. 664	. 064	. 065	. 065
55.0	. 062	. 063	. 063	. 064	. 064	. 064	. 065	. 065	. 066	. 066
55.5	-0.063	-0.064	-0.064	-0.065	-0.065	-0.066	-0.066	-0.067	-0.067	-0.068
56.0	. 064	. 065	. 065	. 066	. 066	. 067	. 067	. 068	. 068	. 069
56.5	. 066	. 066	. 067	. 067	. 068	. 068	. 069	. 069	. 070	. 070
57.0	. 067	. 067	. 068	. 068	. 069	. 069	.070	. 070	.071	.071
57.5	. 068	. 069	. 069	. 070	. 070	. 071	.071	. 072	. 072	. 073
58.0	-0.069	-0.070	-0.070	-0.071	-0.07I	-0.072	-0.072	-0.073	-0.073	-0.074
58.5	. 070	. 07 I	. 071	. 072	. 072	. 073	. 074	. 074	. 075	. 075
59.0	. 072	. 072	. 073	. 073	. 074	. 074	. 075	. 075	.076	. 076
59.5	. 073	. 073	. 074	. 074	. 075	. 075	. 076	. 077	. 077	. 078
60.0	. 074	. 074	. 075	. 076	. 076	. 077	. 077	. 078	. 078	. 079
60.5	-0.075	-0.076	-0.076	-0.077	-0.077	-0.078	-0.078	-0.079	-0.080	-0.08o
6 I .0	. 076	. 077	. 077	. 078	. 079	. 079	.080	. 080	.081	.081
61.5	. 077	. 078	. 079	. 079	.080	.080	.08I	. 082	.082	. 083
62.0	. 079	. 079	.080	.080	.08I	. 082	. 082	. 083	. 083	.084
62.5	. 080	. 080	.08I	.082	. 082	. 083	. 083	. 084	. 085	. 085
63.0	-0.081	-0.082	-0.082	-0.083	-0.083	-0.084	-0.085	-0.085	-0.086	-0.086
63.5	. 082	. 083	. 083	. 084	. 085	. 085	. 086	. 086	. 087	.088
64.0	.083	. 084	. 085	. 085	. 086	. 086	. 087	. 088	. 088	.089
64.5	. 084	. 085	. 086	. 086	. 087	. 088	. 088	. 089	. 090	. 090
65.0	. 086	. 086	. 087	. 088	. 088	. 089	. 090	. 090	.091	. 092
65.5	-0.087	-0.087	0.088	-0.089	-0.089	-0.090	-0.091	-0.091	-0.092	-0.093
66.0	. 088	.089	.089	. 090	.091	.091	. 092	. 093	. 093	. 094
66.5	.089	. 090	. 090	.09I	. 092	. 093	. 093	. 094	. 095	. 095
67.0	. 090	.091	. 092	. 092	. 093	. 094	. 094	. 095	. 096	. 097
67.5	. 092	. 092	. 093	. 094	. 094	. 095	. 096	. 096	. 097	. 098
68.0	-0.093	-0.093	-0.094		-0.095	-0.096	-0.097	-0.098	-0.098	-0.099
68.5	. 094	. 095	. 095	. 096	. 097	. 097	.098	. 099	. 100	. 100
69.0	. 095	. 096	. 096	. 097	. 098	. 099	. 099	. 100	. 101	. 102
69.5	. 096	. 097	. 098	. 098	. 099	. 100	. 101	. IOI	. 102	. 103
70.0	. 097	. 098	. 099	. 100	. 100	. 101	. 102	. 103	. 103	. 104
70.5	-0.098	-0.099	-0.100	-0.101	-0. IOI	-0.102	-0.103	-0.104	-0.105	-0. 105
71.0	. 100	. 100	. 101	. 102	. 103	. 103	. 104	. 105	. 106	. 107
71.5	. 101	. 102	. 102	. 103	. 104	. 105	.105	. 106	. 107	. 108
72.0	. 102	. 103	. 104	. 104	. 105	. 106	. 107	. 107	.108	.109
72.5	. 103	. 104	. 105	. 106	. 106	. 107	. 108	. 109	.109	. 110
73.0	-0.104	-0. 105	-0. 106	-0.107	-0. 108	-0.108	-0.109	-0. 110	-O. III	-0.112
73.5	. 105	. 106	. 107	. 108	. 109	. 110	. 110	. III	. 112	. II 3
74.0	. 107	. 107	. 108	. 109	. 110	. III	. 112	. 112	. 113	. 114
74.5	. 108	. 109	. 109	. 110	. III	. II2	.113	. II4	114	. II5
75.0	.109	. 110	. III	. 112	. 112	.113	.114	. 115	116	. 117

Table 10.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Ther-	HEIGHT OF THE BAROMETER IN INCHES.									
Fahren- heit.	26.0	26.2	26.4	26.6	26.8	27.0	27.2	27.4	27.6	27.8
F.	Inch.									
75.5	-o.110	-0.1	-0.112	-0.113	-0.114	. 114	-0.115	-0.116	-0.117	-0. II8
76.0	. 111	. 112	. 113	. 114	. 115	. 116	. 116	. 117	.118	. 119
76.5	.113	.113	. 114	.115	.ri6	. 117	. 118	. 119	. 119	. 120
77.0	. 114	.115	. 115	. 116	. 117	. 118	. 119	. 120	. 12 I	. 122
77.5	. 115	. 116	. 117	. 117	. 118	. 119	. 120	. 121	. 122	. 123
78.0	-0.116	-0.117	-0.118	-0.119	-0.120	-0.120	-0.121	-0.122	-0.123	-O. 124
78.5	. 117	. 118	.119	. 120	. 121	. 122	. 123	.123	. 124	. 125
79.0	. 118	. 119	. 120	. 12 I	. 122	. 123	. 124	. 125	. 126	. 127
79.5	. 120	. 120	. 121	. 122	.123	. 124	. 125	. 126	. 127	. 128
80.0	. 121	. 122	. 123	. 123	. 124	. 125	. 126	. 127	. 128	. 129
80.5	-0.122	-0.123	-0.124	-0.125	-0.126	-0.127	-0.127	-0.128	-0.129	-0.130
81.0	. 123	. 124	. 125	. 126	. 127	. 128	. 129	. 130	.13I	.r 32
81.5	. 124	.125	. 126	.127	. 128	. 129	. 130	. 131	. 132	. 133
82.0	.125	. 126	. 127	. 128	. 129	.130	.13I	. 132	. 133	. 134
82.5	. 127	. 128	. 128	.129	. 130	.131	. 132	. 133	. 134	. 135
83.0	-0.128	-0.129	-0.130	-0.13I	-0.132	-0.133	-0.134	-0.135	-0.136	-0.137
83.5	. 129	.130	.13I	. 132	. 133	. 134	. 135	.136	.137	.138
84.0	. 130	. 131	. 132	. 133	. 134	. 135	. 136	. 137	. 138	. 139
84.5	. 131	.132	. 133	. 134	. 135	. 136	. 137	. 138	. 139	. 140
85.0	. 132	. 133	. 134	. 135	. 136	. 137	. 138	. 339	. 141	. 142
85.5	-0.134	-0.135	-0.136	-0.137	-0.138	-0.139	-0.140	-0.14I	$\bigcirc .142$	-0.143
86.0	. 135	. 36	. 137	. 138	. 139	. 140	. 141	. 142	. 143	. 144
86.5	. 136	. 137	. 138	. 139	.140	.141	. 142	. 143	. 144	. 145
87.0	. 137	. 138	. 139	. 140	. 141	. 142	. 143	. 144	. 145	. 147
87.5	. 138	. 139	. 140	.14I	. 142	. 144	. 145	. 146	. 147	. 148
88.0	-0.139	-0.140	-0.142	-0.143	-0.144	-0.145	-0.146	-0.147	-0.148	-0.149
88.5	.14I	. 142	. 143	. 144	. 145	. 146	. 147	. 148	. 149	. 150
89.0	. 142	. 143	. 144	. 145	. 146	. 147	. 148	. 149	. 150	. 152
89.5	.143	.144	. 145	.146	. 147	.148	. 149	. 151	. 152	. 153
90.0	. 144	. 145	.146	. 147	. 148	. 150	. 151	. 152	. 153	. 154
90.5	-0.145	-0.146	-0.147	-0.149	-0.150	-0.15I	-0.152	-0.153	-0.154	-0.155
91.0	. 146	. 147	. 149	.150	.15I	. 152	. 153	. 154	. 155	. 157
91.5	. 148	. 149	.150	. 151	. 152	. 153	. 154	.155	.157	. 158
92.0	. 149	. 150	. 515	. 152	. 153	. 154	. 156	. 157	. 158	. 159
92.5	. 150	. 151	. 152	. 153	. 154	. 156	. 157	. 158	. 159	. 160
93.0	-0.15I	-0.152	-0.153	-0.155	-0.156	-0.157	-0.158	-0.159	-0.160	-0.16I
93.5	. 152	.153	. 155	. 156	. 157	. 158	. 159	. 160	. 162	. 163
94.0	. 153	. 155	.156	. 157	. 158	. 159	. 160	. 162	.163	. 164
94.5	. . 155	. 156	. 157	. 158	. 159	. 160	. 162	.163	. 164	. 165
95.0	. 156	. 157	. 158	. 159	. 160	. 162	. 163	. 164	. 165	. 166
95.5	-0.157	-0.158	-0.159	-0.160	-0.162	-0.163	-0.164	-0.165	-0.167	-0.168
96.0	. 158	. 159	. 160	. 162	.163	. 164	.165	. 167	. 168	.169
96.5	. 159	. 160	.162	.163	.164	. 165	. 167	. 168	. 169	. 170
97.0	.160	.162	.163	.164	.165	.167	. 168	. 169	-. 170	. 171
97.5	. 162	. 163	. 164	.165	. 166	. 168	. 169	. 170	. 171	. 173
98.0	-0.163	-0. 164	-0.165	-0. 166	-0. 168	-0.169	-0.170	-0.17I	-0.173	-0.174
98.5	.164	. 165	. 166	. 168	. 169	. 170	. 171	. 173	. 174	. 175
99.0	.165	. 166	.168	.169	.170	.171	. 173	. 174	. 175	. 176
99.5 100.0	. 166	.167	.169	.170	.171	. 173	.174	. 175	.176	. 178
100.0	. 167	. 169	. 170	.171	. 172	. 174	. 175	.176	.178	. 179

TABLE 10.

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.

ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	28.0	28.2	28.4	28.6	28.8	29.0	29.2	29.4	29.6	29.8
$\begin{gathered} F . \\ 0.0 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.073 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.074 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.074 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.075 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.075 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.076 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.076 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.077 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.077 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.078 \end{array}$
+0.5	+0.072	$+0.072$	+0.073	+0.073	+0.074	$+0.074$	$+0.075$	+0.075	+0.076	+0.076
1.0	. 070	. 071	. 071	. 072	. 072	. 073	. 073	. 074	. 074	. 075
1.5	.069	. 070	. 070	. 071	. 071	. 072	. 072	. 073	. 073	. 074
2.0	. 068	. 068	.069	. 069	. 070	. 070	. 071	. 07 I	. 072	. 072
2.5	. 067	. 067	. 068	. 068	. 069	. 069	. 069	. 070	. 070	. 071
3.0	+0.065	+0.066	+0.066	+0.067	+0.067	+0.068	± 0.068	+0.069	+0.069	+0.070
3.5	. 064	. 065	. 065	. 065	. 066	. 066	. 067	. 067	. 068	. 068
4.0	. 063	. 063	. 064	. 064	. 065	. 065	. 065	. 066	. 066	. 067
4.5	. 062	. 062	. 062	.063	. 063	. 064	. 064	. 065	. 065	. 065
5.0	. 060	.061	.06I	. 062	. 062	. 062	. 063	. 063	. 064	. 064
5.5	+0.059	+0.059	+0.060	+0.060	+0.06I	+0.06I	+0.062	+0.062	+0.062	+0.063
6.0	. 058	. 058	. 059	. 059	. 059	. 060	. 060	.06I	.06r	.06I
6.5	. 056	. 057	. 057	. 058	. 058	. 058	. 059	. 059	. 060	. 060
7.0	. 055	. 056	. 056	. 056	. 057	. 057	. 057	. 058	. 058	. 059
7.5	. 054	. 054	. 055	. 055	. 055	. 056	. 056	. 057	. 057	. 057
8.0	+0.053	+0.053	+0.053	+0.054	+0.054	+0.054	+0.055	+0.055	+0.056	+0.056
8.5	.051	. 052	. 052	. 052	. 053	. 053	. 053	. 054	. 054	. 055
9.0	. 050	. 050	.051	.05I	.05I	. 052	. 052	. 053	. 053	. 053
9.5	. 049	. 049	. 049	. 050	. 050	. 050	.051	.05I	. 052	. 052
10.0	. 047	. 048	. 048	. 048	. 049	. 049	. 050	. 050	. 050	. 051
10.5	+0.046	+0.047	+0.047	+0.047	+0.048	+0.048	+0.048	+0.049	+0.049	+0.049
11.0	. 045	. 045	. 046	. 046	. 046	. 047	. 047	. 047	. 047	. 048
11.5	. 044	. 044	. 044	. 045	. 045	. 045	. 046	. 046	. 046	. 046
12.0	. 042	. 043	. 043	. 043	. 044	. 044	. 044	. 044	. 045	. 045
12.5	.04I	. 041	. 042	. 042	. 042	. 043	. 043	. 043	. 043	. 044
13.0	+0.040	+0.040	+0.040	+0.041	+0.041	+0.04I	+0.042	+0.042	+0.042	+0.042
13.5	. 039	. 039	. 039	. 039	. 040	. 040	. 040	. 040	. 041	.04I
14.0	. 037	. 038	. 038	. 038	. 038	. 039	. 039	. 039	. 039	. 040
14.5	. 036	. 336	. 037	. 037	. 037	. 037	. 038	. 038	. 038	. 038
15.0	. 035	. 035	. 035	. 035	. 036	. 036	. 036	. 036	. 037	. 037
15.5	+0.033	+0.034	+0.034	+0.034	+0.034	+0.035	+0.035	+0.035	+0.035	+0.036
16.0	. 032	. 032	. 033	. 033	. 033	. 033	. 034	. 034	. 034	. 034
16.5	.03I	. 331	. 03 I	. 032	. 032	. 032	. 032	. 032	. 033	. 033
17.0	. 030	. 330	. 030	. 030	. 030	. 031	.03I	.031	. 031	. 032
17.5	. 028	. 029	. 029	. 029	. 029	. 029	. 030	. 030	. 030	. 030
18.0	+0.027	+0.027	+0.027	+0.028	+0.028	+0.028	+0.028	+0.028	+0.029	$+0.029$
18.5	. 026	. 026	. 026	. 026	. 027	. 027	. 027	. 027	. 027	. 027
19.0	. 025	. 025	. 025	. 025	. 025	. 025	. 026	. 026	. 026	. 026
19.5	. 023	. 023	. 024	. 024	. 024	. 024	. 024	. 024	. 025	. 025
20.0	. 022	. 022	. 022	. 022	. 023	. 023	. 023	. 023	. 023	. 023
20.5	+0.021	+0.021	+0.02I	+0.021	+0.02I	+0.02I	+0.022	+0.022	+0.022	+0.022
21.0	. 019	. 020	. 020	. 020	. 020	. 020	. 020	. 020	. 021	. 021
21.5	. 018	. or 8	. 018	. 019	. 019	.OI9	.019	. 019	. 019	. 019
22.0	. 017	. 017	.017	. 017	. 017	.O17	. 018	. 018	.o18	.o18
22.5	. 016	. 016	. 016	. 016	. 016	. 016	. 016	. 016	. 016	. 017
23.0	+0.014	+0.014	+0.015	+0.015	+0.015	+0.015	+o.015	+0.015	+0.015	+0.015
23.5	.OI3	. Or 3	. 013	. O13	. 013	. 014	. 014	. 014	.OI 4	. 014
24.0	. 012	. Ol 2	. 012	. 012	. 012	. 012	. 012	. 012	. 012	. 013
24.5	. OII	. OII	.OII	. OI I	. 011	. OII	. OII	. OII	.OII	. OII
25.0	. 009	. 009	. 009	. 009	. 009	. 010	. 010	. 010	. 010	. 010

TABLE 10.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	28.0	28.2	28.4	28.6	28.8	29.0	29.2	29.4	29.6	29.8
$\begin{array}{r} F \\ 25^{\circ} .5 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.008 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$
26.0	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 007
26.5	. 005	. 005	. 005	. 006	. 006	. 006	. 006	. 006	. 006	. 006
27.0	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004
27.5	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003
28.0	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	$+0.002$	+0.002	+0.002
28.5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
29.0	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
29.5	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002
30.0	. 003	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004
30.5	0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
31.0	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006
31.5	. 007	. 007	. 007	. 007	. 008	. 008	. 008	. 008	. 008	. 008
32.0	. 009	. 009	. 009	. 009	. 009	. 009	. 009	009	. 009	. 009
32.5	. 010	. 010	. 010	. 010	. 010	. 010	. 010	. OIO	. OIO	. 010
33.0	O.OII	-0.011	-O.OII	-0.01 1	-O.OII	-0.012	-0.012	-0.012	-0.012	-0.012
33.5	.OI2	. 012	.OI3	.OI3	. OI 3	.OI 3	.OI3	.OI3	.OI 3	.OI3
34.0	. 014	.OI4	.OI4	.OI4	.OI4	.OI4	. O14	.OI4	.OI4	. OI5
34.5	.OI5	.OI5	.OI5	.OI5	.OI5	. OI 5	.or6	.OI6	.OI6	. 016
35.0	. 016	.OI6	.OI6	.OI7	.OI7	. OI 7	. 017	. OI 7	. OI 7	. 017
35.5	-0.017	-0.018	-0.018	-0.018	-0.018	-0.018	-0.018	-0.018	-0.018	-0.019
36.0	.OI9	.OI9	. 019	. 019	. 019	. 019	. 020	. 020	. 020	. 020
36.5	. 020	. 020	.020	. 020	. 021	. 021	. 021	. 021	. $\mathrm{O2}$ I	. 021
37.0	. 021	. 021	. 022	. 022	. 022	. 022	. 022	. 022	. 022	. 023
$37 \cdot 5$.023	.023	.023	.023	. 023	. 023	. 024	. 024	. 024	. 024
38.0	0.024	-0.024	-0.024	-0.024	-0.024	-0.025	-0.025	-0.025	-0.025	-0.025
38.5	. 025	.025	.025	. 026	. 026	. 026	. 026	. 026	. 027	. 027
39.0	. 026	. 027	. 027	. 027	. 027	. 027	. 027	. 028	. 028	. 028
39.5	. 028	. 028	. 028	. 028	. 028	. 029	. 029	. 029	. 029	. 029
40.0	.029	. 029	.029	. 030	. 030	. 030	. 030	. 030	.O3I	. O 31
40.5	-0.030	-0.030	-0.031	-0.031	-0.031	-0.03I	-0.03I	-0.032	-0.032	-0.032
41.0	. 031	. 032	. 032	. 032	. 032	. 033	. 033	. 033	. 033	. 033
41.5	. 033	. 033	. 033	. 033	. 034	. 034	. 034	. 034	. 035	. 035
42.0	. 034	. 034	. 034	. 035	. 035	. 035	. 035	. 036	. 036	. 036
42.5	.035	.035	.036	. 036	. 036	.036	.037	. 037	.037	. 037
43.0	-0.036	-0.037	-0.037	-0.037	-0.038	-0.038	-0.038	-0.038	-0.039	-0.039
43.5	. 038	. 038	. 038	. 039	. 039	. 039	. 039	. 040	. 040	. 040
44.0	. 039	. 039	. 040	. 040	. 040	. 040	. 041	.04I	.04I	. 042
$44 \cdot 5$. 040	.04I	.04I	. 041	. 041	. 042	. 042	. 042	. 043	. 043
45.0	. 042	. 042	.042	. 042	. 043	. 043	.043	. 044	. 044	. 044
45.5	-0.043	-0.043	-0.043	-0.044	-0.044	-0.044	-0.045	-0.045	-0.045	-0.046
46.0	. 044	. 044	. 045	. 045	. 045	. 046	. 046	. 046	. 047	. 047
46.5	. 045	. 046	. 046	. 046	. 047	. 047	. 047	. 048	. 048	. 048
47.0	. 047	. 047	. 047	. 048	. 048	. 048	. 049	. 049	. 049	. 050
47.5	. 048	. 048	.049	. 049	. 049	.050	.050	.050	.051	. 051
48.0	-0.049	-0.050	-0.050	-0.050	-0.051	-0.051	-0.05I	-0.052	-0.052	-0.052
48.5	. 050	. 051	. 051	. 052	. 052	.052	. 053	. 053	. 053	. 054
49.0	. 052	.052	.052	. 053	. 053	. 054	. 054	. 054	. 055	. 055
49.5	. 053	. 053	. 054	. 054	. 054	. 055	. 055	. 056	. 056	. 056
50.0	. 054	. 055	.055	. 055	. 056	. 056	.057	. 057	. 057	. 058

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

	HEIGHT OF THE BAROMETER IN INCHES.									
	28.0	28.2	28.4	28.6	28.8	29.0	29.2	29.4	29.6	29.8
F.	Inch.	ch.	uch.	Inch	ch.	Inch.	Inch.	Inch.	Inch.	Inch.
50.5	-0.055	-0.056	-0.056	-0.057	-0.057	-0.057	-0.058	-0.058	-0.059	-0.059
51.0	. 057	. 057	. 058	. 058	. 058	. 059	. 059	. 060	. 060	. 060
51.5	. 058	. 558	. 059	. 059	. 060	. 060	.061	. 061	. 061	. 662
52.0	. 059	. 060	. 060	. 061	.061	. 061	. 062	. 062	. 063	. 663
52.5	. 061	.06I	. 061	. 062	. 062	. 063	. 063	. 064	. 064	. 064
53.0	-0.062	-0.062	-0.063	-0.063	-0.064	-0.064	-0.064	-0.065	-0.065	-0.066
53.5	. 063	. 064	. 064	. 064	. 065	. 065	. 066	. 066	. 067	. 067
54.0	. 064	. 065	. 065	. 066	. 066	. 067	. 067	. 068	. 068	. 068
54.5	. 066	. 066	. 067	. 067	. 067	. 068	. 068	. 069	. 069	. 070
55.0	. 067	. 067	. 068	. 068	. 069	. 069	. 070	. 070	. 071	. 071
55.5	-0.068	-0.069	-0.069	-0.070	-0.070	-0.071	-0.071	--0.072	-0.072	-0.073
56.0	. 069	. 070	. 070	. 071	. 071	. 072	. 072	. 073	. 073	. 074
56.5	. 071	. 071	. 072	. 072	. 073	. 073	. 074	. 074	. 075	. 075
57.0	. 072	. 072	. 073	. 073	. 074	. 075	. 075	. 076	. 076	. 077
57.5	. 073	. 074	. 074	. 075	. 075	. 076	. 076	. 077	. 077	. 078
58.0	0.074	-0.075	-0.076	-0.076	-0.077	0.077	-0.078	-0.078	-0.079	-0.079
58.5	. 076	. 076	. 077	. 077	. 078	. 78	. 079	. 080	. 080	.081
59.0	. 077	. 078	. 078	. 079	. 079	. 080	. 080	.081	.081	. 082
59.5	. 078	. 079	. 079	. 080	.081	.08I	. 082	. 082	. 083	. 083
60.0	. 080	. 080	.08I	.08I	. 082	. 082	. 083	. 084	. 084	. 085
60.5	. 081	-0.081	-0.082	-0.083	-0.083	-0.084	-0.084	-0.085	-0.085	-0.086
6 I .0	. 082	. 083	. 083	. 084	. 084	. 085	. 086	. 086	. 087	. 087
61.5	. 083	. 084	. 085	. 085	. 086	. 086	. 087	. 087	. 088	. 089
62.0	. 085	. 085	. 886	. 086	. 087	. 088	. 888	. 089	. 089	. 090
62.5	. 886	. 086	. 087	. 088	. 088	.089	. 990	. 090	. 091	. 091
63.0	-0.087	-0.088	-0.088	-0.089	-0.090	-0.090	-0.091	-0.091	-0.092	-0.093
63.5	. 888	. 089	. 090	. 090	. 091	. 092	. 092	. 093	. 093	. 094
64.0	. 090	. 090	. 091	. 092	. 092	. 093	. 993	. 094	. 095	. 095
64.5	. 091	. 092	. 092	. 093	. 093	. 094	. 995	. 095	. 096	. 097
65.0	. 092	. 093	. 993	. 094	. 095	. 095	. 996	. 097	. 097	. 098
65.5	0.093	-0.094	-0.095	-0.095	-0.096	-0.097	-0.097	-0.098	-0.099	-0.099
66.0	. 995	. 095	. 096	. 097	. 097	. 098	. 999	. 099	. 100	.101)
66.5	. 096	. 097	. 097	. 098	. 099	. 099	. 100	.ror	. 101	. 102
67.0	. 097	. 098	. 099	. 099	. 100	. 101	. 101	. 102	. 103	. 103
67.5	. 098	. 099	. 100	. 101	. 101	. 102	.103	. 103	. 104	. 105
68.0	-0.100	-0.100	-0.101	-0.102	-0.103	-0.103	-0.104	-0.105	-0.105	-0.106
68.5	. 101	. 102	. 102	. 103	. 104	. 105	. 105	. 106	. 107	. 107
69.0	. 102	. 103	. 104	. 104	. 105	. 106	. 107	. 107	. 108	. 109
69.5	. 104	. 104	. 105	. 106	. 106	. 107	. 108	. 109	. 109	. 110
70.0	. 105	. 106	. 106	. 107	. 108	. 109	. 109	. 110	.III	.112
70.5	-0.106	-0.107	-0.108	-0.108	-0.109	-0.110	-0.1II	-0.1II	-0.112	-0.113
71.0	.107	.108	. 109	. 110	. 110	. 111	. 112	.113	.113	. 114
71.5	. 109	. 109	. 110	. 111	. 112	. 112	. 113	. 114	.115	. 116
72.0	. 110	. 111	.III	. 112	.113	. 114	.115	.115	.116	. 117
72.5	II	. 112	.113	.113	. 114	. 115	. 116	. 117	. 117	.118
73.0	-0.112	-0.113	-0.114	-0.115	-0.116	-0.116	-0.117	-0.118	0.119	. 120
73.5	. 114	. 114	.115	. 116	. 117	.118	.118	. 119	. 120	. 121
74.0	.115	.116	. 117	.117	. 118	.119	. 120	. 121	. 121	. 122
74.5	. 116	. 117	.ri8	.119	.119	. 120	.121	.122	.123	. 124
75.0	. 117	. 118	. 119	. 120	. 121	. 122	. 122	. 123	. 124	. 125

TABLE 10.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Ther-	HEIGHT OF THE BAROMETER IN INCHES.									
Fahren- heit.	28.0	28.2	28.4	286	288	29.0	29.2	29.4	29.6	29.8
F.	Inch.									
75.5	-0.119	-0.119	-0.120	-0.12I	-0.122	-0.123	-0.124	-0. 125	-0.125	-0. 126
76.0	. 120	. 121	. 122	. 122	. 123	. 124	. 125	. 126	. 127	. 128
76.5	. 121	. 122	. 123	. 124	. 125	. 125	. 126	.127	. 128	. 129
77.0	. 122	. 123	. 124	. 125	. 126	. 127	. 128	. 129	. 129	.130
77.5	. 124	. 125	. 125	. 126	. 127	. 128	. 129	. 130	. . 13 I	. 132
78.0	-0.125	-0.126	-0.127	-0.128	-0.129	-0. 129	-0.130	-0.13I	-0.132	-0.133
78.5	. 126	. 127	. 128	. 129	. 130	. 13 I	. 132	. 133	. 133	. 134
79.0	. 127	. 128	. 129	. 130	. 131	. 132	. 133	. 134	. 135	. 136
79.5	. 129	. 130	.13I	.13I	.132	. I33	. 134	. 135	. 136	. 137
80.0	. 130	.13I	. 132	. 133	. 134	. 135	-136	. 136	. 137	. 138
80.5	-0.13I	-0.132	-0.133	-0.134	-0.135	-0.136	-0.137	-0.138	-0.139	-0.140
81.0	. 132	.133	.134	. 135	. 136	. 137	. 138	. 339	. 140	. 141
8 r .5	. 134	. 135	.136	. 137	. 138	. 139	.139	.140	.14I	. 142
82.0	. 135	. 136	.137	. 138	. 139	. 140	. I4I	. 142	. 143	. 144
82.5	. 136	. 137	.I38	. 139	. 140	.141	. 142	. 143	. 144	. 145
83.0	-0.138	-0.139	-0.139	-0.140	-0.14I	-0.142	-0.143	-0.144	-0.145	-0.146
83.5	. 139	. 140	.14I	. 142	. 143	. 144	. 145	. .146	. 147	. 148
84.0	. 140	. 141	. 142	. 143	. 144	. 145	. 146	. 147	. 148	. 149
84.5	. 141	. 142	. 143	. 144	. 145	. 146	.147	. 148	. 149	. 150
85.0	. 143	. 144	. 145	.146	. 147	. 148	. 149	. 150	. 151	. 152
85.5	-0.144	-0.145	-0.146	-0. 147	-0.148	-0.149	-0.150	-0.15I	-0.152	-0. 153
86.0	. 145	. 146	. 147	. 148	. 149	. 150	.15I	. 152	. 53	. 154
86.5	. 146	. 147	. 148	. 149	. 151	. 152	. 153	. 154	. 155	. 156
87.0	. 148	. 149	. 150	.15I	. 152	. 153	. 54	. 155	. 156	. 157
87.5	. 149	. 150	. 151	. 152	. 153	. 154	. 155	. 156	. 157	. 158
88.0	-0.150	-0.151	-0.152	-0.153	-0.154	-0.155	-0. 157	-0.158	-0.159	-0.160
88.5	. 151	. 152	. 154	. 155	. 156	. 157	. 158	. 159	. 160	.161
89.0	. 153	. 154	. 155	. 156	. 157	.158	. 159	.160	.161	. 162
89.5	. 154	. 155	. 156	. 157	.158	. 159	. 160	.162	.163	. 164
90.0	. 155	. 156	. 157	. 158	. 160	. 161	. 162	. 163	. 164	. 165
90.5	-0.156	-0.157	-0.159	-0.160	-0.161	-0.162	-0.163	-0.164	-0.165	-0.166
91.0	. 158	. 159	. 160	.16I	. 162	.163	. 164	. 166	. 167	. 168
91.5	. 159	. 160	.16I	. 162	. 163	. 165	. 166	. 167	. 168	. 169
92.0	. 160	. 161	. 162	. 164	. 165	. 166	. 167	.168	.169	. 170
92.5	.161	. 163	. 164	. 165	.166	. 167	. 168	. 169	.171	. 172
93.0	-0.163	-0.164	-0.165	-0.166	-0.167	-0.168	-0.170	-0.171	-0.172	-0.173
93.5	.164	. 165	. 166	. 167	. 169	. 170	.171	. 172	.173	. 174
94.0	. 165	.166	. 168	. 169	. 170	. 171	. 172	. 173	. 175	. 176
94.5	.166	. 168	. 169	. 170	.171	. 172	. 174	. 175	.176	.177
95.0	. 168	. 169	. 170	.171	. 172	. 174	. 175	. 176	. 177	.178
95.5	-0.169	-0.170	-0.171	-0.173	-0.174	-0.175	-0.176	-0.177	-0.179	-0.18o
96.0	.170	. 171	. 173	. 174	. 175	. 176	. 177	. 179	. 180	.18I
96.5	. 171	. 173	. 174	. 175	. 176	. 178	. 179	. 180	. 181	. 182
97.0	. 173	. 174	. 175	.176	. 178	. 179	. 180	.18I	. 183	. 184
97.5	. 174	. 175	. 176	. 178	. 179	. 180	. 181	. 183	. 184	. 185
98.0	-0.175	-0.176	-0.178	-0.179	-0.180	-0.18I	-0.183	-0.184	-0.185	-0.186
98.5	. 176	. 178	. 179	. 180	. 181	. 183	. 184	. 185	. 187	. 188
99.0	.178	. 179	. 180	. 182	. 183	. 184	. 185	. 187	. 188	. 189
99.5	.179	. 180	. 182	. 183	. 184	. 185	. 187	. 188	. 189	. 190
100.0	. 180	. 182	. 183	. 184	. 185	. 187	. 188	. 189	.19I	. 192

Table 10.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Thernometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	29.8	30.0	30.2	30.4	30.6	30.8	31.0	31.2	31.4	31.6
$\begin{gathered} \text { F. } \\ 0.0 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.078 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.078 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.079 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.079 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.080 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.080 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.08 \mathrm{I} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.08 \mathrm{I} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.082 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.082 \end{gathered}$
0.5	+0.076	+0.077	+0.077	+0.078	+0.078	+0.079	+0.079	+0.080	+0.080	+0.081
1.0	. 075	. 076	. 076	. 077	. 077	. 078	. 078	. 079	. 079	.080
1.5	. 074	. 074	. 075	. 075	. 076	. 076	. 077	. 077	. 078	. 078
2.0	. 072	. 073	. 073	. 074	. 074	. 075	. 075	. 076	. 076	. 077
2.5	. 07 I	. 07 I	. 072	. 072	. 073	. 073	. 074	. 074	. 075	. 075
3.0	+0.070	+0.070	+0.070	+0.071	+0.071	+0.072	+0.072	+0.073	+0.073	+0.074
3.5	. 068	. 069	. 069	. 070	. 070	. 070	. 071	. 07 I	. 072	. 072
4.0	. 067	. 067	. 068	. 068	. 069	. 069	. 070	. 070	. 070	. 071
4.5	. 065	. 066	. 066	. 067	. 067	. 068	. 068	. 069	. 069	. 069
5.0	. 064	. 065	. 065	. 065	. 066	. 066	. 067	. 067	. 068	. 068
5.5	+0.063	+0.063	+0.064	+0.064	+0.064	+0.065	+0.065	+0.066	+0.066	+0.067
6.0	. 06 I	. 062	. 062	. 063	. 063	. 063	. 064	. 064	. 065	. 065
6.5	. 060	. 060	.06I	.06r	. 062	. 062	. 062	. 063	. 063	. 064
7.0	. 059	.059	. 059	. 060	. 060	.06I	.06I	. 061	. 062	. 062
7.5	. 057	. 058	. 058	. 058	. 059	. 059	. 060	. 060	. 060	.06I
8.0	+0.056	+0.056	+0.057	+0.057	+0.057	+0.058	+0.058	+0.059	+0.059	+0.059
8.5	. 055	. 055	. 055	. 056	. 056	. 056	. 057	. 057	. 058	. 058
9.0	. 053	. 054	. 054	. 054	. 055	. 055	. 055	. 056	. 056	. 056
9.5	. 052	. 052	. 053	. 053	. 053	. 054	. 054	. 054	. 055	. 055
10.0	.05I	.05I	.051	. 052	. 052	.052	. 053	. 053	. 053	. 054
10.5	+0.049	+0.049	+0.050	+0.050	+0.050	+0.051	+0.051	+0.05I	+0.052	+0.052
11.0	. 048	. 048	. 048	. 049	. 049	. 049	. 050	. 050	. 050	.05I
11.5	. 046	. 047	. 047	. 047	. 048	. 048	. 048	. 049	. 049	. 049
12.0	. 045	. 045	. 046	. 046	. 046	. 047	. 047	. 047	. 048	. 048
12.5	. 044	. 044	. 044	. 045	. 045	. 045	. 045	. 046	. 046	. 046
13.0	+0.042	+0.043	+0.043	+0.043	+0.044	+0.044	+0.044	+0.044	+0.045	+0.045
13.5	.041	.04I	. 042	. 042	. 042	. 042	. 043	. 043	. 043	. 043
14.0	. 040	. 040	. 040	. 040	.04I	.041	.04I	. 042	. 042	. 042
14.5	. 038	. 039	. 039	. 039	. 039	. 040	. 040	. 040	. 040	. 041
15.0	. 037	. 037	. 037	. 038	. 038	. 038	. 038	. 039	. 039	. 039
15.5	+0.036	+0.036	+0.036	+0.036	+0.037	+0.037	+0.037	+0.037	+0.037	+0.038
16.0	. 034	. 034	. 035	. 035	. 035	. 035	. 036	. 036	. 036	. 036
16.5	. 033	. 033	. 033	. 034	. 034	. 034	. 034	. 034	. 035	. 035
17.0	. 032	.032	. 032	. 032	. 032	. 033	. 033	. 033	. 033	. 033
17.5	. 030	. 030	.03I	. 031	. 031	.03I	.03I	. 032	. 032	. 032
18.0	+0.029	+0.029	+0.029	+0.029	+0.030	+0.030	+0.030	+0.030	+0.030	+0.03I
18.5	. 027	. 028	. 028	. 028	. 028	. 028	. 029	. 029	. 029	. 029
19.0	. 026	. 026	. 026	. 027	. 027	. 027	. 027	. 027	. 027	. 028
19.5	. 025	. 025	. 025	. 025	. 025	. 026	. 026	. 026	. 026	. 026
20.0	. 023	. 024	. 024	. 024	. 024	. 024	. 024	. 024	. 025	. 025
20.5	+0.022	+0.022	+0.022	+0.022	+0.023	+0.023	+0.023	+0.023	+0.023	+0.023
21.0	. 021	. 021	. 02 I	. 021	. 021	. 021	. 022	. 022	. 022	. 022
21.5	.or9	. 019	. 020	. 020	. 020	. 020	. 020	. 020	. 020	. 020
22.0	.or8	. 018	. 018	. 018	. 018	. 019	. 019	.o19	.oi9	.019
22.5	. 017	. 017	. 017	. 017	. 017	. 017	. 017	. 017	. 017	. 018
23.0	+0.015	+0.015	+0.015	+0.016	+0.016	+0.016	+0.016	+0.016	+0.016	+0.016
23.5	. 014	. 014	. 014	. 014	. 014	. 014	. OI 4	. OI 5	. OI 5	. 015
24.0	. 013	. 013	. OI 3	. OI 3	.OI3	. OI 3	. 013	. 013	. 013	.or3
24.5	. OII	. OII	. OII	. OI I	. OII	. 012	. O 2	. 012	. Ol 2	. O 2
25.0	. 010	. 010	. 010	. 010	.oro	. 010	. 010	. 010	0.10	. 010

Table 10.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.

ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	29.8	30.0	30.2	30.4	30.6	30.8	31.0	31.2	31.4	31.6
$\begin{array}{r} \text { F. } \\ 25.5 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.009 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.009 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.009 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.009 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.009 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.009 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.009 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.009 \end{gathered}$	Inch. $+0.009$
26.0	+0.008 .007	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 008	. 008
26.5	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006
27.0	. 004	. 004	. 004	. 005	. 005	. 005	. 005	. 005	. 005	. 005
27.5	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003
28.0	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002
28.5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
29.0	0.001	0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
29.5	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002
30.0	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004
30.5	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
31.0	. 006	. 006	. 006	. 007	. 007	. 007	. 007	. 007	. 007	. 007
31.5	. 008	. 008	. 008	. 008	. 008	. 008	. 008	. 008	. 008	. 008
32.0	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 010	. 010	. 010
32.5	. 010	. 011	. 011	. 011	. OI I	. OII	. OII	. OII	. OII	. 011
33.0	-0.012	-0.012	-0.012	-0.012	0.012	0.012	0.012	0.012	-0.012	-0.013
33.5	. 013	. 013	. 013	.OI3	. 014	. 014	. 014	. 014	. 014	. 014
34.0	. 015	. 015	. 015	. 015	. 015	. 015	.015	. 015	. 015	. 015
34.5	.or6	.oI6	. 016	.or6	. 016	.or6	. 017	. 017	. 017	. 017
35.0	.OI7	. 017	.or7	.or8	. 018	. 018	. 018	. 018	. 018	. 18
35.5	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.020	-0.020
36.0	. 020	. 020	. 020	. 020	. 020	.021	.021	. 021	. 021	. 021
36.5	. 021	.021	. 022	. 022	. 022	. 022	. 022	. 022	. 022	. 023
37.0	. 023	. 023	. 023	. 023	. 023	. 023	. 024	. 024	. 024	. 024
$37 \cdot 5$. 024	. 024	. 024	. 024	. 025	. 025	. 025	. 025	. 025	. 025
38.0	-0.025	-0.026	-0.026	-0.026	-0.026	-0.026	-0.026	-0.027	-0.027	-0.027
38.5	. 027	. 027	. 027	. 027	. 027	. 028	. 028	. 028	. 028	. 028
39.0	. 028	. 028	. 028	. 029	. 029	. 029	. 029	. 029	. 030	. 030
39.5	. 029	. 030	. 030	. 030	. 030	. 030	.031	. 031	.03I	.031
40.0	.03I	. 031	.03I	. 031	. 032	.032	.032	.032	. 032	. 033
40.5	-0.032	-0.032	-0.033	-0.033	-0.033	-0.033	-0.033	-0.034	-0.034	-0.034
41.0	. 033	. 034	. 034	. 034	. 034	. 035	. 035	. 035	. 035	. 035
41.5	. 035	. 035	. 035	. 035	. 036	. 036	. 036	. 036	. 037	. 037
42.0	. 036	. 036	. 037	. 037	. 037	. 037	. 038	. 038	. 038	. 038
42.5	. 037	. 038	. 038	. 038	. 038	. 039	. 039	. 039	. 040	. 040
43.0	-0.039	-0.039	-0.039	-0.040	-0.040	-0.040	-0.040	-0.04I	-0.04I	-0.041
43.5	. 040	. 040	.04I	. 041	.04I	. 042	. 042	. 042	. 042	. 043
44.0	. 042	. 042	. 042	. 042	. 043	. 043	. 043	. 043	. 044	. 044
44.5	. 043	. 043	. 043	. 044	. 044	. 044	. 045	. 045	. 045	. 045
45.0	. 044	. 045	. 045	. 045	. 045	. 046	. 046	. 046	. 047	. 047
45.5	-0.046	-0.046	-0.046	-0.047	-0.047	-0.047	-0.047	-0.048	-0.048	-0.048
46.0	. 047	. 047	. 048	. 048	. 048	. 049	. 049	. 049	. 049	. 050
46.5	. 048	. 049	. 049	. 049	. 050	. 050	. 050	.051	.05I	.051
47.0	. 050	. 050	. 050	.051	.051	.05I	. 052	. 052	. 052	. 053
47.5	.05I	. 051	. 052	. 052	. 052	. 053	. 053	. 053	. 054	. 054
48.0	-0.052	-0.053	$\bigcirc 0.053$	-0.053	-0.054	-0.054	-0.054	-0.055	-0.055	-0.055
48.5	. 054	. 054	. 054	. 055	. 055	. 055	. 056	. 056	. 057	. 057
49.0	. 055	. 055	. 056	. 056	. 057	. 057	. 057	. 058	. 058	. 058
49.5	. 056	. 057	. 057	. 058	.058	. 058	. 059	. 059	. 059	. 060
50.0	. 058	. 058	. 058	. 059	. 059	. 060	. 060	. 060	.06I	. 061

Table 10

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	29.8	30.0	30.2	30.4	30.6	30.8	31.0	31.2	31.4	31.6
F.	Inch.									
50.5	-0.059	-0.059	-0.060	-0.060	-0.06I	-0.06I	-0.061	-0.062	-0.062	-0.063
51.0	. 060	.06I	.06I	. 062	. 062	. 062	. 063	. 063	. 064	. 064
51.5	. 062	. 062	.063	. 063	. 063	. 064	. 064	. 065	. 065	. 065
52.0	. 063	. 064	. 064	. 064	. 065	. 065	. 066	. 066	. 066	. 067
52.5	. 064	. 065	. 065	. 066	. 066	. 067	. 067	. 067	. 068	. 068
53.0	-0.066	-0.066	-0.067	-0.067	-0.068	-0.068	-0.068	-0.069	-0.069	-0.070
5.35	. 067	. 068	. 068	. 069	. 069	. 069	. 070	. 070	. 071	. 071
54.0	. 068	. 069	. 069	. 070	. 070	. 071	. 071	. 072	. 072	. 073
54.5	. 070	. 070	. 071	. 071	. 072	. 072	. 073	. 073	. 074	. 074
55.0	. 07 I	. 072	. 072	. 073	. 073	. 074	. 074	. 075	. 075	. 075
55.5	-0.073	-0.073	-0.074	-0.074	-0.074	-0.075	-0.075	-0.076	-0.076	-0.077
56.0	. 074	. 074	. 075	. 075	. 076	. 076	. 077	. 077	. 078	. 078
56.5	. 075	. 076	. 076	. 077	. 077	. 078	. 078	. 079	. 079	. 080
57.0	. 077	. 077	. 078	. 078	. 079	. 079	.08o	. 080	.081	.081
57.5	. 078	. 078	. 079	. 079	. 080	.08I	.08I	. 082	. 082	.083
58.0	-0.079	-0.08o	-0.080	-0.081	-0.08I	-0.082	-0.082	-0.083	-0.084	-0.084
58.5	.081	.081	. 082	. 082	. 083	. 083	. 084	. 084	. 085	. 085
59.0	. 082	. 083	. 083	. 084	. 084	. 085	. 085	. 086	. 086	. 087
59.5	. 083	. 084	.084	. 085	. 086	. 086	. 087	. 087	. 088	. 088
60.0	. 085	. 085	.086	. 086	. 087	. 087	. 088	. 089	.089	. 090
60.5	-0.086	-0.087	-0.087	-0.088	-0.088	-0.089	-0.089	-0.090	-0.091	-0.091
61.0	. 087	. 088	.089	. 089	. 090	. 090	.091	. 091	. 092	. 093
61.5	.089	.089	. 090	. 090	.09I	. 092	. 092	. 093	. 093	. 094
62.0	. 090	.091	.091	. 092	. 092	. 093	. 094	. 094	. 095	. 095
62.5	.091	. 092	. 093	. 093	. 094	. 094	. 095	. 096	. 096	. 097
63.0	-0.093	-0.093	-0.094	-0.095	-0.095	-0.096	-0.096	-0.097	-0.098	-0.098
63.5	. 094	. 095	. 095	. 096	. 097	. 097	.098	. 098	. 099	. 100
64.0	. 095	. 096	. 097	. 097	. 098	. 099	. 099	. 100	. IOI	. 101
64.5	. 097	. 097	. 098	. 099	. 099	. 100	. 101	. IOI	. 102	. 103
65.0	. 098	. 099	. 099	. 100	. 101	. IOI	. 102	. 103	. 103	. 104
65.5	-0.099	-0.100	-0.101	-0.101	-0. 102	-0.103	-0.103	-0.104	-0.105	-0. 105
66.0	. 101	. 101	. 102	. 103	. 103	. 104	. 105	. 106	. 106	. 107
66.5	. 102	. 103	. 103	. 104	. 105	. 106	. 106	. 107	. 108	. 108
67.0	. 103	. 104	. 105	. 106	. 106	.107	. 108	. 108	. 109	. 110
67.5	. 105	. 106	. 106	. 107	. 108	. 108	. 109	. 110	. 110	. III
68.0	-0.106	-0.107	-0.108	-0.108	-0.109	-0.110	-0.110	-0.111	-0.112	-0.113
68.5	. 107	. 108	. 109	. 1 Io	. 110	. 111	. 112	. 113	. 113	. 114
69.0	. 109	. 110	. 110	.III	. 112	. 112	.113	. 114	. 115	. 115
69.5	. IIO	. III	. 112	. 112	. 113	. II4	. 115	. II5	. 116	. 117
70.0	. 112	. 112	. 113	. 114	. 115	. 115	. 116	. 117	. 117	. 118
70.5	-0.113	-0.114	-0.114	-0. 115	-0.116	-0.117	-0.117	-0.118	-0.119	-0. 120
71.0	. II4	. 115	. 116	. 116	. I17	. 118	. 119	. 120	. 120	. 121
71.5	. 116	. 116	. 117	. 118	. 19	. 119	. 120	. 121	. 122	. 123
72.0	. 117	. 118	. 118	. 119	. 120	. 121	.122	. 122	.123	. 124
72.5	. 118	. II9	. 120	. 12 I	:121	. 122	. 123	. 124	. 125	. 125
73.0	-0.120	-0.120	-0.121	-0.122	-0.123	-0.124	-0.124	-0.125	-0.126	-0.127
73.5	. 121	. 122	. 123	. 123	. 124	. 125	. 126	. 127	. 127	. 128
74.0	. 122	. 123	. 124	. 125	. 126	. 126	. 127	. 128	. 129	. 130
74.5	.124	.124	. 125	. 126	. 127	. 128	. 129	. 129	. 130	.131
75.0	. 125	. 126	. 127	. 127	. 128	. 129	. 130	.13I	. 132	. 132

Table 10.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Thepmometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	29.8	30.0	30.2	30.4	30.6	30.8	31.0	31.2	31.4	31.6
${ }_{7}^{\mathrm{F} .}$	Inch.									
75.5	-0.126	-0.127	-0.128	$\text { -0. } 129$	-0.130	$-0.13 I$	-0.131	-0.132	$\text { -0. I } 33$	-0. 134
76.0	. 128	. 128	.129	. 130	. 131	. 132	. 133	. 134	. 134	. 135
76.5	. 129	. 130	.13I	. 132	. 132	. 133	. 134	. 135	. 136	. 137
77.0	. 130	. 31	. 132	. 133	. 134	. 135	. 136	. 136	. 137	. 138
77.5	. 132	. 133	. 133	. 134	. 135	.136	. 137	. 138	. 139	. 140
78.0	-0.133	-0.134	-0.135	-0.136	-0.137	-0.137	-0.138	-0.139	-0.140	-0.141
78.5	. 134	. 135	. 136	. 137	. 138	. 139	. 140	.141	. 142	. 142
79.0	. 136	. 137	. 137	. 138	. 139	. 140	.141	. 142	. 143	. 144
79.5	. 137	. 138	. 139	. 140	. 141	. 142	. 143	. 143	. 144	. 145
80.0	. 138	. 139	. 140	.14I	. 142	. 143	. 144	. 145	. 146	. 147
80.5	0.140	-0.141	-0.142	-0.142	-0.143	-0.144	-0.145	-0.146	-0.147	-0.148
81.0	. 141	. 142	. 143	. 144	. 145	. 146	. 147	. 148	. 149	. 150
81.5	. 142	. 143	. 144	. 145	. 146	.147	. 148	. 149	. 150	. 151
82.0	. 144	. 145	. 146	. 147	. 148	. 149	. 149	. 150	.15I	. 152
82.5	. 145	. 146	. 147	. 148	. 149	. 150	. 151	. 152	. 153	. 154
83.0	-0.146	-0.147	-0.148	-0.149	-0.150	-0.15I	-0.152	-0.153	-0.154	-0.155
83.5	. 148	. 149	. 150	. 151	. 152	. 153	. 154	. 155	. 156	. 157
84.0	. 149	. 150	. 151	. 152	. 53	. 154	. 155	. 156	. 157	. 158
84.5	. 150	. 151	.152	. 55	. 154	. 155	. 156	. 157	. 158	. 159
85.0	. 152	. 153	. 154	. 155	. 156	. 157	. 158	. 159	. 160	.16I
85.5	-0.153	-0.154	-0.155	-0.156	-0.157	-0.158	-0.159	-0.160	-0.161	-0.162
86.0	. 154	. 155	. 156	. 158	. 159	.160	.161	. 162	. 163	. 164
86.5	. 156	. 157	. 158	. 159	. 160	.16I	. 16.2	.163	.164	. 165
87.0	. 157	. 158	. 159	.160	.16I	.162	.163	. 164	. 166	. 167
87.5	. 158	. 159	. 16 I	. 162	. 163	. 164	. 165	. 166	. 167	. 168
88.0	-0.160	-0.161	-0.162	-0.163	-0.164	-0.165	-0.166	-0.167	-0.168	-0.169
88.5	.161	. 162	. 163	. 164	. 165	. 166	. 168	. 169	. 170	. 171
89.0	. 162	. 164	. 165	. 166	. 167	. 168	. 169	. 170	. 171	. 172
89.5	. 164	.165	. 166	. 167	. 168	.169	. 170	. 171	. 173	. 174
90.0	. 165	. 166	. 167	. 168	. 170	.171	. 172	. 173	. 174	. 175
90.5	-0.166	-0.168	-0.169	-0.170	-0.171	-0.172	-0.173	-0.174	-0.175	-0.176
91.0	. 168	.169	. 170	. 171	. 172	.173	. 175	.176	. 177	. 178
91.5	. 169	. 170	.171	. 173	. 174	. 175	.176	.177	. 178	. 179
92.0	. 170	.172	. 173	. 174	. 175	.176	. 177	. 178	. 180	.18I
92.5	. 172	. 173	. 174	. 175	. 176	. 178	. 179	. 180	.181	. 182
93.0	-0.173	-0.174	-0.175	-0.177	-0.178	-0.179	-0.180	-0.181	-0.182	-0.184
93.5	. 174	.176	. 177	. 178	. 179	. 180	.181	. 183	. 184	. 185
94.0	. 176	. 177	. 178	. 179	. 180	. 182	.183	. 184	. 185	. 186
94.5	. 177	.178	. 179	.181	. 182	.183	. 184	.185	. 187	. 188
95.0	. 178	. 180	.18I	. 182	. 183	. 184	. 186	. 187	. 188	. 189
95.5	-0.180	-0.181	-0.182	-0.183	-0.185	-0.186	-0.187	-0.188	-0.189	-0.191
96.0	. 181	. 182	. 184	. 185	. 186	. 187	. 188	. 190	.191	. 192
96.5	.182	. 184	. 185	. 186	. 187	. 189	. 190	. 191	. 192	. 193
97.0	.184	.185	. 186	. 187	.189	. 190	.191	. 192	. 194	. 195
97.5	. 185	. 186	. 188	. 189	. 190	.191	. 193	. 194	. 195	. 196
98.0	-0.186	-0.188	-0.189	-0.190	-0. I9I	-0.193	-0.194	-0.195	-0.196	-0.198
98.5	. 188	. 189	. 190	. 192	. 193	. 194	. 195	. 197	. 198	. 199
99.0	. 189	. 190	. 192	. 93	. 194	. 195	. 197	. 198	. 199	. 201
99.5	. 190	.192	. 193	. 194	. 196	. 197	. 198	. 199	. 201	. 202
100.0	. 192	. 193	. 194	. 196	. 197	. 198	. 200	. 201	. 202	. 203

TABLE 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION TO BE SUBTRACTED.

Attached Thermometer Centigrade.	HEIGHT OF THE BAROMETER IN MILLIMETRES.												
	440	450	460	470	480	490	500	510	520	530	540	550	560
c.	mm.	mm.	mm .	mm.	mm.	mm.	mm.	mm .	mm .	mm.	mm .	mm.	mm.
0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.5	. 04	. 04	. 04	. 04	. 04	. 04	. 04	. 04	. 04	. 04	. 04	. 04	. 05
1.0	. 07	. 07	. 08	. 08	. 08	. 08	. 08	. 08	. 08	. 09	. 09	. 09	. 09
1.5	. 11	. 11	. II	. 12	. 12	. 12	. 12	. 12	. 13	. 13	. 13	. 13	. 14
2.0	. 14	. 15	. 15	. 15	. 16	. 16	. 16	. 17	. 17	. 17	. 18	. 18	. 18
2.5	0.18	0.18	0.19	0. 19	0.20	0.20	0.20	0.21	0.21	0.22	0.22	0.22	0.23
3.0	. 22	. 22	. 23	. 23	. 24	. 24	. 24	. 25	. 25	. 26	. 26	. 27	. 27
3.5	. 25	. 26	. 26	. 27	. 27	. 28	. 29	. 29	. 30	. 30	. 31	. 31	. 32
4.0	. 29	. 29	. 30	. 31	. 31	. 32	. 33	. 33	. 34	. 35	. 35	. 36	. 37
4.5	. 32	. 33	. 34	. 35	. 35	. 36	. 37	. 37	. 38	. 39	. 40	. 40	. 41
5.0	0.36	0.37	0.38	0.38	0.39	0.40	0.41	0.42	0.42	0.43	0.44	0.45	0.46
$5 \cdot 5$. 40	. 40	. 41	. 42	. 43	. 44	. 45	. 46	. 47	. 48	. 48	. 49	. 50
6.0	. 43	. 44	. 45	. 46	. 47	. 48	. 49	. 50	. 51	. 52	. 53	. 54	. 55
6.5	. 47	. 48	. 49	. 50	. 51	. 52	. 53	. 54	. 55	. 56	. 57	. 58	. 59
7.0	. 50	. 51	. 53	. 54	. 55	. 56	. 57	. 58	. 59	. 61	. 62	. 63	. 64
7.5	0.54	0.55	0.56	0.58	0.59	0.60	0.61	0.62	0.64	0.65	0.66	0.67	0.69
8 o	. 57	. 59	. 60	.61	. 63	. 64	. 65	. 67	. 68	. 69	. 70	. 72	. 73
8.5	.6I	. 62	. 64	. 65	. 67	. 68	. 69	. 71	. 72	. 73	. 75	. 76	. 78
9.0	. 65	. 66	. 68	. 69	. 70	. 72	. 73	. 75	.76	. 78	. 79	.81	. 82
9.5	. 68	. 70	. 71	. 73	. 74	. 76	.77	. 79	.8I	. 82	. 84	. 85	. 87
10.0	0.72	0.73	0.75	0.77	0.78	0.80	0.82	0.83	0.85	0.86	0.88	0.90	0.91
10.5	. 75	. 77	. 79	. 80	. 82	. 84	. 86	. 87	. 89	. 91	. 92	. 94	. 96
11.0	. 79	.81	. 83	. 84	. 86	. 88	. 90	. 91	. 93	. 95	. 97	. 99	1.00
11.5	. 83	. 84	. 86	. 88	. 90	. 92	. 94	. 96	. 98	. 99	1.01	1.03	1.05
12.0	. 86	. 88	. 90	. 92	. 94	. 96	. 98	1.00	1.02	1.04	1.06	1.08	I. 10
13.0	0.93	0.95	0.97	1.00	1.02	1.04	1.06	1.08	I. 10	1.12	1. 14	1.17	1. 19
14.0	1.00	1.03	1.05	1.07	I. 10	I. 12	1. 14	1.16	I. 19	1.21	1.23	1.25	1.28
15.0	1.08	110	I. 12	1.15	I. 17	1.20	1.22	1.25	1.27	I. 30	1.32	I. 34	I. 37
16.0	1.15	1.17	1.20	1.23	1.25	I. 28	1.30	1.33	I. 36	I. 38	1.41	I. 43	1. 46
17.0	1.22	1.25	1.27	1.30	I. 33	I. 36	1.38	1.41	1. 44	1.47	1.50	1.52	1.55
18.0	1.29	I. 32	1.35	1.38	I.4I	1.44	1.47	1.50	I. 52	I. 55	1.58	1.6I	1.64
19.0	1.36	I. 39	1.42	1.45	I. 49	1.52	1.55	1.58	1.61	1.64	1.67	1.70	1.73
20.0	1.43	1. 47	1.50	1.53	1.56	1.60	1.63	1.66	I. 69	1.73	1.76	1.79	1.82
21.0	1.50	I. 54	1.57	1.61	1.64	1.67	1.71	1.74	I. 78	I. 81	I. 85	1.88	1.91
22.0	1.58	1.61	1.65	1.68	1.72	1.75	1.79	1.83	1.86	1.90	I. 93	1.97	2.01
23.0	1.65	1.68	I. 72	1.76	1.80	1.83	1.87	1.91	1.95	1.98	2.02	2.06	2.10
24.0	1.72	1.76	1.80	1.84	1.87	1.91	1.95	1.99	2.03	2.07	2.11	2.15	2.19
25.0	1.79	1.83	1.87	1.91	1.95	1.99	2.03	2.07	2.11	2.16	2.20	2.24	2.28
26.0	1.86	1.90	1.95	1.99	2.03	2.07	2.11	2.16	2.20	2.24	2.28	2.33	2.37
27.0	1.93	1.98	2.02	2.06	2.11	2.15	2.20	2.24	2.28	2.33	2.37	2.41	2.46
28.0	2.00	2.05	2.09	2.14	2.18	2.23	2.28	2.32	2.37	2.41	2.46	2.50	2.55
29.0	2.07	2.12	2.17	2.22	2.26	2.31	2.36	2.40	2.45	2.50	2.55	2.59	2.64
30.0	2.15	2.19	2.24	2.29	2.34	2.39	2.44	2.49	2.54	2.58	2.63	2.68	2.73
31.0	2.22	2.27	2.32	2.37	2.42	2.47	2.52	2.57	2.62	2.67	2.72	2.77	2.82
32.0	2.29	2.34	2.39	2.44	2.50	2.55	2.60	2.65	2.70	2.76	2.81	2.86	2.91
33.0	2.36	2.41	2.47	2.52	2.57	2.63	2.68	2.73	2.79	2.84	2.89	2.95	3.00
34.0	2.43	2.48	2.54	2.60	2.65	2.71	2.76	2.82	2.87	2.93	2.98	3.04	3.09
. 35.0	2.50	2.55	2.61	2.67	2.73	2.78	2.84	2.90	2.96	3.01	3.07	3.13	3.18

TABLE 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 560 mm.					HEIGHT OF THE BAROMETER 570 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm .	mm.	mm .	mm.	mm.	mm.	mm .	mm.	mm.	mm.
0°	0.00	0.02	0.04	0.05	0.07	0.00	0.02	0.04	0.06	0.07
I	. 09	. II	. 13	. 15	. 16	. 09	. II	13	. 5	. 17
2	. 18	. 20	. 22	. 24	. 26	.19	. 20	22	. 24	. 26
3	. 27	. 29	. 31	. 33	. 35	. 28	. 30	. 32	. 34	. 35
4	. 37	.38	. 40	.42	. 44	- 37	- 39	. 41	. 43	. 45
5	0.46	0.48	0.49	0.51	0.53	0.47	0.48	0.50	0.52	0.54
6	. 55	. 57	. 58	. 60	. 62	. 56	. 58	. 60	. 61	. 63
7	. 64	. 66	. 68	. 69	. 71	. 65	. 67	. 69	. 71	. 73
8	. 73	. 75	. 77	. 79	. 80	.74	. 76	. 78	. 80	. 82
9	. 82	. 84	. 86	. 88	. 90	. 84	. 86	. 87	. 89	. 91
10	0.91	0.93	0.95	0.97	0.99	0.93	0.95	0.97	0.99	1.00
11	1.00	1.02	1,04	1.06	1.08	I. 02	1.04	1.06	1.08	1.10
12	1.10	I. II	I. 13	1.15	1.17	1.12	1.13	1. 15	1.17	1.19
13	1.19	1.20	1.22	1.24	1.26	I. 21	1.23	1.25	1.26	1.28
14	1.28	1.30	1.31	1.33	I. 35	1.30	1.32	1.34	1. 36	1.37
15	1.37	1.39	I. 41	1.42	1.44	1.39	1.41	1.43	1.45	1.47
16	1.46	1.48	1.50	1.51	1.53	I. 49	1.50	1.52	I. 54	1.56
17	I. 55	1.57	1.59	1.61	1.62	I. 58	1.60	1.62	1.63	1.65
18	1.64	1.66	1.68	1.70	1.71	1.67	1.69	1.71	1.73.	I. 75
19	1.73	1.75	1.77	1.79	1.81	1.76	1.78	1.80	I. 82	1.84
20	1.82	1.84	1.86	1.88	1.90	1.86	1.87	1.89	1.91	1.93
21	1.91	1.93	1.95	1.97	1.99	1.95	1.97	1.99	2.00	2.02
22	2.01	2.02	2.04	2.06	2.08	2.04	2.06	2.08	2. 10	2.11
23	2.10	2.11	2.13	2.15	2.17	2.13	2.15	2.17	2.19	2.21
24	2.19	2.20	2.22	2.24	2.26	2.23	2.24	2.26	2.28	2.30
25	2.28	2.30	2.31	2.33	2.35	2.32	2.34	2.35	2.37	2.39
26	2.37	2.39	2.40	2.42	2.44	2.41	2.43	2.45	247	2.48
27	2.46	2.48	2.49	2.51	2.53	2.50	2.52	2.54	2.56	2.58
28	2.55	2.57	2.59	2.60	2.62	2.59	2.61	2.63	2.65	2.67
29	2.64	2.66	2.68	2.69	2.71	2.69	2.71	2.72	2.74	2.76
30	2.73	2.75	2.77	2.78	2.80	2.78	2.80	2.82	2.83	2.85
31	2.82	2.84	2.86	2.87	2.89	2.87	2.89	2.91	2.93	2.94
32	2.91	2.93	2.95	2.97	2.98	2.96	2.98	3.00	3.02	3.04
33	3.00	3.02	3.04	3.06	3.07	3.06	3.07	3.09	3.11	3.13
34	3.09	3.11	3.13	3.15	3.16	3.15	3.17	3.18	3.20	3.22
35	3.18	3.20	3.22	3.24	3.25	3.24	3.26	3.28	3.29	$3 \cdot 31$

Smithbonian Tables.

Table 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.
for temperatures above 0° centigrade, the correction is to be subtracted.

Attached Thermometer.	height of the barometer 580 mm .					height of the barometer 590 mm .				
	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c	mm.	mm .								
0°	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.08
1	. 09	. 11	.13	.15	. 17	. 10	. 12	. 13	. 15	.17
2	. 19	. 21	. 23	. 25	. 27	. 19	. 21	. 23	. 25	. 27
3	. 28	. 30	. 32	. 34	.36	. 29	. 31	. 33	$\cdot 35$. 37
4	. 38	. 40	. 42	. 44	. 45	. 39	. 40	. 42	. 44	. 46
5	0.47	0.49	0.51	0.53	0.55	0.48	0.50	0.52	0. 54	0.56
6	. 57	. 59	. 61	. 62	. 64	. 58	. 60	. 62	. 64	. 65
7	. 66	. 68	. 70	. 72	. 74	. 67	. 69	.71	. 73	. 75
8	. 76	. 78	. 79	.81	. 83	. 77	. 79	.81	. 83	. 85
9	. 85	. 87	. 89	.91	. 93	. 87	. 89	. 90	. 92	. 94
10	0.95	0.96	0.98	1.00	1.02	0.96	0.98	1.00	1.02	1.04
11	1.04	1.06	1.08	1.10	1.12	1.06	1.08	I.10	1.12	1.14
12	I.I3	1.15	1.17	1.19	1.21	1.15	1.17	I. 19	I. 21	1.23
13	1.23	1.25	1. 27	1.29	1. 30	1. 25	I. 27	I. 29	1.31	I. 33
14	1.32	I. 34	I. 36	1. 38	1.40	I. 35	I. 37	I. 38	I. 40	1.42
15	1.42	1.44	1.46	1. 47	1. 49	I. 44	1. 46	1. 48	I. 50	1.52
16	1.51	1. 53	1. 55	1. 57	1. 59	I. 54	I. 56	1.58	1.60	${ }^{1} .61$
17	1.61	1.62	1. 64	1.66	I. 68	I. 63	1. 65	1.67	I. 69	1.71
18	1.70	1.72	1. 74	1.76	1.78	1. 73	1.75	1.77	1.79	1.81
19	1.79	1.81	I. 83	I. 85	I. 87	1.83	I. 84	1.86	I. 88	1.90
20	1.89	1.91	I. 93	1.95	1.96	1.92	1.94	1.96	1. 98	2.00
21	1.98	2.00	2.02	2.04	2.06	2.02	2.04	2.06	2.07	2.09
22	2.08	2.10	2.11	2.13	2.15	2.11	2.13	2.15	2.17	2.19
23	2.17	2.19	2.21	2.23	2.25	2.21	2.23	2.25	2.27	2.28
24	2.26	2.28	2.30	2.32	2.34	2.30	2.32	2.34	2.36	2.38
25	2.36	2.38	2.40	2.41	2.43	2.40	2.42	2.44	2.46	2.48
26	2.45	2.47	2.49	2.51	2.53	2.49	2.51	2.53	2.55	2.57
27	2.55	2.57	2.58	2.60	2.62	2.59	2.61	2.63	2.65	2.67
28	2.64	2.66	2.68	2.70	2.72	2.69	2.70	2.72	2.74	2.76
29	2.73	2.75	2.77	2.79	2.81	2.78	2.80	2.82	2.84	2.86
30	2.83	2.85	2.87	2.88	2.90	2.88	2.90	2.91	2.93	2.95
3 I	2.92	2.94	2.96	2.98	3.00	2.97	2.99	3.01	3.03	3.05
32	3.02	3.03	3.05	3.07	3.09	3.07	3.09	3.11	3.12	3.14
33	3.11	3.13	3.15	3.16	3.18	3.16	3.18	3.20	3.22	3.24
34	3.20	3.22	3.24	3.26	3.28	3.26	3.28	3.30	3.31	3.33
35	3.30	3.31	3.33	3.35	3.37	3.35	3.37	3.39	3.41	3.43

Smithsonian Tables.

TABLE 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.
for temperatures above 0° Centigrade, the correction is to be subtracted.

	HEIGHT OF THE BAROMETER 600 mm .					HEIGHT OF THE BAROMETER 605 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm .	mm.							
0°	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.08
1	. 10	. 12	. 14	. 16	. 18	10	. 12	. 14	. 16	. 18
2	. 20	. 22	. 24	. 25	. 27	. 20	. 22	. 24	. 26	. 28
3	. 29	. 31	. 33	. 35	. 37	. 30	- 32	- 34	. 36	. 38
4	- 39	.4I	. 43	. 45	. 47	. 40	. 41	. 43	. 45	. 47
5	0.49	0.51	0.53	0.55	0.57	0.49	0.51	0.53	0.55	0.57
6	. 59	.6I	. 63	. 65	. 67	. 59	.6I	. 63	. 65	. 67
7	. 69	. 70	. 72	. 74	. 76	. 69	. 71	. 73	. 75	. 77
8	. 78	. 80	. 82	. 84	. 86	. 79	.81	. 83	. 85	. 87
9	. 88	. 90	. 92	. 94	.96	. 89	.91	. 93	. 95	. 97
10	0.98	1.00	1.02	1.04	1.06	0.99	1.01	1.03	1.05	1.07
II	1.08	I. 10	1.12	I. 13	I. 15	1.09	1.10	1.12	1.14	1.16
12	I. 17	I. 19	1.21	1.23	I. 25	1.18	1.20	1.22	1.24	1.26
13	1.27	I. 29	1.31	1.33	I. 35	1.28	1.30	1.32	1.34	1.36
14	I. 37	I. 39	1.41	1.43	I. 45	1.38	1.40	I. 42	1.44	I. 46
15	1.47	1.49	1.51	1.53	1.54	1.48	1.50	1.52	1.54	1.56
16	1.56	1.58	1.60	1.62	1.64	I. 58	1.60	1.62	1.64	1.66
17	1.66	1.68	1.70	1.72	1.74	1.68	1.70	1.71	1.73	1.75
18	1.76	1.78	1.80	1.82	1.84	1.77	1.79	1.81	1.83	1.85
19	r. 86	1.88	1.90	1.91	1.93	1.87	I. 89	1.91	1.93	1.95
20	1.95	1.97	1.99	2.01	2.03	1.97	1.99	2.01	2.03	2.05
21	2.05	2.07	2.09	2.11	2.13	2.07	2.09	2.11	2.13	2.15
22	2.15	2.17	2.19	2.21	2.23	2.17	2.19	2.21	2.23	2.24
23	2.25	2.26	2.28	2.30	2.32	2.26	2.28	2.30	2.32	2.34
24	2.34	2.36	2.38	2.40	2.42	2.36	2.38	2.40	2.42	2.44
25	2.44	2.46	2.48	2.50	2.52	2.46	2.48	2.50	2.52	2.54
26	2.54	2.56	2.58	2.60	2.61	2.56	2.58	2.60	2.62	2.64
27	2.63	2.65	2.67	2.69	2.71	2.66	2.68	2.70	2.71	2.73
28	2.73	2.75	2.77	2.79	2.81	2.75	2.77	2.79	2.8 I	2.83
29	2.83	2.85	2.87	2.89	2.91	2.85	2.87	2.89	2.91	2.93
30	2.93	2.94	2.96	2.98	3.00	2.95	2.97	2.99	3.01	3.03
31	3.02	3.04	3.06	3.08	3.10	3.05	3.07	3.09	3.11	3.13
32	3.12	3.14	3.16	3.18	3.20	3.15	3.16	3.18	3.20	3.22
33	3.22	3.24	3.25	3.27	3.29	3.24	3.26	3.28	3.30	3.32
34	3.31	3.33	3.35	3.37	3.39	3.34	3.36	3.38	3.40	3.42
35	3.4 I	3.43	3.45	3.47	3.49	3.44	3.46	3.48	3.50	3.52

Smithbonian Tables.

TAble 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.
for temperatures above 0° Centigrade, the correction is to be subtracted.

	height of the barometer 610 mm.					HEIGHT OF THE BAROMETER 615 mm .				
Attached Thermometer	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm.	mm.	mm.	mm.	mm .	mm .	mm.	mm.	mm.
0°	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.08
1	. 10	12	. 14	. 16	. 18	. 10	. 12	. 14	. 16	. 18
2	. 20	. 22	. 24	. 26	. 28	. 20	. 22	. 24	. 26	. 28
3	. 30	. 32	. 34	. 36	.38	. 30	. 32	. 34	.36	. 38 •
4	. 40	. 42	. 44	.46	.48	. 40	.42	. 44	.46	. 48
5	0.50	0.52	0.54	0.56	0.58	0.50	0.52	0.54	0.56	0.58
6	. 60	. 62	. 64	. 66	. 68	. 60	. 62	. 64	. 66	. 68
7	. 70	.72	.74	.76	. 78	. 70	.72	. 74	.76	. 78
8	. 80	. 82	. 84	. 86	. 88	. 80	. 82	. 84	. 86	. 88
9	.90	.92	. 94	.96	. 98	. 90	.92	. 94	. 96	.98
10	0.99	I.OI	1.03	1.05	1.07	1.00	1.02	1.04	1.06	1. 08
II	1.09	I.II	I. 13	I. 15	1.17	1.10	1.12	1. 14	1.16	I. 18
12	I. 19	1.21	1.23	1.25	1.27	1.20	1.22	1.24	I. 26	1.28
13	I. 29	1.31	1.33	I. 35	1.37	1.30	1.32	I. 34	I. 36	I. 38
14	I. 39	1.4I	r. 43	1.45	1.47	I. 40	I. 42	1.44	I. 46	1.48
15	I. 49	1.5I	1.53	I. 55	1.57	1.50	1.52	1. 54	1. 56	1.58
16	I. 59	I.6I	1.63	1.65	1.67	I. 60	1.62	1.64	1.66	1.68
17	I. 69	1.71	1.73	1.75	1.77	1.70	1. 72	1.74	I. 76	1.78
18	1.79	1.81	1.83	1.85	1.87	1.80	1.82	I. 84	I. 86	I. 88
19	1.89	1.91	1.93	1.95	1. 97	1.90	1.92	I. 94	1. 96	I. 98
20	1.99	2.01	2.03	2.05	2.07	2.00	2.02	2.04	2.06	2.08
21	2.09	2.10	2.12	2.14	2.16	2.10	2.12	2.14	2.16	2.18
22	2.18	2.20	2.22	2.24	2.26	2.20	2.22	2.24	2.26	2.28
23	2.28	2.30	2.32	2.34	2.36	2.30	2.32	2.34	2.36	2.38
24	2.38	2.40	2.42	2.44	2.46	2.40	2.42	2.44	2.46	2.48
25	2.48	2.50	2.52	2.54	2.56	2.50	2.52	2.54	2.56	2.58
26	2.58	2.60	2.62	2.64	2.66	2.60	2.62	2.64	2.66	2.68
27	2.68	2.70	2.72	2.74	2.76	2.70	2.72	2.74	2.76	2.78
28	2.78	2.80	2.82	2.84	2.86	2.80	2.82	2.84	2.86	2.88
29	2.88	2.90	2.91	2.93	2.95	2.90	2.92	2.94	2.96	2.98
30	2.97	2.99	3.01	3.03	3.05	3.00	3.02	3.04	3.06	3.08
3 I	3.07	3.09	3.11	3.13	3.15	3.10	3.12	3.14	3.16	3.18
32	3.17	3.19	3.21	3.23	3.25	3.20	3.22	3.24	3.26	3.28
33	3.27	3.29	3.3 I	3.33	3.35	3.30	$3 \cdot 32$	3.34	$3 \cdot 36$	3.38
34	3.37	3.39	3.41	3.43	3.45	3.40	3.42	3.44	3.46	3.46
35	3.47	3.49	3.51	3.53	3.55	3.49	3.51	3.53	3.55	3.57

Smitheonian Tableg.

TABLE 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	heigirt of tie barometer 620 mm .					heigit of the barometer 625 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm .	min.	mm .	mm .	mm.	mm .	mm.	mm.	mm .
$0{ }^{\circ}$	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.08
1	. 10	. 12	. 14	. 16	. 18	. 10	. 12	. 14	. 16	. 18
2	. 20	. 22	. 24	. 26	. 28	. 20	. 22	. 24	. 27	. 29
3	. 30	. 32	- 34	. 36	. 3 S	. 31	. 33	. 35	- 37	- 39
4	. 40	. 43	. 45	. 47	. 49	. 41	. 43	. 45	. 47	. 49
5	0.51	0.53	0.55	0.57	0.59	0.51	0.53	0.55	0.57	0.59
6	.61	. 63	. 65	. 67	. 69	.61	. 63	. 65	. 67	. 69
7	. 71	. 73	. 75	- 77	. 79	.71	. 73	. 75	. 78	. 80
8	.8r	. 83	. 85	. 87	. 89	. 82	. 84	. 86	. 88	. 90
9	.91	. 93	. 95	. 97	. 99	. 92	. 94	. 96	. 98	1.00
10	1.OI	1.03	1.05	1.07	1.09	1.02	1.04	1.06	1.08	I. 10
II	I.II	I. 13	I. 15	I. 17	I. 19	I. 12	I. 14	I. 16	I. 18	1.20
12	I. 21	1.23	1.25	1.27	1.29	1.22	I. 24	1.26	I. 28	I. 30
13	1.31	1.33	I. 35	1.37	I. 39	1.32	1.34	I. 37	1.39	I. 41
14	I.4I	1.43	1.46	1.48	1.50	1.43	1.45	1.47	1.49	1.51
15	1.52	1.54	1.56	1.58	1.60	1.53	1.55	1.57	1.59	1.61
16	t. 62	1.64	1.65	1.63	1.70	1.63	I. 65	1.67	1.69	1.71
17	1.72	1.74	1.76	1.78	1.80	1.73	1.75	1.77	1.79	1.81
18	1.82	1.84	1.86	1.88	1.90	1.83	1.85	1.87	1.89	1.91
19	1.92	1.94	I. 96	1.98	2.00	1.93	I. 95	1.97	1.99	2.01
20	2.02	2.04	2.06	2.08	2. 10	2.04	2.06	2.08	2.10	2.12
21	2. 12	2.14	2.16	2.18	2.20	2.14	2.16	2. 18	2.20	2.22
22	2.22	2.24	2.26	2.28	2.30	2.24	2.26	2.28	2.30	2.32
23	2.32	2.34	2.36	2.38	2.40	2.34	2.36	2.38	2.40	2.42
24	2.42	2.44	2.45	2.48	2.50	2.44	2.46	2.48	2.50	2.52
25	2.52	2.54	2.56	2.58	2.60	2.54	2.56	2.58	2.60	2.62
26	2.62	2.64	2.66	2.68	2.70	2.64	2.66	2.68	2.70	2.72
27	2.72	2.74	2.76	2.78	2.80	2.74	2.76	2.78	2.80	2.82
28	2.82	2.84	2.86	2.88	2.90	2.85	2.87	2.89	2.91	2.93
29	2.92	2.94	2.96	2.98	3.00	2.95	2.97	2.99	3.01	3.03
30	3.02	3.04	3.06	3.08	3.10	3.05	3.07	3.09	3.11	3.13
3 I	3.12	3.14	3.16	3.18	3.20	3.15	3.17	3.19	3.21	3.23
32	3.22	3.24	3.26	3.28	3.30	3.25	3.27	3.29	$3 \cdot 3 \mathrm{I}$	3.33
33	3.32	$3 \cdot 34$	3.36	3.38	3.40	3.35	3.37	3.39	3.4 I	3.43
34	3.42	3.44	3.46	3.48	3.50	3.45	3.47	3.49	3.51	3.53
35	$3 \cdot 52$	3.54	3.56	3.58	3.60	3.55	3.57	3.59	3.61	3.63

Smithsonian Tables.

TAble 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 630 mm .					HEIGHT OF THE BAROMETER 635 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm .	mm .	mm.							
0°	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.08
1	. 10	. 12	. 14	. 16	. 19	. 10	. 12	. 15	. 17	. 19
2	. 21	. 23	. 25	. 27	. 29	. 21	. 23	. 25	. 27	. 29
3	. 31	- 33	. 35	$\cdot 37$. 39	. 31	. 33	. 35	. 37	. 39
4	. 41	. 43	. 45	. 47	. 49	. 41	. 44	.46	. 48	. 50
5	0.51	0.53	0.56	0.58	0.60	0.52	0.54	0.56	0.58	0.60
6	. 62	. 64	. 66	. 68	. 70	. 62	. 64	. 66	. 68	. 70
7	. 72	. 74	.76	.78	. 80	. 73	. 75	. 77	.79	.81
8	. 82	. 84	. 86	. 88	. 90	. 83	. 85	. 87	. 89	.91
9	. 92	. 95	. 97	. 99	I. OI	-93	. 95	. 97	. 99	1.02
10	1.03	1.05	1.07	1.09	I.II	1.04	1.06	1.08	1.10	I. 12
II	I. 13	1.15	1.17	1. 19	1.21	1.14	1.16	1. 18	1.20	1.22
12	1.23	1.25	1.27	1.29	I. 3 I	1.24	I. 26	1.28	1.30	1.33
13	1.34	1.36	1.38	1.40	1.42	1.35	1.37	1.39	I. 41	1.43
14	1.44	I. 46	1.48	1. 50	1.52	1.45	1.47	1.49	1.51	1.53
15	1.54	1.56	1.58	1.60	1.62	1.55	1.57	1.59	1.6r	1.63
16	I. 64	1.66	1.68	1.70	1.72	1.66	1.68	1.70	1.72	1.74
17	1.74	1.77	1.79	1.81	1.83	1.76	1.78	1.80	1.82	1.84
18	1.85	1.87	I. 89	1.91	1.93	1.86	1.88	1.90	1.92	1.94
19	1.95	1.97	1.99	2.01	2.03	1.96	1.99	2.01	2.03	2.05
20	2.05	2.07	2.09	2.11	2.13	2.07	2.09	2.11	2.13	2.15
21	2.15	2.17	2.19	2.21	2.24	2.17	2.19	2.21	2.23	2.25
22	2.26	2.28	2.30	2.32	2.34	2.27	2.29	2.31	2.34	2.36
23	2.36	2.38	2.40	2.42	2.44	2.38	2.40	2.42	2.44	2.46
24	2.46	2.48	2.50	2.52	2.54	2.48	2.50	2.52	2.54	2.56
25	2.56		2.60	2.62	2.64	2.58	2.60	2.62	2.64	2.66
26	2.66	2.68	2.70	2.73	2.75	2.69	2.71	2.73	2.75	2.77
27	2.77	2.79	2.81	2.83	2.85	2.79	2.81	2.83	2.85	2.87
28	2.87	2.89	2.91	2.93	2.95	2.89	2.91	2.93	2.95	2.97
29	2.97	2.99	3.01	3.03	3.05	2.99	3.01	3.03	3.05	3.08
30	3.07	3.09	3.11	3.13	3.15	3.10	3.12	3.14	3.16	3.18
3 I	3.17	3.19	3.21	3.23	3.25	3.20	3.22	3.24	3.26	3.28
32	3.28	3.30	3.32	3.34	3.36	3.30	3.32	3.34	3.36	3.38
33	3.38	3.40	3.42	3.44	3.46	3.40	3.42 3.53	3.44	3.47	3.49
34	3.48	3.50	3.52	3.54	3.56	3.51	3.53	3.55	3.57	3.59
35	3.58	3.60	3.62	3.64	3.66	3.6 I	3.63	3.65	3.67	3.69

Smithoonian Tables.

Table 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.
for temperatures above 0° centigrade, the correction is to be subtracted.

	height of the barometer 640 mm .					height of the barometer 645 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm .	mm .	mm.	mm.	mm.	mm .	mm .	mm.	mm .
0°	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.08
1	. 10	. 13	. 15	. 17	. 19	. II	. 13	. 15	. 17	. 19
2	. 21	. 23	. 25	. 27	. 29	. 21	. 23	. 25	. 27	. 29
3	. 31	. 33	. 36	. 38	. 40	. 32	. 34	. 36	. 38	. 40
4	. 42	. 44	. 46	. 48	. 50	. 42	. 44	.46	.48	. 51
5	0.52	0.54	0.56	0.59	0.6I	0.53	0.55	0.57	0.59	0.61
6	. 63	. 65	. 67	. 69	. 71	. 63	. 65	. 67	. 69	. 72
7	. 73	. 75	. 77	. 79	. 81	. 74	. 76	. 78	. 80	. 82
8	. 84	. 86	. 88	. 90	. 92	. 84	. 86	. 88	. 90	. 93
9	. 94	.96	.98	1.00	1.02	. 95	. 97	. 99	I.OI	1. 03
10	1.04	r. 06	1.09	I.II	1.13	1.05	1.07	1.09	1.12	I. 14
II	I. 15	1.17	I. 19	1.21	1.23	1. 16	I. 18	1.20	1.22	1.24
12	1.25	1.27	1.29	1.31	1.34	1.26	I. 28	1.30	1.32	1.35
13	I. 36	1.38	1.40	1.42	I. 44	I. 37	I. 39	I. 41	1.43	1.45
14	I. 46	r. 48	1.50	1.52	1.54	r. 47	I. 49	1.5I	1.53	I. 56
15	1.56	1.59	1.6I	1.63	1. 65	1.58	1. 60	1.62	1. 64	1.66
16	1.67	1.69	1.71	1.73	1.75	1. 68	1.70	1.72	1.74	1.77
17	1.77	1.79	I.8I	1.83	1.86	1.79	I.8I	1.83	1.85	1. 87
18	1.88	1.90	1.92	1.94	1.96	1.89	I. 91	1.93	1.95	1.97
19	1.98	2.00	2.02	2.04	2.06	2.00	2.02	2.04	2.06	2.08
20	2.08	2.10	2.13	2. 15	2.17	2.10	2.12	2.14	2.16	2.18
21	2.19	2.21	2.23	2.25	2.27	2.20	2.23	2.25	2.27	2.29
22	2.29	2.31	2.33	2.35	2.37	2.31	2.33	2.35	2.37	2.39
23	2.40	2.42	2.44	2.46	2.48	2.41	2.43	2.46	2.48	2.50
24	2.50	2.52	2.54	2.56	2.58	2.52	2.54	2.56	2.58	2.60
25	2.60	2.62	2.64	2.66	2.69	2.62	2.64	2.66	2.69	2.71
26	2.71	2.73	2.75	2.77	2.79	2.73	2.75	2.77	2.79	2.81
27	2.8 I	2.83	2.85	2.87	2.89	2.83	2.85	2.87	2.89	2.92
28	2.91	2.93	2.95	2.98	3.00	2.94	2.96	2.98	3.00	3.02
29	3.02	3.04	3.06	3.08	3.10	3.04	3.06	3.08	3.10	3.12
30	3.12	3.14	3.16	3.18	3.20	3.14	3.17	3.19	3.21	3.23
3 I	3.22	3.24	3.27	3.29	3.31	3.25	3.27	3.29	3.31	3.33
32	3.33	3.35	$3 \cdot 37$	$3 \cdot 39$	3.41	3.35	3.37	3.39	3.42	3.44
33	3.43	3.45	3.47 3.58	3.49	3.51	3.46	3.48	3.50	3.52	3.54
34	3.53	3.55	3.58	3.60	3.62	3.56	3.58	3.60	3.62	3.64
35	3.64	3.66	3.68	3.70	3.72	3.67	3.69	3.71	3.73	3.75

Smithbonian Tables.

TAble 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.

METRIC MEASURES.

for temperatures above 0° centigrade, the correction is to be subtracted.

	height of the barometer 650 mm .					height of the barometer 655 mm .				
Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm .	mm.	mm.	mm .	mm.	mm.	mm.	mm.	mm.
$0{ }^{\circ}$	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.09
1	.II	. 13	. 15	. 17	. 19	. 11	.13	. 15	. 17	. 19
2	. 21	. 23	. 25	. 28	. 30	. 21	. 24	. 26	. 28	. 30
3	. 32	. 34	. 36	.38	. 40	. 32	. 34	. 36	. 39	. 41
4	. 42	. 45	. 47	. 49	.51	. 43	. 45	. 47	. 49	. 51
5	0.53	0.55	0.57	0.59	0.62	0.53	0.56	0. 58	0.60	0.62
6	. 64	. 66	. 68	. 70	. 72	. 64	. 66	. 68	.71	. 73
7	. 74	. 76	. 78	.81	. 83	. 75	. 77	. 79	. 81	. 83
8	. 85	. 87	. 89	. 91	. 93	. 85	. 88	. 90	. 92	. 94
9	. 95	. 98	1.00	1.02	I. 04	. 96	. 98	1.00	1.03	1.05
10	1. 06	1.08	1.10	1.12	I. 14	1.07	1.09	1.11	I. 13	I. 15
11	1.17	I. 19	1.21	1.23	I. 25	1.17	1.20	1.22	1.24	1. 26
12	1.27	I. 29	1.31	I. 34	I. 36	1.28	1.30	1.32	1. 35	I. 37
13	I. 38	1.40	1.42	I. 44	I. 46	1. 39	I.41	1.43	I. 45	1.47
14	I. 48	1.50	1.53	I. 55	1. 57	I. 49	I. 52	1.54	1. 56	I. 58
15	1. 59	1.61	1. 63	1. 65	І. 67	ı.60	1. 62	1.64	1. 66	1.69
16	I. 69	1.72	1.74	1.76	1. 78	1.71	1.73	1.75	1.77	1.79
17	1.80	1.82	1.84	I. 86	1.88	I.81	1.84	1.86	1.88	I. 90
18	1.91	1.93	1.95	1.97	1.99	1.92	I. 94	1.96	1.98	2.01
19	2.01	2.03	2.05	2.07	2.10	2.03	2.05	2.07	2.09	2.11
20	2.12	2.14	2.16	2.18	2.20	2.13	2.15	2.18	2.20	2.22
21	2.22	2.24	2.26	2.29	2.31	2.24	2.26	2.28	2.30	2.32
22	2.33	2.35	2.37	2.39	2.41	2.35	2.37	2.39	2.41	2.43
23	2.43	2.45	2.47	2.50	2.52	2.45	2.47	2.49	2.52	2.54
24	2.54	2.56	2.58	2.60	2.62	2.56	2.58	2.60	2.62	2.64
25	2.64	2.66	2.69	2.71	2.73	2.66	2.68	2.71	2.73	2.75
26	2.75	2.77	2.79	2.81	2.83	2.77	2.79	2.81	2.83	2.85
27	2.85	2.87	2.90	2.92	2.94	2.88	2.90	2.92	2.94	2.96
28	2.96	2.98	3.00	3.02	3.04	2.98	3.00	3.02	3.05	3.07
29	3.06	3.08	3.11	3.13	3.15	3.09	3.11	3.13	3.15	3.17
30	3.17	3.19	3.21	3.23	3.25	3.19	3.21	3.24	3.26	3.28
31	3.27	3.30	3.32	3.34	3.36	3.30	3.32	3.34	3.36	3.38
32	3.38	3.40	3.42	3.44	3.46	3.41	3.43	3.45	3.47	3.49
33	3.48	3.51	3.53	3.55	- 3.57	3.51	3.53	3.55	3.57	3.60
34	3.59	3.61	3.63	3.65	3.67	3.62	3.64	3.66	3.68	3.70
35	3.69	3.71	3.74	3.76	3.78	3.72	3.74	3.76	3.79	3.81

Smithsonian Tables.

METRIC MEASURES.

for temperatures above 0° Centigrade, the correction is to be subtracted.

	HEIGHT OF THE BAROMETER 660 mm .					HEIGHT OF THE BAROMETER 665 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm.	mm .	mm.						
0°	0.00	0.02	0.04	0.06	0.09	0.00	0.02	0.04	0.07	0.09
1	. II	. 13	. 15	. 17	. 19	. II	. 13	. 15	. 17	. 20
2	. 22	. 24	. 26	. 28	. 30	. 22	. 24	. 26	. 28	. 30
3	. 32	. 34	. 37	. 39	. 41	. 33	. 35	- 37	- 39	. 41
4	. 43	. 45	. 47	. 50	. 52	. 43	. 46	. 48	. 50	. 52
5	0.54	0.56	0.58	0.60	0.62	0.54	0.56	0.59	0.6I	0.63
6	. 65	. 67	. 69	. 71	. 73	. 65	. 67	. 69	. 72	. 74
7	. 75	. 78	. 80	. 82	. 84	.76	. 78	. 80	. 82	. 85
8	. 86	. 88	. 90	. 93	. 95	. 87	. 89	.91	. 93	. 95
9	. 97	. 99	I. OI	I. 03	1.05	. 98	1.00	1.02	1.04	1.06
10	1. 08	I. 10	1.12	I. 14	I. 16	1.08	I. II	1. 13	1.15	1. 17
II	I. 18	1.21	1.23	1.25	1.27	I. 19	1.21	1.24	1.26	1.28
12	I. 29	1.31	1.33	I. 36	I. 38	1.30	1.32	1.34	1.37	1.39
13	1.40	1.42	1.44	1.46	1.48	I.4I	1. 43	1.45	1.47	1.50
14	1.5I	I. 53	L. 55	1.57	I. 59	1.52	I. 54	I. 56	1.58	1.60
15	1.61	1.63	1.66	1. 68	1.70	1.63	1.65	1.67	1.69	1.71
16	1.72	1.74	1.76	1.78	I.8I	1.73	1.76	1.78	1.80	1.82
17	1.83	1.85	1.87	1.89	1.91	I. 84	I. 86	1.88	1.91	1.93
I8	1.93	1.96	1.98	2.00	2.02	1.95	1.97	1.99	2.01	2.04
19	2.04	2.06	2.08	2.11	2.13	2.06	2.08	2. 10	2.12	2.14
20	2.15	2.17	2. 19	2.21	2.23	2. I7	2.19	2.21	2.23	2.25
21	2.26	2.28	2.30	2.32	2.34	2.27	2.29	2.32	2.34	2.36
22	2.36	2.38	2.41	2.43	2.45	2.38	2.40	2.42	2.45	2.47
23	2.47	2.49	2.51	2.53	2.56	2.49	2.51	2.53	2.55	2.57
24	2.58	2.60	2.62	2.64	2.66	2.60	2.62	2.64	2.66	2.68
25	2.68	2.71	2.73	2.75	2.77	2.70	2.73	2.75	2.77	2.79
26	2.79	2.81	2.83	2.85	2.88	2.81	2.83	2.85	2.88	2.90
27	2.90	2.92	2.94	2.96	2.98	2.92	2.94	2.96	2.98	3.01
28	3.00	3.03	3.05	3.07	3.09	3.03	3.05	3.07	3.09	3.11
29	3.11	3.13	3.15	3.18	3.20	3.13	3.16	3.18	3.20	3.22
30	3.22	3.24	3.26	3.28	3.30	3.24	3.26	3.29	3.3 I	3.33
3 I	2.32	3.35	3.37	$3 \cdot 39$	3.41	3.35	3.37	3.39	3.41	3.44
32	3.43	3.45	3.47	3.49	3.52	3.46	3.48	3.50	3.52	3.54
33	3.54	3.56	3.58	3.60	3.62	3.56	3.59	3.6 I	3.63	3.65
34	3.64	3.67	3.69	3.71	3.73	3.67	3.69	3.7 I	3.74	3.76
35	3.75	3.77	3.79	3.8 I	3.84	3.78	3.80	3.82	3.84	3.86

Smitheonian Tables.

TAble 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 670 mm.					HEIGHT OF THE BAROMETER 675 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm .	mm .	mm.	mm .	mm .	mm.	mm.	mm .	mm.
0°	0.00	0.02	0.04	0.07	0.09	0.00	0.02	0.04	0.07	0.09
1	. II	. 13	. 15	. 18	. 20	. II	. 13	. 15	. 18	. 20
2	. 22	. 24	. 26	. 28	. 31	. 22	. 24	. 26	. 29	. 31
3	. 33	. 35	- 37	. 39	. 42	. 33	- 35	. 37	. 40	. 42
4	. 44	. 46	. 48	. 50	. 53	. 44	. 46	. 48	. 51	. 53
5	0.55	0.57	0.59	0.61	0.63	0.55	0.57	0.60	0.62	0.64
6	. 66	. 68	. 70	. 72	. 74	. 66	. 68	. 71	. 73	. 75
7	. 77	- . 79	.81	. 83	. 85	. 77	. 79	. 82	. 84	. 86
8	. 87	. 90	. 92	. 94	. 96	. 88	. 90	. 93	. 95	. 97
9	. 98	I.OI	1.03	1.05	1.07	. 99	I.OI	1.04	1.06	1.08
10	1.09	I. II	I. 14	I. 16	I. 18	1.10	1.12	I. 14	1.17	I. 19
11	1.20	1.22	1.25	1.27	1.29	I.2I	1.23	1.25	1.28	1.30
12	1.31	1.33	1.35	r. 38	1.40	1.32	1.34	I. 36	1.39	1.41
13	1.42	I. 44	I. 46	1.49	1.51	1.43	1.45	1.47	1.50	1.52
14	1.53	1.55	1.57	1.59	1.62	1.54	1.56	1.58	1.6I	1.63
15	1.64	1.66	1.68	1.70	1.72	r. 65	1.67	1.69	1.72	1.74
16	1.75	1.77	1.79	I.81	1.83	1.76	1.78	1.80	1.83	1.85
17	1.86	1.88	1.90	1.92	1.94	1.87	I. 89	1.91	1.94	1.96
18	1.96	1.99	2.01	2.03	2.05	1.98	2.00	2.02	2.04	2.07
19	2.07	2.09	2.12	2.14	2.16	2.09	2.11	2.13	2.15	2.18
20	2.18	2.20	2.23	2.25	2.27	2.20	2.22	2.24	2.26	2.29
21	2.29	2.31	2.33	2.36	2.38	2.31	2.33	2.35	2.37	2.39
22	2.40	2.42	2.44	2.46	2.49	2.42	2.44	2.46	2.48	2.50
23	2.51	2.53	2.55	2.57	2.59	2.53	2.55	2.57	2.59	2.61
24	2.62	2.64	2.66	2.68	2.70	2.64	2.66	2.68	2.70	2.72
25	2.72	2.75	2.77	2.79	2.81	2.74	2.77	2.79	2.81	2.83
26	2.83	2.85	2.88	2.90	2.92	2.85	2.88	2.90	2.92	2.94
27	2.94	2.96	2.98	3.01	3.03	2.96	2.99	3.01	3.03	3.05
28	3.05	3.07	3.09	3.11	3.14	3.07	3.09	3.12	3.14	3.16
29	3.16	3.18	3.20	3.22	3.24	3.18	3.20	3.23	3.25	3.27
30	3.27	3.29	3.31	3.33	3.35	3.29	3.3 I	3.33	3.36	3.38
3 I	3.37	3.40	3.42	$3 \cdot 44$	3.46	3.40	$3 \cdot 42$	3.44	3.47	3.49
33	3.48	3.50	3.53	3.55	3.57	3.51	3.53	3.55	3.57	3.60
33	3.59	3.61	3.63	3.66	3.68	3.62	3.64	3.66	3.68	3.71
34	3.70	3.72	3.74	3.76	3.79	3.73	3.75	3.77	3.79	3.81
35	3.8 I	3.83	3.85	3.87	3.89	3.84	3.86	3.88	3.90	3.92

Emithsonian Tables.

TABLE 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

-	HEIGHT OF THE BAROMETER 680 mm .					HEIGHT OF THE BAROMETER 685 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm .	mm.							
0°	0.00	0.02	0.04	0.07	0.09	0.00	0.02	0.04	0.07	0.09
1	. II	. 13	. 16	. 18	. 20	. 11	. 13	. 16	. 18	. 20
2	. 22	. 24	. 27	. 29	-31	. 22	. 25	. 27	. 29	-3I
3	. 33	. 36	- 38	. 40	. 42	. 34	. 36	. 38	. 40	. 43
4	. 44	. 47	. 49	. 51	. 53	. 45	. 47	. 49	. 51	. 54
5	0.56	0.58	0.60	0.62	0.64	0.56	0.58	0.60	0.63	0.65
6	. 67	. 69	. 71	. 73	. 75	. 67	. 69	. 72	. 74	. 76
7	. 78	. 80	. 82	. 84	. 87	. 78	. 80	. 83	. 85	. 87
8	. 89	.91	. 93	. 95	. 98	. 89	. 92	. 94	. 96	. 98
9	1.00	1.02	1.04	1.06	1.09	I. 12	1.03	1.05	1.07	1.09
10	I. II	1.13	1. 15	1.18	1.20	I. 12	1.14	1.16	1. 18	I. 21
11	1.22	I. 24	I. 26	1.29	I. 31	1.23	1.25	1.27	I. 30	1.32
12	1.33	1.35	1.37	1.40	1.42	1.34	1. 36	1.38	I.4I	1.43
13	1. 44	I. 46	I. 49	I.51	1.53	1.45	1.47	1.50	1.52	I. 54
14	I. 55	1.57	1.60	1.62	1.64	I. 56	1.59	1.6I	1.63	1.65
15	1.66	1.68	1.71	1.73	1.75	1.6'7	1.70	1.72	1.74	1.76
16	1.77	1.79	1.82	1.84	1.86	1.79	1.81	1.83	1.85	1.87
17	1.88	1.91	1.93	1.95	1.97	1.90	1.92	1.94	1.96	1.99
18	1.99	2.02	2.04	2.06	2.08	2.01	2.03	2.05	2.07	2.10
19	2.10	2.13	2. 15	2.17	2.19	2.12	2.14	2.16	2.19	2.21
20	2.21	2.24	2.26	2.28	2.30	2.23	2.25	2.27	2.30	2.32
21	2.32	2.35	2.37	2.39	2.41	2.34	2.36	2.39	2.41	2.43
22	2.43	2.46	2.48	2.50	2.52	2.45	2.47	2.50	2.52	2.54
23	2.54	2.57	2.59	2.61	2.63	2.56	2.59	2.61	2.63	2.65
24	2.66	2.68	2.70	2.72	2.74	2.67	2.70	2.72	2.74	2.76
25	2.77	2.79	2.81	2.83	2.85	2.79	2.81	2.83	2.85	2.87
26	2.88	2.90	2.92	2.94	2.96	2.90	2.92	2.94	2.96	2.99
27	2.99	3.01	3.03	3.05	3.07	3.01	3.03	3.05	3.07	3.10
28	3.10	3.12	3.14	3.16	3.18	3.12	3.14	3.16	3.18	3.21
29	3.21	3.23	3.25	3.27	3.29	3.23	3.25	3.27	3.30	3.32
30	$3 \cdot 32$	$3 \cdot 34$	3.36	3.38	3.40	$3 \cdot 34$	3.36	3.38	3.41	3.43
31	3.43	3.45	3.47	3.49	3.51	3.45	3.47	3.49	3.52	3.54
32	3.54	3.56	3.58	3.60	3.62	3.56	3.58	3.61	3.63	3.65
33	3.64	3.67	3.69	3.71	3.73	3.67	3.69	3.72	3.74	3.76
34	3.75	3.78	3.80	3.82	3.84	3.78	3.80	3.83	3.85	3.87
35	3.86	3.89	3.91	3.93	3.95	3.89	3.91	3.94	3.96	3.98

Smitheonian Tables.

TABLE 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 690 mm.					HEIGHT OF THE BAROMETER 695 mm.				
Attached Thermometer	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm.	mm.	mm .	mm.	mm .	mm.	mm.	mm .	mm.
$0{ }^{5}$	0.00	0.02	0.05	0.07	0.09	0.00	0.02	0.05	0.07	0.09
1	. II	. 14	. 16	. 18	. 20	. II	. 14	. 16	. 18	. 20
2	. 23	. 25	. 27	. 29	. 32	. 23	. 25	. 27	. 30	. 32
3	. 34	. 36	. 38	.4I	. 43	- 34	. 36	. 39	. 41	. 43
4	. 45	. 47	. 50	. 52	. 54	. 45	.48	. 50	. 52	. 54
5	0.56	0.59	0.6I	0.63	0.65	0.57	0.59	0.61	0.64	0.66
6	. 68	. 70	. 72	. 74	. 77	. 68	. 70	. 73	. 75	. 77
7	. 79	.81	. 83	. 86	. 88	. 79	. 82	. 84	. 86	. 88
8	. 90	. 92	. 95	. 97	. 99	. 91	. 93	. 95	. 98	1.00
9	I.OI	1.04	1.06	1.08	I. 10	1.02	1.04	1.07	1.09	I. II
10	I. 13	I. 15	1.17	1.19	1.22	I. 13	I. 16	I. 18	1.20	1.22
II	1.24	1.26	1.28	1.31	1.33	1.25	1.27	1.29	1. 31	1.34
12	1.35	1.37	1.39	1.42	1.44	1.36	1.38	1.41	1.43	1.45
13	1.46	1.48	1.51	1.53	I. 55	1.47	1.50	1.52	I. 54	1.56
14	1. 57	1.60	1.62	1.64	1.66	1.59	1.6I	1.63	1. 65	1.68
15	1.69	1.71	1.73	1.75	1.78	1.70	1.72	1.74	1.77	1.79
16	1.80	1.82	1.84	1.87	1.89	I.8I	1.83	I. 86	1.88	1.90
17	1.91	1.93	1.96	1.98	2.00	1.92	1.95	1.97	1.99	2.01
18	2.02	2.05	2.07	2.09	2.11	2.04	2.06	2.08	2.11	2.13
19	2.13	2.16	2.18	2.20	2.22	2. 15	2.17	2.20	2.22	2.24
20	2.25	2.27	2.29	2.31	2.34	2.26	2.29	2.31	2.33	2.35
21	2.36	2.38	2.40	2.43	2.45	2.38	2.40	2.42	2.44	2.47
22	2.47	2.49	2.52	2.54	2.56	2.49	2.51	2.53	2.56	2.58
23	2.58	2.60	2.63	2.65	2.67	2.60	2.62	2.65	2.67	2.69
24	2.69	2.72	2.74	2.76	2.78	2.71	2.74	2.76	2.78	2.80
	2.81	2.83	2.85	2.87	2.90	2.83	2.85	2.87	2.89	2.92
26	2.92	2.94	2.96	2.99	3.01	2.94	2.96	2.98	3.01	3.03
27	3.03	3.05	3.07	3.10	3.12	3.05	3.07	3.10	3.12	3.14
28	3.14	3.16	3.19	3.21	3.23	3.16	3.19	3.21	3.23	3.25
29	3.25	3.27	3.30	3.32	3.34	3.28	3.30	3.32	3.34	3.37
30	3.36	3.39	3.41	3.43	3.45	3.39	3.41	3.43	3.46	3.48
31	3.48	3.50	3.52	3.54	3.56	3.50	3.52	3.55	3.57	3.59
32	3.59	3.61	3.63	3.65	3.68	3.61	3.64	3.66	3.68	3.70
33	3.70	3.72	3.74	3.77	3.79	3.73	3.75	3.77	3.79	3.81
34	3.81	3.83	3.85	3.88	3.90	3.84	3.86	3.88	3.90	3.93
35	3.92	3.94	3.97	3.99	4.01	3.95	3.97	3.99	4.02	4.04

Syithsonian Tables.

TABLE 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.

METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 700 mm .					HEIGHT OF THE BAROMETER 705 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm.	mm .	mm .	mm.	mm.	mm .	mm.	mm .	mm.
$0{ }^{\circ}$	0.00	0.02	0.05	0.07	0.09	0.00	0.02	0.05	0.07	0.09
	. 11	. 14	. 16	. 18	. 21	. 12	. 14	. 16	. 18	. 21
2	. 23	. 25	. 27	. 30	. 32	. 23	. 25	. 28	. 30	. 32
3	- 34	- 37	. 39	. 41	. 43	- 35	- 37	- 39	. 41	. 44
4	. 46	. 48	. 50	. 53	. 55	. 46	. 48	. 51	. 53	. 55
5	0.57	0.59	0.62	0.64	0.66	0.58	0.60	0.62	0.64	0.67
6	. 69	. 71	. 73	. 75	. 78	. 69	. 71	. 74	. 76	. 78
7	. 80	. 82	. 85	. 87	. 89	.81	. 83	. 85	. 87	. 90
8	.91	. 94	. 96	. 98	1.00	. 92	. 94	. 97	. 99	I.OI
9	1.03	1.05	1.07	I. 10	1.12	1.04	1.06	1.08	1.10	1.13
10	I. 14	I. 16	1.19	I.2I	1.23	1.15	1.17	1.20	1.22	1.24
11	1.26	1.28	1.30	1.32	1.35	1.26	1.29	1.31	1.33	1.36
12	1.37	1.39	1.42	1.44	1.46	I. 38	I. 40	1.43	1.45	1.47
13	1.48	1.51	1.53	1.55	1.57	I. 49	1.52	1.54	1.56	1.59
14	1.60	1.62	1.64	1.67	1.69	1.6I	1.63	1.65	1.68	1.70
15	1.71	1.73	1.76	1.78	1.80	1.72	1.75	1.77	1.79	1.81
16	1.82	1.85	1.87	1.89	1.92	1.84	1.86	1.88	1.91	1.93
17	1.94	1.96	1.98	2.01	2.03	1.95	1.98	2.00	2.02	2.04
18	2.05	2.07	2.10	2.12	2.14	2.07	2.09	2.11	2.14	2.16
19	2.17	2.19	2.21	2.23	2.26	2.18	2.20	2.23	2.25	2.27
20	2.28	2.30	2.32	2.35	2.37	2.30	2.32	2.34	2.36	2.39
21	2.39	2.42	2.44	2.46	2.48	2.41	2.43	2.46	2.48	2.50
22	2.51	2.53	2.55	2.57	2.60	2.52	2.55	2.57	2.59	2.62
23	2.62	2.64	2.67	2.69	2.71	2.64	2.66	2.68	2.71	2.73
24	2.73	2.76	2.78	2.80	2.82	2.75	2.78	2.80	2.82	2.84
25	2.85	2.87	2.89	2.91	2.94	2.87	2.89	2.91	2.94	2.96
26	2.96	2.98	3.01	3.03	3.05	2.98	3.00	3.03	3.05	3.07
27	3.07	3.10	3.12	3.14	3.16	3.10	3.12	3.14	3.16	3.19
28	3.19	3.21	3.23	3.25	3.28	3.21	3.23	3.25	3.28	3.30
29	3.30	332	3.34	3.37	3.39	3.32	3.35	3.37	3.39	$3 \cdot 4 \mathrm{I}$
30	3.41	3.44	3.46	3.48	3.50	3.44	3.46	3.48	3.51	3.53
3 I	3.53	3.55	3.57	3.59	3.62	3.55	3.57	3.60	3.62	3.64
32	3.64	3.66	3.68	3.71	3.73	3.66	3.69	3.71	3.73	3.76
33	3.75	3.77	3.80	3.82	3.84	3.78	3.80	3.82	3.85	3.87
34	3.87	3.89	3.91	3.93	3.96	3.89	3.92	3.94	3.96	3.98
35	3.98	4.00	4.02	4.05	4.07	4.01	4.03	4.05	4.07	4.10

Smithsonian Tables.

TABLE 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 710 mm .					HEIGHT OF THE BAROMETER 715 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm .	mm .	mm .	mm.						
$0{ }^{\circ}$	0.00	0.02	0.05	0.07	0.09	0.00	0.02	0.05	0.07	0.09
1	. 12	. 14	. 16	. 19	. 21	. 12	. 14	. 16	. 19	. 21
2	. 23	. 26	. 28	- 30	- 32	. 23	. 26	. 28	. 30	- 33
3	- 35	. 37	. 39	. 42	. 44	. 35	- 37	. 40	. 42	. 44
4	.46	. 49	. 51	. 53	.56	. 47	. 49	.51	. 54	. 56
5	0.58	0.60	0.63	0.65	0.67	0.58	0.61	0.63	0.65	0.68
6	. 70	. 72	. 74	. 76	. 79	. 70	. 72	. 75	. 77	. 79
7	.81	. 83	. 86	. 88	. 90	. 82	. 84	. 86	. 89	. 91
8	. 93	. 95	. 97	1.00	1.02	. 93	.96	. 98	1.00	1.03
9	1. 04	1.07	1.09	I.II	I. 13	1.05	1.07	I. 10	I. 12	1.14
10	I. 16	1. 18	1.20	1.23	1.25	I. 17	I. 19	I. 21	I. 24	1.26
II	1.27	1.30	1.32	I. 34	1.37	1.28	1.3I	1.33	1. 35	1. 38
12	1.39	1.41	1.44	1.46	I. 48	I. 40	1.42	r. 45	r. 47	I. 49
13	1.50	1. 53	I. 55	1.57	1.60	1.52	I. 54	I. 56	r. 58	1.6I
14	1. 62	1.64	1. 67	I. 69	1.71	1.63	1.65	I. 68	1.70	1.72
15	1. 74	1.76	1.78	1.80	1.83	1.75	1.77	1.79	1.82	1. 84
16	1.85	1.87	1.90	1.92	1.94	1.86	1.89	1.91	1.93	1.96
17	1.97	1.99	2.01	2.04	2.06	1.98	2.00	2.03	2.05	2.07
18	2.08	2. 10	2.13	2.15	2.17	2.10	2.12	2.14	2.17	2.19
19	2.20	2.22	2.24	2.27	2.29	2.21	2.24	2.26	2.28	2.30
20	2.31	2.33	2.36	2.38	2.40	2.33	2.35	2.37	2.40	2.42
21	2.43	2.45	2.47	2.50	2.52	2.44	2.47	2.49	2.51	2.54
22	2.54	2.57	2.59	2.61	2.63	2.56	2.58	2.61	2.63	2.65
23	2.66	2.68	2.70	2.73	2.75	2.68	2.70	2.72	2.75	2.77
24	2.77	2.80	2.82	2.84	2.86	2.79	2.81	2.84	2.86	2.88
25	2.89	2.91	2.93	2.96	2.98	2.91	2.93	2.95	2.98	3.00
26	3.00	3.03	3.05	3.07	3.09	3.02	3.05	3.07	3.09	3.12
27	3.12	3.14	3.16	3.19	3.21	3.14	3.16	3.19	3.21	3.23
28	3.23	3.25	3.28	3.30	3.32	3.25	3.28	$3 \cdot 30$	3.32	3.35
29	3.35	3.37	3.39	3.42	3.44	3.37	3.39	3.42	3.44	3.46
30	3.46	3.48	3.51	3.53	3.55	3.49	3.51	3.53	3.56	3.58
31	3.58	3.60	3.62	3.65	3.67	3.60	3.62	3.65	3.67	3.69
32	3.69	3.71	3.74	3.76	3.78	3.72	3.74	3.76	3.79	3.81
33	3.81	3.83	3.85	3.87	3.90	3.83	3.86	3.88	3.90	3.92
34	3.92	3.94	3.97	3.99	4.01	3.95	3.97	3.99	4.02	4.04
35	4.03	4.06	4.08	4.10	4.13	4.06	4.09	4.II	4.13	4.16

Smitheonian Tableg.

TABLE 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 720 mm .					HEIGHT OF THE BAROMETER 725 mm .				
Attached Thernometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm .	mm .	mm.						
0°	0.00	0.02	0.05	0.07	0.09	0.00	0.02	0.05	0.07	0.09
1	. 12	. 14	. 16	. 19	. 21	. 12	. 14	. 17	. 19	. 21
2	. 24	. 26	. 28	. 31	. 33	. 24	. 26	. 28	. 31	. 33
3	. 35	.38	. 40	. 42	. 45	. 36	. 38	. 40	. 43	. 45
4	47	. 49	. 52	. 54	. 56	. 47	. 50	. 52	. 54	. 57
5	0.59	0.61	0.63	0.66	0.68	0.59	0.62	0.64	0.66	0.69
6	. 71	. 73	. 75	. 78	. 80	. 71	. 73	. 76	. 78	. 80
7	. 82	. 85	. 87	. 89	. 92	. 83	. 85	. 88	. 90	. 92
8	. 94	. 96	. 99	1.OI	1.03	. 95	. 97	. 99	1.02	1.04
9	1.06	1.08	1.10'	1.13	1.15	1.06	1.09	I.II	I. 14	I. 16
10	1.17	1.20	1.22	1.24	1.27	1. 18	1.21	. 1.23	1.25	1.28
II	I. 29	1.31	1.34	1.36	1.39	1.30	1.32	1.35	1.37	1.39
12	1.41	1.43	1.46	1.48	1.50	1.42	1.44	1.47	1.49	1.51
13	1.53	1.55	1.57	1.60	1.62	I. 54	1.56	1.58	1.61	1.63
14	I. 64	1.67	1.69	1.71	1.74	1.65	1.68	1.70	1.73	1.75
15	1.76	1.78	1.81	1.83	1.85	1.77	1.80	1.82	1.84	1.87
16	1.88	1.90	1.92	1.95	1.97	1.89	1.91	1.94	1.96	1.98
17	1.99	2.02	2.04	2.06	2.09	2.01	2.03	2.05	2.08	2.10
18	2. II	2.13	2.16	2.18	2.20	2. 13	2.15	2.17	2.20	2.22
19	2.23	2.25	2.27	2.30	2.32	2.24	2.27	2.29	2.3 I	2.34
20	2.34	2.37	2.39	2.41	2.44	2.36	2.38	2.41	2.43	2.45
21	2.46	2.48	2.51	2.53	2.55	2.48	2.50	2.53	2.55	2.57
22	2.58	2.60	2.62	2.65	2.67	2.60	2.62	2.64	2.67	2.69
23	2.69	2.72	2.74	2.76	2.79	2.71	2.74	2.76	2.78	2.81
24	2.81	2.83	2.86	2.88	2.90	2.83	2.85	2.88	2.90	2.92
25	2.93	2.95	2.97	3.00	3.02	2.95	2.97	3.00	3.02	3.04
26	3.04	3.07	3.09	3.11	3.14	3.07	3.09	3.11	3.14	3.16
27	3.16	3.18	3.21	3.23	3.25	3.18	3.21	3.23	3.25	3.28
28	3.28	3.30	3.32	3.35	3.37	3.30	3.32	3.35	3.37	3.39
29	3.39	3.42	3.44	3.46	3.49	3.42	3.44	3.46	3.49	3.51
30	3.51	3.53	3.56	3.58	3.60	3.53	3.56	3.58	3.60	3.63
31	3.63	3.65	3.67	3.70	3.72	3.65	3.68	3.70	3.72	3.75
32	3.74	3.77	3.79	3.81	3.84	3.77	3.79	3.82	3.84	3.86
33	3.86	3.88	3.91	3.93	3.95	3.89	3.91	3.93	3.96	3.98
24	3.98	4.00	4.02	4.05	4.07	4.00	4.03	4.05	4.07	4.10
35	4.09	4.1I	4.14	4.16	4.18	4.12	4.14	4.17	4.19	4.21

Smitheonian Tables.

Table 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 730 mm .					HEIGHT OF THE BAROMETER 735 mm.				
Attached Thermometer.	0\%	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.									
0°	0.00	0.02	0.05	0.07	O. 10	0.00	0.02	0.05	0.07	0.10
I	. 12	. 14	. 17	. 19	. 21	. 12	. 14	. 17	. 19	. 22
2	. 24	. 26	. 29	-31	. 33	. 24	. 26	. 29	. 31	- 34
3	. 36	- 38	. 41	. 43	. 45	. 36	. 38	. 41	. 43	. 46
4	. 48	. 50	. 52	. 55	. 57	. 48	. 50	. 53	. 55	. 58
5	0.60	0.62	0.64	0.67	0.69	0.60	0.62	0.65	0.67	0.70
6	. 71	. 74	. 76	. 79	.81	. 72	. 74	. 77	. 79	. 82
7	. 83	. 86	. 88	.91	. 93	. 84	. 86	. 89	.91	. 94
8	. 95	. 98	1.00	1.02	1.05	. 96	. 98	I. OI	1.03	1.06
9	1.07	1.10	1.12	1.14	1.17	1.08	I. 10	I. 13	I. 15	1.17
10	I. 19	I.2I	1.24	1.26	1.29	I. 20	1.22	1.25	1.27	1.29
II	1.31	1.33	1.36	1.38	1.40	I. 32	1.34	I. 37	I. 39	I.4I
12	1.43	I. 45	1.48	1.50	1.52	I. 44	1.46	I. 49	I. 51	1.53
13	I. 55	1.57	1.59	1.62	1.64	I. 56	1.58	1.6I	1.63	I. 65
14	1.67	1.69	1.71	1.74	1.76	1.68	1.70	1.72	I. 75	1.77
15	r. 78	r.81	1.83	1.86	1.88	1.80	1. 82	r. 84	1.87	1.89
16	1.90	1.93	1.95	1.97	2.00	1.92	1.94	1.96	1.99	2.01
17	2.02	2.05	2.07	2.09	2.12	2.04	2.06	2.08	2.11	2.13
18	2.14	2.16	2.19	2.21	2.23	2.15	2.18	2.20	2.23	2.25
19	2.26	2.28	2.3 I	2.33	2.35	2.27	2.30	2.32	2.35	2.37
20	2.38	2.40	2.42	2.45	2.47	2.39	2.42	2.44	2.46	2.49
21	2.50	2.52	2.54	2.57	2.59	2.51	2.54	2.56	2.58	2.61
22	2.61	2.64	2.66	2.68	2.71	2.63	2.66	2.68	2.70	2.73
23	2.73	2.76	2.78	2.80	2.83	2.75	2.77	2.80	2.82	2.85
24	2.85	2.87	2.90	2.92	2.94	2.87	2.89	2.92	2.94	2.97
25	2.97	2.99	3.02	3.04	3.06	2.99	3.01	3.04	3.06	3.08
26	3.09	3.11	3.13	3.16	3.18	3.11	3.13	3.16	3.18	3.20
27	3.20	3.23	3.25	3.28	3.30	3.23	3.25	3.27	3.30	3.32
28	3.32	3.35	3.37	3.39	3.42	3.35	3.37	3.39	3.42	3.44
29	3.44	3.46	3.49	3.51	3.54	3.46	3.49	3.51	3.54	3.56
30	3.56	3.58	3.61	3.63	3.65	3.58	3.61	3.63	3.65	3.68
3 I	3.68	3.70	3.72	3.75	3.77	3.70	3.73	3.75	3.77	3.80
32	3.79	3.82	3.84	3.87	3.89	3.82	3.84	3.87	3.89	3.92
33	3.91	3.94	3.96	3.98	4.01	3.94	3.96	3.99	4.01	4.03
34	4.03	4.05	4.08	4.10	4.12	4.06	4.08	4.11	4.13	4.15
35	4.15	4.17	4.20	4.22	4.24	4.18	4.20	4.22	4.25	4.27

Smitheonian Tables.

TABle 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 740 mm .					HEIGHT OF THE BAROMETER 745 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm .	mm.	mm.	mm .	mm .	mm .	mm.	mm .	mm.	mm.
0°	0.00	0.02	0.05	0.07	0. 10	0.00	0.02	0.05	0.07	O. 10
I	. 12	. 15	. 17	. 19	. 22	12	. 15	. 17	. 19	. 22
2	. 24	. 27	. 29	. 31	. 34	. 24	. 27	. 29	. 32	. 34
3	. 36	. 39	. 41	. 44	. 46	- 37	. 39	. 41	. 44	. 46
4	. 48	.5I	- 53	. 56	. 58	. 49	.5I	. 54	. 56	. 58
5	0.60	0.63	0.65	0.68	0.70	0.6I	0.63	0.66	0.68	0.71
6	. 72	. 75	. 77	. 80	. 82	. 73	. 75	. 78	. 80	. 83
7	. 85	. 87	. 89	. 92	. 94	. 85	. 88	. 90	. 92	. 95
8	. 97	. 99	I. 01	1.04	1.06	. 97	1.00	1.02	1.05	1.07
9	1.09	I. II	I. 13	1.16	I. 18	1.09	1. 12	1.14	1. 17	1. 19
10	I.2I	1.23	I. 26	1.28	I. 30	1.22	1.24	1.26	I. 29	1.31
11	1.33	1.35	1. 38	1.40	1.42	1.34	1.36	1.38	I. 41	1.43
12	1.45	1.47	1.50	r. 52	I. 54	1.46	1.48	1.51	1.53	1. 55
13	1.57	1.59	1.62	1.64	1.66	I. 58	1.60	1.63	1.65	1.68
14	1.69	1.71	1.74	1.76	1.78	1.70	1.72	1.75	1.77	I. 80
15	r. 81	1.83	1.86	1.88	1.90	1.82	1.85	1.87	1.89	1.92
16	1.93	1.95	1.98	2.00	2.03	1.94	1.97	1.99	2.01	2.04
17	2.05	2.07	2.10	2.12	2.15	2.06	2.09	2.11	2.14	2. 16
18	2.17	2.19	2.22	2.24	2.27	2.18	2.21	2.23	2.26	2.28
19	2.29	2.31	2.34	2.36	2.39	2.31	2.33	2.35	2.38	2.40
20	2.41	2.43	2.46	2.48	2.51	2.43	2.45	2.47	2.50	2.52
21	2.53	2.55	2.58	2.60	2.63	2.55	2.57	2.59	2.62	2.64
22	2.65	2.67	2.70	2.72	2.75	2.67	2.69	2.72	2.74	2.76
23	2.77	2.79	2.82	2.84	2.87	2.79	2.81	2.84	2.86	2.88
24	2.89	2.91	2.94	2.96	2.99	2.91	2.93	2.96	2.98	3.01
25	3.01	3.03	3.06	3.08	3.11	3.03	3.05	3.08	3.10	3.13
26	3.13	3.15	3.18	3.20	3.22	3.15	3.17	3.20	3.22	3.25
27	3.25	3.27	3.30	3.32	3.34	3.27	3.29	3.32	3.34	3.37
28	3.37	3.39	3.42	3.44	3.46	3.39	3.42	3.44	3.46	3.49
29	3.49	3.51	3.54	3.56	3.58	3.51	3.54	3.56	3.58	3.61
30	3.61	3.63	3.66	3.68	3.70	3.63	3.66	3.68	3.70	3.73
3 I	3.73	3.75	3.78	3.80	3.82	3.75	3.78	3.80	3.82	3.85
32	3.85	3.87	3.89	3.92	3.94	3.87	3.90	3.92	3.95	3.97
33	3.97	3.99	4.01	4.04	4.06	3.99	4.02	4.04	4.07	4.09
34	4.09	4.II	4.13	4.16	4.18	4.II	4.14	4.16	4. 19	4.21
35	4.21	4.23	4.25	4.28	4.30	4.23	4.26	4.28	4.31	4.33

Smithsonian Tableg.

TABLE 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 750 mm .					HEIGIIT OF THE BAROMETER 755 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm .	mm .	mm .	mm .	mm.	mm .	mm .	mm .	mm .	mm.
0°	0.00	0.02	0.05	0.07	0.10	0.00	0.02	0.05	0.07	0. 10
1	. 12	. 15	. 17	. 20	. 22	. 12	. 15	. 17	. 20	. 22
2	. 25	. 27	. 29	. 32	. 34	. 25	. 27	- 30	- 32	- 35
3	. 37	. 39	. 42	. 44	. 47	. 37	- 39	. 42	. 44	. 47
4	. 49	. 51	. 54	. 56	. 59	. 49	. 52	. 54	. 57	. 59
5	0.61	0.64	0.66	0.69	0.71	0.62	0.64	0.67	0.69	0.71
6	. 73	. 76	. 78	. 81	. 83	. 74	. 76	. 79	.81	. 84
7	. 86	. 88	. 91	. 93	. 95	. 86	. 89	.91	. 94	. 96
8	. 98	1.00	1.03	1.05	1.08	. 99	1.or	1.03	1.06	I. 08
9	1. 10	1.13	1.15	1.17	1.20	I.II	I. 13	I. 16	1. 18	I. 21
10	1.22	1. 25	1.27	1.30	1.32	1.23	1. 26	1.28	1.31	1. 33
II	1.35	I. 37	1.39	1.42	1.44	1.35	1.38	1.40	1.43	I. 45
12	r. 47	1.49	1.52	1.54	1.56	1.48	1.50	I. 53	I. 55	1.58
13	1.59	1.61	1.64	1.66	1.69	1.60	1.62	1.65	1.67	1.70
14	1.71	1.74	1.76	1.78	1.81	r. 72	1.75	1.77	1.80	1.82
15	1.83	1. 86	1.88	1.91	1.93	1.85	1. 87	1. 89	1.92	1.94
16	1.96	1.98	2.00	2.03	2.05	1.97	1.99	2.02	2.04	2.07
17	2.08	2.10	2.13	2.15	2.17	2.09	2.12	2.14	2.16	2.19
18	2.20	2.22	2.25	2.27	2.30	2.21	2.24	2.26	2.29	2.31
19	2.32	2.34	2.37	2.39	2.42	2.34	2.36	2.38	2.41	2.43
20	2.44	2.47	2.49	2.52	2.54	2.46	2.48	2.51	2.53	2.56
21	2.56	2.59	2.61	2.64	2.66	2.58	2.61	2.63	2.65	2.68
22	2.69	2.71	2.73	2.76	2.78	2.70	2.73	2.75	2.78	2.80
23	2.81	2.83	2.86	2.88	2.90	2.83	2.85	2.87	2.90	2.92
24	2.93	2.95	2.98	3.00	3.03	2.95	2.97	3.00	3.02	3.05
25	3.05	3.07	3.10	3.12	3.15	3.07	3.09	3.12	3.14	3.17
26	3.17	3.20	3.22	3.24	3.27	3.19	3.22	3.24	3.27	3.29
27	3.29	3.32	3.34	3.37	3.39	$3 \cdot 31$	3.34	3.36	3.39	3.41
28	3.41	3.44	3.46	3.49	3.51	3.44	3.46	3.49	3.51	3.53
29	3.54	3.56	3.58	3.61	3.63	3.56	3.58	3.61	3.63	3.66
30	3.66	3.68	3.71	3.73	3.75	3.68	3.71	3.73	3.75	3.78
31	3.78	3.80	3.83	3.85	3.87	3.80	3.83	3.85	3.88	3.90
32	3.90	3.92	3.95	3.97	4.00	3.92	3.95	3.97	4.00	4.02
33	4.02	4.04	4.07	4.09	4. 12	4.05	4.07	4.10	4.12	4.14
34	4. 14	4.17	4.19	4.21	4.24	4.17	4.19	4.22	4.24	4.27
35	4.26	4.29	$4 \cdot 3 \mathrm{I}$	4.33	4.36	4.29	$4 \cdot 3 \mathrm{I}$	4.34	4.36	4.39

Smithbonian Tables.

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 760 mm .					HEIGHT OF THE BAROMETER 765 mm .				
Attached Thermometer.	0.0	0:2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm .								
0°	0.00	0.02	0.05	0.07	0.10	0.00	0.03	0.05	0.07	0.10
1	. 12	. 15	.17	. 20	. 22	. 13	. 15	. 17	. 20	. 22
2	. 25	. 27	.30	. 32	. 35	. 25	. 27	. 30	. 32	. 35
3	. 37	. 40	. 42	. 45	. 47	- 37	. 40	. 42	. 45	. 47
4	. 50	. 52	. 55	. 57	. 60	. 50	. 52	. 55	. 57	. 60
5	0.62	0.65	0.67	0.69	0.72	0.62	0.65	0.67	0.70	0.72
6	. 74	. 77	. 79	. 82	. 84	. 75	. 77	. 80	. 82	. 85
7	. 87	. 89	. 92	. 94	. 97	. 87	. 90	. 92	. 95	. 97
8	. 99	1.02	1.04	1.07	1.09	1.00	1.02	1.05	1.07	1.10
9	I. 12	I. 14	I. 17	I. 19	I. 21	I. 12	I. 15	1.17	1.20	1.22
10	1.24	1.26	1.29	1.31	1.34	1.25	1.27	1.30	1.32	1.35
11	I. 36	I. 39	I.4I	1.44	I. 46	I. 37	1.40	1.42	1.45	1.47
12	I. 49	1.51	1.54	1.56	1.59	1.50	1.52	1. 55	1.57	1.60
13	I.6I	I. 64	I. 66	1.68	1.71	1.62	1.65	1.67	1.70	1.72
14	1.73	1. 76	1.78	I.8I	1.83	1.75	1.77	1.80	1.82	I. 85
15	1. 86	1. 88	I.9I	1.93	1.96	1.87	1.89	1.92	1.94	1.97
16	1.98	2.01	2.03	2.06	2.08	1.99	2.02	2.04	2.07	2.09
17	2. 10	2.13	2.15	2.18	2.20	2.12	2.14	2.17	2.19	2.22
18	2.23	2.25	2.28	2.30	2.33	2.24	2.27	2.29	2.32	2.34
19	2.35	2.38	2.40	2.43	2.45	2.37	2.39	2.42	2.44	2.47
20	2.47	2.50	2.52	2.55	2.57	2.49	2.52	2.54	2.57	2.59
21	2.60	2.62	2.65	2.67	2.70	2.62	2.64	2.66	2.69	2.71
22	2.72	2.75	2.77	2.80	2.82	2.74	2.76	2.79	2.81	2.84
23	2.84	2.87	2.89	2.92	2.94	2.86	2.89	2.91	2.94	2.96
24	2.97	2.99	3.02	3.04	3.07	2.99	3.01	3.04	3.06	3.09
25	3.09	3.12	3.14	3.16	3.19	3.11	3.14	3. 16	3.19	3.21
26	3.21	3.24	3.26	3.29	3.31	3.23	3.26	3.28	3.31	3.33
27	3.34	3.36	3.39	3.41	3.43	3.36	3.38	3.41	3.43	3.46
28	3.46	3.48	3.51	3.53	3.56	3.48	3.51	3.53	3.56	3.58
29	3.58	3.61	3.63	3.66	3.68	3.61	3.63	3.66	3.68	3.70
30	3.71	3.73	3.75	3.78	3.80	3.73	3.75	3.78	3.80	3.83
31	3.83	3.85	3.88	3.90	3.93	3.85	3.88	3.90	3.93	3.95
32	3.95	3.98	4.00	4.02	4.05	3.98	4.00	4.03	4.05	4.08
33	4.07	4.10	4. 12	4.15	4.17	4.10	4.13	4.15	4.17	4.20
34	4.20	4.22	4.25	4.27	4.29	4.22	4.25	4.27	$4 \cdot 30$	4.32
35	$4 \cdot 32$	4.34	4.37	$4 \cdot 39$	4.42	$4 \cdot 35$	$4 \cdot 37$	4.40	4.42	4.45

Smithsonian Tables.

Table 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 770 mm .					HEIGIIT OF THE BAROMETER 775 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm .	mm .	mm.	mm.	mm .	mm.	mm.	mm.	mm.	mm.
0°	0.00	0.03	0.05	0.08	0. 10	0.00	0.03	0.05	0.08	0. 10
1	. 13	. 15	. 18	. 20	. 23	. 13	. 15	. 18	. 20	. 23
2	.25	. 28	- 30	- 33	- 35	. 25	. 28	. 30	- 33	- 35
3	. 38	. 40	. 43	. 45	. 48	. 38	. 40	. 43	. 46	. 48
4	. 50	. 53	. 55	. 58	. 60	. 51	- 53	. 56	. 58	.6I
5	0.63	0.65	0.68	0.70	0.73	0.63	0.66	0.68	0.71	0.73
6	. 75	. 78	. 80	. 83	. 85	. 76	. 78	.81	. 83	. 86
7	. 88	. 90	. 93	. 95	. 98	. 89	. 91	. 94	. 96	. 99
8	I.OI	1.03	1.06	1.08	I. II	I. OI	I. 04	1.06	1.09	I. 11
9	I. 13	I. 16	I. 18	I.2I	I. 23	I. 14	I. 16	1. 19	I. 21	1.24
10	I. 26	I. 28	1.3I	1.33	1. 36	1.26	1.29	1.31	I. 34	1. 36
II	I. 38	1.41	1.43	1.46	I. 48	I. 39	1.42	I. 44	1.47	I. 49
12	1.51	1.53	I. 56	I. 58	I. 61	1.52	1.54	I. 57	I. 59	1.62
13	1.63	1.66	1.68	1.71	1.73	1.64	1.67	1.69	1.72	1.74
14	1.76	1.78	I.8I	1.83	1.86	1.77	1. 79	1. 82	1.84	1.87
15	I. 88	1.91	1.93	1.96	1.98	1.89	1.92	1.94	1.97	2.00
16	2.01	2.03	2.06	2.08	2.11	2.02	2.05	2.07	2.10	2.12
17	2.13	2.16	2.18	2.21	2.23	2.15	2.17	2.20	2.22	2.25
I8	2.26	2.28	2.31	2.33	2.36	2.27	2.30	2.32	2.35	2.37
19	2.38	2.41	2.43	2.46	2.48	2.40	2.42	2.45	2.47	2.50
20	2.51	2.53	2.56	2.58	2.61	2.52	2.55	2.57	2.60	2.62
21	2.63	2.66	2.68	2.71	2.73	2.65	2.67	2.70	2.72	2.75
22	2.76	2.78	2.81	2.83	2.86	2.77	2.80	2.83	2.85	2.88
23	2.88	2.91	2.93	2.96	2.98	2.90	2.93	2.95	2.98	3.00
24	3.01	3.03	3.06	3.08	3.11	3.03	3.05	3.08	3.10	3.13
25	3.13	3.16	3.18	3.21	3.23	3.15	3.18	3.20	3.23	3.25
26	3.26	3.28	3.31	3.33	3.36	3.28	3.30	3.33	3.35	3.38
27	3.38	3.41	3.43	3.46	3.48	3.40	3.43	3.45	3.48	3.50
28	3.51	3.53	3.56	3.58	3.60	3.53	3.55	3.58	3.60	3.63
29	3.63	3.65	3.68	3.70	3.73	3.65	3.68	3.70	3.73	3.75
30	3.75	3.78	3.80	3.83	3.85	3.78	3.80	3.83	3.85	3.88
31	3.88	3.90	3.93	3.95	3.98	3.90	3.93	3.95	3.98	4.00
32	4.00	4.03	4.05	4.08	4.10	4.03	4.05	4.08	4. 10	4.13
33	4.13	4.15	4.18	4.20	4.23	4.15	4.18	4.20	4.23	4.25
34	4.25	4.28	4.30	4.33	4.35	4.28	4.30	4.33	4.35	4.38
35	4.38	4.40	4.43	4.45	4.48	4.40	4.43	4.45	4.48	4.50

Smithoonian Tables.

TAble 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.

METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 780 mm .					HEIGHT OF THE BAROMETER 785 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm .	mm .	mm.	mm .						
0°	0.00	0.03	0.05	0.08	0.10	0.00	0.03	0.05	0.08	0. 10
1	. 13	. 15	. 18	. 20	. 23	. 13	. 15	. 18	. 21	. 23
2	. 25	. 28	. 31	- 33	- 36	. 26	. 28	. 31	. 33	. 36
3	. 38	.41	. 43	. 46	. 48	. 38	. 41	. 44	. 46	. 49
4	.5I	. 53	. 56	. 59	.6I	.5I	. 54	. 56	. 59	. 62
5	0.64	0.66	0.69	0.71	0.74	0.64	0.67	0.69	0.72	0.74
6	. 76	. 79	.81	. 84	. 87	. 77	. 79	. 82	. 85	. 87
7	. 89	. 92	. 94	. 97	. 99	. 90	. 92	. 95	. 97	1.00
8	1.02	1.04	1.07	1.09	I. 12	1.02	1.05	1.08	1. 10	1.13
9	I. 15	1.17	1.20	1.22	1.25	I. 15	I. 18	I. 20	1.23	1.25
10	1.27	1.30	1.32	1.35	1.37	1.28	1.31	I. 33	1. 36	1.38
II	1.40	1.42	I. 45	1.48	1.50	1.41	1.43	1.46	1.48	I. 51
12	1.53	I. 55	1. 58	1.60	1.63	1.54	I. 56	I. 59	1.61	1.64
13	1.65	1.68	1.70	1.73	1.75	1.66	1.69	1.71	1.74	1.77
14	1.78	I.81	1.83	1.86	1.88	1.79	1.82	I. 84	1.87	1.89
15	1.91	1.93	1.96	1.98	2.01	1.92	1.94	1.97	2.00	2.02
16	2.03	2.06	2.08	2.11	2.13	2.05	2.07	2.10	2.12	2. 15
17	2.16	2.19	2.21	2.24	2.26	2.17	2.20	2.22	2.25	2.28
18	2.29	2.31	2.34	2.36	2.39	2.30	2.33	2.35	2.38	2.40
19	2.41	2.44	2.46	2.49	2.51	2.43	2.45	2.48	2.51	2.53
20	2.54	2.57	2.59	2.62	2.64	2.56	2.58	2.61	2.63	2.66
21	2.67	2.69	2.72	2.74	2.77	2.68	2.71	2.73	2.76	2.79
22	2.79	2.82	2.84	2.87	2.89	2.81	2.84	2.86	2.89	2.91
23	2.92	2.94	2.97	3.00	3.02	2.94	2.96	2.99	3.01	3.04
24	3.05	3.07	3.10	3.12	3.15	3.07	3.09	3.12	3.14	3.17
25	3.17	3.20	3.22	3.25	3.27	3. 19	3.22	3.24	3.27	3.29
26	3.30	3.32	3.35	3.37	3.40	3.32	3.34	3.37	3.40	3.42
27	3.42	3.45	3.47	3.50	3.53	3.45	3.47	3.50	3.52	3.55
28	3.55	3.58	3.60	3.63	3.65	3.57	3.60	3.62	3.65	3.67
29	3.68	3.70	3.73	3.75	3.78	3.70	3.73	3.75	3.78	3.80
30	3.80	3.83	3.85	3.88	3.90	3.83	3.85	3.88	3.90	3.93
31	3.93	3.95	3.98	4.00	4.03	3.95	3.98	4.00	4.03	4.06
32	4.05	4.08	4.11	4.13	4.16	4.08	4.11	4.13	4.16	4. 18
33	4.18	4.21	4.23	4.26	4.28	4.21	4.23	4.26	4.28	4.31
34	4.31	4.33	4.36	4.38	4.41	4.33	4.36	4.39	4.41	4.44
35	4.43	4.46	4.48	4.51	4.53	4.46	4.49	4.51	4.54	4.56

Smithsonian Tables.

Table 11.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.

METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 790 mm .					HEIGHT OF THE BAROMETER 795 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm.	mm.	mm .	mm .	mm.	mm.	mm.	mm.	mm.
0°	0.00	0.03	0.05	0.08	0.10	0.00	0.03	0.05	0.08	0. 10
1	. 13	. 15	. 18	. 21	. 23	. 13	. 16	. 18	. 21	. 23
2	. 26	. 28	. 31	- 34	- 36	. 26	. 29	. 31	. 34	. 36
3	. 39	. 41	. 44	. 46	. 49	. 39	. 42	. 44	. 47	. 49
4	. 52	. 54	. 57	. 59	. 62	. 52	. 55	. 57	. 60	. 62
5	0.64	0.67	0.70	0.72	0.75	0.65	0.67	0.70	0.73	0.75
6	. 77	. 80	. 83	. 85	. 88	. 78	. 80	. 83	. 86	. 88
7	. 90	. 93	. 95	. 98	I. OI	.91	. 93	. 96	. 99	I. OI
8	1.03	1.06	1.08	I. II	1.13	1.04	1.06	1.09	1.12	1. 14
9	I. 16	I. 19	I. 21	1.24	1.26	I. 17	I. 19	1.22	1.24	1.27
10	1.29	1.3I	1.34	1.37	1.39	1. 30	1.32	1.35	1.37	1.40
II	1. 42	I. 44	1.47	1. 49	1.52	1.43	1.45	1.48	1.50	1.53
12	I. 55	1.57	1.60	1.62	1.65	1. 56	1.58	1.61	1.63	1.66
13	1.67	1.70	1.73	1.75	1.78	1.68	1.71	1.74	1.76	1.79
14	1.80	1.83	1.85	1.88	1.91	1.81	1.84	1.87	1.89	1.92
15	I. 93	1.96	I. 98	2.01	2.03	1.94	1.97	1.99	2.02	2.05
16	2.06	2.09	2.11	2.14	2.16	2.07	2.10	2.12	2.15	2.18
17	2.19	2.21	2.24	2.26	2.29	2.20	2.23	2.25	2.28	2.30
18	2.32	2.34	2.37	2.39	2.42	2.33	2.36	2.38	2.41	2.43
19	2.44	2.47	2.50	2.52	2.55	2.46	2.49	2.51	2.54	2.56
20	2.57	2.60	2.62	2.65	2.67	2.59	2.61	2.64	2.67	2.69
21	2.70	2.73	2.75	2.78	2.80	2.72	2.74	2.77	2.79	2.82
22	2.83	2.85	2.88	2.91	2.93	2.85	2.87	2.90	2.92	2.95
23	2.96	2.98	3.01	3.03	3.06	2.98	3.00	3.03	3.05	3.08
24	3.08	3.11	3.14	3.16	3.19	3.10	3.13	3.16	3.18	3.2 I
25	3.21	3.24	3.26	3.29	3.31	3.23	3.26	3.28	3.3 I	3.34
26	3.34	3.37	3.39	3.42	3.44	3.36	3.39	3.41	3.44	3.46
27	3.47	3.49	3.52	3.54	3.57	3.49	3.52	3.54	3.57	3.59
28	3.60	3.62	3.65	3.67	3.70	3.62	3.64	3.67	3.70	3.72
29	3.72	3.75	3.77	3.80	3.83	3.75	3.77	3.80	3.82	3.85
30	3.85	3.88	3.90	3.93	3.95	3.88	3.90	3.93	3.95	3.98
31	3.98	4.00	4.03	4.06	4.08	4.00	4.03	4.06	4.08	4.11
32	4.11	4.13	4.16	4.18	4.21	4.13	4.16	4.18	4.21	4.24
33	4.23	4.26	4.29	$4 \cdot 31$	4.34	4.26	4.29	$4 \cdot 31$	$4 \cdot 34$	4.36
34	$4 \cdot 36$	4.39	4.41	4.44	4.46	$4 \cdot 39$	4.42	4.44	4.47	4.49
35	4.49	$4 \cdot 5 \mathrm{I}$	4.54	4.57	4.59	4.52	4.54	4.57	4.59	4.62

Smithbonian Tableb.

$$
\pm=
$$

TABLE 12.
REDUCTION OF THE BAROMETER TO STANDARD GRAVITY.
ENGLISH MEASURES.
Reduction to Latitude 45°.
From latitude 0° to 45°, the correction is to be subtracted.
From latitude 90° to 45°, the correction is to be added.

Latitude.		HEIGHT OF THE BAROMETER IN INCHES.											
		19	20	21	22	23	24	25	26	27	28	29	30
$0{ }^{\circ}$	90°	$\begin{aligned} & \text { Inch. } \\ & 0.05 \mathrm{I} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Inch. } \\ 0.053 \end{array}$	$\begin{aligned} & \text { Inch. } \\ & 0.056 \end{aligned}$	$\begin{array}{l\|l} \text { Inch. } \\ 0.059 \end{array}$	$\begin{aligned} & \text { Inch. } \\ & 0.061 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & 0.064 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & 0.067 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & 0.069 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & 0.072 \end{aligned}$	Inch.	$\begin{aligned} & \text { Inch. } \\ & 0.077 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & 0.080 \end{aligned}$
5	85	0.050	0.052	0.055	0.058	0.060	0.063	0.066	0.068	0.071	0.073	0.076	0.079
6	84	. 049	. 052	. 055	. 057	. 060	. 062	. 065	. 068	. 070	. 073	. 076	. 078
7	83	. 049	. 052	. 054	. 057	. 059	. 062	. 065	. 067	. 070	. 072	. 075	. 077
8	82	. 040	. 051	. 054	. 056	. 059	.06I	. 064	. 067	. 069	. 072	. 074	. 077
9	81	. 048	.05I	. 053	. 056	. 058	. 061	. 063	. 066	. 068	. 071	. 073	. 076
10	80	0.048	0.050	0.053	0.055	0.058	0.060	0.063	0.065	0.068	0.070	0.073	0.075
11	79	. 047	. 049	. 052	. 054	. 057	. 059	. 062	. 064	. 067	. 069	. 072	. 074
12	78	. 046	. 049	.05I	. 054	. 056	. 058	. 061	. 063	. 066	. 068	. 071	. 073
13	77	. 045	. 048	. 050	. 053	. 055	. 057	. 060	. 062	. 065	. 067	. 069	. 072
14	76	. 045	. 047	. 049	. 052	. 054	. 056	. 059	. 06 I	. 063	. 066	. 068	. 071
15	75	0.044	0.046	0.048	0.05I	0.053	0.055	0.058	0.060	0.062	0.065	0.067	0.069
16	74	. 043	. 045	. 047	. 050	. 052	. 054	. 056	. 059	.06I	. 063	. 065	. 068
17	73	. 042	. 044	. 046	. 049	.051	. 053	. 055	. 057	. 060	. 062	. 064	. 066
18	72	.041	. 043	. 045	. 047	. 050	. 052	. 054	. 056	. 058	. 060	. 062	. 065
19	71	. 040	. 042	. 044	. 046	. 048	. 050	. 052	. 055	. 057	. 059	.06I	. 053
20	70	0.039	0.04 I	0.043	0.045	0.047	0.049	0.051	0.053	0.055	0.057	0.059	0.061
21	69	. 038	. 040	. 042	. 044	. 045	. 047	. 049	.05I	. 053	. 055	. 057	. 059
22	68	. 036	. 038	. 040	. 042	. 044	. 046	. 048	. 050	. 052	. 054	. 056	. 057
23	67	. 035	. 037	. 039	. 041	. 043	. 044	. 046	. 048	.050	. 052	. 054	. 055
24	66	. 034	. 036	. 037	. 039	. 041	. 043	. 045	. 046	. 048	. 050	. 052	. 053
25	65	0.033	0.034	0.036	0.038	0.039	0.04 I	0.043	0.044	0.046	0.048	0.050	0.05I
26	64	.03I	. 033	. 034	. 036	. 038	. 039	.041	. 043	. 044	. 046	. 048	. 049
27	63	. 030	. 031	. 033	. 034	. 036	. 038	. 039	.04I	. 042	. 044	. 045	. 047
28	62	. 028	. 030	. 031	. 033	. 034	. 036	. 037	. 039	. 040	. 042	. 043	. 045
29	6I	. 027	. 028	. 030	. 031	. 032	. 034	. 035	. 037	. 038	. 039	. 041	. 042
30	60	0.025	0.027	0.028	0.029	0.03I	0.032	0.033	0.035	0.036	0.037	0.039	0.040
31	59	. 024	. 025	. 026	. 027	. 029	. 030	. 33 I	. 032	. 034	. 035	. 036	. 037
32	58	. 022	. 023	. 025	. 026	. 027	. 028	. 029	. 030	. 032	. 033	. 034	. 035
33	57	. 021	. 022	. 023	. 024	. 025	. 026	. 027	. 028	. 029	. 030	. 031	. 032
34	56	. 019	. 020	. 021	. 022	. 023	. 024	. 025	. 026	. 027	. 028	. 029	. 030
35	55	0.017	0.018	0.019	0.020	0.021	0.022	0.023	0.024	0.025	0.025	0.026	0.027
36	54	. 016	. 016	. 017	. 018	. 019	. 020	. 021	. 021	. 022	. 023	. 024	. 025
37	53	. 014	. 015	. 15	. 016	. 017	. 018	. 018	. 019	. 020	. 021	. 021	. 022
38	52	. 12	.or3	. 014	. 014	. 1015	. 015	.or6	. 017	. 017	. 218	. 019	. 019
39	5 I	. 011	. 011	. 012	. 012	. 013	. 013	. 014	. 014	. 015	. 015	. 016	. 017
40	50	0.009	0.009	0.010	0.010	0.01I	O.OII	0.012	0.012	0.012	0.013	0.013	0.014
4 I	49	. 007	. 007	. 008	. 008	. 009	. 009	. 009	. 010	. 010	. 10	. 011	. OI 1
42	48	. 005	. 006	. 006	. 006	. 006	. 007	. 007	. 007	. 008	. 008	. 008	. 008
43	47	. 004	. 004	. 004	. 004	. 004	. 004	. 005	. 005	. 005	. 005	. 005	. 006
44	46	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 003	. 003	. 003	. 003
45	45	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

TABLE 13.
REDUCTION OF THE BAROMETER TO STANDARD GRAVITY.
METRIC MEASURES.

Reduction to Latitude 45°.

From latitude 0° to 45°, the correction is to be subtracted. From latitude 90° to 45°, the correction is to be added.

Latitude.		HEIGHT OF THE BAROMETER IN MILLIMETRES.													
		520	540	560	580	600	620	640	660	680	700	720	740	760	780
		m.	mm.	m	m	mm.	mm.	mm .	mm.	mm .	m	mm.	mm.	mm.	mm.
0°	90°	1. 38	1.44	1.49	I. 54	1.60	1.65	1.70	1.76	I.8I	1.86	1.92	1.97	2.02	2.08
5	85	I. 36	1.42	1.47	I. 52	1.57	1.63	1.68	1.73	1.78	1. 84	I. 89	1.94	1.99	2.04
6	84	I. 35	I.4I	1.46	1. 51	1.56	1.61	1.67	1.72	1.77	1.82	1.87	1.93	1.98	2.03
7	83	I. 34	I. 39	I. 45	1. 50	I. 55	1.60	1.65	1.70	1.76	I.8r	1.86	1.91	1.96	2.01
8	82	I. 33	I. 38	I. 43	1.48	1.54	1.59	1.64	I. 69	1.74	1.79	1.84	I. 89	1.94	2.00
9	81	I. 32	1.37	1.42	I. 47	I. 52	1.57	1.62	I. 67	1.72	1.77	1.82	1.87	1.92	1.97
10	80	1.30	I. 35	I. 40	1.45	1.50	1.55	1.60	1.65	1.70	1.75	1.80	1. 85	1.90	1.95
II	79	1.28	I. 33	1.38	1.43	1.48	1.53	1.58	1.63	1.68	1.73	1.78	1.83	1.88	1.93
12	78	I. 26	1.31	I. 36	I. 41	I. 46	I. 51	I. 56	1.60	1.65	1.70	1.75	1.80	1.85	1.90
13	77	1.24	I. 29	I. 34	I. 39	1.44	1.48	I. 53	1.58	1.63	1.67	1.72	1.77	1.82	1.87
14	76	1.22	1.27	1.32	1.36	1.41	1.46	1.50	I. 55	1.60	I. 65	1.69	1.74	1.79	1.83
15	75	1.20	1.24	1.29	1.34	1.38	1.43	1.48	1.52	1.57	1.61	1.66	1.71	1.75	1.80
16	74	1.17	1.22	I. 26	1.31	1.35	1.40	1.44	1.49	I. 54	I. 58	1.63	1. 67	1.72	1.76
17	73	I. 5	I. 19	1.24	1.28	1.32	1.37	I. 41	1.45	1.50	I. 54	1.59	1.63	1.68	1.72
18	72	1.12	1.16	1.21	1.25	I. 29	1.34	1. 38	1.42	I. 46	I. 51	1.55	I. 59	1.64	1.68
19	71	1.09	I. 13	r. 17	1.22	I. 26	1.30	I. 34	I. 38	I. 43	1.47	I.5I	I. 55	I. 59	1.64
20	70	1.06	I. 10	I. 14	I. 18	1.22	1.26	1.31	1.35	I. 39	1.43	1.47	1.51	1. 55	1.59
21	69	1.03	1.07	I. 11	1.15	I. 19	1.23	1.27	I. 31	I. 35	1.38	I. 42	1.46	1.50	I. 54
22	68	1.00	1.03	1.07	I.II	I. 15	I. 19	1.23	1.26	I. 30	I. 34	1.38	1.42	1.46	I. 49
23	67	0.96	1.00	1.04	1.07	I. II	I. 15	I. 18	1.22	I. 26	1.29	I. 33	I. 37	I. 41	1.44
24	66	. 93	0.96	1.00	1.03	1.07	I.10	I. 14	I. 18	I. 21	1.25	I. 28	I. 32	I. 35	I. 39
25	65	0.89	0.92	0.96	0.99	1.03	1.06	I. 10	I. 13	I.16	1.20	1.23	1.27	1.30	1.33
26	64	. 85	. 88	. 92	. 95	0.98	1.02	1.05	1.08	I.II	I. 15	I. 18	1.21	1.25	1.28
27	63	.8I	. 84	. 88	. 91	. 94	0.97	1.00	1.03	1.06	I. 10	1.13	1.16	I.19	1.22
28	62	. 77	. 80	. 83	. 86	. 89	. 92	0.95	0.98	I.OI	1.04	1.07	I. 10	I. 13	I. 16
29	6 I	. 73	.76	. 79	. 82	. 85	. 87	. 90	. 93	0.96	0.99	1.02	1.04	1.07	I. 10
30	60	0.69	0.72	0.75	0.77	0.80	0.83	0.85	0.88	0.91	0.94	0.96	0.98	I.OI	1.04
31	59	. 65	. 67	. 70	. 72	. 75	. 77	. 80	. 82	. 85	. 87	. 90	. 92	0.95	0.97
32	58	.61	. 63	. 65	. 68	. 70	. 72	. 75	. 77	. 79	. 82	. 84	. 86	. 89	. 91
33	57	. 56	. 58	.6I	. 63	. 65	. 67	. 69	. 71	. 74	.76	.78	. 80	. 82	. 84
34	56	. 52	. 54	. 56	. 58	. 60	. 62	. 64	. 66	. 63	. 70	.72	. 74	.76	.78
35	55	0.47	0.49	0.51	0. 53	0.55	0.56	0.58	0.60	0.62	0.64	0.66	0.67	0.69	0.71
36	54	. 43	. 44	. 46	. 48	. 49	. 51	. 53	. 54	. 56	. 58	. 59	. 61	. 63	. 64
37	53	. 38	. 40	. 41	. 43	. 44	. 45	. 47	. 48	. 50	. 51	. 53	. 54	. 56	. 57
38	52	- 33	- 35	. 36	. 37	- 39	. 40	. 41	. 43	. 44	. 45	. 46	. 48	. 49	. 50
39	5 I	. 29	. 30	-31	. 32	- 33	- 34	- 35	- 37	. 38	- 39	. 40	.4I	. 42	. 43
40	50	0.24	0.25	0.26	0.27	0.28	0.29	0.30	0.3I	0.3I	0.32	0.33	0.34	0.35	0.36
41	49	. 19	. 20	. 21	. 21	. 22	. 23	. 24	. 24	. 25	. 26	. 27	. 27	. 28	. 29
42	48	. 14	. 15	. 16	. 16	.17	. 17	. 18	. 18	. 19	. 19	. 20	. 21	. 21	. 22
43	47	. 10	. 10	. 10	. 11	. 11	. 12	. 12	. 12	. 13	. 13	. 13	. 14	. 14	. 14
44	46	. 05	. 05	. 05	. 05	. 06	. 06	. 06	. 06	. 06	. 07	. 07	. 07	. 07	. 07
45	45	. 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Smithbonian Tables.

Table 14.

REDUCTION OF THE BAROMETER TO SEA LEVEL. ENGLISH MEASURES.

Values of $2000 \times \mathrm{m}$.
$m=\frac{z}{56573+123 \cdot 1 \theta+.003 z} \cdot \frac{\mathrm{I}}{\mathrm{I}-\boldsymbol{\beta}}$

Mean Temperature of air column. θ Fahr.	alfitude of Station in feet (z).										Difference for 100 Feet.
	100	200	300	400	500	600	700	800	900	1000	
-20°	3.7	7.4	11.1	14.8	18.5	22.2	25.9	29.6	33.3	37.0	3.7
16	3.7	7.3	11.0	14.6	18.3	22.0	25.6	29.3	33.0	36.6	3.7
12	3.6	$7 \cdot 3$	10.9	14.5	18.1	21.8	25.4	29.0	32.7	36.3	3.6
- 8	3.6	7.2	10.8	14.4	18.0	21.6	25.2	28.8	32.4	36.0	3.6
6	3.6	7.2	10.7	14.3	17.9	21.5	25.1	28.6	32.2	35.8	3.6
- 4	3.6	7.1	10.7	14.3	17.8	21.4	25.0	28.5	32.1	35.6	3.6
2	3.5	7.1	10.7	14.2	17.7	21.3	24.8	28.4	31.9	35.4	3.5
0	3.5	7.1	10.6	14.1	17.7	21.2	24.7	28.3	31.8	35.3	3.5
+ 2	3.5	7.0	10.6	14.1	17.6	21.1	24.6	28.1	31.7	35.2	3.5
4	3.5	7.0	10.5	14.0	17.5	21.0	24.5	28.0	31.5	35.0	3.5
6	3.5	7.0	10.5	13.9	17.4	20.9	24.4	27.9	3 I .4	34.9	3.5
8	3.5	6.9	10.4	13.9	17.4	20.8	24.3	27.8	31.2	34.7	3.5
10	3.5	6.9	10.4	13.8	17.3	20.7	24.2	27.7	3 I .1	34.6	3.5
12	3.4	6.9	10.3	13.8	17.2	20.6	24.1	27.5	31.0	34.4	3.4
14	3.4	6.9	10.3	13.7	17.1	20.6	24.0	27.4	30.8	$34 \cdot 3$	3.4
16	3.4	6.8	10.2	13.6	17.1	20.5	23.9	27.3	30.7	34.1	3.4
18	3.4	6.8	10.2	13.6	17.0	20.4	23.8	27.2	30.6	34.0	3.4
20	3.4	6.8	10.	13.5	16.9	20.3	23.7	27.1	30.4	33.8	3.4
22	3.4	6.7	10.1	13.5	16.8	20.2	23.6	26.9	30.3	33.7	3.4
24	3.4	6.7	10.1	13.4	16.8	20.1	23.5	26.8	30.2	33.5	3.4
26	$3 \cdot 3$	6.7	10.0	I 3.4	16.7	20.0	23.4	26.7	30.1	33.4	3.3
28	$3 \cdot 3$	6.7	10.0	13.3	16.6	20.0	23.3	26.6	29.9	33.3	$3 \cdot 3$
30	$3 \cdot 3$	6.6	9.9	13.2	16.6	19.9	23.2	26.5	29.8	33.1	$3 \cdot 3$
32	$3 \cdot 3$	6.6	9.9	13.2	16.5	19.8	23.1	26.4	29.7	33.0	$3 \cdot 3$
34	$3 \cdot 3$	6.6	9.9	13.1	16.4	19.7	23.0	26.3	29.6	32.8	3.3
	$3 \cdot 3$	6.5	9.8	13.1	16.4	19.6	22.9	26.2	29.4	32.7	3.3
38	$3 \cdot 3$	6.5	9.8	13.0	16.3	19.5	22.8	26.0	29.3	32.6	3.3
40	3.2	6.5	9.7	13.0	16.2	19.5	22.7	25.9	29.2	32.4	3.2
42	3.2	6.5	9.7	12.9	16. 1	19.4	22.6	25.8	29.1	32.3	3.2
44	3.2	6.4	9.6	12.9	16.1	19.3	22.5	25.7	28.9	32.1	3.2
46	3.2	6.4	9.6	12.8	16.0	19.2	22.4	25.6	28.8	32.0	3.2
48	3.2	6.4	9.6	12.7	15.9	19.1	22.3	25.5	28.7	31.9	3.2
50	3.2	6.3	9.5	12.7	15.9	19.0	22.2	25.4	28.6	31.7	3.2
52	3.2	6.3	9.5	12.6	15.8	19.0	22.	25.3	28.4	31.6	3.2
54	3.1	6.3	9.4	12.6	15.7	18.9	22.0	25.2	28.3	31.5	3.1
56	3.1	6.3	9.4	12.5	15.7	18.8	21.9	25.1	28.2	3 I .3	3. I
58	3.1	6.2	9.4	12.5	15.6	18.7	21.8	25.0	28.1	31.2	3.I
60	3.1	6.2	9.3	12.4	15.5	18.6	21.7	24.8	28.0	31.1	3.1
62	3.1	6.2	9.3	12.4	15.5	18.6	21.6	24.7	27.8	30.9	3.1
64	$3 \cdot 1$	6.2	9.2	12.3	15.4	18.5	21.6	24.6	27.7	30.8	3.1
66	3.1	6.1	9.2	12.3	15.3	18.4	21.5	24.5	27.6	30.7	3.1
68	3.1	6.1	9.2	12.2	15.3	18.3	21.4	24.4	27.5	30.5	3.1
70	3.0	6.1	9.1	12.2	15.2	18.2	21.3	24.3	27.4	30.4	3.0
72	3.0	6.1	9.1	12.1	15.1	18.2	21.2	24.2	27.3	30.3	3.0
76	3.0	6.0	9.0	12.0	15.0	18.0	21.0	24.0	27.0	30.0	3.0
80	3.0	6.0	8.9	11.9	14.9	17.9	20.9	23.8	26.8	29.8	3.0
84	3.0	5.9	8.9	11.8	14.8	17.7	20.7	23.6	26.6	29.6	3.0
88	2.9	5.9	8.8	11.7	14.7	17.6	20.5	23.5	26.4	29.3	2.9
92	2.9	5.8	8.7	11.6	14.5	17.4	20.4	23.3	26.2	29.1	2.9
96	2.9	5.8	8.7	11.5	14.4	17.3	20.2	23.1	26.0	28.9	2.9

TABLE 14.
REDUCTION OF THE BAROMETER TO SEA LEVEL.
ENGLISH MEASURES.
Values of $2000 \times \mathbf{m}$.
$m=\frac{\mathrm{Z}}{56573+\mathrm{I} 23 \cdot 1 \theta+.003 \mathrm{Z}} \cdot \frac{\mathrm{I}}{1-\beta}$

Mean Temperature of air column. θ Fahr.	alititude of Station in feet (z).										$\left\lvert\, \begin{gathered} \text { Differ- } \\ \text { ence } \\ \text { for } \\ 100 \\ \text { Feet. } \end{gathered}\right.$
	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	
-20°	40.7	44.3	48.0	51.7	55.4	59. I	62.8	66.5	70.2	73.9	3.7
- 16	40.3	43.9	47.6	51.3	54.9	58.6	62.2	65.9	69.6	73.2	3.7
- 12	39.9	43.5	47.2	50.8	54.4	58.1	6 I .7	65.3	68.9	72.6	3.6
- 8	39.6	43.2	46.7	50.3	53.9	57.5	61.1	64.7	68.3	71.9	3.6
- 6	39.4	43.8	46.5	50.1	53.7	57.3	60.9	64.4	68.0	71.6	3.6
4	39.2	42.8	46.3	49.9	53.5	57.0	60.6	64.2	67.7	71.3	3.6
- 2	39.0	42.6	46.1	49.7	53.2	56.8	60.3	63.9	67.4	71.0	3.6
0	38.9	42.4	45.9	49.5	53.0	56.5	60.1	63.6	67.1	70.6	3.5
+ 2	38.7	42.2	45.7	49.2	52.8	56.3	59.8	63.3	66.8	70.3	3.5
	38.5	42.0	45.5	49.0	52.5	56.0	59.5	63.0	66.5	70.0	3.5
6	38.4	41.8	$45 \cdot 3$	48.8	52.3	55.8	59.3	62.8	66.2	69.7	3.5
8	38.2	41.7	45. I	48.6	52.1	55.5	59.0	62.5	66.0	69.4	3.5
10	38.0	41.5	44.9	48.4	51.8	55.3	58.8	62.2	65.7	69.1	3.5
12	37.9	4 r .3	44.7	48.2	51.6	55. ${ }^{\text {I }}$	58.5	61.9	65.4	68.8	3.4
14	37.7	41.1	44.5	48.0	5 I .4	54.8	58.2	61.7	65.1	68.5	3.4
16	37.5	40.9	44.4	47.8	51.2	54.6	58.0	61.4	64.8	68.2	3.4
18	37.4	40.8	44.2	47.6	51.0	54.4	57.8	6 r .1	64.5	67.9	3.4
20	37.2	40.6	44.0	47.4	50.7	54.1	57.5	60.9	64.3	67.7	3.4
22	37. 1	40.4	43.8	47.2	50.5	53.9	57.3	60.6	64.0	67.4	3.4
24	36.9	40.3	43.6	47.0	50.3	53.7	57.0	60.4	63.7	67.1	3.4
26	36.7	40.1	43.4	46.8	50.1	53.4	56.8	60.1	63.5	66.8	3.3
28	36.6	39.9	43.2	46.6	49.9	53.2	56.5	59.9	63.2	66.5	3.3
30	36.4	39.7	43.1	46.4	49.7	53.0	56.3	59.6	62.9	66.2	
32	36.3	39.6	42.9	46.2	49.5	52.8	56. 1	59.4	62.7	66.0	3.3
34	36. I	39.4	42.7	46.0	49.3	52.5	55.8	59.1	62.4	65.7	$3 \cdot 3$
36	36.0	39.2	42.5	45.8	49.0	52.3	55.6	58.9	62.1	65.4	$3 \cdot 3$
38	35.8	39.1	42.3	45.6	48.8	52.1	55.3	58.6	61.9	65.1	3.3
40	35.7	38.9	42.1	45.4	48.6	51.9	55.1	58.4	61.6	64.8	3.2
42	35.5	38.7	42.0	45.2	48.4	51.6	54.9	58.1	${ }_{61.3}$	64.6	3.2
	35.4	38.6	4 I .8	45.0	48.2	51.4	54.6	57.9	61.1	64.3	3.2
46	35.2	38.4	4 I .6	44.8	48.0	51.2	54.4	57.6	60.8	64.0	3.2
48	35. 1	38.2	41.4	44.6	47.8	51.0	54.2	57.4	60.5	63.7	3.2
50	34.9	38.1	41.2	44.4	47.6	50.8	53.9	57.1	60.3	63.4	3.2
52	34.8	37.9	41.1	44.2	47.4	50.5	53.7	56.9	60.0	63.2	3.2
54	34.6	37.7	40.9	44.0	47.2	50.3	53.5	56.6	59.8	62.9	3.1
56	34.5	37.6	40.7	43.9	47.0	50.1	53.2	56.4	59.5	62.6	3.1
58	34.3	37.4	40.5	43.7	46.8	49.9	53.0	56.1	59.3	62.4	3.1
60	34.2	37.3	40.4	43.5	46.6	49.7	52.8	55.9	59.0	62.1	3.1
62	34.0	37.1	40.2	43.3	46.4	49.5	52.6	55.7	58.8	61.9	3.1
64	33.9	37.0	40.0	43.1	46.2	49.3	52.4	55.4	58.5	61.6	3. I
66	33.7	36.8	39.9	42.9	46.0	49.1	52.1	55.2	58.3	6 I .3	3.1
68	33.6	36.6	39.7	42.8	45.8	48.9	51.9	55.0	58.0	61.1	3. I
70	33.5	36.5	39.5	42.6	45.6	48.7	51.7	54:7	57.8	60.8	3.0
72	33.3	36.3	39.4	42.4	45.4	48.5	51.5	54.5	57.5	60.6	3.0
76	33.0	36.0	39.1	42.1	45.1	48.1	51.1	54.1	57.1	60.1	3.0
80	32.8	35.8	38.7	41.7	44.7	47.7	50.6	53.6	56.6	59.6	3.0
84	32.5	35.5	38.4	41.4	44.3	47.3	50.2	53.2	56.2	59.1	3.0
88	32.2	35.2	38.1	4 I .0	44.0	46.9	49.8	52.8	55.7	58.6	2.9
92	32.0	34.9	37.8	40.7	43.6	46.5	49.4	52.3	55.3	58.2	2.9
96	31.7	34.6	37.5	40.4	43.3	46.2	49.0	51.9	54.8	57.7	2.9

Table 14.

REDUCTION OF THE BAROMETER TO SEA LEVEL. ENGLISH MEASURES.

Values of $2000 \times \mathbf{m}$.
$m=\frac{z}{56573+123 \cdot 1 \theta+.003 z} \cdot \frac{1}{1 \div \beta}$

Mean Temperature of air column. θ Fahr.	altitude of station in feet (z).										Difference for 100 Feet.
	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000	
-20°	77.6	81.3	85.0	88.7	92.4	96.1	99.8	103.5	107.2	110.9	3.7
- 16	76.9	80.6	84.2	87.9	91.5	95.2	98.9	102.5	106.2	109.8	3.7
- 12	76.2	79.8	83.5	87. 1	90.7	94.3	98.0	101.6	105.2	108.8	3.6
- 8	75.5	79.1	82.7	86.3	89.9	93.5	97.1	100.7	104.3	107.9	3.6
6	75.2	78.8	82.3	85.9	89.5	93.1	96.6	100.2	103.8	107.4	3.6
- 4	74.8	78.4	82.0	85.5	89.1	92.7	96.2	99.8	103.3	106.9	3.6
2	74.5	78.1	8 r .6	85.2	88.7	92.2	95.8	99.3	102.9	106.4	3.5
0	74.2	77.7	81.2	84.8	88.3	9 c .8	95.4	98.9	102.5	106.0	3.5
+ 2	73.9	77.4	80.9	84.4	87.9	91.4	95.0	98.5	102.0	105.5	3.5
	73.5	77.0	80.5	84.0	87.5	91.0	94.5	98.0	101.5	105.0	3.5
6	73.2	76.7	80.2	83.7	87.2 868	90.6	94.1	97.6	IOI. 1	104.6	3.5
8	72.9	76.4	79.8	83.3	86.8	90.2	93.7	97.2	100.7	104.1	3.5
10	72.6	76.0	79.5	82.9	86.4	89.9	93.3	96.8	100.2	103.7	3.5
12	72.3	75.7	79.1	82.6	86.0	89.5	92.9	96.3	99.8	$1{ }^{1} 3.2$	3.4
14	72.0	75.4	78.8	82.2	85.7	89.1	92.5	95.9	99.4	102.8	3.4
16	71.6	75.I	78.5	8 I .9	85.3	88.7	92.1	95.5	98.9	102.3	3.4
18	71.3	74.7	78.1	81.5	84.9	88.3	91.7	95.1	98.5	IOI. 9	3.4
20	71.0	74.4	77.8	81.2	84.6	87.9	91.3	94.7	98.1	IOI. 5	3.4
22	70.7	74.1	77.5	80.8	84.2	87.6	90.9	94.3	97.7	IOI. 0	3.4
24	70.4	73.8	77.1	80.5	83.8	87.2	90.6	93.9	97.3	100.	3.4
26	70.1	73.5	76.8	80.2	83.5	86.8	90.2	93.5	96.9	100.	3.3
28	69.8	73.2	76.5	79.8	83.1	86.5	89.8	93.1	96.4	99.8	$3 \cdot 3$
30	69.5	72.9	76.2	79.5	82.8	86. 1	89.4	92.7	96.0	99.3	$3 \cdot 3$
32	69.2	72.5	75.8	79.1	82.4	85.7	89.0	92.3	95.6	98.9	3.3
34	69.0	72.2	75.5	78.8	82.1	85.4	88.7	91.9	95.2	98.5	$3 \cdot 3$
36	68.7	71.9	75.2	78.5	81.7	85.0	88.3	91.5	94.8	98.1	$3 \cdot 3$
38	68.4	71.6	74.9	78.1	8 I .4	84.6	87.9	91.2	94.4	97.7	$3 \cdot 3$
40	68.1	71.3	74.6	77.8	8 I .0	84.3	87.5	90.8	94.0	97.2	3.2
42	67.8	71.0	74.2	77.5	80.7	83.9	87.1	90.4	93.6	96.8	3.2
44	67.5	70.7	73.9	77.1	80.3	83.6	86.8	90.0	93.2	96.4	3.2
46	67.2	70.4	73.6	76.8	80.0	83.2	86.4	89.6	92.8	96.0	3.2
48	66.9	70.1	73.3	76.5	79.7	82.8	86.	89.2	92.4	95.6	3.2
50	66.6	69.8	73.0	76.1	79.3	82.5	85.7	88.8	92.0	95.2	3.2
52	66.3	69.5	72.7	75.8	79.0	82.1	85.3	88.4	91.6	94.8	3.2
	66.1		72.3	75.5		81. 8	84.9	88.1	91.2	94.4	3. 1
56	65.8	68.9	72.0	75.2	78.3	8 I .4	84.6	87.7	90.8	94.0	3.1
58	65.5	68.6	71.7	74.9	78.0	81.1	84.2	87.3	90.4	93.6	3.1
60	65.2	68.3	71.4	74.5	77.6	80.7	83.8	87.0	90.1	93.2	3.1
62	64.9	68.0	71.1	74.2	77.3	80.4	83.5	86.6	89.7	92.8	3.1
64	64.7	67.8	70.8	73.9	77.0	80.1	83.1	86.2	89.3	92.4	3.1
66	64.4	67.5	70.5	$73 \cdot 6$	76.7	79.7	8	85.9	88.9	92.0	3. I
68	64.I	67.2	70.2	73.3	76.3	79.4	82.5	85.5	88.6	91.6	3.1
70	63.9	66.9	69.9	73.0	76.0	79.1	82.1	85.1	88.2	91.2	3.0
72	63.6	66.6	69.7	72.7	75.7	78.7	8 r .8	84.8	87.8	90.9	3.0
76	63.1	66. I	69. I	72.1	75.1	78.1	8 I .1	84.1	87.1	90.1	3.0
80	62.6	65.5	68.5	71.5	74.5	77.5	80.5	83.4	86.4	89.4	3.0
84	62.1	65.0	68.0	70.9	73.9	76.8	79.8	82.7	85.7	88.6	3.0
88	6 r .6	64.5	67.4	70.4	73.3	76.2	79.1	82.1	85.0	87.9	2.9
92	61.I	64.0	66.9	69.8	72.7	75.6	78.5	8 8 .4	84.3	87.2	2.9
96	60.6	63.5	66.4	69.2	72.1	75.0	77.9	80.8	83.7	86.5	2.9

TAble 14.
REDUCTION OF THE BAROMETER TO SEA LEVEL. ENGLISH MEASURES.
Values of $2000 \times m . \quad m=\frac{z}{56573+123 \cdot 1 \theta+.003 z} \cdot \frac{1}{1-\beta}$

Mean Temperature of air column. θ Fahr.	alititude of station in feet (z).										$\begin{array}{\|l\|} \hline \text { Differ- } \\ \text { ence } \\ \text { for } \\ 100 \\ 10 e e t . \end{array}$
	3100	3200	3300	3400	3500	3600	3700	3800	3900	4000	
-20°	114.5	118.2	121.9	125.6	129.3	133.0	136.7	140.4	I44. I	147.8	3.7
16	113.5	117.2	120.8	124.5	128.1	I 31.8	135.5	139.1	142.8	146.4	3.7
2	12.5	116.1	119.7	123.3	127.0	130.6	134.2	137.9	141.5	I45. 1	3.6
- 8	III. 5	II5.1	188.7	122.3	125.9	129.4	133.0	136.6	140.2	143.8	3.6
6	111.0	114.5	188.1	121.7	125.3	128.9	132.4	136.0	139.6	143.2	3.6
4	110.5	114.0	117.6	121.2	124.7	128.3	131.9	135.4	139.0	142.5	3.6
2	110.0	113.5	117.1	120.6	124.2	127.7	131.3	134.8	I 38.4	141.9	3.5
0	109.5	113.0	116.6	120.1	123.6	127.2	130.7	134.2	137.8	141.3	3.5
+ 2	109.0	112.5	116.	119.6	123.1	126.6	130.1	133.6	137.1	140.7	3.5
4	108.5	12.0	115.5	119.0	122.5	126.0	129.5	133.0	136.5	140.0	3.5
6	108.1	III. 6	115.0	188.5	122.0	125.5	129.0	132.5	135.9	139.4	3.5
8	107.6	III. 1	114.5	118.0	121.5	124.9	128.4	131.9	I 35.4	138.8	3.5
10	107.1	110.6	114.0	117.5	121.0	124.4	127.9	13 I .3	134.8	138.2	3.5
12	106.7	110.1	113.6	117.0	120.4	123.9	127.3	130.7	134.2	137.6	3.4
14	106.2	109.6	113.1	116.5	119.9	123.3	126.8	130.2	133.6	137.0	3.4
16	105.8	109. 2	112.6	116.0	119.4	122.8	126.2	129.6	133.0	136.5	3.4
18	105.3	108.7	II2.I	115.5	118.9	122.3	125.7	129.1	132.5	I 35.9	3.4
20	104.9	108.2	111.6	115.0	118.4	121.8	125.1	128.5	131.9	135.3	3.4
22	104.4	107.8	III. 1	114.5	117.9	12	124.6	128.0	131.3	134.7	3.4
24	104.0	107.3	110.7	114.0	117.4	120.7	124.1	127.4	130.8	134.I	3.4
26	103.5	106.9	110.2	113.5	116.9	120.2	123.6	126.9	130.2	I33.6	3.3
28	103.1	106.4	109.7	II3.1	116.4	119.7	123.0	126.4	129.7	133.0	3.3
30	102.7	106.0	109.3	112.6	115.9	119.2	122.5	125.8	129.1	132.4	3.3
32	102.2	105.5	108.8	122.1	115.4	118.7	122.0	125.3	128.6	131.9	3.3
34	1о1. 8	105.I	108.3	111.6	114.9	188.2	121.5	124.8	128.0	131.3	$3 \cdot 3$
36	IOI. 3	104.6	107.9	III. 2	114.4	117.7	121.0	124.2	127.5	130.8	3.3
38	100.9	104.1	107.4	110.7	II3.9	117.2	120.4	123.7	126.9	130.2	3.3
40	100.	103.7	107.0	110.	113.4	116.7	119.9	123.2	126.4	129.6	3.2
42	100.0	103.3	106.5	109.7	113.0	116.2	119.4	122.6	125.9	129.1	3.2
44	99.6	102.8	106.0	109.3	112.5	115.7	118.9	122.1	125.3	128.5	3.2
46	99.2	102.4	105.6	108.8	112.0	155.2	118.4	121.6	124.8	128.0	3.2
48	98.8	101.9	105.1	108.3	III. 5	114.7	117.9	121.	124.2	127.4	3.2
50	98.3	101. 5	104.7	107.9	III.O	114.2	117.4	120.5	123.7	126.9	3.2
52	97.9	101. 1	104.2	107.4	110.5	113.7	116.9	120.0	123.2	126.3	3.2
54	97.5	100. 6	103.8	106.9	Iro. 1	113.2	116.4	119.5	122.7	125.8	3.1
56	97.1	100.2	103.3	106.5	109.6	112.7	115.9	119.0	122.1	125.2	3.1
58	96.7	99.8	102.9	106.0	109. 1	112.3	115.4	118.5	121.6	124.7	3.1
60	96.3	99.4	102.5	105.6	108.7	111.8	114.9	188.0	121.1	124.2	3.1
62	95.9	98.9	102.0	105.1	108.2	111.3	114.4	117.5	120.6	123.7	3. I
64	95.5	98.5	101. 6	104.7	107.8	110.8	113.9	117.0	120.1	123.1	3.1
66	95.1	98.1	IOI. 2	104.3	107.3	110.4	113.5	116.5	119.6	122.6	3.1
68	94.7	97.7	100.8	103.8	105.9	109.9	113.0	116.0	119.1	122.1	3.1
70	94.3	97.3	100.3	103.4	106.4	109.5	112.5	115.5	188.6	121.6	3.0
72	93.9	96.9	99.9	103.0	106.0	109.0	112.0	115.1	118.	121.	3.0
76	93.1	96.1	99.1	102.1	105. 1	108. 1	III.I	II4.I	117.1	120.1	3.0
80	92.3	95.3	98.3	101. 3	104.3	107.2	110.2	113.2	116.2	119.2	3.0
84	91.6	94.5	97.5	100.5	103.4	106.4	109.3	12.3	115.2	118.2	3.0
88	90.9	93.8	96.7	99.7	102.6	105.5	108.4	IIt. 4	154.3	117.2	2.9
92	90.1	93.0	96.0	98.9	101. 8	104.7	107.6	110.5	113.4	116.3	2.9
96	89.4	92.3	95.2	98.1	IOI. 0	103. 8	106.7	109.6	112.5	115.4	2.9

Table 14.
REDUCTION OF THE BAROMETER TO SEA LEVEL. ENGLISH MEASURES.

Values of $2000 \times \mathrm{m}$.
$m=\frac{\mathrm{z}}{56573+\mathrm{I} 23 \cdot \mathrm{I} \theta+.003 \mathrm{z}} \cdot \frac{\mathrm{I}}{\mathrm{I}-\beta}$

Mean Temperature of alr column. θ Fahr.	altitude of station in feet (z).										$\left\|\begin{array}{c} \text { Differ- } \\ \text { ence } \\ \text { for } \\ \text { f00 } \\ \text { Feet. } \end{array}\right\|$
	4100	4200	4300	4400	4500	4600	4700	4800	4900	5000	
-20°	151.5	155.2	158.9	162.6	166.3	170.0	173.7	177.3	181.0	184.7	3.7
16	150.1	153.8	157.4	161.1	164.8	168.4	172.1	175.7	179.4	183.1	3.7
- 12	I48.8	${ }_{152}{ }^{2} 4$	156.0	${ }^{1} 59.6$	163.3	166.9	170.5	174.I	177.8	181.4	3.6
8	147.4	151.0	154.6	158.2	161.8	165.4	169.0	172.6	176.2	179.8	3.6
6	146.8	150.3	153.9	157.5	161.1	164.7	168.2	171.8	175.4	179.0	3.6
4	146.1	149.7	153.2	156.8	160.4	163.9	167.5	171.0	174.6	178.2	3.6
- 2	145.5	149.0	152.5	156.1	159.6	163.2	166.7	170.3	173.8	177.4	3.5
0	144.8	148.3	151.9	155.4	158.9	162.5	166.0	169.5	173.1	176.6	3.5
+ 2	144.2	147.7	151.2	154.7	158.2	16 I .8	165.3	168.8	172.3	175.8	3.5
	143.5	147.0	155.5	154.0	157.5	161.0	164.5	168.0	171.5	175.0	3.5
6	142.9	146.4	149.9	153.4	156.9	160.3	163.8	167.3	170.8	174.3	3.5
8	142.3	145.8	149.2	152.7	156.2	159.6	163. 1	166.6	170. 1	173.5	3.5
10	141.7	145. I	I48.6	152.0	155.5	159.0	162.4	165.9	169.3	172.8	3.5
12	141.1	144.5	147.9	151.4	154.8	158.3	16 I .7	165. I	168.6	172.0	3.4
14	140.5	143.9	147.3	150.7	154.2	157.6	16 I .0	164.4	167.9	171.3	3.4
16	139.9	143.3	146.7	150.1	153.5	156.9	160.3	163.7	167.1	170.6	3.4
18	139.3	142.7	146. 1	I49.5	152.9	156.2	159.6	162.0	166.4	169.8	3.4
20	138.7	142.1	145.4	148.8	152.2	155.6	159.0	162.3	165.7	169.1	3.4
22	138.1	141.5	144.8	148.2	151.6	154.9	158.3	161.7	165.0	168.4	3.4
24	137.5	140.9	144.2	147.6	150.9	154.3	157.6	16 I .0	164.3	167.7	3.4
26	136.9	140.3	143.6	146.9	150.3	153.6	157.0	160.3	163.6	167.0	$3 \cdot 3$
28	I36.3	139.7	143.0	146.3	I49.6	153.0	156.3	159.6	162.9	166.3	3.3
30	135.8	139. 1	142.4	145.7	149.0	152.3	155.6	158.9	162.2	165.6	3.3
32	135.2	138.5	141.8	145. 1	148.4	151.7	155.0	158.3	161.6	164.8	3.3
34	I 34.6	137.9	141.2	144.5	147.7	151.0	154.3	157.6	160.9	164.1	$3 \cdot 3$
36	134.0	137.3	140.6	143.8	147.1	150.4	153.6	156.9	160.2	163.4	$3 \cdot 3$
38	I 33.5	I36.7	140.0	143.2	146.5	149.7	153.0	156.2	159.5	162.7	$3 \cdot 3$
40	132.9	136. 1	139.4	142.6	145.8	149.1	152.3	155.6	158.8	162.0	
42	132.3	135.5	138.8	142.0	145.2	148.4	151.7	154.9	158.1	161.4	3.2
44	131.7	135.0	I38.2	141.4	144.6	1478	151.0	154.2	157.4	160.7	3.2
46	131.2	134.4	137.6	140.8	144.0	147.2	150.4	153.6	156.8	160.0	3.2
48	I30.6	133.8	137.0	140.2	143.4	146.5	149.7	152.9	156.1	159.3	3.2
50	130.1	133.2	136.4	139.6	142.7	145.9	I49. 1	152.2	155.4	158.6	3.2
52	129.5	132.6	135.8	139.0	I42.1	145.3	148.4	151.6	154.8	157.9	3.2
54	129.0	${ }^{132.1}$	135.2	138.4	141.5	144.7	147.8	151.0	154. I	157.2	3. I
56	128.4	${ }_{1} 131.5$	134.7	137.8	140.9	144.0	147.2	150.3	153.4	156.6	3.1
58	127.9	131.0	134.I	137.2	140.3	143.4	146.6	149.7	152.8	155.9	3. 1
60	127.3	130.4	133.5	136.6	139.7	142.8	145.9	149.0	152.1	155.2	3. 1
62	126.8	129.9	I33.0	I36.0	I39. 1	142.2	$145 \cdot 3$	148.4	151.5	154.6	3. I
64	126.2	129.3	I32.4	I 35.5	138.6	141.6	144.7	147.8	150.9	153.9	3. I
66	125.7	128.8	131.8	134.9	138.0	141.0	144. I	147.2	150.2	153.3	3. I
68	125.2	128.2	131.3	I 34.3	137.4	140.5	143.5	146.6	149.6	152.7	3. I
70	124.7	127.7	130.7	133.8	136.8	139.9	142.9	145.9	149.0	152.0	3.0
72	124.2	127.2	130.2	133.2	I36.3	139.3	142.3	145.3	148.4	151.4	3.0
76	123. 1	126.1	129.1	I32.I	135.1	138.1	141.2	144.2	147.2	150.2	3.0
80	122.1	125.1	128.1	131.1	I34.0	137.0	140.0	143.0	146.0	148.9	3.0
84	I21. 1	124.0	127.0	130.0	133.0	135.9	138.9	141.8	144.8	147.7	3.0
88	120	123.1	126.0	129.0	131.9	134.8	137.7	140.7	143.6	146.5	2.9
92	119.2	122.I	125.0	127.9	I30.8	133.7	I 36.6	139.6	142.5	145.4	2.9
96	118.3	121.1	124.0	126.9	129.8	132.7	135.6	I 38.4	141.3	144.2	2.9

TABLE 14.
REDUCTION OF THE BAROMETER TO SEA LEVEL. ENGLISH MEASURES.

Values of $2000 \times \mathrm{m}$.

$$
m=\frac{Z}{56573+123 \cdot 1 \theta+.003 Z} \cdot \frac{1}{1-\beta}
$$

Mean Temperature of air column. θ Fahr.	ALTITUDE OF STATION IN FEET (z).										Difference for 100 Feet.
	5100	5200	5300	5400	5500	5600	5700	5800	5900	6000	
-20°	188.4	192.1	195.8	199.5	203.2	206.9	210.6	214.3	218.0	221.7	3.7
16	186.7	190.4	194.0	197.7	201.4	205.0	208.7	212.3	216.0	219.7	3.7
12	185.0	188.7	192.3	195.9	199.5	203.2	206.8	210.4	214.0	217.7	3.6
-8	183.4	187.0	190.5	194.1	197.7	201.3	204.9	208.5	212.1	215.7	3.6
6	182.5	186.1	189.7	193.3	196.9	200.4	204.0	207.6	211.2	214.7	3.6
- 4	181.7	185.3	188.9	192.4	196.0	199.5	203.1	206.7	210.2	213.8	3.6
2	180.9	184.5	188.0	191.6	195.1	198.7	202.2	205.7	209.3	212.8	3.5
0	180. 1	183.7	187.2	190.7	194.3	197.8	201.3	204.8	208.4	211.9	3.5
+2	179.3	182.8	186.4	189.9	193.4	196.9	200.4	203.9	207.5	211.0	$3 \cdot 5$
4	178.5	182.0	185.5	189.0	192.5	196.0	199.5	203.0	206.5	210.0	3.5
6	177.8	181.3	184.7	188.2	191.7	195.2	198.7	202.2	205.6	209. 1	$3 \cdot 5$
8	177.0	180.5	183.9	187.4	190.9	194.3	197.8	201.3	204.8	208.2	3.5
10	176.2	179.7	183.1	186.6	190.0	193.5	197.0	200.4	203.9	207.3	$3 \cdot 5$
12	175.5	178.9	182.3	185.8	189.2	192.7	196.1	199.5	203.0	206.4	3.4
14	174.7	178.1	181.6	185.0	188.4	191.8	195.3	198.7	202.1	205.5	3.4
16	174.0	177.4	180.8	184.2	187.6	191.0	194.4	197.8	201.2	204.7	3.4
18	I73.2	176.6	180.0	183.4	186.8	190.2	193.6	197.0	200.4	203.8	3.4
20	172.5	175.9	179.2	182.6	186.0	189.4	192.8	196.2	199.5	202.9	3.4
22	171.8	175.1	178.5	181.9	185.2	188.6	192.0	195.3	198.7	202.1	3.4
24	171.0	174.4	177.7	181. 1	184.4	187.8	191. 1	194.5	197.8	201.2	3.4
26	170.3	173.6	177.0	180.3	183.7	187.0	190.3	193.7	197.0	200.3	$3 \cdot 3$
28	169.6	172.9	I76.2	179.6	182.9	186.2	189.5	192.9	196.2	199.5	$3 \cdot 3$
30	168.9	172.2	175.5	178.8	182.1	185.4	188.7	192.0	195.3	198.7	$3 \cdot 3$
32	168. 1	171.4	174.7	178.0	181.3	184.6	187.9	191.2	194.5	197.8	$3 \cdot 3$
34	167.4	170.7	174.0	177.3	180.6	183.8	187. 1	190.4	193.7	197.0	$3 \cdot 3$ $3 \cdot 3$
36	166.7	170.0	173.2	176.5	179.8	183.1	186.3	189.6	192.9	196. I	3.3
38	166.0	169.3	172.5	175.8	179.0	182.3	185.5	188.8	192.0	195.3	$3 \cdot 3$
40	165.3	168.5	171.8	175.0	178.2	181.5	184.7	188.0	191.2	194.4	3.2
42	164.6	167.8	171.0	174.3	177.5	180.7	183.9	187.2	190.4	193.6	3.2
44	163.9	167.1	170.3	173.5	176.7	179.9	183. 1	186.4	189.6	192.8	3.2
46	163.2	166.4	169.6	172.8	176.0	179.2	182.4	185.6	188.7	192.0	3.2
48	162.5	165.6	168.8	172.0	175.2	178.4	181.6	184.8	187.9	191.1	3.2
50	161.8	164.9	168. 1	171.3	174.4	177.6	180.8	184.0	187.1	190.3	3.2
52	161. I	164.2	167.4	170.5	173.7	176.9	180.0	183.2	186.3	189.5	3.2
54	160.4	163.5	166.7	169.8	173.0	176.I	179.2	182.4	185.5	188.7	3.1
56	159.7	162.8	166.0	169.1	172.2	175.4	178.5	181.6	184.7	187.9	3.1
58	159.0	162.I	165.3	168.4	171.5	174.6	177.7	180.8	184.0	187.1	3.I
60	158.4	161.5	164.6	167.7	170.8	173.9	177.0	180. 1	183.2	186.3	3.1
62	157.7	160.8	163.9	167.0	170.1	173.1	176.2	179.3	182.4	185.5	3.1
64	157.0	160. 1	163.2	166.3	169.3	172.4	175.5	178.6	181.6	184.7	3.1
66	156.4	159.4	162.5	165.6	168.6	171.7	174.8	177.8	180.9	184.0	3.1
68	155.7	158.8	161.8	164.9	167.9	171.0	174.0	177.1	180.1	183.2	3.1
70	155.1	158.1	161. 1	164.2	167.2	170.3	173.3	176.3	179.4	182.4	3.0
72	154.4	157.5	160.5	163.5	166.5	169.6	172.6	175.6	178.6	181.7	3.0
76	153.2	156.2	159.2	162.2	165.2	168.2	171.2	174.2	177.2	180.2	3.0
80	151.9	I54.9	157.9	160.8	163.8	166.8	169.8	172.8	175.7	178.7	3.0
84 88	I50.7	I53.6	156.6	159.5 158.3	162.5	165.5 164.1	168.4 167.0	171.4	174.3	177.3	3.0
88	149.5 148.3	152.4 151.2	155.3 154.1	158.3 157.0	161.2 159.9	164.1 162.8	167.0 165.7	170.0 168.6	172.9 171.5	175.8 174.4	2.9 2.9
96	147.1	150.0	152.9	155.7	158.6	161.5	164.4	$167 \cdot 3$	170.2	173.0	2.9

TABLE 14.

REDUCTION OF THE BAROMETER TO SEA LEVEL.

 ENGLISH MEASURES.Values of $2000 \times \mathrm{m}$.

$$
m=\frac{z}{56573+123 \cdot 1 \theta+.003 z} \cdot \frac{1}{1-\beta}
$$

Mean Temperature of air column. θ Fahr.	ALTITUDE OF STATION IN FEET (z).										Difference for 100 feet.
	6100	6200	6300	6400	6500	6600	6700	6800	6900	7000	
-20°	225.4	229. I	232.8	236.4	240.1	243.8	$247 \cdot 5$	251.2	254.9	258.6	3.7
16	223.3	227.0	230.6	234.3	237.9	241.6	245.3	248.9	252.6	256.2	3.7
- 12	221.3	224.9	228.5	232.2	235.8	239.4	243.0	246.7	250.3	253.9	3.6
- 8	219.3	222.9	226.5	230.1	233.7	237.3	240.9	244.5	248. 1	251.6	3.6
6	218.3	221.9	225.5	229. 1	232.6	236.2	239.8	243.4	246.9	250.5	3.6
4	217.4	220.9	224.5	228.0	231.6	235.2	238.7	242.3	245.8	249.4	3.6
2	216.4	219.9	223.5	227.0	230.6	234. 1	237.7	241.2	244.8	248.3	3.5
0	215.4	219.0	222.5	226.0	229.6	233.1	236.6	240. I	243.7	247.2	3.5
+2	214.5	218.0	221.5	225.0	228.5	232.1	235.6	239.1	242.6	246.1	3.5
4	213.5	217.0	220.5	224.0	227.5	231.0	234.5	238.0	241.5	245.0	3.5
6	212.6	216.1	219.6	223. I	226.6	230.0	233.5	237.0	240.5	244.0	3.5
8	211.7	215.2	218.6	222.1	225.6	229.0	232.5	236.0	239.4	242.9	3.5
10	210.8	214.2	217.7	221.1	224.6	228.0	231.5	235.0	238.4	24 I .9	3.5
12	209.9	213.3	216.7	220.2	223.6	227.1	230.5	233.9	237.4	240.8	$3 \cdot 4$
14	209.0	212.4	215.8	219.2	222.7	226.1	229.5	232.9	236.4	239.8	3.4
16	208.1	211.5	214.9	218.3	221.7	225. I	228.5	231.9	235.3	238.8	3.4
18	207.2	210.6	214.0	217.4	220.8	224.2	227.6	230.9	234.3	237.7	3.4
20	206.3	209.7	213.1	216.4	219.8	223.2	226.6	230.0	233.3	236.7	3.4
22	205.4	208.8	212.2	215.5	218.9	222.3	225.6	229.0	232.4	235.7	3.4
24	204.6	207.9	211.3	214.6	218.0	221.3	224.7	228.0	231.4	234.7	3.4
26	203.7	207.0	210.4	213.7	217.0	220.4	223.7	227.0	230.4	233.7	$3 \cdot 3$
28	202.8	206.2	209.5	212.8	216.1	219.4	222.8	226.1	229.4	232.7	$3 \cdot 3$
30	202.0	205.3	208.6	211.9	215.2	218.5	221.8	225.1	228.4	231.8	$3 \cdot 3$
32	201. I	204.4	207.7	211.0	214.3	217.6	220.9	224.2	227.5	230.8	$3 \cdot 3$
34	200.2	203.5	206.8	210.1	213.4	216.7	219.9	223.2	226.5	229.8	$3 \cdot 3$
36	199.4	202.7	205.9	209. 2	212.5	215.7	219.0	222.3	225.5	228.8	$3 \cdot 3$
38	198.5	201.8	205.0	208.3	2 I1. 6	214.8	218.1	221.3	224.6	227.8	3.3
40	197.7	200.9	204.2	207.4	210.6	213.9	217. I	220.4	223.6	226.8	3.2
42	196.8	200.1	203.3	206.5	209.7	213.0	216.2	219.4	222.6	225.9	3.2
44	196.0	199.2	202.4	205.6	208.8	212.1	215.3	218.4	221.7	224.9	3.2
46	195.2	198.4	201.5	204.7	207.9	21 I .1	214.3	217.5	220.7	223.9	3.2
48	194.3	197.5	200.7	203.9	207.0	210.2	213.4	216.6	219.8	223.0	3.2
50	193.5	196.6	199.8	203.0	206.2	209.3	212.5	215.7	218.8	222.0	3.2
52	192.6	195.8	199.0	202.1	205.3	208.4	211.6	214.7	217.9	221. I	3.2
. 54	191.8	195.0	198.1	201.3	204.4	207.5	210.7	213.8	217.0	220.1	3.I
56	191.0	194. I	197.3	200.4	203.5	206.7	209.8	212.9	216.0	219.2	3.I
58	190.2	193.3	196.4	199.5	202.7	205.8	208.9	212.0	215.1	218.3	3.I
60	189.4	192.5	195.6	198.7	201.8	204.9	208.0	211.1	214.2	217.3	3.1
62	188.6	191.7	194.8	197.9	201.0	204. I	207.2	210.2	213.3	216.4	3. I
64	187.8	190.9	194.0	197.0	200.1	203.2	206.3	209.3	212.4	215.5	3.1
66	187.0	190.1	193.1	196.2	199.3	202.3	205.4	208.5	211.5	214.6	3.1
68	186.2	189.3	192.3	195.4	198.4	201.5	204.6	207.6	210.7	213.7	3.0
70	185.5	188.5	191.5	194.6	197.6	200.7	203.7	206.7	209.8	212.8	3.0
72	184.7	187.7	190.8	193.8	196.8	199.8	202.9	205.9	208.9	211.9	3.0
76	183.2	186.2	189.2	192.2	195.2	198.2	201.2	204.2	207.2	210.2	3.0
80	I81.7	184.7	187.6	190.6	193.6	196.6	199.6	202.5	205.5	208.5	3.0
84	180. 2	183.2	186.1	189.1	192.0	195.0	197.9	200.9	203.8	206.8	3.0
88	178.8	181.7	184.6	187.6	190.5	193.4	196.3	199.3	202.2	205.1	2.9
92	177.3	180. 2	183.2	IS6. 1	189.0	191.9	194.8	197.7	200.6	203.5	2.9
96	I75.9	178.8	181.7	I84.6	187.5	190.3	193.2	196.1	199.0	201.9	2.9

Table 14.
REDUCTION OF THE BAROMETER TO SEA LEVEL.
ENGLISH MEASURES.

Mean Temperature of air column. θ Fahr.	ALTITUDE OF STATION IN FEET (z).										Differ- ence for 100 Feet.
	7100	7200	7300	7400	7500	7600	7700	7800	7900	8000	
-20°	262.3	266.0	269.7	273.4	277.1	280. 8	284.5	288. 1	291.8	295.5	3.7
16	259.9	263.6	267.2	270.9	274.5	278.2	281.9	285.5	289.2	292.8	3.7
12	257.6	26I. 2	264.8	268.4	272.I	275.7	279.3	282.9	286.6	290.2	3.6
- 8	255.2	258.8	262.4	266.0	269.6	273.2	276.8	280.4	284.0	287.6	3.6
6	254.1	257.7	261.3	264.8	268.4	272.0	275.6	279.1	282.7	286.3	3.6
- 4	253.0	256.5	260. I	263.7	267.2	270.8	274.3	277.9	281.5	285.0	3.6
2	251.8	255.4	258.9	262.5	266.0	269.6	273.1	276.7	280. 2	283.8	3.5
0	250.7	254.3	257.8	261.3	264.9	268.4	271.9	275.4	279.0	282.5	$3 \cdot 5$
+ 2	249.6	253.1	256.7	260.2	263.7	267.2	270.7	274.2	277.8	281.3	$3 \cdot 5$
	248.5	252.0	255.5	259.0	262.5	266.0	269.5	273.0	276.5	280.0	$3 \cdot 5$
8	247.5	250.9	254.4	257.9	26I. 4	264.9	268.4	271.8	275.3	278.8	3.5
8	246.4	249.8	253.3	256.8	260.3	263.7	267.2	270.7	274.I	277.6	3.5
10	245.3	248.8	252.2	255.7	259. I	262.6	266.0	269.5	272.9	276.4	3.5
12	244.3	247.7	251.1	254.6	258.0	261.4	264.9	268.3	271.8	275.2	3.4
14	243.2	246.6	250.1	253.5	256.9	260.3	263.8	267.2	270.6	274.0	3.4
16	242.2	245.6	249.0	252.4	255.8	259.2	262.6	266.0	269.4	272.8	3.4
18	24I. I	244.5	247.9	251.3	254.7	258. I	261.5	264.9	268.3	271.7	3.4
20	240. I	243.5	246.9	250.2	253.6	257.0	260.4	263.8	267. I	270.5	3.4
22	239. I	242.4	245.8	249.2	252.5	255.9	259.3	262.6	266.0	269.4	3.4
24	238.1	241.4	244.8	248.1	251.5	254.8	258.2	261.5	264.9	268.2	$3 \cdot 4$
26	237.1	240.4	243.7	247.I	250.4	253.8	257. I	260.4	263.8	267. I	$3 \cdot 3$
28	236.1	239.4	242.7	246.0	249.4	252.7	256.0	259.3	262.7	266.0	$3 \cdot 3$
30	235. I	238.4	241.7	245.0	248.3	251.6	254.9	258.2	261.5	264.8	$3 \cdot 3$
32	234. I	237.4	240.7	243.9	247.2	250.5	253.8	257.1	260.4	263.7	$3 \cdot 3$
34	233.1	236.3	239.6	242.9	246.2	249.5	252.8	256.0	259.3	262.6	$3 \cdot 3$
36	232.1	$235 \cdot 3$	238.6	241.9	245. I	248.4	251.7	254.9	258.2	261.5	$3 \cdot 3$
38	231.1	$234 \cdot 3$	237.6	240.8	244. 1	247.3	250.6	253.9	257.1	260.4	$3 \cdot 3$
40	230.1	233.3	236.6	239.8	243.0	246.3	249.5	252.8	256.0	259.2	3.2
42	229.1	232.3	235.5	238.8	242.0	245.2	248.4	251.7	254.9	258.1	3.2
44	228.1	231.3	234.5	237.7	241.0	244.2	247.4	250.6	253.8	257.0	3.2
46	227. I	230.3	233.5	236.7	239.9	243. I	246.3	249.5	252.7	255.9	3.2
48	226.2	229.3	232.5	235.7	238.9	242. I	$245 \cdot 3$	248.4	251.6	254.8	3.2
50	225.2	228.4	231.5	234.7	237.9	241.0	244.2	247.4	250.5	253.7	3.2
52	224.2	227.4	230.5	233.7	236.8	240.0	243.2	246.3	249.5	252.6	3.2
54	223.3	226.4	229.5	232.7	235.8	239.0	242.1	245.3	248.4	251.5	3.1
56	222.3	225.4	228.6	231.7	234.8	238.0	241.1	244.2	247.3	250.5	3.1
58	221.4	224.5	227.6	230.7	233.8	236.9	240. 1	243.2	246.3	249.4	3.1
60	220.4	223.5	226.6	229.7	232.8	235.9	239. I	242.2	$245 \cdot 3$	248.4	3. I
62	219.5	222.6	225.7	228.8	231.9	235.0	238.0	241.1	244.2	247.3	3.1
64	218.6	221.7	224.7	227.8	230.9	234.0	237.0	240.1	243.2	246.3	3.1
66	217.7	220.7	223.8	226.9	229.9	233.0	236.1	239.I	242.2	245.2	3.1
68	216.8	219.8	222.9	225.9	229.0	232.0	235. I	238.1	241.2	244.2	3.0
70	215.9	218.9	221.9	225.0	228.0	231.1	234.1	237.1	240.2	243.2	3.0
72	215.0	218.0	221.0	224.1	227.1	230. I	233.1	236.2	239.2	242.2	3.0
76	213.2	216.2	219.2	222.2	225.2	228.2	231.2	234.2	237.2	240. 2	3.0
80	211.5	214.4	217.4	220.4	223.4	226.4	229.3	232.3	235.3	238.3	3.0
84	209.8	212.7	215.7	218.6	221.6	224.5	227.5	230.4	233.4	236.3	2.9
88	208.1	211.0	213.9	216.9	219.8	222.7	225.6	228.6	23 I .5	234.4	2.9
92	206.4	209.3	212.2	215.1	218.0	220.9	223.8	226.7	229.7	232.6	2.9
96	204.8	207.6	210.5	213.4	216.3	219.2	222.1	224.9	227.8	230.7	2.9

TABLE 14.
REDUCTION OF THE BAROMETER TO SEA LEVEL. ENGLISH MEASURES.
Values of $2000 \times \mathrm{m} . \quad m=\frac{\mathrm{Z}}{56573+\mathrm{I} 23 \cdot \mathrm{I} \theta+.003 \mathrm{Z}} \cdot \frac{\mathrm{I}}{\mathrm{r}-\boldsymbol{\beta}}$

Mean Temperature of air column. θ Fahr.	ALTITUDE OF STATION IN FEET (z).										Difference for 100 Feet.
	8100	8200	8300	8400	8500	8600	8700	8800	8900	9000	
-20°	299.2	302.9	306.6	310.3	314.0	317.7	321.4	325.1	328.8	332.5	3.7
r6	296.5	300.2	303.8	307.5	3II.1	314.8	318.4	322.1	325.8	329.4	3.7
12	293.8	297.4	301. 1	304.7	308.3	3II. 9	315.6	319.2	322.8	326.4	3.6
-8	291.2	294.8	298.4	302.0	305.5	309.1	312.7	316.3	319.9	323.5	3.6
- 6	289.9	293.5	297.0	300.6	304.2	307.8	3 Ir .3	314.9	318.5	322.1	3.6
- 4	288.6	292.1	295.7	299.3	302.8	306.4	309.9	313.5	317.1	320.6	3.6
2	287.3	290.9	294.4	297.9	301.5	305.0	308.6	312.1	315.7	319.2	3.5
0	286.0	289.6	293. I	296.6	300.2	303.7	307.2	310.7	314.3	317.8	3.5
+ 2	284.8	288.3	291.8	295.3	298.8	302.4	305.9	309.4	312.9	316.4	$3 \cdot 5$
	283.5	287.0	290.5	294.0	297.5	301.0	304.5	308.0	3 II .5	315.0	3.5
6	282.3	285.8	289.3	292.7	296.2	299.7	303.2	306.7	310.2	313.6	3.5
8	28I.1	284.5	288.0	291.5	294.9	298.4	301.9	305.3	308.8	312.3	3.5
10	279.8	283.3	286.8	290.2	293.7	297.1	300.6	304.0	307.5	310.9	3.5
12	278.6	282.1	285.5	289.0	292.4	295.8	299.3	302.7	306.2	309.6	3.4
14	277.5	280.9	284.3	287.7	291. 1	294.6	298.0	301.4	304.8	308.3	3.4
16	276.3	279.7	283.1	286.5	289.9	293.3	296.7	300. 1	303.5	306.9	3.4
18	275. I	278.5	281.9	285.3	288.7	292.1	295.4	298.8	302.2	305.6	3.4
20	273.9	277.3	280.7	284.0	287.4	290.8	294.2	297.6	300.9	304.3	3.4
22	272.7	276. 1	279.5	282.8	286.2	289.6	292.9	296.3	299.7	303.0	3.4
24	271.6	274.9	278.3	281.6	285.0	288.3	291.7	295.0	298.4	301.8	3.4
26	270.4	273.8	277.1	280.5	283.8	287.1	290.5	293.8	297. I	300.5	$3 \cdot 3$
28	269.3	272.6	275.9	279.3	282.6	285.9	289.2	292.6	295.9	299.2	$3 \cdot 3$
30	268.2	271.5	274.8	278.1	281.4	284.7	288.0	291.3	294.6	297.9	3.3
32	267.0	270.3	273.6	276.9	280.2	283.5	286.8	290. 1	293.4	296.7	$3 \cdot 3$
34	265.9	269.2	272.4	275.7	279.0	282.3	285.6	288.8	292.1	295.4	$3 \cdot 3$
36	254.7	268.0	271.3	274.5	277.8	281.1	284.3	287.6	290.9	294. I	$3 \cdot 3$
38	263.6	266.9	270.1	273.4	276.6	279.9	283. 1	286.4	289.6	292.9	3.3
40	262.5	265.7	269.0	272.2	275.4	278.7	281.9	285.2	288.4	291.6	3.2
42	261.4	264.6	267.8	271.0	274.3	277.5	280.7	283.9	287.2	290.4	3.2
44	260.2	263.4	266.7	269.9	273. 1	276.3	279.5	282.7	285.9	289. I	3.2
46	259.1	262.3	265.5	268.7	271.9	275. I	278.3	281.5	284.7	287.9	3.2
48	258.0	26 I .2	264.4	267.5	270.7	273.9	277. 1	280.3	283.5	286.6	3.2
50	256.9	260.1	263.2	266.4	269.6	272.7	275.9	279.1	282.2	285.4	3.2
52	255.8	258.9	262.1	265.3	268.4	271.6	274.7	277.9	281.0	284.2	3.1
54	254.7	257.8	261.0	264.1	267.3	270.4	273.5	276.7	279.8	283.0	3.1
56	253.6	256.7	259.9	263.0	266. 1	269.3	272.4	275.5	278.6	28 r .8	3. I
58	252.5	255.6	258.8	26 r .9	265.0	268. I	271.2	274.3	277.5	280.6	3. I
60	251.5	254.6	257.7	260.8	263.9	267.0	270. 1	273.2	276.3	279.4	3.1
62	250.4	253.5	256.6	259.7	262.8	265.9	268.9	272.0	275. I	278.2	3.1
64	249.4	252.4	255.5	258.6	261.7	264.7	267.8	270.9	274.0	277.1	3.1
66	248.3	251.4	254.4	257.5	260.6	263.6	266.7	269.8	272.8	275.9	3.1
68	247.3	250.3	253.4	256.4	259.5	262.5	265.6	268.6	271.7	274.7	3.0
70	246.3	249.3	252.3	255.4	258.4	26 r .4	264.5	267.5	270.6	273.6	3.0
72	245.2	248.3	251.3	254.3	257.3	260.4	263.4	266.4	269.4	272.5	3.0
76	243.2	246.2	249.2	252.2	255.2	258.2	261.2	264.2	267.2	270.2	3.0
80	241.2	244.2	247.2	250.2	253. 1	256. 1	259.1	262.1	265.1	268.0	3.0
84	239.3	242.2	245.2	248. 1	251.1	254. 1	257.0	260.0	262.9	265.9	2.9
88	237.4	240.3	243.2	246. I	249. 1	252.0	254.9	257.9	260.8	263.7	2.9
92	235.5	238.4	241.3	244.2	247. 1	250.0	252.9	255.8	258.7	261.6	2.9
96	233.6	236.5	239.4	242.2	245. 1	248.0	250.9	253.8	256.7	259.5	2.9

TABLE 15.

REDUCTION OF THE BAROMETER TO SEA LEVEL. ENGLISH MEASURES.

Correction of 2000 m for Latitude : $2000 m \times 0.002662 \cos 2 \phi$.
For latitudes 0° to 45°, the correction is to be subtracted.
For latitudes 45° to 90°, the correction is to be added.

2000 m.	LATITUDE.									
	0°	5°	10°	15°	20°	25°	30°	35°	40°	45°
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20	O.I	O. I	O. 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30	O.I	O.I	O.I	O. I	O. I	O. I	0.0	0.0	0.0	0.0
40	O.I	0.1	O. 1	O. I	O.I	O.I	0.1	0.0	0.0	0.0
50	O. I	O.I	0.1	0.1	O. I	0.1	O. I	0.0	0.0	0.0
60	0.2	0.2	0.2	O. 1	O.I	O. 1	O. 1	O.I	0.0	0.0
70	0.2	0.2	0.2	0.2	O. I	O. 1	O.I	O. 1	0.0	0.0
So	0.2	0.2	0.2	0.2	0.2	O.I	O.I	0.1	0.0	0.0
90	0.2	0.2	0.2	0.2	0.2	0.2	O.I	O.I	0.0	0.0
100	0.3	0.3	0.3	0.2	0.2	0.2	O.I	0.1	0.0	0.0
110	0.3	0.3	0.3	0.3	0.2	0.2	0.1	O.I	0.1	0.0
120	0.3	0.3	0.3	0.3	0.2	0.2	0.2	O. 1	- 0.1	0.0
130	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.1	0.1	0.0
140	0.4	0.4	0.4	0.3	$0 \cdot 3$	0.2	0.2	O.I	O.I	0.0
150	0.4	0.4	0.4	0.3	0.3	0.3	0.2	O. I	O.I	0.0
160	0.4	0.4	0.4	0.4	0.3	0.3	0.2	O. I	O.I	0.0
170	0.5	0.4	0.4	0.4	0.3	0.3	0.2	0.2	0.1	0.0
180	0.5	0.5	0.5	0.4	0.4	0.3	0.2	0.2	0.1	0.0
190	0.5	0.5	0.5	0.4	0.4	0.3	0.3	0.2	0.1	0.0
200	0.5	0.5	0.5	0.5	0.4	0.3	0.3	0.2	0.1	0.0
210	0.6	0.6	0.5	0.5	0.4	0.4	0.3	0.2	O.I	0.0
220	0.6	0.6	0.6	0.5	0.4	0.4	0.3	0.2	O.I	0.0
230	0.6	0.6	0.6	0.5	0.5	0.4	0.3	0.2	0.1	0.0
240	0.6	0.6	0.6	0.6	0.5	0.4	0.3	0.2	0.1	0.0
250	0.7	0.7	0.6	0.6	0.5	0.4	0.3	0.2	O.I	0.0
260	0.7	0.7	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.0
270	0.7	0.7	0.7	0.6	0.6	0.5	0.4	0.2	0.1	0.0
280	0.7	0.7	0.7	0.6	0.6	0.5	0.4	0.3	O.I	0.0
290	0.8	0.8	0.7	0.7	0.6	0.5	0.4	0.3	0.1	0.0
300	0.8	0.8	0.8	0.7	0.6	0.5	0.4	0.3	O.I	0.0
310	0.8	0.8	0.8	0.7	0.6	0.5	0.4	0.3	0.1	0.0
320	0.9	0.8	0.8	0.7	0.7	0.5	0.4	0.3	0.1	0.0
330	0.9	0.9	0.8	0.8	0.7	0.6	0.4	0.3	0.2	0.0
340	0.9	0.9	0.9	0.8	0.7	0.6	0.5	0.3	0.2	0.0
350	0.9	0.9	0.9	0.8	0.7	0.6	0.5	0.3	0.2	0.0
	90°	85°	80°	75°	70°	65°	60°	55°	50°	45°

Smitheonian Tables.

TABLE 16.

REDUCTION OF THE BAROMETER TO SEA LEVEL. ENGLISH MEASURES.
 $$
B_{0}-B=B\left(10^{m}-1\right) .
$$

Top argument: Height of the barometer (B).
Side argument: Values of 2000 m obtained from Table 14.

2000 m.	HEIGHT OF THE BAROMETER IN INCHES.								
	31.0	30.5	30.0	29.5	29.0	28.5	28.0	27.5	27.0
	Inches.								
I	0.04	0.04	0.03	0.03	0.03	0.03			
2	0.07	0.07	0.07	0.07	0.07	0.07			
3	O. II	O. 11	o. Io	o. 10	o. 10	-. 10			
4	-. 14	0. 14	0. 14	0.14	0. 13	0. 13			
5	0. 18	0. 18	0.17	0.17	0.17	o 16			
6	0.2I	0.21	0.21	0.20	0.20	0.20	0. 19		
7	0.25	0.25	0.24	0.24	0.23	0.23	0.23		
8	0.29	0.28	0.28	0.27	0.27	0.26	0.26		
9	0.32	0.32	0.31	0.31	0.30	0.30	0.29		
10	0.36	0.35	0.35	0.34	0.34	0.33	0.32		
II	0.40	0.39	0.38	0.38	0.37	0.36	0.36		
12	0.43	0.42	0.42	0.41	0.40	0.40	0.39		
13	0.47	0.46	0.45	0.44	0.44	0.43	0.42		
14	0.50	0.50	0.49	0.48	0.47	0.46	0.46		
15	0.54	0.53	0.52	0.51	0.51	0.50	0.49		
16	0.58	0.57	0.56	0. 55	0.54	0.53	0.52		
17	0.61	0.60	0.59	0.58	0.57	0.56	0.55		
18	0.65	0.64	0.63	0.62	0.61	0.60	0.59		
19	0.69	0.67	0.66	0.65	0.64	0.63	0.62		
20	0.72	0.71	0.70	0.69	0.68	0.66	0.65		
21		0.75	0.73	0.72	0.71	0.70	0.69		
22		0.78	0.77	0.76	0. 74	0.73	0.72	0.71	
23		0.82	0.80	0.79	0.77	0.76	0.75	0.74	
24		0.85	0.84	0.83	0.81	0.80	0.78	0.77	
25		0.89	0.88	0.86	0.85	0.83	0.82	0.80	
26		0.93	0.91	0.90	0.88	0.87	0.85	0.84	
27		0.96	0.95	0.93	0.92	0.90	0.88	0.87	
28		1.00	0.98	0.97	0.95	0.93	0.92	0.90	
29		I. 04	1.02	1.00	0.98	0.97	0.95	0.93	
30		1.07	1.05	1.04	1.02	1.00	0.98	0.97	
3 I		I. II	1.09	1.07	1.05	1.04	I. 02	1.00	
32		I. 14	I. 13	I. II	1.09	1.07	1.05	1.03	
33		I. 18	x. 16	I. 14	I. 12	I. 10	I. 08	1.06	
34		1.22	1.20	I. 18	I. 16	I. 14	1.12	I. 10	
35		I. 25	1.23	1.21	I. 19	1.17	1.15	I. 13	
36			1.27	1.25	1.23	I. 21	I. 18	I. 16	
37			1.31	I. 28	I. 26	I. 24	1.22	1.20	
38			I. 34	1.32	1.30	1.27	1.25	1.23	I. 21
39			I. 38	I. 35	I. 33	1.31	1.29	I. 26	1.24
40			I 41	I. 39	1.37	I. 34	I. 32	1.30	1.27
4 I			I. 45	r. 43	I. 40	I. 38	1.35	1.33	1.30
42			I. 49	I. 46	I. 44	I. 41	1.39	1.36	1.34
43			I. 52	I. 50	I. 47	I. 45	I. 42	I. 40	I. 37
44			1.56	1.53	I. 51	I. 48	I. 45	1.43	1.40
45			1.60	1.57	I. 54	I. 52	I. 49	. 146	1.44

TABLE 16
REDUCTION OF THE BAROMETER TO SEA LEVEL. ENGLISH MEASURES.
$B_{0}-B=B\left(10^{m}-1\right)$.
Top argument: Height of the barometer (B).
Side argument: Values of 2000 m obtained from Table 14.

2000 m.	HEIGHT OF THE BAROMETER IN INCHES.								
	29.5	29.0	28.5	28.0	27.5	27.0	26.5	26.0	25.5
	Inches.								
45	1.57	I. 54	1.52	I. 49	1.46	1.44			
46	1.60	1.58	1.55	1.52	1. 50	I. 47			
47	I. 64	1.61	I. 58	I. 56	1. 53	I. 50			
48	1. 68	1. 65	1.62	I. 59	1.56	I. 53			
49	1.71	I. 68	1. 65	1.62	1.60	I. 57			
50	1.75	1. 72	1. 69	1. 66	1.63	1.60			
51	1.78	1. 75	1.72	1.69	1.66	I. 63			
52	1.82	I. 79	I. 76	1. 73	1.70	1. 67			
53	1.86	1.82	I. 79	1.76	1.73	I. 70			
54	1. 89	1. 86	1. 83	1.80	1.76	1.73	1.70		
55	1.93	1.90	1. 86	I. 83	1.80	1.76	1.73		
56	1.96	1.93	I. 90	1.86	1.83	1. 80	1.76		
57	2.00	1.97	1.93	1.90	1.87	1.83	1.80		
58	2.04	2.00	I. 97	I. 93	1.90	I. 86	1.83		
59	2.07	2.04	2.00	1.97	1.93	1.90	1.86		
60	2.11	2.07	2.04	2.00	1.97	1.93	1.90		
61		2.11	2.07	2.04	2.00	I. 96	I. 93		
62		2.15	2.11	2.07	2.03	2.00	I. 96		
63		2.18	2.14	2.11	2.07	2.03	1.99		
64		2.22	2.18	2.14	2.10	2.06	2.03		
65		2.25	2.21	2.18	2.14	2.10	2.06		
66		2.29	2.25	2.21	2.17	2.13	2.09		
67		2.33	2.29	2.25	2.21	2.17	2.13		
68		2.36	2.32	2.28	2.24	2.20	2.16		
69		2.40	2.36	2.32	2.27	2.23	2.19		
70		2.43	2.39	2.35	2.31	2.27	2.22		
71		2.47	2.43	2.38	2.34	2.30	2.26	2.21	
72		2.51	2.46	2.42	2.38	2.33	2.29	2.25	
73		2.54	2.50	2.45	2.41	2.37	2.32	2.28	
74			2.53	2.49	2.45	2.40	2.36	2.31	
75			2.57	2.53	2.48	2.43	2.39	2.34	
76			2.61	2.56	2.51	2.47	2.42	2.38	
77			2.64	2.60	2.55	2.50	2.46	2.41	
78			2.68	2.63	2.58	2.54	2.49	2.44	
79			2.71	2.67	2.62	2.57	2.52	2.48	
80			2.75	2.70	2.65	2.60	2.56	2.51	
81			2.79	2.74	2.69	2.64	2.59	2.54	
82			2.82	2.77	2.72	2.67	2.62	2.57	
83			2.86	2.81	2.76	2.71	2.66	2.61	
84			2.89	2.84	2.79	2.74	2.69	2.64	
85			- 2.93	2.88	2.83	2.78	2.72	2.67	
86			2.97	2.91	2.86	2.81	2.76	2.71	
87			3.00	2.95	2.90	2.84	2.79	2.74	
88			3.04	2.99	2.93	2.88	2.83	2.77	2.72
89			3.08	3.02	2.97	2.91	2.86	2.81	2.75
90			3.11	3.06	3.00	2.95	2.89	2.84	2.78

TAble 16.
REDUCTION OF THE BAROMETER TO SEA LEVEL. ENGLISH MEASURES.
$B_{0}-B=B\left(10^{m}-1\right)$.
Top argument: Height of the barometer (B).
Side argument: Values of 2000 m obtained from Table 14.

2000 m.	HEIGHT OF THE BAROMETER IN INCHES.							
	28.0	27.5	27.0	26.5	26.0	25.5	25.0	24.5
	Inches.							
90	3.06	3.00	2.95	2.89	2.84	2.78		
91	3.09	3.04	2.98	2.93	2.87	2.82		
92	3.13	3.07	3.02	2.96	2.91	2.85		
93	3.16	3.11	3.05	2.99	2.94			
94	3.20	3.14	3.09	3.03	2.97	2.91		
95	3.24	3.18	3.12	3.06	3.01	2.95		
96	3.27	3.21	3.16	3.10	3.04	2.98		
97	3.31	3.25	3.19	3.13	3.07	3.01		
98	3.34	3.28	3.22	3.17	3.11	3.05		
99	3.38	3.32	3.26	3.20	3.14	3.08		
100	3.42	3.36	3.29	3.23	3.17	3.11		
Ior	3.45	3.39	3.33	3.27	3.21	3.14		
102	3.49	3.43	3.36	3.30	3.24	3.18		
103	3.53	3.46	3.40	3.34	3.27	3.21		
104	3.56	$3 \cdot 50$	3.43	$3 \cdot 37$	$3 \cdot 31$	3.24		
105	3.60	3.53	3.47	3.41	3.34	3.28	3.21	
106		3.57	3.50	3.44	3.37	3.31	3.24	
107		3.61	3.54	3.47	3.41	3.34	3.28	
108		3.64	3.57	3.51	3.44	$3 \cdot 38$	3.31	
109		3.68	3.61	3.54	3.48	3.41	3.34	
110		3.71	3.65	3.58	3.51	3.44	3.38	
111		3.75	3.68	3.61	3.54	3.48	3.41	
112		3.78 3.82 3.8	3.72 3	3.65	3.58	3.51	3.44	
113		3.82 3.86	3.75	3.68	3.61	3.54	3.47	
114		3.86	3.79	3.72	3.65	3.58	3.51	
115		3.89	3.82	3.75	3.68	3.61	3.54	
116		3.93	3.86	3.79		3.64	3.57	
117		3.97	3.89	3.82	3.75	3.68	3.60	
118		4.00	3.93	3.86	3.78	3.71	3.64	
119		4.04	3.96	3.89	3.82	3.74	3.67	
120		4.07	4.00					
121		4. 1 I	4.04	3.96	3.89	3.81	3.74	
122			4.07	4.00	3.92	3.85	3.77	3.69
123			4.11	4.03	3.96	3.88	3.80	3.73
124			4.14	4.07	3.99	3.91	3.84	3.76
125			4.18	4. 10	4.02	3.95	3.87	3.79
126			4.22	4.14	4.06	3.98	3.90	3.82
127			4.25	4.17	4.09	4.01	3.94	3.86
128			4.29	4.21	4.13	4.05	3.97	3.89
129			4.32	4.24	4.16	4.08	4.00	3.92
130			4.36	4.28	4.20	${ }^{4} 4.12$	4.04	3.96
131			4.40	4.31	4.23	4.15	4.07	3.99
132			4.43	4.35	4.27	4.19	4.10	4.02
133			4.47	4.38	4.30	4.22	4.14	4.05
134			4.50	4.42	4.34	4.25	4.17	4.09
135			4.54	4.46	4.37	4.29	4.20	4.12

Smithbonian Tableg.

Table 16.
REDUCTION OF THE BAROMETER TO SEA LEVEL. ENGLISH MEASURES.
$B_{0}-B=B\left(10^{m}-1\right)$.
Top argument: Height of the barometer (B).
Side argument: Values of 2000 m obtained from Table 14.

2000 m.	HEIGHT OF THE BAROMETER IN INCHES.							
	26.5	26.0	25.5	25.0	24.5	24.0	23.5	23.0
	Inches.							
135	4.46	4.37	4.29	4.20	4.12			
136	4.49	4.41	4.32	4.24	4.15			
137	4.53	4.44	$4 \cdot 36$	4.27	4.19			
138	4.56	4.48	4.39	4.30	4.22			
139	4.60	4.5 I	4.43	$4 \cdot 34$	4.25			
140	4.63	4.55	4.46	$4 \cdot 37$	4.28	4.20		
141	4.67	4.58	4.49	4.41	$4 \cdot 32$	4.23		
142	4.71	4.62	4.53	4.44	4.35	4.26		
143	4.74	4.65	4.56	- 4.47	4.38	4.30		
144	4.78	4.69	4.60	4.51	4.42	4.33		
145	4.8 I	4.72	4.63	4.54	4.45	4.36		
146	4.85	4.76	4.67	4.58	4.48	$4 \cdot 39$		
147	4.89	4.79	4.70	4.61	4.52	4.43		
148	4.92	4.83	4.74	4.64	4.55	4.46		
149	4.96	4.87	4.77	4.68	4.58	4.49		
150	$5.00{ }^{-}$	4.90	4.81	4.71	4.62	4.52		
151	5.03	4.94	4.84	4.75	4.65	4.56		
152	5.07	4.97	4.88	4.78	4.69	4.59		
153	5.10	5.01	4.91	4.82	4.72	4.62		
154		5.04	4.95	4.85	4.75	4.66		
155		5.08	$4.98{ }^{\prime}$	4.88	4.79	4.69		
156		5.12	5.02	4.92	4.82	4.72		
157		5.15	5.05	4.95	4.85	4.75		
158		5.19	5.09	4.99	4.89	4.79		
159		5.22	5.12	5.02	4.92	4.82	4.72	
160		5.26	5.16	5.06	4.96	4.85	4.75	
161		5.29	5.19	5.09	4.99	4.89	4.79	
162		5.33	5.23	5.13	5.02	4.92	4.82	
163		$5 \cdot 37$	5.26	5.16	5.06	4.95	4.85	
164		5.40	5.30	5.20	5.09	4.99	4.88	
165		5.44	5.33	5.23	5.13	5.02	4.92	
166		5.48	$5 \cdot 37$	5.26	5.16	5.05	4.95	
167		5.51	5.4 I	$5 \cdot 30$	5.19	5.09	4.98	
168		5.55	5.44	$5 \cdot 33$	5.23	5.12	5.01	
169		5.58	5.48	5.37	5.26	5.15	5.05	
170		5.62	$5 \cdot 5 \mathrm{I}$	5.40	$5 \cdot 30$	5.19	5.08	
171			5.55	5.44	5.33	5.22	5.11	
172			5.58	5.47	5.37	5.26	5.15	
173			5.62	5.51	5.40	5.29	5.18	
174			5.66	5.54	5.43	$5 \cdot 32$	5.21	
175			5.69	5.58	5.47	5.36		
176			5.73	5.62	5.50	$5 \cdot 39$	5.28	
177			5.76	5.65	5.54	5.42	5.31	5.20
178			5.80	5.69	5.57	5.46	$5 \cdot 34$	5.23
179			5.84	5.72	5.61	5.49	$5 \cdot 38$	5.26
180			5.87	5.76	5.64	5.53	5.41	$5 \cdot 30$

Smithbonian Tables.

Table 16.
REDUCTION OF THE BAROMETER TO SEA LEVEL. ENGLISH MEASURES.
$B_{0}-B=B\left(10^{m}-1\right)$.
Top argument: Height of the barometer (B).
Side argument: Values of 2000 m obtained from Table 14.

2000 m.	HEIGHT OF THE BAROMETER IN INCHES.							
	25.5	25.0	24.5	24.0	23.5	23.0	22.5	22.0
	Inches.							
180	5.87	5.76	5.64	5.53	5.41	5.30		
181	5.91	5.79	5.68	5.56	5.44	$5 \cdot 33$		
182	5.94	5.83	5.71	5.59	5.48	$5 \cdot 36$		
183 184	5.98 6.02	5.86 5.90	5.75 5.78	5.63 5.66	5.51 5.54	5.39 5.43		
185		5.93	5.82	5.70	5.58	5.46		
186		5.97	5.85	5.73	5.61	5.49		
187		6.01	5.89	5.77	5.65	5.53		
188		6.04	5.92	5.80	5.68	5.56		
189		6.08	5.96	5.83	5.71	5.59		
190		6.11	5.99	5.87	5.75	5.62		
191		6.15	6.03	5.90	5.78	5.66		
192		6.18	6.06	5.94	5.81	5.69		
193		6.22 6.26	6.10 6.13	5.97 6.01	5.85 5.88	5.72 5.76		
194								
195		6.29	6.17	6.04	5.91	5.79		
196		6.33	6.20	6.08	5.95		5.70	
197		6.36	6.24	6.11	5.98	5.86	5.73	
198		6.40	6.27	6. 14	6.02	5.89	5.76	
199		6.44	6.31	6.18	6.05	5.92	5.79	
200		6.47	6.34	6.21	6.08	5.96	5.83	
201		6.51	6.38	6.25	6.12	5.99	5.86	
202		6.55	6.41	6.28	6.15	6.02	5.89	
203		6.58	6.45	6.32	6.19	6.06	5.92	
204		6.62	6.49	6.35	6.22	6.09	5.96	
205			6.52	6.39	6.26	6.12		
206			6.56	6.42	6.29	6.16	6.02	
207			6.59	6.46	6.32	6. 19	6.06	
208			6.63	6.49	6.36	6.22	6.09	7
209			6.66	6.53	6.39	6.26	6.12	
210			6.70	6.56	6.43	6.29	6.15	
211			6.74	6.60	6.46	6.32	6.19	
212			6.77	6.63	6.50	6.36	6.22	
213			6.81	6.67	6.53	6.39	6.25	
214			6.84	6.71	6.57	6.43	6.29	
215			6.88	6.74	6.60	6.46	6.32	
216			6.92	6.78	6.63	6.49	6.35	6.21
217			6.95	6.81	6.67	6.53	6.39	6.24
218			6.99	6.85	6.70	6.56	6.42	
219			7.03	6.88	6.74	6.60	6.45	6.31
220				6.92	6.77	6.63	6.49	6.34
221				6.95	6.81	6.66	6.52	6.37
222				6.99	6.84	6.70	6.55	6.41
223				7.02	6.88	6.73	6.59 6.62	6.44 6.47
224				7.06	6.91	6.77	6.62	6.47
225				7.10	6.95	6.80	6.65	6.51

Smithbonian Tables. ENGLISH MEASURES.

$$
B_{0}-B=B\left(10^{m}-1\right) .
$$

Top argument: Height of the barometer (B).
Side argument: Values of 2000 m obtained from Table 14.

2000 m.	HEIGHT OF THE BAROMETER IN INCHES.						
	24.0	23.5	23.0	22.5	22.0	21.5	21.0
	Inches.						
225	7.10	6.95	6.80	6.65	6.51		
226	7.13	6.98	6.84	6.69	6.54		
227	7.17	7.02	6.87	6.72	6.57		
228	7.20	7.05	6.90	6.75	6.60		
229	7.24	7.09	6.94	6.79	6.64		
230	7.28	7.12	6.97	6.82	6.67		
231	7.31	7.16	7.01	6.86	6.70		
232	7.35	7.20	7.04	6.89	6.74		
233	7.38	7.23	7.08	6.92	6.77		
234	7.42	7.27	7.11	6.96	6.80		
235	7.46	7.30	7.15	6.99	6.84	6.68	
236	7.49	7.34	7.18	7.02	6.87	6.71	
237	7.53	$7 \cdot 37$	7.22	7.06	6.90	6.74	
238		7.41	7.25	7.09	6.93	6.78	
239		7.44	7.29	7.13	6.97	6.81	
240		7.48	7.32	7.16	7.00	6.84	
241		7.51	7.35	7.19	7.04	6.88	
242		7.55	7.39	7.23	7.07	6.91	
243		7.59	7.42	7.26	7.10	6.94	
244		7.62	7.46	7.30	7.14	6.97	
245		7.66	7.49	7.33	7.17	7.01	
246		7.69	7.53	7.37	7.20	7.04	
247		7.73	7.57	7.40	7.24	7.07	
248		7.77	7.60	7.44	7.27	7.10	
249		7.80	7.64	7.47	7.30	7.14	
250		7.84	7.67	7.50	7.34	7.17	
251		7.87	7.71	7.54	7.37	7.20	
252		7.91	7.74	7.57	7.41	7.24	
253		7.95	7.78	7.61	7.44	7.27	
254		7.98	7.81	7.64	7.47	7.30	
255		8.02	7.85	7.68	7.51	7.34	
256		8.05	7.88	7.71	7.54	7.37	7.20
257		8.09	7.92	7.75	7.57	7.40	7.23
258		8.13	7.95	7.78	7.61	7.44	7.26
259		8.16	7.99	7.82	7.64	7.47	7.30
260			8.03	7.85	7.68	7.50	7.33
261			8.06	7.89	7.71	7.54	7.36
262			8.10	7.92	7.75	7.57	7.39
263			8.13	7.96	7.78	7.60	7.43
264			8.17	7.99	7.81	7.64	7.46
265			8.21	8.03	7.85	7.67	7.49
266			8.24	8.06	7.88	7.70	7.52
267			8.28	8.10	7.92	7.74	7.56
268			8.31	8.13	7.95	7.77	7.59
269			8.35	8.17	7.99	7.80	7.62
270			8.39	8.20	8.02	7.84	7.66

Table 16.

REDUCTION OF THE BAROMETER TO SEA LEVEL. ENGLISH MEASURES.
 $B_{0}-B=B\left(10^{m}-1\right)$.

Top argument: Height of the barometer (B).
Side argument: Values of 2000 m obtained from Table 14.

2000 m.	HEIGHT OF THE BAROMETER IN INCHES.						
	23.0	22.5	22.0	21.5	21.0	20.5	20.0
	Inches.						
270	8.39	8.20	8.02	7.84	7.66		
271	8.42	8.24	8.06	7.87	7.69		
272	8.46	8.27	8.09	7.91	7.72		
273	8.49	8.31	8.12	7.94	7.76		
274	8.53	8.34	8.16	7.97	7.79		
275	8.57	8.38	8.19	8.01	7.82		
276	8.60	8.42	8.23	8.04	7.85		
277		8.45	8.26	8.08	7.89	7.70	
278		8.49	8.30	8.11	7.92	7.73	
279		8.52	8.33	8.14	7.95	7.77	
280		8.56	8.37	8.18	7.99	7.80	
281		8.59	8.40	8.21	8.02	7.83	
282		8.63	8.44	8.25	8.05	7.86	
283		8.67	8.47	8.28	8.09	7.90	
284		8.70	8.5 I	8.32	8.12	7.93	
285		8.74	8.54	8.35	8.16	7.96	
286		8.77	8.58	8.38	8.19	7.99	
287		8.81	8.61	8.42	8.22	8.03	
288 289		8.85 8.88	8.65 8.68	8.45	8.26 8.29	8.06	
290		8.92	8.72	8.52	8.32	8.13	
291		8.95	8.76	8.56	8.36	8.16	
292		8.99	8.79	8.59	8.39	8.19	
293		9.03	8.83	8.63	8.43	8.22	
294		9.06	8.86	8.66	8.46	8.26	
295		9.10	8.90	8.70	8.49	8.29	8.09
296		9.14	8.93	8.73	8.53	8.32	8.12
297			8.97	8.76	8.56	8.36	8.15
298			9.00	8.80	8.60	8.39	8.19
299			9.04	8.83	8.63	8.42	8.22
300			9.08	8.87	8.66	8.46	8.25
301			9.11	8.90	8.70	8.49	8.28
302			9.15	8.94	8.73	8.52	8.32
303			9.18	8.97	8.77	8.56	8.35
304			9.22	9.01	8.80	8.59	8.38
305			9.26	9.04	8.83	8.62	8.41
306			9.29	9.08	8.87	8.66	8.45
307			9.33	9.12	8.90	8.69	8.48
309			9.40	9.19	8.97	8.76	8.54
310			9.44	9.22	9.01	8.79	8.58
311			9.47	9.26	9.04	8.83	8.61
312			9.51	9.29	9.08	8.86	8.64
313			9.54	9.33	9.11	8.89	8.68
314			9.58	9.36	9.15	8.93	8.71
315			9.62	9.40	9.18	8.96	8.74

TAble 16.

REDUCTION OF THE BAROMETER TO SEA LEVEL. ENGLISH MEASURES.

$$
\mathbf{B}_{0}-\mathbf{B}=\mathbf{B}\left(10^{m}-1\right)
$$

Top argument: Height of the barometer (B).
Side argument: Values of 2000 m obtained from Table 14.

2000 m.	HEIGHT OF THE BAROMETER IN INCHES.					
	22.0	21.5	21.0	20.5	20.0	19.5
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
315	9.62	9.40	9.18	8.96	8.74	8.52
316	9.65	9.43	9.21	9.00	8.78	8.56
317	9.69	9.47	9.25	9.03	8.81	8.59
318	9.73	9.51	9.28	9.06	8.84	8.62
319	9.76	9.54	9.32	9.10	8.88	8.65
320	9.80	9.58	9.35	9.13	8.91	8.69
321		9.61	9.39	9.17	8.94	8.72
322		9.65	9.42	9.20	8.98	8.75
323		9.68	9.46	9.23	9.01	8.78
324		9.72	9.49	9.27	9.04	8.82
325		9.76	9.53	$9 \cdot 30$	9.08	8.85
326		9.79	9.56	$9 \cdot 34$	9.11	8.88
327		9.83	9.60	9.37	9.14	8.91
328		9.86	9.64	9.41	9.18	8.95
329		9.90	9.67	9.44	9.21	8.98
330		9.94	9.71	9.47	9.24	9.01
331		9.97	9.74	9.51	9.28	9.05
332		10.01	9.78	9.54	9.31	9.08
333		10.05	9.81	9.58	9.34	9.11
334			9.85	9.61	$9 \cdot 38$	9.14

Smithbonian Tables.

TABLE 17.
REDUCTION OF THE BAROMETER TO SEA LEVEL. METRIC MEASURES.
Values of $2000 \times \mathrm{m}$.

$$
m=\frac{z}{18444+67.53 \theta+.003 z} \cdot \frac{1}{1-\beta}
$$

Altitude in metres. 2.	mean temperature of air column in centigrade degrees (θ).										
	-16°	-12°	-8°	-4°	-2°	0°	$+2^{\circ}$	$+4^{\circ}$	+ 6°	$+8^{\circ}$	$+10^{\circ}$
10	1.2	I. 1	I.I	I. I	I.I	I.I	I. 1	I.I	1.	1.	1.0
20	2.3	2.3	2.2	2.2	2.2	2.2	2.1	2.1	2.1	2.1	2.1
30	3.5	$3 \cdot 4$	3.3	3.3	$3 \cdot 3$	3.2	3.2	3.2	3.2	3.1	3.1
40	4.6	4.5	4.5	$4 \cdot 4$	4.4	4.3	4.3	$4 \cdot 3$	4.2	4.2	4.2
50	5.8	5.7	5.6	5.5	$5 \cdot 5$	5.4	5.4	$5 \cdot 3$	$5 \cdot 3$	5.2	5.2
60	6.9	6.8	6.7	6.6	6.5	6.5	6.4	6.4	6.3	6.3	6.2
70	8.1	7.9	7.8	7.7	7.6	7.6	7.5	7.5	7.4	7.3	7.3
80	9.2	9. 1	8.9	8.8	8.7	8.7	8.6	8.5	8.5	8.4	8.3
90	Io. 4	10.2	10.0	9.9	9.8	9.7	9.7	9.6	9.5	9.4	9.4
100	11.5	11.3	11.2	II.O	10.9	10.8	10.7	10.7	10.6	10.5	10.4
110	12.7	12.5	12.3	12.1	12.0	11.9	11.8	11.7	1 I .6	11.5	1 I .4
120	13.8	13.6	13.4	13.2	I3.I	13.0	12.9	12.8	12.7	12.6	12.5
130	15.0	14.7	14.5	14.3	14.2	14.1	14.0	13.9	13.7	13.6	13.5
140	16.1	15.9	15.6	15.4	15.3	15.1	15.0	14.9	14.8	14.7	14.6
150	17.3	17.0	16.7	16.5	16.4	16.2	16.1	16.0	15.9	15.7	15.6
160	18.4	18.1	17.8	17.6	17.4	17.3	17.2	17.0	16.9	16.8	16.7
170	19.6	19.3	19.0	18.7	18.5	18.4	18.3	18.1	18.0	17.8	17.7
180	20.7	20.4	20.1	19.8	19.6	19.5	19.3	19.2	19.0	18.9	18.7
190	21.9	21.5	21.2	20.9	20.7	20.6	20.4	20.2	20.1	19.9	19.8
200	23.0	22.7	22.3	22.0	21.8	21.6	21.5	21.3	21.1	21.0	20.8
210	24.2	23.8	23.4	23.1	22.9	22.7	22.6	22.4	22.2	22.0	21.9
220	25.3	24.9	24.5	24.2	24.0	23.8	23.6	23.4	23.3	23.1	22.9
230	26.5	26.1	25.7	25.3	25.1	24.9	24.7	24.5	24.3	24.1	23.9
240	27.6	27.2	26.8	26.4	26.2	26.0	25.8	25.6	25.4	25.2	25.0
250	28.8	28.3	27.9	27.5	27.3	27.0	26.8	26.6	26.4	26.2	26.0
260	29.9	29.5	29.0	28.6	28.3	28.1	27.9	27.7	27.5	27.3	27.1
270	31.1	30.6	30.1	29.7	29.4	29.2	29.0	28.8	28.5	28.3	28.1
280	32.2	31.7	31.2	30.8	30.5	30.3	30.1	29.8	29.6	29.4	29.1
290	33.4	32.9	32.4	31.9	31.6	31.4	31.1	30.9	30.7	30.4	30.2
300	34.5	34.0	33.5	33.0	32.7	32.5	32.2	32.0	31.7	31.5	31.2
310	35.7	35.1	34.6	34.1	33.8	33.5	33.3	33.0	32.8	32.5	32.3
320	36.8	36.3	35.7	35.2	34.9	34.6	34.4	34.I	33.8	33.6	33.3
330	38.0	37.4	36.8	36.3	36.0	35.7	35.4	35.2	34.9	34.6	34.3
340	39. 1	38.5	37.9	37.4	37. 1	36.8.	36.5	36.2	35.9	35.7	35.4
350	40.3	39.7	39.0	38.5	38.2	37.9	37.6	37.3	37.0	36.7	36.4
360	41.4	40.8	40.2	39.5	39.2	38.9	38.6	38.4	38.1	37.8	37.5
370	42.6	41.9	4 I .3	40.6	40.3	40.0	39.7	39.4	39.1	38.8	38.5
380	43.7	43.1	42.4	41.7	4 I .4	4 I .1	40.8	40.5	40.2	39.9	39.6
390	44.9	44.2	43.5	42.8	42.5	42.2	4 I .9	4 I .5	4 I .2	40.9	40.6
400	46.0	$45 \cdot 3$	44.6	43.9	43.6	43.3	42.9	42.6	42.3	42.0	41.6
410	47.2	46.4	45.7	45.0	44.7	44.4	44.0	43.7	43.3	43.0	42.7
420	48.3	47.6	46.9	46.1	45.8	45.4	45.1	44.7	44.4	44.I	43.7
430	49.5	48.7	48.0	47.2	46.9	46.5	46.2	45.8	45.5	45.1	44.8
440	50.6	49.8	49. 1	48.3	48.0	47.6	47.2	46.9	46.5	46.2	45.8
450	51.8	51.0	50.2	49.4	49.1	48.7	48.3	47.9	47.6	47.2	46.8
460	52.9	52.1	51.3	50.5	50.1	49.8	49.4	49.0	48.6	48.2	47.9
470	54.I	53.2	52.4	51.6	5 I .2	50.8	50.5	50.1	49.7	49.3	48.9
480	55.2	54.4	53.5	52.7	52.3	51.9	51.5	5 I .1	50.7	50.3	50.0
490	56.4	55.5	54.7	53.8	53.4	53.0	52.6	52.2	51.8	51.4	51.0
500	57.5	56.6	55.8	54.9	54.5	54.1	53.7	53.3	52.9	52.4	52.0

TABLE 17. REDUCTION OF THE BAROMETER TO SEA LEVEL. METRIC MEASURES.

Values of $2000 \times \mathrm{m}$.
$m=\frac{z}{18444+67.53 \theta+.003 z} \cdot \frac{I}{I-\beta}$

Altitude in metres. 2.	MEAN TEMPERATURE OF AIR COLUMN IN CENTIGRADE DEGREES (θ).										
	$+12^{\circ}$	$+14^{\circ}$	$+16^{\circ}$	$+18^{\circ}$	$+20^{\circ}$	$+22^{\circ}$	$+24^{\circ}$	$+26^{\circ}$	$+28^{\circ}$	$+32^{\circ}$	$+36^{\circ}$
10	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9
20	2.1	2.1	2.0	2.0	2.0	2.0	2.0	2.0	1.9	1.9	1.9
30	3.1	3.1	3.1	3.0	3.0	3.0	3.0	2.9	2.9	2.9	2.8
40	4.I	4.1	4.1	4.0	4.0	4.0	3.9	$3 \cdot 9$	3.9	3.8	3.8
50	5.2	5.1	5.I	5.0	5.0	5.0	4.9	4.9	4.9	4.8	4.7
60	6.2	6.2	6.1	6.1	6.0	6.0	$5 \cdot 9$	5.9	5.8	5.8	5.7
70	7.2	7.2	7.1	7.1	7.0	7.0	6.9	6.9	6.8	6.7	6.6
80	8.3	8.2	8.1	8.1	8.0	8.0	7.9	7.8	7.8	7.7	7.6
90	9.3	9.2	9.2	9.1	9.0	9.0	8.9	8.8	8.8	8.6	8.5
100	10.3	10.3	10.2	10. 1	10.0	9.9	9.9	9.8	9.7	9.6	9.5
110	$\underline{11.4}$	11.3	11.2	II.I	11.0	10.9	10.9	10.8	10.7	10.5	10.4
120	12.4	12.3	12.2	12.I	12.0	11.9	11.8	11.8	11.7	11.5	II. 3
130	13.4	13.3	13.2	13.1	13.0	12.9	12.8	12.7	12.7	12.5	12.3
140	14.5	14.3	14.2	14.1	14.0	13.9	I3.8	13.7	13.6	13.4	13.2
150	I5.5	I5.4	15.3	15.1	15.0	14.9	14.8	14.7	14.6	14.4	14.2
160	16.5	16.4	16.3	16.2	16.0	15.9	15.8	15.7	15.6	15.3	15.1
170	17.6	17.4	17.3	17.2	17.0	16.9	16.8	16.7	16.5	16.3	16.1
180	18.6	18.4	18.3	18.2	18.0	17.9	17.8	17.6	17.5	17.3	17.0
190	19.6	19.5	19.3	19.2	19.0	18.9	18.8	18.6	18.5	18.2	18.0
200	20.7	20.5	20.3	20.2	20.0	19.9	19.7	19.6	19.5	19.2	18.9
210	21.7	21.5	21.4	21.2	21.0	20.9	20.7	20.6	20.4	20.1	19.8
220	22.7	22.5	22.4	22.2	22.0	21.9	21.7	21.6	21.4	2 I .1	20.8
230	23.8	23.6	23.4	23.2	23.0	22.9	22.7	22.5	22.4	22.0	21.7
240	24.8	24.6	24.4	24.2	24.0	23.9	23.7	23.5	23.3	23.0	22.7
250	25.8	25.6	25.4	25.2	25.0	24.9	24.7	24.5	24.3	24.0	23.6
260	26.9	26.6	26.4	26.2	26.1	25.9	25.7	25.5	25.3	24:9	24.6
270	27.9	27.7	27.5	27.3	27.1	26.9	26.7	26.5	26.3	25.9	25.5
280	28.9	28.7	28.5	28.3	28.1	27.8	27.6	27.4	27.2	26.8	26.5
290	29.0	29.7	29.5	29.3	29.1	28.8	28.6	28.4	28.2	27.8	27.4
300	31.0	30.7	30.5	30.3	30.1	29.8	29.6	29.4	29.2	28.8	28.4
310	32.0	31.8	3 I .5	3 I .3	3 I .1	30.8	30.6	30.4	30.2	29.7	29.3
320	33.1	32.8	32.6	32.3	32.1	31.8	31.6	31.4	3 I .1	30.7	30.3
330	34. I	33.8	33.6	$33 \cdot 3$	33. I	32.8	32.6	32.3	32. I	31.6	31.2
340	35. I	34.8	34.6	$34 \cdot 3$	34. 1	33.8	33.6	33.3	33.1	32.6	32.1
350	36.2	35.9	35.6	$35 \cdot 3$	35. I	34.8	34.6	34.3	34.0	33.5	33. 1
360	37.2	36.9	36.6	36.3	36.1	35.8	35.5	$35 \cdot 3$	35.0	$34 \cdot 5$	34.0
370	38.2	37.9	37.6	37.4	37. I	36.8	36.5	36.3	36.0	35.5	35.0
380	39.2	38.9	38.7	38.4	38.1	37.8	37.5	37.2	37.0	36.4	35.9
390	40.3	40.0	39.7	39.4	39.1	38.8	38.5	38.2	37.9	37.4	36.9
400	4 I .3	41.0	40.7	40.4	40.1	39.8	39.5	39.2	38.9	38.3	37.8
410	42.3	42.0	41.7	4 I .4	41. I	40.8	40.5	40.2	39.9	39.3	38.7
420	43.4	43.0	42.7	42.4	42. I	4 I .8	41.5	41.2	40.8	40.3	39.7
430	44.4	44. 1	43.7	43.4	43. I	42.8	42.4	42.1	41.8	41.2	40.6
440	45.4	45. I	44.8	44.4	44. 1	43.8	43.4	43. 1	42.8	42.2	41.6
450	46.5	46.1	45.8	45.4	45. I	44.8	44.4	44. I	43.8	43. I	42.5
460	47.5	47.1	46.8	46.4	46.1	45.7	45.4	45. I	44.7	44 I	43.5
470	48.5	48.2	47.8	47.4	47.1	46.7	46.4	46.1	45.7	45.0	44.4
480	49.6	49.2	48.8	48.5	48.1	47.7	47.4	47.0	46.7	46.0	45.4
490	50.6	50.2	49.8	49.5	49.1	48.7	48.4	48.0	47.6	47.0	46.3
500	5 I .6	5 I .2	50.9	50.5	50.1	49.7	49.4	49.0	48.6	47.9	47.2

Table 17.

REDUCTION OF THE BAROMETER TO SEA LEVEL. METRIC MEASURES.

$$
\text { Values of } 2000 \times \mathrm{m} . \quad m=\frac{\mathrm{z}}{18444+67 \cdot 53 \theta+.003 Z} \cdot \frac{\mathrm{I}}{\mathrm{I}-\beta}
$$

Altitude in metres. Z.	MEAN TEMPERATURE OF AIR COLUMN IN CENTIGRADE DEGREES (θ).										
	-16°	-12°	-8°	-4°	-2°	0°	$+2^{\circ}$	$+4^{\circ}$	$+6^{\circ}$	$+8^{\circ}$	$+10^{\circ}$
500	57.5	56.6	55.8	54.9	54.5	54.1	53.7	53.3	52.9	52.4	52.0
510	58.7	57.8	56.9	56.0	55.6	55.2	54.8	54.3	53.9	53.5	53.1
520	59.8	58.9	58.0	57.1	56.7	56.3	55.8	55.4	55.0	54.5	54.1
530	61.0	60.0	59.1	58.2	57.8	57.3	56.9	56.5	56.0	55.6	55.2
540	62.1	6 I .2	60.2	59.3	58.9	58.4	58.0	57.5	57.I	56.6	56.2
550	63.3	62.3	6I. 4	60.4	60.0	59.5	59.0	58.6	58.1	57.7	57.2
560	64.4	63.4	62.5	61.5	61.I	60.6	60.1	59.7	59.2	58.7	58.3
570	65.6	64.6	63.6	62.6	62.1	6 I .7	6 I .2	60.7	60.3	59.8	59.3
580	66.7	65.7	64.7	63.7	63.2	62.7	62.3	61.8	6 I .3	60.8	60.4
590	67.9	66.8	65.8	64.8	64.3	63.8	63.3	62.9	62.4	61.9	61.4
600	69.0	68.0	66.9	65.9	65.4	64.9	64.4	63.9	63.4	62.9	62.4
610	70.2	69.1	68.0	67.0	66.5	66.0	65.5	65.0	64.5	64.0	63.5
620	71.4	70.2	69.2	68.1	67.6	67.1	66.6	66.0	65.5	65.0	64.5
630	72.5	71.4	70.3	69.2	68.7	68.2	67.6	67.1	66.6	66.1	65.6
640	73.7	72.5	71.4	70.3	69.8	69.2	68.7	68.2	67.7	67.1	66.6
650	74.8	73.6	72.5	7 I .4	70.9	70.3	69.8	69.2	68.7	68.2	67.6
660	76.0	74.8	73.6	72.5	72.0	71.4	70.9	70.3	69.8	69.2	68.7
670	77.1	75.9	74.7	73.6	73.0	72.5	71.9	71.4	70.8	70.3	69.7
680	78.3	77.0	75.9	74.7	74.I	73.6	73.0	72.4	71.9	71.3	70.8
690	79.4	78.2	77.0	75.8	75.2	74.6	74.1	73.5	72.9	72.4	71.8
700	80.6	79.3	78.1	76.9	76.3	75.7	75.I	74.6	74.0	73.4	72.9
710	81.7	80.4	79.2	78.0	77.4	76.8	76.2	75.6	75.1	74.5	73.9
720	82.9	8 I .6	80.3	79.1	78.5	77.9	77.3	76.7	76.1	75.5	74.9
730	83.0	82.7	8 I .4	80.2	79.6	79.0	78.4	77.8	77.2	76.6	76.0
740	85.2	83.8	82.5	8 I .3	80.7	80.1	79.4	78.8	78.2	77.6	77.0
750	86.3	85.0	83.7	82.4	81. 8	8 I .1	80.5	79.9	79.3	78.7	78.1
760	87.5	86.1	84.8	83.5	82.9	82.2	81.6	81.0	80.3	79.7	79.1
770	88.6	87.2	85.9	84.6	83.9	83.3	82.7	82.0	8 r .4	80.8	80.1
780	89.8	88.4	$87.0{ }^{-}$	85.7	85.0	84.4	83.7	83.1	82.5	8 I .8	8 I .2
790	90.9	89.5	88.1	86.8	86.1	85.5	84.8	84.2	8.3.5	82.9	82.2
800	92.I	90.6	89.2	87.9	87.2	86.5	85.9	85.2	84.6	83.9	83.3
810	93.2	91.8	90.4	89.0	88.3	87.6	87.0	86.3	85.6	85.0	84.3
820	94.4	92.9	91.5	90.1	89.4	88.7	88.0	87.4	86.7	86.0	85.3
830	95.5	94.0	92.6	91.2	90.5	89.8	89.1	88.4	87.7	87.1	86.4
840	96.7	95.2	93.7	92.3	91.6	90.9	90.2	89.5	88.8	88.1	87.4
850	97.8	96.3	94.8	93.4	92.7	92.0	91.2	90.5	89.8	89.2	88.5
860	99.0	97.4	95.9	94.5	93.8	93.0	92.3	91.6	90.9	90.2	89.5
870	100.1	98.6	97.0	95.6	94.8	94.I	93.4	92.7	92.0	91.3	90.5
880	IOI. 3	99.7	98.2	96.7	95.9	95.2	94.5	93.7	93.0	92.3	91.6
890	102.4	100.8	99.3	97.8	97.0	96.3	95.5	94.8	94.1	93.3	92.6
900	103.6	102.0	100.4	98.9	98.1	97.4	96.6	95.9	95.1	94.4	93.7
910	104.7	103.1	101.5	100.0	99.2	98.4	97.7	96.9	96.2	95.4	94.7
920	105.9	104.2	102.6	IOI.I	100.3	99.5	98.8	98.0	97.2	96.5	95.7
930	107.0	105.4	103.7	102.2	IOI. 4	100.6	99.8	99.1	98.3	97.5	96.8
940	108.2	106.5	104.9	103.3	102.5	101.7	100.9	100.1	99.4	98.6	97.8
950	109.3	107.6	106.0	104.4	103.6	102.8	102.0	IOI. 2	100.4	99.6	98.9
960	110.5	108.8	107.1	105.5	104.7	103.9	103.I	102.3	IOI. 5	100.7	99.9
970	III. 6	109.9	108.2	106.6	105.7	104.9	104.I	103.3	102.5	101.7	100.9
980	112.8	111.0	109.3	107.6	106.8	106.0	105.2	104.4	103.6	102.8	102.0
990	113.9	II2.I	IIO. 4	108.7	107.9	107.I	106.3	105.5	104.6	103.8	103.0
1000	II5.I	II3.3	III. 5	109.8	109.0	108.2	107.3	106.5	105.7	104.9	104.1

REDUCTION OF THE BAROMETER TO SEA LEVEL. METRIC MEASURES.

Values of $2000 \times \mathrm{m} . \quad m=\frac{\mathrm{z}}{18444+67.53 \theta+.003 Z} \cdot \frac{1}{1-\beta}$

Altitude in metres. Z.	MEAN TEMPERATURE O				AIR	M	IN			EES	$\theta)$.
	$+12^{\circ}$	$+14^{\circ}$	$+16^{\circ}$	$+18^{\circ}$	$+20^{\circ}$	$+22^{\circ}$	$+24^{\circ}$	$+26^{\circ}$	$+28^{\circ}$	$+32^{\circ}$	$+36^{\circ}$
500	51.6	51.2	50.9	50.5	50.1	49.7	49.4	49.0	48.6	47.9	47.2
510	52.7	52.3	51.9	51.5	51.1	50.7	50.3	50.0	49.6	48.9	48.2
520	53.7	$53 \cdot 3$	52.9	52.5	52.1	51.7	51.3	51.0	50.6	49.8	49.1
530	54.7	$54 \cdot 3$	53.9	53.5	53.1	52.7	52.3	51.9	51.5	50.8	50.1
540	55.8	55.3	54.9	54.5	54.I	53.7	53.3	52.9	52.5	51.8	51.0
550	56.8	56.4	55.9	55.5	55.1	54.7	54.3	53.9	53.5	52.7	52.0
560	57.8	57.4	57.0	56.5	56.1	55.7	55.3	54.9	54.4	53.7	52.9
570	58.9	58.4	58.0	57.5	57.1	56.7	56.3	55.8	55.4	54.6	53.9
580	59.9	59.4	59.0	58.5	58.1	57.7	57.2	56.8	56.4	55.6	54.8
590	60.9	60.5	60.0	59.6	59.1	58.7	58.2	57.8	57.4	56.5	55.7
600	62.0	6 I .5	61.0	60.6	60.1	59.7	59.2	58.8	58.3	57.5	56.7
610	63.0	62.5	62.0	61.6	61.1	60.7	60.2	59.8	59.3	58.5	57.6
620	64.0	63.5	63.1	62.6	62.1	61.7	61.2	60.7	60.3	59.4	58.6
630	65.1	64.6	64.1	63.6	63.1	62.6	62.2	61.7	61.3	60.4	59.5
640	66.1	65.6	65.1	64.6	64.1	63.6	63.2	62.7	62.2	6 I .3	60.5
650	67.1	66.6	66.1	65.6	65.1	64.6	64.2	63.7	63.2	62.3	6 I .4
660	68.2	67.6	67.1	66.6	66.1	65.6	65.1	64.7	64.2	63.3	62.4
670	69.2	68.7	68.1	67.6	67.1	66.6	66.1	65.6	65.1	64.2	63.3
680	70.2	69.7	69.2	68.6	68.1	67.6	67.1	66.6	66.1	65.2	64.2
690	71.3	70.7	70.2	69.6	69.1	68.6	68.1	67.6	67.1	66.1	65.2
700	72.3	71.7	7 x .2	70.7	70.1	69.6	69.1	68.6	68.1	67.1	66.1
710	73.3	72.8	72.2	71.7	7 I .1	70.6	70.1	69.6	69.0	68.0	67.1
720	74.4	73.8	73.2	72.7	72.1	71.6	71.1	70.5	70.0	69.0	68.0
730	75.4	74.8	74.2	73.7	73.1	72.6	72.0	7 I .5	71.0	70.0	69.0
740	76.4	75.8	$75 \cdot 3$	74.7	74.1	73.6	73.0	72.5	72.0	70.9	69.9
750	77.5	76.9	76.3	75.7	75.1	74.6	74.0	73.5	72.9	71.9	70.9
760	78.5	77.9	77.3	76.7	76.1	75.6	75.0	74.5	73.9	72.8	71.8
770	79.5	78.9	78.3	77.7	77.1	76.6	76.0	75.4	74.9	73.8	72.8
780	80.6	79.9	79.3	78.7	78.1	77.6	77.0	76.4	75.9	74.8	73.7
790	8 I .6	81.0	80.3	79.7	79.1	78.6	78.0	77.4	76.8	75.7	74.6
800	82.6	82.0	8 8 .4	80.8	$8 \mathrm{o.I}$	79.6	79.0	78.4	77.8	76.7	75.6
810	83.7	83.0	82.4	8 f .8	81.2	80.5	79.9	79.4	78.8	77.6	76.5
820	84.7	84.0	83.4	82.8	82.2	8 I .5	80.9	80.3	79.7	78.6	77.5
830	85.7	85.1	84.4	83.8	83.2	82.5	81.9	8 I .3	80.7	79.5	78.4
840	86.8	86.1	85.4	84.8	84.2	83.5	82.9	82.3	8 I .7	80.5	79.4
850	87.8	87.1	86.4	85.8	85.2	84.5	83.9	83.3	82.7	8 r .5	80.3
860	88.8	88.1	87.5	86.8	86.2	85.5	84.9	84.3	83.6	82.4	8 r .3
870	89.9	89.2	88.5	87.8	87.2	86.5	85.9	85.2	84.6	83.4	82.2
880	90.9	90.2	89.5	88.8	88.2	87.5	86.9	86.2	85.6	84.3	83.1
890	91.9	91.2	90.5	89.8	89.2	88.5	87.8	87.2	86.6	85.3	84.I
900	93.0	92.2	91.5	90.8	90.2	89.5	88.8	88.2	87.5	86.3	85.0
910	94.0	93.3	92.6	91.9	91.2	90.5	89.8	89.2	88.5	87.2	86.0
920	95.0	94.3	93.6	92.9	92.2	91.5	90.8	90.1	89.5	88.2	86.9
930	96.0	95.3	94.6	93.9	93.2	92.5	91.8	91.1	90.4	89.1	87.9
940	97.1	96.3	95.6	94.9	94.2	93.5	92.8	92.1	91.4	90.1	88.8
950	98.1	97.4	96.6	95.9	95.2	94.5	93.8	93.1	92.4	91.1	89.8
960	99.1	98.4	97.6	96.9	96.2	95.5	94.8	94.I	93.4	92.0	90.7
970	100.2	99.4	98.7	97.9	97.2	96.5	95.7	95.0	94.3	93.0	91.6
980	IOI. 2	100.4	99.7	98.9	98.2	97.4	96.7	96.0	95.3	93.9	92.6
990	102.2	101.5	100.7	99.9	99.2	98.4	97.7	97.0	96.3	94.9	93.5
1000	103.3	102.5	101.7	100.9	100.2	99.4	98.7	98.0	$97 \cdot 3$	95.9	94.5

TABLE 17.

REDUCTION OF THE BAROMETER TO SEA LEVEL. METRIC MEASURES.

Values of $2000 \times \mathrm{m}$.
$m=\frac{z}{18444+67.53 \theta+.003 z} \cdot \frac{1}{1-\beta}$

Altitude in metres. 2.	MEAN TEMPERATURE O				AIR	MN I				(θ)	
	-16°	-12°	-8°	-4°	-2°	0°	$+2^{\circ}$	$+4^{\circ}$	$+6^{\circ}$	$+8^{\circ}$	$+10^{\circ}$
1000	II5.I	113.3	III. 5	109.8	109.0	108.2	107.3	106.5	105.7	104.9	104.I
1010	II6.2	II4.4	I 12.7	110.9	IIO.	109.3	108.4	107.6	106.8	105.9	105.1
1020	117.4	115.5	II3.8	112.0	III. 2	110.3	109.5	108.7	107.8	107.0	106.2
1030	118.5	116.7	114.9	II3.I	II2.3	III. 4	I10.6	109.7	108.9	108.0	107.2
1040	I 19.7	117.8	116.0	II4.2	113.4	112.5	III. 6	I Io. 8	109.9	109.1	108.2
1050	120.8	II8.9	I17.1	115.3	II4.5	II3. 6	112.7	III. 8	III.O	IIO.I	109.3
1060	122.0	120.1	I18.2	116.4	115.6	114.7	II3.8	II2.9	112.0	III.	110.3
1070	123.1	121.2	119.3	117.5	116.6	i 15.7	II4.9	II4.0	II3.I	112.2	111.4
1080	124.3	122.3	120.5	118.6	117.7	116.8	I 15.9	115.0	114.2	113.3	II2.4
1090	125.4	123.5	121.6	119.7	118.8	117.9	117.0	116.1	II5.2	114.3	II3.4
1100	126.6	124.6	122.7	120.8	119.9	119.0	118.1	II7.2	II6.3	115.4	114.5
IIIO	127.7	125.7	123.8	121.9	121.0	120.1	I 19.2	II8.2	117.3	116.4	I15.5
II20	128.9	126.9	124.9	123.0	122.1	121.2	120.2	119.3	118.4	117.5	II6.6
II30	130.0	128.0	126.0	I24.1	123.2	122.2	121.3	120.4	119.4	I 18.5	117.6
II40	I31.2	129.1	127.2	125.2	124.3	123.3	122.4	121.4	120.5	II9.6	118.6
1150	132.3	130.3	128.3	126.3	125.4	124.4	123.4	122.5	121.6	120.6	119.7
1160	133.5	131.4	129.4	127.4	126.4	125.5	124.5	123.6	122.6	121.7	120.7
1170	134.6	132.5	I30.5	128.5	127.5	I26.6	125.6	124.6	123.7	122.7	121.8
1180	135.8	133.7	131.6	129.6	128.6	127.6	126.7	125.7	124.7	123.8	122.8
1190	I36.9	I 34.8	I 32.7	I30.7	129.7	128.7	127.7	126.8	125.8	124.8	123.8
1200	I38.I	135.9	133.8	131.8	130.8	129.8	128.8	127.8	126.8	125.9	124.9
1210	I 39.2	137.1	135.0	132.9	131.9	I30.9	129.9	128.9	127.9	126.9	125.9
20	140.4	138.2	I36.I	134.0	133.0	132.0	131.0	130.0	129.0	128.0	127.0
1230	14 I .5	139.3	137.2	I35.I	I34.I	I33.I	132.0	131.0	130.0	129.0	128.0
1240	142.7	140.5	138.3	I36.2	I 35.2	I34.I	133.1	132.1	I3I.I	130.1	129.0
1250	143.8	14 I .6	I39.4	137.3	136.3	135.2	134.2	133.I	I32.I	131.I	I30.1
1260	145.0	142.7	140.5	138.4	137.3	I36.3	I 35.3	I 34.2	133.2	132.1	131.1
1270	I46.I	143.9	141.7	139.5	138.4	137.4	136.3	I 35.3	I 34.2	133.2	132.2
1280	147.3	145.0	142.8	140.6	139.5	138.5	137.4	136.3	${ }^{1} 35.3$	134.2	133.2
1290	148.4	146.1	143.9	141.7	140.6	139.5	I38.5	137.4	I36.3	135.3	I 34.2
1300	149.6	147.3	145.0	142.8	141.7	140.6	139.5	138.5	137.4	I36.3	135.3
1310	150.7	148.4	146.1	143.9	142.8	141.7	140.6	139.5	138.5	137.4	136.3
I320	151.9	149.5	147.2	145.0	143.9	142.8	141.7	140.6	139.5	138.4	137.4
1330	153.0	150.7	148.3	I46.1	145.0	143.9	142.8	141.7	140.6	I 39.5	138.4
I 340	I54.2	${ }^{1} 51.8$	149.5	147.2	146.I	145.0	143.8	142.7	141.6	140.5	I 39.5
1350	155.3	152.9	150.6	148.3	147.2	146.0	144.9	143.8	142.7	141.6	140.5
I360	156.5	I54.I	151.7	149.4	148.2	147.1	146.0	144.9	143.7	142.6	141.5
I370	I 57.6	I55.2	152.8	150.5	149.3	148.2	147.1	145.9	144.8	143.7	142.6
1380	158.8	156.3	153.9	151.6	150.4	149.3	148.1	147.0	145.9	144.7	143.6
1390	159.9	${ }^{1} 57.5$	155.0	152.7	151.5	150.4	149.2	148.I	146.9	145.8	144.7
1400	16I.I	158.6	156.2	153.8	152.6	151.4	150.3	149.1	148.0	146.8	145.7
1410	162.2	159.7	157.3	154.9	153.7	152.5	${ }^{1} 51.4$	150.2	149.0	147.9	146.7
1420	163.4	160.8	158.4	156.0	154.8	I 53.6	152.4	151.3	150.1	148.9	147.8
1430	164.5	162.0	159.5	157.1	155.9	154.7	153.5	152.3	I5I.I	150.0	148.8
1440	165.7	163.1	160.6	158.2	157.0	155.8	154.6	153.4	152.2	151.0	149.9
1450	ı66.8	164.2	161.7	159.3	158.1	156.8	${ }^{1} 55.7$	154.5	153.3	152.1	150.9
1460	168.0	165.4	162.8	160.4	159.1	157.9	156.7	155.5	154.3	153.1	151.9
1470	169.1	166.5	164.0	161.5	160.2	159.0	157.8	${ }^{1} 56.6$	155.4	154.2	153.0
1480	170.3	167.6	165.I	162.6	161.3	160.1	158.9	157.6	156.4	155.2	154.0
1490	171.4	168.8	166.2	163.7	162.4	161.2	159.9	158.7	157.5	156.3	${ }^{1} 55.1$
1500	172.6	169.9	167.3	164.8	163.5	I62.3	161.0	I59.8	158.5	157.3	${ }^{1} 56.1$

TAble 17.

REDUCTION OF THE BAROMETER TO SEA LEVEL. METRIC MEASURES.

Values of $2000 \times \mathrm{m}$.
$m=\frac{z}{18444+6753 \theta+.003 z} \cdot \frac{I}{I-\beta}$

Altitude in metres. 2.											
	$+12^{\circ}$	$+14^{\circ}$	$+16^{\circ}$	$+18^{\circ}$	$+20^{\circ}$	$+22^{\circ}$	$+24^{\circ}$	$+26^{\circ}$	$+28^{\circ}$	$+32^{\circ}$	$+36^{\circ}$
1000	103.3	102.5	101.7	100.9	100.2	99.4	98.7	98.0	97.3	95.9	94.5
1010	104.3	103.5	102.7	IOI. 9	IOI	100.4	99.7	99.0	98.2	96.8	95.4
1020	105.3	104.5	103.7	103.0	102.2	IOI. 4	100.7	99.9	99.2	97.8	96.4
1030	106.4	105.6	104.8	104.0	103.2	102.4	101.7	100.9	100.2	98.7	97.3
1040	107.4	106.6	105.8	105.0	104.2	103.4	102.6	101.9	IOI.I	99.7	98.3
1050	Io8.4	107.6	106.8	106.0	105.2	104.4	103.6	102.9	IO2.I	100.6	99.2
1060	109.5	108.6	107.8	107.0	106.2	105.4	104.6	103.9	103.1	101. 6	100.1
1070	110.5	109.7	108.8	108.0	107.2	106.4	105.6	104.8	104.1	102.6	IOI.I
10So	III. 5	110.7	109.8	109.0	108.2	107.4	106.6	105.8	105.0	103.5	102.0
Iogo	II2.6	III 1.7	110.9	I 10.0	109.2	108.4	107.6	106.8	106.0	104.5	103.0
1100	II3.6	112.7	II I. 9	III.O	I 10.2	109.4	I08.6	107.8	107.0	105.4	103.9
I 110	114.6	113.8	112.9	I 12.0	III. 2	I 10.4	109.6	108.8	108.0	106.4	104.9
II 20	I 15.7	114.8	113.9	113.1	II2.2	III. 4	110.5	109.7	108.9	107.4	105.8
1130	116.7	II 5.8	114.9	II4.1	II 3.2	I 12.4	III. 5	I I 0.7	109.9	108.3	106.8
I 140	II 7.7	116.8	II5.9	II5.1	I 14.2	II 3.4	II 2.5	III. 7	110.9	109.3	107.7
1150	II8.8	117.9	117.0	I16.1	II 5.2	II4.4	II3.5	II2.7	I 11.8	110.2	108.6
1160	119.8	II8.9	118.0	117.1	II6.2	115.3	114.5	II3.6	112.8	III. 2	109.6
1170	120.8	119.9	119.0	118.1	I 77.2	116.3	II 5.5	114.6	113.8	II2.I	110.5
I 180	121.9	120.9	120.0	II9.I	I 18.2	117.3	II6.5	II5.6	114.8	II3.I	III. 5
1190	122.9	122.0	12 I .0	120.1	I 19.2	II8.3	I 17.4	II6.6	115.7	II4.I	112.4
1200	123.9	123.0	122.0	12I.I	120.2	119.3	I 18.4	117.6	116.7	I 15.0	113.4
1210	125.0	124.0	123.1	122.1	121.2	120.3	II9.4	118.5	117.7	116.0	114.3
1220	126.0	125.0	124.I	123.1	122.2	121.3	120.4	119.5	118.6	116.9	115.3
1230	127.0	I26.I	125.I	124.2	123.2	122.3	I2 2.4	120.5	119.6	117.9	116.2
1240	I28.1	I27.1	126.1	125.2	124.2	123.3	I22.4	121.5	120.6	II8.9	117.2
1250	129.1	128.1	127.1	126.2	125.2	124.3	123.4	122.5	121.6	119.8	II8.1
1260	130.1	129.1	128.1	127.2	I 26.2	125.3	124.4	123.4	122.5	120.8	119.0
1270	I3I. 2	I30.2	129.2	128.2	127.2	126.3	125.3	124.4	123.5	121.7	120.0
1280	132.2	131.2	130.2	129.2	128.2	127.3	126.3	125.4	124.5	122.7	120.9
1290	133.2	132.2	131.2	130.2	129.2	128.3	127.3	126.4	125.5	123.6	121.9
1300	I 34.3	133.2	I32.2	131.2	I30.2	129.3	128.3	127.4	126.4	124.6	122.8
1310	135.3	I 34.3	133.2	132.2	I31.2	I30.3	129.3	128.3	127.4	125.6	123.8
1320	136.3	135.3	134.2	133.2	132.2	131.3	I30.3	129.3	128.4	126.5	124.7
1330	137.4	136.3	135.3	I 34.2	133.2	132.2	131.3	130.3	129.3	127.5	125.7
I 340	I 38.4	137.3	I36.3	135.3	I 34.2	133.2	132.2	I3I. 3	I30.3	128.4	126.6
1350	139.4	I38.4	137.3	136.3	I 35.2	I34.2	133.2	132.3	131.3	129.4	127.5
1360	140.5	I 39.4	138.3	137.3	136.2	135.2	I 34.2	133.2	132.3	130.3	128.5
1370	141.5	140.4	139.3	138.3	137.2	136.2	I35.2	I 34.2	133.2	131.3	129.4
I 380	142.5	141.4	140.3	139.3	138.2	137.2	I 36.2	135.2	I 34.2	132.3	130.4
1390	143.5	142.4	141.4	140.3	I 39.2	138.2	137.2	I 36.2	135.2	133.2	131.3
1400	144.6	143.5	142.4	I41. 3	140.2	139.2	I38.2	137.2	I36.2	I34.2	132.3
I410	145.6	144.5	143.4	142.3	141.3	140.2	139.2	138.1	137.1	I 35.1	I 33.2
1420	146.6	145.5	144.4	143.3	142.3	141.2	140.I	139.1	138.1	I36.1	134.2
1430	147.7	146.5	145.4	144.3	143.3	142.2	14 I .1	140.1	139.1	137.1	135.1
1440	148.7	147.6	146.4	145.3	I44.3	143.2	142.I	14 I .1	140.0	I38.0	I36.0
1450	149.7	148.6	147.5	146.4	145.3	144.2	143.1	142.1	141.0	I39.0	137.0
1460	150.8	I 49.6	148.5	147.4	146.3	145.2	144.I	143.0	142.0	I 39.9	I 37.9
1470	151.8	150.6	149.5	148.4	147.3	146.2	I45.I	144.0	143.0	140.9	I 38.9
1480	152.8	151.7	150.5	149.4	148.3	147.2	I46.I	145.0	143.9	I4I. 8	139.8
1490	153.9	152.7	151.5	150.4	149.3	148.2	147.1	146.0	144.9	142.8	140.8
1500	I54.9	153.7	152.5	151.4	150.3	149.I	I48.0	147.0	145.9	143.8	141.7

REDUCTION OF THE BAROMETER TO SEA LEVEL. METRIC, MEASURES.

V alues of $2000 \times \mathrm{m}$.

$$
m=\frac{Z}{18444+67.53 \theta+.003 z} \cdot \frac{\mathrm{I}}{\mathrm{I}-\beta}
$$

Altitude in metres. Z.	MEAN TEMPERATURE OF AIR COLUMN IN CENTIGRADE DEGREES ($\boldsymbol{\theta}$) .										
	-16°	-12°	-8°	-4°	-2°	0°	$+2^{\circ}$	$+4^{\circ}$	$+6^{\circ}$	$+8^{\circ}$	$+10^{\circ}$
1500	172.6	169.9	167.3	164.8	163.5	162.3	161.0	159.8	I 58.5	157.3	156.1
1510	173.7	171.0	168.4	165.9	164.6	163.3	162.1	160.8	I 59.6	I58.4	157.1
1520	174.9	172.2	169.5	167.0	165.7	164.4	163.2	161.9	160.7	I 59.4	158.2
1530	I76.0	173.3	170.7	168.1	166.8	165.5	164.2	163.0	161.7	160.5	159.2
1540	177.2	174.4	171.8	169.1	167.9	166.6	165.3	164.0	162.8	161.5	160.3
1550	178.3	175.6	172.9	170.2	169.0	167.7	166.4	165.1	163.8	162.6	161.3
1560	179.5	176.7	174.0	171.3	170.0	168.7	167.5	166.2	164.9	163.6	162.3
1570	180.6	177.8	175.1	172.4	171.1	169.8	168.5	167.2	165.9	164.7	163.4
1580	181. 8	179.0	176.2	173.5	172.2	170.9	169.6	168.3	167.0	165.7	164.4
I590	182.9	180.1	177.3	I 74.6	I73.3	172.0	170.7	169.4	168.1	166.8	165.5
1600	184.I	I8I. 2	I78.5	I75.7	174.4	173.1	171.7	170.4	169.1	167.8	166.5
1610	185.2	182.4	179.6	176.8	175.5	174.2	172.8	171.5	170.2	168.9	167.5
1620	186.4	183.5	180.7	177.9	176.6	175.2	173.9	172.6	171.2	169.9	168.6
1630	187.5	184.6	181.8	179.0	177.7	176.3	175.0	173.6	172.3	170.9	169.6
1640	188.7	185.8	182.9	180.1	178.8	177.4	176.0	174.7	173.3	172.0	170.7
1650	189.8	186.9	184.0	181.2	179.8	178.5	177.1	175.7	174.4	173.0	171.7
1660	191.0	188.0	185.1	182.3	180.9	179.6	178.2	176.8	175.4	I74.I	172.7
1670	192.2	189.2	186.3	183.4	182.0	180.6	179.3	177.9	176.5	175.I	173.8
1680	193.3	190.3	187.4	184.5	183.1	181.7	180.3	178.9	177.6	176.2	174.8
1690	194.5	191.4	188.5	185.6	184.2	182.8	181.4	180.0	178.6	I77.2	175.9
1700	195.6	192.6	189.6	186.7	185.3	183.9	182.5	181.I	179.7	178.3	176.9
1710	196.8	193.7	190.7	187.8	186.4	185.0	183.5	182.1	180.7	179.3	177.9
1720	197.9	194.8	191.8	188.9	187.5	I86.0	184.6	183.2	181.8	180.4	179.0
1730	199.1	196.0	193.0	190.0	188.6	187.1	185.7	184.3	182.8	181.4	180.0
1740	200.2	I97.I	194.I	191.I	189.7	I88.2	I86.8	185.3	183.9	182.5	I81.1
1750	201.4	198.2	195.2	192.2	190.7	189.3	187.8	186.4	I85.0	183.5	182.1
1760	202.5	199.3	196.3	193.3	191.8	190.4	188.9	187.5	186.0	184.6	183.1
1770	203.7	200.5	197.4	194.4	192.9	191.5	190.0	188.5	187.1	I85.6	184.2
1780	204.8	201.6	198.5	195.5	194.0	192.5	191.1	189.6	188.1	186.7	185.2
1790	206.0	202.7	199.6	196.6	195.I	193.6	192.I	190.7	I89.2	I87.7	186.3
1800	207.1	203.9	200.8	197.7	196.2	194.7	193.2	191.7	190.2	188.8	187.3
1810	208.3	205.0	201.9	198.8	197.3	195.8	194.3	192.8	191. 3	189.8	188.3
1820	209.4	206.1	203.0	199.9	198.4	196.9	195.3	193.8	192.4	190.9	I89.4
1830	210.6	207.3	204.1	201.0	199.5	197.9	196.4	194.9	193.4	191. 9	190.4
1840	211.7	208.4	205.2	202.1	200.6	199.0	197.5	196.0	194.5	193.0	191.5
1850	212.9	209.5	206.3	203.2	201.6	200.1	198.6	197.0	195.5	194.0	192.5
1860	214.0	210.7	207.4	204.3	202.7	201.2	199.6	198.1	196.6	195.I	193.6
1870	215.2	211.8	208.6	205.4	203.8	202.3	200.7	199.2	197.6	196.1	194.6
1880	216.3	212.9	209.7	206.5	204.9	203.3	201.8	200.2	198.7	197.2	195.6
1890	217.5	214.1	210.8	207.6	206.0	204.4	202.9	201.3	199.7	198.2	196.7
1900	218.6	215.2	211.9	208.7	207.1	205.5	203.9	202.4	200.8	199.3	197.7
1910	219.8	216.3	213.0	209.8	208.2	206.6	205.0	203.4	201.9	200.3	198.8
1920	220.9	217.5	214.1	210.9	209.3	207.7	206.1	204.5	202.9	201.3	199.8
1930	222.1	218.6	215.2	212.0	210.4	208.8	207.2	205.6	204.0	202.4	200.8
1940	223.2	219.7	216.4	213.1	211.4	209.8	208.2	206.6	205.0	203.4	201.9
1950	224.4	220.9	217.5	214.2	212.5	210.9	209.3	207.7	206.1	204.5	202.9
1960	225.5	222.0	218.6	215.3	213.6	212.0	210.4	208.8	207.1	205.5	204.0
1970	226.7	223.1	219.7	216.4	214.7	213.1	211.4	209.8	208.2	206.6	205.0
1980	227.8	224.3	220.8	217.5	215.8	214.2	212.5	210.9	209.3	207.6	206.0
1990	229.0	225.4	221.9	218.6	216.9	215.2	213.6	211.9	210.3	208.7	207.1
2000	230.1	226.5	223.0	219.7	218.0	216.3	214.7	213.0	211.4	209.7	208.1

REDUCTION OF THE BAROMETER TO SEA LEVEL. METRIC MEASURES.

REDUCTION OF THE BAROMETER TO SEA LEVEL. METRIC MEASURES.

Values of $2000 \times \mathbf{m}$.

$$
m=\frac{z}{18444+67.53 \theta+.003 Z} \cdot \frac{I}{1-\beta}
$$

Altitude in metres. Z.	MEAN TEMPERATURE O				c	COLUMN IN C		NTIGRADE DE		GREES ($\boldsymbol{\theta}$).	
	-16°	-12°	-8°	-4°	-2°	0°	$+2^{\circ}$	$+4^{\circ}$	$+6^{\circ}$	$+8^{\circ}$	$+10^{\circ}$
2000	230.1	226.5	223.0	219.7	218.0	216.3	214.7	213.0	211.4	209.7	208. 1
IO	231.3	227.7	224.2	220.8	219.1	217.4	215.7	214.1	212.4	210.8	209.2
2	232.4	228.8	225.3	221.9	220.2	218.5	216.8	215.1	213.5	211.8	210.2
2030	233.6	229.9	226.4	223.0	221.3	219.6	217.9	216.2	214.5	212.9	211.2
2040	234.7	231.1	227.5	224.0	222.3	220.6	219.0	217.3	215.6	213.9	212.3
2050	235.9	232.2	228.6	225.1	223.4	221.7	220.0	218.3	216.7	215.0	213.3
2060	237.0	233.3	229.7	226.2	224.5	222.8	22I.1	219.4	217.7	216.0	214.4
2070	238.2	234.4	230.9	227.3	225.6	223.9	222.2	220.5	218.8	217.1	215.4
2080	239.3	235.6	232.0	228.4	226.7	225.0	223.2	221.5	219.8	218.1	216.4
2090	240.5	236.7	233.1	229.5	227.8	22.6.1	224.3	222.6	220.9	219.2	217.5
2100	241.6	237.8	234.2	230.6	228.9	227.1	225.4	223.7	221.9	220.2	218.5
2110	242.8	239.0	235.3	231.7	230.0	228.2	226.5	224.7	223.0	221.3	219.6
2120	243.9	240.1	236.4	232.8	231.1	229.3	227.5	225.8	224.0	222.3	220.6
2130	245.I	241.2	237.5	233.9	232.2	230.4	228.6	226.9	225.1	223.4	221.6
2140	246.2	242.4	238.7	235.0	233.2	231.5	229.7	227.9	226.2	224.4	222.7
2150	247.4	243.5	239.8	236.1	234.3	232.5	230.8	229.0	227.2	225.5	223.7
2160	248.5	244.6	240.9	237.2	235.4	233.6	231.8	230.0	228.3	226.5	224.8
2170	249.7	245.8	242.0	238.3	236.5	234.7	232.9	231.1	229.3	227.6	225.8
2180	250.8	246.9	243.1	239.4	237.6	235.8	234.0	232.2	230.4	228.6	226.8
2190	252.0	248.0	244.2	240.5	238.7	236.9	235.I	233.2	231.4	229.7	227.9
2200	253.1	249.2	245.4	241.6	239.8	237.9	236.1	234.3	232.5	230.7	228.9
2210	254.3	250.3	246.5	242.7	240.9	239.0	237.2	235.4	233.6	231.7	230.0
2220	255.4	251.4	247.6	243.8	242.0	240.1	238.3	236.4	234.6	232.8	231.0
2230	256.6	252.6	248.7	244.9	243.0	241.2	239.3	237.5	235.7	233.8	232.0
2240	257.7	253.7	249.8	246.0	244.I	242.3	240.4	238.6	236.7	234.9	233.1
2250	258.9	254.8	250.9	247.1	245.2	243.4	241.5	239.6	237.8	235.9	234.1
2260	260.0	256.0	252.0	248.2	246.3	244.4	242.6	240.7	238.8	237.0	235.2
2270	261.2	257.1	253.2	249.3	247.4	245.5	243.6	241.8	239.9	238.0	236.2
2280	262.3	258.2	254.3	250.4	248.5	246.6	244.7	242.8	241.0	239.I	237.2
2290	263.5	259.4	255.4	251.5	249.6	247.7	245.8	243.9	242.0	240.I	238.3
2300	264.6	260.5	256.5	252.6	250.7	248.8	246.9	245.0	243.1	241.2	239.3
2310	265.8	261.6	257.6	253.7	251.8	249.8	247.9	246.0	244.I	242.2	240.4
2320	266.9	262.8	258.7	254.8	252.9	250.9	249.0	247.1	245.2	$243 \cdot 3$	24 I .4
2330	268.1	263.9	259.8	255.9	253.9	252.0	250.1	248.1	246.2	244.3	242.4
2340	269.2	265.0	261.0	257.0	255.0	253.1	251.1	249.2	247.3	245.4	243.5
2350	270.4	266.1	262.1	258.1	256.1	254.2	252.2	250.3	248.3	246.4	244.5
2360	271.5	267.3	263.2	259.2	257.2	255.2	253.3	251.3	249.4	247.5	245.6
2370	272.7	268.4	264.3	260.3	258.3	256.3	254.4	252.4	250.5	248.5	246.6
2380	273.8	269.5	265.4	261.4	259.4	257.4	255.4	253.5	251.5	249.6	247.6
2390	275.0	270.7	266.5	262.5	260.5	258.5	256.5	254.5	252.6	250.6	248.7
2400	276.1	271.8	267.7	263.6	261.6	259.6	257.6	255.6	253.6	251.7	249.7
2410	277.3	272.9	268.8	264.7	262.7	260.7	258.7	256.7	254.7	252.7	250.8
2420	278.4	274.I	269.9	265.8	263.7	261.7	259.7	257.7	255.7	253.8	251.8
2430	279.6	275.2	271.0	266.9	264.8	262.8	260.8	258.8	256.8	254.8	252.8
2440	280.7	276.3	272.1	268.0	265.9	263.9	261.9	259.9	257.9	255.9	253.9
2450	281.9	277.5	273.2	269.1	267.0	265.0	262.9	260.9	258.9	256.9	254.9
2460	283.0	278.6	274.3	270.2	268.1	266.1	264.0	262.0	260.0	258.0	256.0
2470	284.2	279.7	275.5	271.3	269.2	267.1	265.1	263.1	26 I .0	259.0	257.0
2480	285.3	280.9	276.6	272.4	270.3	268.2	266.2	264.1	262.1	260.1	258.0
2490	286.5	282.0	277.7	273.5	271.4	269.3	267.2	265.2	263.1	261. 1	259.1
2500	287.6	283.I	278.8	274.5	272.5	270.4	268.3	266.2	264.2	262.2	260.1

REDUCTION OF THE BAROMETER TO SEA LEVEL. METRIC MEASURES.
 Values of $2000 \times \mathrm{m}$.
 $m=\frac{z}{18444+67.53 \theta+.003 z} \cdot \frac{1}{1-\beta}$

Altitude in metres. Z.	MEAN TEMPERATURE O				AIR	OLU	IN C			REE	
	$+12^{\circ}$	$+14^{\circ}$	$+16^{\circ}$	$+18^{\circ}$	$+20^{\circ}$	$+22^{\circ}$	$+24^{\circ}$	$+26^{\circ}$	$+28^{\circ}$	$+32^{\circ}$	$+36^{\circ}$
2000	206.5	204.9	203.4	201.9	200.3	198.8	197.4	195.9	194.5	191.7	188.9
2	207.6	206.0	204.4	202.9	201.3	199.8	198.4	196.9	195.5	192.6	I89.9
2020	208.6	207.0	205.4	203.9	202.3	200.8	199.3	197.9	196.4	193.6	190.8
2030	209.6	208.0	206.4	204.9	203.3	201.8	200.3	198.8	197.4	194.6	191.8
2040	210.7	209.0	207.5	205.9	204.3	202.8	201.3	199.8	198.4	195.5	192.7
2050	2 II. 7	210.1	208.5	206.9	205.3	203.8	202.3	200.8	199.3	196.5	193.7
2060	212.7	2II.I	209.5	207.9	206.3	204.8	203.3	201.8	200.3	197.4	194.6
2070	213.8	212.1	210.5	208.9	207.3	205.8	204.3	202.8	201.3	198.4	195.5
2080	214.8	213.1	211.5	209.9	208.3	206.8	205.3	203.7	202.3	199.3	196.5
2090	215.8	214.2	212.5	210.9	209.3	207.8	206.3	204.7	203.2	200.3	197.4
2100	216.8	215.2	213.5	211.9	210.4	208.8	207.2	205.7	204.2	201.3	198.4
2110	217.9	216.2	214.6	213.0	2II. 4	209.8	208.2	206.7	205.2	202.2	199.3
2120	218.9	217.2	215.6	214.0	212.4	210.8	209.2	207.7	206.2	203.2	200.3
2130	219.9	218.3	216.6	215.0	213.4	211.8	210.2	208.6	207.1	204.1	201.2
2140	221.0	219.3	217.6	216.0	214.4	212.8	211.2	209.6	208.1	205.1	202.2
2150	222.0	220.3	218.6	217.0	215.4	213.8	212.2	210.6	209.1	206.1	203.1
2160	223.0	221.3	219.6	218.0	216.4	214.7	213.2	211.6	210.0	207.0	204.0
2170	224.I	222.4	220.7	219.0	217.4	215.7	214.1	212.6	211.0	208.0	205.0
2180	225.1	223.4	221.7	220.0	218.4	216.7	215.1	213.5	212.0	208.9	205.9
2190	226.I	224.4	222.7	221.0	219.4	217.7	216.1	214.5	213.0	209.9	206.9
2200	227.2	225.4	223.7	222.0	220.4	218.7	217.1	215.5	213.9	210.8	207.8
2210	228.2	226.5	224.7	223.0	221.4	219.7	218.1	216.5	214.9	211.8	208.8
2220	229.2	227.5	225.7	224.0	222.4	220.7	219.1	217.5	215.9	212.8	209.7
2230	230.3	228.5	226.8	225.1	223.4	221.7	220.1	218.4	216.8	213.7	210.7
2240	231.3	229.5	227.8	226.1	224.4	222.7	221.0	219.4	217.8	214.7	211.6
2250	232.3	230.6	228.8	227.1	225.4	223.7	222.0	220.4	218.8	215.6	212.5
2260	233.4	231.6	229.8	228.1	226.4	224.7	223.0	221.4	219.8	216.6	213.5
2270	234.4	232.6	230.8	229.1	227.4	225.7	224.0	222.4	220.7	217.6	214.4
2280	235.4	233.6	231.8	230.1	228.4	226.7	225.0	223.3	221.7	218.5	215.4
2290	236.5	234.7	232.9	231.1	229.4	227.7	226.0	224.3	222.7	219.5	216.3
2300	237.5	235.7	233.9	232.1	230.4	228.7	227.0	225.3	223.6	220.4	217.3
2310	238.5	236.7	234.9	233.1	231.4	229.7	228.0	226.3	224.6	22 I .4	218.2
2320	239.6	237.7	235.9	234.1	232.4	230.7	228.9	227.3	225.6	222.3	219.2
2330	240.6	238.7	236.9	235.1	233.4	231.6	229.9	228.2	226.6	223.3	220.1
2340	241.6	239.8	237.9	236.2	234.4	232.6	230.9	229.2	227.5	224.3	221.0
2350	242.7	240.8	239.0	237.2	235.4	233.6	231.9	230.2	228.5	225.2	222.0
2360	243.7	241.8	240.0	238.2	236.4	234.6	232.9	231.2	229.5	226.2	222.9
2370	244.7	242.8	241.0	239.2	237.4	235.6	233.9	232.2	230.4	227.1	223.9
2380	245.7	243.9	242.0	240.2	238.4	236.6	234.9	233.1	231.4	228.1	224.8
2390	246.8	244.9	243.0	241.2	239.4	237.6	235.8	234.I	232.4	229.1	225.8
2400	247.8	245.9	244.0	242.2	240.4	238.6	236.8	235.I	233.4	230.0	226.7
2410	248.8	246.9	245.I	243.2	241.4	239.6	237.8	236.1	234.3	231.0	227.7
2420	249.9	248.0	246.1	244.2	242.4	240.6	238.8	237.1	235.3	231.9	228.6
2430	250.9	249.0	247.I	245.2	243.4	24 I .6	239.8	238.0	236.3	232.9	229.5
2440	251.9	250.0	248.1	246.2	244.4	242.6	240.8	239.0	237.3	233.8	230.5
2450	253.0	251.0	249.1	247.3	245.4	243.6	241.8	240.0	238.2	234.8	231.4
2460	254.0	252.1	250.1	248.3	246.4	244.6	242.8	241.0	239.2	235.8	232.4
2470	255.0	253.1	251.2	249.3	247.4	245.6	243.7	241.9	240.2	236.7	233.3
2480	256.1	254. 1	252.2	250.3	248.4	246.6	244.7	242.9	241.1	237.7	$234 \cdot 3$
2490	257.1	255.1	253.2	251.3	249.4	247.5	245.7	243.9	242.1	238.6	235.2
2500	258.1	256.2	254.2	252.3	250.4	248.5	246.7	244.9	243.1	239.6	236.2

Smithsomian Tables.

TAble. 17.
REDUCTION OF THE BAROMETER TO SEA LEVEL. METRIC MEASURES.
Values of $2000 \times m . \quad m=\frac{z}{18444+67.53 \theta+.003 z} \cdot \frac{1}{1-\beta}$

	mean temperature of air column in centigrade degrees (θ).										
	-16°	-12°	-8°	-4°	-2°	0°	$+2^{\circ}$	$+4^{\circ}$	$+6^{\circ}$	$+8^{\circ}$	$+10^{\circ}$
2500	287.6	283.1	278.8	274.5	272.5	270.4	268.3	266.2	264.2	262.2	260.1
2510	288.8	284.3	279.9	275.6	273.6	271.5	269.4	267.3	265.2	263.2	261.2
2520	289.9	285.4	281.0	276.7	274.6	272.5	270.5	268.4	266.3	264.2	262.2
2530	291.1	286.5	282.I	277.8	275.7	273.6	271.5	269.4	267.4	265.3	263.2
2540	292.2	287.7	283.3	278.9	276.8	274.7	272.6	270.5	268.4	266.3	264.3
2550	293.4	288.8	284.4	280.0	277.9	275.8	273.7	271.6	269.5	267.4	265.3
2560	294.5	289.9	285.5	28 I .1	279.0	276.9	274.7	272.6	270.5	268.4	266.4
2570	295.7	291.I	286.6	282.2	280.1	277.9	275.8	273.7	271.6	269.5	267.4
2580	296.8	292.2	287.7	283.3	281.2	279.0	276.9	274.8	272.6	270.5	268.4
2590	298.0	293.3	288.8	284.4	282.3	280.1	278.0	275.8	273.7	271.6	269.5
2600	299.1	294.5	290.0	285.5	283.4	281.2	279.0	276.9	274.8	272.6	270.5
2610	300.3	295.6	291.1	286.6	284.4	282.3	280.1	278.0	275.8	273.7	271.6
2620	301.4	296.7	292.2	287.7	285.5	283.4	281.2	279.0	276.9	274.7	272.6
2630	302.6	297.8	293.3	288.8	286.6	284.4	282.3	280.1	277.9	275.8	273.6
2640	303.7	299.0	294.4	289.9	287.7	285.5	283.3	281.1	279.0	276.8	274.7
2650	304.9	300.I	295.5	291.0	288.8	286.6	284.4	282.2	280.0	277.9	275.7
2660	306.0	301.2	296.6	292.I	289.9	287.7	285.5	283.3	281.1	278.9	276.8
2670	307.2	302.4	297.8	293.2	291.0	288.8	286.5	284.3	282.1	280.0	277.8
2680	308.3	303.5	298.9	294.3	292.1	289.8	287.6	285.4	283.2	281.0	278.8
2690	309.5	304.6	300.0	295.4	293.2	290.9	288.7	286.5	284.3	282.1	279.9
2700	310.6	305.8	301.1	296.5	294.2	292.0	289.8	287.5	285.3	283.1	280.9
2710	311.8	306.9	302.2	297.6	295.3	293.I	290.8	288.6	286.4	284.2	282.0
2720	312.9	308.0	303.3	298.7	296.4	294.2	291.9	289.7	287.4	285.2	283.0
2730	314.1	309.2	304.5	299.8	297.5	295.2	293.0	290.7	288.5	286.3	284.0
2740	315.2	310.3	305.6	300.9	298.6	296.3	294.I	291.8	289.5	287.3	285.1
2750	316.4	311.4	306.7	302.0	299.7	297.4	295.I	292.9	290.6	288.4	286.I
2760	317.5	312.6	307.8	303.1	300.8	298.5	296.2	293.9	291.7	289.4	287.2
2770	318.7	313.7	308.9	304.2	301.9	299.6	297.3	295.0	292.7	290.5	288.2
2780	319.8	314.8	310.0	305.3	303.0	300.6	298.3	296.1	293.8	291.5	289.2
2790	321.0	3	3 II.I	30	304.I	301.7	299.4	297.1	294	292.5	290.3
2800	322.I	317.1	312.3	307.5	305.I	302.8	300.5	298.2	295.9	293.6	291.3
2810	323.3	318.2	313.4	308.6	306.2	303.9	301.6	299.2	296.9	294.6	292.4
2820	324.4	319.4	314.5	309.7	307.3	305.0	302.6	300.3	298.0	295.7	293.4
2830	325.6	320.5	315.6	310.8	308.4	306.I	303.7	301.4	299.0	296.7	294.4
2840	326.7	321.6	316.7	311.9	309.5	307.1	304.8	302.4	300.1	297.8	295.5
2850	327.9	322.8	317.8	313.0	310.6	308.2	305.9	303.5	301.2	298.8	296.5
2860	329.0	323.9	318.9	314.I	311.7	309.3	306.9	304.6	302.2	299.9	297.6
2870	330.2	325.0	320.1	315.2	312.8	310.4	308.0	305.6	303.3	300.9	298.6
2880	331.3	326.1	321.2	316.3	313.9	311.5	309.1	306.7	304.3	302.0	299.6
2890	332.5	327.3	322.3	317.4	314.9	312.5	310.I	307.8	305.4	303.0	300.7
2900	333.6	328.4	323.4	318.4	316.0	313.6	311.2	308.8	306.4	304.I	301.7
2910	334.8	329.5	324.5	319.5	317.1	314.7	312.3	309.9	307.5	305.I	302.8
2920	335.9	330.7	325.6	320.6	318.2	315.8	313.4	311.0	308.6	306.2	303.8
2930	337.I	331.8	326.7	321.7	319.3	316.9	314.4	312.0	309.6	307.2	304.8
2940	338.2	332.9	327.9	322.8	320.4	317.9	315.5	313.1	310.7	308.3	305.9
2950	339.4	334.1	329.0	323.9	321.5	319.0	316.6	314.2	311.7	309.3	306.9
2960	340.5	335.2	330.1	325.0	322.6	320.1	317.7	315.2	312.8	31 IO .4	308.0
2970	341.7	336.3	331.2	326.1	323.7	321.2	318.7	316.3	313.8	311.4	309.0
2980	342.8	337.5	332.3	327.2	324.7	322.3	319.8	317.3	314.9	312.5	310.0
2990	344.	338.6	333.4	328.3	325.8	323.3	320.9	318.4	315.9	313.5	3II.I
3000	345.1	339.7	334.5	329.4	326.9	324.4	321.9	319.5	317.0	314.6	312.1

[^8]TABLE 17.

REDUCTION OF THE BAROMETER TO SEA LEVEL. METRIC MEASURES.

Values of $2000 \times \mathrm{m} . \quad m=\frac{\mathrm{Z}}{18444+67.53 \theta+.003 \mathrm{Z}} \cdot \frac{\mathrm{I}}{\mathrm{I}-\boldsymbol{\beta}}$

Altitude in metres. 2.	MEAN TEMPERATURE O										
	$+12^{\circ}$	$+14^{\circ}$	$+16^{\circ}$	$+18^{\circ}$	$+20^{\circ}$	$+22^{\circ}$	$+24^{\circ}$	$+26^{\circ}$	$+28^{\circ}$	+ 32°	$+36^{\circ}$
2500	258.1	256.2	254.2	252.3	250.4	248.5	246.7	244.9	243.1	239.6	236.2
2510	259.2	257.2	255.2	253.3	251.4	249.5	247.7	245.9	244.I	240.6	237.1
2520	260.2	258.2	256.2	254.3	252.4	250.5	248.7	246.8	245.0	241.5	238.0
2530	261. 2	259.2	257.3	255.3	253.4	251.5	249.7	247.8	246.0	242.5	239.0
2540	262.3	260.3	258.3	256.3	254.4	252.5	250.6	248.8	247.0	243.4	239.9
2550	263.3	261.3	259.3	257.3	255.4	253.5	251.6	249.8	247.9	244.4	240.9
2560	264.3	262.3	260.3	258.4	256.4	254.5	252.6	250.7	248.9	245.3	241.8
2570	265.4	263.3	261.3	259.4	257.4	255.5	253.6	251.7	249.9	246.3	242.8
2580	265.4	264.4	262.3	260.4	258.4	256.5	254.6	252.7	250.9	247.3	243.7
2590	267.4	265.4	263.4	261.4	259.4	257.5	255.6	253.7	251.8	248.2	244.7
2600	268.5	266.4	264.4	262.4	260.4	258.5	256.6	254.7	252.8	249.2	245.6
2610	269.5	267.4	265.4	263.4	261.4	259.5	257.5	255.6	253.8	250.1	246.5
2620	270.5	268.5	266.4	264.4	262.4	260.5	258.5	256.6	254.8	251.1	247.5
2630	271.6	269.5	267.4	265.4	263.4	20 I. 5	259.5	257.6	255.7	252.0	248.4
2640	272.6	270.5	268.4	266.4	264.4	262.5	260.5	258.6	256.7	253.0	249.4
2650	273.6	271.5	269.5	267.4	265.4	263.4	261.5	259.6	257.7	254.0	250.3
2660	274.7	272.6	270.5	268.4	266.4	264.4	262.5	260.5	258.6	254.9	251.3
2670	275.7	273.6	271.5	269.4	267.4	265.4	263.5	26 I .5	259.6	255.9	252.2
2680	276.7	274.6	272.5	270.5	268.4	266.4	264.4	262.5	260.6	256.8	253.1
2690	277.7	275.6	273.5	271.5	269.4	267.4	265.4	263.5	261.6	257.8	254.I
2700	278.8	276.6	274.5	272.5	270.4	268.4	266.4	264.5	262.5	258.8	255.0
2710	279.8	277.7	275.6	273.5	271.4	269.4	267.4	265.4	263.5	259.7	256.0
2720	280.8	278.7	276.6	274.5	272.4	270.4	268.4	266.4	264.5	260.7	256.9
2730	281.9	279.7	277.6	275.5	273.4	271.4	269.4	267.4	265.4	261.6	257.9
2740	282.9	280.7	278.6	276.5	274.4	272.4	270.4	268.4	266.4	262.6	258.8
2750	283.9	281.8	279.6	277.5	275.4	273.4	271.4	269.4	267.4	263.5	259.8
2760	285.0	282.8	280.6	278.5	276.4	274.4	272.3	270.3	268.4	264.5	260.7
2770	286.0	283.8	28 I .7	279.5	277.4	275.4	273.3	271.3	269.3	265.5	26ז. 6
2780	287.0	284.8	282.7	280.5	278.4	276.4	274.3	272.3	270.3	266.4	262.6
2790	2S8.I	285.9	283.7	281.5	279.4	277.4	275.3	273.3	271.3	267.4	263.5
2800	289.1	286.9	284.7	282.6	280.4	278.3	276.3	$274 \cdot 3$	272.2	268.3	264.5
2810	290.1	287.9	285.7	283.6	281.4	279.3	277.3	275.2	273.2	269.3	265.4
2820	291.2	288.9	286.7	284.6	282.4	280.3	278.3	276.2	274.2	270.3	266.4
2830	292.2	290.0	287.8	285.6	283.4	28 I .3	279.2	277.2	275.2	271.2	267.3
2840	293.2	291.0	288.8	286.6	284.4	282.3	280.2	278.2	276.1	272.2	268.3
2850	294.3	292.0	289.8	287.6	255.4	283.3	28I. 2	279.2	277.I	273.1	269.2
2860	295.3	293.0	290.8	288.6	286.4	284.3	282.2	280.1	278.1	274.1	270.1
2870	296.3	294.1	291.8	289.6	287.4	285.3	283.2	281.1	279.0	275.0	271.1
2880	297.4	295.I	292.8	290.6	288.4	286.3	284.2	282.1	280.0	276.0	272.0
2890	298.4	296.1	293.8	291.6	289.4	287.3	285.2	283.1	281.0	277.0	273.0
2900	299.4	297.I	294.9	292.6	290.4	288.3	286.2	284.I	282.0	277.9	27.3 .9
2910	300.4	298.1	295.9	293.7	291.5	289.3	287.1	285.0	282.9	278.9	274.9
2920	301.5	299.2	296.9	294.7	292.5	290.3	288.1	286.0	283.9	279.8	275.8
2930	302.5	300.2	297.9	295.7	293.5	291.3	289.I	287.0	284.9	280.8	276.8
2940	303.5	301.2	298.9	296.7	294.5	292.3	290.1	288.0	285.9	2SI. 8	277.7
2950	304.6	302.2	299.9	297.7	295.5	293.3	291.I	289.0	286.8	282.7	278.6
2960	305.6	303.3	301.0	298.7	296.5	294.2	292.1	289.9	287.8	283.7	279.6
2970	306.6	304.3	302.0	299.7	297.5	295.2	293.I	290.9	288.8	284.6	280.5
2980	307.7	305.3	303.0	300.7	298.5	296.2	294.0	291.9	289.7	285.6	281.5
2990	308.7	306.3	304.0	301.7	299.5	297.2	295.0	292.9	290.7	286.5	282.4
3000	309.7	307.4	305.0	302.7	300.5	298.2	296.0	293.8	291.7	287.5	283.4

Table 18.

REDUCTION OF THE BAROMETER TO SEA LEVEL. METRIC MEASURES.

Correction of 2000 m for Latitude : $2000 m \times 0.002662 \cos 2 \phi$.
For latitudes 0° to 45°, the correction is to be subtracted.
For latitudes 45° to 90°, the correction is to be added.

2000 m .	LATITUDE.									
	0°	5°	10°	15°	20°	25°	30°	35°	40°	45°
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20	o. 1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30	o. 1	O.I	o. 1	o. 1	o. 1	o.r	0.0	0.0	0.0	0.0
40	0.1	0.1	o. 1	0.I	o. 1	0.1	0.1	0.0	0.0	0.0
50	0.1	0.1	0.1	0.1	o. I	o.r	0.I	0.0	0.0	0.0
60	0.2	0.2	0.2	0.1	o.r	0.1	0.I	о. 1	0.0	0.0
70	0.2	0.2	0.2	0.2	o. 1	0.1	0.I	o. 1	0.0	0.0
80	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.0	0.0
90	0.2	0.2	0.2	0.2	0.2	0.2	0.I	O. 1	0.0	0.0
100	0.3	0.3	0.3	0.2	0.2	0.2	o.r	o. I	0.0	0.0
İо	0.3	0.3	0.3	0.3	0.2	0.2	0.1	O. 1	o.r	0.0
120	0.3	0.3	0.3	0.3	0.2	0.2	0.2	o. 1	o. 1	0.0
130	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.1	0.1	0.0
140	0.4	0.4	0.4	0.3	0.3	0.2	0.2	o. 1	0.1	0.0
150	0.4	0.4	0.4	0.3	0.3	0.3	0.2	o. 1	0.1	0.0
160	0.4	0.4	0.4	0.4	0.3	0.3	0.2	o. 1	0.1	0.0
170	0.5	0.4	0.4	0.4	0.3	0.3	0.2	0.2	o. 1	0.0
180	0.5	0.5	0.5	0.4	0.4	0.3	0.2	0.2	0.1	0.0
190	0.5	0.5	0.5	0.4	0.4	0.3	0.3	0.2	0.1	0.0
200	0.5	0.5	0.5	0.5	0.4	0.3	0.3	0.2	0.1	0.0
210	0.6	0.6	0.5	0.5	0.4	0.4	0.3	0.2	0.1	0.0
220	0.6	0.6	0.6	0.5	0.4	0.4	0.3	0.2	o.r	0.0
230	0.6	0.6	0.6	0.5	0.5	0.4	0.3	0.2	0.1	0.0
240	0.6	0.6	0.6	0.6	0.5	0.4	0.3	0.2	O. 1	0.0
250	0.7	0.7	0.6	0.6	0.5	0.4	0.3	0.2	O.I	0.0
260	0.7	0.7	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.0
270	0.7	0.7	0.7	0.6	0.6	0.5	0.4	0.2	O.I	0.0
280	0.7	0.7	0.7	0.6	0.6	0.5	0.4	0.3	O. 1	0.0
290	0.8	0.8	0.7	0.7	0.6	0.5	0.4	0.3	O. 1	0.0
300	0.8	0.8	0.8	0.7	0.6	0.5	0.4	0.3	0.I	0.0
310	0.8	0.8	0.8	0.7	0.6	0.5	0.4	0.3	0.1	0.0
320	0.9	0.8	0.8	0.7	0.7	0.5	0.4	0.3	0.1	0.0
330	0.9	0.9	0.8	0.8	0.7	0.6	0.4	0.3	0.2	0.0
340	0.9	0.9	0.9	0.8	0.7	0.6	0.5	0.3	0.2	0.0
350	0.9	0.9	0.9	0.8	0.7	0.6	0.5	0.3	0.2	0.0
	90°	85°	80°	75°	70°	65°	60°	55°	50°	45°

Table 19.

REDUCTION OF THE BAROMETER TO SEA LEVEL. METRIC MEASURES.
 $B-B=B\left(10^{m}-1\right)$.

Top argument: Height of the barometer (B).
Side argument: Values of 2000 m obtained from Table 17.

2000 m .	HEIGHT OF THE BAROMETER IN MILLIMETRES.										
	790	780	770	760	750	740	730	720	710	700	690
	mm.	mm.	mm .	mm .	mm .	mm.	mm .				
I	0.9	0.9	0.9	0.9	0.9	0.9	0.8	0.8	0.8	0.8	0.8
2	1.8	1.8	1.8	1.8	1.7	1.7	1.7	1.7	1.6	1.6	I. 6
3	2.7	2.7	2.7	2.6	2.6	2.6	2.5	2.5	2.5	2.4	2.4
4	3.6	3.6	3.6	$3 \cdot 5$	3.5	3.4	3.4	$3 \cdot 3$	$3 \cdot 3$	3.2	3.2
5	4.6	$4 \cdot 5$	4.4	4.4	$4 \cdot 3$	$4 \cdot 3$	4.2	4.2	4. 1	4.0	4.0
6	$5 \cdot 5$	5.4	$5 \cdot 3$	$5 \cdot 3$	5.2	5.1	5.1	5.0	4.9	4.9	4.8
7	6.4	6.3	6.2	6.1	6.1	6.0	5.9	5.8	5.7	5.7	5.6
8	$7 \cdot 3$	7.2	7.1	7.0	6.9	6.8	6.8	6.7	6.6	6.5	6.4
9	8.2	8.1	8.0	7.9	7.8	7.7	7.6	7.5	$7 \cdot 4$	7.3	7.2
10	9.1	9.0	8.9	8.8	8.7	8.6	8.5	8.3	8.2	8.1	8.0
II	IO. I	9.9	9.8	9.7	9.6	9.4	9.3	9.2	9.0	8.9	8.8
12	11.0	10.9	10.7	10.6	10.4	10.3	10.2	10.0	9.9	9.7	9.6
13	II. 9	11.8	11.6	11.5	11.3	II. 2	11.0	10.9	10.7	10.6	10.4
14	12.8	12.7	12.5	12.3	12.2	12.0	11.9	11.7	11.5	II. 4	11.2
15	13.8	13.6	13.4	13.2	13. 1	12.9	12.7	12.5	12.4	12.2	12.0
16	14.7	14.5	14.3	14.1	13.9	13.8	13.6	13.4	13.2	13.0	12.8
17	15.6	15.4	15.2	15.0	14.8	14.6	14.4	14.2	14.0	13.8	13.6
18	16.5	16.3	16.1	15.9	15.7	15.5	15.3	15.1	14.9	14.7	14.4
I9	17.5	17.3	17.0	16.8	16.6	16.4	16. 1	15.9	15.7	15.5	15.3
20	I8.4	18.2	17.9	17.7	17.5	17.2	17.0	16.8	16.5	16.3	16.1
21	19.3	19.1	18.8	18.6	18.4	18.1	17.9	17.6	17.4	17.1	16.9
22		20.0	19.8	19.5	19.2	19.0	18.7	18.5	18.2	18.0	17.7
23		20.9	20.7	20.4	20.1	19.9	19.6	19.3	19.1	18.8	18.5
24		21.9	21.6	21.3	21.0	20.7	20.5	20.2	19.9	19.6	19.3
25		22.8	22.5	22.2	21.9	21.6	21.3	21.0	20.7	20.4	20.1
26		23.7	23.4	23.1	22.8	22.5	22.2	21.9	21.6	21.3	21.0
27		24.6	24.3	24.0	23.7	23.4	23.0	22.7	22.4	22.1	21.8
28		25.6	25.2	24.9	24.6	24.2	23.9	23.6	23.3	22.9	22.6
29		26.5	26.1	25.8	25.5	25.1	24.8	24.4	24.1	23.8	23.4
30		27.4	27.1	26.7	26.4	26.0	25.7	25.3	25.0	24.6	24.2
3 I		28.3	28.0	27.6	27.3	26.9	26.5	26.2	25.8	25.4	25. I
32		29.3	28.9	28.5	28.1	27.8	27.4	27.0	26.6	26.3	25.9
33		30.2	29.8	29.4	29.0	28.7	28.3	27.9	27.5	27.1	26.7
34			30.7	30.3	29.9	29.5	29.I	28.7	28.3	27.9	27.5
				31.2	30.8	30.4	30.0	29.6	29.2	28.8	28.4
36			32.6	32.2	31.7	3 I .3	30.9	30.5	30.0	29.6	29.2
37			33.5	33. 1	32.6	32.2	31.8	31.3	30.9	30.5	30.0
38			34.4	34.0	33.5	33.1	32.6	32.2	31.8	31.3	30.9
39			35.4	34.9	34.4	34.0	33.5	33.1	32.6	32.1	31.7
40			36.3	35.8	$35 \cdot 3$	34.9	34.4	33.9	33.5	33.0	32.5

Table 19.
REDUCTION OF THE BAROMETER TO SEA LEVEL.
METRIC MEASURES.
$B_{0}-B=B\left(10^{m}-1\right)$.
Top argument: Height of the barometer (B).
Side argument: Values of 2000 m obtained from Table 17.

2000 m.	height of the barometer in millimetres.										
	760	750	740	730	720	710	700	690	680	670	660
	mm.	mm.	mm.	mm.	mm.	mm .	mm.	mm.	mm	mm.	mm.
40	35.8	35.3	34.9	34.4	33.9	33.5	33.0	32.5	32.0	31.6	3 I .1
4 I	36.7	36.3	35.8	35.3	34.8	34.3	33.8	33.4	32.9	32.4	31.9
42	37.7	37.2	36.7	36.2	35.7	35.2	34.7	34.2	33.7	33.2	32.7
43	38.6	38.1	37.6	37.0	36.5	36.0	35.5	35.0	34.5	34.8	33.5
44	39.5	39.0	38.5	37.9	37.4	36.9	36.4	35.9	$35 \cdot 3$	34.8	34.3
45	40.4	39.9	39.3	38.8	38.3	37.8	37.2	36.7	36.2	35.6	35. I
46	4 I .3	40.8	40.2	39.7	39.2	38.6	38. 1	37.5	37.0	36.4	35.9
47	42.3	41.7	4 I .1	40.6	40.0	39.5	38.9	38.4	37.8	37.3	36.7
48	43.2	42.6	42.0	41.5	40.9	40.3	39.8	39.2	38.6	38.1	37.5
49	44. I	43.5	42.9	42.4	4 I .8	41.2	40.6	40.0	39.5	38.9	38.3
50	45.0	44.4	43.8	43.3	42.7	42.1	4 I .5	40.9	40.3	39.7	39.1
51	46.0	45.4	44.8	44.1	43.5	42.9	42.3	41.7	4 I .1	40.5	39.9
52	46.9	46.3	45.7	45.0	44.4	43.8	43.2	42.6	42.0	41.3	40.7
53	47.8	47.2	46.6	45.9	45.3	44.7	44.0	43.4	42.8	42.2	41.5
54	48.7	48.1	47.5	46.8	46.2	45.5	44.9	44.3	43.6	43.0	42.3
55	49.7	49.0	48.4	47.7	47.1	46.4	45.8	45. I	44.5	43.8	43.1
56	50.6	49.9	49.3	48.6	47.9	47.3	46.6	46.0	45.3	44.6	44.0
57	51.5	50.9	50.2	49.5	48.8	48.2	47.5	46.8	46.1	45.4	44.8
58	52.5	51.8	5 I .1	50.4	49.7	49.0	48.3	47.6	47.0	46.3	45.6
59	53.4	52.7	52.0	51.3	50.6	49.9	49.2	48.5	47.8	47. I	46.4
60		53.6	52.9	52.2	51.5	50.8	50.1	49.3	48.6	47.9	47.2
61		54.6	53.8	53. 1	52.4	51.7	50.9	50.2	49.5	48.7	48.0
62		55.5	54.8	54.0	53.3	52.5	51.8	51.1	50.3	49.6	48.8
63		56.4	55.7	54.9	54.2	53.4	52.7	51.9	51.2	50.4	49.6
64		57.3	56.6	55.8	55.I	$54 \cdot 3$	53.5	52.8	52.0	51.2	50.5
65		58.3	57.5	56.7	55.9	55.2	54.4	53.6	52.8	52.1	5 I .3
66		59.2	58.4	57.6	56.8	56.1	55.3	54.5	53.7	52.9	52.1
67		60.1	59.3	58.5	57.7	56.9	56.1	55.3	54.5	53.7	52.9
68			60.3	59.4	58.6	57.8	57.0	56.2	55.4	54.6	53.7
69			6 I .2	60.4	59.5	58.7	57.9	57.0	56.2	55.4	54.6
70			62.1	61.3	60.4	59.6	58.7	57.9	57.1	56.2	55.4
71			63.0	62.2	61.3	60.5	59.6	58.8	57.9	57.1	56.2
72			64.0	63.1	62.2	$6 \mathrm{6I} 4$	60.5	59.6	58.8	57.9	57.0
73				64.0	63.1	62.3		60.5	59.6	58.7	57.9
74			65.8	64.9	64.0	63.1	62.3	61.4	60.5	59.6	58.7
75			66.7	65.8	64.9	64.0	63.1	62.2	61.3	60.4	59.5
76			67.7	66.8	65.8	64.9	64.0	63.1	62.2	6 I .3	60.4
77			68.6	67.7	66.7	65.8	64.9	64.0	63.0	62.1	61.2
78			69.5	68.6	67.6	66.7	65.8	64.8	63.9	63.0	62.0
79			70.5	69.5	68.6	67.6	66.7	65.7	64.7	63.8	62.8
80				70.4	69.5	68.5	67.5	66.6	65.6	64.6	63.7
81				7 I .4	70.4	69.4	68.4	67.4	66.5	65.5	64.5
82				72.3	71.3	70.3	69.3	68.3	67.3	66.3	65.3
83				73.2	72.2	71.2	70.2	69.2	68.2	67.2	66.2
84				74.1	73.1	72.1	71.1	70.1	69.0	68.0	67.0
85				75.0	74.0	73.0	72.0	70.9	69.9	68.9	67.9

TABLE 19.
REDUCTION OF THE BAROMETER TO SEA LEVEL. METRIC MEASURES.
$B 0-B=B\left(10^{m}-1\right)$.
Top argument: Height of the barometer (B).
Side argument: Values of 2000 m obtained from Table 17.

2000 m.	HEIGHT OF THE BAROMETER IN MILLIMETRES.									
	720	710	700	690	680	670	660	650	640	630
	mm.	mm.	mm .							
80	69.5	68.5	67.5	66.6	65.6	64.6	63.7	62.7	61.7	60.8
81	70.4	69.4	68.4	67.4	66.5	65.5	64.5	63.5	62.6	61.6
82	71.3	70.3	69.3	68.3	67.3	66.3	65.3	64.4	63.4	62.4
83	72.2	71.2	70.2	69.2	68.2	67.2	66.2	65.2	64.2	63.2
84	73.1	72.1	7 I .1	70.1	69.0	68.0	67.0	66.0	65.0	64.0
85	74.0	73.0	72.0	70.9	69.9	68.9	67.9	66.8	65.8	64.8
86	74.9	73.9	72.9	71.8	70.8	69.7	68.7	67.7	66.6	65.6
87	75.9	74.8	73.7	72.7	71.6	70.6	69.5	68.5	67.4	66.4
88	76.8	75.7	74.6	73.6	72.5	71.4	70.4	69.3	68.2	67.2
89	77.7	76.6	75.5	74.5	73.4	72.3	71.2	70.1	69.1	68.0
90	78.6	77.5	76.4	75.3	74.2	73.1	72.1	71.0	69.9	68.8
91	79.5	78.4	77.3	76.2	75.1	74.0	72.9	71.8	70.7	69.6
92	80.4	79.3	78.2	77. I	76.0	74.9	73.7	72.6	71.5	70.4
93	8 I .4	80.2	79.1	78.0	76.8	75.7	74.6	73.5	72.3	71.2
94	82.3	8I. I	80.0	78.9	77.7	76.6	75.4	$74 \cdot 3$	73.1	72.0
95	83.2	82.1	80.9	79.7	78.6	77.4	76.3	75.I	74.0	72.8
96	84.1	83.0	8 r .8	80.6	79.5	78.3	77.1	76.0	74.8	73.6
97	85.1	83.9	82.7	8 I .5	80.3	79.2	78.0	76.8	75.6	74.4
98	86.0	84.8	83.6	82.4	8 I .2	80.0	78.8	77.6	76.4	75.2
99	86.9	85.7	84.5	83.3	S2. I	80.9	79.7	78.5	77.3	76.1
100	87.9	86.6	85.4	84.2	83.0	8r 8	80.5	79.3	78.1	76.9
IOI	88.8	87.6	86.3	85.1	83.9	82.6	8 I .4	80.2	78.9	77.7
102	89.7	88.5	87.2	86.0	84.7	83.5	82.2	81.0	79.7	78.5
103	90.6	89.4	88.1	86.9	85.6	84.4	83.1	8 I .8	80.6	79.3
104		90.3	89.0	87.8	86.5	85.2	84.0	82.7	81.4	80.1
105		91.2	89.9	88.7	87.4	86. I	84.8	83.5	82.2	8 I .0
106		92.2	90.9	89.6	88.3	87.0	85.7	84.4	83.1	81. 8
107		93.1	91.8	90.5	89.1	87.8	86.5	85.2	83.9	82.6
108		94.0	92.7	91.4	90.0	88.7	87.4	86. 1	84.7	83.4
109		94.9	93.6	92.3	90.9	89.6	88.2	86.9	85.6	84.2
110		95.9	94.5	93.2	91.8	90.5	89.1	87.8	86.4	85.1
III		96.8	95.4	94.1	92.7	91.3	90.0	88.6	87.2	85.9
112		97.7	96.3	95.0	93.6	92.2	90.8	89.5	88.1	86.7
II3		98.6	97.3	95.9	94.5	93.1	91.7	90.3	88.9	87.5
II4		99.6	98.2	96.8	95.4	94.0	92.6	91.2	89.8	88.4
115		100.5	99.1	97.7	96.3	94.8	93.4	92.0	90.6	89.2
116			100.0	98.6	97.2	95.7	94.3	92.9	91.4	90.0
117			100.9	99.5	98.1	96.6	95.2	93.7	92.3	90.8
118			101. 9	100.4	98.9	97.5	96.0	94.6	93.1	91.7
I19			102.8	101.3	99.8	98.4	96.9	95.4	94.0	92.5
120			103.7	102.2	100.7	99.3	97.8	96.3	94.8	$93 \cdot 3$
121			104.6	103. 1	101.6	100. 1	98.7	97.2	95.7	94.2
122			105.6	104.1	102.5	Ioi.o	99.5	98.0	96.5	95.0
123			106.5	105.0	103.4	IOI. 9	100.4	98.9	97.4	95.8
124			107.4	105.9	104.3	102.8	IOI. 3	99.7	98.2	96.7
125			108.3	106.8	105.3	103.7	102.2	100.6	99. I	97.5

Table 19.
REDUCTION OF THE BAROMETER TO SEA LEVEL. METRIC MEASURES.
$B_{0}-B=B\left(10^{m}-1\right)$.
Top argument: Height of the barometer (B).
Side argument: Values of 2000 m obtained from Table 17.

2000 m.	HEIGHT OF THE BAROMETER IN MILLIMETRES.									
	690	680	670	660	650	640	630	620	610	600
	mm.	mm.	mm .	mm .	mm .	mm .	mm.	mm.	mm .	mm .
125	106.8	105.3	103.7	102.2	100.6	99.1	97.5	96.0	94.4	92.9
126	107.7	106.2	104.6	103.0	IOI. 5	99.9	98.4	96.8	95.2	93.7
127	108.6	107.1	105.5	103.9	102.3	100.8	99.2	97.6	96.0	94.5
128	109.6	108.0	106.4	104.8	103.2	IOI. 6	100.0	98.4	96.9	95.3
129	IIO. 5	108.9	107.3	105.7	104. 1	102.5	100.9	99.3	97.7	96.1
130	III. 4	109.8	108.2	106.6	104.9	103.3	101.7	100. 1	98.5	96.9
131	II2.3	110.7	109. 1	107.4	105.8	104.2	102.6	100.9	99.3	97.7
132	II 3.2	III. 6	110.0	108.3	106.7	105.0	103.4	101. 8	100.1	98.5
133	II4.2	II2.5	110.9	109.2	107.6	105.9	104.2	102.6	100.9	99.3
134	II5.I	II3.4	111.8	IIO.I	108.4	106.8	105.I	103.4	IOI. 8	100.1
135	II6.0	II4.3	II 2.7	III.O	109.3	107.6	105.9	$104 \cdot 3$	102.6	100.9
136	117.0	II5.3	113.6	III. 9	110.2	108.5	106.8	105.1	103.4	101.7
137	117.9	I16.2	114.5	II2.8	III.I	109.3	107.6	105.9	104.2	102.5
138	I 18.8	117.1	115.4	113.6	III. 9	I 10.2	108.5	106.8	105.0	103.3
139	119.7	I 18.0	II6.3	II4.5	II 2.8	III.I	109.3	107.6	105.9	104.I
140	120.7	II8.9	117.2	115.4	113.7	III. 9	110.2	108.4	106.7	IU4.9
141	I21. 6	119.9	118.1	II6.3	114.6	112.8	III.O	109.3	107.5	105.8
142		120.8	119.0	117.2	115.4	113.7	III. 9	IIO.I	108.3	106.6
143		121.7	119.9	II8.I	116.3	II4.5	II2.7	III.O	109.2	107.4
144		122.6	120.8	II9.0	117.2	II 5.4	II 3.6	III. 8	I 10.0	108.2
145		123.5	121.7	119.9	II8. 1	II6.3	I14.5	112.6	110.8	109.0
146		124.5	122.6	120.8	119.0	117.1	II5.3	II3.5	III.7	109.8
147		125.4	123.6	121.7	119.9	118.0	I16.2	114.3	II2.5	IIO 6
148		126.3	124.5	122.6	120.7	118.9	117.0	115.2	113.3	III. 5
149		127.3	125.4	123.5	121.6	119.8	II7.9	II6.0	II4.2	II 2.3
150		128.2	I26.3	124.4	122.5	120.6	II8.8	II6.9	115.0	II3. 1
151		129.1	127.2	125.3	123.4	121.5	119.6	117.7	II5.8	II3.9
152		130.0	128.I	I26.2	124.3	122.4	120.5	II8.6	II6.7	114.7
153		13 I .0	129.1	127.1	125.2	123.3	121.3	I19.4	117.5	II5.6
I54			130.0	128.0	126.1	124.2	122.2	120.3	118.3	116.4
155			I30.9	128.9	127.0	125.0	123.1	121.1	I19.2	117.2
I56			131.8	129.8	127.9	125.9	123.9	122.0	120.0	118.0
157			132.7	130.8	128.8	126.8	124.8	122.8	120.9	118.9
158			133.7	131.7	129.7	127.7	125.7	123.7	121.7	119.7
159			I34.6	I32.6	I30.6	128.6	126.6	124.5	122.5	120.5
160			I35.5	I 33.5	131.5	129.4	127.4	125.4	123.4	121.4
161			136.4	I 34.4	I32.4	130.3	128.3	126.3	124.2	122.2
162			I 37.4	I 35.3	133.3	131.2	129.2	127.1	125.1	123.0
163			138.3	I 36.2	134.2	132.1	130.0	128.0	125.9	123.9
164			I 39.2	I 37.2	I 35. I	I 33.0	130.9	I28.8	126.8	124.7
165			140.2	138.1	136.0	133.9	1.31. 8	129.7	127.6	125.5
166			141. I	I39.0	I36.9	I 34.8	132.7	130.6	128.5	126.4
167			142.0	I39.9	137.8	I 35.7	133.6	131.4	129.3	127.2
168				140.8	138.7	I 36.6	I 34.4	132.3	I30.2	128.0
169				141.8	I39.6	I 37.5	I 35.3	I 33.2	131.0	128.9
170				142.7	140.5	I38.4	I36.2	134.0	131.9	129.7

TABLE 19.

REDUCTION OF THE BAROMETER TO SEA LEVEL.

 METRIC MEASURES.$B_{0}-B=B\left(10^{m}-1\right)$.
Top argument: Height of the barometer (B).
Side argument: Values of 2000 m obtained from Table 17.

2000 m.	HEIGHT OF THE BAROMETER IN MILIIMETRES.									
	650	640	630	620	610	600	590	580	570	560
	mm .	mm.	mm .	mm.	mm.	mm .				
170	140.5	I38.4	I36.2	I34.0	131.9	129.7	127.5	125.4	123.2	12I.I
171	141.4	139.3	137.1	134.9	132.7	130.6	128.4	126.2	124.0	121.8
172	142.3	140.2	138.0	135.8	133.6	I31. 4	129.2	127.0	124.8	122.6
173	143.3	141.I	138.8	136.6	134.4	I32.2	130.0	127.8	I25.6	123.4
174	144.2	142.0	139.7	137.5	135.3	133.I	I30.9	128.6	126.4	124.2
175	145. I	142.9	140.6	I38.4	136.2	133.9	131.7	129.5	I27.2	125.0
176	146.0	143.8	141.5	139.3	137.0	134.8	${ }^{1} 32.5$	130.3	128.0	125.8
177	146.9	144.7	142.4	140.1	137.9	I 35.6	133.4	13 I .1	128.8	I26.6
178	147.8	145.6	143.3	141.0	138.7	I36.5	I34.2	131.9	129.6	127.4
179	148.8	146.5	144.2	141.9	139.6	137.3	135.0	132.7	I30.4	128.2
180	149.7	147.4	I45.1	142.8	140.5	I38.2	135.9	133.6	131.3	129.0
181	150.6	148.3	146.0	143.6	141.3	139.0	136.7	134.4	I32.I	129.7
182	151.5	149.2	146.9	144.5	142.2	139.9	137.5	135.2	132.9	130.5
183	152.4	150. 1	147.8	145.4	143.1	140.7	${ }^{1} 38.4$	136.0	I 33.7	I31.3
184	153.4	151.0	148.6	146.3	143.9	141.6	139.2	I36.8	I 34.5	132.1
185	154.3	151.9	149.5	147.2	144.8	142.4	140.0	137.7	135.3	132.9
186	155.2	152.8	150.4	148. I	145.7	143.3	140.9	138.5	I36. I	133.7
187	156. 1	153.7	151.3	148.9	146.5	144.1	141.7	139.3	136.9	134.5
188	157. I	154.7	152.2	149.8	147.4	145.0	142.6	140.2	137.7	135.3
189	158.0	I55.6	I53. I	150.7	148.3	145.8	143.4	141.0	I38.6	I36. I
190	158.9	156.5	154.0	151.6	149.2	146.7	144.3	141.8	I39.4	I36.9
191	159.9	157.4	154.9	152.5	150.0	147.6	I45. I	142.7	140.2	137.7
192	160.8	158.3	155.9	153.4	150.9	148.4	146.0	143.5	141.0	138.5
193	161.7	159.2	156.8	154.3	151.8	149.3	146.8	144.3	141.8	139.3
194		160.2	${ }^{1} 57.7$	I55.2	152.7	150.2	147.7	145.2	142.6	I40. 1
195		161.I	158.6	156. 1	153.5	151.0	148.5	146.0	143.5	141.0
196		162.0	159.5	156.9	I54.4	151.9	149.4	146.8	144.3	141.8
197		162.9	160.4	157.8	155.3	152.8	150.2	147.7	145. I	142.6
198		163.9	161.3	158.7	156.2	153.6	15 I .1	148.5	145.9	143.4
199		164.8	162.2	159.6	157.1	154.5	151.9	149.3	146.8	144.2
200		165.7	163.1	160.5	157.9	155.4	152.8	150.2	147.6	145.0
201		166.6	164.0	161.4	158.8	156.2	153.6	151.0	148.4	145.8
202		167.6	165.0	162.3	159.7	157.1	${ }^{1} 54.5$	${ }_{151} 5$	149.2	146.6
203		168.5	165.9	163.2	160.6	158.0	${ }^{1} 55.3$	152.7	150.1	147.4
204		169.4	166.8	164.1	161.5	158.8	156.2	I53.5	150.9	148.3
205		170.4	167.7	165.0	162.4	159.7	157.1	154.4	151.7	I49.I
206		171.3	168.6	165.9	163.3	160.6	157.9	155.2	152.6	149.9
207		172.2	169.5	166.8	164.2	161.5	158.8	156.1	153.4	150.7
208			170.5	167.8	165.1	162.3	159.6	156.9	154.2	${ }^{1} 51.5$
209			171.4	168.7	165.9	163.2	160.5	157.8	155. I	152.3
210			172.3	169.6	166.8	164.1	161.4	158.6	155.9	153.2
211			173.2	170.5	167.7	165.0	162.2	159.5	156.7	154.0
212			174.2	171.4	168.6	165.9	163.1	160.3	157.6	154.8
213			175.1	172.3	169.5	166.7	164.0	161.2	158.4	${ }^{1} 55.6$
214			176.0	173.2	170.4	167.6	164.8	162.0	159.2	I56.5
215			r76.9	174.I	171.3	168.5	165.7	162.9	160. 1	157.3

table 19.
REDUCTION OF THE BAROMETER TO SEA LEVEL. METRIC MEASURES.
$B-B=B\left(10^{m}-1\right)$.
Top argument: Height of the barometer (B).
Side argument: Values of 2000 m obtained from Table 17.

2000 m.	HEIGHT OF THE BAROMETER IN MILLIMETRES.									
	620	610	600	590	580	570	560	550	540	530
	mm.	mm.	mm	mm.	mm.	mm.	mm.	mm.	mm.	mm.
215	174. 1	${ }^{171.3}$	168.5	165.7	162.9	160.1	157.3	154.5	151.7	148.9
216	175.0	172.2	169.4	166.6	163.8	160.9	158.1	155.3	${ }_{152.5}$	149.6
217	176.0	173.1	170.3	167.4	164.6	161.8	158.9	156.1	153.3	150.4
218	176.9	174.0	171.2	168.3	165.5	162.6	159.8	156.9	154.I	151.2
219	177.8	174.9	172.1	169.2	166.3	163.5	160.6	157.7	154.9	152.0
220	178.7	175.8	172.9	170.1	167.2	164.3	${ }^{161.4}$	158.5	155.7	152.8
221	179.6	176.7	173.8	170.9	168.0	165.1	162.3	159.4	156.5	153.6
222	180.6	177.6	174.7	171.8	168.9	166.0	163.1	160.2	157.3	154.3
223	18 I .5	178.6	175.6	172.7	169.8	166.8	163.9	161.0	158.1	155.1
224	182.4	179.5	176.5	173.6	170.6	167.7	164.7	161. 8	158.9	155.9
225	183.3	180.4	177.4	174.5	171.5	168.5	165.6	162.6	159.7	156.7
226	184.3	181.3	178.3	175.3	172.4	169.4	166.4	163.4	160.5	157.5
227	185.2	182.2	179.2	176.2	173.2	170.2	167.3	164.3	161.3	158.3
228	186.1	183.1	180.1	177.1	174. I	171.1	168.1	165.1	162.1	159. 1
229	187.0	184.0	181.0	178.0	175.0	172.0	168.9	165.9	162.9	159.9
230	188.0	184.9	181.9	178.9	175.8	172.8	169.8	166.7	163.7	160.7
231	188.9	185.8	182.8	179.8	176.7	173.7	170.6	167.6	164.5	${ }^{161.5}$
232	189.8	186.8	183.7	180.6	177.6	174.5	171.5	168.4	165.3	162.3
233	190.8	187.7	184.6	181.5	178.5	175.4	172.3	169.2	166.1	163.1
234	191.7	188.6	185.5	182.4	179.3	176.2	173. 1	170.0	167.0	163.9
235	192.6	189.5			180.2		174.0	170.9	167.8	164.7
236		190.4	187.3	184.2	18 r .1	178.0	174.8	171.7	168.6	165.5
237		191.4	188.2	185.1	182.0	178.8	175.7	172.5	169.4	166.3
238		192.3	189.1	186.0	182.8	179.7	176.5	173.4	170.2	167. I
239		193.2	190.0	186.9	183.7	180.5	177.4	174.2	171.0	167.9
240		194.1	191.0	187.8	184.6	181.4	178.2	175.0	171.9	168.7
241		195. I	191.9	188.7	185.5	182.3	179.1	175.9	172.7	169.5
242		196.0	192.8	189.6	186.4	183. 1	179.9	176.7	173.5	170.3
243		196.9	193.7	190.5	187.2	184.0	180.8	177.5	174.3	17 I .1
244		197.8	194.6	191.4	I88. 1	184.9	181.6	178.4	175. 1	171.9
245		198.8	195.5	192.3	189.0	185.7	182.5	179.2	176.0	172.7
246		199.7	196.4	193.2	189.9	186.6	183.3	180.1	176.8	173.5
247		200.6	197.4	194. I	190.8	187.5	184.2	180.9	177.6	174.3
248		201.6	198.3	195.0	191.7	188.4	185.1	181.7	178.4	175.1
249		202.5	199.2	195.9	192.6	189.2	185.9	182.6	179.3	176.0
250			200.1	196.8	193.4	190.1	186.8	183.4	180.1	176.8
251			201.0	197.7	194.3	191.0	187.6	184.3	180.9	177.6
252			202.	198.6	195.2	191.9	188.5	185.1	181.8	178.4
253			202.9	199.5	196.I	192.7	189.4		182.6	179.2
254			203.8	200.4	197.0	193.6	190.2	186.8	183.4	180.0
255			204.7	201.3	197.9	194.5	191.1	187.7	184.3	180.8
256			205.7	202.2	198.8	195.4	191.9	188.5	185.1	181.7
${ }^{257}$			206.6	203.1	199.7	196.3	192.8	189.4	185.9	182.5
258 259			207.5 208.4	204.1 205.0	200.6 201.5	197.1 198.0	193.7 194.6	190.2 191.1	186.8 1876	183.3 184.1
260			209.4	205.9	202.4	198.9	195.4	191.9	188.4	185.0

TABLE 13.
REDUCTION OF THE BAROMETER TO SEA LEVEL.
METRIC MEASURES.

$$
B_{0}-B=B\left(10^{m}-1\right)
$$

Top argument: Height of the barometer (B).
Side argument: Values of 2000 m obtained from Table 17.

2000 m.	HEIGHT OF THE BAROMETER IN MILLIMETRES.								
	590	580	570	560	550	540	530	520	510
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm .
260	205.9	202.4	198.9	195.4	191.9	188.4	185.0	181.5	178.0
261	206.8	203.3	199.8	196.3	192.8	189.3	185.8	182.3	178.8
262	207.7	204.2	200.7	197.2	193.6	190.1	186.6	183.1	179.6
263	208.6	205. I	201.6	198.0	194.5	191.0	187.4	183.9	180.4
264	209.6	206.0	202.5	198.9	195.4	191.8	188.3	184.7	181. 1
265	210.5	206.9	203.3	199.8	196.2	192.6	189.1	185.5	181.9
266	211.4	207.8	204.2	200.7	197.1	193.5	189.9	186.3	182.7
267	212.3	208.7	205. 1	201.5	197.9	194.3	190.7	187.1	183.5
268	213.3	209.6	206.0	202.4	198.8	195.2	191.6	188.0	184.3
269	214.2	210.5	206.9	203.3	199.7	196.0	192.4	188.8	185.1
270	215.1	211.5	207.8	204.2	200.5	196.9	193.2	189.6	185.9
271	216.0	212.4	208.7	205.0	201.4	197.7	194.1	190.4	186.7
272	217.0	213.3	209.6	205.9	202.3	198.6	194.9	191.2	187.5
273	217.9	214.2	210.5	206.8	203.1	199.4	195.7	192.0	188.3
274	218.8	215.1	211.4	207.7	204.0	200.3	196.6	192.9	189. 1
275	219.8	216.0	212.3	208.6	204.9	201.1	197.4	193.7	190.0
276	220.7	216.9	213.2	209.5	205.7	202.0	198.2	194.5	190.8
277	221.6	217.9	214.1	210.3	206.6	202.8	199.I	195.3	191. 6
278	222.6	218.8	215.0	211.2	207.5	203.7	199.9	196.1	192.4
279	223.5	219.7	215.9	212.1	208.3	204.5	200.8	197.0	193.2
280		220.6	216.8	213.0	209.2	205.4	201.6	197.8	194.0
281		221.5	217.7	213.9	210.1	206.3	202.4	198.6	194.8
282		222.5	218.6	214.8	211.0	207.1	203.3	199.5	195.6
283		223.4	219.5	215.7	211.8	208.0	203.1	200.3	196.4
284		224.3	220.5	216.6	212.7	208.8	205.0	201.1	197.2
285		225.2	221.4	217.5	213.6	209.7	205.8	201.9	198. 1
286		226.2	222.3	218.4	214.5	210.6	206.7	202.8	198.9
287		227.1	223.2	219.3	215.4	2 II .4	207.5	203.6	199.7
288		228.0	224.1	220.2	216.2	212.3	208.4	204.4	200.5
289		229.0	225.0	221. I	217.1	213.2	209.2	205.3	20 I .3
290		229.9	225.9	222.0	218.0	214.0	210.1	206.1	202.I
291		230.8	226.8	222.9	218.9	214.9	210.9	206.9	203.0
292		231.8	227.8	223.8	219.8	215.8	211.8	207.8	203.8
293		232.7	228.7	224.7	220.7	216.6	212.6	208.6	204.6
294		233.6	229.6	225.6	221.5	217.5	2 I 3.5	209.5	205.4
295			230.5	226.5	222.4	218.4	214.3	210.3	206.3
296			231.4	227.4	223.3	219.3	215.2	211.1	207. I
297			232.4	228.3	224.2	220.1	216.1	212.0	207.9
298			$233 \cdot 3$	229.2	225.1	221.0	216.9	212.8	208.7
299			234.2	230.1	226.0	221.9	217.8	213.7	209.6
300			235. I	231.0	226.9	222.8	218.6	214.5	210.4
301			236.1	231.9	227.8	223.6	219.5	215.4	2 II .2
302			237.0	232.8	228.7	224.5	220.4	216.2	212.1
303			237.9	233.8	229.6	225.4	221.2	217.1	212.9
304		-	238.9	234.7	230.5	226.3	222.I	217.9	213.7
305			239.8	235.6	231.4	227.2	223.0	218.8	214.6

TAble 19.
REDUCTION OF THE BAROMETER TO SEA LEVEL. METRIC MEASURES.

$$
B_{0}-B=B\left(10^{m}-1\right) \text {. }
$$

Top argument: Height of the barometer (B).
Side argument : Values of 2000 m obtained from Table 17.

2000 m.	HEIGHT OF THE BAROMETER IN MILLIMETRES.								
	560	550	540	530	520	510	500	490	480
	mm .	mm .	mm.	mm.	mm .	mm.	mm.	mm.	mm.
305	235.6	231.4	227.2	223.0	218.8	214.6	210.3	206. I	201.9
306	236.5	232.3	228.0	223.8	219.6	215.4	211.2	206.9	202.7
307	237.4	233.2	228.9	224.7	220.5	216.2	212.0	207.7	203.5
308	238.3	234 . 1	229.8	225.6	221.3	217.1	212.8	208.5	204.3
309	239.2	235.0	230.7	226.4	222.2	217.9	213.6	209.4	205. 1
310	240.2	235.9	231.6	227.3	223.0	218.7	214.4	210.1	205.9
3 II	241. I	236.8	232.5	228.2	223.9	219.6	215.3	211.0	206.7
312	242.0	237.7	233.4	229.1	224.7	220.4	216.1	2II. 8	207.5
313	242.9	238.6	234.3	229.9	225.6	221.2	216.9	2I 2.6	208.2
314	243.9	239.5	235.2	230.8	226.4	222. 1	217.7	213.4	209.0
315	244.8	240.4	236.0	231.7	227.3	222.9	218.6	214.2	209.8
316	245.7	241.3	237.0	232.6	228.2	223.8	219.4	215.0	210.6
317	246.6	242.2	237.8	233.4	229.0	224.6	220.2	215.8	2 II .4
318	247.6	243.2	238.7	234.3	229.9	225.5	22I. 1	216.6	212.2
319	248.5	244.1	239.6	235.2	230.8	226.3	221.9	217.4	213.0
320	249.4	245.0	240.5	236. 1	231.6	227.2	222.7	218.3	213.8
321	250.4	245.9	241.4	237.0	232.5	228.0	223.6	219.1	214.6
322	251.3	246.8	242.3	237.8	233.4	228.9	224.4	219.9	215.4
323	252.2	247.7	243.2	238.7	234.2	229.7	225.2	220.7	216.2
324	253.2	248.7	244. I	239.6	235.1	230.6	226.0	221.5	217.0
325	254. I	249.6	245.0	240.5	236.0	231.4	226.9	222.4	217.8
326		250.5	245.9	241.4	236.8	232.3	227.7	223.2	218.6
327		25 I .4	246.8	242.3	237.7	233.1	228.6	224.0	219.4
328		252.3	247.7	243.2	238.6	234.0	229.4	224.8	220.2
329		253.3	248.7	244.0	239.4	234.8	230.2	225.6	221.0
330		254.2	249.6	244.9	240.3	235.7	231.1	226.5	221.8
331		255. I	250.5	245.8	241.2	236.6	231.9	227.3	222.6
332		256.0	25 I .4	246.7	242.1	237.4	232.8	228. 1	223.5
333		257.0	252.3	247.6	243.0	238.3	233.6	228.9	224.3
334		257.9	253.2	248.5	243.8	239.2	234.5	229.8	225. I
335		258.8	254. I	249.4	244.7	240.0	235.3	230.6	
336		259.8	255.0	250.3	245.6	240.9	236.2	231.4	226.7
337		260.7	256.0	251.2	246.5	241.7	237.0	232.3	227.5
338		261.6	256.9	252.1	247.4	242.6	237.8	233.1	228.3
339		262.6	257.8	253.0	248.2	243.5	238.7	233.9	229.2
340		263.5	258.7	253.9	249. 1	244.4	239.6	234.8	230.0
341		264.4	259.6	254.8	250.0	245.2	240.4	235.6	230.8
342			260.6	255.7	250.9	246. I	24.3	236.4	231.6
343			261.5	256.6	25 I .8	247.0	242.1	237.3	232.4
344			262.4	257.5	252.7	247.8	243.0	238.1	233.2
345			263.3	258.4	253.6	248.7	243.8	238.9	234. 1

-

DETERMINATION OF HEIGHTS BY THE BAROMETER. ENGLISH MEASURES.
Values of $60368[1+0.0010195 \times 36] \log \frac{29.90}{B}$.

Barometric Pressure. B.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
Inches.	Feet.									
12.00	24814	24791	24769	24746	24723	24701	24678	24656	24633	246II
12.10	24588	24566	24543	24521	24499	24476	24454	24431	24409	24387
12.20	24365	24342	24320	24298	24276	24253	24231	24209	24187	24165
12.30	24143	24121	24098	24076	24054	24032	24010	23988	23966	23944
12.40	23923	23901	23879	23857	23835	23813	23791	23770	23748	23726
12.50	23704	23682	23661	23639	23617	23596	23574	23552	23531	23509
12.60	23488	23466	23445	23423	23402	23380	23359	23337	23316	23294
12.70	23273	23251	23230	23209	23187	23166	23145	23123	23102	23081
12.80	23060	23038	23017	22996	22975	22954	22933	22911	22890	22869
12.90	22848	22827	22806	22785	22764	22743	22722	22701	22680	22659
13.00	22638	22617	22596	22576	22555	22534	22513	22492	22471	22451
13.10	22430	22409	22388	22368	22347	22326	22306	22285	22264	22244
I3.20	22223	22203	22182	22162	22141	22121	22100	22080	22059	22039
I3.30	22018	21998	21977	21957	21937	21916	21896	21876	21855	21835
13.40	21815	21794	21774	21754	21734	21713	21693	21673	21653	21633
13.50	21612	21592	21572	21552	21532	21512	21492	21472	21452	21432
13.60	21412	21392	21372	21352	21332	21312	21292	21272	21252	21233
13.70	21213	21193	21173	21153	21134	2III4	21094	21074	21054	21035
13.80	21015	20995	20976	20956	20936	20917	20897	20878	20858	20838
13.90	20819	20799	20780	20760	20741	20721	20702	20682	20663	20643
14.00	20624	20605	20585	20566	20546	20527	20508	20488	20469	20450
14.10	20431	20411	20392	20373	20354	20334	20315	20296	20277	20258
14.20	20238	20219	20200	20181	20162	20143	20124	20105	20086	20067
14.30	20048	20029	20010	19991	19972	19953	19934	19915	19896	19877
14.40	19858	19839	19821	19802	19783	19764	19745	19727	19708	19689
14.50	19670	19651	19633	19614	19595	19577	19558	19539	19521	19502
14.60	19483	19465	19446	19428	19409	19390	19372	19353	19335	19316
14.70	19298	19279	1926I	19242	19224	19206	19187	19169	19150	19132
14.80	19114	19095	19077	19059	19040	19022	19004	18985	18967	18949
14.90	1893I	18912	18894	18876	18858	I8840	I882I	18803	18785	18767
15.00	18749	18731	18713	18694	18676	I8658	18640	I8622	18604	I8586
15.10	18568	18550	18532	18514	18496	18478	18460	18442	18425	18407
15.20	18389	18371	18353	18335	18317	18300	18282	18264	18246	18228
15.30	18211	18193	18175	I8I57	18140	18122	I8104	I8o86	18069	18051
15.40	I8033	I8016	17998	17981	17963	I7945	17928	17910	17893	17875
15.50	I7858	17840	17823 .	17805	17788	17770	17753	17735	17718	17700
15.60	17683	17665	17648	17631	17613	17596	17578	17561	17544	17526
15.70	17509	17492	17474	17457	17440	17423	17405	17388	17371	17354
15.80	17337	17319	17302	17285	17268	17251	17234	17216	17199	17182
15.90	I7165	17148	17131	I7II4	17097	17080	17063	17046	17029	17012
16.00	16995	16978	1696I	16944	16927	16910	16893	16876	16859	16842
16.10	16825	16808	16792	16775	16758	16741	16724	16707	16691	16674
16.20	16657	16640	16623	16607	16590	16573	16557	16540	16523	16506
16.30	16490	16473	16456	16440	16423	16406	16390	16373	16357	16340
16.40	16324	16307	16290	16274	16257	1624I	16224	16208	16191	16175
16.50	16158	16142	16125	16109	16092	16076	16060	16043	16027	16010
16.60	15994	15978	15961	15945	15929	15912	15896	15880	15863	15847
16.70	15831	15815	15798	15782	15766	15750	15733	15717	15701	15685
16.80	15669	15652	15636	15620	15604	15588	15572	${ }^{1} 5556$	15539	15523
16.90	15507	15491	15475	I5459	I5443	15427	15411	I5395	I5379	15363
17.00	15347	15331	15315	15299	15283	15267	15251	15235	15219	15203

Smithsonian Tables.

TABLE 20.
DETERMINATION OF HEIGHTS BY THE BAROMETER.
ENGLISH MEASURES.
Values of $60368[1+0.0010195 \times 36] \log \frac{29.90}{B}$.

Barometric Pressure B.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
Inches.	Feet.									
17.00	I5347	1533 I	15315	I5299	15283	15267	15251	15235	15219	15203
17.10	15187	15172	I5156	15140	15124	15108	15092	15076	15061	15045
17.20	15029	15013	14997	14982	14966	14950	14934	14919	14903	14887
17.30	14871	14856	14840	14824	14809	14793	14777	14762	14746	14730
17.40	14715	14699	14684	14668	14652	14637	1462I	14606	14590	I4575
17.50	14559	14544	14528	14512	14497	1448I	14466	1445I	14435	14420
17.60	14404	14389	14373	14358	14342	14327	14312	14296	14281	14266
17.70	14250	14235	14219	14204	14189	14173	14158	14143	14128	14112
17.80	14097	14082	14067	14051	14036	14021	14006	13990	13975	13960
17.90	I 3945	I 3930	13914	13899	I 3884	13869	13854	13839	13824	13808
18.00	I 3793	13778	13763	13748	13733	13718	13703	I3688	13673	I3658
18.10	13643	I3628	13613	13598	13583	13568	I 3553	13538	13523	I3508
18.20	13493	I 3478	I 3463	13448	13433	13418	13404	13389	13374	I 3359
18.30	13314	I 3329	I 3314	13300	13285	13270	13255	13240	13226	I32II
18.40	13196	I3I81	I3166	13152	I3137	13122	13107	13093	13078	I3063
18.50	13049	I3034	13019	13005	12990	12975	12961	12946	12931	12917
18.60	12902	12888	12873	12858	12844	12829	12815	12800	12785	12771
18.70	12756	12742	12727	12713	12698	12684	12669	12655	12640	12626
18.80	T26II	12597	12583	12568	12554	12539	12525	12510	12496	12482
18.90	12467	12453	12438	12424	12410	12395	12381	12367	12352	12338
19.00	12324	12310	12295	1228I	12267	12252	12238	12224	12210	12195
19.10	12181	12167	I2153	12138	12124	12110	12096	12082	12068	12053
19.20	12039	12025	12011	11997	11983	11969	11954	11940	11926	11912
19.30	11898	II884	11870	11856	II842	II828	IISI4	11800	11786	11772
19.40	11758	II744	11730	II716	11702	11688	II674	11660	11646	11632
19.50	II6I8	II604	II590	II576	I 1562	I I548	II534	II520	11507	I I493
19.60	II479	I 1465	II451	II437	I 1423	11410	II396	II382	II368	II354
19.70	II340	II327	I13I3	II299	I 1285	11272	11258	II244	11230	11217
19.80	11203	III89	III75	III62	III48	III34	III2I	I I 107	11093	11080
19.90	11066	11052	IIO39	11025	IIOII	10998	10984	10970	10957	10943
20.00	10930	10916	10903	10889	10875	10862	10848	10835	10821	10808
20.10	10794	10781	10767	10754	10740	10727	10713	10700	10686	10673
20.20	10659	10646	10632	10619	10605	10592	10579	I0565	10552	10538
20.30	10525	10512	10498	10485	10472	10458	10445	1043I	10418	10405
20.40	10391	10378	10365	10352	10338	10325	10312	10298	IO 285	10272
20.50	10259	10245	10232	10219	10206	Ior92	IOI79	IOI66	IOI53	IOI39
20.60	10126	IOII3	10100	10087	10074	10060	10047	10034	10021	10008
20.70	9995	9982	9968	9955	9942	9929	9916	9903	9890	9877
20.80	9864	985 I	9838	9825	9812	9799	9786	9772	9759	9746
20.90	9733	9720	9707	9694	968I	9668	9655	9642	9629	9617
21.00	9604	9591	9578	9565	9552	9539	9526	9513	9500	9487
2 I .10	9474	9462	9449	9436	9423	9410	9397	9384	9372	9359
21.20	9346	9333	9320	9307	9295	9282	9269	9256	9244	9231
21.30	92 I 8	9205	9193	9180	9167	9154	9142	9129	9116	9103
21.40	9091	9078	9065	9053	9040	9027	9015	9002	8989	8977
21.50	8964	8951	8939	8926	8913	8901	8888	8876	8863	8850
21.60	8838	8825	8813	8800	8788	8775	8762	8750	8737	8725
21.70	8712	8700	8687	8675	8662	8650	8637	8625	8612	8600
21.80	8587	8575	8562	8550	8538	8525	8513	8500	8488	8475
21.90	8463	845 I	8438	8426	8413	8401	8389	8376	8364	8352
22.00	8339	8.327	8314	8302	8290	8277	8265	8253	8240	8228

DETERMINATION OF HEIGHTS BY THE BAROMETER. ENGLISH MEASURES.
Values of $60368[1+0.0010195 \times 36] \log \frac{29.90}{B}$.

Barometric Pressure. B.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
Inches.	Feet.									
22.00	8339	8327	8314	8302	8290	8277	8265	8253	8240	8228
22.10	8216	8204	8191	8179	8167	8 I 54	8142	8130	8ı18	8105
22.20	So93	8081	8069	8056	8044	8032	8020	8008	7995	7983
22.30	7971	7959	7947	7935	7922	7910	7898	7886	7874	7862
22.40	7849	7837	7825	7813	7801	7789	7777	7765	7753	7740
22.50	7728	7716	7704	7692	7680	7668	7656	7644	7632	7620
22.60	7608	7596	7584	7572	7560	7548	7536	7524	7512	7500
22.70	7488	7476	7464	7452	7440	7428	7416	7404	7392	7380
22.80	7368	7356	7345	7333	7321	7309	7297	7285	7273	7261
22.90	7249	7238	7226	7214	7202	7190	7178	7166	7155	7143
23.00	7131	7119	7107	7096	7084	7072	7060	7048	7037	7025
23.10	7013	7001	6990	6978	6966	6954	6943	6931	6919	6907
23.20	6896	6884	6872	686I	6849	6837	6825	6814	6802	6790
23.30	6779	6767	6755	6744	6732	6721	6709	6697	6686	6674
23.40	6662	6651	6639	6628	6616	6604	6593	6581	6570	6558
23.50	6546	6535	6523	6512	6500	6489	6477	6466	6454	6443
23.60	6431	6420	6408	6397	6385	6374	6362	6351	6339	6328
23.70	6316	6305	6293	6282	6270	6259	6247	6236	6225	6213
23.80	6202	6190	6179	6167	6156	6145	6 I 33	6122	6110	6099
23.90	6088	6076	6065	6054	6042	6031	6020	6008	5997	5986
24.00	5974	5963	5952	5940	5929	5918	5906	5895	5884	5872
24.10	5861	5850	5839	5827	5816	5805	5794	5782	5771	5760
24.20	5749	5737	5726	5715	5704	5693	568ı	5670	5659	5648
24.30	5637	5625	5614	5603	5592	558 I	5570	5558	5547	5536
24.40	5525	5514	5503	5492	5480	5469	5458	5447	5436	5425
24.50	5414	5403	5392	5381	5369	5358	5347	5336	5325	5314
24.60	5303	5292	5281	5270	5259	5248	5237	5226	5215	5204
24.70	5193	5182	5171	5160	5149	5138	5127	5116	5105	5094
24.80	5083	5072	506I	5050	5039	5028	5017	5006	4995	4985
24.90	4974	4963	4952	4941	4930	4919	4908	4897	4886	4876
25.00	4865	4854	4843	4832	4821	4810	4800	4789	4778	4767
25.10	4756	4745	4735	4724	4713	4702	4691	468 I	4670	4659
25.20	4648	4637	4627	4616	4605	4594	4584	4573	4562	4551
25.30	4540	4530	4519	4508	4498	4487	4476	4465	4455	4444
25.40	4433	4423	4412	4401	4391	4380	4369	4358	4348	4337
25.50	4326	4316	4305	4295	4284	4273	4263	4252	4241	4231
25.60	4220	4209	4199	4188	4178	4167	4156	4146	4135	4125
25.70	4114	4104	4093	4082	4072	4061	4051	4040	4030	4019
25.80	4009	3998	3988	3977	3966	3956	3945	3935	3924	3914
25.90	3903	3893	3882	3872	3861	3851	384 I	3830	3820	3809
26.00	3799	3788	3778	3767	3757	3746	3736	3726	3715	3705
26.10	3694	3684	3674	3663	3653	3642	3632	3622	3611	3601
26.20	3590	3580	3570	3559	3549	3539	3528	3518	3508	3497
26.30	3487 3384	3477	3466	3456	3446	3435	3425 3322	3415	3404	3394
26.40	3384	3373	3363	3353	3343	3332	3322	3312	3301	3291
26.50	3281	3270	3260	3250	3240	3230	3219	3209	3199	3189

TABLE 20.
DETERMINATION OF HEIGHTS BY THE BAROMETER.
ENGLISH MEASURES.
Values of $60368[1+0.0010195 \times 36] \log \underset{B}{29.90}$

Barometric Pressure. B.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
Inches.	Feet.									
26.50	328I	3270	3260	3250	3240	3230	3219	3209	3199	3189
26.60	3179	3168	3158	3148	3138	3128	3117	3107	3097	3087
26.70	3077	3066	3056	3046	3036	3026	3016	3005	2995	2985
26.80	2975	2965	2955	2945	2934	2924	2914	2904	2894	2884
26.90	2874	2864	2854	2843	2833	2823	2813	2 SO 3	2793	2783
27.00	2773	2763	2753	2743	2733	2723	2713	2703	2692	2682
27.10	2672	2662	2552	2642	2632	2622	2612	2602	2592	2582
27.20	2572	2562	2552	2542	2532	2522	2512	2502	2493	2483
27.30	2473	2463	2453	2443	2433	2423	2413	2403	2393	2383
27.40	2373	2363	2353	2343	2334	2324	2314	2304	2294	2284
27.50	2274	2264	2254	2245	2235	2225	2215	2205	2195	2185
27.60	2176	2166	2156	2146	2 I 36	2126	2116	2107	2097	2087
27.70	2077	2067	2058	2048	2038	2028	2018	2009	1999	1989
27.80	1979	1970	1960	1950	1940	1930	1921	1911	I901	1891
27.90	I882	1872	1862	1852	1843	1833	1823	1814	1804	I794
28.00	1784	1775	1765	1755	1746	1736	1726	1717	1707	1697
28.10	1688	1678	1668	1659	I649	1639	1630	1620	1610	I601
28.20	1591	1581	1572	1562	I552	I 543	1533	1524	1514	I 504
28.30	1495	1485	1476	1466	1456	1447	1437	1428	1418	1408
28.40	I 399	1389	1380	I 370	I36I	1351	I 342	1332	1322	I3 13
28.50	1303	1294	1284	1275	I 265	1256	1246	1237	1227	1218
28.60	1208	I 199	1189	1180	1170	1161	1151	1142	11.32	1123
28.70	1113	1104	1094	1085	1075	1066	1057	1047	10,38	1028
28.80	Ior9	1009	1000	990	981	972	962	953	943	934
28.90	925	915	906	896	887	878	868	859	849	840
29.00	831	82 I	8 I 2	803	793	784	775	765	756	746
29.10	737	728	718	709	700	690	681	672	663	653
29.20	644	635	625	616	607	597	588	579	570	560
29.30	55 I	542	532	523	514	505	495	486	477	468
29.40	458	449	440	43 I	421	412	403	394	384	375
29.50	366	357	348	338	329	320	3 II	302	292	283
29.60	274	265	256	247	237	228	219	210	201	192
29.70	182	173	164	155	146	137	128	118	109	100
29.80	+91	+ 82	+ 73	+ 64	$+55$	+ 45	$+36$	+ 27	+ 18	+ 9
29.90	0	- 9	- 18	-27	- 36	- 45	- 55	- 64	- 73	-82
30.00	- 91	- 100	- 109	- 118	- 127	- 136	- I45	- I54	-163	- 172
30.10	- 181	- 190	- 199	-208	-217	-226	- 235	- 244	-253	- 262
30.20	-271	- 280	-289	-298	-307	-316	-325	-334	-343	-352
30.30	-361	-370	-379	-388	-397	-406	-415	-424	-433	-442
30.40	-451	-460	-469	-478	-486	-495	-504	-513	-522	-531
30.50	- 540	- 549	- 558	-567	- 576	-585	- 593	-602	-6II	-620
30.60	-629	-638	-647	-656	-665	-673	-682	-691	-700	-709
30.70	-718	-727	-735	-744	-753	-762	-771	-780	-788	-797
30.80	-806	-8I5	-824	-833	-841	-850	-859	-868	-877	-885

Table 21.
DETERMINATION OF HEIGHTS BY THE BAROMETER. ENGLISH MEASURES.
Term for Temperature : $0.002039\left(\theta-50^{\circ}\right) \mathrm{z}$.
For temperatures $\left\{\begin{array}{l}\text { above } 50^{\circ} \mathrm{F} . \\ \text { below } 50^{\circ} \mathrm{F}\end{array}\right\}$ the values are to be $\left\{\begin{array}{l}\text { added. } \\ \text { adder }\end{array}\right.$ $\left.\begin{array}{l}\text { above } 50^{\circ} \mathrm{F} . \\ \text { below } 50^{\circ} \mathrm{F} .\end{array}\right\}$ the values are to be $\left\{\begin{array}{l}\text { added. } \\ \text { subtracted. }\end{array}\right.$

$\begin{aligned} & \text { Mean } \\ & \text { Temperature. } \\ & \theta . \end{aligned}$		APPROXIMATE DIFFERENCE OF HEIGHT OBTAINED FROM TABLE 20.												
		20	40	60	80	100	200	300	400	500	600	700	800	900
F.	F.	Feet.												
49°	51°	0	-	-	\bigcirc	\bigcirc	0	1	1	1	1	1	2	2
48	52	-	\bigcirc	-	-	-	1	1	2	2	2	3	3	4
47	53	-	-	-	-	1	1	2	2	3	4	4	5	6
46	54	-	o	o	I	1	2	2	3	4	5	6	7	7
45	55	\bigcirc	-	I	1	1	2	3	4	5	6	7	8	9
44	56	-	o	I	1	1	2	4	5	6	7.	9	10	II
43	57	\bigcirc	I	${ }_{1}$	${ }_{1}$	1	3	4	6	7	9	10	11	- 13
42	58	-	1	I	1	2	3	5	7	8	10	11	13	15
4 I	59	-	1	1	1	2	4	6	7	9	II	13	15	17
40	60	\bigcirc	1	I	2	2	4	6	8	10	12	14	16	18
39	61	-	1	I	2	2	4	7	9	11	13	16	18	20
38	62	o	I	1	2	2	5	7	10	12	15	17	20	22
37	63	I	I	2	2	3	5	8	II	13	16	19	21	24
36	64	1	1	2	2		6	9	II	14	17	20	23	26
35	65	I	1	2	2	3	6	9	12	15	18	21	24	28
34	66	I	1	2	3	3	7	10	13	16	20	23	26	29
33	67	1	1	2	3	3	7	10	14	17	21	24	28	31
32	68	1	1	2	3	4	7	11	15	18	22	26	29	33
31	69	I	2	2	3	4	8	12	15	19	23	27	3 I	35
30	70	1	2	2	3	4	8	12	16	20	24	29	33	37
29	71	1	2	3	3	4	9	13	17	21	26	30	34	39
28	72	1	2	3	4	4		13	18	22	27	3 I	36	40
27	73	I	2	3	4	5	9	14	19	23	28	33	38	42
26	74	I	2	3	4	5	Io	15	20	24	29	34	39	44
25	75	1	2	3	4	5	10	15	20	25	3 I	36	4 I	46
24	76	I	2	3	4	5	11	16	21	27	32	37	42	48
23	77	1	2	3	4	6	II	17	22	28	33	39	44	50
22	78	I	2	3	5	6	11	17	23	29	34	40	46	51
21	79	1	2	4	5	6	12	18	24	30	35	4 I	47	53
20	80	I	2	4	5		12	18	24	31	37	43	49	55
19	8 I	I	3	4	5	6	13	19	25	32	38	44	51	57
18	82	I		4	5	7	13	20	26	33	39	46	52	59
17	83	I	3	4	5	7	13	20	27	34	40	47	54	61
16	84	1	3	4	6	7	14	21	28	35	42	49	55	62
15	85	1	3	4	6	7	14	21	29	36	43	50	57	64
14	86	1	3	4	6	7	15	22	29	37	44	5 I	59	66
13	87	2	3	5	6	8	15	23	30	38	45	53	60	68
12	88	2	3	5	6	8	15	23	31	39	46	54	62	70
11	89	2	3	5	6	8	16	24	32	40	48	56	64	72
10	90	2	3	5	7	8	16	24	33	41	49	57	65	73
9	91	2	3	5	7	8	17	25	33	42	50	59	67	75
8	92	2	3	5	7	9	17	26	34	43	51	60	69	77
7	93	2	4	5	7	9	18	26	35	44	53	61	70	79
6	94	2	4	5	7	9	18	27	36	45	54	63	72	81
5	95	2	4	6	7	9	18	28	37	46	55	64	73	83
4	96	2	4	6	8	9	19	28	38	47	56	66	75	84 86 86
3 2	97 98	2	4	6	8	10	19 20	29 29	38 39	48	57 59	67 69	77 78	86
	99		4	6	8			30	40	50	60	70	80	90
0	100	2	4	6	8	Iо	20	31	41	51	61	71	82	92

TABLE 21.

DETERMINATION OF HEIGHTS BY THE BAROMETER. ENGLISH MEASURES.

Term for Temperature : $0.002039\left(\theta-50^{\circ}\right) \mathrm{z}$.
For temperatures $\left\{\begin{array}{l}\text { above } 50^{\circ} \mathrm{F} \text {. } \\ \text { below } 50^{\circ} \mathrm{F} .\end{array}\right\}$ the values are to be $\{$ added. $\left\{\begin{array}{l}\left.\text { below } 50^{\circ} \mathrm{F} .\right\} \text { the values are to be }\left\{\begin{array}{l}\text { added. } \\ \text { subtracted }\end{array}\right.\end{array}\right.$

Mean Temperature. θ.		APPROXIMATE DIFFERENCE OF HEIGHT OBTAINED FROM TABLE 20.										
		1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	20000
F.	F.	Feet.										
49°	51°	2	4	6	8	10	12	14	16	18	20	4 I
48	52	4	8	12	16	20	24	29	33	37	4 I	82
47	53	6	12	18	24	31	37	43	49	55	61	122
46	54	8	16	24	33	41	49	57	65	73	82	163
45	55	10	20	3 I	41	51	6 I	71	82	92	102	204
44	56	12	24	37	49	61	73	86	98°	110	122	245
43	57	14	29	43	57	7 I	S6	100	114	128	143	285
42	58	16	33	49	65	82	98	I 14	130	147	163	326
41	59	18	37	55	73	92	110	128	147	165	I84	367
40	60	20	41	61	S2	102	122	143	163	184	204	408
39	61	22	45	67	90	I 12	135	157	179	202	224	449
38	62	24	49	73	98	122	147	171	196	220	245	489
37	63	27	53	80	106	133	159	IS6	212	239	265	530
36	64	29	57	86	114	143	171	200	228	257	285	571
35	65	3 I	61	92	122	${ }^{1} 53$	I84	2 I 4	245	275	306	612
34	66	33	65	98	130	163	196	228	261	294	326	652
33	67	35	69	104	I 39	173	2 C 8	243	277	312	347	693
32	68	37	73	110	147	I84	220	257	294	330	367	734
31	69	39	77	116	${ }^{1} 55$	194	232	271	310	349	387	775
30	70	4 I	82	122	163	204	245	285	326	367	408	816
29	71	43	86	128	171	214	257	300	343	385	428	856
28	72	45	90	135	179	224	269	314	359	404	449	897
27	7.3	47	94	141	188	234	2 SI	328	375	422	469	938
26	74	49	98	147	196	245	294	343	391	440	489	979
25	75	5 I	102	153	204	255	306	357	408	459	510	1020
24	76	53	106	159	212	265	318	371	424	477	530	1060
23	77	55	110	165	220	275	330	385	440	495	551	I IOI
22	78	57	114	171	228	285	343	400	457	514	57 I	1142
21	79	59	118	177	236	296	355	414	473	532	591	1183
20	80	61	122	I84	245	306	367	428	489	551	612	1223
19	8 I	63	126	190	253	316	379	442	506	569	632	1264
18	82	65	130	196	261	326	391	457	522	587	652	1305
17	83	67	I 35	202	269	336	404	471	538	606	673	I 346
16	84	69	I39	208	277	347	416	485	555	624	693	1387
15	85	71	143	214	2 S 5	357	428	500	57 I	642	714	1427
14	86	73	147	220	294	367	440	514	587	661	734	1468
13	87	75	151	226	302	377	453	52 S	604	679	754	1509
12	88	77	I 55	232	310	387	465	542	620	697	775	I 550
II	S9	80	I59	239	318	398	477	557	636	716	795	I590
10	90	82	163	245	326	408	489	57 I	652	734	816	1631
9	91	84	167	251	334	418	502	585	669	752	836	1672
8	92	86	171	257	343	428	514	599	685	771	856	1713
7	93	88	175	263	35 I	438	526	614	7 O	789	877	I 754
6	94	90	179	269	359	449	538	628	718	807	897	I794
5	95	92	184	275	367	459	551	642	734	826	918	1835
4	96	94	188	2 SI	375	469	563	657	750	844	938	1876
3	97	96	192	287	383	479	575	671	767	862	958	1917
2	98	98	196	294	391	489	587	685	783	881	979	1957
0	99	100	200	300	400	500	599	699	799	899	999	1998
0	100	102	204	306	408	510	612	714	8 I 6	918	1020	2039

TABLE 22.
DETERMINATION OF HEIGHTS BY THE BAROMETER.
ENGLISH MEASURES.
Correction for Latitude and Weight of Mercury: $\mathbf{z}(0.002662 \cos 2 \phi+0.00239)$.

Lati- tude. ϕ.	APPROXIMATE DIFFERENCE OF HEIGHT ObTAINED FROM TAbles 20-21.										
	500	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500
	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
$0{ }^{\circ}$	+3	+5	+8	+ 10	+ 13	+15	+ 18	+20	$+23$	+25	+28
2	3	5	8	10	13	15	18	20	23	25	28
4	3	5	8	10	13	15	18	20	23	25	28
6	2	5	7	10	12	15	17	20	22	25	27
8	2	5	7	וо	12	15	17	20	22	25	27
10	+2	+5	$+7$	+ ı0	$+12$	+ 15	+17	+20	+22	+24	$+27$
12	2	5	7	10	12	14	17	19	22	24	27
14	2	5	7	9	12	14	17	19	21	24	26
16	2	5	7	9	12	14	16	19	21	23	26
18	2	5	7	9	II	14	16	18	20	23	25
20	+2	+4	+7	+ 9	+ II	+13	+16	+17	+20	+22	+24
22	2	4	6	9	11	13	15	17	19	22	24
24	2	4	6	8	ı	13	15	17	19	21	23
26	2	4	6	8	ı	12	14	16	18	20	22
28	2	4	6	8	ıо	12	14	16	17	19	2 T
30	+2	+4	+6	$+7$	+ 9	+ II	+ 13	+15	+17	+19	+20
32	2		5	7	9	11	12	14	16	18	20
34	2	3	5	7	8	10	12	14	15	17	19
36	2	3	5	6	8	Iо	11	13	14	16	18
38	2	3	5	6	8	9	Ir	12	14	15	17
40	+ I	+3	+4	+ 6	$+7$	+ 9	+ 10	+ II	+13	+14	+16
42	I	3	4	5			9	Ir	12	13	15
44	1	2	4	5	6	7	9	10	II	12	14
45	+ I	+2	+4	$+5$	+ 6	$+7$	$+8$	+ 10	+ II	+12	+13
46	+ 1	$+2$	$+3$	+ 5	+ 6						
48 50	I.	2	3 3	4 4	5 5	6 6	7 7	8 8	10 9	II IO	12 II
52	+r	+2	+3	$+3$	+ 4	+ 5	$+6$		$+8$	+ 9	+ 10
54	I	2	2	3	4	5	5			8	9
56	1	1	2	3	3	4	5	6	7	7	8
58	I	I	2	2	3	4	4	5	6	6	7
60	1	I	2	2	3	3	4	4	5	5	6
62	0	+ r	+ 1	+ 2	+ 2	+ 3	+ 3	+ 4	+ 4	$+5$	+ 5
64	-	$\underline{1}$	I	2	2	2	3				4 3 3
66	\bigcirc	1	I	1	2	2	2	2	3	3	3
68	-	-	I	1	I	1	2 1	$\stackrel{2}{1}$	2 2	2 2	3 2
70	o	-	I	1	1	1					
72		\bigcirc	O	-	+ 1	+ 1	$\begin{array}{r}1 \\ +1 \\ \hline\end{array}$	1 +1			
74 76	\bigcirc	o	-	\bigcirc						+	+ $\begin{array}{r}1 \\ 0\end{array}$
76 78	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	O	-
80	-	o	-	-	0	-	0	\bigcirc	0	- I	- I

TABLE 22.
DETERMINATION OF HEIGHTS BY THE BAROMETER. ENGLISH MEASURES.
Correction for Latitude and Weight of Mercury: $\mathrm{z}(0.002662 \cos 2 \phi+0.00239)$.

Latitude. ϕ.	APPROXIMATE DIFFERENCE OF HEIGHT OBTAINED FROM TABLES 20-21.										
	6000	7000	8000	9000	10000	11000	12000	13000	14000	15000	20000
	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
0°	$+30$	$+35$	$+40$	$+45$	$+51$	$+56$	+6I	+66	+71	+76	+ IOI
2	30	35	40	45	50	56	61	66	71	76	101
4	30	35	40	45	50	56	60	65	70	75	IOI
6	30	35	40	45	50	55	60	65	70	75	100
8	30	35	40	45	49	54	59	64	69	74	99
10	$+29$	$+34$	$+39$	$+44$	+49	$+54$	+59	+64	+68	$+73$	+98
12	29	34	39	43	48	53	58	63	68	72	96
14	28	33	38	43	47	52	57	62	66	71	95
16	28	33	37	42	46	51	56	60	65	70	93
18	27	32	36	41	45	50	55	59	64	68	91
20	$+27$	+3I	$+35$	$+40$	$+44$	$+49$	$+53$	$+58$	$+62$	$+66$	+89
22	26	30	34	39	43	47	52	56	60	65	86
24	25	29	33	38	42	46	50	54	58	63	83
26	24	28	32	36	40	44	48	52	56	60	8 I
28	23	27	3 I	35	39	43	47	50	54	58	78
30	$+22$	$+26$	$+30$	$+33$	$+37$	+41	$+45$	$+48$	$+52$	$+56$	+ 74
32	21	25	28	32	36	39	43	46	50	53	71
34	20	24	27	30	34	37	4 I	44	47	51	68
36	19	22	26	29	32	35	- 39	42	45	48	64
38	18	21	24	27	30	33	36	39	42	46	6 I
40	+17	$+20$	$+23$	$+26$	+29	$+3 \mathrm{I}$	$+34$	$+37$	$+40$	$+43$	$+57$
42	16	19	21	24	27	29	32	35	37	40	53
44	15	17	20	22	25	27	30	32	35	37	50
45	+14	$+17$	+ 19	$+22$	+24	$+26$	+29	$+3 \mathrm{I}$	$+33$	$+36$	$+48$
46	+14	+ 16	+ 18	$+21$	$+23$	$+25$	$+28$	$+30$	$+32$	$+35$	$+46$
48	13	15	17	19	21	23	25	27	30	32	42
50	12	I 3	15	17	19	21	23	25	27	29	39
52	+ 10	+ 12	+ 14	$+16$	+17	$+19$	+21	$+23$	$+24$	$+26$	$+35$
54		II	13	14	16	17	19	20	22	24	3 I
56	8	10	11	13	14	15	17	18	20	21	28
58	7	9	10	II	12	13	15	16	17	18	24
60	6	7	8	10	II	12	13	14	15	16	21
62	$+5$	+ 6	$+7$	$+8$	+ 9	+ 10	+ II	+12	+13	+ 14	$+18$
64	5		6	7	8	8	9	10	II	11	15
66	4	4	5	5	6	7	7	8	9	9	12
68	3	3	4	4	5	5	6	6	7	7	10
70	2	2	3	3	4	4	4	5	5	5	7
72	$+1$	+ 2	$+2$	$+2$	$+2$						
74	+1	+ 1	+1	+ 1	+ 1						
76	0	0	0	0							*
80	[0	0 $-\quad \mathrm{I}$	0 $-\quad 1$		0 $-\quad 1$						

TABLE 23.
DETERMINATION OF HEIGHTS BY THE BAROMETER.
ENGLISH MEASURES.
Correction for an Average Degree of Humidity.

Mean Temperature.	APPROXIMATE DIFFERENCE OF HEIGHT OBTAINED FROM TABLES 20-21.											
	500	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	20000
F.	Feet.											
-20°	0	O	0	0	0	0	0	+1	+ I	+ I	+ I	+2
$-\mathrm{I} 6$	-	-	-	+ I	+ I	+ I	+1	I	2	2	2	4
- 12	\bigcirc	-	+ I	I	I	2	2	2	3	3	3	6
- 8	0	0	1	I	2	2	3	3	4	4	4	9
- 6	o	o	1	1	2	2	3	3	4	4	5	10
- 4	o	+ I	I	2	2	3	3	4	4	5	6	I I
-2	0	I	I	2	2	3	4	4	5	6	6	12
0	0	1	I	2	3	3	4	5	5	6	7	14
$+2$	o	I	1	2	3	4	4	5	6	7	7	15
4	o	I	2	2	3	4	5	6	7	7	8	16
6	0	I	2	3	4	4	5	6	7	8	9	18
8	0	1	2	3	4	5	6	7	8	9	10	19
10	+ I	1	2	3	4	5	6	7	8	9	10	21
12	I	I	2	3	4	6	7	8	9	10	11	22
14	I	I	2	4	5	6	7	8	9	II	12	24
16	I	1	3	4	5	6	8	9	10	11	13	25
18	1	I	3	4	5	7	8	9	11	12	13	27
20	I	1	3	4	6	7	9	10	II	13	14	29
22	I	2	3	5	6	8	9	I I	12	14	15	3 I
24	1	2	3	5	7	8	IO	II	I3	15	16	33
26	I	2	3	5	7	9	10	12	14	16	17	35
28	I	2	4	6	7	9	II	13	15	17	19	37
30	I	2	4	6	8	10	12	14	16	18	20	41
32	I	2	4	7	9	II	13	16	18	20	22	44
34	I	2	5	7	10	12	15	17	19	22	24	49
36	1	3	5	8	II	13	16	19	21	24	27	53
38	I	3	6	9	12	15	18	21	23	26	29	59
40	2	3	6	10	13	16	19	23	26	29	32	64
42	2	4	7	II	14	18	21	25	28	32	35	71
44	2	4	8	12	15	19	23	27	31	35	39	77
46	2	4	8	13	17	21	25	29	34	38	42	84
48	2	5	9	14	18	23	27	32	37	41	46	92
50	2	5	10	15	20	25	30	35	40	45	50	99
52	3	5	11	16	2 I	27	32	37	43	48	53	107
54	3	6	11	17	23	29	34	40	46	5 I	57	II4
56	3	6	12	18	24	30	37	43	49	55	61	122
58	3	6	13	19	26	32	39	45	52	58	65	130
60	3	7	14	2 I	27	34	4 I	48	55	62	69	137
62	4	7	14	22	29	36	43	5 I	58	65	72	145
64	4	8	15	23	30	38	46	53	61	69	76	152
66	4	8	16	24	32	40	48	56	64	72	80	160
68	4	8	17	25	34	42	50	59	67	76	84	168
70	4	9	18	26	35	44	53	61	70	79	88	175
72	5	9	18	27	37	46	55	64	73	82	9 I	I83
76	5	10	20	30	40	49	59	69	79	89	99	198
80	5	II	21	32	43	53	64	75	85	96	106	213
84	6	II	23	34	46	57	68	80	91	103	I 14	228
88	6	12	24	37	49	61	73	85	97	I 10	122	243
92	6	13	26	39	52	65	78	91	103	II6	129	259
96	7	14	27	4 I	55	68	82	96	I 10	I23	I 37	274

TABLE 24.
DETERMINATION OF HEIGHTS BY THE BAROMETER. ENGLISH MEASURES.
Correction for the Variation of Gravity with Altitude: $\frac{z\left(z+2 h_{0}\right)}{R}$.

Approximate difference of height. 2.	HEIGHT OF LOWER STATION IN FEET (h_{0}) .											
	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	12000
Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
500	0	0	0	0	-	o	o	0	0	0	0	+ I
1000	0	0	-	\bigcirc	-	+ I	+ I	+1	+ I	+ I	+ 1	I
1500	-	0	o	+ I	$+1$	1	1	I	1	1	2	2
2000	0	-	+ I	I	1	1	1	2	2	2	2	2
2500	0	+1	1	1	I	I	2	2	2	2	3	3
3000	0	1	I	1	2	2	2	2	3	3	3	4
3500	+ I	I	1	2	2	2	3	3	3	4	4	5
4000	1	1	2	2	2	3	3	3	4	4	5	5
4500	1	I	2	2	3	3	4	4	4	5	5	6
5000	I	2	2	3	3	4	4	5	5	6	6	7
5500	1	2	3	3	4	4	5	5	6	6	7	8
6000	2	2	3	3	4	5	5	6	6	7	7	9
6500	2	3	3	4	5	5	6	6	7	8	8	9
7000	2	3	4	4	5	6	6	7	S	8	9	Io
7500	3	3	4	5	6	6	7	8	8	9	10	II
8000	3	4	5	5	6	7	8	8	9	10	II	12
8500	3	4	5	6	7	8	8	9	10	11	12	13
9000	4	5	6	6	7	8	9	10	11	12	12	14
9500	4	5	6	7	8	9	10	I I	12	13	13	15
10000	5	6	7	8	9	10	II	I I	12	13	14	16
11000	6	7	8	9	10	II	12	13	14	15	16	18
12000	7	8	9	10	1 I	13	14	15	16	17	18	21
13000	8	9	II	12	13	14	16	17	18	19	21	23
14000	9	II	12	13	15	16	17	19	20	21	23	25
15000	II	12	14	${ }^{1} 5$	17	I8	19	2 I	22	24	25	28
16000	12	14	15	17	18	20	21	23	25	26	28	31
17000	14	15	17	19	20	22	24	25	27	28	30	
18000	16	17	19	21	22	24	26	28	30	31		
19000	17	19	2 I	23	25	26	28	30	32			
20000	19	21	23	25	27	29	31					

Smithbonian Tables.

TABLE 25.

DETERMINATION OF HEIGHTS BY THE BAROMETER.

METRIC MEASURES.
Values of $18400 \log \frac{760}{B}$.

Barometric Pressure.	0	I	2	3	4	5	6	7	8	9
mm.	m.	m.	m.	m	m.	m.	m.	m.	m.	m.
300	7428	7401	7375	7348	7322	7296	7270	7244	7218	7192
310	7166	7140	7115	7089	7064	7038	7013	6987	6962	6937
320	6912	6887	6862	6838	6813	6789	6764	6740	6715	6691
330	6666	6642	6618	6594	6570	6546	6522	6498	6475	6451
340	6428	6405	6381	6358	6334	6311	6288	6265	6242	6219
350	6196	6173	6151	6128	6106	6083	606I	6038	6016	5993
360	5971	5949	5927	5905	5883	5861	5839	5817	5795	5773
370	5752	5730	5709	5687	5666	5644	5623	5602	558 I	5560
380	5539	5518	5497	5476	5455	5434	5414	5393	5373	5352
390	5332	53 II	5291	5270	5250	5229	5209	5189	5169	5149
400	5129	5109	5089	5069	5049	5029	5010	4990	4971	4951
410	4932	4912	4893	4873	4854	4834	4815	4796	4777	4758
420	4739	4720	4701	4682	4663	4644	4625	4606	4588	4569
430	4551	4532	4514	4495	4477	4458	4440	4422	4404	4386
440	4368	4350	4332	4314	4296	4278	4260	4242	4224	4206
450	4188	4170	4152	4134	4117	4099	4082	4064	4047	4029
460	4012	3994	3977	3959	3942	3925	3908	3791	3774	3757
470	3840	3823	3806	3789	3772	3755	3738	3721	3705	3688
480	3672	3655	3639	3622	3606	3589	3573	3556	3540	3523
490	3507	3490	3474	3458	3442	3426	3410	3394	3378	3362
500	3346	3330	3314	3298	3282	3266	3250	3235	3219	3203
510	3188	3172	3157	3141	3126	3110	3095	3079	3064	3048
520	3033	3017	3002	2986	2971	2955	2940	2925	2910	2895
530	2880	2865	2850	2835	2820	2 SO	2790	2775	2760	2745
540	2731	2716	2701	2687	2672	2657	2643	2628	2613	2599
550	2584	2570	2555	2541	2526	2512	2497	2483	2468	2454
560	2440	2426	2411	2397	2383	2369	2355	2341	2327	2313
570	2299	2285	2271	2257	2243	2229	2215	2201	2188	2174
580	2160	2146	2133	2119	2105	2092	2078	2064	2051	2037
590	2023	2010	1996	1983	1969	1956	1942	1929	1915	1902
600	1889	1875	I862	1848	1835	1822	1809	1796	1783	1770
610	1757	1744	1731	1718	1705	1692	1679	1666	1653	1640
620	1627	1614	1601	1588	1576	1563	1550	1537	1525	1512
630	1499	1486	1474	1461	1448	1436	1423	1411	I 398	I386
640	I 373	I361	1348	1336	1323	1311	1298	1286	1273	126I
650	I249	1236	1224	1212	1199	1187	I 175	1163	1151	1139
660	1127	III5	1103	1091	1079	1067	1055	1043	1031	1019
670	1007	995	983	971	960	948	936	924	913	901
680	889	877	866	854	842	831	819	807	796	784
690	772	761	749	738	726	715	703	692	680	669
700	657	646	635	623	612	601	589	578	567	555
710	544	533	52 I	510	499	487	476	465	454	. 443
720	432	42 I	410	399	388	377	366	355	344	333
730	322	311	300	289	278	267	256	245	234	224
740	213	202	192	181	170	160	149	138	128	117
	+ 106			+ 74	$+64$			+ 32	+ 22	+ II
760	-	- IO	- 21	- 31	- 42	+ 53	- 63	- 73	- 83	- 94
770	- 104	- II5	- 125	- I36	- 146	-156	- I66	- I77		

TAble 26.

DETERMINATION OF HEIGHTS BY THE BAROMETER.

 METRIC MEASURES.Term for Temperature : $0.00367 \theta \times \mathrm{z}$.
For temperatures $\left\{\begin{array}{l}\text { above } \circ^{\circ} \mathrm{C} . \\ \text { below } 0^{\circ} \mathrm{C} .\end{array}\right\}$ the values are to be $\left\{\begin{array}{l}\text { added. } \\ \text { subtracted. }\end{array}\right.$

Approximate difference of height. z.	MEAN TEMPERATURE OF AIR COLUMN IN CENTIGRADE DEGREES ($\boldsymbol{\theta}$) .												
	$1{ }^{\circ}$	2°	3°	4°	5°	6°	7°	8°	9°	10°	20°	30°	40°
m.	m.	m.	m.	m.	m.	m.	m.	m.	m.	m.	m.	m.	m.
100	0	1	I	1	2	2	3	3	3	4	7	11	15
200	1	1	2	3	4	4	5	6	7	7	15	22	29
300	1	2	3	4	6	7	8	9	10	11	22	33	44
400	1	3	4	6	7	9	10	12	13	15	29	44	59
500	2	4	6	7	9	11	13	15	17	18	37	55	73
600	2	4	7	9	1 I	13	15	18	20	22	44	66	88
700	3	5	8	10	13	15	18	2 I	23	26	5 I	77	103
800	3	6	9	12	15	18	21	23	26	29	59	88	117
900	3	7	10	I 3	17	20	23	26	30	33	66	99	132
1000	4	7	11	15	18	22	26	29	33	37	73	110	147
1100	4	8	12	16	20	24	28	32	36	40	81	121	161
1200	4	9	13	18	22	26	31	35	40	44	88	132	176
1300	5	10	14	19	24	29	33	38	43	48	95	143	191
1400	5	10	15	2 I	26	3 I	36	4 I	46	51	103	154	206
1500	6	II	17	22	28	33	39	44	50	55	110	165	220
1600	6	12	18	23	29	35	4 I	47	53	59	117	176	235
1700	6	12	19	25	3 I	37	44	50	56	62	125	187	250
1800	7	13	20	26	33	40	46	53	59	66	132	198	264
1900	7	14	21	28	35	42	49	56	63	70	139	209	279
2000	7	15	22	29	37	44	51	59	66	73	147	220	294
2100	8	${ }^{1} 5$	23	31	39	46	54	62	69	77	154	231	308
2200	8	16	24	32	40	48	57	65	73	81	161	242	323
2300	8	17	25	34	42	5 I	59	68	76	84	169	253	338
2400	9	18	26	35	44	53	62	70	79	88	176	264	352
2500	9	18	28	37	46	55	64	73	83	92	184	275	367
2600	10	19	29	38	48	57	67	76	86	95	19 I	286	382
2700	10	20	30	40	50	59	69	79	89	99	198	297	396
2800	10	21	31	41	51	62	72	82	92	103	206	308	4II
2900	II	21	32	43	53	64	75	85	96	106	213	319	426
3000	II	22	33	44	55	66	77	88	99	110	220	330	440
3100	11	23	34	46	57	68	80	91	102	114	228	341	455
3200	12	23	35	47	59	70	82	94	106	117	235	352	470
3300	12	24	36	48	61	73	85	97	109	121	242	363	484
3400	12	25	37	50	62	75	87	100	II2	125	250	374	499
3500	13	25	39	51	64	77	90	103	116	128	257	385	514
3600	13	26	40	53	66	79	92	106	I 19	132	264	396	528
3700	14	27	4 I	54	68	8 I	95	109	122	136	272	407	543
3800	14	28	42	56	70	84	98	112	126	139	279	418	558
3900	14	29	43	57	72	86	100	I 15	129	143	286	429	573
4000	15	29	44	59	73	88	103	117	132	147	294	440	587
5000	18	37	55	73	92	110	128	147	165	183	367	551	734
6000	22	44	66	88	I IO	132	${ }^{1} 54$	176	198	220	440	661	881
7000	26	5 I	77	103	128	${ }^{1} 54$	180	206	231	257	514	77 I	1028

METRIC MEASURES.
Correction for Humidity: Values of 10000β.
$\beta=0.378 \frac{e}{b}=0.378 \begin{aligned} & f+f_{0} \\ & B+B_{\circ}\end{aligned}$.

Mean Vapor	MEAN BA													
$e=\frac{f+f_{0}}{2}$	500	520	540	560	580	600	620	640	660	680	700	720	740	760
mm .	mm.	mm.	mm .	mm.	mm.	mm.	mm.	mm .	mm.	mm.	mm.	mm.	mm .	mm .
1	8	7	7	7	7	6	6	6	6	6	5	5	5	5
2	15	15	14	14	13	13	12	12	11	11	11	11	10	10
3	23	22	21	20	20	19	18	18	17	17	16	16	15	15
4	30	29	28	27	26	25	24	24	23	22	22	21	20	20
5	38	36	35	34	33	31	30	30	29	28	27	26	26	25
6	45	44	42	4 I	39	38	37	35	34	33	32	32	31	30
7	53	51	49	47	46	44	43	4 I	40	39	38	37	36	35
8	60	58	56	54	52	50	49	47	46	44	43	42	4 I	40
9	68	65	63	6 I	59	57	55	53	52	50	49	47	46	45
10	76	73	70	68	65	63	61	59	57	56	54	53	51	50
11	83	80	77	74	72	69	67	65	63	61	59	58	56	55
12	9 I	87	84	81	78	76	73	7 I	69	67	65	63	61	60
13	98	95	91	88	85	82	79	77	74	72	70	68	66	65
14	106	102	98	95	9 I	88	85	83	80	78	76	74	72	70
15	II3	109	105	101	98	95	91	89	86	83	81	79	77	75
16	121	116	112	108	104	101	98	94	92	89	86	84	82	So
17	129	124	119	II5	III	107	104	100	97	94	92	89	87	85
18	136	131	126	122	II7	II3	110	106	103	100	97	95	92	90
19	144	I38	I 33	128	124	120	II6	112	109	106	103	100	97	95
20	151	145	140	I35	130	126	122	118	I 15	III	108	105	102	99
21	159	153	147	142	I 37	132	128	124	120	117	113	IIO	107	104
22	166	160	I 54	149	143	139	134	130	126	122	119	116	112	109
23	174	167	161	155	150	145	140	136	132	128	124	121	117	114
24	I8I	174	168	162	I 56	151	146	142	137	I 33	130	126	123	119
25	189	182	175	169	163	157	152	148	143	139	135	I3I	128	124
26	197	I89	182	175	169	164	159	154	149	145	140	137	133	129
27	204	196	189	182	176	170	165	159	I55	150	146	142	138	134
28	2 I 2	204	196	189	182	176	171	165	160	156	151	147	143	I 39
29	219	211	203	196	I89	183	177	171	166	161	I57	152	148	144
30	227	218	210	203	196	189	183	177	172	167	162	158	I53	149
31	234	225	217	209	202	195	189	183	178	172	167	163	158	154
32	242	233	224	216	209	202	195	189	183	178	173	168	163	159
33	249	240	231	223	215	208	201	195	189	183	178	173	169	164
34	257	247	238	230	222	214	207	201	195	189	184	179	174	I69
35	265	254	245	236	228	220	213	207	200	195	IS9	184	179	174
36	272	262	252	243	235	227	219	213	206	200	194	I89	184	179
37	280	269	259	250	241	233	226	219	212	206	200	194	I89	184
38	287	276	266	257	248	239	232	224	218	2 II	205	200	194	189
39	295	283	273	263	254	246	238	230	223	217	211	205	199	194
40	302	291	280	270	26 I	252	244	236	229	222	216	210	204	199

TABLE 27.
DETERMINATION OF HEIGHTS BY THE BAROMETER.
METRIC MEASURES.
Correction for Humidity: $10000 \beta \times \mathbf{z}$.
Top argument: Values of 10000β obtained from page 112.
Side argument: Approximate difference of height (z).

Approximate Difference of Height. Z.	10000β.											
	25	50	75	100	125	150	175	200	225	250	275	300
m .	m.	m .	m.	m .	m.	m .	m .	m.	m.	m.	m.	m.
100	0.3	0.5	0.8	1.0	1.3	1.5	1.8	2.0	2.3	2.5	2.8	3.0
200	0.5	1.0	1.5	2.0	2.5	3.0	$3 \cdot 5$	4.0	4.5	5.0	$5 \cdot 5$	6.0
300	0.8	I. 5	2.3	3.0	3.8	4.5	$5 \cdot 3$	6.0	6.8	$7 \cdot 5$	8.3	9.0
400	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
500	1.3	2.5	3.8	5.0	6.3	7.5	8.8	10.0	11.3	12.5	13.8	15.0
600	1.5	3.0	4.5	6.0	7.5	9.0	10.5	12.0	13.5	15.0	16.5	18.0
700	1.8	3.5	$5 \cdot 3$	7.0	8.8	10.5	12.3	14.0	15.8	17.5	19.3	21.0
800	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	20.0	22.0	24.0
900	2.3	4.5	6.8	9.0	II. 3	13.5	15.8	18.0	20.3	22.5	24.8	27.0
1000	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0	22.5	25.0	27.5	30.0
1100	2.8	5.5	8.3	11.0	13.8	16.5	19.3	22.0	24.8	27.5	30.3	33.0
1200	3.0	6.0	9.0	12.0	15.0	18.0	21.0	24.0	27.0	30.0	33.0	36.0
1300	3.3	6.5	9.8	13.0	16.3	19.5	22.8	26.0	29.3	32.5	35.8	39.0
1400	$3 \cdot 5$	7.0	10.5	14.0	17.5	21.0	24.5	28.0	31.5	35.0	38.5	42.0
1500	3.8	7.5	11.3	15.0	18.8	22.5	26.3	30.0	33.8	37.5	41.3	45.0
1600	4.0	8.0	12.0	16.0	20.0	24.0	28.0	32.0	36.0	40.0	44.0	48.0
I700	$4 \cdot 3$	8.5	12.8	17.0	21.3	25.5	29.8	34.0	38.3	42.5	46.8	51.0
1800	4.5	9.0	13.5	18.0	22.5	27.0	3 I .5	36.0	40.5	45.0	49.5	54.0
1900	4.8	9.5	14.3	19.0	23.8	28.5	33.3	38.0	42.8	47.5	52.3	57.0
2000	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0
2100	$5 \cdot 3$	10.5	15.8	21.0	26.3	31.5	36.8	42.0	47.3	52.5	57.8	63.0
2200	5.5	11.0	16.5	22.0	27.5	33.0	38.5	44.0	49.5	55.0	60.5	66.0
2300	5.8	II. 5	17.3	23.0	28.8	34.5	40.3	46.0	5 I .8	57.5	63.3	69.0
2400	6.0	12.0	18.0	24.0	30.0	36.0	42.0	48.0	54.0	60.0	66.0	72.0
2500	6.3	12.5	18.8	25.0	31.3	37.5	43.8	50.0	56.3	62.5	68.8	75.0
2600	6.5	13.0	19.5	26.0	32.5	39.0	45.5	52.0	58.5	65.0	71.5	78.0
2700	6.8	13.5	20.3	27.0	33.8	40.5	47.3	54.0	60.8	67.5	74.3	81.0
2800	7.0	14.0	21.0	28.0	35.0	42.0	49.0	56.0	63.0	70.0	77.0	84.0
2900	$7 \cdot 3$	14.5	21.8	29.0	36.3	43.5	50.8	58.0	65.3	72.5	79.8	87.0
3000	7.5	15.0	22.5	30.0	37.5	45.0	52.5	60.0	67.5	75.0	82.5	90.0
3100	7.8	15.5	23.3	31.0	38.8	46.5	54.3	62.0	69.8	77.5	85.3	93.0
3200	8.0	16.0	24.0	32.0	40.0	48.0	56.0	64.0	72.0	80.0	88.0	96.0
3300	8.3	16.5	24.8	33.0	41.3	49.5	57.8	66.0	74.3	82.5	90.8	99.0
3400	8.5	17.0	25.5	34.0	42.5	51.0	59.5	68.0	76.5	85.0	93.5	102.0
3500	8.8	17.5	26.3	35.0	43.8	52.5	61.3	70.0	78.8	87.5	96.3	105.0
3600	9.0	18.0	27.0	36.0	45.0	54.0	63.0	72.0	81.0	90.0	99.0	108.0
3700	$9 \cdot 3$	18.5	27.8	37.0	46.3	55.5	64.8	74.0	83.3	92.5	101.8	111.0
3800	9.5	19.0	28.5	38.0	47.5	57.0	66.5	76.0	85.5	95.0	104.5	114.0
3900	9.8	19.5	29.3	39.0	48.8	58.5	68.3	78.0	87.8	97.5	107.3	117.0
4000	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	100.0	110.0	120.0
5000	12.5	25.0	37.5	50.0	62.5	75.0	87.5	100.0	112.5	125.0	137.5	150.0
6000	15.0	30.0	45.0	60.0	75.0	90.0	105.0	1200	135.0	150.0	165.0	180.0
7000	17.5	35.0	52.5	70.0	87.5	105.0	122.5	140.0	I57.5	175.0	192.5	210.0

8mithbonian Tables.

METRIC MEASURES.

Correction for Latitude and Weight of Mercury : $\mathrm{z}(0.002662 \cos 2 \boldsymbol{\phi}+0.00239)$.

Approximate difference of Height. Z.	LATITUDE (ϕ).															
	$0{ }^{\circ}$	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	60°	65°	70°	75°
metres.	m.															
100	1	I	0	0	0	0	0	0	0	0	0	0	0	0	0	0
200	I	1	I	1	1	1	1	1	1	\bigcirc	0	0	0	0	0	0
300	2	2	1	1	I	1	1	I	I	1	1	0	0	0	o	-
400	2	2	2	2	2	2	I	I	I	I	1	I	0	0	0	0
500	3	3	2	2	2	2	2	2	1	I	I	1	I	0	0	0
600	3	3	3	3	3	2	2	2	2	1	1	I	I	0	-	0
700	4	4	3	3	3	3	3	2	2	2	1	1	I	0	-	-
800	4	4	4	4	4	3	3	3	2	2	2	I	1	I	-	-
900	5	5	4	4	4	4	3	3	3	2	2	I	I	1	0	0
1000	5	5	5	5	4	4	4	3	3	2	2	1	I	I	0	0
1100	6	6	5	5	5	5	4	4	3	3	2	2	I	I	-	-
1200	6	6	6	6	5	5	4	4	3	3	2	2	I	I	0	-
1300	7	7	6	6	6	5	5	4	4	3	3	2	I	I	0	o
1400	7	7	7	7	6	6	5	5	4	3	3	2	I	I	0	-
1500	8	8	7	7	7	6	6	5	4	4	3	2	2	1	I	0
1600	8	8	8	8	7	7	6	5	5	4	3	2	2	I	I	0
1700	9	9	8	8	8	7	6	6	5	4	3	3	2	1	1	0
1800	9	9	9	8	8	7	7	6	5	4	3	3	2	I	1	-
1900	10	10	9	9	8	8	7	6	5	5	4	3	2	I	I	0
2000	10	10	10	9	9	8	7	7	6	5	4	3	2	I	I	o
2100	II	II	10	10	9	9	8	7	6	5	4	3	2	I	I	-
2200	II	II	II	10	10	9	8	7	6	5	4	3	2	I	I	0
2300	12	12	II	II	10	9	9	8	7	5	4	3	2	2	1	o
2400	12	12	12	II	II	10	9	8	7	6	5	4	3	2	I	0
2500	13	I3	12	12	II	10	9	8	7	6	5	4	3	2	1	0
2600	13	13	I3	12	12	II	10	9	7	6	5	4	3	2	1	0
2700	14	14	13	13	12	II	10	9	8	6	5	4	3	2	1	0
2800	14	14	14	13	12	II	IO	9	8	7	5	4	3	2	I	-
2900	I5	I5	14	14	13	12	II	10	8	7	6	4	3	2	I	0
3000	I5	I5	I5	14	13	12	II	10	9	7	6	4	3	2		-
3100	16	16	I5	15	14	13	12	10	9	7	6	5	3	2	I	-
3200	16	16	16	15	14	13	12	II	9	8	6	5	3	2	1	-
3300	17	17	16	15	15	14	12	II	9	8	6	5	3	2	I	0
3400	17	17	17	16	15	14	13	II	10	8	7	5	4	2	1	0
3500	18	18	17	16	16	14	13	12	10	8	7	5	4	2	I	0
3600	18	18	18	17	16	15	13	12	10	9	7	5	4	2	I	o
3700	19	19	18	17	16	15	14	12	II	9	7	5	4	3	I	0
3800	19	19	19	18	17	16	14	13	II	9	7	6	4	3	I	0
3900	20	20	19	18	17	16	I5	I3	II	9	8	6	4	3	I	0
4000	20	20	20	19	18	16	15	I3	II	10	8	6	4	3	1	0
4500	23	23	22	21	20	18	17	15	13	II	9	7	5	3	2	0
5000	25	25	24	23	22	21	19	17	14	12	10		5	3	2	0
5500	28	28	27	26	24	23	20	18	16	13	II	8	6	4	2	0
6000	30	30	29	28	27	25	22	20	17	14	12	9	6	4	2	I
6500	33	33	32	3I	29	27	24	2 I	19	16	13	10	7	4	2	I
7000	35	35	34	33	3 I	29	26	23	20	17	13	10	7	5	2	I

TABLE 29.
DETERMINATION OF HEIGHTS BY THE BAROMETER. METRIC MEASURES.
Correction for the variation of gravity with altitude: $\frac{\mathrm{z}\left(\mathrm{z}+2 h_{\mathrm{o}}\right)}{R}$

Approximate difference of height. 2.	HEIGHT OF LOWER STATION IN METRES ($h_{\text {O }}$													
	0	200	400	600	800	1000	1200	1400	1600	1800	2000	2500	3000	4000
metres.	m .	m.												
200	0	0	0	0	0	0	0	0	0	0	0	0	o	0
300	0	0	0	0	0	0	0	0	0	0	0	0	0	0
400	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0	1
500	0	0	0	0	0	0	0	0	0	0	0	0	I	1
600	0	0	\bigcirc	0	0	0	0	0	0	0	0	1	I	I
700	o	0	0	0	0	0	0	0	0	0	I	1	1	1
800	0	0	0	0	0	0	0	0	1	1	I	1	1	1
900	0	0	0	0	0	0	0	1	1	1	1	1	1	1
1000	0	0	0	0	0	0	1	I	I	I	1	1	I	1
1100	0	0	0	0	-	1	1	1	1	1	1	1	1	2
1200	0	0	0	0	1	1	1	1	1	1	1	1	I	2
1300	0	0	0	I	I	1	1	1	1	I	1	I	1	2
1400	0	0	0	I	I	I	I	I	1	1	1	1	2	2
1500	0	0	I	I	I	I	1	I	I	I	I	2	2	2
1600	0	I	I	1	I	1	1	1	1	1	1	2	2	2
1700	0	I	I	1	1	1	1	1	1	1	2	2	2	3
1800	I	I	I	I	I	1	1	1	1	2	2	2	2	3
1900	I	I	I	I	I	1	1	1	2	2	2	2	2	3
2000	I	I	1	I	I	1	1	2	2	2	2	2	3	3
2100	I	I	I	I	I	I	1	2	2	2	2	2	3	3
2200	I	I	1	1	I	I	2	2	2	2	2	2	3	4
2300	I	I	1	I	1	2	2	2	2	2	2	3	3	4
2400	I	I	1	1	2	2	2	2	2	2	2	3	3	4
2500	I	I	1	1	2	2	2	2	2	2	3	3	3	4
2600	1	I	I	2	2	2	2	2	2	3	3	3	4	4
2700	1	1	1	2	2	2	2	2	3	3	3	3	4	5
2800	I	1	2	2	2	2	2	2	3	3	3	3	4	5
2900	1	2	2	2	2	2	2	3	3	3	3	4	4	5
3000	1	2	2	2	2	2	3	3	3	3	3	4	4	5
3100	2	2	2	2	2	2	3	3	3	3	3	4	4	5
3200	2	2	2	2	2	3	3	3	3	3	4	4	5	6
3300	2	2	2	2	3	3	3	3	3	4	4	4	5	6
3400	2	2	2	2	3	3	3	3	4	4	4	4	5	6
3500	2	2	2	3	3	3	3	3	4	4	4	5	5	6
3600	2	2	2	3	3	3	3	4	4	4	4	5	5	7
3700	2	2	3	3	3	3	4	4	4	4	4	5	6	7
3800	2	3	3	3	3	3	4	4	4	4	5	5	6	7
3900	2	3	3	3	3	4	4	4	4	5	5	5	6	7
4000	3	3	3	3	4	4	4	4	5	5	5	6	6	8
4500	3	3	4	4	4	5	5	5	5	6	6	7	7	9
5000	4	4	5	5	5	5	6	6	6	7	7	8	9	10
5500	5	5	5	6	6	6	7	7	8	8	8	9	10	12
6000	6	6	6	7	7	8	8	8	9	9	9	10	II	13
6500	7	7	7	8	8	9	9	9	10	10	II	12	13	15
7000	8	8	9	9	9	10	10	II	II	12	12	I3	14	16

TAble 30.

DIFFERENCE OF HEIGHT CORRESPONDING TO A CHANGE OF O.1 INCH IN THE BAROMETER.

ENGLISH MEASURES.

Barometric Pressure.	MEAN TEMPERATURE OF THE AIR IN											
	30°	35°	40°	45°	50°	55°	60°	65°	70°	75°	80°	85°
Inches	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
22.0	119.2	120.5	121.8	123.I	124.4	125.8	127.1	128.5	129.8	I3I. 2	I32.5	133.9
. 2	II8.2	119.4	120.7	122.0	123.3	124.7	126.0	127.3	128.7	I30.0	I3I. 3	I32.7
. 4	117.1	118.3	I 19.6	120.9	122.2	123.6	124.9	126.2	127.5	128.8	I30.2	I3I. 5
. 6	II6.I	117.3	II8.6	119.8	121.1	122.5	123.8	125.1	126.4	127.7	129.0	I30.3
. 8	II5.0	116.3	117.5	I18.8	120.I	121.4	122.7	124.0	125.3	126.6	127.9	129.2
23.0	II4.0	115.3	116.5	117.8	119.0	120.3	121.6	122.9	124.2	125.5	126.8	128.1
. 2	II3.I	114.3	115.5	116.8	118.0	119.3	I20.6	121.8	123. 1	124.4	125.7	127.0
. 4	II2.I	113.3	114.5	115.8	117.0	II8.3	119.5	120.8	122.1	123.3	124.6	125.9
. 6	III.I	II2.3	II 3.5	II4.8	II6.0	117.3	II8.5	119.8	121.0	122.3	123.5	124.8
. 8	IIO. 2	III. 4	II2.6	II3.8	II5.I	II6.3	II7.5	II8.8	120.0	12I. 3	122.5	123.8
24.0	109.3	110.5	111.7	II2.9	II4. I	115.3	116.5	117.8	119.0	120.2	121.5	122.7
. 2	108.4	109.5	110.7	III. 9	I13.I	II4.4	II5.6	116.8	I18.0	119.2	120.5	121. 7
. 4	107.5	108.6	109.8	III.O	II2.2	II3.4	II4.6	II5.9	II7. 1	118.3	119.5	120.7
. 6	106.6	107.8	108.9	IIO. I	IIII. 3	II2.5	113.7	II4.9	II6.I	117.3	118.5	119.7
. 8	105.8	106.9	108.I	109.2	110.4	III. 6	I12.8	II4.0	II5.2	II6.4	117.6	118.8
25.0	104.9	106.0	107.2	108.3	109.5	110.7	III. 9	II3.I	II4.2	II5.4	II6.6	117.8
. 2	104. 1	105.2	106.3	107.5	108.7	109.8	III.O	II2.2	II3.3	II4.5	II 5.7	116.9
. 4	103.3	104.4	105.5	106.6	107.8	109.0	IIO. I	III. 3	II2.4	II3.6	II4.8	I16.0
. 6	102.5	103.6	104.7	105.8	107.0	108. 1	109.3	110.4	III. 6	II2.7	II 3.9	115.I
. 8	IOI. 7	102.8	103.9	105.0	106. I	107.3	108.4	109. 6	110.7	III. 9	II3.0	II4.2
26.0	100.9	102.0	103. I	104.2	105.3	106.4	107.6	108.7	109.9	III.O	II2.I	II3.3
. 2	100. 1	101.2	102.3	103.4	104.5	105.6	106.8	107.9	109.0	IIO. 1	III. 3	II2.4
. 4	99.4	100.4	101. 5	102.6	103.7	104.8	106.0	107. 1	108.2	109.3	110.4	III. 6
. 6	98.6	99.7	10.7	IOI. 8	102.9	104.0	105.2	106.3	107.4	108.5	109.6	110.7
. 8	97.9	98.9	10.0	IOI. I	102.2	103.3	104.4	105.5	106.6	107.7	108.8	109.9
27.0	97.1	98.2	99.2	100.3	IOI. 4	102.5	103.6	104.7	105.8	106.9	108.0	109. 1
. 2	96.4	97.5	98.5	99.6	100.7	101. 8	102.8	103.9	105.0	106. I	107.2	108.3
. 4	95.7	96.8	97.8	98.9	99.9	101.0	IO2. I	103.2	104.2	105.3	106.4	107.5
. 6	95.0	96.1	97. 1	98.1	99.2	100.3	roi. 3	102.4	103.5	104.6	105.6	106.7
. 8	94.3	95.4	96.4	97.4	98.5	99.6	100.6	IOI. 7	102.7	103.8	I04.9	105.9
28.0	93.7	94.7	95.7	96.7	97.8	98.8	99.9	IOI. 0	102.0	103. I	104. 1	105.2
. 2	93.0	94.0	95.0	96.1	97. 1	98.1	99.2	100.2	101. 3	102.3	103.4	104.4
. 4	92.4	93.4	94.4	95.4	96.4	97.5	98.5	99.5	100. 6	IOI. 6	102.7	103.7
. 6	91.7	92.7	93.7	94.7	95.7	96.8	97.8	98.8	99.9	100.9	IOI. 9	103.0
. 8	91.1	92.1	93.1	94.1	95.1	96.1	97.1	98.2	99.2	100.2	IOI. 2	102.3
29.0	90.4	91.4	92.4	93.4	94.4	95.4	96.5	97.5	98.5	99.5	100.5	IOI. 6
. 2	89.8	90.8	91.8	92.8	93.8	94.8	95.8	96.8	97.8	98.8	99.9	100.9
. 4	89.2	90.2	91.1	92.1	93.1	94.I	95.1	96.1	97. 1	98.2	99.2	100.2
. 6	88.6	89.6	90.5	91.5	92.5	93.5	94.5	95.5	96.5	97.5	98.5	99.5
. 8	88.0	89.0	89.9	90.9	91.9	92.9	93.9	94.9	95.8	96.8	97.8	98.8
30.0	87.4	88.4	89.3	90.3	91.3	92.3	93.2	94.2	95.2	96.2	97.2	98.2
. 2	86.8	87.8	88.7	89.7	90.7	91.7	92.6	93.6	94.6	95.6	96.5	97.5
. 4	86.3	87.2	88.2	89.1	90.1	91.1	92.0	93.0	94.0	94.9	95.9	96.9
. 6	85.7	86.7	87.6	88.5	89.5	90.5	91.4	92.4	93.3	94.3	95.3	96.2
. 8	85.2	86. 1	87.0	88.0	88.9	89.9	90.8	91.8	92.7	93.7	94.7	95.6

Table 31.
DIFFERENCE OF HEIGHT CORRESPONDING TO A CHANGE OF 1 MILLIMETRE IN THE BAROMETER.

METRIC MEASURES.

Barometric Pressure.	MEAN TEMPERATURE OF THE AIR IN CENTIGRADE DEGREES.									
	-2°	0°	2°	4°	6°	8°	10°	12°	14°	16°
m	Metres.	Metres.	Metres.	Metres.	Metres.	Metres.	Metres.	Metres.	Metres.	Metres.
760	10.48	10.57	10.65	10.73	10.81	10.89	10.98	11.06	II. 15	11.23
750	10.62	10.71	10.79	10.87	10.95	11.04	I1.13	II.2I	11.30	11.38
740	10.77	10.85	10.93	11.02	II.10	II.19	11.28	11.36	11.45	II. 54
730	10.91	11.00	11.08	11.17	II. 26	II. 35	11.43	II. 52	11.61	11.70
720	11.06	11.15	II. 24	11.32	11.42	11.51	II. 59	11.68	11.77	11.86
710	II 1.22	II. 31	II. 40	II. 48	II.58.	11.67	II. 75	II. 85	11.94	12.03
700	II. 38	II. 47	11.56	11.65	11.74	11.83	11.92	12.02	12.11	12.20
690	II. 55	11.63	11.72	11.82	11.91	12.00	12.09	12.19	12.28	12.38
680	II. 72	11.80	11.89	I1. 99	12.08	12.18	12.27	12.37	12.46	12.56
670	11.89	11.98	12.07	12.17	12.26	12.36	12.46	12.55	12.65	12.75
660	12.07	12.16	12.26	12.35	12.45	12.55	12.65	12.74	12.84	12.94
650	12.26	12.35	12.45	12.54	12.64	12.74	12.84	12.94	13.04	13.14
640	12.45	12.55	12.64	12.74	12.84	12.94	13.04	13.14	13.24	13.35
630	12.65	12.75	12.84	12.94	13.04	13.15	13.25	13.35	13.45	13.56
620	12.85	12.96	13.05	13.15	13.25	13.36	13.46	13.57	13.67	13.78
610	13.06	13.17	13.27	13.37	13.47	13.58	13.68	13.79	13.89	14.01
600	13.28	13.39	13.49	13.59	13.70	13.80	13.91	14.02	14.13	14.24
590	13.51	13.62	13.72	13.82	13.93	14.03	14.15	14.26	14.37	14.48
580	13.74	13.85	13.96	14.06	14.17	14.28	14.39	14.51	14.62	14.73
570	13.98	14.09	14.20	14.31	14.42	14.53	14.64	14.76	14.88	14.99
560	14.23	14.34	14.45	14.57	14.68	14.79	14.90	15.02	15.14	15.25
Barometric Pressure.	MEAN TEMPERATURE OF THE AIR IN CENTIGRADE DEGREES.									
	18°	20°	22°	24°	26°	28°	30°	32°	34°	36°
$\begin{aligned} & \mathrm{mm} . \\ & 760 \end{aligned}$	Metres. II. 32	Metres. $\text { II. } 4 \mathrm{I}$	Metres. $\text { II } .49$	Metres. $\text { II. } 58$	Metres. II. 66	Metres. $\text { II. } 75$	Metres. 11.84	Metres. $\text { II. } 92$	Metres. 12.01	Metres. 12.10
750	11.47	11.56	II. 64	11.73	11.82	II.9I	12.00	12.08	12.17	12.26
740	11.63	11.72	11.80	11.89	11.98	12.07	12.16	12.24	12.33	12.42
730	II. 79	II. 88	11.96	12.05	12.15	12.23	12.32	12.41	12.50	12.59
720	11.95	12.04	12.13	12.22	12.32	12.40	12.49	12.58	12.68	12.77
710	12.12	12.2I	12.30	12.39	12.49	12.58	12.67	12.76	12.86	12.95
700	12.29	12.39	12.48	12.57	12.67	12.76	12.85	12.94	13.04	13.13
690	12.47	12.57	12.66	12.75	12.85	12.94	13.04	13.13	13.23	13.32
680	12.66	12.75	12.85	12.94	13.04	13.13	13.23	13.32	13.42	13.52
670	12.85	12.94	13.04	13.14	13.23	13.33	13.43	13.52	13.62	13.72
660	13.04	13.14	13.24	13.34	13.43	13.53	13.63	13.73	13.83	13.93
650	13.24	13.34	13.44	13.54	13.64	13.74	13.84	13.94	14.04	14.15
640	I 3.45	13.55	13.65	13.75	13.85	13.96	14.06	14.15	14.26	14.37
630	13.66	13.76	13.87	13.97	14.07	14.18	14.28	14.38	14.49	14.60
620	13.88	13.98	14.09	14.20	14.30	14.41	14.51	14.62	14.72	14.83
610	14.II	14.21	14.32	14.43	14.54	14.64	14.75	14.86	14.96	15.07
600	14.35	14.45	14.56	14.67	14.78	14.89	15.00	15.11	15.21	15.32
590	14.59	14.70	14.81	14.92	15.03	15.14	15.25	15.36	${ }^{5} 5.47$	15.59
580	14.84	14.95	15.07	15.17	15.29	15.40	${ }^{1} 5.52$	15.63	15.74	15.86
570 560	15.10 15.37	15.21	15.33	15.44	15.56	15.67	15.79	15.91	16.02	16.14
560	15.37	15.48	15.60	15.72	15.84	15.95	16.07	16.19	16.30	16.42

Table 32.
DETERMINATION OF HEIGHTS BY THE BAROMETER.
Formula of Babinet.

$$
z=C \frac{B_{0}-B}{B_{0}+B}
$$

$C($ in feet $)=52494\left[\mathrm{x}+\frac{t_{0}+t-64}{900}\right]$-English Measures.
C (in metres) $=16000\left[\mathrm{r}+\frac{2\left(t_{0}+t\right)}{1000}\right]$-Metric Measures.
In which $Z=$ Difference of height of two stations in feet or metres.
$B_{0}, B=$ Barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.
$t_{\mathrm{o}}, \boldsymbol{t}=$ Air temperatures at the lower and upper stations respectively.
Values of \mathbf{C}.
ENGLISH MEASURES.

1/2 $\left(t_{0}+\mathbf{t}\right)$.	$\log C$.	C.	1/2 $\left(t_{0}+\mathbf{t}\right)$.	$\log C$.	C.
F.		Feet.	c.		Metres.
10°	4.69834	49928	-10°	4.18639	15360
15	.70339	50511	-8	. 19000	15488
20	. 70837	51094	-6	. 19357	15616
25	. 71330	51677	-4	. 19712	15744
30	.71818	52261	-2	. 20063	15872
			0	4.20412	16000
35			+2	. 20758	16128
35	4.72300	52844	4	.21101	16256
40	. 72777	53428	6	. 21442	16384
45	. 73248	5401 I	8	. 21780	16512
50	. 73715	54595			
55	.74177	55178	12	4.22115 .22448	$\begin{aligned} & 16640 \\ & 16768 \end{aligned}$
			14	. 22778	16896
60	4.74633	55761	16	. 23106	17024
65	. 75085	56344	18	. 23431	17152
70	. 75532	56927	20	4.23754	17280
75	. 75975	57511	22	. 24075	17408
80	.76413	58094	24	. 24393	17536
			26	. 24709	17664
			28	. 25022	17792
85	4.76847	58677			
90	. 77276	59260	30	4.25334	17920
95			32	. 25643	18048
100	.78123	60427	34	. 25950	18176
	. 7812		36	. 26255	18304

Smithbonian Tables.

TABLE 33.
BAROMETRIC PRESSURES CORRESPONDING TO THE TEMPERATURE OF THE BOILING POINT OF WATER.

ENGLISH MEASURES.

Temperature.	0.0	0.1	0.2	0.3	0.4	$0 \% 5$	0.6	0.7	0.8	0.9
F.	Inches.									
185°	17.05	17.08	17.12	17.16	17.20	17.23	17.27	17.31	17.35	17.39
186	17.42	17.46	17.50	17.54	17.58	17.61	17.65	17.69	17.73	17.77
187	17.81	17.84	17.88	17.92	17.96	18.00	18.04	18.08	18.12	18.16
188	18.20	18.24	18.27	18.31	18.35	18.39	18.43	18.47	18.5I	18.55
189	18.59	18.63	18.67	18.71	18.75	18.79	18.83	18.87	18.91	18.95
190	19.00	19.04	19.08	19.12	19.16	19.20	19.24	19.28	19.32	19.36
191	19.41	19.45	19.49	19.53	19.57	19.61	19.66	19.70	19.74	19.78
192	19.82	19.87	19.91	19.95	19.99	20.04	20.08	20.12	20.17	20.21
193	20.25	20.29	20.34	20.38	20.42	20.47	20.51	20.55	20.60	20.64
194	20.68	20.73	20.77	20.82	20.86	20.90	20.95	20.99	21.04	21.08
195	21.13	21.17	21.22	21.26	21.30	21.35	2 L .39	21.44	21.48	21.53
196	21.58	21.62	21.67	21.71	21.76	21.80	21.85	21.89	21.94	21.99
197	22.03	22.08	22.12	22.17	22.22	22.26	22.31	22.36	22.40	22.45
198	22.50	22.54	22.59	22.64	22.69	22.73	22.78	22.83	22.88	22.92
199	22.97	23.02	23.07	23.11	23.16	23.21	23.26	23.31	23.36	23.40
200	23.45	23.50	23.55	23.60	23.65	23.70	23.75	23.80	23.85	23.89
201	23.94	23.99	24.04	24.09	24. I4	24.19	24.24	24.29	24.34	24.39
202	24.44	24.49	24.54	24.59	24.64	24.69	24.74	24.80	24.85	24.90
203	24.95	25.00	25.05	25.10	25.15	25.21	25.26	25.31	25.36	25.41
204	25.46	25.52	25.57	25.62	25.67	25.73	25.78	25.83	25.88	25.94
205	25.99	26.04	26.10	26.15	26.20	26.25	26.31	26.36	26.42	26.47
206	26.52	26.58	26.63	26.68	26.74	26.79	26.85	26.90	26.96	27.01
207	27.07	27.12	27.18	27.23	27.29	27.34	27.40	27.45	27.51	27.56
208	27.62	27.67	27.73	27.79	27.84	27.90	27.95	28.01	28.07	28.12
209	28.18	28.24	28.29	28.35	28.41	28.46	28.52	28.58	28.64	28.69
210	28.75	28.81	28.87	28.92	28.98	29.04	29.10	29.16	29.21	29.27
211	29.33	29.39	29.45	29.51	29.57	29.62	29.68	29.74	29.80	29.86
212	29.92	29.98	30.04	30.10	30.16	30.22	30.28	30.34	30.40	30.46

METRIC MEASURES.
TAble 34.

Temperature.	0.0	0.1	0.2	0.3	0.4	0\%5	0.6	0.7	0.8	0.9
c.	m	n.	mm	mm.	mm .				m	.
80°	354.6	356. 1	357.5	359.0	360.4	361.9	363.3	364.8	366.3	367.8
81	369.3	370.8	372.3	373.8	375.3	376.8	378.3	379.8	38 I .3	382.9
82	384.4	385.9	387.5	389.0	390.6	392.2	393.7	395.3	396.9	398.5
83	400. I	401.7	403.3	404.9	406.5	408.1	409.7	411.3	413.0	414.6
84	416.3	417.9	419.6	421.2	422.9	424.6	426.2	427.9	429.6	43 I .3
85	433.0	434.7	436.4	438.1	439.9	441.6	$443 \cdot 3$	445. I	446.8	448.6
86	450.3	452.1	453.8	455.6	457.4	459.2	46 I .0	462.8	464.6	466.4
87	468.2	470.0	471.8	473.7	475.5	477.3	479.2	481.0	482.9	484.8
88	486.6	488.5	490.4	492.3	494.2	496. I	498.0	499.9	501.8	503.8
89	505.7	507.6	509.6	511.5	513.5	515.5	517.4	519.4	521.4	523.4
90	525.4	527.4	529.4	531.4	533.4	535.5	537.5	539.6	541.6	543.7
91	545.7	547.8	549.9	551.9	554.0	556. I	558.2	560.3	562.4	564.6
92	566.7	568.8	5710	573.1	575.3	577.4	579.6	581.8	584.0	586.1
93	588.3	590.5	592.7	595.0	597.2	599.4	601.6	603.9	606. I	608.4
94	610.7	612.9	615.2	617.5	619.8	622.I	624.4	626.7	629.0	631.4
95	633.7	636.0	638.4	640.7	643.1	645.5	647.9	650.2	652.6	655.0
96	657.4	659.9	662.3	664.7	667.1	669.6	672.0	674.5	677.0	679.4
97	681.9	684.4	686.9	689.4	691.9	694.5	697.0	699.5	702.1	704.6
98	707.2	709.7	712.3	714.9	717.5	720.1	722.7	725.3	727.9	730.5
99	733.2	735.8	738.5	741.2	743.8	746.5	749.2	751.9	754.6	757.3
100	760.0	762.7	765.5	768.2	770.9	773.7	776.5	779.2	782.0	784.8

Smithsonian Tables.

HYGROMETRICAL TABLES.

Pressure of aqueous vapor (Broch) -
English measures 35
Metric measures $\left\{\begin{array}{l}36 \\ 43\end{array}\right.$Pressure of aqueous vapor at low temperatures (C. F. Marvin) -English and Metric measuresTable 37
Weight of aqueous vapor in a cubic foot of saturated air -
English measures Table 38
Weight of aqueous vapor in a cubic metre of saturated air -Metric measuresTable 39
Reduction of psychrometric observations - English measures.
Pressure of aqueous vapor Table 40Values of $0.000367 B\left(t-t_{1}\right)\left(\mathrm{I}+\frac{t-t_{1}}{157 \mathrm{I}}\right)$41
Relative humidity - Temperature Fahrenheit Table 42
Reduction of psychrometric observations - Metric measures.Pressure of aqueous vapor .Table 43
Values of $0.000660 B\left(t-t_{1}\right)\left(\mathrm{I}+\frac{t-t_{1}}{873}\right)$ 44
Relative humidity - Temperature Centigrade Table 45
Reduction of snowfall measurements.
Depth of water corresponding to the weight of snow(or rain) collected in an 8 -inch gageTable 46
Rate of decrease of vapor pressure with altitude Table 47

ENGLISH MEASURES.

Temperature.	Vapor Pressure.	Diff. for 0.1	Temperature.	Vapor Pressure.	Diff. for 0.1	Temperature.	Vapor Pressure.	Diff. for 0.1	Temperature.	Vapor Pressure.	Diff. for 0.1
$\begin{gathered} F . \\ -20.0 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ 0.0167 \end{gathered}$		$\begin{gathered} F . \\ -10.0 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ 0.0277 \end{gathered}$		$\begin{gathered} \text { F. } \\ 0.0 \end{gathered}$	Inch.		$\begin{gathered} F . \\ 10.0 \end{gathered}$	Inch. 0.0710	
		I			I	+0.2	. 0454	2	10.2	. 0716	3
-19.8	0.0168	I	-9.8	0.0280	I	0.4	. 0458	2	10.4	. 0723	3
19.6	. 0170	I	9.6	. 0283	I	0.6	. 0462	2	10.6	. 0729	3
19.4	. 0172	1	9.4	. 0286	I	0.8	. 0467	2	10.8	. 0736	3
19.2	. 0174	1	9.2	. 0289	I			2			3
19.0	. 0176		9.0	. 0292		1.0	0.0471	2	11.0	0.0742	3
-18.8	0.0177	I	-8.8	0.0294	I	I. 2	. 0475	2	11.2	. 0749	3
18.6	. 0179	I	8.6	. 0297	I	I. 4 I .6	. 0488	2	11.4 II. 6	. 0756	3
18.4	.OI8I	I	8.4	. 0300	2	I. 8	. 0489	2	11.8	. 0769	3
18.2	. Or 83	I	8.2	. 0303	2			2			3
18.0	. 0185	1	8.0	. 0306	2	2.0	0.0493	2	12.0	0.0776	3
-17.8	0.0187	I	- 7.8	0.0309	2	2.2	. 0498	2	12.2	. 0783	3 3
17.6	. 0.0189	I	7.6	.0312	2	2.4 2.6	.0503	2	12.4	. 0790	3
17.4	. 0191	1	7.4	.0315	2	2.8	.0512	2	12.8	. 0804	4
17.2	. 0193	1	7.2	.0318	2			2			4
17.0	. 0195		7.0	. 0322		3.0	0.0517	2	13.0	0.0811	4
-16.8	0.0	I	-6.8		2	3.2	. 0522	2	13.2	.0818	4
16.6	. 0199	I	6.6	. 0328	2	$3 \cdot 4$. 0526	2	13	5	4
16.4	. 0201	I	6.4	.033I	2	3.6 3.8	.0531	2	13.6 13.8	. 0840	4
16.2	. 0203	I	6.2	. 0334	2			2			4
16.0	. 0205	1	6.0	. 0338	2	4.0	0.0541		14.0	0.0847	
		I			2	4.2	. 0546		14.2	. 0854	4
-15.8	0.0207	I	-5.8	0.0341	2	4.4	.055I	3	14.4	. 0862	4
15.6	-0209	I	5.6	. 0344	2	4.6	. 0556	3	14.6	. 0869	4
15.4	. 0211	I	5.4	. 0347	2	4.8	.056I	3	14.8	. 0877	4
15.2	. 0213	1	5.2	.0351	2			3			4
15.0	. 0216		5.0	. 0354		5.0	0.0567		15.0	0.0885	
-14.8	0.0218	I	-4.8	0.03	2	5.2	. 0572	3	15.2	. 0892	4
14.6	0.0218 .0220	I	-4.8 4.6	0.0358 .0361	2	5.4 5.6	. 05777	3	15.4	. 0900	4
14.4	. 0222	I	4.4	.0365	2	5.8	. 0588	3	15.8	.0916	4
14.2	. 0225	I	4.2	. 0368	2			3			4
14.0	. 0227		4.0	. 0372		6.0	0.0593		16.0	0.0924	
		I			2	6.2	. 0598		16.2	. 0932	4
-13.8	0.0229	I	-3.8	0.0375	2	6.4	. 0604	3	16.4	. 0940	4
13.6	. 0232	I	3.6	. 0379	2	6.6	. 0609	3	16.6	. 0948	4
13.4	. 0234	I	$3 \cdot 4$. 0383	2	6.8	.06I5	3	16.8	. 0956	4
13.2	. 0236	I	3.2	. 0386	2			3			4
13.0	. 0239		3.0	. 0390		7.0	0.0620		17.0	0.0965	
-12.8	0.024 I	I	-2.8	0.0394	2	7.2	. 0626	3	17.2	. 0973	4
12.6	. 0244	I	2.6	. 0397	2	7.4	. 0632	3	17.4	.0981	4
12.4	. 0246	I	2.4	. 0401	2	7.6	. 0637	3	17.6 17.8	. 0990	4
12.2	. 0249	I	2.2	. 0405	2	7.8	. 0643	3	17.8	. 0999	4
12.0	.025I		2.0	. 0409	2	8.0	0.0649		18.0	0. 1007	
-11.8	0.0254	1	-1.8	0.0413	2	8.2	. 0655	3 3	18.2	. 1016	4
11.6	. 0256		1.6	. 0417	2	8.4	.0661	3 3	18.4	. 1024	4
II. 4	. 0259	I	I. 4	. 0421		8.6	. 0667	3	I8.6	.1033	4
II. 2	.026I		1.2	. 0425	2	8.8	. 0673	3	18.8	. 1042	4
11.0	. 0264		1.0	. 0429	2	9.0	0.0679	3	19.0	0.105I	4
-10.8	0.0267		-0.8	0.0433		9.2	. 0685	3	19.2	. 1060	5
10.6	. 0269		0.6	. 0437	2	9.4	.0691	3	19.4	. 1069	5
10.4	. 0272		0.4	. 0441	2	9.6	. 0697	3	19.6	. 1078	5
10.2	. 0275	1	0.2	. 0445	2	9.8	. 0704	3 3	19.8	. 1087	5

TABLE 35.

PRESSURE OF AQUEOUS VAPOR.
(Broch.)
ENGLISH MEASURES.

Temperature.	Vapor Pressure.	D.ff. tor 0.1	Temperature.	Vapor Pressure.	Diff. for 0.1	Temperature.	Vapor Pressure.	Diff. for 0.1	Temperature.	Vapor Pressure.	Diff. for 0.1
F.	Inch.		F.	Inch		F.	Inch		F.	Inch.	
20.0	0. 1097		30.0	0. 1660		40.0	0. 2465		50.0	0.3598	
20.2	. 1106	5	30.2	. 1673	7	40.2	. 2484	10	50.2	. 3625	I3
20.4	. 1115	5	30.4	. 1687	7	40.4	. 2503	10	50.4	. 3652	I4
20.6	. 1125	5	30.6	. 1700	7	40.6	.2523	10	50.6	. 3679	14
20.8	. II 34	5	30.8	.1714	7	40.8	. 2542	10	50.8	. 3706	14
21.0	O. 1144	5	31.0	0. 1728	7	41.0	0.2562	10	51.0	0.3734	I
21.2	. 1154	5	31.2	. 1742	7	41.2	. 2582	10	51.2	. 3761	14
21.4	.1163	5	3 I .4	. 1756	7	4 II .4	. 2601	10	5 I .4	. 3789	14
21.6	. 1173	5	31.6	.1770	7	41.6	. 2621	10	51.6	.3817	14
21.8	. 1183	5	31.8	. 1784	7	41.8	. 2642	10	51.8	- 3845	14
22.0	O. 1193	5	32.0	0. 1799	7	42.0	0. 2662	10	52.0	0.3874	14
22.2	. 1203	5	32.2	. 18 I 3	7	42.2	. 2683	10	52.2	. 3902	14
22.4	. 1213	5	32.4	. 1828	7	42.4	. 2703	IO	52.4	. 3931	14
22.6	. 1223	5	32.6	. 1842	7	42.6	. 2724	10	52.6	. 3960	14
22.8	. 1234	5	32.8	. 1857	7	42.8	. 2745	11	52.8	. 3989	15
23.0	O. 1244	5	33.0	0. 1872	7	43.0	0.2766		53.0	0.4018	15
23.2	. 1255	5	33.2	. 1887	8	43.2	. 2787	II	53.2	. 4048	I5
23.4	. 1265	5	33.4	. 1902	8	43.4	. 2808	II	53.4	. 4077	15
23.6	. 1276	5	33.6	.1917	8	43.6	. 2830	11	53.6	.4107	15
23.8	. 1287	5	33.8	. 1933	8	43.8	. 2851	II	53.8	.4137	15
24.0	O. 1297	5	34.0	0. 1948	8	44.0	0.2873		54.0	0.4168	15
24.2	. 1308	5	34.2	. 1964	8	44.2	. 2895	II	54.2	.4198	15
24.4	. 1319	5	34.4	. 1979	8	44.4	. 2917	II	54.4	. 4229	15
24.6	. 1330	6	34.6	. 1995	8	44.6	. 2939	II	54.6	. 4259	16
24.8	. 1341	6	34.8	. 2011	8	44.8	. 2962	II	54.8	. 4290	16
25.0	O. 1352	6	35.0	0.2027	8	45.0	0.2984	II	55.0	0.4322	16
25.2	. 1364	6	35.2	. 2043	8	45.2	.3007	II	55.2	. 4353	16
25.4	. 1375	6	35.4	. 2059	8	45.4	. 3030	12	55.4	. 4385	16
25.6	. 1386	6	35.6	. 2076	8	45.6	. 3053	12	55.6	.4417	16
25.8	. 1398	6	35.8	. 2092	8	45.8	-3076	12	55.8	. 4449	16
26.0	0.1409	6	36.0	0.2109	8	46.0	0.3099		56.0	0.448 I	16
26.2	. 1421	6	36.2	. 2125	8	46.2	.3123	12	56.2	.4513	16
26.4	. 1433	6	36.4	. 2142	8	46.4	- 3146	12	56.4	. 4546	16
26.6	. 1445	6	36.6	. 2159	8	46.6	.3170	12	56.6	. 4579	17
26.8	. 1457	6	36.8	. 2176	9	46.8	. 3194	12	56.8	.4612	17
27.0	o. 1469	6	37.0	0.2193	9	47.0	0.3218	12	57.0	0.4645	17
27.2	.1481	6	37.2	. 2210	9	47.2	. 3242	12	57.2	0.4645 .4679	17
27.4	. 1493	6	37.4	. 2228	9	47.4	. 3267	12	57.4	. 4712	17
27.6	. 1505	6	37.6	. 2245	9	47.6	. 3291	12	57.6	. 4746	17
27.8	. 1518	6	37.8	. 2263	9	47.8	. 3316	2	57.8	.4780	17
28.0		6	38.0		9	48.0		12	53.0		17
28.2	0.1530 .1543	6	38.2	0.2281 .2298	9	48.2	0.3341 .3366	13	58.2	0.4815 .4849	17
28.4	. 1555	6	38.4	. 2316	9	48.4	. 3391	13	58.4	. 4888	17
28.6	. 1568	6	38.6	. 2334	9	48.6	. 3416	13	58.6	. 4919	I8
28.8	.158I	6	38.8	. 2353	9	48.8	. 3442	13	58.8	. 4954	18
29.0	O. 1594	6	39.0	0.2371	9	49.0	0.3467	13	59.0		18
29.2	. 1607	7	39.2	. 2390	9	49.2	.3493	13	59.2	0.4990 .5025	18
29.4	. 1620	7	39.4	. 2408	9	49.4	-3519	13	59.4	. 5061	18
29.6	. 1633	7	39.6	. 2427	9	49.6	. 3546	13	59.6	. 5097	18
29.8	. 1646	7 7	39.8	. 2446	9 10	49.8	- 3572	I3	59.8	.5134	18

(Broch.)
ENGLISH MEASURES.

Temperature.	Vapor Pressure.	Diff. for 0.1	Temperature.	Vapor Pressure.	Diff. for 0.1	Temperature.	Vapor Pressure.	Diff. for 0.1	Temperature.	Vapor Pressure.	Diff. for 0.1
F.	Inch.		F.	Inch.		F.	Inches.		F.	Incnes.	
60.0	0.5170	18	70.0	0.7320		80.0	1.0219	34	90.0	1.4081	
60.2	. 5207	19	70.2	. 7370	25	80.2	. 0286	34 34	90.2	. 4170	44
60.4	. 5244	19	70.4	. 7420	25	80.4	. 0354	34	90.4	. 4259	45
60.6	. 5282	19	70.6	.7471	26	80.6	. 0422	34	90.6	. 4349	45
60.8	. 5319	19	70.8	. 7522	26	80.8	. 0490	34	90.8	. 4439	45
61.0	0.5357		71.0	0.7573	26	81.0	1.0558	4	91.0	1. 4530	45
61.2	. 5395	19 19	71.2	. 7625	26	81.2	. 0627	35	91.2	. 4621	46
6I. 4	. 5433	19 19	71.4	. 7676	26	8 I .4	. 0697	35	91.4	. 4712	46
61.6	. 5471	19	71.6	. 7728	26	8 8 .6	. 0767	35	91.6	. 4805	46
61. 8	. 5510	19	71.8	.778x	26	81. 8	. 0837	35	91.8	. 4897	46
62.0	O. 55	19	72.0	0.7	26	82.0	1.09	35	92.0		47
62.2	. 5588	20	72.2	.7884 .7887	27	82.2	. 0978	36	92.2	1.4990 .5084	47
62.4	. 5628	20	72.4	. 7940	27	82.4	. 1050	36	92.2 92.4	. 5178	47
62.6	. 5667	20	72.6	. 7994	27	82.6	.II2I	36	92.6	. 5273	47 48
62.8	. 5707	20	72.8	. 8048	27	82.8	. 1194	36	92.8	. 5368	48
63.0	0.5748	20	73.0	0.8102	27	83.0	I. 1266	7	93.0	1. 5464	8
63.2	. 5788	20	73.2	.8157	27	83.2	. 1339	37	93.2	. 5560	48
63.4	. 5829	2 I	73.4	. 8212	28	83.4	. 1413	37 37	93.4	. 5657	49
63.6	. 5870	21	73.6	. 8267	28	83.6	. 1487	37 37	93.6	. 5755	49
63.8	.5911	21	73.8	. 8323		83.8	. 1561	37	93.8	. 5853	49
64.0	0.5952	2 I	74.0	0. 837	28	84.0	I. 1635	38	94.0	I.5951	9
64.2	. 5994	2 I	74.2	. 8435	28	84.2	. 1710	38	94.2	. 6050	49
64.4	. 6036	21	74.4	. 8492	28	84.4	. 1786	38	94.4	.6149	50
64.6	. 6078	21	74.6	.8549	29 29	84.6	. 1862	38	94.6	. 6249	50
64.8	.6120	21	74.8	. 8606	29	84.8	. 1938	38	94.8	. 6350	5
65.0	0.6163	21	75.0	o. 8664	29	85.0	1. 2015	8	95.0	1.6451	5 I
65.2	. 6206	22	75.2	. 8722	29	85.2	. 2093	39	95.2	. 6552	5 I
65.4	. 6249	22	75.4	. 8780	29	85.4	. 2170	39 39	95.4	. 6655	51
65.6	. 6293	22	75.6	. 8839	29 30	85.6	. 2248	39 39	95.6	. 6758	5
65.8	. 6337	22	75.8	. 8898	30	85.8	. 2327	39	95.8	.686I	52
66.0	0.6381	22	76.0	0. 8957	30	86.0	I. 2406	39	96.0	1. 6964	52
66.2	. 6425	22	76.2	. 9017	30	86.2	. 2485	40	96.2	. 7069	52
66.4	. 6470	22	76.4	. 9077	30	86.4	. 2565	40	96.4	. 7174	52
66.6	. 6514	22	76.6	.9137	30	86.6	. 2645	40	96.6	.7279	53
66.8	. 6560	23	76.8	. 9198	30	86.8	. 2726	40	96.8	. 7385	53
67.0	0.6605	23	77.0	0.92	3 I	87.0	1.2807	4I	97.0	1.7492	53
67.2	. 6651	23	77.2	0.9259 .9321	3 I	87.2	. 2889	4 I	97.2	1.7492 .7599	54
67.4	. 6697	23	77.4	. 9383	3 I	87.4	. 2971	4 r	97.4	. 7707	54
67.6	. 6743	23	77.6	. 9445	31 31	87.6	. 3054	41	97.6	.7815	54
67.8	.6789	23	77.8	. 9507	31	87.8	-3137	42	97.8	. 7924	54
68.0	0.6836	23	78.0	0.9570	31	88.0	1.3220	42	98.0	I. 8034	55
68.2	. 6883	24	78.2	. 9633	32	88.2	. 3304	42	98.2	. 8144	55
68.4	. 6930	24	78.4	. 9697	32 32	88.4	. 3388	42	98.4	. 8254	56
68.6	. 6978	24	78.6	. 9761	32 32	88.6	. 3473	42	98.6	. 8366	56
68.8	. 7026	24	78.8	. 9825	32	88.8	. 3558	3	98.8	. 8477	56
69.0	0.7074	24	79.0	0.9890	32 33	89.0	I. 3644	43	99.0	1.8590	56 57
69.2	. 7123	24	79.2	. 9955	33 33	89.2	.3731	43	99.2	.8703	57
69.4 69.6	.7172 .7221	24 25	79.4	1.0021	33 33	89.4 89.6	. 3818	44	99.4 99.6	.8817	57
69.6 69.8	.7221 .7270	25	79.6 79.8	.0087	33 33	89.6 89.8	.3905	44	99.6 99.8	. 8931	57
69.8	. 7270	25	79.8	. 0153	33	89.8	-3993	44	99.8	. 9046	58

TABLE 35.
(Broch.)
ENGLISH MEASURES.

Temperature.	Vapor Pressure.	Diff. for 0.1	Temperature.	Vapor Pressure.	Diff. for 0.1	Temperature.	Vapor Pressure.	Diff. for 0.1	Temperature.	Vapor Pressure.	Diff. for 0.1
F.	In		F.	Inches.			Inche		F.	Inches.	
100:0	1.9161	58	110.0	2.5765		120.0	3.4253	6	130.0	4.5044	
100.2	. 9277	58	110.2	. 5915	75	120.2	. 4445	96	I30.2	. 5286	121
100.4	. 9394	58	110.4	. 6066	75	120.4	. 4637	96	I30.4	. 5530	122
100.6	. 9511	59	110.6	. 6217	76	120.6	. 4831	97	130.6	. 5775	123
100.8	. 9629	59	110.8	.6369	76	120.8	. 5026	97	130.8	. 6020	123
101.0	1.9747	59	11.0	2.6522	77	121.0	.522I	98	131.0	4.6267	123
101.2	. 9867	60	III. 2	. 6676	77	121.2	. 5417	8	131.2	. 6515	124
101.4	. 9986	60	III. 4	. 6831	78	12I. 4	-56I5	99	I31.4	. 6764	125
ros. 6	2.0107	60	III. 6	. 6986	78	I21. 6	. 5813	99	131.6	. 7015	125
101.8	. 0228	6	III. 8	. 7142	78	121.8	. 6012		131.8	. 7266	126
102.0	2.0349	61	112.0	2.7299	78	122.0	3.6213	100	132.0		126
102.2	. 0471	61	112.2	. 7457	79	122.2	.6414	IOI	I32.2	7773	127
102.4	. 0594	62	II2.4	. 7616	80	122.4	.6616	102	I 32.4	. 8028	7
102.6	.0718	62	II2.6	. 7775	80	122.6	.6819	102	I 32.6	. 8284	128
102.8	. 0842		112.8	. 7935	80	122.8	. 7023	102	I 32.8	. 8541	9
103.0	2.0967		113.0	2.8096	8I	123.0	3.7228	10	133.0	4.8800	129
103.2	.1092	63	II3.2	. 8257	8 I	123.2	3.7228 .743	3	I33.2	. 9059	130
103.4	. 1218	63	II 3.4	. 8420	82	123.4	.764I	1	I 33.4	. 9320	O
103.6	. 1345	64	II 3.6	. 8583	82	123.6	. 7849	1	I33.6	. 9582	${ }^{1} 31$
103.8	. 1473	6	II3.8	. 8747		123.8	. 8058		I 33.8	. 9845	2
104.0	2.1601		114.0	2.8912		124.0	3.82	5	134.0	5.0110	I32
104.2	. 1730	64	II4.2	. 9078	83	124.2	. 8.8478	105	I 34.2	. 0375	133
104.4	. 1859	65	II4.4	. 9244	8	124.4	. 8690	106	I 34.4	. 0642	I33
104.6	. 1989	65	114.6	. 9412	84	124.6	. 8903	106	I 34.6	. 0910	I 34
104.8	. 2120	66	II4.8	. 9580	84	124.8	.9117	107	I 34.8	.1179	135
		66	115		85	125.		107	135.0		135
	2.2	66	115.0	2.9749	85	125.0	3.9332	108	135.0	5.1450	136
105.2 105.4	. 2381	66	II5.2 II 5.4	.9919 3.0089	85	125.2 125.4	. 9548	109	I 35.2 r 35.4	.1722 .1994	I36
105.4 105.6	. 2516	67	II5.4	3.0089 .0261	86	125.4	. 976	109	135.4	. 1994	137
105.8	. 2784	67	115.8	. 0433	86	125.8	4.9898	110	I 35.8	. 2544	I38
		67			8		4.0202	110	- 35.8	. 2544	I38
106.0	2.2919	68	116.0	3.0606	87	126.0	4.0422	1 II	136.0	5.2820	
106.2	. 3054	68	116.2	. 0780	87	126.2	. 0643	III	136.2	. 3098	139 139
106.4	. 3190	68	116.4	. 0955	88	126.4	. 0865	112	136.4	. 3377	139 140
106.6	. 3327	69	116.6	. 113I	88	126.6	. 1088	112	136.6	. 3657	141
106.8	- 3465	69	II6.8	. 1308		126.8	. 1312	112	136.8	- 3939	14
107.0	2.3603		117.0	3.1485		127.0	4.1537		137.0	5.422 I	1
107.2	. 3742	70	117.2	. 1663	90	127.2	. 1764	II3	I37.2	. 4505	42
107.4	. 3882	70	117.4	. 1842	90	127.4	.1991	114	I 37.4	. 4791	143
107.6	. 4023	71	117.6	. 2023	91	127.6	. 2219	115	137.6	. 5077	143
107.8	. 4164	71	117.8	. 2204	91	127.8	. 2448		137.8	. 5365	144
108.0	2.4306		118.0	3.2386	9	128.0	4.26	115	138.0	5.5654	145
108.2	. 4449	71	118.2	. 2568	91	128.2	. 2910	116	138.2	- 5.5945	145
108.4	. 4592	72	II8.4	. 2752	92	128.4	. 3143	116	I38.4	. 6237	146
108.6	. 4736	72	118.6	. 2937	93	128.6	. 3377		I 38.6	. 6530	147
108.8	.4881	7	118.8	. 3122	93	128.8	. 3612	117	I38.8	. 6824	147
109.0	2.5026	73	119.0		93	129.0	4.3848	118	139.0	71	148
109.2	2. .5172	73	119.2	3.3308 .3495	94	129.2	4.38885	119	139.2	.7417	149
109.4	. 5319	73	119.4	. 3683	94	129.4	. 4323	119	I 39.4	.7715	149
109.6	. 5467	74	119.6	. 3872	95	129.6	. 4562	120	I 39.6	. 8014	150
109.8	. 5616	74 75	119.8	. 4062	95	129.8	. 4802	120	I 39.8	. 8315	150 151

Smithbonian Tables.

PRESSURE OF AQUEOUS VAPOR.
(Broch.)
ENGLISH MEASURES.

Temperature.	Vapor Pressure.	Diff. for 0.1	Temperature.	Vapor Pressure.	Diff. for 0.1	Temperature.	Vapor Pressure.	Diff. for 0.1	Temperature.	Vapor Pressure.	$\begin{gathered} \text { Diff. } \\ \text { for } \\ \mathbf{0 . 1} \end{gathered}$
F.	Inches		15	Inches.		F.	Inches.		F.	Inches.	
140\%	5.8617		150.0	7.5521	188	160.0	9.6374		170.0	12.1870	
140.2	. 8921	152 152	150.2	. 5897	189	160.2	. 6836	231	170.2	. 2432	281 282
140.4	. 9226	153	150.4	. 6275	190	160.4	. 7300	233	170.4	. 2997	283
140.6	. 9532	I54	150.6	. 6654	I9I	160.6	. 7765	234	170.6	. 3564	285
140.8	. 9839	154	150.8	. 7035	191	160.8	. 8233	234	I70.8	. 4133	
141.0	6.0148	I54	151.0	7.7418		161.0	9.8702	235	171.0	12.4704	286
I41.2	. 0458	I55 I56	151.2	.7802 .8188	192	16I. 2	. 9173	236	171.2	2.47278 .5	287
141.4	. 0770	+	${ }^{1} 51.4$.8188	1	161.4	. 9647	237 238	171.4	. 5853	288
141.6 141.8	.1083 .1397	I57	I51. 6 I5I. 8	.8575 .8964	I95	161.6 161. 8	10.0122 .0599	239 239	171.6 171. 8	.643I	280
141.8	. 1397	158	151.8	. 8964	195	161.8	. 0599	240	I71.8	.701I	291
142.0	6.1713		152.0	7.9355	196	162.0	10.1078		172.0	12.7593	
142.2	. 2030	159	${ }^{1} 52.2$. 9747	19	162.2	. 1559	241	172.2	.8177	292
142.4	. 2348	150	I52.4 I52.6	8.0141	198	162.4 162.6	. 2042	241	172.4 I 72.6	. 8764	293
142.6 I42.8	. 2668	161	152.6 I52.8	. 0536	199	162.6 162.8	. 2526	243	172.6 172.8	. 9353	296
		16	15		199			244			297
143.0	6.3312	162	153.0	8.1332	200	163.0	10.3501		173.0	13.0538	98
143.2	. 3636	163	${ }^{1} 53.2$. 1733	201	163.2	. 3992	246	173.2	.1134	299
143.4	.3961	164	${ }^{1} 53.4$. 2135	202	163.4	. 4484	247	173.4	. 1732	300
143.6	. 4288	164	I 53.6 I53.8	. 2539	203	163.6 163.8	. 4979	248	173.6	. 2332	301
143.8	.4616	I65	I53.8	. 2944	203	163.8	. 5475	248	173.8	. 2935	301 303
144.0	6.4946	I6	154.0	8.3351		164.0	10.5974		174.0	13.3540	
144.2	. 5277	166	154.2	. 3760	205	164.2	. 6474	25 I	174.2	. 4147	304
144.4	. 5610	166	I54.4	. 4171	205	164.4	. 6976	251	174.4	. 4756	305 306
144.6	. 5944	168	${ }^{1} 54.6$. 4583	207	164.6	. 7488	253	174.6	. 5368	307
144.8	. 6279	168	${ }^{\text {I } 54.8}$. 4997	208	I64.8	. 7986	253 254	174.8	. 5982	307 308
145.0	6.6616	169	155.0	8.5413		165.0	10.8495		175.0	13.6599	
145.2	. 6954	170	155.2	. 5830	210	165.2	.9005	256	175.2	. 7218	309 311
145.4	. 7294	171	${ }^{1} 55.4$. 6249	210	165.4	.9517	257	${ }^{1} 75.4$.7839	311 312
145.6	. 7635	171	${ }^{1} 55.6$. 6670	2 II	165.6	11.0032	258	175.6	. 8462	313
145.8	. 7978	171	I 55.8	.7092	211	165.8	. 0548	258	I75.8	. 9088	313
146.0	6.8322		156.0	8.7516		166.0	II.1067		176.0	13.9716	
146.2	. 8668	1	${ }^{1} 56.2$. 7942	213	166.2	. 1587	26I	176.2	14.0347	315 317
146.4	. 9015	174 174	I56.4	. 8370	215	166.4	. 2109	261 262	176.4	. 0980	317 318
I46.6	. 9363	174 175	I 56.6	. 8799	215	166.6	. 2634	263	176.6	.1616	318
I46.8	.9713	17	I56.8	.923I		166.8	. 3160	263	176.8	. 2253	
147.0	7.0065	176	157.0	8.9664	21	167.0	11.3689	264	177.0	I4.28	320
147.2	. 0418	17	157.2	9.0098		167.2	. 4220		177.2	. 3536	321
147.4	. 0773	178	157.4	. 0535		167.4	. 4752	7	177.4	.4181	323
147.6	. 1129	179	I57.6	. 0973	220	167.6	. 5287	268	177.6	. 4828	324
147.8	. 1486	179	I57.8	.1413	220	167.8	. 5824	268	177.8	. 5478	325
148.0	7.1845		158.0	9. 1855		168.0	11.6363		178.0	14.613I	326
148.2	. 2206		I58.2	9.1859	222	168.2	11.6904	271	178.2	14.6785 .6785	327
148.4	. 2568	I81	I58.4	. 2745	223	168.4	. 7447	272	178.4	. 7443	329
148.6	. 2932	182	${ }^{1} 58.6$. 3192		168.6	. 7993	273	178.6	.8102	330
I48.8	. 3297	183	I58.8	. 3641		168.8	. 8540	27	178.8	. 8764	331
149.0	7.3664	183	159.0	9.4092	226	169.0	11.9090	275	179.0		332
149.2	. 4032	18	I59.2	. 4545		169.2	11.9641		179.2	15.0096	334
149.4	. 4402	186	159.4	. 4999	228	169.4	12.0195	278	179.4	. 0765	335
149.6	. 4774		159.6	. 5456	229	169.6	.0751	279	179.6	. 1437	336 337
149.8	. 5147	187 187	I59.8	. 5914	229 230	169.8	. 1309	279 280	179.8	. 2112	337 339

TABLE 35.

PRESSURE OF AQUEOUS VAPOR.

(Broch.)
ENGLISH MEASURES.

Temperature.	Vapor Pressure.	Diff. for 0.1	Temperature.	Vapor Pressure.	Diff. for 0.1	Temperature.	Vapor Pressure.	Diff. for 0.1	Temperature.	Vapor Pressure.	$\begin{aligned} & \text { Diff. } \\ & \text { for } \\ & 0.1 \end{aligned}$
	Inches.			Inches.			Inches.			Inches.	
180.0	15.2789		190.0	19.0009	408	200.0	23.4530	486	210.0	28.7497	577
180.2	. 3468	340 341	190.2	. 0825	408	200.2	. 5502	488	210.2	. 8651	579
180.4	. 4150	341 342	190.4	. 1643	4 lI	200.4	. 6478	480	210.4	. 9809	58 I
180.6	. 4835	344	190.6	. 2464	412	200.6	. 7457	491	210.6	29.0972	583
180.8	. 5522	344	190.8	. 3288		200.8	. 8440	491	210.8	. 2138	583 585
181.0	15.6212	345	191.0	19.4115	41	201.0	23.9426	493	211.0	29.3308	585 587
181.2	. 6904	346 347	191.2	. 4945	4	201.2	24.0415	495	211.2	. 4482	589
181.4	. 7599	347 349	191.4	. 5778	416	201.4	. 1408	497	2 II .4	. 5660	589
181. 6	. 8296	349 350	191.6	. 6614	419	201.6	. 2404	490	211.6	. 6842	593
I81. 8	. 8996	350	191.8	. 7453	419	201.8	. 3404	500 502	211.8	. 8028	593
182.0	15.9699	351	192.0	19.8295	421	202.0	24.4407	502 503	212.0	29.9218	595
182.2	16.0404	353 354	192.2	. 9140	422	202.2	. 5414	5	212.2	30.0412	597
182.4	. III2	354	192.4	. 9988	424	202.4	. 6424	505 507	212.4	.1610	601
182.6	. 1822	355	192.6	20.0839	427	202.6	.7438	509	212.6	.2813	603
182.8	. 2535	357 358	192.8	. 1693	427	202.8	. 8455	509 510	212.8	. 4019	605
183.0	16.3250	35	193.0	20.2550		203.0	24.9476	510	213.0	30.5229	7
183.2	. 3968	359 361	193.2	. 3410	430 432	203.2	25.0500	512	213.2	. 6444	O97
183.4	. 4689	361 362	193.4	. 4273	432 433	203.4	. 1528	516	213.4	. 7682	611
183.6	. 5413	363	193.6	. 5139	435	203.6	. 2559	518	213.6	. 8885	613
183.8	.6I39	363	193.8	. 6008	435	203.8	- 3594		213.8	31.01II	
184.0	I6.6868		194.0	20.6881		204.0	25.4633		214.0	31.I342	
184.2	. 7599	366	194.2	. 7756	438	204.2	. 5675	521 523			
184.4	. 8334	368	194.4	.8635	441	204.4	. 6720	525			
184.6	. 9071	370	194.6	.9517	4412	204.6	. 7769	527			
184.8	.9810	370	194.8	21.0402	442	204.8	. 8822	52			
185.0	17.0552	371	195.0	21.1289	444	205.0	25.9878	5			
185.2	. 1297	373	195.2	. 2180	446	205.2	26.0939	530			
185.4	. 2045	374 375	195.4	. 3074	449	205.4	. 2002	534			
185.6	. 2795	375 377	195.6	. 3971	459	205.6	. 3070	536			
185.8	- 3548	377	195.8	. 4872		205.8	.4141	53			
186.0	17.4304	37	196.0	21.5776	452	206.0	26.5215	537			
186.2	+ 5	379 381	196.2	. 6683	454	206.2	. 6294	539 541			
186.4	. 5824	381 382	196.4	. 7593	457	206.4	.7376	543			
186.6	. 6588	384	I96.6	. 8506	458	206.6	.846I	545			
I86.8	. 7355	384 385	196.8	. 9422	458 460	206.8	. 9551	545			
187.0	17.8125	385	197.0	22.0342	460	207.0	27.0644	547 549			
I87.2	r 8.8897	386	197.2	.1265	462 463	207.2	$\begin{array}{r}1.1741 \\ \hline\end{array}$	549			
187.4	. 9672	389	197.4	. 2191	465	207.4	. 2842	552			
187.6	18.045 I	389 391	197.6	. 3120	466	207.6	. 3946	554			
187.8	. 1231	391	197.8	. 4053	468	207.8	. 5054	556			
188.0	18.2015		198.0	22.4989		208.0	27.6166				
188.2	. 2802	393	198.2	. 5928	470	208.2	. 7282	558 560			
188.4	. 3591	395	198.4	. 6871	473	208.4	. 8402	562			
188.6	. 4383	398	198.6	.78I6	475	208.6	. 9525	564			
I88.8	.5178	398	198.8	. 8765	476	208.8	28.0652				
189.0	18.5976	399	199.0	22.9718	476	209.0	28.1784	566			
I89.2	. 6777	400	199.2	23.0673	4780	209.2	. 2919	568 569			
189.4	.7581	402	199.4	.1632	481	209.4	.4057	571			
I89.6 I89.8	.8388	405	199.6	. 2595	483	209.6	$.5200$	573			
189.8	.9197	406	199.8	. 3560	485	209.8	. 6346	575			

TAble 36.
PRESSURE OF AQUEOUS VAPOR.
(Broch.)
METRIC MEASURES.

Tempsrature.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
C.	mm .	mm.	mm.	mm .	mm .	mm .				
-29°	0.42	0.41	0.41	0.41	0.40	0.40	0.40	0.39	0.39	0.38
28	0.46	0.46	0.45	0.45	0.44	0.44	0.43	0.43	0.43	0.42
27	0.50	0.50	0.50	0.49	0.49	0.48	0.48	0.47	0.47	0.46
26	0.55	0.55	0.54	0.54	0.53	0.53	0.52	0.52	0.5I	0.5I
-25	0.61	0.60	0.60	0.59	0.58	0.58	0.57	0.57	0.56	0.56
24	0.66	0.66	0.65	0.65	0.64	0.63	0.63	0.62	0.62	0.61
23	0.73	0.72	0.71	0.71	0.70	0.69	0.69	0.68	0.68	0.67
22	0.79	0.79	0.78	0.77	0.77	0.76	0.75	0.75	0.74	0.73
21	0.87	0.86	0.85	0.84	0.84	0.83	0.82	0.81	0.81	0.80
- 20	0.94	0.94	0.93	0.92	0.91	0.90	0.90	0.89	0.88	0.87
19	1.03	1.02	1.OI	1.00	0.99	0.99	0.98	0.97	0.96	0.95
18	I. 12	I.II	I. 10	1.09	1.08	1.07	1.06	1.06	1.05	1.04
17	1.22	1.21	1.20	1.19	I. 18	I. 17	I. 16	I. 15	I. 14	I. 13
16	I. 32	I. 31	I. 30	1.29	1.28	1.27	I. 26	I. 25	I. 24	1.23
- 15	1.44	1.43	1.42	1.40	1.39	1.38	1.37	I. 36	1.35	I. 34
14	I. 56	1.55	I. 54	I. 52	1.51	1.50	I. 49	1. 48	1. 46	r. 45
13	1.69	r. 68	I. 67	1.65	r. 64	1.63	r. 61	1.60	1.59	1.57
12	I. 84	r. 82	I.8I	1.79	1.78	1.76	1.75	1.74	1.72	1.71
II	1.99	1.97	1.96	1.94	1.93	1.91	1.90	r. 88	r. 87	1.85
-10	2.15	2.13	2.12	2.10	2.08	2.07	2.05	2.04	2.02	2.00
9	2.33	2.31	2.29	2.27	2.26	2.24	2.22	2.20	2.19	2.17
8	2.51	2.50	2.48	2.46	2.44	2.42	2.40	2.38	2.36	2.34
7	2.72	2.69	2.67	2.65	2.63	2.61	2.59	2.57	2.55	2.53
6	2.93	2.91	2.89	2.86	2.84	2.82	2.80	2.78	2.76	2.74
5	3.16	3.14	3.11	3.09	3.07	3.04	3.02	3.00	2.98	2.95
4	3.41	$3 \cdot 38$	$3 \cdot 36$	3.33	3.31	3.28	3.26	3.23	3.21	3.18
3	3.67	3.64	3.62	3.59	3.56	3.54	3.51	3.48	3.46	3.43
2	3.95	3.92	3.89	3.86	3.84	3.8 I	3.78	3.75	3.72	3.70
1	4.25	4.22	4.19	4.16	4.13	4.10	4.07	4.04	4.01	3.98
- 0	4.57	4.54	4.50	4.47	4.44	4.4 I	4.37	4.34	4.31	4.28
	Values for temperatures between 0° and 45° are given in Table 43.									
$+45^{\circ}$	71.36	71.73	72.10	72.48	72.85	72.23	73.60	73.98	$74 \cdot 36$	74.75
46	75.13	75.52	75.91	76.30	76.69	77.08	77.47	77.87	78.27	78.67
47	79.07	79.47	79.88	80.29	80.70	8 I .11	8 I .52	81.93	82.35	82.77
48	83.19	83.61	84.03	84.46	84.89	84.32	85.75	86.18	86.6I	87.05
49	87.49	87.93	88.37	88.81	89.26	89.71	90.16	90.61	91.06	91.52
50	91.98	92.44	92.90	93.36	93.83	94.30	94.77	95.24	95.71	96.19
51	96.66	97.14	97.63	98.11	98.60	99.08	99.57	100.07	100.56	101.06
52	101.55	102.05	102.56	103.06	103.57	104.08	104.59	105.10	105.62	106. 14
53	106.65	107.18	107.70	108.23	108.76	109.29	109.82	110.35	110.89	III. 43
54	III. 97	112.52	II3.06	113.6I	114.16	II4.72	115.27	115.83	116.39	II6.95
55	117.52	ri8.08	118.65	I19.22	119.80	120.37	120.95	121.53	122.12	122.70
56	123.29	123.88	124.48	125.07	125.67	126.27	126.87	127.48	128.09	128.70
57	129.31	129.92	130.54	131.16	131.79	132.41	133.04	133.67	134.30	134.94
58	135.58	136.22	136.86	137.50	138.15	138.80	139.46	140.11	140.77	141.43
59	142.10	142.76	143.43	144.11	144.78	145.46	146.14	146.82	147.51	148.19
60	148.88	149.58	I50.27	150.97	151.68	152.38	153.09	153.80	154.5I	155.23

TAble 36.

PRESSURE OF AQUEOUS VAPOR.

(Broch.)

METRIC MEASURES.

Temperature.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
c.	mm .									
60°	148.88	149.58	150.27	150.97	151.68	152.38	153.09	153.80	I54.51	155.23
61	155.95	156.67	157.39	158.12	158.85	159.58	160.32	161.06	161.80	162.54
62	163.29	164.04	164.79	165.55	166.31	167.07	167.83	168.60	169.37	170.15
63	170.92	171.70	172.49	173.27	I74.06	174.85	175.65	176.45	177.25	178.05
64	I 78.86	179.67	180.48	181.30	182.12	182.94	183.77	184.60	185.43	I86. 26
65	187.10	187.94	188.79	189.64	190.49	191.34	192.20	193.06	193.93	194.80
66	195.67	196.54	197.42	198.30	199.18	200.07	200.96	201.86	202.75	203.65
67	204.56	205.47	206.38	207.29	208.21	209. 13	210.06	210.98	211.92	212.85
68	213.79	214.73	215.68	216.63	217.58	218.54	219.50	220.46	221. 43	222.40
69	223.37	224.35	225.33	226.3 I	227.30	228.29	229.29	230.29	231.29	232.30
70	233.3 I	234.32	235.34	236.36	237.39	238.42	239.45	240.48	241.52	242.57
71	243.62	244.67	245.72	246.78	247.85	248.91	249.98	251.06	252.14	253.22
72	254.30	255.40	256.49	257.59	258.69	259.80	260.91	262.02	263.14	264.26
73	265.38	266.5I	267.65	268.79	269.93	271.08	272.23	273.38	274.54	275.70
74	276.87	278.04	279.21	280.39	281. 58	282.76	283.95	285. 15	286.35	287.56
75	288.76	289.98	291. 19	292.42	293.64	294.87	296. 11	297.34	298.59	299.83
76	301.09	302.34	303.60	304.87	306.14	307.41	308.69	309.97	311.26	312.55
77	313.85	315.15	316.45	317.76	319.07	320.39	321.72	323.04	324.38	325.71
78	327.05	328.40	329.75	331.1I	332.47	333.83	335.20	336.58	337.95	339.34
79	340.73	342.12	343.52	344.92	346.33	347.74	349.16	350.58	352.01	353.44
80	354.87	356.3I	357.76	359.21	360.67	362.13	363.59	365.07	366.54	368.02
8 I	369.51	371.00	372.49	374.00	375.50	377.01	378.53	380.05	381. 58	383.11
82	384.64	386. I8	387.73	389.28	390.84	392.40	393.97	395.54	397.12	398.70
83	400.29	401.89	403.49	405.09	406.70	408.32	409.94	411.56	413.19	414.83
84	416.47	418.12	419.77	421.43	423.09	424.76	426.44	428.12	429.8 I	431.50
85	433.19	434.90	436.60	438.32	440.04	441.76	443.49	445.23	446.97	448.72
86	450.47	452.23	454.00	455.77	457.54	459.33	461.1I	462.91	464.71	466.51
87	468.32	470.14	471.96	473.79	475.63	477.47	479.32	481. 77	483.03	484.89
88	486.76	488.64	490.52	492.41	494.3I	496.2 I	498. 12	500.03	5 OI .95	503.87
89	505.81	507.74	509.69	511.64	513.60	515.56	517.53	519.50	52 I .48	523.47
90	525.47	527.47	529.48	531.49	533.51	535.54	537.57	539.61	541.65	543.71
91	545.77	547.83	549.90	551.98	554.07	556.16	558.26	560.36	562.47	564.59
92	566.7 I	568.85	570.98	573.13	575.28	577.44	579.61	581.78	583.96	586.14
93	588.33	590.53	592.74	594.95	597.17	599.40	601.64	603.88	606.13	608.38
94	610.64	6I2.91	615.19	6 I 7.47	619.76	622.06	624.37	626.68	629.00	631.32
95	633.66	636.00	638.35	640.70	643.06	645.43	647.81	650.20	652.59	654.99
96	657.40	659.81	662.23	664.66	667.10	669.54	672.00	674.45	676.92	679.40
97	681. 88	684.37	686.87	689.37	691.89	694.41	696.93	699.47	702.02	704.57
98	707.13	709.69	712.27	714.85	717.44	720.04	722.65	725.27	727.89	730.52
99	733.16	735.8I	738.46	741. 13	743.80	746.48	749.17	751.86	754.57	757.28
100 101	$\begin{aligned} & 760.00 \\ & 787.67 \end{aligned}$	762.73	765.47	768.21	770.97	773.73	776.50	779.28	782.07	784.86

TABLE 37.
PRESSURE OF AQUEOUS VAPOR AT-LOW TEMPERATURES.
(C. F. Marvin.)

ENGLISH AND METRIC MEASURES.

Temperatures.	$0 \% 0$		0.2		0.4		0.6		0.8	
F.	Inch.	mm .	Inch.	mm .	Inch.	mm .	Inch.	mm.	Inch.	mm .
-60°	0.0010	0.026								
59	. 0011	. 028	0.0011	0.028	0.0011	0.027	0.00I I	0.027	0.0010	0.026
58	. 0012	. 030	. 0012	. 030	. 0011	. 029	. 0011	. 029	. 0011	. 028
57	.0013	. 032	.0013	. 032	. 0012	. 031	. 0012	. 031	. 0012	. 030
56	.0013	. 034	.0013	. 034	.0013	. 033	.0013	. 033	.0013	. 032
-55°	0.0015	0.037	0.0014	0.036	0.0014	0.036	0.0014	0.035	0.0014	0.035
54	.0016	. 040	. 0015	. 039	.0015	. 039	.0015	. 038	. 0015	. 037
53	. 0017	. 043	. 0017	. 042	. 0017	. 042	.0016	.041	.0016	. 040
52	.OOI8	. 046	.0018	. 045	. 0018	. 045	.0017	. 044	.0017	. 043
5 I	.0019	. 049	.0019	. 048	.0019	. 048	.0019	. 047	.0018	. 046
-50°	0.002 I	0.053	0.0020	0.052	0.0020	0.05I	0.0020	0.05I	0.0020	0.050
49	. 0022	. 057	. 0022	. 056	. 0022	. 055	. 0022	. 055	. 0021	. 054
48	. 0024	.06I	. 0024	. 060	. 0023	. 059	. 0023	. 059	. 0023	. 058
47	. 0026	. 065	. 0025	. 064	. 0025	. 063	. 0025	. 063	. 0024	. 062
46	. 0027	. 069	. 0027	. 068	. 0027	. 068	. 0026	. 067	. 0026	. 066
-45°	0.0029	0.074	0.0029	0.073	0.0028	0.072	0.0028	0.071	0.0028	0.070
44	.0031	. 079	.0031	. 078	. 0030	. 077	. 0030	. 076	. 0030	. 075
43	. 0033	. 084	. 0033	. 083	. 0032	. 082	. 0032	.081	.003I	.080
42	. 0035	. 089	. 0035	. 088	. 0034	. 087	. 0034	. 086	. 0033	. 085
4 I	. 0037	. 094	. 0037	. 093	. 0036	. 092	. 0036	. 091	. 0035	. 090
-40°	0.0039	0.100	0.0039	0.098	0.0038	0.097	0.0038	0.096	0.0037	0.095
39	.004I	. 105	. 0041	.104	.004I	. 103	. 0040	. 102	. 0040	. 101
38	. 0044	. III	. 0043	. 109	. 0043	. 108	. 0042	. 107	. 0042	. 106
37	. 0046	. 117	. 0045	. 115	. 0045	. 114	. 0044	. II3	. 0044	. 112
36	. 0048	. 123	. 0048	. 12 I	. 0047	. 120	. 0047	. II9	. 0046	. 118
-35°	0.0051	0.130	0.0051	0. 129	0.0050	0.127	0.0050	0.126	0.0049	0. 124
34	. 0054	. 138	. 0054	. 136	. 0053	. 135	. 0052	. 133	. 0052	. 132
33	. 0057	. 146	. 0057	. 144	. 0056	. 142	. 0056	. 141	. 0055	. 139
32	.006I	. 155	. 0060	. 153	. 0059	. 151	. 0059	. 149	. 0058	. 147
31	. 0065	. 165	. 0064	. 163	. 0063	.161	. 0063	. 159	. 0062	. 157
-30°	0.0069	0. 176	0.0069	0.174	0.0067	0.171	0.0067	0.169	0.0066	0. 167
29	. 0074	. 187	. 0073	. 185	. 0072	. 183	. 0071	. 180	. 0070	. 178
28	. 0078	. 199	.0078	. 197	. 0077	. 195	. 0076	. 192	. 0075	. 190
27	.0083	. 212	. 0083	. 210	.0081	. 207	. 0080	. 204	.0080	. 202
26	.0089	. 225	. 0088	. 223	. 0087	. 220	. 0085	. 217	. 0085	. 215
-25°	0.0094	0.239	0.0093	0.236	0.0092	0.233	0.0091	0.230	0.0089	0.227
24	. 0100	. 253	. 0098	. 250	. 0097	. 247	.0096	. 244	. 0095	. 242
23	. 0106	. 268	. 0104	. 265	. 0103	. 262	. 0102	. 259	. Or 1	. 256
22	. OI 12	. 284	. 0111	. 281	. 0109	. 278	. 0108	. 274	. 0107	. 271
21	.OII9	. 301	. 0117	. 297	. 0116	. 294	.or15	. 291	. 0113	. 287
-20°	0.0126	0.319	0.0124	0.315	0.0122	0.311	0.0121	0.308	0.0120	0.304
19	. 0133	. 338	.0131	. 334	.OI30	. 330	. 0128	. 326	. 0127	- 322
18	. 0141	-358	.or39	. 354	.or38	-350	.0136	. 346	. 0135	-342
17	. 0150	. 380	.or48	-375	. 0146	-371	. 0144	-366	. 0143	- 362
16	. 0159	. 403	. 0157	-398	. 0155	-393	. 0153	-389	. 0151	-384
-15°	0.0168	0.427	0.0166	0.422	0.0164	0.417	0.0162	0.412	0.0160	0.407

PRESSURE OF AQUEOUS VAPOR AT LOW TEMPERATURES.

(C. F. Marvin.)

ENGLISH AND METRIC MEASURES.

Temperature.	0.0		0.2		0.4		0.6		0.8	
F.	Inch.	mm .	Inch.	mm .	Inch.	mm .	Inch.	mm.	Inch.	mm.
-15°	0.0168	0.427	0.0166	0.422	0.0164	0.417	0.0162	0.412	0.0160	0.407
14	. 0178	. 452	.0176	. 447	. 0174	. 442	. 0172	. 437	. 0170	. 432
13	. 0188	. 478	. 0186	. 473	. 0184	. 468	.or82	. 462	. 0180	. 457
12	.or99	. 505	. 0196	. 499	. 0194	. 494	. 0192	. 488	. 0190	. 483
II	. 0210	. 534	. 0208	. 528	. 0206	. 522	. 0203	. 516	. 0201	. 510
-10	0.0222	0.564	0.0220	0.558	0.0217	0.552	0.0215	0.546	0.0213	0.540
9	. 0234	. 595	. 0232	. 588	. 0229	. 582	. 0227	. 576	. 0224	. 570
8	. 0247	. 627	. 0244	. 620	. 0242	. 614	. 0239	. 607	. 0237	. 601
	. 0260	.66I	. 0257	. 654	. 0255	. 647	. 0252	. 640	. 0249	. 633
6	. 0275	. 698	. 0272	. 691	. 0269	. 683	. 0266	. 676	. 0263	. 669
-5	0.0291	0.738	0.0287	0.730	0.0284	0.722	0.0281	0.714	0.0278	0.706
4	. 0307	.781	. 0304	. 772	. 0301	. 764	. 0297	. 755	. 0294	. 747
3	. 0325	. 826	. 0322	.817	. 0318	. 808	. 0315	. 799	. 0311	. 790
2	. 0344	. 873	. 0340	. 863	. 0336	. 854	. 0332	. 844	. 0329	. 835
1	. 0363	. 922	. 0359	.912	. 0355	. 902	.035I	. 892	. 0347	. 882
-o	. 0383	. 972	. 0379	. 962	. 0375	. 952	. 0371	. 942	. 0367	. 932
$+0$	0.0383	0.972	0.0387	0.982	0.0391	0.992	0.0394	1.002	0.0398	1.012
I	. 0403	1.023	. 0407	1.033	.04II	1.043	.0415	1.054	.0419	1.064
2	. 0423	1.075	. 0428	1.086	.043I	1.096	. 0436	I. 107	. 0440	I.II8
3	. 0444	I.129	. 0449	I.140	. 0453	I.15I	. 0458	I. 163	. 0462	I. 174
4	. 0467	1.186	. 0472	I.198	. 0476	1.210	.048I	I. 222	. 0486	1.234
5	0.049I	1.246	0.0495	1.258	0.0500	1.27I	0.0505	1.283	0.0510	1.296
6	.05I5	1.309	. 0520	1.322	. 0526	1.335	. 0531	1.349	. 0536	I. 362
7	. 0542	1.376	. 0547	1.390	. 0553	1.404	. 0558	1.418	. 0564	1.433
8	. 0570	I. 447	. 0576	1.462	. 0582	1.477	. 0587	I. 492	. 0594	1.508
9	. 0600	1.523	. 0606	1.539	.06I2	1.555	.0618	1.571	. 0625	I. 587
10	0.0631	1.603	0.0638	1.620	0.0644	1.636	0.0651	1.653	0.0657	1.670
II	. 0665	1.688	.0671	1.705	. 0678	1.722	. 0685	1.740	. 0692	1.758
12	. 0699	1.776	. 0706	1.794	. 0713	I.812	. 0720	1.830	. 0728	r. 848
13	. 0735	1.867	. 0742	1.885	. 0750	1. 904	. 0757	1.923	. 0765	1.942
14	. 0772	1.96I	. 0780	1.980	. 0787	1.999	. 0794	2.018	. 0802	2.038
15	0.0810	2.058	0.0818	2.078	0.0826	2.098	0.0834	2.118	0.0842	2.138
16	. 0850	2.158	. 0857	2.178	. 0866	2.199	. 0874	2.220	. 0882	2.241
17	.0891	2.262	. 0899	2.283	. 0907	2.305	.0916	2.327	. 0925	2.349
18	. 0933	2.371	. 0942	2.393	.0951	2.416	. 0960	2.439	. 0969	2.462
19	. 0979	2.486	. 0988	2.510	. 0998	2.534	. 1007	2.558	.1017	2.582
20	0.1026	2.607	0.1036	2.632	0.1046	2.657	0.1056	2.683	0.1067	2.709
21	. 1077	2.735	.1087	2.761	. 1098	2.788	.1108	2.815	.1119	2.842
22	.1130	2.869	.1141	2.897	.II52	2.925	.1163	2.953	. 1174	2.981
23	.1185	3.009	. 1196	3.037	. 1207	3.066	.1219	3.095	. 1230	3.125
24	. 1242	3.155	. 1254	3.185	. 1266	3.215	. 1278	3.245	. 1290	3.276
25	0.1302	3.307	0.1314	3.338	0.1327	3.370	O.I339	3.402	0.1352	3.434
26	. 1365	3.466	.I377	3.498	. 1390	3.53 I	. 1403	3.564	. 1416	3.597
27	.I430	3.631	. 1443	3.665	. 1456	3.699	. 1470	3.733	.1483	3.768
28	. 1497	3.803	. 1511	3.838	. 1525	3.874	.1539	3.910	. 1554	3.946
29	. 1568	3.982	. 1582	4.018	. 1596	4.055	.16II	4.093	. 1626	4.I3I
30	0.1641	4.169	0.1656	4.207	0.1671	4.245	0.1687	4.284	0.1702	4.324
31 32	.1718 .1798	4.364 4.568	. 1734	4.404	. 1750	4.444	. 1766	4.485	. 1782	$4 \cdot 526$

Smithbonian Tables.

TABLE 38.

WEIGHT OF AQUEOUS VAPOR IN A CUBIC FOOT OF SATURATED AIR.

ENGLISH MEASURES.

Temperature.	0.0	0.5	$\begin{aligned} & \text { Diff. } \\ & \text { for } \\ & \text { for } \end{aligned}$	Temperature.	0.0	0\% 5	Diff. for 0.1	Temperature.	0:0	0.5	$\begin{aligned} & \text { Diff. } \\ & \text { for } \\ & 0.1 \end{aligned}$
F.	Grains troy.	Grains troy.		F.	Grains troy.	Grains troy.		F.	Grains troy.	Grains troy.	
-19°	0.230	0.224	I	26°	1.675	1.709	7	71°	8.240	8.372	27
- I8	. 242	. 236	I	27	1.743	1.777	7	72	8.508	8.644	27
- 17	. 254	. 248	I	28	1.812	1.847	7	73	8.782	8.923	28
- 16	. 267	. 260	I	29	1.882	1.919	7	74	9.066	9.210	29
- 15	0.280	0.273	I	30	1. 956	I. 995	8	75	9.356	9.504	30
-14	. 294	. 286	I	31	2.034	2.073	8	76	9.655	9.807	31
- 13	. 309	. 301	1	32	2.113	2. 153	8	77	9.962	Io. 118	32
12	. 324	. 316	2	33	2.194	2.236	8	78	10.277	10.438	33
- II	. 340	. 332	2	34	2.279	2.322	9	79	10.601	10.766	33
-10	0.356	0.348	2	35	2.366	2.41 I	9	80	10.934	II.103	34
- 9	. 373	. 365	2	36	2.457	2.503	9	8 I	II. 275	II.450	35
- 8	. 391	. 382	2	37	2.550	2.598	10	82	11.626	II. 805	36
	. 41 I	. 400	2	38	2.646	2.695	10	83	11.987	12.170	37
- 6	. 430	. 420	2	39	2.746	2.797	10	84	12.356	12.545	38
- 5	0.450	0.439	2	40	2.849	2.901	II	85	12.736	12.930	39
- 4	. 47 I	. 460	2	41	2.955	3.009	II	86	13.127	13.325	40
- 3	. 493	. 482	2	42	3.064	3. 120	II	87	13.526	13.730	41
- 2	. 516	. 504	2	43	3.177	3.235	12	88	13.937	14.146	42
J	. 540	. 52 S	2	44	3.294	3.354	12	89	14.359	14.573	43
- 0	. 564	. 552	2								
$+0$	0.564	0.577	3	45	3.414	3.477	12	90	14.790	15.01 I	44
	. 590	. 603	3	46	3.539	3.603	13	91	15.234	15.460	45
2	.617	. 630	3	47	3.667	3.733	I3	92	15.689	15.920	47
3	. 645	. 659	3	48	3.800	3.868	14	93	16.155	16.393	48
4	. 674	. 689	3	49	3.936	4.006	14	94	16.634	16.877	49
5	0.705	0.719	3	50	4.076	4.148	15	95	17.124	17.374	50 52
6	. 735	.75I	3	51	4.222	4.296	15	96	17.626	17.883	52
7	.767	. 784	3	52	4.372	4.448	15	97	18.142	18.404	53
8	. 801	. 819	4	53	4.526	4.604	16	98	18.671	18.940	54
9	. 837	. 854	4	54	4.685	4.766	16	99	19.212	19.487	55
10	0.873	0.891	4	55	4.849	4.933	17	100	19.766	20.049	57
II	. 910	. 930	4	56	5.016	5.103	17	IOI	20.335	20.624	58
12	. 950	. 970	4	57	5.191	5.280	I8	102	20.917	21.214	60
13	. 991	I. OII	4	58	5.370	5.462	18	103	21.514	21.817	61
14	1.033	1.054	4	59	$5 \cdot 555$	5.649	19	104	22.125	22.436	62
15	1.077	1.098	5	60	5.745	5.842	20	105	22.750	23.070	64
16	1.122	I. 144	5	61	5.94 I	6.040	20	106	23.392	23.718	66
17	1.169	I. 193	5	62	6.142	6.245	21	107	24.048	24.382	67
18	I. 217	I. 242	5	63	6.349	6.456	21	108	24.720 25.408	25.062 25.758	69 70
19	1. 268	1.294	5	64	6.563	6.672	22	109	25.408	25.758	70
20	I.321	1.347	5	65	6.782	6.895	23	110	26.112	26.470	72
21	1.374	1.402	6	66	7.009	7.124	23	III	26.832	27.199	74
22	1. 430	I. 459	6	67	7.241	$7 \cdot 360$	24	112	27.570	27.946	75
23	I. 488	1.518	6	68	7.480	7.602	25	113	28.325	28.708	77
24	I. 549	1.580	6	69	7.726	7.852	25	114	29.096	29.489	79
25	I.6II	I. 643	6	70	7.980	8.109	26	115	29.887		

TAble 39.

WEIGHT OF AQUEOUS VAPOR IN A CUBIC METRE OF SATURATED AIR.

METRIC MEASURES.

Tem- pera- ture.		Temperature.	0.0	0.5	Temperature.	0.0	0.2	0.4	0.6	$0: 8$
c.	Gram's.	c.	Gram's.	Gram's.	c.	Gram's.	Gram's.	Gram's.	Gram's.	Gram's.
-29°	0.496	-17°	1. 375	I. 32 I	-5°	3.407	3.359	3.311	3.263	3.217
28	. 542	16	1. 489	I. 432	4	3.659	3.607	3.556	3.506	3.456
27	. 593	15	I.6II	I. 549	3	3.926	3.871	3.817	3.763	3.711
26	. 647	14	1.742	1.676	2	4.2 II	4.152	4.095	4.038	3.982
25	. 706	13	1.882	1.811	1	4.513	4.45 I	4.390	4.329	4.270
24	. 770	12	2.032	1.956	-0	4.835	4.769	4.704	4.640	4.576
-23	0.839	- II	2.192	2.111	+0	4.835	$4 \cdot 901$	4.969	5.037	5.106
22	. 913	10	2.363	2.276	I	5.176	5.247	5.318	5.391	5.464
21	. 992	9	2.546	2.453	2	5.538	5.6I3	5.689	5.766	5.844
20	1.078	8	2.741	2.642	3	5.922	6.002	6.082	6.164	6.246
19	1.170	7	2.949	2.843	4	6.430	6.414	6.499	6.585	6.673
18	1.269	6	3.171	3.058	$+5$	6.761	6.85 I	6.94 I	7.033	7.125
$\begin{aligned} & \text { Tem- } \\ & \text { pera- } \\ & \text { ture. } \end{aligned}$	0%	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
C.	Gram's.									
$+6^{\circ}$	7.219	7.266	7.313	7.361	7.409	7.457	7.506	7.555	7.614	7.653
7	7.703	7.753	7.803	7.853	7.904	7.955	8.007	8.058	8.110	8.162
8	8.215	8.268	8.32 I	8.374	8.428	8.482	8.536	8.591	8.646	8.701
9	8.757	8.813	8.869	8.926	8.982	9.039	9.097	9.155	9.213	9.27 I
10	9.330	9.389	9.448	9.508	9.568	9.628	9.689	9.750	9.8II	9.873
11	9.935	9.997	10.060	10. 123	10.186	10.250	10.314	10.378	10.443	10.508
12	10.574	10.640	10.706	10.773	10.840	10.907	10.975	II. 043	II.III	II.180
13	II. 249	11.318	II. 388	II. 458	II. 529	11.600	11.672	II. 744	II.816	II. 888
14	II.96I	12.035	12.108	12.182	12.257	12.332	12.407	12.483	12.559	12.635
15	12.712	12.790	12.867	12.945	13.024	13.103	13.182	13.262	13.342	13.423
16	13.505	I3.586	13.668	13.750	13.833	13.916	14.000	14.085	14.169	14.254
17	14.339	14.425	14.51I	14.598	14.685	14.773	14.86 I	14.950	15.039	I5.128
18	15.218	15.308	15.399	15.491	15.583	15.675	15.768	15.86 I	15.955	16.049
19	16.144	16.239	16.335	16.43 I	16.528	16.625	16.723	16.821	16.920	17.019
20	I7.118	17.218	17.319	17.420	17.522	17.624	17.727	17.830	17.934	18.039
21	18.143	18.248	18.353	18.460	18.568	18.676	18.784	18.893	19.002	19. 111
22	19.222	19.332	19.444	19.556	19.668	19.78I	19.895	20.009	20.124	20.239
23	20.355	20.471	20.588	20.706	20.824	20.943	21.062	21.182	21.303	21.424
24	21.546	21.668	21.791	21.914	22.038	22.163	22.287	22.414	22.541	22.668
25	22.796	22.925	23.054	23.184	23.314	23.445	23.577	23.709	23.842	23.975
26	24.109	24.244	24.380	24.516	24.653	24.790	24.928	25.067	25.207	25.347
27	25.487	25.629	25.771	25.914	26.058	26.202	26.347	26.492	26.639	26.786
28	26.933	27.082	27.231	27.38I	27.53I	27.682	27.834	27.988	28.142	28.295
29	28.450	28.605	28.762	28.919	29.077	29.235	29.394	29.555	29.715	29.877
30	30.039	30.202	30.366	30.530	30.696	30.862	31.029	31.197	31.365	31.534
31	31.704	3 I .875	32.047	32.219	32.392	32.567	32.74 I	32.917	33.094	33.27 I
32	33.449	33.628	33.807	33.988	34.169	34.351	34.534	34.718	34.903	35.089
33	35.275	35.462	35.651	35.840	36.030	36.220	36.412	36.604	36.798	36.992
34	37.187	37.383	37.580	37.777	37.976	38.176	38.376	38.577	38.780	38.983
35	39.187	39.390	39.598	39.805	40.012	40.221	40.43I	40.64I	40.853	41.065
36	41.279	4 I .493	4 I .708	4 I .924	42.142	42.360	42.579	42.799	43.020	43.242
37	43.465	43.690	43.914	44.140	44.367	44.596	44.825	45.054	45.286	45.518
38	45.75 I	45.985	46.220	46.456	46.693	46.931	47.171	47.41 I	47.653	47.895
39	48.138	48.385	48.628	48.875	49.123	49.372	49.621	49.872	50.124	50.377

REDUCTION OF PSYCHROMETRIC OBSERVATIONS.

ENGLISH MEASURES.
Pressure of Aqueous Vapor.

Temperature.	0°	$1{ }^{\circ}$	2°	3°	4°	5°	6°	$7{ }^{\circ}$	8°	9°
$\begin{array}{r} \mathrm{F} . \\ -30^{\circ} \end{array}$	$\begin{aligned} & \text { Inch. } \\ & 0.007 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & \text { 0.006 } \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & 0.006 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & 0.006 \end{aligned}$	Inch. 0.005	Inch. 0.005	$\begin{aligned} & \text { Inch. } \\ & 0.005 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & 0.005 \end{aligned}$	Inch. 0.004	$\begin{aligned} & \text { Inch. } \\ & 0.004 \end{aligned}$
- 20	. 013	. 012	. OII	. OII	. 010	. 0009	. 009	. 0008	0.004 .008	. 0.007
10	. 022	. 021	. 020	. 019	. 018	. 017	. 016	. 015	. 014	. 013
- 0	. 038	. 036	. 034	. 033	.O3I	. 029	. 027	. 026	. 025	. 023
+ 0	0.038	0.0	0.042	0.044	0.047	0.049	0.052		0.057	0.060
	. 063	. 066	. 070	. 074	. 077	.08I	. 085	. 089	. 093	. 098
20	. 103	. 108	. I I3	. 118	. 124	. 130	. 136	. 143	. 150	. 157
Temperature.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
F.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch	Inch.	Inch.	Inch.	Inch.
$+30^{\circ}$	O. 164	0.165	-. 166	0.166	0.167	0. 168	O. 169	0.169	0.170	0.171
31	. 172	. 173	. 173	. 174	. 175	. 176	. 177	. 177	. 178	. 179
32	. 180	. 18 I	.181	. 182	. 183	. 184	. 184	. 185	. 186	. 186
33	. 187	. 188	. 189	. 190	. 190	.191	. 192	. 193	. 193	. 194
34	. 195	. 196	. 196	. 197	. 198	. 199	. 200	. 200	. 201	. 202
35	0.203	0.204	0.204	0.205	0.206	0.207	0.208	0.208	0.209	0.210
36	. 211	. 212	. 213	. 213	. 214	. 215	. 216	. 217	. 218	. 219
37	. 219	. 220	. 221	. 222	. 223	. 224	. 225	. 225	. 226	. 227
38	. 228	. 229	. 230	. 23 I	. 232	. 233	. 233	. 234	. 235	. 236
39	. 237	.238	. 239	. 240	. 241	. 242	. 243	. 244	. 245	. 246
40	0.247	0.247	0.248	0.249	0.250	0.25I	0.252	0.253	0.254	0.255
41	. 256	. 257	. 258	. 259	. 260	. 261	. 262	. 263	. 264	. 265
42	. 266	. 267	. 268	. 269	. 270	. 271	. 272	. 273	. 274	. 276
43	. 277	. 278	. 279	. 280	.28I	. 282	. 283	. 284	.285	. 286
44	. 287	. 288	. 289	. 291	. 292	. 293	. 294	. 295	. 296	. 297
45	0.298	0.300	0.301	0.302	0.303	0.304	0.305	0. 306	0.308	0.309
46	.310	.311	. 312	. 313	. 315	. 316	-317	-318	-319	. 32 I
47	. 322	. 323	. 324	. 325	. 327	. 328	. 329	- 330	. 332	. 333
48	. 334	. 335	. 337	-338	. 339	-340	. 342	. 343	-344	. 345
49	- 347	. 348	. 349	.35I	. 352	-353	. 355	. 356	-357	-358
50	0.360	0.361	0.362	0.364	0.365	0.367	0.368	0.369	0.371	0.372
51	. 373	. 375	. 376	. 377	. 379	. 380	. 382	. 383	. 384	. 386
52	. 387	. 389	. 390	. 392	. 393	. 394	-396	- 397	-399	. 400
53	. 402	. 403	. 405	. 406	. 408	. 409	.4II	.412	. 414	.415
54	.417	.418	. 420	. 42 I	. 423	. 424	. 426	. 427	. 429	. 43 I
	0.432	0.434	0.435	0.437	0.438	0.440	0.442	0.443	0.445	0.446
56	. 448	. 450	. 451	. 453	. 455	. 456	. 458	. 460	. 461	. 463
57	. 465	. 466	. 468	. 470	. 471	. 473	. 475	. 476	. 478	. 480
58	. 482	. 483	. 485	. 487	. 488	. 490	.492	. 494	.495	. 497
59	. 499	. 501	. 503	. 504	. 506	. 508	. 510	. 512	. 513	. 515
60	0.517	0.519	0.52 I	0.523	0.524	0.526	0.528	0.530	0.532	0.534
61	. 536	. 538	. 539	. 541	. 543	. 545	. 547	. 549	.55I	. 553
62	. 555	. 557	. 559	. 561	. 563	. 565	. 567	. 569	. 571	. 573
63	. 575	. 577	. 579	.58I	. 583	. 585	. 587	. 589	.591	. 593
64	. 595	. 597	. 599	. 601	. 604	. 606	. 608	. 610	. 612	. 614
65	0.616	0.6I8	0.621	0.623	0.625	0.627	0.629	0.631	0.634	0.636
66	. 638	. 640	. 643	. 645	. 647	. 649	.65I	. 654	. 656	.658
67	. 66 I	. 663	. 665	. 667	. 670	. 672	. 674	. 677	. 679	.681
68	. 684	. 686	. 688	. 691	. 693	. 695	. 698	. 700	. 703	.705
69	. 707	. 710	.712	.715	. 717	. 720	.722	.725	. 727	. 729

TABLE 40.
REDUCTION-OF PSYCHROMETRIC OBSERVATIONS.
ENGLISH MEASURES.
Pressure of Aqueous Vapor.

Temperature.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	$0: 9$
F.	Inch.									
70°	0.732	0.734	0.737	0.739	0.742	0.744	0.747	0.750	0.752	0.755
71	0.757	0.760	0.762	0.765	0.768	0.770	0.773	0.775	0.778	0.78 I
72	0.783	0.786	0.789	0.791	0.794	0.797	0.799	0.802	0.805	0.807
73	0.810	0.813	0.816	0.818	0.821	0.824	0.827	0.830	0.832	0.835
74	0.838	0.84I	0.843	0.846	0.849	0.852	0.855	0.858	0.86I	0.863
75	0.866	0.869	0.872	0.875	0.878	0.881	0.884	0.887	0.890	0.893
76	0.896	0.899	0.902	0.905	0.908	0.911	0.914	0.917	0.920	0.923
77	0.926	0.929	0.932	0.935	0.938	0.941	0.944	0.948	0.951	0.954
78	0.957	0.960	0.963	0.966	0.970	0.973	0.976	0.979	0.982	0.986
79	0.989	0.992	0.995	0.999	1.002	1.005	1.009	1.012	1.015	1.019
80	1.022	1.025	1.029	1.032	1.035	1.039	1.042	1.046	1.049	1.052
81	1.056	1.059	1.063	1.066	1.070	1.073	1.077	1.080	1.084	1.087
82	1.09I	1.094	I. 098	I. IOI	1.105	1.109	I. II 2	1.116	1.119	1.123
83	1.127	I.130	I. 134	1.138	1.14 I	I. 145	1. 149	I.I52	I. 156	I. 160
84	1.163	I. 167	1.171	1.175	1.179	1.182	I. 186	1.190	I. 194	1. 198
85	1.201	1.205	I. 209	1.213	1.217	1.22I	1.225°	1.229	1.233	1.237
86	1.241	1. 245	1.248	1.253	I. 256	1.260	1.264	1.269	1.273	1.277
87	1.28I	1. 285	I. 289	1.293	1.297	1.301	1.305	1.310	I. 314	1.318
88	1.322	I. 326	1.330	1.335	I. 339	1.343	1. 347	1.352	r. 356	1.360
89	1.364	1.369	I. 373	1.377	1.382	I. 386	I. 390	1.395	1.399	I. 404
90	1. 408	1.413	1.417	1.42I	1.426	1.430	1.435	I. 439	1.444	1. 448
91	1. 453	1. 458	I. 462	r. 467	1.47I	I. 476	I. 480	1. 485	I. 490	1. 494
92	1.499	1. 504	I. 508	1.513	1.518	1.523	1.527	1.532	1.537	1.542
93	1.546	1.551	I. 556	1.56I	1.566	1.57 I	1.576	1.580	1.585	1.590
94	1.595	1.600	1.605	1.610	1.6I5	1.620	1.625	1.630	1.635	1.640
95	1. 645	1.650	1. 655	1.660	r. 665	r.671	1.676	r.68ı	1.686	1.691
96	1.696	1.702	r. 707	1.712	1.717	1.723	I. 728	1.733	1.738	1.744
97	1.749	1. 755	1.760	1.765	1.771	1.776	1.781	1. 787	1.792	1.798
98	1.803	1.809	1.814	1.820	1.825	1.831	1.837	1.842	1. 848	1. 853
99	1.859	1. 865	1.870	1.876	r. 882	I. 887	1.893	1. 899	1.905	1.910
100	1.916	1.922	1. 928	1.934	1.939	1.945	1.951	1.957	1.963	1.969
IOI	1.975	I.98I	1.987	1.993	1.999	2.005	2.011	2.017	2.023	2.029
102	2.035	2.041	2.047	2.053	2.059	2.066	2.072	2.078	2.084	2.090
103	2.097	2.103	2.109	2.116	2.122	2.128	2.134	2.141	2.147	2. 154
104	2.160	2. 166	2.173	2.179	2.186	2.192	2. 199	2.205	2.212	2.219
105	2.225	2.232	2.238	2.245	2.252	2.258	2.265	2.272	2.278	2.285
106	2.292	2.299	2.305	2.312	2.319	2.326	2.333	2.340	2.346	2.353
107	2.360	2.367	2.374	2.381	2.388	2.395	2.402	2.409	2.416	2.423
108	2.431	2.438	2.445	2.452	2.459	2.466	2.474	2.48 I	2.488	2.495
109	2.503	2.510	2.517	2.525	2.532	2.539	2.547	2.554	2.562	2.569
110	2.576	2.584	2.591	2.599	2.607	2.614	2.622	2.629	2.637	2.645
III	2.652	2.660	2.668	2.675	2.683	2.691	2.699	2.706	2.714	2.722
112	2.730	2.738	2.746	2.754	2.762	2.770	2.777	2.785	2.793	2.801
II3	2.810	2.818	2.826	2.834	2.842	2.850	2.858	2.866	2.875	2.883
114	2.89 I	2.899	2.908	2.916	2.924	2.933	2.941	2.950	2.958	2.966
115	2.975	2.983	2.992	3.000	3.009	3.017	3.026	3.035	3.043	3.052
116	3.061	3.069	3.078	3.087	3.095	3.104	3.113	3.122	3.131	3.140
117	3.148	3.157	3.166	3.175	3.184	3.193	3.202	3.211	3.220	3.229
II8	3.239	3.248	3.257	3.266	3.275	3.284	3.294	3.303	3.312	$3 \cdot 321$
119	3.33 I	$3 \cdot 340$	3.349	3.359	3.368	3.378	3.387	3.397	3.406	3.416

Smithsonian Tables.

REDUCTION OF PSYCHROMETRIC OBSERVATIONS.

ENGLISH MEASURES.

Values of $0.000367 \mathrm{~B}\left(t-t_{1}\right)\left(1+\frac{t-t_{1}}{1571}\right)$. $B=$ Barometric pressure.
$t=$ Temperature of the dry-bulb thermometer.
$t_{1}=$ Temperature of the wet-bulb thermometer.

$t-t_{1}$	barometric pressure in inches (B).											
	30.5	30.0	29.5	29.0	28.5	28.0	27.5	27:0	26.5	26.0	25.5	25.0
F.	Inch.	Inch	Inch.	ch.	ch.	Inch.	Inch.	h.	Inch.	Inch.	In	In
$1{ }^{\circ}$	0.oIr	0.011	O.oIr	O.OII	0.010	0.010	o.oio	o.oio	o.oıo	o.oio	0.009	0.009
2	. 022	. 022	. 022	. 021	. 021	. 021	. 020	. 020	. 019	. 019	.or9	.or8
3	. 034	. 033	. 033	. 032	. 031	.031	. 030	. 030	. 029	. 029	. 028	. 027
4	. 045	. 044	. 043	. 043	. 042	. 041	. 040	. 040	. 039	. 038	.038	. 037
5	0.056	0.055	0.054	0.053	0.052	0.052	0.051	0.050	0.049	0.048	0.047	0.046
6	. 067	. 066	. 065	. 064	. 063	. 062	.06I	. 060	. 059	. 057	. 056	. 055
7	. 079	. 077	. 076	. 075	. 073	. 072	. 071	. 070	. 068	. 067	. 066	. 064
8	. 090	. 088	. 087	. 086	. 084	. 083	.081	. 080	. 078	. 077	. 075	. 074
9	. 101	. 099	. 098	. 096	. 095	. 093	. 091	. 090	. 088	. 086	. 085	. 083
10	0.113	O.III	0.109	0. 107	0. 105	o. 103	0.102	0. 100	0.098	0.096	0.094	0.092
11	. 124	. 122	. 120	. 118	. 116	.114	. 112	. 110	. 108	. 106	. 104	. 102
12	. 135	. 133	. 131	. 129	. 126	. 124	. 122	. 120	. 118	. 115	. 113	.iII
13	. 147	. 144	. 142	. 140	.137	. 135	.132	. 130	. 127	. 125	. 123	. 120
14	. 158	. 156	. 153	. 150	. 148	. 145	. 143	. 140	. 137	. 135	. 132	. 130
15	0.170	0.167	o. 164	o.16I	0. 158	o. 156	0. 153	0. 150	0.147	0.144	0.142	0.139
16	.181	. 178	. 175	. 172	.169	. 166	. 163	. 160	. 157	. 154	. 151	. 148
17	. 192	. 189	. 186	. 183	. 180	. 177	. 173	. 170	. 167	. 164	. 161	.158
18	. 204	. 200	. 197	. 194	. 190	. 187	. 184	. 180	. 177	. 174	. 170	. 167
19	. 215	. 212	. 208	. 205	. 201	. 198	. 194	. 191	. 187	. 183	. 180	. 176
20	0.227	0.223	0.219	0.216	0.212	0.208	0.204	0.201	0. 197	o. 193	0. 190	0. 186
21	. 238	. 234	. 230	. 226	. 223	. 219	. 215	11	. 207	. 203	. 199	. 195
22	. 250	. 246	. 242	. 237	. 233	. 229	. 225	. 221	. 217	. 213	. 209	. 205
23	. 261	. 257	. 253	. 248	. 244	. 240	. 236	. 231	. 227	. 223	. 218	. 214
24	. 273	. 268	. 264	. 259	. 255	. 250	. 246	.241	. 237	. 233	. 228	. 224
25	0. 284	0.280	0. 275	0.270	0.266	0.261	0.256	0.252	0.247	0.242	0.238	0.233
26	. 296	. 291	. 286	. 281	. 277	. 272	. 267	. 262	. 257	. 252	. 247	. 243
27	. 307	. 302	. 297	. 292	. 287	. 282	. 277	. 272	. 267	. 262	. 257	. 252
28	-319	. 314	. 309	. 303	. 298	. 293	. 288	. 282	. 277	. 272	. 267	. 261
29	-33I	. 325	-320	-314	-309	-304	. 298	. 293	. 287	. 282	. 276	. 271
30	0.342	0.337	0.331	0.325	0.320	0.314	0.309	0.303	0.297	0.292	0.286	0.281
31	- 354	- 348	-342	. 336	.331	- 325	. 319	. 313	. 307	- 302	. 296	. 290
32	. 365	- 359	- 354	-348	-342	- 336	. 330	- 324	-318	-312	- 306	. 300
33	-377	-371	-365	. 359	-352	- 346	-340	- 334	-328	-322	. 315	. 309
34	-389	. 382	. 376	- 370	-363	-357	-351	- 344	-338	.331	. 325	-319
35	0.401	0.394	0.387	0.381	0.374	0.368	0.361	0.355	0. 348	0.341	0.335	0.328
36	. 412	. 405	. 399	. 392	. 385	. 378	. 372	. 365	. 358	. 351	. 345	. 338
37	. 424	. 417	. 410	. 403	- 396	. 389	. 382	. 375	- 368	-361	- 354	- 347
38	. 436	. 428	. 421	. 414	. 407	. 400	- 393	. 386	- 379	-371	- 364	- 357
39	. 447	. 440	. 433	. 425	. 418	.4II	. 403	- 396	- 389	-38I	- 374	- 367
40	0.459	0.452	0.444	0.437	0.429	0.422	0.414	0.406	0.399	0.391	0.384	0.376

Table 41.

REDUCTION OF PSYCHROMETRIC OBSERVATIONS.

ENGLISH MEASURES.
Values of $0.000367 B\left(t-t_{1}\right)\left(1+\frac{t-t_{1}}{1571}\right)$.
$B=$ Barometric pressure.
$t=$ Temperature of the dry-bulb thermometer.
$t_{1}=$ Temperature of the wet-bulb thermometer.

$t-t_{1}$	BAROMETRIC PRESSURE IN INCHES (B).												
	24.5	24.0	235	23.0	22.5	22.0	21.5	21.0	20.5	20.0	195	19:0	18.5
F.	Inch.												
$1{ }^{\circ}$	0.009	0.009	0.009	0.008	0.008	0.008	0.008	0.008	0.008	0.007	0.007	0.007	0.007
2	. 018	. OI 8	. 017	. 017	. 016	. O 6	. 016	. 015	. OL 5	. OL 5	. 014	. 014	. OI 4
3	. 028	. 026	. 026	. 025	. 025	. 024	. 024	. 023	. 023	. 022	. 02 I	. 021	. 020
4	. 036	. 035	. 035	. 034	. 033	. 032	. 032	.03I	. 030	. 029	. 029	. 028	. 027
5	0.045	0.044	0.043	0.042	0.041	0.040	0.040	0.039	0.038	0.037	0.036	0.035	0.034
6	. 054	. 053	. 052	.05I	. 050	. 049	. 048	. 046	. 045	. 044	. 043	. 042	. 041
7	. 063	. 062	.06I	. 059	. 058	. 057	. 055	. 054	. 053	. 052	. 050	. 049	. 048
8	. 072	. 071	. 070	. 068	. 066	. 065	. 063	. 062	. 060	. 059	. 057	. 056	. 055
9	.08I	. 080	. 078	. 076	. 075	. 073	. 07 I	. 070	. 068	. 066	. 064	. 063	.06I
10	0.090	0.089	0.087	0.085	0.083	0.08I	0.079	0.077	0.076	0.074	0.072	0.070	0.068
11	. 100	. 097	. 095	. 093	. 091	.089	. 087	. 085	. 083	.081	. 079	. 077	. 075
12	. 109	. 106	. 104	. 102	. 100	. 097	. 095	. 093	.091	.089	. 086	. 084	. 082
13	. 118	. 115	.II3	.110	. 108	. 106	.103	. 101	. 098	. 096	. 093	. 091	. 089
14	. 127	. 124	. 122	. 119	. 117	.II4	.III	. 109	. 106	. 104	. 101	. 098	. 095
15	0.136	0. 133	0.131	0.128	0.125	0.122	O.119	O.II7	O.II4	O.III	0.108	o.105	0.102
16	. 145	. 142	. 139	. 136	. 133	. 130	. 127	. 124	. 121	.118	. 116	.II3	. 110
17	. 155	.15I	. 148	. 145	. 142	. 139	. 135	. 132	. 129	. 126	. 123	. 120	.117
I8	. 164	.160	. 157	. 154	.151	.I47	.I43	. 140	. 137	. 134	. 130	. 127	. 124
19	. 173	.169	. 166	.162	. 159	. 155	. 152	. 148	. 144	.14I	. 137	. 134	.13I
20	0.182	0.178	0.175	0.171	0.167	0.163	0.160	0.156	0.152	0.148	0.144	0.141	0.137
21	.191	.187	.183	. 180	. 176	. 172	. 168	.164	. 160	. 156	. 152	. 148	. 144
22	. 201	. 196	. 192	. 188	.184	.180	. 176	. 172	. 168	.164	. 160	. 155	. 151
23	. 210	. 205	. 201	. 197	. 193	. 188	. 184	. 180	. 175	.171	. 167	. 163	. 158
24	.219	. 214	. 210	. 205	. 201	. 196	. 192	. 188	.183	. 179	.174	. 170	. 165
25	0.228	0.223	0.219	0.2I4	0.210	0.205	0.200	0.196	0.19I	0. 186	0.181	0.177	0.172
26	. 238	. 233	. 228	. 223	. 218	. 213	. 208	. 203	. 199	. 194	. 189	. 184	. 179
27	. 247	. 242	. 237	. 232	. 227	. 222	. 216	. 211	. 206	. 201	. 196	.191	. 186
28	. 256	.251	. 245	. 240	. 235	. 230	. 225	. 219	. 214	. 209	. 203	. 198	. 193
29	. 266	. 260	. 254	. 249	. 244	. 238	. 233	. 227	. 222	. 216	. 211	. 206	. 200
30	0.275	0.269	0.263	0.258	0.252	0.247	0.241	0.235	0.230	0.224	0.218	0.213	0.207
3 I	. 284	. 278	. 272	. 267	. 261	. 255	. 249	. 243	. 238	. 232	. 226	. 220	. 214
32	. 294	. 287	. 281	. 275	. 269	. 263	. 257	. 25 I	. 245	. 239	. 233	. 227	. 22 I
33	. 303	. 296	. 290	. 284	. 278	. 272	. 266	. 259	. 253	. 247	.241	. 235	. 229
34	. 312	. 306	. 299	. 293	. 286	. 280	. 274	. 267	. 261	. 255	. 248	. 242	. 236
35	0.322	0.315	0.308	0.302	0.295	0.289	0.282	0.275	0.268	0.262	0.255	0.249	0.243
36	. 331	. 324	. 317	.311	. 304	. 297	. 290	. 284	. 277	. 270	. 263	. 257	. 250
37	.34I	. 333	. 326	-319	. 312	. 305	. 299	. 292	. 285	. 278	. 271	. 264	. 257
38	. 350	- 342	. 335	-328	. 321	-314	. 307	. 300	. 293	. 285	. 278	. 271	. 264
39	-359	. 352	. 344	-337	. 330	. 322	. 315	. 308	.300	. 293	. 285	. 278	. 271
40	0.369	0.36I	0.353	0.346	0.338	0.33I	0.323	0.316	0.308	0.301	0.293	0.286	0.278

Smithsonian Tables.

RELATIVE HUMIDITY.
TEMPERATURES FAHRENHEIT.

Air	DEPRESSION OF THE DEW-POINT ($t-d$).															
t.	0°	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5
F. ${ }^{\text {F. }}$	100	97	94	92	89											
-28	100	97	94	92	89	86	83	8 I	78	75	73	7 I	69	67	65	63
-24	100	97	94	92	89	87	84	8 I	79	76	74	72	70	67	65	63
-20	100	97	94	92	89	87	84	82	79	77	75	73	71	69	66	65
-16	100	97	94	92	90	87	85	82	80	78	75	73	71	69	67	65
-12	100	97	95	92	90	87	85	82	80	78	75	73	71	69	67	65
-8	100	97	95	92	90	87	85	83	80	78	76	74	72	70	68	66
-4	100	97	95	92	90	87	85	83	80	78	76	74	72	70	68	66
0	100	97	95	92	90	87	85	83	80	78	76	74	72	70	68	66
+ 4	100	98	95	93	90	88	86	84	82	80	78	76	74	71	70	68
S	100	98	95	93	90	88	86	84	82	80	78	76	74	72	71	69
12	100	98	95	93	90	88	86	84	82	80	78	76	74	72	71	69
16	100	98	95	93	91	89	86	84	82	80	78	76	74	72	71	69
20	100	98	95	93	91	89	87	85	83	81	79	77	75	73	72	70
24	100	98	95	93	91	89	87	85	83	81	79	77	75	73	72	70
28	100	98	95	93	91	89	87	85	83	81	79	77	76	74	72	70
32	100	98	96	94	92	90	87	85	83	81	79	78	76	74	72	71
36	100	98	96	94	92	91	89	87	85	83	81	80	78	76	74	73
40	100	98	96	94	93	91	89	87	86	84	82	8 I	79	78	76	74
44	100	98	96	94	93	91	89	87	86	84	83	8 I	79	78	76	75
48	100	98	96	95	93	91	89	88	86	84	83	81	80	78	77	75
52	100	98	96	95	93	91	89	88	86	85	83	82	80	79	77	76
56	100	98	96	95	93	91	90	88	86	85	83	82	80	79	77	76
60	100	98	97	95	93	91	90	88	87	85	84	82	8 I	79	78	76
64	100	98	97	95	93	92	90	88	87	85	84	82	81	79	78	77
68	100	98	97	95	93	92	90	89	87	86	84	83	8I	80	78	77
72	100	98	97	95	93	92	90	89	87	86	84	83	8 I	80	79	77
76	100	98	97	95	94	92	90	89	87	86	85	83	82	80	79	77
80	100	98	97	95	94	92	9 I	89	88	86	85	83	82	81	79	78
84	100	98	97	95	94	92	91	89	88	86	85	84	82	8 I	80	78
88	100	98	97	95	94	92	91	89	88	87	85	84	83	8 I	80	79
92	100	98	97	95	94	92	91	90	88	87	85	84	83	8 I	80	79
96	100	98	97	95	94	93	91	90	88	87	86	84	83	82	80	79
100	100	99	97	96	94	93	91	90	89	87	86	85	83	82	8 I	79
104	100	99	97	96	94	93	91	90	89	87	86	85	83	82	8 I	80
108	100	99	97	96	94	93	92	90	89	88	86	85	84	82	81	80
112	100	99	97	96	94	93	92	90	89	88	86	85	84	83	82	80
116	100	99	97	96	94	93	92	90	89	88	87	85	84	83	82	8I
120	100	99	97	96	95	93	92	91	89	88	87	86	84	83	82	81

RELATIVE HUMIDITY.

TEMPERATURES FAHRENHEIT.

Air Temperature. t.	DEPRESSION OF THE DEW-POINT ($t-d$) .														
	8.0	8.5	9.0	9.5	10.0	10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0
F. ${ }^{\text {F }}$ - ${ }^{\circ}$	6I	60	58	56	55	53	51	50	49						
-20	62	61	59	57	55	53	52	50	49	47	46	45	43	42	41
-16	63	61	59	58	56	54	53	51	49	48	46	45	44	42	41
-12	63	6I	60	58	56	55	53	52	50	49	47	46	45	43	42
-8	64	62	61	59	57	56	54	52	51	49	48	47	45	44	43
- 4	65	63	6I	60	58	56	55	53	52	50	49	47	46	45	43
0	65	63	6r	60	58	57	55	53	52	51	49	48	47	45	44
+4	66	64	62	61	59	57	56	54	52	51	50	49	48	46	45
8	67	65	64	62	60	59	57	55	54	52	51	50	48	47	46
12	67	65	64	62	61	59	58	56	55	53	52	51	49	48	47
16	67	65	64	62	61	60	58	56	55	54	52	51	50	49	47
20	68	66	65	63	61	60	58	57	56	54	53	51	50	49	48
24	68	67	65	64	62	61	59	58	56	55	54	52	5 I	50	48
28.	69	67	65	64	62	61	59	58	57	55	54	53	52	50	49
32	69	68	66	64	63	61	60	58	57	56	54	53	52	51	50
36	71	69	68	66	65	63	62	60	59	58	56	55	54	52	51
40	73	71	70	68	67	65	64	62	61	59	58	57	55	54	53
44	73	72	71	69	68	66	65	64	63	61	60	58	57	56	55
48	74	72	71	70	68	67	66	64	63	62	61	59	58	57	56
52	74	73	71	70	69	67	66	65	64	62	61	60	59	58	57
56	75	73	72	70	69	68	67	65	64	63	62	61	59	58	57
60	75	74	72	71	70	68	67	66	65	63	62	61	60	59	58
64	75	74	73	71	70	69	68	66	65	64	63	62	60	59	58
68	76	74	73	72	70	69	68	67	66	64	63	62	61	60	59
72	76	75	73	72	71	70	68	67	66	65	64	63	61	60	59
76	76	75	74	72	71	70	69	68	66	65	64	63	62	6I	60
80	77	75	74	73	72	70	69	68	67	66	65	64	62	61	60
84	77	76	74	73	72	71	70	68	67	66	65	64	63	62	61
88	77	76	75	74	72	71	70	69	68	67	66	64	63	62	61
92	78	76	75	74	73	72	70	69	68	67	66	65	64	63	62
96	78	77	75	74	73	72	71	70	69	67	66	65	64	63	62
100	78	77	76	75	73	72	71	70	69	68	67	66	65	64	63
104	79	77	76	75	74	73	72	70	69	68	67	66	65	64	63
103	79	78	76	75	74	73	72	71	70	69	68	67	66	65	64
112	79	78	77	76	75	73	72	71	70	69	68	67	66	65	64
116	79	78	77	76	75	74	73	72	71	70	69	67	66	65	65
120	80	79	77	76	75	74	73	72	71	70	69	68	67	66	65

Smithbonian Tables.

RELATIVE HUMIDITY.

TEMPERATURES FAHRENHEIT.

$\begin{gathered} \text { Air } \\ \text { Temper- } \\ \text { ature. } \\ t . \end{gathered}$	DEPRESSION OF THE DEW-POINT ($t-d$).															
	15°	16°	17°	18°	19°	20°	21°	22°	23°	24°	25°	26°	27°	28°	29°	30°
F. ${ }^{\text {F }}$	4I	39														
- 16	41	39	36	34	32	3 I	29									
- 12	42	39	37	35	33	3I	29	27	26	24	23	22	2 I			
- 8	43	40	38	36	34	32	30	28	26	25	23	22	21	20	19	18
- 4	43	41	39	36	34	32	3 I	29	27	25	24	23	21	20	19	18
0	44	42	39	37	35	33	31	29	28	26	25	23	22	2I	19	18
+ 4	45	43	40	38	36	34	32	30	29	27	25	24	23	2I	20	19
8	46	43	41	39	37	35	33	3 I	30	28	26	25	23	22	21	20
12	47	44	42	39	37	35	34	32	30	28	27	25	24	23	21	20
16	47	45	43	40	38	36	34	32	3 I	29	28	26	25	23	22	21
20	48	46	43	4 I	39	37	35	33	32	30	28	27	25	24	23	22
24	48	46	44	42	40	38	36	34	32	31	29	28	26	25	23	22
28	49	47	44	42	40	38	36	34	33	31	30	28	27	26	24	23
32	50	47	45	43	4I	39	37	35	33	32	30	29	27	26	25	24
36	51	49	46	44	42	40	38	37	35	33	32	30	28	27	26	25
40	53	50	48	46	44	42	40	38	36	34	33	3 I	30	28	27	26
44	55	52	50	48	45	43	41	39	38	36	34	32	3I	30	28	27
48	56	54	5 I	49	47	45	43	41	39	37	35	34	32	31	29	28
52	57	54	52	50	48	46	44	42	4 1	39	37	35	34	32	31	29
56	57	55	53	5I	49	47	45	43	42	40	38	37	35	33	32	30
60	58	56	54	51	50	48	46	44	42	41	39	38	36	35	33	32
64	58	56	54	52	50	48	46	45	43	4 I	40	38	37	35	34	33
68	59	57	55	53	5I	49	47	45	44	42	40	39	37	36	35	33
72	59	57	55	53	5I	49	48	46	44	43	4 I	40	38	37	35	34
76	60	58	56	54	52	50	48	47	45	43	42	40	39	37	36	35
80	60	58	56	54	52	5I	49	47	45	44	42	41	39	38	37	35
84	6I	59	57	55	53	51	49	48	46	44	43	4 I	40	39	37	36
88	61	59	57	55	54	52	50	48	47	45	43	42	4I	39	38	36
92	62	60	58	56	54	52	51	49	47	46	44	43	4	40	38	37
96	62	60	58	56	55	53	5I	49	48	46	45	43	42	40	39	38
100	63	61	59	57	55	53	52	50	48	47	45	44	42	4 1	40	38
104	63	6I	59	57	56	54	52	50	49	47	46	44	43	4I	40	39
108	64	62	60	58	56	54	53	51	49	48	46	45	43	42	41	39
112	64	62	60	58	57	55	53	52	50	48	47	45	44	43	41	40
116	65	63	61	59	57	55	54	52	51	49	48	46	45	43	42	41
120	65	63	61	59	58	56	54	53	51	50	48	47	45	44	42	41

RELATIVE HUMIDITY.

TEMPERATURES FAHRENHEIT.

Air	DEPRESSION OF THE DEW-POINT $(t-d)$.														
t.	33°	36°	39°	42°	45°	48°	51°	54°	57°	60°	63°	66°	69°	72°	75°
$\begin{gathered} F \\ -4 \end{gathered}$	I5	13													
0	I5	13	II												
+4	16	13	II	9	8										
8	17	14	II	IO	8	7									
12	17	14	12	10	8	7	6								
16	18	15	12	10	9	7	6	5	4						
20	18	15	I3	II	9	8	6	5	4	4					
24	19	16	14	II	IO	8	7	6	5	4	3				
28	19	16	14	12	10	8	7	6	5	4	3	3			
32	20	17	14	12	10	9	7	6	5	4	4	3	3	2	
36	21	I8	15	13	II	9	8	7	6	5	4	3	3	2	2
40	22	19	16	14	12	10	9	7	6	5	4	4	3	2	2
44	23	20	17	15	13	II	9	8	7	6	5	4	3	3	2
48	24	2 I	18	15	13	II	10	8	7	6	5	4	4	3.	2
52	25	22	19	16	14	12	IO	9	8	6	5	5	4	3	3
56	26	23	20	17	15	13	II	9	8	7	6	5	4	4	3
60	28	24	2 I	18	16	13	12	10	9	7	6	5	5	4	3
64	29	25	22	19	16	14	12	II	9	8	7	6	5	4	4
68	30	26	23	20	17	15	13	II	10	8	7	6	5	5	4
72	30	27	24	2 I	18	16	14	12	10	9	8	7	6	5	4
76	3 I	28	24	22	19	17	15	13	II	9	8	7	6	5	4
80	3 I	28	25	22	20	18	15	13	12	10	9	8	7	6	5
84	32	29	26	23	20	18	16	14	12	II	9	8	7	6	5
88	33	29	26	23	2 I	19	17	15	13	II	10	9	8	7	6
92	33	30	27	24	2 I	19	17	15	14	12	10	9	8	7	6
96	34	30	27	25	22	20	18	16	14	12	II	10	8	7	6
100	34	3 I	28	25	23	20	18	16	14	I3	II	10	9	8	7
104	35	32	29	26	23	2 I	19	17	15	13	12	II	9	8	7
108	36	32	29	26	24	21	19	17	I5	14	12	II	10	9	8
112	36	33	30	27	24	22	20	18	16	14	13	II	10	9	8
116	37	33	30	27	25	22	20	18	16	15	13	12	II	9	8
120	37	34	31	28	25	23	2 I	19	17	15	14	12	II	10	9

Smithsonian Tables.

Pressure of Aqueous Vapor.
(Broch.)

Temperature.	0°	$1{ }^{\circ}$	2°	3°	4°	5°	6°	7°	8°	9°
c.	mm.	mm.	mm .	mm .	mm .	mm.	mm .	min.	mm.	mm.
-30°	0.38	0.35	0.32	0.29	0.26	0.23	0.21	0.19	0.17	0. 15
20	0.94	0.87	0.79	0.73	0.66	0.61	0.55	0.50	0.46	0.42
10	2. 15	1.99	1.84	1.69	1.56	1. 44	1.32	1.22	I. 12	1.03
o	4.57	4.25	3.95	3.67	3.41	3.16	2.93	2.72	2.51	2.33
Temperatu e.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
C.	mm.	mm.	mm.	mm.	mm.	mm .	mm.	mm .	mm.	mm.
$+0^{\circ}$	4.57	4.60	4.64	4.67	4.70	4.74	4.77	4.80	4.84	4.87
I	4.91	4.94	4.98	5.02	5.05	5.09	5.12	5.16	5.20	5.23
2	5.27	$5 \cdot 31$	$5 \cdot 35$	$5 \cdot 39$	5.42	5.46	5.50	5.54	5.58	5.62
3	5.66	5.70	5.74	5.78	5.82	5.86	5.90	5.94	5.99	6.03
4	6.07	6.11	6.15	6.20	6.24	6.28	6.33	6.37	6.42	6.46
5	6.51	6.55	6.60	6.64	6.69	6.74	6.78	6.83	6.88	6.92
6	6.97	7.02	7.07	7.12	7.17	7.22	7.26	7.31	7.36	7.42
7	7.47	7.52	7.57	7.62	7.67	7.72	7.78	7.83	7.88	7.94
8	7.99	8.05	8.10	8.15	8.21	8.27	8.32	8.38	8.43	8.49
9	8.55	8.61	8.66	8.72	8.78	8.84	8.90	8.96	9.02	9.08
10	9.14	9.20	9.26	9.32	9.39	9.45	9.51	9.58	9.64	9.70
II	9.77	9.83	9.90	9.96	10.03	10.09	10.16	10.23	10.30	10.36
12	10.43	10.50	10.57	10.64	10.71	10.78	10.85	10.92	10.99	11.07
13	II. 14	II. 21	11.28	11.36	11.43	11.50	11.58	11.66	11.73	II.81
14	II. 88	11.96	12.04	12.12	12.19	12.27	12.35	12.43	12.51	12.59
15	12.67	12.76	12.84	12.92	13.00	13.09	13.17	13.25	13.34	13.42
16	13.51	13.60	13.68	13.77	13.86	13.95	14.04	14.12	14.21	14.30
17	14.40	14.49	14.58	14.67	14.76	14.86	14.95	15.04	15.14	15.23
18	15.33	15.43	15.52	15.62	15.72	15.82	15.92	16.02	16.12	16.22
19	16.32	16.42	16.52	16.63	16.73	16.83	16.94	17.04	17.15	17.26
20	17.36	17.47	17.58	17.69	17.80	17.91	18.02	18.13	18.24	18.35
21	18.47	18.58	18.69	18.81	18.92	19.04	19.16	19.27	19.39	19.51
22	19.63	19.75	19.87	19.99	20.11	20.24	20.36	20.48	20.61	20.73
23	20.86	20.98	21.11	2 I .24	21.37	21.50	21.63	21.76	21.89	22.02
24	22.15	22.29	22.42	22.55	22.69	22.83	22.96	23.10	23.24	23.38
25	23.52	23.66	23.80	23.94	24.08	24.23	24.37	24.52	24.66	24.8I
26	24.96	25.10	25.25	25.40	25.55	25.70	25.86	26.01	26.16	26.32
27	26.47	26.63	26.78	26.94	27.10	27.26	27.42	27.58	27.74	27.90
28	28.07	28.23	28.39	28.56	28.73	28.89	29.06	29.23	29.40	29.57
29	29.74	29.92	30.09	30.26	30.44	30.62	30.79	30.97	31.15	31.33
30	31.51	31.69	31.87	32.06	32.24	32.43	32.61	32.80	32.99	33.18
31	33.37	33.56	33.75	33.94	34.14	34.33	34.53	34.72	34.92	35.12
32	35.32	35.52	35.72	35.92	36. I3	36.33	36.54	36.74	36.95	37.16
33	37.37	37.58	37.79	38.00	38.22	38.43	38.65	38.87	39.08	39.30
34	39.52	39.74	39.97	40.19	40.41	40.64	40.87	41.09	41.32	41.55
35	41.78	42.02	42.25	42.48	42.72	42.96	43. 19	43.43	43.67	
36	44.16	44.40	44.65	44.89	45.14	45.39	45.64	45.89	46.14	46.39
37	46.65	46.90	47.16	47.42	47.68	47.94	48.20	48.46	48.73	48.99
38	49.26	49.53	49.80 52	50.07	50.34	50.61	50.89	51.16	51.44	51.72 54.57
39	52.00	52.28	52.56	52.84	53.13	53.41	53.70	53.99	54.28	54.57
40	54.87	55. 16	55.46	55.75	56.05	56.35	56.65	56.95	57.26	57.56
41	57.87	58.18	58.49	58.80	59.11	59.43	59.74	60.06	60.38	60.70
42	61.02	6 I .34	61.66	6 I .99	62.32	62.65	62.98	63.31	63.64	63.97
43	64.31	64.65	64.99	65.33	65.67	66.01	66.36	66.71	67.05	67.41
44	67.76	68. I I	68.47	68.82	69.18	69.54	69.90	70.26	70.63	70.99
45	71.36	71.73	72.10	72.48	72.85	73.23	73.60	73.98	74.36	74.75

REDUCTION OF PSYCHROMETRIC OBSERVATIONS.

 METRIC MEASURES.
Values of $0.000660 \mathrm{~B}\left(t-t_{1}\right)\left(1+\frac{t-t_{1}}{873}\right)$.

$t=$ Temperature of the dry-bulb thermometer.
$t_{1}=$ Temperature of the wet-bulb thermometer.

$t-t_{1}$	barometric pressure in millimetres (B).														
	770	760	750	740	730	720	710	700	690	680	670	660	650	640	630
c.	mm.	mm.	mm.	mm.	mm.	m	mi	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
$1{ }^{\circ}$	0.52	0.51	0.50	0.50	0.49	0.48	0.48	0.47	0.46	0.46	0.45	0.44	0.44	0.43	0.42
2	1.03	I. 1.	I.00	0.98	0.97	0.96	0.94	0.93	0.92	0.90	0. 89	0.88	0.87	0.85	0.84
3	I. 54	I. 52	I. 49	I. 47	I. 45	1.43	1.41	1.39	1.37	1.35	I. 33	1.32	1.30	I. 28	1.26
4	2.04	2.02	I. 99	I. 97	I. 94	1.91	1.89	1.86	1. 83	1.81	1.78	1.75	1.73	1.70	1.67
5	2.56	2.52	2.49	2.46	2.43	2.39	2.36	2.32	2.29	2.26	2.23	2.19	2.17	2.13	2.09
6	3.07	3.03	2.99	2.95	2.91	2.87	2.83	2.79	2.75	2.71	2.67	2.63	2.59	2.55	2.51
8	3.59	3.54	3.50	3.45	3.40	3.36	3.31	3.26	3.22	3.17	3.12	3.08	3.04	2.99	2.94
8	4.11 4.62	4.05	4.00	3.95	3.89 4.38	3.84 4.32	3.79	3.73	3.68	3.63	3.58	3.53	3.48	3.42 3.85	3.36 3.79
9	4.62	4.56	4.50	4.44	4.38	4.32	4.27	4.2 I	4.15	4.09	4.03	3.97	3.91	3.85	3.79
10	5.15	5.08	5.OI	4.94	4.88	4.8I	4.74	4.68	4.61	4.54	4.47	4.41	4.35	4.28	4.21
11	5.66	5.59	5.51	5.44	5.37	5.30	5.22	5.15	5.08	5.00	4.93	4.86	4.79	4.71	4.63
12	6.19	6.11	6.02	5.94	5.86	5.78	5.70	5.62	5.54	5.46	5.38	5.30	5.22	5.14	5.06
13	6.71	6.62	6.53	6.45	6.36	6.27	6.18	6.10	6.01	5.92	5.83	5.75	5.66	5.57	5.49
14	7.23	7.14	7.05	6.95	6.86	6.76	6.67	6.58	6.48	6.39	6.29	6.20	6.1I	6.01	5.92
15	7.76	7.66	7.56	7.46	7.36	7.26	7.16	7.06	6.95	6.85	6.75	6.65	6.55	6.45	6.35
16	8.29	8.18	8.07	7.96	7.86	7.75	7.64	7.54	7.43	7.32	7.21	7.11	7.00	6.89	6.78
17	8.82	8.70	8.59	8.47	8.36	8.24	8.13	8.02	7.90	7.79	7.67	7.56	7.45	7.33	7.21
18	9.	9.22	9.10	8.98	8.86	8.74	8.62	8.50	8.37	8.25	8.13	8.01	7.89	7.77	7.65
19	9.87	9.75	9.62	9.49	9.36	9.23	9.11	8.98	8.85	8.72	8.59	8.47	8.34	8.21	8.
20		10.2	IO. 14	10.00	9.87	9.73	9.60	9.46	9.32	9.19	9.05	8.92	8.78	8.65	8.51
$t-t_{1}$	barometric pressure in millimetres (B) .														
	620	610	600	590	580	570	560	550	540	530	520	510	500	490	480
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	.	mm.
$1{ }^{\circ}$	0.42	0.41	0.40	0.40	0.39	0.38	0.38	0.37	0.36	0.36	0.35	0.34	0.34	0.33	0.32
2	0.82	0.81	0.80	0.78	0.77	0.76	0.75	0.73	0.72	0.70	0.69	0.68	0.67	0.65	0.64
	I. 24	1.22	1.20	1.17	1.15	1.13	I.12	I.10	1.08	1.06	1. 04	1.02	1.00	0.98	0:96
4	1. 65	I. 62	1.60	I. 57	I. 54	1.51	1.49	1.46	I. 44	1.41	1. 38	1.36	1.33	1.30	1.28
5	2.06	2.03	I. 99	I. 96	I. 93	1.90	1.86	1. 83	1.80	1.76	1.73	1.70	1.66	1. 63	1.60
6	2.47	2.43	2.39	2.35	2.32	2.28	2.24	2.20	2.16	2.12	2.08	2.04	2.00	1.96	1.92
7	2.89	2.84	2.80	2.75	2.71	2.66	2.61	2.56	2.52	2.47	2.43	2.38	2.33	2.28	2.24
8	3.31	3.26	3.20	3.15	3.10	3.04	2.99	2.94	2.88	2.83	2.78	2.72	2.67	2.62	2.56
9	3.73	3.67	3.61	3.55	3.49	3.43	3.37	3.31	3.25	3.19	3.13	3.06	3.00	2.94	2.88
10	4.14	4.07	4.01	3.94	3.88	3.81	3.74	3.67	3.61	3.54	3.48	3.41	3.34	3.27	3.21
11	4.56	4.49	4.42	4.34	4.27	4.19	4.12	4.05	3.97	3.90	3.83	3.75	3.68	3.60	3.53
12	4.98	4.90	4.82	4.74	4.66	4.58	4.50	4.42	4.34	4.26	4.18	4.10	4.02	3.93	3.85
13	5.40	5.31	5.23	5.14	5.05	4.96	4.88	4.79	4.70	4.62	4.53	4.44	4.36	4.27	4.18
14	5.83	5.73	5.64	5.54	5.45	5.35	5.26	5.17	5.07	4.98	4.88	4.	4.70	4.60	4.51
15	6.25	6.15	6.05	5.95	5.85	5.74	5.64	5.54	5.44	$5 \cdot 34$	5.24	5.14	5.04	4.94	4.84
16	6.68	6.57	6.46	6.35	6.24	6.14	6.03	5.92	5.81	5.71	5.60	5.49	5.38	5.27	5.17
17	7.10	6.98	6.87	6.75	6.64	6.53	6.41	6.30	6.18	6.07	5.95	5.84	5.72	5.61	5.50
18	7.52	7.40	7.28	7.16	7.04	6.92	6.80	6.67	6.55	6.43	6.31	6.19	6.07	5.95	5.83
19	7.95	7.82	7.70	7.57	7.44	7.31	7.18	7.05	6.93	6.8	6.67	6.54	6.42	6.29	6.16
20	8.38	8.24	8.11	7.97	7.84	7.70	7.57	7.43	7.30	7.16	7.03	6.90	6.76	6.62	6.49

RELATIVE HUMIDITY.
TEMPERATURE CENTIGRADE.

Depression of the dew-point.	DEW-POINT (d).									
	-15°	-10°	-5°	0°	$+5^{\circ}$	$+10^{\circ}$	$+15^{\circ}$	$+20^{\circ}$	$+25^{\circ}$	$+30^{\circ}$
$\begin{gathered} c . \\ 0.0 \end{gathered}$	100	100	100	100	100	100	100	100	100	100
0.2	98	98	99	99	99	99	99	99	99	99
0.4	97	97	97	97	97	97	97	98	98	98
0.6	95	95	96	96	96	96	96	96	97	97
o. 8	94	94	94	94	95	95	95	95	95	96
1.0	92	92	93	93	93	94	94	94	94	94
r. 2	91	91	91	92	92	92	93	93	93	93
1. 4	89	90	90	90	91	91	91	92	92	92
I. 6	88	88	89	89	90	90	90	91	91	91
r. 8	86	87	87	88	88	89	89	90	90	90
2.0	85	86	86	87	87	88	88	88	89	
2.2	84	84	85	85	86	86	87	87	88	88
2.4	83	83	84	84	85	85	86	86	87	87
2.6	82	82	82	83	84	84	85	85	86	86
2.8	80	80	8 I	82	83	83	84	84	85	85
3.0	78	79	80	81	$8 \mathrm{8r}$	82	83	83	84	84
3.2	77	78	79	80	80	8 r	82	82	83	83
3.4	76	77	78	79	79	80	$8 \mathrm{8I}$	$8 \mathrm{8r}$	82	82
3.6	75	76	77	77	78	79	80	80	8	82
3.8	74	75	75	76	77	78	79	79	So	81
4.0	72	73	74	75	76	77	78	78	79	80
4.2	71	72	73	74	75	76	77	77	78	79
4.4	70	71	72	73	74	75	76	77	77	78
4.6	69	70	71	72	73	74	75	76	76	77
4.8	68	69	70	71	72	73	74	75	75	76
5.0	67	68	69	70	71	72	73	74	75	75
5.2	66	67	68	69	70	71	72	73	74	75
5.4	65	66	67	68	69	70	71	72	73	74
5.6	64	65	66	67	68	69	70	71	72	73
5.8	63	64	65	66	68	69	69	70	71	72
6.0	62	63	64	66	67	68			70	71
6.2	61	62	63	65	66	67	68	69		71
6.4	60	61	63	64	65	66	67	68	69	70
6.6	59	60	62	63	64	65	66	67 66	68	69 68
6.8	58	60	61	62	63	64	65	66	67	68
7.0	57	59	60	61	62	63	65	66 65		68
7.2	56	58	59	60	62	63	64	65	66 65	67
7.4	55	57 56	58 57	60 59	61	62 61	63 62	64 63	65 64	65
7.8	54	55	57	58	59	60	62	63	64	65
8.0	53	54	56	57	58	60	6r	62	63	64

TABLE 45.

RELATIVE HUMIDITY.
TEMPERATURE CENTIGRADE.

Depression of the dew-point.$t-d$	DEW-POINT (d).									
	-15°	-10°	-5°	0°	$+5^{\circ}$	$+10^{\circ}$	$+15^{\circ}$	$+20^{\circ}$	$+25^{\circ}$	$+30^{\circ}$
c.										
8.0	53	54	56	57	58	60	61	62	63	64
8.2	52	54	55	56	57	59	60	6 I	62	63
8.4	51	53	54	56	57	58	59	60	62	63
8.6	51	52	54	55	56	57	58	60	61	62
8.8	50	51	53	54	55	57	58	59	60	6I
9.0	49	51	52	53	55	56	57	58	60	61
9.2	48	50	51	53	54	55	57	58	59	60
9.4	48	49	5 I	52	53	55	56	57	58	59
9.6	47	48	50	51	53	54	55	56	58	59
9.8	46	48	49	51	52	53	55	56	57	58
10.0	46	47	49	50	5 I	53	54	55	56	57
10.5	44	45	47	48	50	51	52	54	55	
11.0	42	44	45	47	48	49	51	52	53	
11.5	41	42	44	45	47	48	49	51	52	
12.0	39	41	42	44	45	47	48	49	50	
12.5	38	39	4 I	42	44	45	46	48	49	
13.0	36	38	40	41	43	44	45	46	48	
13.5	35	37	38	40	42	43	44	45	46	
14.0	34	35	37	38	40	41	43	44	45	
14.5	33	34	36	37	39	40	41	43	44	
15.0	3 I	33	35	36	37	39	40	42		
15.5	30	32	33	35	36	38	39	40		
16.0	29	31	32	34	35	37	38	39		
16.5	28	30	31	33	34	36	37	38		,
17.0	27	29	30	32	33	35	36	37		
17.5	26	28	29	31	32	34	35	36		
18.0	25	27	28	30	31	33	34	35		
18.5	25	26	27	29	30	32	33	34		
19.0	24	25	27	28	29	3 I	32	33		
19.5	23	24	26	27	29	30	3 I	33		
20.0	22	24	25	26	28	29	30	32		
21.0	21	22	23	25	26	27	29			
22.0	19	21	22	23	25	26	27			
23.0	18	19	21	22	23	24	26			
24.0	17	18	19	21	22	23	24			
25.0	16	I7	18	19	21	22	23			
26.0	15	16	17	18	20	21				
27.0	14	15	16	17	18	20				
28.0	13	14	15	16	17	19				
29.0	12	13	14	15	16	18				
30.0	II	12	I3	14	16	17				

Smithbonian Tables.

REDUCTION OF SNOWFALL MEASUREMENTS.
Depth of water corresponding to the weight of snow (or rain) collected in an 8 -inch gage.

Weight of Snow.	$\begin{gathered} 0 z \\ 0 \end{gathered}$	$\begin{gathered} 0 z . \\ \frac{1}{4} \end{gathered}$	$\begin{gathered} \text { Oz. } \\ \frac{1}{2} \end{gathered}$	$\begin{gathered} 0 z \\ \frac{3}{4} \end{gathered}$	$\begin{gathered} \text { Weight } \\ \text { of } \\ \text { nnow. } \end{gathered}$	$\begin{gathered} 0 z . \\ 0 \end{gathered}$	$\begin{gathered} 0 z \\ \frac{1}{4} \end{gathered}$	$\begin{gathered} 0 z . \\ \frac{1}{2} \end{gathered}$	$\begin{gathered} \mathrm{Oz} . \\ \frac{3}{4} \end{gathered}$	$\begin{aligned} & \text { Weight } \\ & \text { of } \\ & \text { Snow. } \end{aligned}$	$\begin{gathered} 0 z . \\ 0 \end{gathered}$	$\begin{gathered} 0 z . \\ \frac{1}{4} \end{gathered}$	$\begin{gathered} 0 z \\ \frac{1}{2} \end{gathered}$	02 $\frac{3}{4}$
Lb.Oz.	Inch.	Inch.	Inch.	Inch.	Lb.Oz.	Inch's	Inch's	Inch's	Inch's	Lb.Oz.	Inch's	Inch's	Inch's	Inch's
0	0.00	0.01	0.02	0.03	18	0.83	0.83	0.84	0.85	213	I. 55	1.56	1.57	I. 57
1	. 03	. 04	. 05	. 06	I 9	. 86	. 87	. 88	. 89	214	1.58	1.59	1.60	1.61
2	. 07	. 08	. 09	. 09	110	. 89	. 90	. 91	. 92	215	I. 62	I'63	1. 63	I. 64
3	. 10	. 11	. 12	. 13	I II	. 93	. 94	. 94	. 95					
4	. 14	. 15	. 15	. 16	1 I 2	. 96	. 97	. 98	. 99					
5	0.17	0.18	0.19	0.20	113	1.00	I.OI	1.01	1.02	30	1. 65	1.66	1.67	1.68
6	. 21	. 22	. 22	. 23	114	1.03	1.04	1.05	1.06	3 I	1.69	1.69	1.70	1.71
7	. 24	. 25	. 26	. 27	I 15	1.07	1.08	1.08	1.09	32	1.72	1.73	1.74	1.75
8	. 28	. 28	. 29	. 30						31	1.75	1.76	1.77	1.78
9	.31	. 32	-33	. 34						34	1.79	1.80	I.8I	I.81
10	0.34	0.35	0.36	0.37	20	1.10	I.II	1.12	1.13	35	1.82	1.83	I. 84	1. 85
11	. 38	. 39	. 40	. 41	2 I	I.14	I. 14	1.15	1.16	36	1.86	1.87	1.87	I. 88
12	. 41	. 42	. 43	. 44	22	I. 17	1.18	1.19	1.20	37	1.89	1.90	I.91	1.92
13	. 45	. 46	. 46	. 47	23	1.20	I.21	1.22	1.23	38	1.93	1.94	1.94	1.95
14	. 48	. 49	. 50	. 51	24	1.24	1.25	I. 26	1.26	39	1.96	I. 97	I. 98	I. 99
15	. 52	. 52	. 53	. 54										
10	0.55	0.56	0.57	0.58	25	1.27	1. 28	1.29	1.30	310	2.00	2.00	2.01	2.02
I I	. 58	. 59	. 60	. 61	26	1.31	1.32	1.32	1.33	311	2.03	2.04	2.05	2.06
I 2	. 62	. 63	. 64	. 65		I. 34	1.35	I. 36	I. 37	312	2.06	2.07	2.08	2.09
I 3	. 65	. 66	. 67	. 68	28	I. 38	1.38	1.39	I. 40	3 I 3	2.10	2.11	2.12	2.12
I 4	. 69	. 70	.71	. 71	29	I. 41	1.42	1.43	I. 44	314	2.13	2.14	2.15	2.16
15	0.72	0.73	0.74	0.75	210	1.44	1.45	1.46	1.47	315	2.17	2.18	2.18	2.19
I 6	. 76	. 77	. 77	. 78	2 II	1.48	I. 49	1.50	1.51	40	2.20			
I 7	. 79	. 80	.8I	. 82	212	I.5I	1.52	1.53	1.54	50	2.75			

TAble 47.
RATE OF DECREASE OF VAPOR PRESSURE WITH ALTITUDE.
(According to the empirical formula of Dr. J. Hann).

$$
\frac{f}{f_{0}}=10^{-\frac{h}{6517}}
$$

$f, f_{0}=$ Vapor pressures at an upper and a lower station respectively.
$h=$ Difference of altitude in metres.

Difference of Altitude.		$\frac{f}{f_{0}}$	Difference of Altitude.		$\frac{f}{f_{0}}$	Difference of Altitude.		$\frac{f}{f_{0}}$.
metres.	Feet.		metres.	Feet.		metres.	Feet.	
200	656	0.93	1800	5905	0.53	3400	III55	0.30
400	1312	. 87	2000	6562	. 49	3600	II8II	. 28
600	1968	. 81	2200	7218	. 46	3800	12467	. 26
800	2625	. 75	2400	7874	. 43	4000	13123	. 24
1000	3281	0.70	2600	8530	0.40	4500	14764	0.20
I 200	3937	. 65	2800	9186	. 37	5000	16404	. 17
1400	4593	.6I	3000	9842	. 35	5500	18045	. 14
1600	5249	. 57	3200	10499	.32	6000	19685	.12

WIND TABLES.

Mean direction of the wind by Lambert's formula -
Multiples of $\cos 45^{\circ}$; form and example of computation . Table 48
Values of the mean direction (a) or its complement ($90-a$) 49
Synoptic conversion of velocities Table 50
Miles per hour into feet per second 51
Feet per second into miles per hour Table 52
Metres per second into miles per hour 53
Miles per hour into metres per second Table 54
Metres per second into kilometres per hour Table 55
Kilometres per hour into metres per second Table 5^{6}
Beaufort wind scale and its conversion into velocity Table 57

TABLE 48.
MEAN DIRECTION OF THE WIND BY LAMBERT'S FORMULA.

$$
\tan \alpha=\frac{E-W+(N E+S E-N W-S W) \cos 45^{\circ}}{N-S+(N E+N W-S E-S W) \cos 45^{\circ}}
$$

Multiples of $\cos 45^{\circ}$.

Number.	0	1	2	3	4	5	6	7	8	9
0	0.0	0.7	1. 4	2.1	2.8	3.5	4.2	4.9	5.7	6.4
10	7.1	7.8	8.5	9.2	9.9	10.6	11.3	12.0	12.7	13.4
20	14.1	14.8	15.6	16.3	17.0	17.7	18.4	19.1	19.8	20.5
30	21.2	21.9	22.6	23.3	24.0	24.7	25.5	26.2	26.9	27.6
40	28.3	29.0	29.7	30.4	31.1	31.8	32.5	33.2	33.9	34.6
50	35.4	36.1	36.8	37.5	38.2	38.9	39.6	40.3	41.0	41.7
60	42.4	43.1	43.8	44.5	45.3	46.0	46.7	47.4	48.1	48.8
70	49.5	50.2	50.9	51.6	52.3	53.0	53.7	54.4	55.2	55.9
80	56.6	57.3	58.0	58.7	59.4	60.1	60.8	6 I .5	62.2	62.9
90	63.6	64.3	65.1	65.8	66.5	67.2	67.9	68.6	69.3	70.0
100	70.7	71.4	72.1	72.8	73.5	74.2	75.0	75.7	76.4	77.1
110	77.8	78.5	79.2	79.9	80.6	81.3	82.0	82.7	83.4	84. ${ }^{\text {I }}$
120	84.9	85.6	86.3	87.0	87.7	88.4	89.I	89.8	90.5	91.2
130	91.9	92.6	93.3	94.0	94.8	95.5	96.2	96.9	97.6	98.3
140	99.0	99.7	100.4	IOI. 1	101. 8	102.5	103.2	103.9	104.7	105.4
150	106. 1	106.8	107.5	108.2	108.9	109.6	IIO. 3	III.O	111.7	I12.4
160	II3.1	II3.8	II4.6	115.3	116.0	I16.7	II7.4	II8. 1	II8.8	I19.5
170	120.2	120.9	121.6	122.3	123.0	123.7	124.5	125.2	125.9	126.6
180	127.3	128.0	128.7	129.4	I30.1	130.8	I31.5	I32.2	132.9	133.6
190	134.4	I35. 1	135.8	136.5	137.2	137.9	I 38.6	I 39.3	140.0	140.7
200	141.4	142.I	142.8	143.5	144.2	145.0	145.7	146.4	147.1	147.8

Form for Computing the Numerator and Denominator.

α is the angle between the mean wind direction and the meridian.
The signs of the numerator (n) and denominator (d) determine the quadrant in which α lies.
When n and d are positive, a lies between N and E :

$$
\begin{aligned}
& \frac{ \pm}{+}=N E \\
& \frac{ \pm}{-}=S E \\
& \frac{ \pm}{-}=S W
\end{aligned}
$$

When n is negative and d positive, a lies between N and $\mathrm{W}: \bar{\mp}=N W$.

TAble 49.
MEAN DIRECTION OF THE WIND BY LAMBERT'S FORMULA.
Values of the mean direction (α) or its complement ($90^{\circ}-\alpha$).
$\alpha=\tan ^{-1} n / d$

n	DENOMINATOR OR NUMERATOR (d OR n).																		
d.	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
1	6°	4°	3°	$2{ }^{\circ}$	2°	2°	I°	$1{ }^{\circ}$	I°	I°	I°	I°	I°	$1{ }^{\circ}$	I°	$1{ }^{\circ}$	I°	I°	I°
2	11	8	6	5	4	3	3	3	2	2	2	2	2	2	1	1	1	1	1
3	17	11	9	7	6	5	4	4	3	3	3	3	2	2	2	2	2	2	2
4	22	15	II	9	8	7	6	5	5	4	4	4	3	3	3	3	3	2	2
5	27	18	14	11	9	8	7	6	6	5	5	4	4	4	4	3	3	3	3
6	31	22	17	13	11	Io	9	8	7	6	6	5	5	5	4	4	4	4	3
7	35	25	19	16	13	II	10	9	8	7	7	6	6	5	5	5	4	4	4
8	39	28	22	18	15	13	II	10	9	8	8	7	7	6	6	5	5	5	5
9	42	31	24	20	17	14	13	II	10	9	9	8	7	7	6	6	6	5	5
10	45	34	27	22	18	16	14	I3	II	10	9	9	8	8	7	7	6	6	6
1 I		36	29	24	20	17	15	14	12	II	10	Io	9	8	8	7	7	7	6
12		39	31	26	22	19	17	15	13	12	II	Io	10	9	9	8	8	7	7
13		41	33	27	23	20	18	16	15	13	12	II	II	Io	9	9	8	8	7
14		43	35	29	25	22	19	17	16	14	I3	12	II	II	10	9	9	8	8
15		45	37	31	27	23	21	18	17	15	14	13	12	11	II	10	9	9	9
16			39	33	28	25	22	20	18	16	15	14	13	12	II	11	10	10	9
17			40	34	30	26	23	21	19	17	16	15	14	13	12	II	11	10	10
18			42	36	31	27	24	22	20	18	17	15	14	I3	13	12	11	11	ıo
19			44	37	32	28	25	23	2I	19	18	16	15	14	13	13	12	II	II
20			45	39	34	30	27	24	22	20	18	17	16	15	14	13	13	12	II
21				40	35	31	28	25	23	21	19	18	17	16	15	14	13	12	12
22				4 I	36	32	29	26	24	22	20	19	17	16	15	15	14	13	12
23				43	37	33	30	27	25	23	21	19	18	17	16	15	14	14	13
24				44	39	34	31	28	26	24	22	20	19	18	17	16	15	14	13
25				45	40	36	32	29	27	24	23	21	20	18	17	16	16	15	14
26					4 I	37	33	30	27	25	23	22	20	19	18	17	16	15	15
27					42	38	34	31	28	26	24	22	21	20	19	18	17	16	15
28					43	39	35	32	29	27	25	23	22	20	19	18	17	16	16
29					44	40	36	33	30	28	26	24	23	2I	20	19	18	17	16
30					45	41	37	34	31	29	27	25	23	22	21	19	18	18	17
3 I						42	38	35	32	29	27	25	24	22	21	20	19	18	17
32						42	39	35	33	30	28	26	25	23	22	21	20	19	18
33						43	40	36	33	31	29	27	25	24	22	21	20	19	18
34						44	40	37	34	32	30	28	26	24	23	22	21	20	19
35						45	4	38	35	32	30	28	27	25	24	22	21	20	19
36							42	39	36	33	31	29	27	26	24	23	22	21	20
37							43	39	37	34	32	30	28	26	25	24	22	21	20
38							44	40	37	35	32	30	28	27	25	24	23	22	21
39							44	4	38	35	33	31	29	27	26	25	23	22	21
40							45	42	39	36	34	32	30	28	27	25	24	23	22
4 I								42	39	37	34	32	30	29	27	26	24	23	22
42								43	40	37	35	33	31	29	28	26	25	24	23
43								44	4 I	38	36	33	32	30	28	27		24	23
44								44	4 I	39	36	34	32	30	29	27	26	25	24
45								45	42	39	37	35	33	31	29	28	27		24
46									43	40	37	35	33	32	30	28	27	26	25
47									43	41	38	36	34	32	30	29	28	26	25
48									44	4 4	39	36	34	33	31 31	29	28	27	26
50									45	42	40	38	36	34	32	30	29	28	27

TABLE 49.
MEAN DIRECTION OF THE WIND BY LAMBERT'S FORMULA.
Values of the mean direction (α) or its complement ($90^{\circ}-\alpha$).

n or d.	DENOMINATOR OR NUMERATOR (d OR \boldsymbol{n}).									
	105	110	115	120	125	130	135	140	145	150
1	I°	I°	0°							
2	1	1	1	1	1	1	1	1	1	1
3	2	2	1	1	1	1	I	1	I	I
4	2	2	2	2	2	2	2	2	2	2
5	3	3	2	2	2	2	2	2	2	2
6	3	3	3	3	3	3	3	2	2	2
7	4	4	3	3	3	3	3	3	3	3
8	4	4	4	4	4	4	3	3	3	3
9	4	4	4	4	4	4	4	4	4	3
10	5	5	5	5	5	4	4	4	4	4
11	6	6	5	5	5	5	5	4	4	4
12	7	6	6	6	5	5	5	5	5	5
13	7	7	6	6	6	6	6	5	5	5
14	8	7	7	7	6	6	6	6		
15	8	8	7	7	7	7	6	6	6	6
16	9	8	8	8	7	7	7	7	6	6
17	9	9	8	8	8	7	7	7	7	6
18	10	9	9	9	8	8	8	7	7	7
19	10	10	9	9	9	8	8	8	7	7
20	II	10	10	9	9	9	8	8	8	8
21	11	11	10	10	10	9	9	9	8	8
22	12	11	11	10	10	10	9	9	9	8
23	12	12	11	II	10	ı0	10	9	9	9
24	13	12	12	II	II	10	10	10	9	9
25	13	13	12	12	II	II	10	ıо	10	9
26	14	13	13	12	12	II	11	11	10	10
27	14	14	13	13	12	12	11	II	II	10
28	15	14	14	13	13	12	12	II	II	II
29	15	15	14	14	13	13	12	12	II	II
30	16	15	15	14	13	13	13	12	12	11
31	16	16	15	14	14	13	13	12	12	12
32	17	16	16	15	14	14	13	13	12	12
33	17	17	16	15	15	14	14	13	13	12
34	18	17	16	16	15	15	14	14	13	13
35	18	18	17	16	16	15	15	14	14	13
36	19	18	17	17	16	15	15	14	14	13
37	19	19	18	17	16	16	15	15	14	14
38	20	19	18	18	17	16	16	15	15	14
39	20	20	19	18	17	17	16	16	15	15
40	21	20	19	18	18	17	17	16	15	15
4 I	21	20	20	19	18	18	17	16	16	15
42	22	21	20	19	19	18	17	17	16	16
43	22	21	21	20	19	18	18	17	17	16
44	23	22	21	20	19	19	18	17	17	16
45	23	22	21	21	20		18	18	17	
46	24	23	22	21	20	19	19	18	18	17
47	24	23	22	21	21	20	19	19	18	17
48	25	24	23	22	21	20	20	19	18	18
49	25	24	23	22	21	21	20	19	19	18
50	25	24	23	23	22	21	20	20	19	18

MEAN DIRECTION OF THE WIND BY LAMBERT'S FORMULA.
Values of the mean direction (α) or its complement $\left(90^{\circ}-\alpha\right)$.

n or d.	DENOMINATOR OR NUMERATOR (d OR n).									
	155	160	165	170	175	180	185	190	195	200
1	0°	0°	0°	0°	0°	0°	0°	0°	0°	0°
2	1	1	1	1	1	1	1	1	1	1
3	1	1	I	I	I	1	1	1	1	1
4	1	1	1	1	1	1	1	I	1	1
5	2	2	2	2	2	2	2	2	1	1
6	2	2	2	2	2	2	2	2	2	2
7	3	3	2	2	2	2	2	2	2	2
8	3	3	3	3	3	3	2	2	2	2
9	3	3	3	3		3	3	3	3	3
10	4	4	3	3	3	3	3	3	3	3
11	4	4	4	4	4	3	3	3	3	3
12	4	4	4	4	4	4	4	4	4	3
13	5	5	5	4	4	4	4	4	4	4
14	5	5	5	5	5	4	4	4	4	4
15	6	5		5	5	5	5	5	4	4
16	6	6	6	5	5	5	5	5	5	5
17	6	6	6	6	6	5	5	5	5	5
18	7	7	6	6	6	6	6	6	5	5
19	7	7	7	6	6	6	6	6	6	5
20		7	7	7	7	6	6	6	6	6
21	8	7	7	7	7	7	6	6	6	6
22	8	8	8	7	7	7	7	7	6	6
23	8	8	8	8	7	7	7	7	7	7
24	9	9	8	8	8	8	7	7	7	7
25	9	9	9	8	8	8	8			7
26	10	9	9	9	8	8	8	8	8	7
27	${ }^{10}$	10	9	9	9	9	8	8	8	8
28	10	10	10	9	9	9	9	8	8	8
29	11	10	ıо	10	9	9	9	9	8	8
30	II	II	10	10	10	9	9	9	9	9
31	11	II	11	ıо	ı0	10	10	9	9	9
32	12	11	11	11	10	10	10	10	9	9
33	12	12	II	11	II	10	10	ıо	10	9
34	12	12	12	II	II	II	о	ıо	ıо	10
35	13	12	12	12	II	II	II	10	10	10
36	13	13	12	12	12	11	II	11	10	10
37	13	13	13	12	12	12	II	11	11	Io
38	14	13	13	13	12	12	12	11	11	1 I
39	14	14	13	13	13	12	12	12	II	II
40	14	14	14	13	13	13	12	12	12	11
4 I	15	14	14	14	13	13	12	12	12	12
42	15	15	14	14	13	13	13	12	12	12
43	16	15	15	14	14	13	13	13	12	12
44	16	15	15	15	14	14	13	13	13	12
45	16	16	15	15	14	14	14	13	13	13
46	17	16	16	15	15	14	14	14	13	13
47	17	16	16	15	15	15	14	14	14	13
48	17	17	16	16	15	15	15	14	14	13
49	18	17	17	16	16	15	15	14	14	14
50	18	17	17	16	16	16	15	15	14	14

TABLE 49.
MEAN DIRECTION OF THE WIND BY LAMBERT'S FORMULA.
Values of the mean direction (a) or its complement ($90^{\circ}-a$).

$$
\alpha=\tan ^{-1} \frac{n}{d} .
$$

	denominator or numerator (d OR \boldsymbol{n}).															
d.	55	60	65	70	75	80	85	90	95	100	105	110	115	120	125	130
50	42°	40°	35°	36°	34°	32°	30°	29°	28°	27°	25°	24°	23°	23°	22°	21°
52	43	41	39	37	35	33	31	30	29	27	26	25	24	23	23	22
54	44	42	40	38	36	34	32	31	30	28	27	26	25	24	23	22
56		43	41	39	37	35	33	32	3 I	29	28	27	26	25	24	23
58		44	42	40	38	36	34	33	31	30	29	28	27	26	25	24
60		45	43	41	39	37	35	34	32	31	30	29	28	27	26	25
62			44	42	40	38	36	35	33	32	31	29	28	27	26	25
64			45	42	40	39	37	35	34	33	31	30	29	28	27	26
66				43	4 I	40	38	36	35	33	32	31	30	29	28	27
68				44	42	40	39	37	36	34	33	32	31	30	29	28
70				45	43	41	39	38	36	35	34	32	31	30	29	28
72					44	42	40	39	37	36	34	33	32	31	30	29
74					45	43	41	39	38	37	35	34	33	32	31	30
76						44	42	40	39	37	36	35	33	32	3 I	30
78						44	43	41	39	38	37	35	34	33	32	3 I
80						45	43	42	40	39	37	36	35	34	33	32
82							44	42	41	39	38	37	35	34	33	32
84 86 86							45	43	41	40	39	37	36	35	34	33
88								44	42	4 4	40	38	37	36 36	35	33 34
90								45	43	42	41	39	38	37	36	35
92									44	43	41	40	39	37	36	35
94									45	43	42	4 I	39	38	37	36
988										44	42	4 4	40	39 39	38	36 37
100										45	44	42	41	40	39	
102											44	43	42	40	39	38
104											45	43	42	41	40	39
106												44	43	4 4	4 4	39
110												45	44	43	41	40
112													44	43	42	4I
114													45	44	42	4 4
118														45	43	42
120														45	44	
122															44	43
124															45	44
126																44
128																45
130																45

MEAN DIRECTION OF THE WIND BY LAMBERT'S FORMULA.
Values of the mean direction (α) or its complement ($90^{\circ}-\alpha$).

n or d.	DENOMINATOR OR NUMERATOR (d OR \boldsymbol{n}).														
	130	135	140	145	150	155	160	165	170	175	180	185	190	195	200
50	21°	20°	20°	19°	18°	18°	17°	17°	16°	16°	16°	15°	15°	14°	14°
52	22	21	20	20	19	19	18	17	17	17	16	16	15	15	15
54	22	22	2 I	20	20	19	19	18	18	17	17	16	16	15	15
56	23	23	22	21	20	20	19	19	18	18	17	17	16	16	16
58	24	23	23	22	2 I	21	20	19	19	18	18	17	17	17	16
60	25	24	23	22	22	21	2 I	20	19	19	18	18	18	17	17
62	25	25	24	23	22	22	21	2 I	20	20	19	19	18	18	17
64	26	25	25	24	23	22	22	2 I	21	20	20	19	19	18	18
66	27	26	25	24	24	23	22	22	2 I	21	20	20	19	19	18
68	28	27	26	25	24	24	23	22	22	21	21	20	20	19	19
70	28	27	27	26	25	24	24	23	22	22	21	21	20	20	19
72	29	28	27	26	26	25	24	24	23	22	22	2 I	21	20	20
74	30	29	28	27	26	26	25	24	24	23	22	22	21	2 I	20
76	30	29	28	28	27	26	25	25	24	23	23	22	22	21	21
78	3 I	30	29	28	27	27	26	25	25	24	23	23	22	22	21
80	32	3 I	30	29	28	27	27	26	25	25	24	23	23	22	22
S2	32	31	30	29	29	28	27	26	26	25	24	24	23	23	22
84	33	32	31	30	29	28	28	27	26	26	25	24	24	23	23
86	33	32	32	3 I	30	29	28	28	27	26	26	25	24	24	23
88	34	33	32	31	30	30	29	28	27	27	26	25	25	24	24
90	35	34	33	32	31	30	29	29	28	27	27	26	25	25	24
92	35	34	33	32	32	31	30	29	28	28	27	26	26	25	25
94	36	35	34	33	32	3 I	30	30	29	28	28	27	26	26	25
96	36	35	34	34	33	32	31	30	29	29	28	27	27	26	26
98	37	36	35	34	33	32	3 I	3 I	30	29	29	28	27	27	26
100	38	37	36	35	34	33	32	3 I	30	30	29	28	28	27	27
102	38	37	36	35	34	33	33	32	3 I	30	30	29	28	28	27
104	39	38	37	36	35	34	33	32	3 I	3 I	30	29	29	28	27
106	39	38	37	36	35	34	34	33	32	3 I	30	30	29	29	28
108	40	39	38	37	36	35	34	33	32	32	31	30	30	29	28
110	40	39	38	37	36	35	35	34	33	32	31	3 I	30	29	29
112	4 I	40	39	38	37	36	35	34	33	33	32	31	3 I	30	29
114	41	40	39	38	37	36	35	35	34	33	32	32	3 I	30	30
116	42	41	40	39	38	37	36	35	34	34	33	32	3I	3 I	30
118	42	41	40	39	38	37	36	36	35	34	33	33	32	3 I	31
120	43	42	4 I	40	39	38	37	36	35	34	34	33	32	32	3 I
122	43	42	4 I	40	39	38	37	36	36	35	34	33	33	32	31
124	44	43	42	4 I	40	39	38	37	36	35	35	34	33	32	32
126	44	43	42	4 I	40	39	38	37	37	36	35	34	34	33	32
128	45	43	42	4 I	40	40	39	38	37	36	35	35	34	33	33
130	45	44	43	42	41	40	39	38	37	37	36	35	34	34	33
132		44	43	42	41	40	40	39	38	37	36	35	35	34	33
134		45	44	43	42	41	40	39	38	37	37	36	35	34	34
136			44	43	42	41	40	39	39	38	37	36	36	35	34
I 38			45	44	43	42	41	40	39	38	37	37	36	35	35
140			45	44	43	42	41	40	39	39	38	37	36	36	35
142				44	43	42	42	4 I	40	39	38	38	37	36	35
144				45	44	43	42	4 I	40	39	39	38	37	36	36
146					44	43	42	42	41	40	39	38	38	37	36
148					45	44	4.3	42	4 I	40	39	39	38	37	37
150					45	44	43	42	4I	4I	40	39	38	38	37

Smithsonian Tables.

SYNOPTIC CONVERSION OF VELOCITIES.
Miles per hour into metres per second, feet per second
and kilometres per hour.

Miles per hour.	Metres per second.	Feet per second.	Kilometres per hour.	Miles per hour.	Metres per second.	$\begin{gathered} \text { Feet } \\ \text { per } \\ \text { second. } \end{gathered}$	Kilometres per hour.	Miles per hour.	Metres per second.	$\begin{gathered} \text { Feet } \\ \text { per } \\ \text { second. } \end{gathered}$	Kilometres per hour.
0.0	0.0	0.0	0.0	26.0	ri. 6	38.1	41.8	52.0	23.2	76.3	83.7
0.5	0.2	0.7	0.8	26.5	11.8	38.9	42.6	52.5	23.5	77.0	84.5
1.0	0.4	1.5	r. 6	27.0	12.1	39.6	43.5	53.0	23.7	77.7	85.3
1.5	0.7	2.2	2.4	27.5	12.3	40.3	44.3	53.5	23.9	78.5	86.1
2.0	0.9	2.9	3.2	28.0	12.5	4 I .1	45.1	54.0	24.1	79.2	86.9
2.5	I.I	3.7	4.0	28.5	12.7	41.8	45.9	54.5	24.4	79.9	87.7
3.0	1.3	4.4	4.8	29.0	13.0	42.5	46.7	55.0	24.6	80.7	88.5
3.5	1.6	5.1	5.6	29.5	I3.2	43.3	47.5	55.5	24.8	81. 4	89.3
4.0	I. 8	5.9	6.4	30.0	I3.4	44.0	48.3	56.0	25.0	82.1	90.1
4.5	2.0	6.6	7.2	30.5	I3.6	44.7	49.1	56.5	25.3	82.9	90.9
5.0	2.2	7.3	8.0	31.0	I3.9	45.5	49.9	57.0	25.5	83.6	91.7
5.5	2.5	8.1	8.9	31.5	14.I	46.2	50.7	57.5	25.7	84.3	92.5
6.0	2.7	8.8	9.7	32.0	14.3	46.9	51.5	58.0	25.9	85.1	93.3
6.5	2.9	9.5	10.5	32.5	14.5	47.7	52.3	58.5	26.2	85.8	94.1
7.0	3.1	10.3	II. 3	33.0	14.8	48.4	53.1	59.0	26.4	86.5	95.0
7.5	3.4	11.0	12.1	33.5	15.0	49.1	53.9	59.5	26.6	87.3	95.8
8.0	3.6	11.7	12.9	34.0	15.2	49.9	54.7	60.0	26.8	88.0	96.6
8.5	3.8	12.5	13.7	34.5	15.4	50.6	55.5	60.5	27.0	88.7	97.4
9.0	4.0	13.2	14.5	35.0	15.6	51.3	56.3	61.0	27.3	89.5	98.2
9.5	4.2	13.9	15.3	35.5	15.9	52.1	57.1	61.5	27.5	90.2	99.0
10.0	4.5	14.7	16.1	36.0	16.1	52.8	57.9	62.0	27.7	90.9	99.8
10.5	4.7	15.4	16.9	36.5	16.3	53.5	58.7	62.5	27.9	91.7	100.6
11.0	4.9	16.I	17.7	37.0	16.5	54.3	59.5	63.0	28.2	92.4	ror. 4
II. 5	5.I	16.9	18.5	37.5	16.8	55.0	60.4	63.5	28.4	93.1	102.2
12.0	5.4	17.6	19.3	38.0	17.0	55.7	6 I .2	64.0	28.6	93.9	103.0
12.5	5.6	18.3	20.1	38.5	17.2	56.5	62.0	64.5	28.8	94.6	103.8
I3.0	5.8	19.1	20.9	39.0	17.4	57.2	62.8	65.0	29.1	95.3	104.6
13.5	6.0	19.8	21.7	39.5	17.7	57.9	63.6	65.5	29.3	96.1	105.4
14.0	6.3	20.5	22.5	40.0	17.9	58.7	64.4	66.0	29.5	96.8	106.2
14.5	6.5	21.3	23.3	40.5	18.1	59.4	65.2	66.5	29.7	97.5	107.0
15.0	6.7	22.0	24.1	41.0	18.3	60.1	66.0	67.0	30.0	98.3	107.8
15.5	6.9	22.7	24.9	41.5	18.6	60.9	66.8	67.5	30.2	99.0	108.6
16.0	7.2	23.5	25.7	42.0	18.8	61.6	67.6	68.0	30.4	99.7	109.4
16.5	7.4	24.2	26.6	42.5	19.0	62.3	68.4	68.5	30.6	100.5	110.2
17.0	7.6	24.9	27.4	43.0	19.2	63.1	69.2	69.0	30.8	101.2	III.O
17.5	7.8	25.7	28.2	43.5	19.4	63.8	70.0	69.5	31.1	IOI. 9	III. 8
18.0	8.0	26.4	29.0	44.0	19.7	64.5	70.8	70.0	31.3	102.7	112.7
18.5	8.3	27.1	29.8	44.5	19.9	65.3	71.6	70.5	31.5	103.4	I 13.5
19.0	8.5	27.9	30.6	45.0	20.1	66.0	72.4	71.0	31.7	104.1	114.3
19.5	8.7	28.6	31.4	45.5	20.3	66.7	73.2	71.5	32.0	104.9	115.1
20.0	8.9	29.3	32.2	46.0	20.6	67.5	74.0	72.0	32.2	105.6	115.9
20.5	9.2	30.1	33.0	46.5	20.8	68.2	74.8	72.5	32.4	106.3	II6.7
21.0	9.4	30.8	33.8	47.0	21.0	68.9	75.6	73.0	32.6	107.1	I17.5
21.5	9.6	31.5	34.6	47.5	21.2	69.7	76.4	73.5	32.9	107.8	118.3
22.0	9.8	32.3	35.4	48.0	21.5	70.4	77.2	74.0	33.1	108.5	119.1
22.5	10.1	33.0	36.2	48.5	21.7	71.1	78.1	74.5	33.3	109.3	119.9
23.0	10.3	33.7	37.0	49.0	21.9	71.9	78.9	75.0	33.5	110.0	120.7
23.5	10.5	34.5	37.8	49.5	22.1	72.6	79.7	75.5	33.8	I 10.7	121.5
24.0	10.7	35.2	38.6	50.0	22.4	73.3	So. 5	76.0	34.0	III. 5	122.3
24.5	11.0	35.9	39.4	50.5	22.6	74.1	81.3	76.5	34.2	112.2	123.1
25.0	1 I .2	36.7	40.2	51.0	22.8	74.8	82.1	77.0	34.4	II2.9	123.9
25.5	II. 4	37.4	41.0	51.5	23.0	75.5	82.9	77.5	34.6	113.7	124.7
26.0	11.6	38.1	41.8	52.0	23.2	76.3	83.7	78.0	34.9	II4.4	125.5

MILES PER HOUR INTO FEET PER SECOND.

I mile per hour $=\frac{44}{30}$ feet per second.

$\begin{gathered} \text { Miles } \\ \text { per hour. } \end{gathered}$	0	1	2	3	4	5	6	7	8	9
	$\left\|\begin{array}{c} \text { Feet per } \\ \text { sec. } \end{array}\right\|$	$\begin{gathered} \text { Feet per } \\ \text { sec. } \end{gathered}$	$\begin{aligned} & \text { Feet per } \\ & \text { sec. } \end{aligned}$	$\begin{aligned} & \text { Feet per } \\ & \text { sec. } \end{aligned}$	$\begin{aligned} & \text { Feet per } \\ & \text { sec } \end{aligned}$	Feet per sec.	Feet per sec.	$\begin{aligned} & \text { Feet per } \\ & \text { sec. } \end{aligned}$	$\begin{array}{r} \text { Feet per } \\ \text { sec. } \end{array}$	$\begin{gathered} \text { Feet per } \\ \text { sec. } \end{gathered}$
0	0.0	I. 5	2.9	4.4	5.9	7.3	8.8	12.3	11.7	13.2
10	14.7	16.1	17.6	19.1	20.5	22.0	23.5	24.9	26.4	27.9
20	29.3	30.8	32.3	33.7	35.2	36.7	38.1	39.6	$4 \mathrm{II.I}$	42.5
30	44.0	45.5	46.9	48.4	49.9	5 I .3	52.8	54.3	55.7	57.2
40	58.7	60.1	61.6	63.1	64.5	66.0	67.5	68.9	70.4	71.9
50	73.3	74.8	76.3	77.7	79.2	80.7	82.1	83.6	85. 1	86.5
60	88.0	89.5	90.9	92.4	93.9	95.3	96.8	98.3	99.7	101.2
70	102.7	104. 1	105.6	107.1	108.5	Iro.0	111.5	112.9	114.4	115.9
80	117.3	118.8	120.3	121.7	123.2	124.7	126. 1	127.6	129.1	I30.5
90	132.0	I 33.5	134.9	I36.4	137.9	139.3	140.8	142.3	143.7	I45.2
100	146.7	148.1	149.6	151.1	152.5	154.0	155.5	156.9	158.4	159.9
110	16 I .3	162.8	164.3	165.7	167.2	168.7	170.1	171.6	173.1	174.5
120	176.0	177.5	178.9	180.4	181.9	183.3	184.8	186.3	187.7	189.2
130	190.7	192.1 206.8	193.6 208.3	195.1 209.7	196.5 211.2	198.0 212.7	199.5	200.9	202.4	203.9
140	205.3	206.8	208.3	209.7	211.2	212.7	214. I	215.6	217.1	218.5

TAble 52.

FEET PER SECOND INTO MILES PER HOUR.

I foot per second $=\frac{30}{44}$ miles per hour.

Feet per sec.	0	I	2	3	4	5	6	7	8	9
	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.
0	0.0	$0.7{ }^{\circ}$	1.4	2.0	2.7	3.4	4.1	4.8	5.5	6.1
10	6.8	7.5	8.2	8.9	9.5	10.2	10.9	11.6	12.3	13.0
20	13.6	14.3	15.0	15.7	16.4	17.0	17.7	18.4	19.1	19.8
30	20.5	21.1	21.8	22.5	23.2	23.9	24.5	25.2	25.9	26.6
40	27.3	28.0	28.6	29.3	30.0	30.7	31.4	32.0	32.7	33.4
50	34. 1	34.8	35.5	36.1	36.8	37.5	38.2	38.9	39.5	40.2
60	40.9	41.6	42.3	43.0	43.6	44.3	45.0	45.7	46.4	47.0
70	47.7	48.4	49.1	49.8	50.5	51.1	5 I .8	52.5	53.2	53.9
80	54.5	55.2	55.9	56.6	57.3	58.0	58.6	59.3	60.0	60.7
90	61.4	62.0	62.7	63.4	64.1	64.8	65.5	66.1	66.8	67.5
100	68.2	68.9	69.5	70.2	70.9	71.6	72.3	73.0	73.6	74.3
110	75.0	75.7	76.4	77.0	77.7	78.4	79.1	79.8	80.5	8 I .1
120	81.8	82.5	83.2	83.9	84.5	85.2	85.9	86.6	87.3	88.0
130	88.6	89.3	90.0	90.7	91.4	92.0	92.7	93.4	94.1	94.8
140	95.5	96.1	96.8	97.5	98.2	98.9	99.5	100.2	100.9	101. 6
150	102.3	103.0	103. 6	104.3	105.0	105.7	106.4	107.0	107.7	108.4
160	109.1	109.8	110.5	111.I	111.8	112.5	113.2	113.9	114.5	115.2
170	115.9	116.6	117.3	118.0	118.6	119.3	120.0	120.7	121.4	120.0
180	122.7	123.4	124.1	124.8	125.5	I26.1	126.8	127.5	128.2	128.9
190	129.5	130.2	130.9	131.6	132.3	133.0	133.6	134.3	135.0	135.7

Smithbonian Tables.

METRES PER SECOND INTO MILES PER HOUR.

1 metre per second $=\mathbf{2 . 2 3 6 9 3 2}$ miles per hour.

Metres per second.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	$\begin{aligned} & \text { Miles } \\ & \text { per hr. } \end{aligned}$	$\begin{aligned} & \text { Miles } \\ & \text { per hr. } \end{aligned}$	$\begin{aligned} & \text { Miles } \\ & \text { per hr. } \end{aligned}$	$\begin{aligned} & \text { Miles } \\ & \text { per hr. } \end{aligned}$	$\underset{\text { per } \mathrm{hr} \text {. }}{\substack{\text { Miles } \\ \hline}}$	$\begin{aligned} & \text { Miles } \\ & \text { per hr. } \end{aligned}$	$\underset{\text { per hr. }}{\substack{\text { Miles } \\ \hline}}$	$\begin{aligned} & \text { Miles } \\ & \text { per hr. } \end{aligned}$	Miles per hr.	Miles per hr.
0	0.0	0.2	0.4	0.7	0.9	I.I	1.3	1.6	1.8	2.0
1	2.2	2.5	2.7	2.9	3.1	3.4	3.6	3.8	4.0	4.3
2	4.5	4.7	4.9	5.1	5.4	5.6	5.8	6.0	6.3	6.5
3	6.7	6.9	7.2	7.4	7.6	7.8	8.1	8.3	8.5	8.7
4	8.9	9.2	9.4	9.6	9.8	10.1	10.3	10.5	10.7	11.0
5	11.2	11.4	11.6	11.9	12.1	12.3	12.5	12.8	13.0	13.2
6	13.4	13.6	13.9	14.1	14.3	14.5	14.8	15.0	15.2	15.4
7	15.7	15.9	16.1	16.3	16.6	16.8	17.0	17.2	17.4	17.7
8	17.9	18.1	18.3	18.6	18.8	19.0	19.2	19.5	19.7	19.9
9	20.1	20.4	20.6	20.8	21.0	2 I .3	21.5	21.7	21.9	22.1
10	22.4	22.6	22.8	23.0	23.3	23.5	23.7	23.9	24.2	24.4
11	24.6	24.8	25.1	25.3	25.5	25.7	25.9		26.4	26.6
12	26.8	27.1	27.3	27.5	27.7	28.0	28.2	28.4	28.6	28.9
13	29.1	29.3	29.5	29.8	30.0	30.2	30.4	30.6	30.9	31.1
14	31.3	31.5	31.8	32.0	32.2	32.4	32.7	32.9	33.1	33.3
15	33.6	33.8	34.0	34.2	34.4	34.7	34.9	35.1	35.3	35.6
16	35.8	36.0	36.2	36.5	36.7	36.9	37.1	37.4	37.6	37.8
17	38.0	38.3	38.5	38.7	38.9	39.1	39.4	39.6	39.8	40.0
18	40.3	40.5	40.7	40.9	4 I .2	4 I .4	4 I .6	4 I .8	42.1	42.3
19	42.5	42.7	43.0	43.2	43.4	43.6	43.8	44.1	44.3	44.5
20	44.7	45.0	45.2	45.4	45.6	45.9	46.1	46.3	46.5	46.8
21	47.0	47.2	47.4	47.6	47.9	48.1	48.3	48.5	48.8	49.0
22	49.2	49.4	49.7	49.9	50.1	50.3	50.6	50.8	51.0	51.2
23	51.5	51.7	51.9	52.1	52.3	52.6	52.8	53.0	53.2	53.5
24	53.7	53.9	54.1	54.4	54.6	54.8	55.0	55.3	55.5	55.7
25	55.9	56.1	56.4	56.6	56.8	57.0	57.3	57.5	57.7	57.9
26	58.2	58.4		58.8	59.1	59.3	59.5	59.7	60.0	60.2
27	60.4	60.6	60.8	61.1	61.3	61.5	61.7	62.0	62.2	62.4
28	62.6	62.9	63.1	63.3	63.5	63.8 66.0	64.0 66.2	64.2 66.4	64.4 66.7	64.6 66.9
29	64.9	65.1	65.3	65.5	65.8	66.0	66.2	66.4	66.7	66.9
30	67.1	67.3	67.6	67.8	68.0	68.2	68.5	68.7	68.9	69.1
31	69.3	69.6	69.8	70.0	70.2	70.5	70.7	70.9	71.1	71.4
32	71.6	71.8	72.0	72.3	72.5	72.7	72.9	73.1	73.4	73.6
33	73.8	74.0	74.3	74.5	74.7	74.9	75.2	75.4	75.6	75.8
34	76.1	76.3	76.5	76.7	77.0	77.2	77.4	77.6	77.8	78.1
35	78.3	78.5	78.7	79.0	79.2	79.4	79.6	79.9	80.1	80.3
36	80.5	80.8	81.0	81.2	8 I .4	8 I .6	81.9	82.1	82.3	82.5
37	82.8	83.0	83.2	83.4	83.7	84.0	84.I	84.3	84.6	84.8
38	85.0	85.2	85.5	85.7	85.9	86.1	86.3	86.6	86.8	87.0
39	87.2	87.5	87.7	87.9	88.1	88.4	88.6	88.8	89.0	89.3
40	89.5	89.7	89.9	90.2	90.4	90.6	90.8	91.0	91.3	91.5
4 I	9 T .7	91.9	92.2	92.4	92.6	92.8	93.1	93.3	93.5	93.7
42	94.0	94.2	94.4	94.6	94.8	95.1	95.3	95.5	95.7	96.0
43	96.2	96.4	96.6	96.9	97.1	97.3	97.5	97.8	98.0	98.2
44	98.4	98.7	98.9	99.I	99.3	99.5	99.8	100.0	100.2	100.4

TABLE 53.
METRES PER SECOND INTO MILES PER HOUR.

Metres per second.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.	Miles per hr.
45	100.7	100.9	IOI. I	101.3	101. 6	101.8	102.0	102.2	102.5	102.7
46	102.9	103. 1	103.3	103.6	103.8	104.0	104.2	104.5	104.7	104.9
47	105.1	105.4	105.6	105.8	106.0	106.3	106.5	106.7	106.9	107.2
48	107.4	107.6	107.8	108.0	108.3	108.5	108.7	108.9	109. 2	109.4
49	109.6	109.8	IIO.I	110.3	110.5	I 10.7	III.O	III. 2	III. 4	III. 6
50	III. 8	II2.I	112.3	112.5	112.7	113.0	113.2	II 3.4	113.6	113.9
51	II4. I	114.3	114.5	I 14.8	115.0	115.2	II5.4	115.7	115.9	II6. I
52	116.3	116.6	116.8	117.0	117.2	II7.4	117.7	117.9	II8. 1	118.3
53	I 18.6	118.8	119.0	II9.2	119.5	I 19.7	119.9	120.1	120.4	120.6
54	120.8	121.0	12 I .3	121.5	121.7	121.9	122.I	122.4	122.6	122.8
55	123.0	123.3	123.5	123.7	123.9	124.2	124.4	124.6	124.8	125. I
56	125.3	125.5	125.7	126.0	126.2	126.4	126.6	126.8	127.1	127.3
57	127.5	127.8	128.0	128.2	I28.4	I28.6	128.9	129.1	129.3	129.5
58	I29.8	130.0	I 30.2	130.4	I30.7	130.9	13 I .1	131.3	131.6	13 I .8
59	132.0	132.2	132.5	132.7	I32.9	133.1	133.3	133.6	133.8	134.0

TABLE 54.

MILES PER HOUR INTO METRES PER SECOND.

1 mile per hour $=0.4470409$ metres per second.

Miles per hour.	0	I	2	3	4	5	6	7	8	9
	metres per sec.	metres per sec.	metres per sec.	metres per sec.	metres per sec.	metres per sec.	metres per sec.	metres per sec.	metres per sec.	metres per sec.
0	0.00	0.45	0.89	1.34	1. 79	2.24	2.68	3.13	3.58	4.02
10	4.47	4.92	$5 \cdot 36$	5.81	6.26	6.71	7.15	7.60	8.05	8.49
20	8.94	9.39	9.83	10.28	10.73	II.18	11.62	12.07	12.52	12.96
30	13.41	13.86	14.31	14.75	15.20	15.65	16.09	16.54	16.99	17.43
40	17.88	18.33	18.78	19.22	19.67	20.12	20.56	21.01	21.46	2 I .91
50	22.35	22.80	23.25	23.69	24.14	24.59	25.03	25.48	25.93	26.38
60	26.82	27.27	27.72	28.16	28.61	29.06	29.50	29.95	30.40	30.85
70	31.29	31.74	32.19	32.63	33.08	33.53	33.98	34.42	34.87	35.32
80	35.76	36.21	36.66	37.10	37.55	38.00	38.45	38.89	39.34	39.79
90	40.23	40.68	41. 13	4 I .57	42.02	42.47	42.92	43.36	43.81	44.26
100	44.70	45.15	45.60	46.05	46.49	46.94	47.39	47.83	48.28	48.73
110	49. 17	49.62	50.07	50.52	50.96	51.41	51.86	52.30	52.75	53.20
120	53.64	54.09	54.54	54.99	55.43	55.88	56.33	56.77	57.22	57.67
130	58.12	58.56	59.01	59.46	59.90	60.35	60.80	61.24	61.69	62.14
I40	62.59	63.03	63.48	63.93	64.37	64.82	65.27	65.72	66.16	66.61

[^9]METRES PER SECOND INTO KILOMETRES PER HOUR.
1 metre per second $=3.6$ kilometres per hour.

Metres per second.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	$\begin{aligned} & \mathrm{km} . \\ & \text { per hr. } \end{aligned}$	km . per hr.	$\underset{\text { per } \mathrm{hr} .}{\mathrm{km}} .$	$\underset{\text { per } \mathrm{hr} .}{\mathrm{km} .}$	$\underset{\text { per } \mathrm{hr}}{\mathrm{km}}$.	$\stackrel{\mathrm{km}}{\mathrm{per}} \mathrm{hr}$.	$\underset{\text { per } \mathrm{hr} .}{\mathrm{km} .}$	km . per hr.	$\underset{\text { per } \mathrm{hr}}{\mathrm{km}}$.	$\begin{aligned} & \mathrm{km} . \\ & \text { per } \mathrm{hr} . \end{aligned}$
0	0.0	0.4	0.7	I.I	1.4	I. 8	2.2	2.5	2.9	3.2
1	3.6	4.0	$4 \cdot 3$	$4 \cdot 7$	5.0	5.4	5.8	6.1	6.5	6.8
2	7.2	7.6	$7 \cdot 9$	8.3	8.6	9.0	9.4	9.7	10. 1	10.4
3	10.8	II. 2	11.5	11.9	12.2	12.6	13.0	13.3	13.7	14.0
4	14.4	14.8	15.1	15.5	15.8	16.2	16.6	16.9	17.3	17.6
5	18.0	18.4	18.7	19.1	19.4	19.8	20.2	20.5	20.9	21.2
6	21.6	22.0	22.3	22.7	23.0	23.4	23.8	24. 1	24.5	24.8
7	25.2	25.6	25.9	26.3	26.6	27.0	27.4	27.7	28.1	28.4
8	28.8	29.2	29.5	29.9	30.2	30.6	3 I .0	3 I .3	31.7	32.0
9	32.4	32.8	33.1	33.5	33.8	34.2	34.6	34.9	$35 \cdot 3$	35.6
10	36.0	36.4	36.7	37. 1	37.4	37.8	38.2	38.5	38.9	39.2
II	39.6	40.0	40.3	40.7	41.0	4 I .4	41.8	42.1	42.5	42.8
12	43.2	43.6	43.9	44.3	44.6	45.0	45.4	45.7	46.1	46.4
13	46.8	47.2	47.5	47.9	48.2	48.6	49.0	49.3	49.7	50.0
14	50.4	50.8	5 I .1	51.5	51.8	52.2	52.6	52.9	53.3	53.6
15	54.0	54.4	54.7	55. I	55.4	55.8	56.2	56.5	56.9	57.2
16	57.6	58.0	58.3	58.7	59.0	59.4	59.8	60.1	60.5	60.8
17	6 I .2	61.6	61.9	62.3	62.6	63.0	63.4	63.7	64.1	64.4
18	64.8	65.2	65.5	65.9	66.2	66.6	67.0	67.3	67.7	68.0
19	68.4	68.8	69.1	69.5	69.8	70.2	70.6	70.9	71.3	71.6
20	72.0	72.4	72.7	73. 1	73.4	73.8	74.2	74.5	74.9	75.2
2 I	75.6	76.0	76.3	76.7	77.0	77.4	77.8	78.1	78.5	78.8
22	79.2	79.6	79.9	80.3	80.6	8 I .0	8 8 .4	81.7	82.1	82.4
23	82.8	83.2	83.5	83.9	84.2	84.6	85.0	85.3	85.7	86.0
24	86.4	86.8	87.1	87.5	87.8	88.2	88.6	88.9	89.3	89.6
25	90.0	90.4	90.7	91.1	91.4	91.8	92.2	92.5	92.9	93.2
26	93.6	94.0	$94 \cdot 3$	94.7	95.0	95.4	95.8	96.1	96.5	96.8
27	97.2	97.6	97.9	98.3	98.6	99.0	99.4	99.7	100. I	100.4
28	100.8	101.2	101.5	IOI. 9	102.2	102.6	103.0	103.3	103.7	104.0
29	104.4	104.8	105. I	105.5	105.8	106.2	106.6	106. 9	107.3	107.6
30	108.0	108.4	108.7	109. 1	109.4	109.8	110.2	110.5	I 10.9	III. 2
3 I	III. 6	112.0	112.3	II2.7	II3.0	II3.4	II3.8	II4.I	I 14.5	114.8
32	II5.2	II5.6	115.9	I16.3	I16.6	117.0	117.4	117.7	II8. 1	118.4
33	II8.8	119.2	119.5	II9.9	120.2	120.6	121.0	121.3	121.7	122.0
34	122.4	122.8	123. 1	123.5	123.8	124.2	124.6	124.9	125.3	125.6
35	126.0	126.4	I26.7	127.I	127.4	127.8	128.2	128.5	128.9	129.2
36	129.6	130.0	130.3	130.7	131.0	13 I .4	13 I .8	132.1	I32.5	I32.8
37	133.2	I 33.6	133.9	${ }^{1} 34.3$	134.6	I 35.0	${ }^{1} 35.4$	${ }^{1} 355$	I36. 1	I 36.4
38	${ }^{1} 36.8$	137.2	137.5	137.9	138.2	138.6	I 39.0	139.3	139.7	140.0
39	140.4	I40.8	141. 1	141.5	14 I .8	I42.2	142.6	142.9	143.3	143.6
40	144.0	144.4	144.7	I45.I	145.4	145.8	1.46.2	146.5	I46.9	147.2
41	147.6	148.0	148.3	148.7	149.0	149.4	I. 49.8	150.1	150.5	150.8
42	15 I .2	15 I .6	151.9	152.3	152.6	153.0	153.4	153.7	154.1	154.4
43	154.8	${ }^{1} 55.2$	155.5	${ }^{1} 55.9$	156.2	156.6	157.0	157.3	157.7	158.0
44	${ }^{1} 58.4$	I58.8	159. I	I 59.5	159.8	160.2	160.6	160.9	161. 3	161.6

TABLE 55.
METRES PER SECOND INTO KILOMETRES PER HOUR.

Metres per second.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	$\underset{\text { per } \mathrm{hr} .}{\mathrm{km} .}$	$\underset{\text { per } \mathrm{hr}}{\mathrm{~km} .}$	$\underset{\text { per } \mathrm{hr} \text {. }}{\mathrm{km} \text {. }}$	$\underset{\text { per } \mathrm{kr} .}{\mathrm{km} .}$	km. per hr.		$\underset{\text { per } \mathrm{hr} .}{\mathrm{km}_{2}}$	$\underset{\text { per } \mathrm{km} .}{\mathrm{km} .}$	$\underset{\text { per } \mathrm{hr} .}{\mathrm{km} .}$	$\underset{\text { per } \mathrm{hr} .}{\mathrm{km} .}$
45	162.0	162.4	162.7	163.1	163.4	163.8	164.2	164.5	164.9	165.2
46	165.6	166.0	166.3	166.7	167.0	167.4	167.8	168.1	168.5	168.8
47	169.2	169.6	169.9	170.3	170.6	171.0	171.4	171.7	172.1	172.4
48	172.8	173.2	173.5	${ }^{1} 73.9$	174.2	174.6	175.0	175.3	175.7	176.0
49	176.4	176.8	177.1	177.5	I77.8	178.2	178.6	178.9	179.3	179.6
50	180.0	180.4	180.7	181. 1	181.4	I81. 8	182.2	182.5	182.9	183.2
51	183.6	184.0	184.3	I84.7	185.0	185.4	185.8	186.1	186.5	186.8
52	187.2	187.6	187.9	188.3	188.6	189.0	189.4	189.7	190.1	190.4
53	190.8	191.2	191.5	191.9	192.2	192.6	193.0	193.3	193.7	194.0
54	194.4	194.8	195. I	195.5	195.8	196.2	196.6	196.9	197.3	197.6
55	198.0	198.4	198.7	199.1	199.4	199.8	200.2	200.5	200.9	201.2
56	201.6	202.0	202.3	202.7	203.0	203.4	203.8	204.1	204.5	204.8
57	205.2	205.6	205.9	206.3	206.6	207.0	207.4	207.7	208. I	208.4
58	208.8	209.2	209.5	209.9	210.2	210.6	211.0	211.3	211.7	212.0
59	212.4	212.8	213.1	213.5	213.8	214.2	214.6	214.9	215.3	215.6

TAble 56.

KILOMETRES PER HOUR INTO METRES PER SECOND.

I kilometre per hour $=\frac{10}{36}$ metres per second.

Kilome'res per hour.	0	1	2	3	4	5	6	7	8	9
	metres per sec.	metres per sec.	metres per sec.	metres per sec.	metres per sec.	metres per sec.	metres per sec.	metres per sec.	metres per sec.	metres per sec.
0	0.00	0.28	0.56	0.83	I.II	1.39	1.67	1.94	2.22	2.50
10	2.78	3.06	3.33	3.61	3.89	4.17	4.44	4.72	5.00	5.28
20	5.56	5.83	6.11	6.39	6.67	6.94	7.22	7.50	7.78	8.06
30	8.33	8.6I	8.89	9.17	9.44	9.72	10.00	10.28	10.56	10.83
40	II. I I	II. 39	II. 67	11.94	12.22	12.50	12.78	13.06	13.33	13.61
50	13.89	14.17	14.44	14.72	15.00	15.28	I5.56	15.83	16.11	16.39
60	16.67	16.94	17.22	17.50	17.78	18.06	18.33	I8.6I	18.89	19.17
70	19.44	19.72	20.00	20.28	20.56	20.83	21.11	21.39	21.67	21.94
80	22.22	22.50	22.78	23.06	23.33	23.61	23.89	24.17	24.44	24.72
90	25.00	25.28	25.56	25.83	26. 11	26.39	26.67	26.94	27.22	27.50
100	27.78	28.06	28.33	28.61	28.89	29.17	29.44	29.72	30.00	30.28
110	30.56	30.83	31.11	31.39	31.67	3 I .94	32.22	32.50	32.78	33.06
120	33.33	33.61	33.89	34.17	34.44	34.72	35.00	35.28	35.56	35.83
130	36.11	36.39	36.67	36.94	37.22	37.50	37.78	38.06	38.33	38.61
140	38.89	39.17	39.44	39.72	40.00	40.28	40.56	40.83	41.11	41. 39
150	41.67	41.94	42.22	42.50	42.78	43.06	43.33	43.61	43.89	44.17
160	44.44	44.72	45.00	45.28	45.56	45.83	46.11	46.39	46.67	46.94
170	47.22	47.50	47.78	48.06	48.33	48.61	48.89	49.17	49.44	49.72
180	50.00	50.28	50.56	50.83	51.11	51.39	51.67	51.94	52.22	52.50
190	52.78	53.06	53.33	53.61	53.89	54.17	54.44	54.72	55.00	55.28

Smithbonian Tables.

TABLE 57.
BEAUFORT WIND SCALE AND ITS CONVERSION INTO VELOCITY.

Grade.	Designation.	Velocity in miles per hour.				
		a	b	c	d	e
\bigcirc	Calm.	-	3.3*	o	o	3
I	Light air.	7	6.6	2	I	8
2	Light breeze.	14	10.0	4	4	13
3	Gentle breeze.	21	17.5	8	10	18
4	Moderate breeze.	28	25.0	16	17	23
5	Fresh breeze.	35	32.5	24	24	28
6	Strong breeze.	42	40.0	32	32	34
7	Moderate gale.	49	47.5	40	40	40
8	Fresh gale.	56	55.0	50	48	48
9	Strong gale.	63	62.5	62	56	56
10	Whole gale.	70	70.0	78	67	65
II	Storm.	77	77.5	96	82	75
12	Hurricane.	84	85.0	120	100	90

* Velocity 3.3 is assigned to 0.5 grade.
(a.) Colonel Sir Henry James: Instructions for taking meteorological observations; with tables for their correction and notes on meteorological phenomena. 8vo. Lond., 1860.
(b.) George Neumayer: Discussion of the meteorological and magnetical observations made at the Flagstaff Observatory, Melbourne, during the years 1858 to 1863. 4to. Mannheim, 1867.
(c.) J. K. Laughton: Physical geography and its relation to the prevailing winds and currents. 8vo. Lond., 1870. 2d ed., 8vo. Lond., 1873.
(d.) C. A. Schotт : Meteorological observations in the Arctic seas. By Sir Francis Leopold McClintock, R. N. Made on board the Arctic searching yacht "Fox," in Baffin Bay and Prince Regent's Inlet, in 1857, 1858 and 1859. Reduced and discussed by Charles A. Schott. Smithsonian Contributions to Knowledge, 146. Washington, 1862.
(e.) Robert H. Scott: An attempt to establish a relation between the velocity of the wind and its force (Beaufort scale). Quarterly Journal Meteorological Society, Lond., 1874-'75, ii, p. 109-123.

Instructions in the use of meteorological instruments. Compiled by direction of the Meteorological Committee. 8vo. Lond., 1877.

GEODETICAL TABLES.

Relative acceleration of gravity at different latitudes . . . TABLE 58
Length of one degree of the meridian at different latitudes . . TABLE 59
Length of one degree of the parallel at different latitudes . . TABLE 60
Duration of sunshine at different latitudes TABLE 6I
Declination of the sun for the year 1894 TABLE 62
Relative intensity of solar radiation at different latitudes for the first and sixteenth day of each month TABLE 63

TABLE 58.
RELATIVE ACCELERATION OF GRAVITY AT DIFFERENT LATITUDES.
Ratio of the acceleration of gravity at sea level for each 10^{\prime} of latitude, to its acceleration at latitude 45°.
$\frac{g_{\phi}}{g_{45}}=\mathrm{I}-0.002662 \cos 2 \phi$

Latitude. ϕ.	0^{\prime}	10^{\prime}	20^{\prime}	30^{\prime}	40^{\prime}	50'
0°	0.997338	0.997338	0.997338	0.997338	0.997339	0.997339
1	340	340	341	342	343	344
2	345	346	347	348	350	351
3	353	354	356	358	360	362
4	364	366	368	371	373	376
5	0.997378	0.997 381	0.997384	0.997387	0.997390	0.997393
6	396	399	403	406	410	413
7	417	421	425	429	433	437
8	44 I	445	450	454	459	564
9	468	473	478	483	488	493
10	0.997499	0.997504	0.997509	0.997515	0.997520	0.997526
11	532	538	544	550	556	562
12	568	574	581	587	594	601
I3	607	614	621	628	635	642
14	650	657	664	672	679	687
15	0.997695	0.997702	0.997710	0.997718	0.997726	0.997734
16	742	751	759	767	776	786
17	793	802 856	811	819	828	837
18	846	856	865	874	883	893
19	902	912	922	931	941	951
20	0.997961	0.99797 I	0.997 98r	0.997991	0.998001	0.998 or I
21	0.998022	0.998 032	0.998043	0.998053	064	074
22	085	o96	107	118	129	140
23	151	162	173	185	196	207
24	219	230	242	254	265	277
25	0.998289	0.998301	0.998313	0.998325	0.998337	0.998349
26	36 I	373	386	398	410	423
27	435	448	460	473	486	499
28 29	511 589	524 603	537 616	550 629	563 642	576 656
30	0.998669	0.998682	9.998696	0.998709	0.998723	0.998737
31	750	764	778	791	805	819
32	833	847	861	875	889	903
33	917	931	946	960	974	988
34	0.999003	0.999017	0.999032	0.999046	0.999060	0.999075
35	0.999090	0.999104	0.999119	0.999 I33	0.999148	0.999 163
36	177	192	207	222	237	251
37	266	28I	296	311	326	34 I
38	356 447	371 462	386 477	401	416 507	431 523
39	447	462	477	492	507	523
40			0.999568			0.999614 706
41	630	645	660	676	$\begin{aligned} & 691 \\ & 782 \end{aligned}$	706
42	722	737	753	768	783	799
43	814	830	845	861	876	892
44	907	923	938	954	970	985
45	1.000000	1.000 015	1.000030	1.000046	1.000062	1.000077

Smithsonian Tables.

TABLE 58.
RELATIVE ACCELERATION OF GRAVItY AT DIFFERENT LATITUDES.
Ratio of the acceleration of gravity at sea level for each 10^{\prime} of latitude, to its acceleration at latitude 45°.
$\frac{g_{\phi}}{g_{45}}=1-0.002662 \cos 2 \phi$

Latitude. ϕ.	0 '	10^{\prime}	20^{\prime}	30^{\prime}	40^{\prime}	50^{\prime}
45°	1.000000	1.000015	1.000030	1.000 046	1.000062	1.000 077
46	093	108	124	139	155	170
47	I86	201	217	232	247	263
48	278	294	309	324	340	355
49	370	386	401	416	432	447
50	1.000 462	1.000477	1.000 493	1.000 508	1.000 523	1.000 538
51	553	569	584	599	614	629
52	644	659	674	689	704	719
53	734	749	763	778	793	808
54	823	837	852	867	88I	896
55	1.000910	1.000925	1.000940	1.000 954	1.000968	1.000 983
56	- 997	1 Ol 2	I 026	1040	I 054	1069
57	1083	I 097	I III	I 125	, I I39	I 153
58	I 167	I I81	I 195	I 209	- 1222	I 236
59	I 250	I 263	I 277	I 291	I 304	1318
60	I.OOI 33I	x.OOI 344	I.oor 358	1.001 371	1.001 384	1.OOI 397
61	14 II	I 424	I 437	I 450	I 463	I 476
62	I 489	I 501	I 514	I 527	I 540	- 552
63	I 565	I 577	1590	1 602	I 614	1627
64	I 639	1651	I 663	I 675	r 687	I 699
65	I.OOI 711	I.OOI 723	1.001 735	1.001 746	1.001 758	1.OOI 770
66	I 781	1793	1804	1815	I 827	1838
67	I 849	I 860	I 871	I 882	I 893	I 904
68	I 915	1926	I 936	I 947	1 957	I 968
69	1978	I 989	I 999	2009	2019	2029
70	1.002 039	1.002049	1.002059	1.002 069	1.002078	1.002088
71	2098	2107	2117	2126	2135	2144
72	2154	2163	2172	2 I8I	2189	2198
73	2207	2216	2224	2233	2241	2249
74	2258	2266	2274	2282	2290	2298
	1.002305	1.002313	1.00232 I	1.002 328	1.002336	1.002343
76	2350	2358	2365	2372	2379	2386
77	2393	2399	2406	2413	2419	2426
78	2432	2438	2444	2450	2456	2462
79	2468	2474	2480	2485	2491	2496
80	I. 002501	1.002 507	1.002512	1.002517	1.002 522	1.002 527
8 I	2532	2536	2541	2546	2550	2555
82	2559	2563	2567	2571	2575	2579
83	2583	2587	2590	2594	2597	2601
84	2604	2607	2610	2613	2616	2619
85	1.002 622	1.002 624	1.002 627	1.002 629	1.002632	
86	2636	2638	2640	2642	2644	2646
87	2647	2649	2650	2652	2653	2654
88	2655	2656	2657	2658	2659	2660
89	2660	2661	2661	2662	2662	2662

Smithsonian Tables.

TABLE 59.

LENGTH OF ONE DEGREE OF THE MERIDIAN AT DIFFERENT LATITUDES.

Latitude.	Metres.	Statute Miles.	Geographic Miles. \mathbf{I}^{\prime} of the Eq.	Latitude.	Metres.	Statute Miles.	Geographic Miles. 1^{\prime} of the Eq
0°	I 10568.5	68.703	59.594	45°	III 132.1	69.054	59.898
I	I 10 568.8	68.704	59.594	46	IIII51.9	69.067	59.908
2	I 10569.8	68.705	59.595	47	I II I71.6	69.079	59.919
3	110 571.5	68.706	59.596	48	III I91. 3	69.091	59.929
4	I 10573.9	68.707	59.597	49	III 210.9	69.103	59.940
5	I 10 577.0	68.709	59.598	50	III 230.5	69.115	59.951
6	I 10 580.7	68.71 I	59.600	5 I	I I I 249.9	69.127	59.96I
7	I IO 585.I	68.714	59.603	52	I II 269.2	69.139	59.972
8	I 10 590.2	68.717	59.606	53	I I I 288.3	69.151	59.982
9	110595.9	68.72 I	59.609	54	111307.3	69.163	59.992
10	I 10602.3	68.725	59.612	55	III 326.0	69.175	60.002
II	110609.3	68.729	59.616	56	I I I 344.5	69.186	60.012
12	110 617.0	68.734	59.620	57	I I 1 362.7	69.198	60.022
13	1 10625.3	68.739	59.625	58	I I I 380.7	69.209	60.032
14	I 10634.2	68.745	59.629	59	III 398.4	69.220	60.04 I
15	110643.7	68.751	59.634	60	III 415.7	69.230	60.051
16	110653.8	68.757	59.640	61	III 432.7	69.24 I	60.060
17	I 10 664.5	68.763	59.646	62	I I I 449.4	69.251	60.069
18	I 10 675.7	'68.770	59.652	63	I II 465.7	69.261	60.077
19	1 10687.5	68.778	59.658	64	III 481.5	69.271	60.086
20	ı 10699.9	68.786	59.665	65	III 497.0	69.281	60.094
21	110712.8	68.794	59.672	66	III 512.0	69.290	60.102
22	I 10 726.2	68.802	59.679	67	III 526.5	69.299	60.110
23	1 10740.1	68.810	59.686	68	I II 540.5	69.308	60.118
24	I 10754.4	68.819	59.694	69	III 554. I	69.316	60.125
25	I 10 769.2	68.829	59.702	70	III 567.1	69.324	60.132
26	I 10 784.5	68.838	59.710	71	III 579.7	69.332	60.139
27	110800.2	68.848	59.719	72	III 591.6	69.340	60.145
28	I 10816.3	68.858	59.727	73	III 603.0	69.347	60.151
29	I 10832.8	68.868	59.736	74	III 6I3.9	69.354	60.157
30	I 10849.7	68.879	59.745	75	III 624.1	69.360	60.163
31	110866.9	68.889	59.755	76	III 633.8	69.366	60.168
32	I 10884.4	68.900	59.764	77	III 642.8	69.372	60.173
33	I10 902.3	68.911	59.774	78	III 651.2	69.377	60.177
34	I 10920.4	68.923	59.784	79	III 659.0	69.382	60.182
35	I10 938.8	68.934	59.794	80	III 666.2	69.386	60.186
36	I 10957.4	68.946	59.804	81	III 672.6	69.390	60.189
37	110976.3	68.957	59.814	82	111678.5	69.394	60.192
38	I 10995.3	68.969	59.824	83	III 683.6	69.397	60.195
39	III OI4.5	68.981	59.834	84	I I I 688. 1	69.400	60.197
40	III 033.9	68.993	59.845	85	111591.9	69.402	60.199
4 I	III 053.4	69.005	59.855	86	III 695.0	69.404	60.201
42	111073.0	69.017	59.866	87	III 697.4	69.405	60.202
43	III 092.6	69.029	59.876	88	II I 699.2	69.407	60.203
44	III II2.4	69.042	59.887	89	III 700.2	69.407	60.204
45	III I32.I	69.054	59.898	90	III 700.6	69.407	60.204

LENGTH OF ONE DEGREE OF THE PARALLEL AT DIFFERENT LATITUDES.

Latitude.	Metres.	Statute Miles.	Geographic Miles. 1^{\prime} of the Eq.	Latitude.	Metres.	Statute Miles.	Geographic Miles. 1^{\prime} of the Eq.
0°	III 321.9	69.171	60.000	45°	78850.0	48.995	42.498
1	111305.2	69.162	59.991	46	77466.5	48.135	41.753
2	III 254.6	69.130	59.964	47	76059.2	47.26I	40.994
3	III 170.4	69.078	59.918	48	74628.5	46.372	40.223
4	III 052.6	69.005	59.855	49	73174.9	45.469	39.440
5	IIO 901. 2	68.911	59.773	50	71698.9	44.552	38.644
6	110716.2	68.796	59.673	51	70200.8	43.621	37.837
7	110497.7	68.660	59.556	52	6868 I .1	42.676	37.018
8	I 10245.8	68.503	59.420	53	67 I40. 3	41.719	36.187
9	109960.5	68.326	59.266	54	65578.8	40.749	35.346
10	109641.9	68.128	59.095	55	63 997. 1	39.766	34.493
II	109290.1	67.909	58.905	56	62395.7	38.771	33.630
12	108905.2	67.670	58.697	57	60775.1	37.764	32.757
13	108487.3	67.41I	58.472	58	59135.7	36.745	31.873
14	108 036.6	67.131	58.229	59	57478. I	35.715	30.979
15	107553.1	66.830	57.969	60	55802.8	34.674	30.076
16	107037.0	66.510	57.690	61	54 I 10. 2	33.622	29.164
17	106488.5	66.169	57.395	62	52400.9	32.560	28.243
18	105907.7	65.808	57.082	63	50675.4	31.488	27.313
19	IO5 294.7	65.427	56.751	64	$48934 \cdot 3$	30.406	26.374
20	104 649.8	65.026	56.404	65	47178.0	29.315	25.428
21	103 973.2	64.606	56.039	66	45 407.1	28.215	24.473
22	103265.0	64.166	55.657	67	43622.2	27.106	23.51 I
23	IO2 525.4	63.706	55.259	68	41823.8	25.988	22.542
24	IOI 754.6	63.227	54.843	69	40012.4	24.862	21.566
25	100953.0	62.729	54.41 I	70	38188.6	23.729	20.583
26	100120.6	62.212	53.963	71	36353.0	22.589	19.593
27	99257.8	61.676	53.498	72	34506.2	21.441	18.598
28	98364.8	61.121	53.016	73	32648.6	20.287	17.597
29	97 441.9	60.548	52.519	74	30780.9	19.126	16.590
30	96489.3	59.956	52.006	75	28903.6	17.960	15.578
31	05507.3	59.345	51.476	76	27017.4	16.788	14.562
32	94496.2	58.717	50.93 I	77	25122.8	15.611	13.541
33	93456.3	58.071	50.371	78	23220.4	14.428	12.515
34	92387.9	57.407	49.795	79	21 310.8	I 3.242	11.486
35	91291.3	56.726	49.204	80	19394.6	12.051	10.453
36	90166.8	56.027	48.598	81	17472.4	10.857	9.417
37	89 OI4.8	55.311	47.977	82	15544.7	9.659	8.378
38	87835.6	54.578	47.34 I	83	13612.2	8.458	$7 \cdot 337$
39	86629.6	53.829	46.691	84	I 675.5	7.255	6.293
40	85397.0	53.063	46.027	85	9735.1	6.049	5.247
4 I	84138.4	52.28 I	45.349	S6	7791.7	4.84 I	4.200
42	82854.0	51.483	44.656	87	5845.9	3.632	3.151
43	81 544.2	50.669	43.950	88	3898.3	2.422	2.101
44	80209.4	49.840	43.231	89	I 949.4	I. 211	1.051
45	78850.0	48.995	42.498	90	0.0	0.000	0.000

Emithbonian Tables.

TAble 61.
DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { the of Sun. } \end{aligned}$	LATITUDE NORTH.								
	0°	5°	10°	15°	20°	25°	30°	35°	40°
	h. mi.	h. m.							
$-23^{\circ} 27^{\prime}$	127	II 50	II 32	II I4	10 55	10 35	10 I3	948	919
-2320	127	II 50	II 32	II I4	10 56	Io 36	IO 14	949	920
-230	127	II 50	II 33	II 15	10 57	10 37	10 I 5	951	923
-2240	127	II 50	II 33	II 16	10 58	10 38	1017	953	926
-22 20	127	II 51	II 34	II 17	IO 59	IO 40	IO 19	955	929
-22 0	127	II 5I	II 34	II 18	II 0	Io 4I	1020	958	931
- 2140	127	1151	II 35	II 19	II I	10 43	IO 22	10 0	934
-2I 20	127	II 52	II 35	II 19	II 2	Io 44	1024	Io	937
-210	127	II 52	II 36	II 20	II 4	Io 46	10 26	IO 4	940
-2040	127	II 52	II 37	II 21	II 5	10 47	10 28	10 6	942
-2020	127	II 52	II 37	II 22	II 6	10 49	IO 29	10 8	945
-200	127	II 53	II 38	II 23	II 7	1050	1031	Io Ir	947
-1940	127	II 53	II 38	1123	II 8	10 5 I	Io 33	Io I3	950
- 19 20	127	II 53	II 39	II 24	II 9	IO 53	Io 35	IO I5	953
-19 0	127	II 53	II 39	II 25	II 10	IO 54	10 37	10 17	955
- 1840	127	II 54	II 40	II 26	II II	1055	10 38	IO 19	958
- I8 20	127	II 54	II 40	II 27	II 12	10 57	1040	1021	101
- i8 o	127	II 54	II 41	II 28	II 13	10 58	IO 42	1023	IO 3
-1740	127	II 54	II 41	II 28	II 14	IO 59	Io 43	Io 26	105
-1720	127	II 55	II 42	II 29	1115	II I	10 45	IO 28	IO 8
-170	127	II 55	II 42	II 30	II I6	II 2	Io 47	1030	IO 10
-1640	127	II 55	II 43	II 31	II 17	II 4	Io 49	10 32	IO 13
- I6 20	127	II 55	II 43	II 31	II 18	II 5	Io 50	IO 34	IO 16
- 160	127	II 56	II 44	II 32	II 19	II 6	10 52	10 36	10 18
-1540	127	II 56	II 44	II 33	II 20	II 8	1053	Io 38	1020
- I5 20	127	II 56	II 45	II 34	II 2I	II 9	10 55	1040	10 23
- I5 O	127	II 56	II 45	II 34	II 22	II 10	Io 57	Io 42	10 25
-1440	127	II 57	II 46	II 35	II 23	II II	Io 59	1044	IO 28
- 1420	127	II 57	II 46	II 36	II 25	II 13	II 0	Io 46	Io 30
-I4 0	127	II 57	II 47	II 37	II 26	II 14	II	Io 48	IO 32
-13 40	127	II 57	II 47	II 37	II 27	Ii 16	II 4	Io 50	10 35
- I3 20	127	II 58	II 48	II 38	II 28	$\begin{array}{lll}\text { II } & 17\end{array}$	II 5	Io 52	IO 37
- I3 0	127	II 58	II 48	II 39	II 29	II 18	II 7	Io 54	10 40
-1240	127	II 58	II 49	II 40	II 30	II 19	$\begin{array}{ll}\text { II } & 8\end{array}$	Io 56	IO 42
- 1220	127	II 58	II 49	II 40	II 31	II 2I	II 10	Io 58	IO 44
- 120	127	II 58	II 50	II 4I	II 32	II 22	II II	II 0	IO 47
- 1140	127	II 59	II 50	II 42	II 33	II 23	II 13	II 2	Io 49
- II 20	127	II 59	II 51	II 43	II 34	II 25	II 15	II 4	10 52
- II 0	127	II 59	II 5 I	II 43	II 35	II 26	II 16	II 6	10 54
-1040	127	II 59	II 52	II 44	II 36	II 27	II 18	$\begin{array}{ll}\text { II } & 8 \\ \end{array}$	Io 56
- 1020	127	120	II 52	II 45	II 37	II 28 II	II 20	II 10	IO 59
- 100	127	120	II 53	II 46	II 38	II 30	II 2I	II 12	II I
- 940	127	12 O	II 53	II 46	II 39	II 3I	II 23	II 14	II 3
- 920	127	120	II 54	II 47	II 40	II 32	II 24	1116	$\begin{array}{ll}\text { II } & 5\end{array}$
-90	127	12	II 54	II 47	II 4I	II 34	II 26	II 17	II 8
-840	127	12	II 55	II 48	II 42	II 35	II 28	II 19	II 10
-- 820	127	12	$\text { II } 55$	II 49	II 43	$\begin{array}{ll}\text { II } & 36\end{array}$	II 29	II 21	11 12 1
- 8 o	127	12 I	II 56	II 50	II 44	II 37	II 31	II 23	II 14

DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { the of Sun. } \end{aligned}$	LATITUDE NORTH.									
	42°	44°	46°	48°	50°	52°	54°	56°	58°	60°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$-23^{\circ} 27^{\prime}$		853	838	822	84	744	722	656	627	552
-2320	98	854	839	823	85	745	724	658	629	554
-230	9 II	858	843	828	8 10	750	729	74	636	62
-2240	914	9 I	846	831	8 I4	755	734	710	643	$6 \quad 9$
-22 20	917	94	850	835	818	8 o	739	716	649	617
22	920	97	853	838	822	84	744	722	655	625
-2140	923	9 Io	857	842	826	89	749	727	7	632
-21 20	926	913	9 I	846	830	8 I3	754	732	78	638
210	928	917	94	850	834	8 I8	759	738	714	646
-20 40	93 I	920	97	853	838	822	84	743	720	652
-20 20	934	923	9 II	857	842	826	88	749	725	659
20 0	937	926	914	9 I	846	83 I	8 I3	754	7 3I	75
-1940	940	929	9 I7	94	850	835	8 I8	759	737	712
- I9 20	943	932	920	97	854	839	823	84	743	718
- I9 0	946	935	924	9 II	858	843	827	89	748	725
-1840	948	938	927	915	92	847	832	8 I4	754	731
- I8 20	95 I	94 I	930	9 I9	96	852	836	8 I9	759	737
18 o	954	944	934	922	9 10	856	841	824	85	743
- 1740	956	947	937	925	913	9	845	8 8 8 8	8 1о	749 7
-1720	959	950	940	929	917	9 4	850 854	8 8 8 38	815 8120	755
- 17 o	IO 2	953	943	932	92 I	98	854	838	820	8 I
- 1640	105	956	946	935	925	912	858	843	826	86
- I6 20	IO 7	959	949	939	928	916	92	847	831	812
- 160	10 10	Io I	952	943	932	920	97	852	836	8 I7
-1540	1012	IO 4	955	946	935	924	9 II	857	841	823
- 1520	1015	10 7	958	949	939	928	9 I5	92	846	829
- I5 o	10 18	Io Io	10 I	952	943	93 I	919	96	85 I	834
-14 40	1020	10 I3	10 4	956	946	935	923	9 II	856	840
-14 20	1023	10 16	10 7	959	949	939	928	915	$9 \quad 1$	845
-14 o	10 26	10 19	Io 10	IO 2	953	943	932	919	96	850
-1340	10 28	1021	10 I3	105	956	947	936	924	9 II	856
- I3 20	10 31	10 24	10 16	Io 8	Io 0	950	940	928	916	9 I
- I3 0	10 33	10 26	1019	IO II	10	954	944	933	920	96
-1240	10 36	1029	IO 22	IO 15	107	958	948	937	925	9 II
- 1220	10 38	Io 32	Io 25	Io 18	Io Io	Io I	952	941	930	917
120	Io 4I	10 35	IO 28	Io 21	Io 13	Io 5	956	946	935	922
- 1140	1044	Io 38	103 I	1025	1017	IO 9	10 O	950	939	927
- II 20	10 46	Io 40	Io 34	10 28	10 20	10 I3	10 4	955	944	932
II O	IO 49	10 43	10 37	1031	10 23	Io 16	10 8	959	949	937
-1040	10 51	Io 46	IO 40	IO 34	1027	10 19	1012	Io 3	953	942
1020	Io 53	10 49	10 43	10 37	10 31	10 23	1016	107	958	947
10 O	10 56	10 51	10 46	10 40	10 34	IO 27	10 19	10 II	10 3	952
- 940	1059	IO 54	10 49	1043	10 37	1031	1023	1016	10 7	957
- 920	II I	10 56	Io 52	Io 46	Io 40	Io 34	IO 27	1020	10 II	10 2
- 90	II 3	IO 59	10 55	10 49	10 44	10 37	IO 31	10 24	10 16	107
- 840	II 6	II 2	IO 57	1052	IO 47	1041	10 34	10 28	Io 20	Io II
- 820	II 8	II 4	II 0	10 55	10 50	10 44	10 38	Io 32	Io 25	10 16
- 80	II 10	II 7	II 3	Io 58	10 53	10 48	10 42	Io 36	IO 29	10 21

DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { of of } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.								
	0°	5°	10°	15°	20°	25°	30°	35°	40°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$-8^{\circ} 0^{\prime}$	127	12 I	II 55	II 50	II 44	II 37	II 3I	II 23	II 14
-740	127	12	II 56	II 50	II 45	II 38	II 32	II 25	II 17
720	127	12	II 56	II 51	II 46	II 40	II 34	II 27	II 19
-7 0	127	122	II 57	II 52	II 47	II 4I	II 35	II 29	II 22
-640	127	122	II 57	II 53	II 48	II 42	II 37	II 31	II 24
-6 20	127	122	II 58	II 53	II 49	II 43	II 38	II 32	II 26
-6 o	127	122	II 58	II 54	II 50	II 45	II 40	II 34	II 28
-5 40	127	123	II 59	II 55	II 5I	II 46	II 41	II 36	II 3 I
-5 20	127	123	II 59	II 55	II 52	II 47	II 43	II 38	II 33
-5 o	127	123	120	II 56	II 53	II 49	II 44	II 40	II 35
-4 40	127	123	120	II 57	II 54	II 50	II 46	II 42	II 37
-4 20	127	124	12	II 58	II 55	II 51	II 47	II 44	II 40
-4 0	127	124	12	II 5^{8}	II 56	II 52	II 49	II 46	II 42
-340	127	124	122	II 59	II 57	II 53	II 51	II 47	II 44
320	127	124	122	120	II 58	II 55	II 52	II 49	II 46
-3 0	127	125	123	12	II 58	II 56	II 54	II 5I	II 49
-2 40	127	125	123	12	II 59	II 58	II 55	II 53	II 51
220	127	125	124	12	120	II 59	II 57	II 55	II 53
-2 0	127	125	124	123	12	120	II 58	II 57	II 55
-1 40	127	125	124	124	122	12 I	120	II 59	II 58
I 20	127	126	125	124	123	122	122	12 I	120
10	127	126	125	125	124	124	123	122	122
-0 40	127	126	126	125	125	125	125	124	124
- 20	127	126	126	126	126	126	126	126	127
00	127	127	127	12	127	12	128	128	129
+o 20	127	127	127	128	128	128	129	12 Io	12 II
O 40	127	127	128	128	129	1210	12 II	1212	12 I 3
10	12	127	128	129	1210	12 II	12 I	1214	12 I 5
I 20	127	128	129	1210	12 II	12 I 3	1214	1216	1217
140	127	128	129	1210	1212	1214	1216	1217	1220
20	127	128	12 IO	12 II	12 I 3	1215	1217	1219	1222
220	127	128	12 IO	1212	12 I 4	1216	1219	12 2I	1225
240	127	129	12 II	12 I 3	1215	1217	1220	1223	1227
30	127	129	I2 II	1213	1216	1219	1222	1225	1229
320	127	129	1212	12 I 4	1217	1220	1223	1227	1231
340	127	129	1212	1215	1218	1221	1225	1229	1233
40	127	1210	1213	1216	1219	1222	1226	1231	1235
420	127	1210	1213	1216	1220	1223	1228	1232	1238
440	127	12 Io	1214	1217	1221	1225	1229	1234	1240
50	27	12 IO	12 I	1218	1222	1226	1231	1236	1243
520	127	12 Io	1215	1219	1223	1228	1232	1238	1245
540	127	12 II	1215	1219	1224	1229	1234	1240	1247
60	127	12 II	1216	1220	1225	1230	1235	1242	1249
620	127	12 II	1216	1221	1226	1231	1237	1244	1252
640	127	12 II	1216	1222	1227	1232	1239	1246	1254
70	127	1212	1217	1222	1228	1234	1240	1248	1256
720	127	1212	1217	1223	1229	1235	1242	1250	1258
740	127	1212	1218	1223	1230	1236	1243	1252	13 I
80	127	12 I 3	1218	1224	1231	1238	1245	1253	13

TABLE 6I
DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { of } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.									
	42°	44°	46°	48°	50°	52°	54°	56°	58°	60°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$-8^{\circ} 0^{\prime}$	II II	II 7	II 3	II 58	10 53	IO 48	1043	10 36	1030	1021
-740	II 13	II IO	II 5	II	IO 57	1052	10 46	Io 40	10 34	IO 26
720	II 16	II 12	II 8	II 4	II	10 55	1050	Io 44	Io 38	1031
$-7 \quad 0$	II I9	II 15	II II	II 7	II 3	IO 59	Io 54	10 48	IO 42	IO 35
-640	II 21	II 17	II I4	II 10	II 7	II 2	10 58	IO 52	IO 47	Io 40
620	II 23	II 20	II 17	II I3	II 10	II 5	II	10 56	10 51	10 45
6 o	II 26	II 23	II 20	II 16	II 13	II 9	II 5	II 0	IO 55	10 50
-5 40	II 28	II 25	II 23	II 19	II 16	II 13	II 8	II	Io 59	1055
-5 20	Ir 31	II 28	II 25	II 22	II 19	II 16	II I3	II 8	II 4	Io 59
-5 o	II 33	II 31	II 28	II 25	II 23	II I9	II 16	II 12	II 8	II 4
-4 40	II 35	II 33	II 3I	II 28	II 26	II 23	II 20	II 16	II 13	II 8
420	1138	II 36	II 34	II 31	II 29	II 26	II 23	II 20	II 17	II 13
4 -	II 40	II 3^{8}	II 37	II 34	II 32	II 30	II 27	II 24	II 21	II 18
-340	II 43	II 41	II 39	II 37	II 35	II 33	II 31	II 28	II 26	II 22
320	II 45	II 43	II 42	II 40	II 3^{8}	I I 37	II 35	II 32	II 30	II 27
30	II 47	II 46	II 45	II 43	II 42	II 40	II 38	II 36	II 34	II 32
-240	II 50	II 49	II 47	II 46	II 45	II 44	II 42	II 40	II 3^{8}	II 37
220	II 52	II 5I	II 50	II 49	II 48	II 47	II 46	II 44	II 43	II 41
20	II 55	II 54	II 53	II 5^{2}	II 52	II 50	II 49	II 48	II 47	II 46
-140	II 57	II 56	II 55	II 55	II 55	II 54	II 53	II 52	II 51	II 50
20	II 59	II 59	II 5^{8}	II 5^{8}	II 5^{8}	II 57	II 57	II 56	II 56	II 55
10	122	122	12 I	12 I	12 I	12 I	12 I	120	120	II 59
-0 40	12	12	124	124	124	124	12	12	124	124
O 20	127	127	127	127	127	127	128	128	128	129
+00	129	129	12 10	1210	12 Io	12 II	12 II	1212	12 I 3	12 I 3
- 20	12 II	1212	1213	1213	1214	1214	1215	1216	1217	1218
O 40	1214	12 I 4	1215	1216	1217	1217	1219	1220	1221	1223
I. 0	1216	12 I 7	1218	12 I 9	1220	1221	1222	1224	1225	I2 27
I 20	12 I9	1220	1220	1222	1223	1225	1226	1228	1229	$\begin{array}{ll}12 & 32 \\ 12\end{array}$
I 40	1221	1222	1223	1225	1226	1228	1230	1232	1234	1237
20	1223	1225	1226	1228	1229	1231	1234	1236	1238	1241
220	1226	1228	$12 \quad 29$	1231	1232	1235	1237	1240	1243	1246
240	1228	1230	1232	1234	I2 36	1238	124 I	1244	1247	1250
30	1231	1232	1235	1237	1239	1241	1244	1248	1251	1255
320	1233	1235	1237	1240	1242	1245	1248	1252	1255	130
340	1235	123^{8}	1240	1243	1246	1249	1252	1256	130	134
40	1238	1240	1243	1246	1249	1252	1256	130	I3 4	139
420	1240	1243	1246	1249	1252	1255	1259	13	138	1314
440	1243	1246	1249	1252	1255	1259	133	138	1313	I3 19
50	1245	1248	1251	1255	1258	13 2	13 7	1312	1317	1323
520	1247	1251	1254	1258	13	136	13 II	1316	1322	I3 28
540	1250	1253	1257	I3 I	135	1310	I3 14	I3 20	I3 26	I3 33
60	1253	1256	1259	134	138	1313	1318	1324	1331	1338
620	1255	1259	132	137	13 Ir	1316	I3 22	I3 28	I3 35	1343
640	1258	13 I	135	I3 10	13 I4	1320	1326	I3 32	I3 39	I3 47
70	130	134	138	13 I3	1318	1323	1329	$13 \quad 36$	1344	1352
720	I3 2	13	13 II	1316	1321	1327	I3 33	1340	1348	1357
740	135	I3 9	1314	I3 I9	I3 25	13 3I	1337	I3 44	1353	142
	I3 7	1312	1317	I3 22	1328	1334	I3 4I	1348	13 57	$14 \quad 7$

Smithsonian Tableg.

DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { of } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.								
	0°	5°	10°	15°	20°	25°	30°	35°	40°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$+8^{\circ} 0^{\prime}$	127	12 I 3	12 I 8	1224	1231	1238	1245	1253	133
820	127	1213	12 I9	1225	1232	1239	1247	1255	I3 5
840	127	12 I3	1219	1226	1233	1240	1248	1257	I3 8
90	127	1213	1220	1226	1234	1241	1250	1259	13 Io
920	127	1213	1220	$\begin{array}{ll}12 & 27\end{array}$	1235	1243	1252	13 I	1313
940	127	1214	1221	1228	1236	1244	1253	I3 3	1314
100	127	1214	1221	1229	1237	1245	1255	135	1317
1020	127	1214	1222	1229	1238	1247	1256	I3 7	1319
1040	127	1214	1222	1230	1239	1248	1258	I3 9	1322
110	127	12 I 5	1223	1231	1240	1249	1259	13 II	1324
II 20	127	12 I 5	1223	1232	124 I	1250	13 I	1313	1326
II 40	127	1215	1224	1232	1242	1252	I3 2	1315	I3 29
120	127	12 I 5	1224	1233	1243	1253	134	1317	13 3I
1220	127	1216	1225	1234	1244	1255	I3 6	1319	I3 34
1240	127	1216	1225	1235	1245	1256	I3 8	I3 2I	I3 36
130	127	1216	1226	I2 35	1246	1257	139	1323	1338
1320	127	1216	1226	1236	1247	1258	I3 II	I3 25	13 4I
I3 40	127	12 I 7	1227	1237	1248	I3 0	I3 I3	1327	1343
140	127	1217	1227	1238	1249	13	1314	1329	1346
1420	127	1217	1228	1239	1250	13	1316	I3 3I	I3 48
1440	127	1217	1228	1240	1251	I3 4	I3 I7	I3 33	13 5I
150	127	12 I 8	1229	1240	1252	135	13 I9	I3 35	1353
1520	127	12 I 8	1229	1241	1253	137	I3 2I	1337	I3 56
1540	127	12 I 8	1230	1241	1254	I3 8	I3 23	I3 39	1358
160	127	12 I9	1230	1242	1255	139	I3 25	13 4I	14 I
1620	127	1219	1231	1243	1256	13 II	I3 26	I3 43	143
1640	127	12 I9	1231	1244	1258	I3 12	I3 28	1345	I4. 6
170	127	12 I9	1232	1245	1259	1313	I3 29	I3 47	148
1720	127	1220	1232	1246	I3 0	I3 I5	I3 31	I3 50	14 II
1740	127	1220	1233	1246	13 I	I3 16	1333	I3 52	I4 I4
180	127	1220	1233	1247	132	1317	I3 35	I3 54	1416
1820	127	1220	1234	1248	I3 3	I3 I9	1337	I3 56	1419
1840	127	1221	1234	1249	I3 4	1320	1338	1358	1422
190	127	1221	1235	1250	135	1322	1340	14 o	
1920	127	1221	1235	1251	I3 6	I3 23	1342	$14 \quad 2$	1426
1940	127	1222	1236	1252	I3 7	I3 25	1344	145	I4 29
200	127	1222	1236	1252	I3 8	I3 26	I3 46	147	1432
2020	127	1222	1237	1253	13 Io	I3 28	I3 47	14 Io	1435
2040	127	1222	1237	1254	13 II	I3 29	I3 49	1412	1437
210	127	1223	1238	1255	1312	1331	13 5I	1414	1440
2120	127	1223	$12 \cdot 39$	1256	13 I3	1332	I3 53	1416	1443
2140	127	1223	1239	1256	1314	I3 34	I3 55	1419	1446
220	127	1224	1240	1257	1316	1335	I3 56	1421	1449
2220	127	1224	124 I	1258	I3 I7	I3 37	1358	1423	1452
2240	127	1224	1241	I2 59	I3 18	1338	14 o	1425	1454
230	12	1225	1242	I3 0	1319	I3 40	$14 \quad 2$	1428	1457
2320	127	1225	1242	13	I3 20	13 4I	144	I4 30	150
$23 \quad 27$	127	1225	1243	I3 I	I3 20	I3 4I	145	14 3I	15 I

DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { of } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.									
	42°	44°	46°	48°	50°	52°	54°	56°	58°	60°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$+8^{\circ} 0^{\prime}$	$13 \quad 7$	1312	1317	I3 22	1328	I3 34	I3 4I	1349	1358	147
820	13 Io	I3 14	I3 20	I3 25	13 3I	I3 38	I3 45	I3 53	142	I4 12
840	I3 12	I3 17	I3 23	I3 28	1334	I3 4I	I3 49	I3 57	146	1417
90	1315	I3 20	I3 25	1331	1338	1345	I3 53	14 I	14 II	1422
920	1317	I3 23	I3 28	I3 34	1341	I3 49	I3 56	I4 5	14 I5	1426
940	I3 20	I3 25	13 3I	I3 38	I3 44	I3 5^{2}	14 o	14 Io	1420	1431
100	I3 22	1328	I3 34	1341	1348	1356	144	I4 I4	1425	1436
1020	I3 25	13 3I	1337	I3 44	13 5I	1359	148	14 I8	1429	I4 4I
1040	I3 28	I3 34	I3 40	I3 47	I3 55	143	1412	1422	1434	I4 47
110	I3 30	13136	I3 43	1350	1358	147	1416	1427	1438	1452
II 20	I3 32	I3 39	I3 46	I3 53	14 I	I4 10	1420	1431	1443	1457
II 40	I3 35	I3 4I	I3 49	I3 56	145	1414	I4 24	I4 35	1448	I5 2
120	1338	1344	I3 52	14 O	148	14 I8	I4 28	1440	1453	I5 8
1220	I3 40	I3 47	I3 55	I4 3	1412	1422	I4 32	1444	1458	I5 I3
1240	I3 43	I3 50	I3 58	I4 6	I4 16	1425	I4 37	1449	I5 2	I5 I8
130	I3 46	I3 53	14 I	14 IO	1419	1429	I4 4I	14.53	157	I5 23
1320	I3 48	1356	144	1413	1422	1433	1445	1458	I5 I3	I5 29
1340	I3 50	I3 58	147	1416	I4 26	1437	1449	$15 \quad 2$	1517	I5 35
140	I3 53	14 I	14 Io	14 I9	I4 29	1441	1453	157	1522	I5 40
1420	I3 56	I4 4	1413	1423	I4 33	1445	1457	15 II	1528	I5 46
1440	I3 59	I4 7	I4 I6	I4 26	1437	1449	$15 \quad 2$	I5 16	1533	I5 51
150	14	14 Io	1419	1429	1440	1452	I5 6	15 21	1538	I5 57
1520	I4 4	1413	I4 22	1433	I4 44	1456	I5 10	1526	1543	162
1540	147	1416	1426	1436	1448	15 o	I5 14	I5 30	1548	168
160	1410	I4 I9	I4 29	1440	1452	154	1519	1535	1553	I6 I4
1620	1412	1422	1432	1443	1455	I5 8	1523	1540	1559	1620
1640	I4 15	I4 25	I4 35	I4 46	1459	15 I3	I5 28	1545	164	I6 26
170	14 I7	$14 \quad 28$	1438	1450	I5 3	15 I7	$15 \quad 32$	1550	16 Io	1632
1720	I4 20	I4 3I	I4 4I	I4 53	I5 7	I5 21	I5 37	I5 55	16 I	1638
1740	I4 23	I4 34	1445	1457	1510	1525	I5 41	16 o	1620	1645
180	1426	I4 37	1448	15 I	15 I 4	1529	I5 46	165	I6 26	16 5I
$18 \quad 20$	I4 29	1440	1452	I5 4	I5 18	I5 34	I5 50	16 Io	1632	1658
I8 40	1432	1443	I4 55	I5 8	I5 22	I5 38	I5 55	16 I5	1638	174
190	1435	I4 46	I4 58	15 II	I5 26	1542	16 o	1620	1644	17 II
I9 20	I4 37	1449	15	I5 I5	I5 30	I5 46	$16 \quad 5$	1625	1650	17 I 7
1940	I4 40	145^{2}	15	I5 I9	I5 34	15 51	16 Io	1631	1656	1724
	1443	I4 55	158	1522	I5 38	1555	16 I 5	1637	$17 \quad 2$	
$20 \quad 20$	I4 46	1458	15 II	I5 26	I5 42	160	1620	16 42	178	1738
2040	1449	$15 \quad 2$	1515	1530	I5 46	164	1625	1647	1714	I7 46
210	1452	155	I5 I9	I5 34	1550	16 9	16 30	1653	1720	1753
2 L 20	1455	I5 8	1522	1538	1555	1613	1635	1659	I7 27	18 I
2140	1458	15 II	I5 26	I5 42	I5 59	16 ı8	1640	175	1734	188
220	15 I	I5 14	$15 \quad 29$	I5 46	163	1623	1645	17 II	1740	I8 16
22.20	I5 4	1518	I5 33	I5 49	16	I6 28	1650	1717	1747	I8 24
2240	I5 7	I5 22	1537	1553	1612	1632	1656	1723	1754	I8 32
230	1510	1525	1540	1557	1616	1637	17 I	1729	18 I	184 I
2320	I5 13	I5 28	1544	16 I	1621	1642	17	1735	I8 8	I8 49
2327	I5 14	I5 29	I5 46	163	1623	1644	I7 9	1737	18 II	I8 52

DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { of of } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.										
	60°	61°	62°	63°	64°	65°	66°	67°	68°	69°	70°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h.m.
$-23^{\circ} 27^{\prime}$	552	53 I	58	442	4 II	334	246	I 29			
-2320	555	534	512	446	416	340	253	I 41			
-23 o	62	543	521	456	428	353	3 II	2 II			
-22 40	610	55 I	530	56	439	47	327	235	- 59		
2220	617	559	539	516	450	420	343	256	I 43		
22 o	625	67	547	525	5 I	432	358	314	2 I 3		
-2140	632	614	556	534	5 II	443	4 II	3 3I	238	1 I	
-21 20	639	622	64	543	520	455	424	347	259	145	
210	646	629	612	552	530	55	436	4 I	318	216	
-20 40	652	637	620	6 I	540	516	448	416	335	2 4I	12
- 2020	659	644	627	$6 \quad 9$	549	526	459	429	351	32	I 47
-20 0	75	651	634	617	558	535	5 10	4 4I	46	322	219
-1940	712	658	642	625	66	545	52 I	453	420	339	244
- I9 20	718	74	649	633	6 I4	554	531	55	434	355	36
- I9 0	725	7 II	656	64 I	623	63	54 I	516	447	4 II	326
-1840	731	717	74	648	631	612	5 5I	526	459	425	344
- I8 20	737	724	7 Io	655	639	620	6 I	537	5 II	439	4 I
- I8 o	743	731	717	73	647	629	6 10	547	522	452	416
-1740	749	737	724	7 10	655	638	619	557	533	55	431
-1720	755	743	731	717	72	646	628	67	543	517	445
-170	8 I	749	737	724	79	653	636	616	554	528	458
-1640	86	755	744	731	7 I7	7 I	644	626	64	540	5 II
- I6 20	812	8 I	750	738	724	$7 \quad 9$	652	635	614	551	523
- 16 o	817	87	756	744	731	717	7 I	644	624	62	535
-1540	823	813	$8 \quad 2$	7 51	738	725	$\begin{array}{ll}7 & 9\end{array}$	652	634	612	547
- I5 20	829	8 I9	8 8	758	745	732	717	7 I	643	622	559
- 15 o	834	825	815	84	752	739	725	79	652	632	6 10
-14 40	840	831	821	810	759	746	732	717	7 I	642	620
- 14 20	845	836	827	8 I7	85	753	740	726	710	651	63 I
- I4 0	850	842	833	823	812	8 I	747	734	7 I 8	7 I	64 I
-13 40	856	847	838	829	8 19	87	755	7 4I	726	7 10	651
- I3 20	91	853	844	835	825	814	82	749	735	719	7 I
- I3 0	96	858	850	84 I	832	821	8 го	-757	743	728	7 10
-1240	9 II	94	856	847	838	828	817	85	7 51	737	720
- 1220	917	9 10	92	853	844	834	824	812	759	745	729
I2 0	922	915	97	859	850	841	831	820	87	753	738
- 1140	927	920	913	95	856	847	838	827	815	$8 \quad 2$	747
- II 20	932	925	919	9 II	93	854	844	834	823	810	756
110	937	931	924	917	99	90	85 I	84 I	83 I	8 I8	85
-1040	942	936	929	922	915	97	858	849	838	826	814
- 1020	947	941	935	928	921	913	95	856	846	834	822
- 100	952	946	940	934	927	919	9 II	93	853	842	83 I
-940	957	951	946	940	933	926	918	910	9 O	850	839
- 920	102	956	951	945	939	932	925	916	98	858	847
- 90	10 7	IO 2	956	950	944	938	931	923	915	95	855
-840	10 II	10 7	$10 \quad 2$	956	950	944	937	930	922	9 I3	93
- 820	1016	1012	10 7	IO 2	956	950	944	937	929	921	9 II
- 80	IO 21	IO 17	1012	10 7	10 2	956	950	943	936	928	919

DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { of } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.										
	60°	61°	62°	63°	64°	65°	66°	67°	68°	69°	70°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$-8^{\circ} 0^{\prime}$	10 21	1017	10	10 7	Io	956	950	943	936	928	9 I9
-740	IO 26	1022	1017	IO I3	10 8	Io 2	956	950	943	935	927
$-7 \quad 20$	Io 3I	10 27	1023	IO 18	1013	10 8	Io 3	957	950	943	935
7 -	1035	1032	1028	IO 23	1019	10 I 4	IO 9	IO 4	957	950	943
--640	10 40	10 37	10 33	10 29	10 25	1020	10 15	10 10	Io 4	957	951
620	Io 45	10 42	10 38	Io 34	10 31	10 26	10 22	Io 16	10 II	10 5	958
6 -	to 50	10 47	10 43	10 40	10 36	10 32	1028	IO 23	Io 18	1012	10 6
-5 40	Io 55	IO 52	10 49	10 45	1041	10 38	10 34	IO 29	IO 25	1019	1014
-5 20	1059	10 56	Io 54	1050	1047	Io 44	1040	10 36	1031	Io 26	1021
-5 0	II 4	II I	Io 59	IO 56	1053	1050	10 46	IO 42	Io 38	Io 34	1029
-4 40	II 8	II 6	II 4	II I	Io 58	Io 55	1052	1049	IO 45	1041	10 36
-4 20	II I3	II II	II 9	II 7	II 4	II 1	1058	10 55	Io 52	10 48	Io 44
- 0	II I8	II I6	II I4	II I2	II 10	II 7	II 4	II 1	Io 58	IO 55	1051
-3 40	II 22	II 2I	II 19	II 17	II 15	II 13	II 10	II 8	II 5	II 2	10 59
320	II 27	II 26	II 24	II 22	II 20	II 19	II 16	II 14	II II	II 9	II 6
-3	II 32	II 3 I	II 29	II 28	II 26	II 24	II 22	II 20	II I8	II 16	II I3
-2 40	II 37	II 35	II 34	II 33	II 3I	II 30	II 28	II 27	II 25	II 23	II 21
220	II 41	II 40	II 39	II 38	II 37	II 36	II 34	II 33	II 32	II 30	II 28
20	II 46	II 45	II 44	II 43	II 43	II 4I	II 40	II 40	II 38	II 37	II 35
- 140	II 50	II 50	II 49	II 49	II 48	II 47	II 46	II 46	II 45	II 44	II 43
120	II 55	II 55	II 54	II 54	II 53	II 53	II 52	II 52	II 52	II 5I	II 50
10	II 59	II 59	II 59	II 59	II 59	II 59	II 58	II 58	II 58	II 58	II 58
-040	124	I2 4	124	124	124	124	124	124	125	$\begin{array}{ll}12 & 5\end{array}$	125
O 20	129	129	129	1210	1210	1210	12 10	12 II	12 II	1212	1212
00	1213	1214	12 I 4	1215	I2 I5	1216	1216	1217	12 I	1219	1219
+o 20	I2 I8	1219	1219	1220	1220	1222	1222	1223	1225	1226	1227
- 40	1222	1223	1224	I2 25	1226	1227	1228	1229	123 I	1233	1234
10	1227	1228	1229	I2 31	1232	1233	I2 34	1236	1238	1240	1241
I 20	1232	1233	I2 34	1236	1237	1239	1240	1242	1244	1247	1249
I 40	1237	1238	1239	124 I	1243	1244	1246	1249	1251	1254	1256
20	1241	1243	1244	1246	1248	1250	1252	1255	1258		I3 4
220	1246	12 47	1249	1252	1253	1256	1259	13 I	134	138	13 II
240	1250	1252	1254	1257	1259	132	I3 5	I3 7	I3 II	1315	I3 19
30	I2 55	1257	1259	I3 2	135	138	13 II	1314	1317	1322	I3 26
320	I3 0	I3 2	I3 5	I3 7	I3 10	13 I3	1317	1320	1324	I3 29	I3 34
340	I3 4	I3 7	1310	I3 I3	I3 I6	1319	1323	I3 27	1331	I3 36	1341
40	I3 9	I3 I2	I3 15	1318	1322	1325	1329	I3 33	1338	1343	I3 49
420	I3 I4	1317	1320	1323	1327	1331	1335	I3 40	1345	I3 50	1356
440	I3 19	I3 22	I3 25	I3 29	I3 32	I3 37	1341	I3 46	1352	1358	144
50	I3 23	I3 27	I3 30	I3 34	I3 38	I3 43	1347	I3 53	135^{8}	$14 \quad 5$	14 II
520	1328	I3 32	I3 35	I3 40	I3 44	I3 49	1354	I3 59	14	14 I2	1419
540	I3 33	I3 37	I3 4I	I3 45	1350	I3 55	14 O	146	1412	1419	1427
60	1338	13 42	1346	1350	I3 55	14 I	146	1413	1419	1426	1435
620	I3 43	I3 47	I3 51	I3 56	14 I	147	1412	1419	1426	1434	1443
640	I3 47	I3 52	13 56	14 I	147	14 I3	14 I 8	1426	1433	1442	1451
70	I3 52	I3 57	14 I	147	1412	1419	1425	1432	1440	1449	
720	I3 57	142	$14 \quad 7$	1413	1418	1425	1431	1439	I4 48	1457	15
740	142	147	1412	1418	1424	1431	1438	1446	I4 55	I5 4	I5 I5
80	147	14 I 2	1417	1423	1430	1437	1445	I4 52	I5 2	1512	1523

Smithsonian Tables.

Table 61.
DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

Declination of the Sun.	LATITUDE NORTH.									
	71°	72°	73°	74°	75°	76°	77°	78°	79°	80°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$-8^{\circ} 0^{\prime}$	9 1о	859	847	833	817	758	737	7 10	638	556
-740	918	908	856	843	828	8 II	750	726	656	6 I8
-720	926	917	96	853	839	823	84	741	7 I4	638
-7 o	935	926	9 16	93	850	835	817	756	7 31	658
-640	943	934	925	914	9 I	847	830	8 II	747	7 I7
-6 20	9 5I	943	934	924	912	859	843	825	83	736
-6	959	952	943	934	923	9 II	856	839	8 I9	754
-540	10 7	101	953	944	934	922	99	853	834	8 II
520	10 15	IO 9	IO 2	953	944	934	922	97	850	828
-5	I0 23	1017	IO II	10 3	955	945	934	920	95	846
-440	Io 31	Io 26	Io 20	1013	105	956	946	934	9 I9	92
-420	IO 39	IO 34	IO 29	IO 22	1015	10 7	958	947	934	918
-4 o	IO 47	IO 43	IO 38	IO 32	IO 26	Io I8	Io Io	10 O	949	934
-340	Io 55	10 5 I	Io 46	IO 4I	Io 36	IO 29	IO 22	10 I3	IO 3	950
-320	II 3	Io 59	IO 55	Io 5I	IO 46	IO 40	IO 34	10 26	IO 17	Io 6
30	II II	II 8	II 4	II 0	IO 56	Io 5 I	10 45	Io 39	Io 3 I	IO 22
-2 40	II 19	II 16	II 13	II Io	II 6	II 2	IO 57	IO 52	IO 45	IO 37
220	II 26	II 24	II 22	II 19	II I6	II I3	II 8	II 4	Io 59	Io 52
20	II 34	II 32	II 3I	II 28	II 26	II 23	II 20	II 17	II I3	II 8
- 140	II 42	II 41	II 39	II 38	II 36	II 34	II 32	II 29	II 26	II 23
120	II 49	II 49	II 48	II 47	II 46	II 45	II 43	II 42	II 40	II 38
10	II 57	II 57	II 56	II 56	II 56	II 55	II 55	II 55	II 54	II 53
-040	125	125	125	125	126	126	127	127	I2 8	128
O 20	12 I3	12 I3	1214	12 I5	1216	$\begin{array}{lll}12 & 17\end{array}$	1218	1220	1221	1223
00	1220	1222	1222	1224	1226	1228	1229	1232	1235	1238
+020	1228	1230	1231	1234	1236	1238	1241	1244	1249	1253
O 40	1236	1238	1240	1243	1246	I2 49	1253	1257	I3 2	I3 9
10	1244	1246	1249	1252	1256	130	I3 5	1310	1316	I3 24
I 20	1252	1255	1258	I3 2	I3 6	I3 II	I3 16	I3 23	I3 30	I3 40
140	1259	I3 3	I3 7	I3 II	I3 I6	I3 22	I3 28	I3 36	I3 44	I3 55
20	137	13 II	1316	I3 20	I3 26	I3 32	1340	I3 49	1359	I4 II
220	13 I5	I3 19	I3 25	I3 30	I3 36	I3 43	1352	I4 I	14 I3	1427
240	I3 23	I3 28	I3 33	I3 40	I3 46	I3 54	I4 4	1414	I4 28	1443
30	I3 3I	1336	I3 42	I3 49	I3 57	145	1416	I4 28	1442	1459
320	I3 39	I3 44	1351	1359	147	1417	I4 28	1441	1456	I5 16
340	I3 47	I3 53	I4 I	148	1417	1428	I4 40	1455	I5 II	I5 33
40	1355	$14 \quad 2$	14 IO	1418	1428	1440	1453	I5 8	1527	I5 50
420	I4 3	I4 10	I4 19	I4 28	I4 3^{8}	1451	I5 5	I5 22	I5 43	167
440	14 II	I4 19	I4 28	1438	I4 49	152	I5 I8	I5 36	I5 58	1625
50	I4 19	1428	1437	1448	I5 0	15	1531	1550	16 I 4	1644
520	1427	I4 37	1446	1458	15 II	I5 26	1544	165	1631	17
540	I4 35	I4 45	I4 56	158	I5 22	I5 38	I5 57	1620	1647	1722
60	I4 44	1454	$15 \quad 5$	15 I9	1533	1550	16 II	16 35	I7 5	1743
620	I4 52	$15 \quad 3$	15	I5 29	I5 44	163	1625	1651	1723	I8 5
640	15 I	15 I2	I5 25	I5 40	1556	16 I6	I6 39	177	1741	I8 27
70	$\mathrm{I}_{5} \mathrm{Io}$	I5 22	I5 35	1550	168	1629	1653	1723	I8 I	I8 50
720	15	1231	1545	16 I	1620	I6 42	178	1740	1821	I9 16
740	I5 27	I5 40	1555	1612	I6 32	1655	1723	1758	I8 42	I9 44
80	I5 35	1550	165	1623	I6 44	I7 9	1739	I8 16	I9 5	2015

TABLE 61.

DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { of } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.										
	60°	61°	62°	63°	64°	65°	66°	67°	68°	69°	70°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$+8^{\circ} 0^{\prime}$	$14 \quad 7$	1412	1417	1423	1430	1437	1445	1453	$15 \quad 2$	1512	1523
820	1412	14 It	1423	1429	1436	1443	1452	150	1510	1520	1532
840	14 17	1422	1428	I4 35	1442	1450	1458	I5 7	1517	1528	I5 40
90	1422	1427	1434	1441	1448	1456	$15 \quad 5$	1514	I5 25	I5 36	1549
920	1427	1432	1439	1446	1454	152	15 II	15.21	I5 32	I5 44	I5 57
940	1432	1438	1445	1452	150	I5 9	1518	1528	1540	I5 52	166
100	1437	1443	1450	1458	156	1515	1525	I5 35	I5 47	16 o	16 I5
1020	1442	1449	1456	154	1513	1522	1532	I5 43	I5 55	168	1624
1040	1447	1454	152	1510	I5 I9	1528	1539	1550	163	1617	16 33
110	1452	1459	157	1516	1525	1535	1546	I5 58	I6 II	1626	1642
II 20	1457	$15 \quad 5$	15 I3	1522	1531	1541	1553	165	1619	1634	1652
II 40	$15 \quad 2$	1510	1519	1528	1538	1548	16 o	16 I3	16 27	1643	I7 I
120	158	I5 16	1525	I5 34	1544	1555	167	1621	I6 35	1652	17 II
1220	15 I 3	I5 2I	1531	1540	1550	162	1615	1629	1644	17	I7 21
1240	15 I8	1527	1536	1546	I5 57	$16 \quad 9$	1622	1637	I6 53	17 II	1731
130	1523	1533	1542	1553	164	I6 I6	1630	16 45	172	1720	1741
1320	1529	1539	1548	1559	16 II	1623	1637	1653	1710	1730	1752
1340	1535	1544	1555	165	16 I7	1631	1645	I7 I	I7 19	1740	183
140	1540	I5 50	16 I	16 I2	1624	1638	1653	1710	1729	1750	1814
1420	1546	1556	167	1619	163 I	1646	17 I	1719	1738	18 o	IS 26
1440	15 51	162	16 I 3	1625	1638	I6 53	179	1728	1748	I8 II	I8 38
150	1557	168	1619	1632	1646	17 I	1717	1737	1758	1822	I8 50
1520	162	1614	1626	1639	1653	178	1726	I7 46	188	1833	193
1540	168	1620	1632	1646	17 I	1717	1735	1755	18 I8	1845	1916
160	1614	1626	1639	1653	178	1725	I7 44	185	1829	1857	1930
1620	1620	1632	1646	17 o	1716	1733	1753	I8 15	1840	I9 Io	I9 45
1640	1626	1639	1652	177	1723	174 I	$18 \quad 2$	1825	1851	1923	201
170	1632	1645	1659	1714	1731	1750	18 II	1835	193	1936	2017
1720	1638	1652	176	1722	1739	1759	1821	1846	19 I5	1950	2035
1740	1645	1658	1713	1729	1747	188	183 I	I8 57	19 28	206	2055
180	16 51	175	1720	I7 37	I7 56	I8 17	I8 4I	19 8	1941	2022	2117
1820	1658	1712	1728	1745	I8 5	I8 26	1852	19 20	19 55	2040	2 I 42
1840	174	1719	1735	1753	I8 I4	I8 36	I9 3	19 33	2010	2059	2213
190	17 II	1726	1743	182	1823	I8 46	I9 I4	19 46	2026	2120	2258
1920	1717	1733	1751	18 ıo	1832	I8 56	1925	200	2044	2145	
1940	I7 24	1741	1759	1819	184 I	197	1937	2014	2 I 3	2216	
200	I7 3I	1748	187	1828	185 I	19 I9	1950	2030	2I 23	2259	
2020	1738	1756	1815	1837	I9 I	1930	204	2047	2447		
2040	1745	I8 4	1823	1846	19 I2	1942	2019	215	2217		
210	I7 52	14 II	1832	1856	1923	1925	2034	21 26	23 I		
2 L 20	18 o	2820	184 I	196	I9 34	208	2050	2150			
2140	188	I8 28	1850	19 I6	I9 46	2022	2 I 8	22 I9			
220	IS 16	1837	I9 0	1927	1958	2037	21 29	$23 \quad 2$			
2220	1824	I8 46	19 Io	1938	2011	2053	2152				
2240	I8 32	1855	I9 20	1950	2025	2111	2221				
230	1841	194	1931	$20 \quad 2$	2040	2131	233				
2320	1849	19 I3	I9 4I	20 I4	2056	2154					
$23 \quad 27$	I8 52	19 17	19 46	2019	2 I 2	223					

8mithbonian Tableb.

DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { of Sun. } \end{aligned}$	LATITUDE NORTH.				
	71°	72°	73°	74°	75°
$+8^{\circ} 0^{\prime}$	h. m.	h. m.	h. m.	h. m.	h. m.
	1535	1550	165	I6 23	I6 44
820	I5 44	I5 59	1616	1635	16 57
840	1553	169	1626	1646	17 10
90	163	1619	16 37	1658	1723
920	16 I2	1629	1648	17 Io	I7 37
940	1622	1639	1659	1723	1751
100	1631	1650	17 II	1735	I8 5
1020	1641	17	1722	1749	1820
IO 40	1650	17 II	1734	182	I8 36
110	17 I	1722	1747	18 I6	1852
II 20	17 II	1734	1759	1831	199
II 40	1722	1745	18 I3	I8 46	19 27
120	1732	1757	I8 26	19 I	I9 46
1220	1743	189	1840	I9 18	207
1240	1755	1822	1855	1935	2029
130	I8 6	1835	19 II	1954	2055
1320	I8 I8	I8 49	1926	2014	2123
I3 40	1830	192	1943	2035	21. 59
$\begin{array}{rrr}14 & 0 \\ 14 & 20\end{array}$	1843	1917	20 I	2 O	2250
	I8 56	I9 33	2020	2128	
1440	1910	I9 49	2041	222	
150	1924	207	2 I 5	2252	
1520	I9 40	2026	2132		
1540	1955	2046	225		
160	2013	2110	2254		
1620	20 3I	2136			
164	2051	228			
17	2113	2256			
17 17 17	2139				
1740	22 II				
	76°	77°	78°	79°	80°
$+8^{\circ} 0^{\prime}$	179	1739	1816	195	20 I5
820	1723	1755	I8 35	1929	2050
8	1738	I8 12	I8 56	1956	21 33
90	I7 53	1830	I9 17	2025	2235
920	188	1848	1941	2059	
940	IS 25	198	206	21 40	
100	I8 4 r	1928	2031	2239	
1020	I3 59	1950	216		
IO 40	19 18	20 I5	21 46		
110	1938	2041	2243		
II 20	1959	21.13			
II 40	2023	2I 50			
120	2049	2246			
1220	2119				
1240	2I 55				

Day of Month	Jan.	Feb.	Mar.
1	$-22^{\circ} 59^{\prime}$	$-17^{\circ} \mathrm{I}^{\prime}$	$-7^{\circ} 29^{\prime}$
4	2242	168	620
7	22 21	15 I 3	5 10
10	2 I 55	14 I5	4 O
13	2 L 26	1315	249
16	-20 53	$\begin{array}{lll}-12 & 14\end{array}$	- I 38
19	2017	II Io	-0 27
2 I	1950	1027	+o 21
24	198	921	I 32
27	1823	814	242
30	1735		352
	Apr.	May.	June.
1	$+4^{\circ} 39^{\prime}$	$+\mathrm{I} 5^{\circ}{ }^{\prime} \mathrm{IO}^{\prime}$	$+22^{\circ} 6^{\prime}$
4	548	163	2228
7	656	1653	2247
10	83	1742	23
13	$9 \quad 9$	$18 \quad 27$	2314
16	+10 13	+19 10	+23 22
19	II 16	1950	2327
21	II 57	2015	$23 \quad 27$
24	1257	2049	2325
27	I3 55	2 I 2I	2320
30	1451	2149	23 II
	July.	Aug.	Sept.
1	$+23^{\circ} 7^{\prime}$	+17 $7^{\circ} 58^{\prime}$	$+8^{\circ} \mathrm{I2}{ }^{\prime}$
4	2252	1712	76
7	2235	1622	559
10	22 I 3	1530	4 5I
13	2149	1437	342
16	+2I 21	+13 41	+233
19	2049	1243	123
2 I	2027	123	+o37
24	1950	II 2	-o 34
27	19 II	959	I 44
30	$18 \quad 28$	855	254
	Oct.	Nov.	Dec.
4	$-3^{3^{\circ}} 17^{\prime}{ }^{\prime}$	$\begin{array}{rrr}-14^{\circ} & 32^{\prime} \\ 15 & 28\end{array}$	$\left\lvert\, \begin{array}{cc} -2 I^{\circ} 52^{\prime} \\ 22 & 18 \end{array}\right.$
4	427	I5 28	22 I8
7	536	1622	$\begin{array}{lll}22 & 39\end{array}$
10	645	1714	2257
13	753	I8 3	23 II
16	-859	-I8 49	-231
19	105	1933	2326
21	Io 48	20 0	2327
24	1151	2037	2326
27	1253	$2 \mathrm{I} \quad 12$	2320
30	I3 53	2I 42	23 IO

RELATIVE INTENSITY OF SOLAR RADIATION.

Mean vertical intensity for 24 hours of solar radiation J and the solar constant A, in terms of the mean solar constant A_{0}.

Date.	Motion of the Sun in Longitude.	RELATIVE MEAN VERTICAL INTENSITY $\left(\frac{J}{A_{0}}\right)$.										$\frac{A}{A_{\circ}}$.
		LATITUDE NORTH.										
		0°	10°	20°	30°	40°	50°	60°	70°	80°	90°	
Jan. I	0.99	0.303	0.265	0.220	0.169	0.117	0.066	0.018				1.0335
	15.78	. 307	. 271	. 229	. 180	. 129	. 078	. 028				1.0324
Feb. I	31.54	-312	. 282	. 244	. 200	. 150	. 100	. 048	0.006			1.0288
15	45.34	. 317	. 293	. 261	. 223	. 177	. 118	. 075	. 027			1.0235
Mar. 1	59.14	. 320	- 303	. 279	. 245	. 204	. 158	. 108	. 056	0.013		I.or 73
16	73.93	. 321	-313	. 296	. 270	. 236	. 795	. 148	. 097	. 057		1.0096
$A p r . ~ 1 ~$	89.70	. 317	. 319	. 312	. 295	. 269	. 235	. 195	. 148	. IOI	0.082	1.0009
16	104.49	. 311	-32I	. 323	. 315	. 297	. 271	.238	. 201	. 175	. 177	0.9923
May I	119.29	. 303	. 318	. 330	- 329	- 320	- 302	. 278	. 253	. 255	. 259	0.9841
16	134.05	. 294	-318	. 333	. 339	. 337	. 327	$\cdot 312$. 298	. 317	. 322	0.9772
June 1	149.82	. 287	. 315	- 334	- 345	- 349	- 345	- 337	- 344	. 360	. 366	0.9714
16	164.60	. 283	-313	- 334	. 348	-354	- 353	. 348	.36I	. 378	. 384	0.9679
July 1	179.39	. 283	- 312	- 333	- 347	- 352	-35I	- 345	. 356	- 373	. 379	0.9666
16	194.13	. 287	. 314	-332	-342	- 345	-340	- 329	.33I	. 347	. 352	0.9674
Aug. 1	209.94	. 294	. 316	- 330	- 334	. 330	. 318	-300	. 282	. 295	. 300	0.9709
16	224.73	. 303	. 318	. 325	- 322	. 310	. 291	. 264	. 234	. 227	. 23 I	0.9760
Sept. 1	240.50	- 310	. 318	. 316	- 305	. 285	. 256	. 220	. 180	. 139	. 140	0.9828
16	255.29	. 315	. 315	. 305	. 284	. 256	. 220	. 178	. 130	. 107	. 043	0.9909
Oct. I	270.07	. 317	. 308	. 289	. 26 I	. 225	. 183	. 135	. 084	. 065		0.9995
16	284.86	. 316	. 298	. 271	. 236	. 194	. 147	. 097	. 047	. OI 5		1.0080
Nov. I	300.63	-312	. 286	. 251	. 211	. 164	. 114	. 063	. OI 8			1.0164
16	315.42	. 308	. 276	. 235	. 190	. 140	. 089	. 040				1.0235
Dec. I	330.19	. 304	. 267	. 224	. 175	. 124	. 072	. 024				1.0288
16	344.98	. 302	. 263	. 218	. 167	. 115	. 064	. 016				1.0323
Year....		0.305	0.301	0.289	0. 268	0.241	0.209	0. 173	O. 144	0. 133	0. 126	

CONVERSION OF LINEAR MEASURES.

Inches into millimetres Table 64
Millimetres into inches Table 65
Feet into metres Table 66
Metres into feet Table 67
Miles into kilometres Table 68
Kilometres into miles Table 69
Interconversion of nautical and statute miles Table 70Continental measures of length with their metric and EnglishequivalentsTable 71

1 inch $=25.40005 \mathrm{~mm}$.

Inches.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm .
0.00	0.00	0.25	0.51	0.76	1.02	1.27	1.52	1.78	2.03	2.29
0.10	2.54	2.79	3.05	3.30	3.56	3.81	4.06	4.32	4.57	4.83
0.20	5.08	5.33	5.59	5.84	6.10	6.35	6.60	6.86	7.11	7.37
0.30	7.62	7.87	8.13	8.38	8.64	8.89	9.14	9.40	9.65	9.91
0.40	10.16	10.41	10.67	10.92	11.18	11.43	1 I .68	II. 94	12.19	12.45
0.50	12.70	12.95	13.21	13.46	13.72	13.97	14.22	14.48	14.73	14.99
0.60	15.24	15.49	15.75	16.00	16.26	16.51	16.76	17.02	17.27	17.53
0.70	17.78	18.03	18.29	18.54	18.80	19.05	19.30	19.56	19.81	20.07
0.80	20.32	20.57	20.83	21.08	21.34	21.59	21.84	22.10	22.35	22.61
0.90	22.86	23.11	23.37	23.62	23.88	24.13	24.38	24.64	24.89	25.15
1.00	25.40	25.65	25.91	26.16	26.42	26.67	26.92	27.18	27.43	27.69
r.10	27.94	28.19	28.45	28.70	28.96	29.21	29.46	29.72	29.97	30.23
1.20	30.48	30.73	30.99	31.24	31.50	31.75	32.00	32.26	32.51	32.77
1.30	33.02	33.27	33.53	33.78	34.04	34.29	34.54	34.80	35.05	35.31
1.40	35.56	35.8 I	36.07	36.32	36.58	36.83	37.08	37.34	37.59	37.85
1.50	38.10	38.35	38.61	38.86	39.12	39.37	39.62	39.88	40.13	40.39
1.60	40.64	40.89	41.15	41.40	4 I .66	41.91	42.16	42.42	42.67	42.93
1.70	43.18	43.43	43.69	43.94	44.20	44.45	44.70	44.96	45.21	45.47
1.80	45.72	45.97	46.23	46.48	46.74	46.99	47.24	47.50	47.75	48.01
1.90	48.26	48.51	48.77	49.02	49.28	49.53	49.78	50.04	50.29	50.55
2.00	50.80	51.05	51.31	51.56	51.82	52.07	52.32	52.58	52.83	53.09
2.10	53.34	53.59	53.85	54.10	54.36	54.61	54.86	55.12	55.37	55.63
2.20	55.88	56.13	56.39	56.64	56.90	57.15	57.40	57.66	57.91	58.17
2.30	58.42	58.67	58.93	59.18	59.44	59.69	59.94	60.20	60.45	60.71
2.40	60.96	6 I .2 I	61.47	61.72	61.98	62.23	62.48	62.74	62.99	63.25
2.50	63.50	63.75	64.01	64.26	64.52	64.77	65.02	65.28	65.53	65.79
2.60	66.04	66.29	66.55	66.80	67.05	67.31	67.56	67.82	68.07	68.33
2.70	68.58	68.83	69.09	69.34	69.60	69.85	70.10	70.36	70.61	70.87
2.80	71.12	71.37	71.63	71.88	72.14	72.39	72.64	72.90	73.15	73.4 I
2.90	73.66	73.91	74.17	74.42	74.68	74.93	75.18	75.44	75.69	75.95
3.00	76.20	76.45	76.71	76.96	77.22	77.47	77.72	77.98	78.23	78.49
3.10	78.74	78.99	79.25	79.50	79.76	80.OI	80.26	80.52	80.77	81.03
3.20	81.28	81.53	81.79	82.04	82.30	82.55	82.8o	83.06	83.31	83.57
3.30	83.82	84.07	84.33	84.59	84.84	85.09	85.34	85.60	85.85	S6.II
3.40	86.36	86.61	86.87	87.12	87.38	87.63	87.88	88.14	88.39	88.65
3.50	88.90	89.15	89.41	89.66	89.92	90.17	90.42	90.68	90.93	91.19
3.60	91.44	91.69	91.95	92.20	92.46	92.71	92.96	93.22	93.47	93.73
3.70	93.98	94.23	94.49	94.74	95.00	95.25	95.50	95.76	96.01	96.27
3.80	96.52	96.77	97.03	97.28	97.54	97.79	98.04	98.30	98.55	98.81
3.90	99.06	99.3 I	99.57	99.82	100.08	100.33	100.58	100.84	101.09	101. 35
4.00	101. 60	101. 85	ro2.II	102.36	102.62	102.87	103.12	103.38	103.63	103.89
4.10	104.14	104.39	104.65	104.90	105.16	105.41	105.66	105.92	106.17	106.43
4.20	106.68	106.93	107.19	107.44	107.70	107.95	108.20	108.46	108.71	108.97
4.30	109.22	109.47	109.73	109.98	110.24	IIO. 49	110.74	111.00	III. 25	III.5I
4.40	111.76	II2.01	I I2.27	I 12.52	112.78	II 3.03	II 3.28	II 3.54	I 13.79	114.05
4.50	II4.30	I 14.55	II4.8I	II5.06	II5.32	115.57	115.82	116.08	II6.33	116.59
4.60	II 6.84	117.09	117.35	117.60	117.86	IIS.II	118.36	118.62	I 18.87	119.13
4.70	119.38	II9.63	I19.89	120.14	120.40	120.65	120.90	121.16	I2I.4I	121.67
4.80	121.92	122.17	122.43	122.68	122.94	123.19	123.44	123.70	123.95	124.21
4.90	124.46	124.71	124.97	125.22	125.48	125.73	125.98	126.24	I26.49	126.75
5.00	127.00	127.25	127.5 1	127.76	128.02	128.27	128.52	128.78	129.03	129.29
Proportional Parts		Inch. mm .	0.001	0.002	0.0030	$\begin{aligned} & 0.004 \\ & 0.102 \end{aligned}$	$5 \quad 0.006$	0.007	. 008	$\begin{aligned} & 0.009 \\ & 0.229 \end{aligned}$
			0.051	0.0760.	$7 \quad 0.152$		0.178	0.203		

INCHES INTO MILLIMETRES.
I inch $=25.40005 \mathrm{~mm}$.

Inches.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	mm.	mm.	mm.	mm.	mm.	mr	mm .	mm.	mm.	mm.
5.00	127.00	127.25	127.51	127.76	128.02	128.27	128.52	128.78	129.03	129.29
5.10	I29.54	129.79	130.05	130.30	130.56	130.81	131.06	131.32	I31.57	131.83
5.20	1 32.08	132.33	132.59	132.84	133.10	133.35	133.60	133.86	I 34.11	134.37
5.30	I 34.62	134.87	135.13	135.38	135.64	135.89	136.14	136.40	I 36.65	I36.91
5.40	137.16	I 37.41	137.67	137.92	138.18	I 38.43	138.68	I38.94	I 39.19	I 39.45
5.50	139.70	I 39.95	140.21	140.46	140.72	140.97	141.22	141.48	141.73	141.99
5.60	142.24	142.49	142.75	143.00	143.26	143.51	143.76	144.02	144.27	144.53
5.70	144.78	145.03	145.29	145.54	145.80	146.05	146.30	146.56	146.81	147.07
5.80	147.32	147.57	147.83	148.08	148.34	148.59	148.84	149.10	149.35	149.61
5.90	149.86	150.11	150.37	150.62	150.88	151.13	151.38	151.64	15 I .89	152.15
6.00	152.40	152.66	152.91	153.16	153.42	153.67	153.92	154.18	154.43	154.69
6.10	154.94	155.19	155.45	155.70	155.96	156.21	156.46	156.72	156.97	157.23
6.20	157.48	${ }^{157.73}$	157.99	158.24	158.50	158.75	159.00	159.26	159.51	159.77
6.30	160.02	160.27	160.53	160.78	161.04	161.29	161.54	161.8o	162.05	162.31
6.40	162.56	162.81	163.07	163.32	163.58	163.83	164.08	164.34	164.59	164.85
6.50	165.10	165.35	165.61	165.86	166.12	166.37	166.62	166.88	167.13	167.39
6.60	167.64	167.89	168.15	168.40	168.66	168.91	169. 16	169.42	169.67	169.93
6.70	170.18	170.43	170.69	170.94	171.20	171.45	171.70	171.96	172.21	172.47
6.80	172.72	172.97	173.23	173.48	173.74	173.99	174.24	174.50	174.75	175.01
6.90	175.26	175.51	175.77	176.02	176.28	176.53	176.78	177.04	177.29	177.55
7.00	177.80	178.05	178.31	178.56	178.82	179.07	179.32	179.58	179.83	I80.09
7.10	180.34	180.59	180.85	181.10	181. 36	18 I .61	18 I .86	182.12	182.37	182.63
7.20	182.88	183.13	183.39	183.64	183.90	184.15	184.40	184.66	184.91	185.17
7.30	185.42	185.67	185.93	186. 18	186.44	186.69	186.94	187.20	187.45	187.71
7.40	187.96	188.21	188.47	188.72	188.98	189.23	189.48	189.74	189.99	190.25
7.50	190.50	190.75	191.01	191.26	191.52	191.77	192.02	192.28	192.53	192.79
7.60	193.04	193.29	193.55	193.80	194.06	194.31	194.56	194.82	195.07	195.33
7.70	195.58	195.83	196.09	196.34	196.60	196.85	197. Io	197.36	197.61	197.87
7.80	198.12	198.37	198.63	198.88	199.14	199.39	199.64	199.90	200.15	200.4 I
7.90	200.66	200.91	201.17	201.42	201.68	201.93	202.18	202.44	202.69	202.95
8.00	203.20	203.45	203.71	203.96	204.22	204.47	204.72	204.98	205.23	205.49
8.10	205.74	205.99	206.25	206.50	206.76	207.01	207.26	207.52	207.77	208.03
8.20	208.28	208.53	208.79	209.04	209.30	209.55	209.80	210.06	210.31	210.57
8.30	210.82	211.07	211.33	211.58	211.84	212.09	212.34	212.60	212.85	213.11
8.40	213.36	213.61	213.87	214.12	214.38	214.63	214.88	215.14	215.39	215.65
8.50	215.90	216.15	216.41	216.66	216.92	217.17	217.42	217.68	217.93	218.19
8.60	218.44	218.69	218.95	219.20	219.46	219.71	219.96	220.22	220.47	220.73
8.70	220.98	221.23	221.49	221.74	222.00	222.25	222.50	222.76	223.01	223.27
8.80	223.52	223.77	224.03	224.28	224.54	224.79	225.04	225.30	225.55	225.81
8.90	226.06	226.31	226.57	226.82	227.08	227.33	227.58	227.84	228.09	228.35
9.00	228.60	228.85	229.11	229.36	229.62	229.87	230.12	230.38	230.63	230.89
9.10	231.14	231.39	231.65	23 I .90	232.16	232.41	232.66	232.92	233.17	233.43
9.20	233.68	233.93	234.19	234.44	234.70	234.95	235.20	235.46	235.71	235.97
9.30	236.22	236.47	236.73	236.98	237.24	237.49	237.74	238.00	238.25	238.51
9.40	238.76	239.01	239.27	239.52	239.78	240.03	240	240.54	240.79	241.05
9.50	241.30	241.55	241.81	242.06	242.32	242.57	242.82	243.08	243.33	243.59
9.60	243.84	244.09		244.60	244.86	245. II	245.36	245.62	245.87	246.13
9.70	246.38	246.63	246.89	247.14	247.40	247.65	247.90	248.16	248.41	248.67
9.80	248.92	249.17	249.43	249.68	249.94	250.19	250.44	250.70	250.95	251.21
9.90	251.46	251.71	251.97	252.22	252.48	252.73	252.98	253.24	253.49	253.75
10.00	254.00	254.25	254.51	254.76	255.02	255.27	255.52	255.78	256.03	256.29
Proportional Parts.			.	0.002	$\begin{array}{ll}0.03 & 0.004 \\ 0.076 & 0.102\end{array}$		$\begin{aligned} & 0.006 \\ & 0.152 \end{aligned}$	$\begin{aligned} & 0.007 \\ & 0.178 \end{aligned}$	0.008	$\begin{aligned} & 0.009 \\ & 0.229 \end{aligned}$
			.	. 51			0.203			

Smithsonian Tables.

I inch $=25.40005 \mathrm{~mm}$.

Inches.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	m	mm.	mm .	mm.	m	mm.	mm.	mm.	mm .	mm.
10.00	254.00	254.25	254.5I	254.76	255.02	255.27	255.52	255.78	256.03	256.29
10.10	256.54	256.79	257.05	257.30	257.56	257.81	258.06	258.32	258.57	258.83
10.20	259.08	259.33	259.59	259.84	260. 10	260.35	260.60	260.86	26I. II	261.37
10.30	26 t .62	261.87	262.13	262.38	262.64	262.89	263.14	263.40	263.65	263.91
10.40	264.16	264.4I	264.67	264.92	265.18	265.43	265.68	265.94	266.19	266.45
10.50	266.70	266.95	267.21	267.46	267.72	267.97	268.22	268.48	268.73	268.99
10.60	269.24	269.49	269.75	270.00	270.26	270.51	270.76	271.02	271.27	271.53
10.70	271.78	272.03	272.29	272.54	272.80	273.05	273.30	273.56	273.81	274.07
10.80	274.32	274.57	274.93	275.08	275.34	275.59	275.84	276.10	276.35	276.61
10.90	276.86	277.11	277.37	277.62	277.88	278.13	278.38	278.64	278.89	279.15
11.00	279.40	279.65	279.91	280.16	280.42	280.67	280.92	281.18	281.43	281. 69
11.10	281.94	282.19	282.45	282.70	282.96	283.21	283.46	283.72	283.97	284.23
I1. 20	284.48	284.73	284.99	285.24	285.50	285.75	286.00	286.26	286.51	286.77
11.30	287.02	287.27	287.53	287.78	288.04	288.29	288.54	288.80	289.05	289.3I
I 1.40	289.56	289.81	290.07	290.32	290.58	290.83	291.08	291.34	291.59	291.85
11.50	292.10	292.35	292.6I	292.86	293.12	293.37	293.62	293.88	294.13	294.39
11.60	294.64	294.89	295. I5	295.40	295.66	295.91	296.16	296.42	296.67	296.93
11.70	297.18	297.43	297.69	297.94	298.20	298.45	298.70	298.96	299.21	299.47
11.80	299.72	299.97	300.23	300.48	300.74	300.99	301.24	301.50	301.75	302.01
I 1.90	302.26	302.51	302.77	303.02	303.28	303.53	303.78	304.04	304.29	304.55
12.00	304.80	305.05	305.3I	305.56	305.82	306.07	306.32	306.58	306.83	307.09
12.10	307.34	307.59	307.85	308.10	308.36	308.6I	308.86	309.12	309.37	309.63
12.20	309.88	310.13	310.39	310.64	310.90	3II.15	311.40	3 II .66	3 II .91	312.17
12.30	312.42	312.67	312.93	313.18	313.44	313.69	3 I 3.94	314.20	314.45	314.71
12.40	314.96	315.21	315.47	315.72	315.98	316.23	316.48	316.74	316.99	317.25
12.50	317.50	317.75	318.01	318.26	318.52	318.77	319.02	319.28	319.53	319.79
12.60	320.04	320.29	320.55	320.80	321.06	321.31	32 I .56	321.82	322.07	322.33
12.70	322.58	322.83	323.09	323.34	323.60	323.85	324.10	324.36	324.61	324.87
12.80	325.12	325.37	325.63	325.88	326. 14	326.39	326.64	326.90	327.15	327.41
12.90	327.66	327.91	328.17	328.42	328.68	328.93	329.18	329.44	329.69	329.95
13.00	330.20	330.45	330.71	330.96	33 I .22	331.47	331.72	331.98	332.23	332.49
13.10	332.74	332.99	333.25	333.50	333.76	334.01	334.26	334.52	334.77	335.03
13.20	335.28	335.53	335.79	336.04	336.30	336.55	336.80	337.06	337.31	337.57
13.30	337.82	338.07	338.33	338.58	338.84	339.09	339.34	339.60	339.85	340.11
13.40	340.36	340.6I	340.87	341.12	341. 38	341.63	341.88	342.14	342.39	342.65
13.50	342.90	343. 5	343.41	343.66	343.92	344.17	344.42	344.68	344.93	345.19
13.60	345.44	345.69	345.95	346.20	346.46	346.71	346.96	347.22	347.47	347.73
13.70	347.98	348.23	348.49	348.74	349.00	349.25	349.50	349.76	350.01	350.27
13.80	350.52	350.77	351.03	351.28	351. 54	351.79	352.04	352.30	352.55	352.8I
13.90	353.06	353.3 I	353.57	353.82	354.08	354.33	354.58	354.84	355.09	355.35
14.00	355.60	355.85	356.11	356.36	356.62	356.87	357.12	357.38	357.63	357.89
14.10	358.14	358.39	358.65	358.90	359.16	359.41	359.66	359.92	360.17	360.43
14.20	360.68	360.93	361.19	361.44	361.70	36 I .95	362.20	362.46	362.71	362.97
14.30	363.22	363.47	363.73	363.98	364.24	364.49	364.74	365.00	365.25	365.51
14.40	365.76	366.01	366.27	366.52	366.78	367.03	367.28	367.54	367.79	368.05
14.50	368.30	368.55	368.8ı	369.06	369.32	369.57	369.82	370.08	370.33	370.59
14.60	370.84	371.09	371.35	371.60	371.86	372.11	372.36	372.62	372.87	373.13
14.70	373.38	373.63	373.89	374.14	374.40	374.65	374.90	375.16	375.4I	375.67
14.80	375.92	376.17	376.43	376.68	376.94	377.19	377.44	377.70	377.95	378.21
14.90	378.46	378.71	378.97	379.22	379.48	379.73	379.98	380.24	380.49	380.75
15.00	38 r .00	38 r .25	381.5I	381.76	382.02	382.27	382.52	382.78	383.03	383.29
Proportional Parts		S. $\begin{gathered}\text { Inch } \\ \mathrm{mm}\end{gathered}$. 0.001	0.002	0.003	$\begin{array}{ll} 4 & 0.005 \\ 2 & 0.127 \end{array}$	$\begin{array}{ll} 5 & 0.006 \\ 7 & 0.152 \end{array}$	0.007	0.008	0.0090.229
			0.051	0.076	0.178			0.203		

INCHES INTO MILLIMETRES.
I inch $=25.40005 \mathrm{~mm}$.

Inches.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	mm.		mm.	mm.	mm.	mm.			mm.	mm .
15.00	381.00	38 I .25	$3^{81} 1.51$	381.76	382.02	382.27	382.52	382.78	383.03	383.29
15.10	383.54	383.79	384.05	384.30	384.56	384.8I	385.06	385.32	385.57	385.83
15.20	386.08	386.33	386.59	386.84	387.10	387.35	387.60	387.86	388.11	388.37
15.30	388.62	388.87	389.13	389.38	389.64	389.89	390.14	390.40	390.65	390.91
15.40	391.16	391.41	391.67	391.92	392.18	392.43	392.68	392.94	393.19	393.45
15.50	393.70	393.95	394.21	394.46	394.72	394.97	395.22	395.48	395.73	395.99
15.60	396.24	39.649	396.75	397.00	397.26	397.5I	397.76	398.02	398.27	398.53
15.70	398.78	399.03	399.29	399.54	399.80	400.05	400.30	400.56	400.8r	401.07
15.80	401.32	401.57	401.83	402.08	402.34	402.59	402.84	403.10	403.35	403.61
15.90	403.86	404.1I	404.37	404.62	404.88	405. 13	405.38	405.64	405.89	406. 15
16.00	406.40	406.65	406.91	407.16	407.52	407.67	407.92	408.18	408.43	408.69
16.10	408.94	409.19	409.45	409.70	409.96	410.21	410.46	410.72	410.97	41 I .23
16.20	411.48	411.73	411.99	412.24	412.50	412.75	413.00	413.26	413.51	413.77
16.30	414.02	414.27	414.53	414.78	415.04	415.29	415.54	415.80	416.05	416.31
16.40	416.56	416.81	417.07	417.32	417.58	417.83	418.08	418.34	418.59	
16.50	419.10	419.35	419.61	419.86	420.12	420.37	420.62	420.88	421. I3	421.39
16.60	42 I .64	421.89	422.15	422.40	422.66	422.91	423.16	423.42	423.67	423.93
16.70	424. 18	424.43	424.69	424.94	425.20	425.45	425.70	425.96	426.21	426.47
16.80	426.72	426.97	427.23	427.48	427.74	427.99	428.24	428.50	428.75	429.01
16.90	429.26	429.51	429.77	430.02	430.28	430.53	430.78	431.04	431.29	43 I .55
17.00	431.80	432.05	432.31	432.56	432.82	433.07	433.32	433.58	433.83	434.09
17.10	434.34	434.59	434.85	435. 10	435.36	435.61	435.86	436.12	436.37	436.63
17.20	436:88	437.13	437.39	437.64	437.90	438.15	438.40	438.66	438.91	439.17
17.30	439.42	439.67	439.93	440.18	440.44	440.69	440.94	441.20	44 I .45	44r.71
17.40	441.96	442.2 I	442.47	442.72	442.98	443.23	443.48	443.74	443.99	444.25
17.50	444.50	444.75	445.01	445.26	445.52	445.77	446.02	446.28	446.53	446.79
17.60	447.04	447.29	447.55	447.80	448.06	448.31	448.56	448.82	449.07	449.33
17.70 1780	449.58	449.83	450.09	450.34	450.60	450.85	451.10	451.36	451.61	451.87
17.80	452.12	452.37	452.63	452.88	453.14	453.39	453.64	453.90	454.15	454.41
17.90	66	454.91	455.17	455.42	455.68	455.93	456.18	456.44	456.69	456.95
18.00	457.20	457.45	457.71	457.96	458.22	458.47	458.72	458.98	459.23	459.49
18.10	459.74	459.99	460.25	460.50	460.76	461.01	461. 26	461.52	46 I .77	462.03
18.20	462.28	462.53	462.79	463.04	463.30	463.55	463.80	464.06	464.31	464.57
18.30	464.82	465.07	465.33	465.58	465.84	466.09	466.34	466.60	466.85	467.11
18.40	467.36	467.61	467.87	468.12	468	468.63	468.88	469.14	469.39	469.35
18.50	469.90	470.15	470.41	470.66	470.92	47 I .17	471.42	47 I .68	471.93	472.19
18.60	472.44	472.69	472.95	473.20	473.46	473.71	473.96	474.22	474.47	474.73
18.70	474.98	475.23	475.49	475.74	476.00	476.25	476.50	476.76	477.01	477.27
18.80	477.52	477.77	478.03	478.28	478.54	478.79	479.04	479.30	479.55	479.81
18.90	48	480.31	480.57	48	481.08	481.33	481.58	48 r .84	482.09	482.35
19.00	482.60	482.85	483.11	483.36	483.62	483.87	484.12	484.38	484.63	484.89
19.10	485.14	485.39	485.65	485.90	486.16	486.41	486.66	486.92	487.17	487.43
19.20	487.68	487.93	488.19	488.44	488.70	488.95	489.20	489.46	489.71	489.97
19.30	490.22	490.47	490.73	490.98	491. 24	491.49	491. 74	492.00	492.25	492.51
19.40	492.76	493.01	493.27	493.52	493.78	494.03	494.28	494.54	494.79	495.05
19.50	495.30	495.55	495.81	496.06	496.32	496.57	496.82	497.08	497.33	
19.60	497.84	498.09	498.35	498.60	498.86	499.11	499.36	499.62	499.87	500.13
19.70	500.38	500.34	500.89	501.14	501.40	501.65	501.91	502.16	502.41	502.67
19.80	502.92	503.18	503.43	503.68	503.94	504.19	504.45	504.70	504.95	505.21
19.90	505.46	505.72	505.97	506.22	506.48	506.73	506.99	507.24	507.49	507.75
20.00	508.00	508.26	508.51	508.76	509.02	509.27	509.53	509.78	510.03	510.29
Proportional Part		Inch.mm.	.	0.002	0.003	0.0040.102	$\begin{aligned} & 0.006 \\ & 0.152 \end{aligned}$	0.007	0.008	$\begin{aligned} & 0.009 \\ & 0.229 \end{aligned}$
		.	. 05	0.076	0.178			0.203		

INCHES INTO MILLIMETRES.

I inch $=25.40005 \mathrm{~mm}$.

INCHES INTO MILLIMETRES.
1 inch $=25.40005 \mathrm{~mm}$.

Inches.	. 00	.01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	mm.	mm.	mm .	mm .	mm.	mm.	mm.	mm.	mm.	mm
25.00	635	635.26	635	635.76	636.02	636:27	636.53	636.78	637.03	637.29
25.10	637.54	637.80	638.05	638.30	638.56	638.81	639.07	639.32	639.57	639.83
25.20	640.08	640.34	640.59	640.84	641.10	641.35	641.6I	641.86	642.11	642.37
25.30	642.62	642.88	643.13	643.38	643.64	643.89	644.15	644.40	644.65	644.91
25.40	645.16	645.42	645.67	645.92	646. 18	646.43	646.69	646.94	647.19	647.45
25.50	647.70	647.96	648.21	648.46	648.72	648.97	649.23	649.48	649.73	649.99
25.60	650.24	650.50	650.75	651.00	651.26	651.51	651.77	652.02	654.27	652.53
25.70	652.78	653.04	653.29	653.54	653.80	654.05	654.31	654.56	654.81	655.07
25.80	655.32	655.58	655.83	656.08	656.34	656.59	656.85	657.10	657.35	657.6I
25.90	657.86	658.12	658.37	658.62	658.88	659. I3	659.39	659.64	659.89	660.15
26.00	660.40	660.66	660.91	66I.16	661.42	661.67	661.93	662.18	662.43	662.69
26.10	662.94	663.20	663.45	663.70	663.96	664.21	664.47	664.72	664.97	665.23
26.20	665.48	665.74	665.99	666.24	666.50	666.75	667.01	667.26	667.5I	667.77
26.30	668.02	668.28	668.53	668.78	669.04	669.29	669.55	669.80	670.05	670.31
26.40	670.56	670.82	671.07	671.32	671.58	671.83	672.09	672.34	672.59	672.85
26.50	673.10	673.36	673.61	673.86	674.12	674.37	674.63	674.88	675.13	675.39
26.60	675.64	675.90	676.15	676.40	676.66	676.91	677.17	677.42	677.67	677.93
26.70	678.18	678.44	678.69	678.94	679.20	679.45	679.71	679.96	680.21	680.47
26.80	680.72	680.98	681.23	681. 48	681.74	681.99	682.25	682.50	682.75	683.01
26.90	683.2	683.52	683.77	684.02	684.28	684.53	684.79	685.04	685.29	685.55
27.00	685.80	686.06	686.3I	686.56	686.82	687.07	687.33	687.58	687.83	688.09
27.10	688.34	688.60	688.85	689.10	689.36	689.6I	689.87	690.12	690.37	690.63
27.20	690.88	691.14	691.39	691.64	691.90	692.15	692.41	692.66	692.91	693. 7
27.30	693.42	693.68	693.93	694.18	694.44	694.69	694.95	695.20	695.45	695.7 I
27.40	695.96	696.22	696.47	696.72	696.98	697.23	697.49	697.74	697.99	698.25
27.50	698.50	698.76	699.01	699.26	699.52	699.77	700.03	700.28	700.53	700.79
27.60	701.04	701.30	701.55	701.80	702.06	702.21	702.57	702.82	703.07	703.33
27.70	703.58	703.84	704.09	704.34	704.60	704.85	705.11	705.36	705.6I	705.87
27.80	706.12	706.38	706.63	706.88	707.14	707.39	707.65	707.90	708.15	708.41
27.90	708.66	708.92	709.17	709.42	709.68	709.93	710.19.	710.44	710.69	710.95
28.00	7 II .20	711.46	711.71	711.96	712.22	712.47	712.73	712.98	713.23	713.49
28.10	713.74	714.00	714.25	714.50	714.76	715.01	715.27	715.52	715.77	716.03
28.20	716.28	716.54	716.79	717.04	717.30	717.55	717.81	718.06	718.31	718.57
28.30	718.82	719.08	719.33	719.58	719.84	720.09	720.35	720.60	720.85	721.11
28.40	721.36	721.62	721.87	722.12	722.39	722.63	722.89	723.14	723.39	723.65
28.50	723.90	724.16	724.4 r	724.66	724.92	725.17	725.43	725.68	725.93	726. 19
28.60	726.44	726.70	726.95	727.20	727.46	727.71	727.97	728.22	728.47	728.73
28.70	728.98	729.24	729.49	729.74	730.00	730.25	730.5I	730.76	73 I .01	731.27
28.80	731.52	731.78	732.03	732.28	732.54	732.79	733.05	733.30	733.55	733.8I
28.90	734.06	734.32	734.57	734.82	735.08	735.33	735.59	735.84	736.09	736.35
29.00	736.60	736.86	737.11	737.36	737.62	737.87	738.13	738.38	738.63	738.89
29.10	739.14	739.40	739.65	739.90	740.16	740.41	740.67	740.92	741.17	741.43
29.20	$74 \times .68$	741.94	742. 19	742.44	742.70	742.95	743.21	743.46	743.7 I	743.97
29.30	744.22	744.48	744.73	744.98	745.24	745.49	745.75	746.00	746.25	746.5I
29.40	746.76	747.02	747.27	747.52	747.78	748.03	748.29	748.54	748.79	749.05
29.50	749.30	749.56	749.81	750.06	750.32	750.57	750.83	751.08	751.33	751. 59
29.60	751.84	752.10	752.35	752.60	752.86	753.11	753.37	753.62	753.87	754.13
29.70	754.38	754.64	754.89	755.14	755.40	755.65	755.91	756.16	756.41	756.67
29.80	756.92	757.18	757.43	757.68	757.94	758.19	758.45	758.70	758.95	759.21
29.90	759.46	759.72	759.97	760.22	760.48	760.73	760.99	761.24	761.49	761.75
30.00	762.00	762.26	762.51	762.76	763.02	763.27	763.53	763.78	764.03	764.29
Proportional Parts		Inch. mm .	. 0.001	0.002	0.0030	$\begin{aligned} & 0.004 \\ & 0.102 \end{aligned}$	$\begin{aligned} & 0.006 \\ & 0.152 \end{aligned}$	0.007	0.008	$\begin{aligned} & 0.009 \\ & 0.229 \end{aligned}$
		0.025	0.051	0.076 0.	0.178			0.203		

INCHES INTO MILLIMETRES.
1 inch $=25.40005 \mathrm{~mm}$.

Inches.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	mm .	mm.	mm.	mm.	mm .	mm.	mm.	mm.	mm .	mm .
30.00	762.00	762.26	762.51	762.76	763.02	763.27	763.53	763.78	764.03	764.29
30.10	764.54	764.80	765.05	765.30	765.56	765.81	766.07	766.32	766.57	766.83
30.20	767.08	767.34	767.59	767.84	768.10	768.35	768.61	768.86	769.11	769.37
30.30	769.62	769.88	770.13	770.38	770.64	770.89	771.15	771.40	771.65	771.91
30.40	772.16	772.42	772.67	772.92	773.18	773.43	773.69	773.94	774.19	774.45
30.50	774.70	774.96	775.2I	775.46	775.72	775.97	776.23	776.48	776.73	776.99
30.60	777.24	777.50	777.75	778.00	778.26	778.51	778.77	779.02	779.27	779.53
30.70	779.78	780.04	780.29	780.54	780.80	78 I .05	781.31	781.56	781.81	782.07
30.80	782.32	782.58	782.83	783.08	783.34	783.59	783.85	784.10	784.35	784.6I
30.90	784.86	785.12	785.37	785.62	785.88	786.13	786.39	786.64	786.89	787.15
31.00	787.40	787.66	787.91	788.16	788.42	788.67	788.93	789.18	789.43	789.69
31.10	789.94	790.20	790.45	790.70	790.96	791.21	791.47	791.72	791.97	792.23
31.20	792.48	792.74	792.99	793.24	793.50	793.75	794.01	794.26	794.5I	794.77
31.30	795.02	795.28	795.53	795.78	796.04	796.29	796.55	796.80	797.05	797.3I
31.40	797.56	797.82	798.07	798.32	798.58	798.83	799.09	799.34	799.59	799.85
31.50	800.10	800.36	800.6 I	800.86	8 l .12	8or. 37	$80 r .63$	8or. 88	802.13	802.39
31.60	802.64	802.90	803.15	803.40	803.66	803.91	804.17	804.42	804.67	804.93
31.70	805.18	805.44	805.69	805.94	806.20	806.45	806.71	806.96	807.21	807.47
31.80	807.72	807.98	808.23	808.48	808.74	808.99	809.25	809.50	809.75	810.01
31.90	810.26	810. 52	810.77	8if. 02	8II. 28	8II. 53	8r1.79	812.04	8I2.29	812.55
32.00	812.80									
Proportional Parts		Inch. mm .	. 0.001	0.002	0.0030	$4 \quad 0.005$	-0.006	0.007	0.008	0.009
		0.025	0.051	0.076 0.	20.127	0.152	0.178	0.203	0.229	

Smithsonian Tableg.

MILLIMETRES INTO INCHES.

I mm. $=0.03937$ inch.

$1 \mathrm{~mm} .=0.03937$ inch .

Millimetres.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inches.	Iuches.	Inches.						
400	15.748	15.752	15.756	15.760	15.764	15.768	15.772	15.776	15.779	15.783
401	15.787	15.791	15.795	15.799	15.803	15.807	15.811	15.815	15.819	15.823
402	15.827	15.831	15.835	15.839	15.842	15.846	15.850	I 5.854	15.858	I 5.862
403	15.866	15.870	15.874	15.878	15.882	15.886	15.890	I5.894	15.898	15.902
404	15.905	15.909	15.913	15.917	15.921	15.925	15.929	15.933	15.937	15.941
405	15.945	15.949	15.953	15.957	15.961	15.965	15.968	15.972	15.976	15.980
406	15.984	15.988	15.992	15.996	16.000	16.004	16.008	16.012	16.016	16.020
407	16.024	16.028	16.031	16.035	16.039	16.043	16.047	16.051	16.055	16.059
408	16.063	16.067	16.071	16.075	16.079	16.083	16.087	16.091	16.094	16.098
409	16. 102	16.106	16.110	16.114	16.118	16.122	16.126	16.130	16.134	16.138
410	16. 142	16.146	16. 150	16.154	16.157	16.16r	16.165	16.169	16.173	16.177
411	16.18I	16.185	16.189	16.193	16.197	16.201	16.205	16.209	16.213	16.217
412	16.220	16.224	16.228	16.232	16.236	16.240	16.244	16.248	16.252	16.256
413	16.260	16.264	16.268	16.272	16.276	16.279	16.283	16.287	16.291	16.295
414	16.299	16.303	16.307	16.311	16.315	16.319	16.323	16.327	16.33 I	16.335
415	16.339	16.342	16.346	16.350	16.354	16.358	16.362	16.366	16.370	16.374
416	16.378	16.382	16.386	16.390	16.394	16.398	16.402	16.405	16.409	16.413
417	16.417	16.421	16.425	16.429	16.433	16.437	16.441	16.445	16.449	16.453
418	16.457	16.46 I	16.465	16.468	16.472	16.476	16.480	16.484	16.488	16.492
419	16.496	16.500	16.504	16.508	16.512	16.516	16.520	16.524	16.528	16.53 I
420	16.535	16.539	16.543	16.547	16.55 I	16.555	16.559	16.563	16.567	16.57 I
421	16.575	16.579	16.583	16.587	16.591	r6.594	16.598	16.602	16.606	16.610
422	16.614	16.618	I6.622	16.626	16.630	16.634	16.638	16.642	16.646	16.650
423	16.654	16.657	16.66I	16.665	16.669	16.673	16.677	16.68 I	16.685	16.689
424	16.693	16.697	16.701	16.705	16.709	16.713	16.717	16.720	16.724	16.728
425	16.732	16.736	16.740	16.744	16.748	16.752	16.756	16.760	16.764	16.768
426	16.772	16.776	16.779	16.783	16.787	16.791	16.795	16.799	16.803	16.807
427	16.81 I	16.815	16. ${ }^{1} 19$	16.823	16.827	16.831	16.835	16.839	16.842	16.846
428	16.850	16.854	16.858	16.862	16.866	16.870	16.874	16.878	16.882	16.886
429	16.890	16.894	16.898	16.902	16.905	16.909	16.913	16:917	16.92 I	16.925
430	16.929	16.933	16.937	16.941	16.945	16.949	16.953	16.957	16.961	16.965
431	16.968	16.972	16.976	I6.980	16.984	16.988	16.992	16.996	17.000	17.004
432	17.008	17.012	17.016	17.020	17.024	17.028	17.031	17.035	17.039	17.043
433	17.047	17.051	17.055	17.059	17.063	17.067	17.071	17.075	17.079	17.083
434	17.087	17.091	17.094	17.098	17.102	17.106	17.110	17.114	17.118	17.122
435	17.126	17.130	17.134	17.138	17.142	17.146	17.150	17.154	17.157	17.161
436	17.165	17.169	17.173	17.177	17.181	17.185	17.189	17.193	17.197	17.201
437	17.205	17.209	17.213	${ }^{17.217}$	17.220	17.224	17.228	17.232	17.236	17.240
438	17.244	17.248	17.252	17.256	17.260	17.264	17.268	17.272	17.276	17.279
439	17.283	17.287	17.291	17.295	17.299	17.303	17.307	17.311	17.315	17.319
440	17.323	17.327	17.33 I	17.335	17.339	17.342	17.346	17.350	17.354	${ }^{1} 7.358$
441	17.362	17.366	17.370	17.374	17.378	17.382	17.386	17.390	17.394	17.398
442	17.402	17.405	17.409	17.413	17.417	17.42 I	17.425	17.429	17.433	17.437
443	17.44 I	17.445	17.449	17.453	17.457	17.461	17.465	17.468	17.472	17.476
444	17.480	17.484	17.488	17.492	17.496	17.500	17.504	17.508	17.512	17.516
445	17.520	17.524	17.528	17.531	17.535	17.539	17.543	17.547	${ }^{1} 7.551$	17.555
446	17.559	17.563	17.567	17.571	17.575	17.579	17.583	17.587	17.591	17.594
447	17.598	17.602	17.606	17.610	17.614	17.618	17.622	17.626	17.630	17.634
448	17.638	17.642	17.646 17.685	17.650 17.689	17.654	17.657	17.661	17.665	17.669 17.709	17.673 17.713
449	17.677	17.681	17.685	17.689	17.693	17.697	17.701	17.705	17.709	17.713
450	17.717	17.720	17.724	17.728	17.732	17.736	17.740	17.744	17.74 S	17.752

MILLIMETRES INTO INCHES.
I mm. $=0.03937$ inch.

Millimetres.	. 0	. 1	. 2	. 3	. 4	. 5	6	. 7	8	. 9
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
450	17.717	17.720	17.724	17.728	17.732	17.736	17.740	17.744	17.748	17.752
451	17.756	17.760	17.764	17.768	17.772	17.776	17.779	17.783	17.787	17.791
452	17.795	17.799	17.803	17.807	17.81 I	I7.815	17.819	17.823	17.827	17.83 I
453	17.835	17.839	17.842	17.846	17.850	17.854	17.858	17.862	17.866	17.870
454	17.874	17.878	17.882	17.886	17.890	17.894	17.898	17.902	17.905	17.909
455	17.913	17.917	17.921	17.925	17.929	17.933	17.937	17.941	17.945	17.949
456	17.953	17.957	17.961	17.965	17.968	17.972	17.976	17.980	17.984	17.988
457	17.992	17.996	18.000	18.004	18.008	18.012	18.016	18.020	18.024	18.028
458	18.031	18.035	18.039	18.043	18.047	18.05I	18.055	18.059	18.063	18.067
459	18.071	18.075	18.079	18.083	18.087	18.091	18.094	18.098	18.102	18.106
460	18.110	18.114	I8.118	18. 122	18.126	18.130	18. 134	18.138	18.142	18.146
461	18.150	18.154	18.157	18.16I	18.165	18.169	18.173	18.177	18.18I	18.185
462	18.189	18.193	18.197	18.201	I8.205	18.209	18.213	18.216	18.220	18.224
463	18.228	18.232	18.236	18.240	18.244	18.248	18.252	I8.256	18.260	18.264
464	18.268	18.272	18.276	18.279	18.283	18.287	18.291	18.295	18.299	18.303
465	18.307	18.311	18.315	18.319	18.323	18.327	18.33I	18.335	18.339	18.342
466	18.346	18.350	18.354	18.358	18.362	I8.366	18.370	18.374	18.378	18.382
467	18.386	18.390	18.394	18.398	18.402	18.405	18.409	18.413	18.417	18.42 I
468	I8.425	18.429	18.433	18.437	18.441	18.445	18.449	18.453	18.457	18.46 I
469	18.465	18.468	18.472	18.476	18.480	18.484	18.488	18.492	18.496	18.500
470	18.504	18.508	18.512	18.516	18.520	18.524	18.528	18.53I	18.535	18.539
471	18.543	18.547	18.55 I	18.555	18.559	18.563	18.567	18.571	18.575	18.579
472	18.583	18.587	18.591	18.594	18.598	18.602	18.606	18.610	18.614	18.618
473	18.622	18.626	18.630	18.634	18.638	18.642	18.646	I8.650	18.654	18.657
474	18.661	18.665	18.669	18.673	18.677	18.681	18.685	18.689	18.693	18.697
475	18.701	18.705	18.709	18.713	18.716	18.720	18.724	18.728	18.732	18.736
476	18.740	18.744	18.748	18.752	18.756	18.760	18.764	18.768	18.772	18.776
477	18.779	18.783	18.787	18.791	18.795	18.799	18.803	18.807	18.811	18.815
478	18.819	18.823	18.827	18.83 I	18.835	18.839	I8.842	18.846	18.850	18.854
479	18.858	18.862	18.866	18.870	18.874	18.878	18.882	18.886	18.890	18.894
480	18.898	18.902	18.905	18.909	18.913	18.917	18.921	18.925	18.929	18.933
481	18.937	18.941	18.945	18.949	18.953	18.957	18.961	18.965	18.968	18.972
482	18.976	18.980	18.984	18.988	18.992	18.996	19.000	19.004	19.008	19.012
483	19.016	19.020	19.024	19.028	19.03I	19.035	19.039	19.043	19.047	19.05 I
484	19.055	19.059	19.063	19.067	19.071	19.075	19.079	19.083	19.087	19.091
485	19.094	19.098	19.102	19.106	19.110	19.114	19.118	19.122	19. 126	19.130
486	19.134	19.138	19.142	19.146	19.150	19.154	19. 157	19.16I	19.165	19.169
487	19.173	19.177	19.181	19.185	19.189	19.193	I9.197	19.201	19.205	19.209
488	19.213	19.216	19.220	19.224	19.228	19.232	19.236	19.240	19.244	19.248
489	19.252	19.256	19.260	19.264	19.268	19.272	19.276	19.279	19.283	19.287
490	19.291	19.295	19.299	19.303	19.307	19.3II	19.315	19.319	19.323	19.327
49 I	19.33 I	19.335	19.339	19.342	19.346	19.350	19.354	19.358	19.362	19.366
492	19.370	19.374	19.378	19.382	19.386	19.390	19.394	19.398	19.402	19.405
493	19.409	19.413	19.417	19.42 I	19.425	19.429	19.433	19.437	19.441	19.445
494	19.449	19.453	19.457	19.461	19.465	19.468	19.472	19.476	19.480	19.484
495	19.488	19.492	19.496	19.500	19.504	19.508	19.512	19.516	19.520	19.524
496	19.528	19.53 I	19.535	19.539	19.543	19.547	19.551	19.555	19.559	19.563
497	I9.567	19.571	19.575	19.579	19.583	19.587	19.591	19.594	19.598	19.602
498	19.606	19.610	19.614	19.618	19.622	19.626	19.630	19.634	19.638	19.642
499	19.646	19.650	19.654	19.657	19.66I	19.665	19.669	19.673	19.677	19.68I
500	19.685	19.689	19.693	19.697	19.701	19.705	19.709	19.713	19.716	19.720

MILLIMETRES INTO INCHES.
$1 \mathrm{~mm} .=0.03937$ inch .

Millimetres.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
500	19.685	19.689	19.693	19.697	19.701	19.705	19.709	19.713	19.716	19.720
501	19.724	19.728	19.732	19.736	19.740	19.744	19.748	19.752	19.756	19.760
502	19.764	19.768	19.772	19.776	19.779	19.783	19.787	19.791	19.795	19.799
503	19.803	19.807	19.811	19.815	19.819	19.823	19.827	19.831	19.835	19.839
504	19.842	19.846	19.850	19.854	19.858	19.862	19.866	19.870	19.874	19.878
505	19.882	19.886	19.890	19.894	19.898	19.902	19.905	19.909	19.913	19.917
506	19.92 I	19.925	19.929	19.933	19.937	19.94 I	19.945	19.949	19.953	19.957
507	19.961	19.965	19.968	19.972	19.976	19.980	19.984	19.988	19.992	19.996
508	20.000	20.004	20.008	20.012	20.016	20.025	20.024	20.028	20.03 I	20.035
509	20.039	20.043	20.047	20.051	20.055	20.059	20.063	20.067	20.07 I	20.075
510	20.079	20.083	20.087	20.091	20.094	20.098	20.102	20.106	20.110	20.114
511	20.118	20.122	20.126	20.130	20.134	20.138	20.142	20.146	20.150	20.154
512	20.157	20.16I	20.165	20.169	20.173	20.177	20.181	20.185	20.189	20.193
513	20.197	20.201	20.205	20.209	20.213	20.216	20.220	20.224	20.228	20.232
5I4	20.236	20.240	20.244	20.248	20.252	20.256	20.260	20.264	20.268	20.272
515	20.276	20.279	20.283	20.287	20.291	20.295	20.299	20.303	20.307	20.311
516	20.315	20.319	20.323	20.327	20.33I	20.335	20.339	20.342	20.346	20.350
517	20.354	20.358	20.362	20.366	20.370	20.374	20.378	20.382	20.386	20.390
518	20.394	20.398	20.402	20.405	20.409	20.413	20.417	20.42 I	20.425	20.429
519	20.433	20.437	20.44 I	20.445	20.449	20.453	20.457	20.461	20.465	20.468
520	20.472	20.476	20.480	20.484	20.488	20.492	20.496	20.500	20.504	20.508
521	20.512	20.516	20.520	20.524	20.528	20.53 I	20.535	20.539	20.543	20.547
522	20.55 I	20.555	20.559	20.563	20.567	20.571	20.575	20.579	20.583	20.587
523	20.591	20.594	20.598	20.602	20.606	20.610	20.614	20.618	20.622	20.626
524	20.630	20.634	20.638	20.642	20.646	20.650	20.654	20.657	20.66I	20.665
525	20.669	20.673	20.677	20.68I	20.685	20.689	20.693	20.697	20.701	20.705
526	20.709	20.713	20.716	20.720	20.724	20.728	20.732	20.736	20.740	20.744
527	20.748	20.752	20.756	20.760	20.764	20.768	20.772	20.776	20.779	20.783
528	20.787	20.791	20.795	20.799	20.803	20.807	20.81 I	20.815	20.819	20.823
529	20.827	20.83 I	20.835	20.839	20.842	20.846	20.850	20.854	20.858	20.862
530	20.866	20.870	20.874	20.878	20.882	20.886	20.890	20.894	20.898	20.902
531	20.905	20.909	20.913	20.917	20.92 I	20.925	20.929	20.933	20.937	20.941
532	20.945	20.949	20.953	20.957	20.96I	20.965	20.968	20.972	20.976	20.980
533	20.984	20.988	20.992	20.996	21.000	21.004	21.008	21.012	21.016	21.020
534	21.024	21.028	21.03I	21.035	21.039	21.043	21.047	21.051	21.055	21.059
535	21.063	21.067	21.07I	21.075	2 I .079	21.083	21.087	21.091	21.094	21.098
536	21.102	21.106	21.110	21.114	21.118	21.122	21.126	21.130	21.134	21.138
537	21.142	21.146	21.150	21.154	2 I .157	21.16I	21.165	21.169	21.173	21.177
538	21.18I	21.185	21.189	21.193	21.197	21.201	21.205	21.209	21.213	21.216
539	21.220	21.224	21.228	21.232	21.236	21.240	21.244	21.248	21.252	21.256
540	21.260	21.264	21.268	21.272	21.276	21.279	21.283	21.287	21.29I	21.295
541	21.299	21.303	21.307	21.311	2 I .315	21.319	21.323	21.327	21.33I	21.335
542	21.339	21.342	21.346	21.350	2 I .354	2 I .358	21.362	21.366	21.370	21.374
543	21.378	21.382	21.386	21.390	21.394	2 I .398	21.402	21.405	21.409	2 I .413
544	21.417	21.421	21.425	21.429	21.433	21.437	21.441	21.445	21.449	21.453
545	2 I .457	21.461	21.465	21.468	21.472	21.476	21.48o	21.484	21.488	2 I .492
546	21.496	21.500	21.504	21.508	21.512	21.516	21.520	21.524	21.528	21.53 I
547	21.535	21. 539	21.543	21.547	21.55I	21.555	21.559	21.563	21.567	21.57 I
548	21.575	21.579	21.583	21.587	21.591	21.594	21.598	21.602	21.606	21.610
549	21.614	21.618	21.622	21.626	21.630	21.634	21.638	21.642	21.646	21.650
550	21.654	21.657	21.661	21.665	21.66s	21.673	21.677	21.68I	21.685	21.689

MILLIMETRES INTO INCHES.

$1 \mathrm{~mm} .=0.03937$ inch.

Millimetres.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
550	21.654	21.657	21.66r	21.665	21.669	21.673	21.677	21.68I	21.685	21.689
551	21.693	21.697	21.701	21.705	21.709	21.713	21.716	21.720	21.724	21.728
552	21.732	21.736	21.740	21.744	21.748	21.752	21.756	21.760	21.764	21.768
553	21.772	21.776	21.779	21.783	21.787	21.791	21.795	21.799	21.803	21.807
554	21.8II	21.815	21.819	21.823	21.827	21.83 I	21.835	21.839	21.842	21.846
555	21.850	21.854	21.858	21.862	21.866	21.870	21.874	21.878	21.882	21.886
556	21.890	21.894	21.898	21.902	21.905	21.909	21.913	21.917	21.921	21.925
557	21.929	21.933	21.937	21.941	21.945	21.949	21.953	21.957	21.961	21.965
558	21.968	21.972	21.976	21.980	21.984	21.988	21.992	21.996	22.000	22.004
559	22.008	22.012	22.016	22.020	22.024	22.028	22.03 I	22.035	22.039	22.043
560	22.047	22.051	22.055	22.059	22.063	22.067	22.071	22.075	22.079	22.083
561	22.087	22.091	22.094	22.098	22.102	22.106	22.110	22.114	22.118	22.122
562	22.126	22.130	22.134	22.138	22.142	22.146	22.150	22.153	22.157	22.16I
563	22.165	22.169	22.173	22.177	22.181	22.185	22.189	22.193	22.197	22.201
564	22.205	22.209	22.213	22.216	22.220	22.224	22.228	22.232	22.236	22.240
565	22.244	22.248	22.252	22.256	22.260	22.264	22.268	22.272	22.276	22.279
566	22.283	22.287	22.29 I	22.295	22.299	22.303	22.307	22.311	22.315	22.319
567	22.323	22.327	22.33 I	22.335	22.339	22.342	22.346	22.350	22.354	22.358
568	22.362	22.366	22.370	22.374	22.378	22.382	22.386	22.390	22.394	22.398
569	22.402	22.405	22.409	22.413	22.417	22.42 I	22.425	22.429	22.433	22.437
570	22.44 I	22.445	22.449	22.453	22.457	22.46 I	22.465	22.468	22.472	22.476
571	22.480	22.484	22.488	22.492	22.496	22.500	22.504	22.508	22.512	22.516
572	22.520	22.524	22.528	22.53 I	22.535	22.539	22.543	22.547	22.55 I	22.555
573	22.559	22.563	22.567	22.57 I	22.575	22.579	22.583	22.587	22.59 I	22.594
574	22.598	22.602	22.606	22.610	22.614	22.618	22.622	22.626	22.630	22.634
575	22.638	22.642	22.646	22.650	22.653	22.657	22.661	22.665	22.669	22.673
576	22.677	22.681	22.685	22.689	22.693	22.697	22.701	22.705	22.709	22.713
577	22.716	22.720	22.724	22.728	22.732	22.736	22.740	22.744	22.748	22.752
578	22.756	22.760	22.764	22.768	22.772	22.776	22.779	22.783	22.787	22.791
579	22.795	22.799	22.803	22.807	22.8II	22.815	22.819	22.823	22.827	22.83 r
580	22.835	22.839	22.842	22.846	22.850	22.854	22.858	22.862	22.866	22.870
581	22.874	22.878	22.882	22.886	22.890	22.894	22.898	22.902	22.905	22.909
582	22.913	22.917	22.921	22.925	22.929	22.933	22.937	22.94 I	22.945	22.949
583	22.953	22.957	22.961	22.965	22.968	22.972	22.976	22.980	22.984	22.988
584	22.992	22.996	23.000	23.004	23.008	23.012	23.016	23.020	23.024	23.028
585	23.031	23.035	23.039	23.043	23.047	23.051	23.055	23.059	23.063	23.067
586	23.071	23.075	23.079	23.083	23.087	23.091	23.094	23.098	23.102	23.106
587	23.110	23.114	23.118	23.122	23.126	23.130	23.134	23.138	23.142	23.146
588	23.150	23.153	23.157	23.16I	23.165	23.169	23.173	23.177	23.181	23.185
589	23.189	23.193	23. 197	23.201	23.205	23.209	23.213	23.216	23.220	23.224
590	23.228	23.232	23.236	23.240	23.244	23.248	23.252	23.256	23.260	23.264
591	23.268	23.272	23.276	23.279	23.283	23.287	23.291	23.295	23.299	23.303
592	23.307	23.311	23.315	23.319	23.323	23.327	23.331	23.335	23.339	23.342
593	23.346	23.350	23.354	23.358	23.362	23.366	23.370	23.374	23.378	23.382
594	23.386	23.390	23.394	23.398	23.402	23.405	23.409	23.413	23.417	23.42 I
595	23.425	23.429	23.433	23.437	23.44 I	23.445	23.449	23.453	23.457	23.461
596	23.465	23.468	23.472	23.476	23.480	23.484	23.488	23.492	23.496	23.500
597	23.504	23.508	23.512	23.516	23.520	23.524	23.528	23.53 I	23.535	23.539
598	23.543	23.547	23.551	23.555	23.559	23.563	23.567	23.57 I	23.575	23.579
599	23.583	23.587	23.591	23.594	23.598	23.602	23.606	23.610	23.614	23.618
600	23.622	23.626	23.630	23.634	23.638	23.642	23.646	23.650	23.653	23.657

I mm. $=0.03937$ inch.

Millimetres.	. 0	.	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
600	23.622	23.626	23.630	23.634	23.638	23.642	23.646	23.650	23.653	23.657
601	23.661	23.665	23.669	23.673	23.677	23.68I	23.685	23.689	23.693	23.697
602	23.701	23.705	23.709	23.713	23.716	23.720	23.724	23.728	23.732	23.736
603	23.740	23.744	23.748	23.752	23.756	23.760	23.764	23.768	23.772	23.776
604	23.779	23.783	23.787	23.791	23.795	23.799	23.803	23.807	23.8 II	23.815
605	23.819	23.823	23.827	23.831	23.835	23.839	23.842	23.846	23.850	23.854
606	23.858	23.862	23.866	23.870	23.874	23.878	23.882	23.886	23.890	23.894
607	23.898	23.902	23.905	23.909	23.913.	23.917	23.921	23.925	23.929	23.933
608	23.937	23.941	23.945	23.949	23.953	23.957	23.96I	23.965	23.968	23.972
609	23.976	23.980	23.984	23.988	23.992	23.996	24.000	24.004	24.008	24.012
610	24.016	24.020	24.024	24.028	24.031	24.035	24.039	24.043	24.047	24.05 I
611	24.055	24.059	24.063	24.067	24.071	24.075	24.079	24.083	24.087	24.091
612	24.094	24.098	24. 102	24.106	24. 110	24. II 4	24.118	24.122	24.126	24.130
613	24.134	24.138	24.142	24.146	24.150	24.153	24.157	24.16I	24.165	24.169
614	24.173	24.177	24.181	24.185	24.189	24. 193	24.197	24.201	24.205	24.209
615	24.213	24.216	24.220	24.224	24.228	24.232	24.236	24.240	24.244	24.248
616	24.252	24.256	24.260	24.264	24.268	24.272	24.276	24.279	24.283	24.287
617	24.291	24.295	24.299	24.303	24.307	24.311	24.315	24.319	24.323	24.327
6 I 8	24.331	24.335	24.339	24.342	24.346	24.350	24.354	24.358	24.362	24.366
619	24.370	24.374	24.378	24.382	24.386	24.390	24.394	24.398	24.402	24.405
620	24.409	24.413	24.417	24.42 I	24.425	24.429	24.433	24.437	24.44 I	24.445
621	24.449	24.453	24.457	24.461	24.465	24.468	24.472	24.476	24.480	24.484
622	24.488	24.492	24.496	24.500	24.504	24.508	24.512	24.516	24.520	24.524
623	24.528	24.531	24.535	24.539	24.543	24.547	24.55I	24.555	24.559	24.563
624	24.567	24.57 I	24.575	24.579	24.583	24.587	24.59I	24.594	24.598	24.602
625	24.606	24.610	24.614	24.618	24.622	24.626	24.630	24.634	24.638	24.642
626	24.646	24.650	24.653	24.657	24.661	24.665	24.669	24.673	24.677	24.68I
627	24.685	24.689	24.693	24.697	24.701	24.705	24.709	24.713	24.716	24.720
628	24.724	24.728	24.732	24.736	24.740	24.744	24.748	24.752	24.756	24.760
629	24.764	24.768	24.772	24.776	24.779	24.783	24.787	24.79I	24.795	24.799
630	24.803	24.807	24.8 II	24.815	24.819	24.823	24.827	24.83 I	24.835	24.839
631	24.842	24.846	24.850	24.854	24.858	24.862	24.866	24.870	24.874	24.878
632	24.882	24.886	24.890	24.894	24.898	24.902	24.905	24.909	24.913	24.917
633	24.92 I	24.925	24.929	24.933	24.937	24.94 I	24.945	24.949	24.953	24.957
634	24.961	24.965	24.968	24.972	24.976	24.980	24.984	24.988	24.992	24.996
635	25.000	25.004	25.008	25.012	25.016	25.020	25.024	25.028	25.031	25.035
636	25.039	25.043	25.047	25.05I	25.055	25.059	25.063	25.067	25.07 I	25.075
637	25.079	25.083	25.087	25.091	25.094	25.098	25. IO2	25.106	25.110	25.1 I4
638	25.118	25.122	25.126	25.130	25.134	25.138	25.142	25.146	25.150	25.153
639	25.157	25.16I	25.165	25.169	25.173	25.177	25.181	25.185	25.189	25.193
640	25:197	25.201	25.205	25.209	25.213	25.216	25.220	25.224	25.228	25.232
641	25.236	25.240	25.244	25.248	25.252	25.256	25.260	25.264	25.268	25.272
642	25.276	25.279	25.283	25.287	25.29 I	25.295	25.299	25.303	25.307	25.3 II
643	25.315	25.319	25.323	25.327	25.33I	25.335	25.339	25.342	25.346	25.350
644	25.354	25.358	25.362	25.366	25.370	25.374	25.378	25.382	25.386	25.390
645	25.394	25.398	25.402	25.405	25.409	25.413	25.417	25.42 I	25.425	25.429
646	25.433	25.437	25.441	25.445	25.449	25.453	25.457	25.46 I	25.465	25.468
647	25.472	25.476	25.480	25.484	25.488	25.492	25.496	25.500	25.504	25.508
648	25.512	25.516	25.520	25.524	25.528	25.53 I	25.535	25.539	25.543	25.547
649	25.55 I	25.555	25.559	25.563	25.567	25.571	25.575	25.579	25.583	25.587
650	25.59I	25.594	25.598	25.602	25.606	25.610	25.614	25.618	25.622	25.626

TABLE 65.

MILLIMETRES INTO INCHES.
$1 \mathrm{~mm} .=0.03937$ inch .

Millimetres.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
650	25.591	25.594	25.598	25.602	25.606	25.610	25.614	25.618	25.622	25.626
651	25.630	25.634	25.638	25.642	25.646	25.650	25.653	25.657	25.661	25.665
652	25.669	25.673	25.677	25.681	25.685	25.689	25.693	25.697	25.7 OI	25.705
653	25.709	25.713	25.716	25.720	25.724	25.728	25.732	25.736	25.740	25.744
654	25.748	25.752	25.756	25.760	25.764	25.768	25.772	25.776	25.779	25.783
655	25.787	25.791	25.795	25.799	25.803	25.807	25.8 II	25.815	25.819	25.823
656	25.827	25.831	25.835	25.839	25.842	25.846	25.850	25.854	25.858	25.862
657	25.866	25.870	25.874	25.878	25.882	25.886	25.890	25.894	25.898	25.902
658	25.905	25.909	25.913	25.917	25.921	25.925	25.929	25.933	25.937	25.941
659	25.945	25.949	25.953	25.957	25.961	25.965	25.968	25.972	25.976	25.980
660	25.984	25.988	25.992	25.996	26.000	26.004	26.008	26.012	26.016	26.020
661	26.024	26.028	26.031	26.035	26.039	26.043	26.047	26.051	26.055	26.059
662	26.063	26.067	26.071	26.075	26.079	26.083	26.087	26.090	26.094	26.098
663	26.102	26.106	26.110	26.114	26.118	26.122	26.126	26.130	26.134	26.138
664	26.142	26.146	26.150	26.153	26.157	26.16I	26.165	26.169	26.173	26.177
665	26.181	26.185	26.189	26.193	26.197	26.201	26.205	26.209	26.213	26.216
666	26.220	26.224	26.228	26.232	26.236	26.240	26.244	26.248	26.252	26.256
667	26.260	26.264	26.268	26.272	26.276	26.279	26.283	26.287	26.291	26.295
668	26.299	26.303	26.307	26.311	26.315	26.319	26.323	26.327	26.33 I	26.335
669	26.339	26.342	26.346	26.350	26.354	26.358	26.362	26.366	26.370	26.374
670	26.378	26.382	26.386	26.390	26.394	26.398	26.402	26.405	26.409	26.413
671	26.417	26.421	26.425	26.429	26.433	26.437	26.44 I	26.445	26.449	26.453
672	26.457	26.461	26.465	26.468	26.472	26.476	26.480	26.484	26.488	26.492
673	26.496	26.500	26.504	26.508	26.512	26.516	26.520	26.524	26.528	26.531
674	26.535	26.539	26.543	26.547	26.55 I	26.555	26.559	26.563	26.567	26.571
675	26.575	26.579	26.583	26.587	26.590	26.594	26.598	26.602	26.606	26.610
676	26.614	26.618	26.622	26.626	26.630	26.634	26.638	26.642	26.646	26.650
677	26.653	26.657	26.66I	26.665	26.669	26.673	26.677	26.68I	26.685	26.689
678	26.693	26.697	26.701	26.705	26.709	26.713	26.716	26.720	26.724	26.728
679	26.732	26.736	26.740	26.744	26.748	26.752	26.756	26.760	26.764	26.768
680	26.772	26.776	26.779	26.783	26.787	26.791	26.795	26.799	26.803	26.807
681	26.81 I	26.815	26.819	26.823	26.827	26.831	26.835	26.838	26.842	26.846
682	26.850	26.854	26.858	26.862	26.866	26.870	26.874	26.878	26.882	26.886
683	26.890	26.894	26.898	26.902	26.905	26.909	26.913	26.917	26.92 I	26.925
684	26.929	26.933	26.937	26.94 I	26.945	26.949	26.953	26.957	26.96I	26.965
685	26.968	26.972	26.976	26.980	26.984	26.988	26.992	26.996	27.000	27.004
686	27.008	27.012	27.016	27.020	27.024	27.028	27.031	27.035	27.039	27.043
687	27.047	27.051	27.055	27.059	27.063	27.067	27.071	27.075	27.079	27.083
688	27.087	27.090	27.094	27.098	27.102	27.106	27.110	27.114	27.118	27.122
689	27.126	27.130	27.134	27.138	27.142	27.146	27.150	27.153	27.157	27.16I
690	27.165	27.169	27.173	27.177	27.181	27.185	27.189	27.193	27.197	27.201
691	27.205	27.209	27.213	27.216	27.220	27.224	27.228	27.232	27.236	27.240
692	27.244	27.248	27.252	27.256	27.260	27.264	27.268	27.272	27.276	27.279
693	27.283	27.287	27.291	27.295	27.299	27.303	27.307	$27 \cdot 311$	27.315	27.319
694	27.323	27.327	27.33I	27.335	27.339	27.342	27.346	27.350	27.354	27.358
695	27.362	27.366	27.370	27.374	27.378	27.382	27.386	27.390	27.394	27.398
696	27.402	27.405	27.409	27.413	27.417	27.421	27.425	27.429	27.433	27.437
697	27.44 I	27.445	27.449	27.453	27.457	27.461	27.465	27.468	27.472	27.476
698	27.480	27.484	27.488	27.492	27.496	27.500	27.504	27.508	27.512	27.516
699	27.520	27.524	27.528	27.53 I	27.535	27.539	27.543	27.547	27.551	27.555
700	27.559	27.563	27.567	27.57 I	27.575	27.579	27.583	27.587	27.590	27.594

Millimetres into inches.

$1 \mathrm{~mm} .=0.03937$ inch.

Millimetres.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches
700	27.559	27.563	27.567	27.57 I	27.575	27.579	27.583	27.587	27.590	27.594
701	27.598	27.602	27.606	27.610	27.614	27.618	27.622	27.626	27.630	27.634
702	27.638	27.642	27.646	27.650	27.653	27.657	27.661	27.665	27.669	27.673
703	27.677	27.68 I	27.685	27.689	27.693	27.697	27.701	27.705	27.709	27.713
704	27.716	27.720	27.724	27.728	27.732	27.736	27.740	27.744	27.748	27.752
705	27.756	27.760	27.764	27.768	27.772	27.776	27.779	27.783	27.787	27.791
706	27.795	27.799	27.803	27.807	27.811	27.815	27.819	27.823	27.827	27.83 I
707	27.835	27.839	27.842	27.846	27.850	27.854	27.858	27.862	27.866	27.870
708	27.874	27.878	27.882	27.886	27.890	27.894	27.898	27.902	27.905	27.909
709	27.913	27.917	27.92I	27.925	27.929	27.933	27.937	27.94I	27.945	27.949
710	27.953	27.957	27.961	27.965	27.968	27.972	27.976	27.980	27.984	27.988
711	27.992	27.996	28.000	28.004	28.008	28.012	28.016	28.020	28.024	28.028
712	28.031	28.035	28.039	28.043	28.047	28.051	28.055	28.059	28.063	28.067
713	28.071	28.075	28.079	28.083	28.087	28.090	28.094	28.098	28.102	28.106
714	28.110	28.114	28. 118	28. 122	28. 126	28. 130	28.134	28.138	28.142	28.146
715	28.150	28. 153	28. 157	28.16I	28.165	28.169	28. 173	28.177	28.181	28.185
716	28.189	28. 193	28.197	28.201	28.205	28.209	28.213	28.216	28.220	28.224
717	28.228	28.232	28.236	28.240	28.244	28.248	28.252	28.256	28.260	28.264
718	28.268	28.272	28.276	28.279	28.283	28.287	28.291	28.295	28.299	2 S .303
719	28.307	28.311	28.315	28.319	28.323	28.327	28.331	28.335	28.339	28.342
720	28.346	28.350	28.354	28.358	28.362	28.366	28.370	28.374	28.378	28.382
721	28.386	28.390	28.394	28.398	28.402	28.405	28.409	28.413	28.417	28.42 I
722	28.425	28.429	28.433	28.437	28.44 I	28.445	28.449	28.453	28.457	28.461
723	28.465	28.468	28.472	28.476	28.480	28.484	28.488	28.492	28.496	28.500
724	28.504	28.508	28.512	28.516	28.520	28.524	28.528	28.531	28.535	28.539
725	28.543	28.547	28.55 I	28.555	28.559	28.563	28.567	28.571	28.575	28.579
726	28.583	28.587	28.590	28.594	28.598	28.602	28.606	28.610	28.614	28.618
727	28.622	28.626	28.630	28.634	28.638	28.642	28.646	28.650	28.653	28.657
728	28.661	28.665	28.669	28.673	28.677	28.681	28.685	28.689	28.693	28.697
729	28.701	28.705	28.709	28.713	28.716	28.720	28.724	28.728	28.732	28.736
730	28.740	28.744	28.748	28.752	28.756	28.760	28.764	28.768	28.772	28.776
731	28.779	28.783	28.787	28.791	28.795	28.799	28.803	28.807	28.811	28.815
732	28.819	28.823	28.827	28.831	28.835	28.839	28.842	28.846	28.850	28.854
733	28.858	28.862	28.866	28.870	28.874	28.878	28.882	28.886	28.890	28.594
734	28.898	28.902	28.905	28.909	28.913	28.917	28.92 I	28.925	28.929	28.933
735	28.937	28.941	28.945	28.949	28.953	28.957	28.961	28.965	28.968	28.972
736	28.976	28.980	28.984	28.988	28.992	28.996	29.000	29.004	29.008	29.012
737	29.016	29.020	29.024	29.028	29.031	29.035	29.039	29.043	29.047	29.051
738	29.055	29.059	29.063	29.067	29.071	29.075	29.079	29.083	29.087	29.090
739	29.094	29.098	29.102	29.106	29.110	29.114	29.118	29.122	29.126	29.130
740	29. I34	29.138	29.142	29.146	29.150	29.153	29.157	29.16I	29.165	29.169
741	29.173	29.177	29.181	29.185	29.189	29.193	29.197	29.201	29.205	29.209
742	29.213	29.216	29.220	29.224	29.228	29.232	29.236	29.240	29.244	29.248
743	29.252	29.256	29.260	29.264	29.268	29.272	29.276	29.279	29.283	29.287
744	29.291	29.295	29.299	29.303	29.307	29.311	29.315	29.319	29.323	29.327
745	29.331	29.335	29.339	29.342	29.346	29.350	29.354	29.358	29.362	29.366
746	29.370	29.374	29.378	29.382	29.386	29.390	29.394	29.398	29.402	29.405
747	29.409	29.413	29.417	29.421	29.425	29.429	29.433	29.437	29.44 I	29.445
748	29.449	29.453	29.457	29.46 I	29.465	29.468	29.472	29.476	29.480	29.484
749	29.488	29.492	29.496	29.500	29.504	29.508	29.512	29.516	29.520	29.524
750	29.528	29.53 I	29.535	29.539	29.543	29.547	29.55 I	29.555	29.559	29.563

MILLIMETRES INTO INCHES.
$1 \mathrm{~mm} .=0.03937$ inch.

Milli- metres.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
750	29.528	29.53 I	29.535	29.539	29.543	29.547	29.551	29.555	29.559	29.563
751	29.567	29.571	29.575	29.579	29.583	29.587	29.590	29.594	29.598	29.602
752	29.606	29.610	29.614	29.618	29.622	29.626	29.630	29.634	29.638	29.642
753	29.646	29.650	29.653	29.657	29.66I	29.665	29.669	29.673	29.677	29.68I
754	29.685	29.689	29.693	29.697	29.701	29.705	29.709	29.713	29.716	29.720
755	29.724	29.728	29.732	29.736	29.740	29.744	29.748	29.752	29.756	29.760
756	29.764	29.768	29.772	29.776	29.779	29.783	29.787	29.791	29.795	29.799
757	29.803	29.807	29.811	29.815	29.819	29.823	29.827	29.83 I	29.835	29.839
758	29.842	29.846	29.850	29.854	29.858	29.862	29.866	29.870	29.874	29.878
759	29.882	29.886	29.890	29.894	29.898	29.902	29.905	29.909	29.913	29.917
760	29.921	29.925	29.929	29.933	29.937	29.941	29.945	29.949	29.953	29.957
761	29.96I	29.965	29.968	29.972	29.976	29.980	29.984	29.988	29.992	29.996
762	30.000	30.004	30.008	30.012	30.016	30.020	30.024	30.027	30.03 I	30.035
763	30.039	30.043	30.047	30.051	30.055	30.059	30.063	30.067	30.071	30.075
764	30.079	30.083	30.087	30.090	30.094	30.098	30.102	30.106	30.110	30.114
765	30.118	30.122	30.126	30.130	30.134	30.138	30.142	30.146	30.150	30. 153
766	30.157	30.16I	30.165	30.169	30.173	30.177	30.181	30.185	30.189	30. 193
767	30.197	30.201	30.205	30.209	30.213	30.216	30.220	30.224	30.228	30.232
768	30.236	30.240	30.244	30.248	30.252	30.256	30.260	30.264	30.268	30.272
769	30.276	30.279	30.283	30.287	30.29 I	30.295	30.299	30.303	30.307	30.31 I
770	30.315	30.319	30.323	30.327	30.33 I	30.335	30.339	30.342	30.346	30.350
771	30.354	30.358	30.362	30.366	30.370	30.374	30.378	30.382	30.386	30.390
772	30.394	30.398	30.402	30.405	30.409	30.413	30.417	30.42 I	30.425	30.429
773	30.433	30.437	30.44 I	30.445	30.449	30.453	30.457	30.46I	30.465	30.468
774	30.472	30.476	30.480	30.484	30.488	30.492	30.496	30.500	30.504	30.508
775	30.512	30.516	30.520	30.524	30.528	30.53 I	30.535	30.539	30.543	30.547
776	30.551	30.555	30.559	30.563	30.567	30.57 I	30.575	30.579	30.583	30.587
777	30.590	30.594	30.598	30.602	30.606	30.610	30.614	30.618	30.622	30.626
778	30.630	30.634	30.638	30.642	30.646	30.650	30.653	30.657	30.66 I	30.665
779	30.669	30.673	30.677	30.68I	30.685	30.689	30.693	30.697	30.701	30.705
780	30.709	30.713	30.716	30.720	30.724	30.728	30.732	30.736	30.740	30.744
781	30.748	30.752	30.756	30.760	30.764	30.768	30.772	30.776	30.779	30.783
782	30.787	30.791	30.795	30.799	30.803	30.807	30.8II	30.815	30.819	30.823
783	30.827	30.831	30.835	30.839	30.842	30.846	30.850	30.854	30.858	30.862
784	30.866	30.870	30.874	30.878	30.882	30.886	30.890	30.894	30.898	30.902
735	30.905	30.909	30.913	30.917	30.92 I	30.925	30.929	30.933	30.937	30.941
786	30.945	30.949	30.953	30.957	30.96 I	30.965	30.968	30.972	30.976	30.980
787	30.984	30.988	30.992	30.996	31.000	31.004	31.008	3 I .012	31.016	31.020
788	31.024	31.027	31.031	31.035	31.039	31.043	31.047	31.05I	3 I .055	31.059
789	31.063	31.067	31.071	31.075	31.079	31.083	31.087	31.090	31.094	31.098
790	31.102	3 I .106	31.110	31.II4	31.118	31.122	31.126	31.130	31.134	31.138
791	31.142	31.146	31.150	31.153	31.157	31.16I	31.165	3 I .169	31.173	31.177
792	3 I .181	3 I .185	31.189	31. 193	31.197	31.201	31.205	3 I .209	31.213	31.216
793	31.220	31.224	31.228	31.232	31.236	31.240	31.244	3 I .248	31.252	31.256
794	31.260	31.264	31.268	31.272	31.276	31.279	31.283	31.287	31.29I	31.295
795	31.299	31.303	31.307	3I.3II	3 I .315	31.319	31.323	31.327	31.331	31.335
796	3 I .339	31.342	31.346	31.350	3 I .354	31.358	31.362	31.366	3 r .370	31.374
797	3 I .378	3 I .382	31. 386	3 I .390	3 T .394	31.398	31.402	31.405	31.409	3 I .413
798	31.417	3 I .42 I	3 I .425	31.429	31.433	31.437	31.44I	31.445	31.449	31.453
799	3 I .457	31.46 I	31.465	31.468	31.472	31.476	31.480	31.484	31.488	31.492
800	3 I .496	31.500	31.504	31.508	31.512	31.516	31.520	3 I .524	31.527	3 I .53 I

MILLIMETRES INTO INCHES.
$1 \mathrm{~mm} .=0.03937$ inch .

Millimetres.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
800	31.496	31.500	31.504	31.508	31.512	3 I .516	31.520	31.524	31.527	31.53I
8 O	3 I .535	31.539	31.543	31.547	3 I .55 I	3 I .555	31.559	31.563	31.567	31.571
802	31.575	31.579	31.583	31.587	31.590	31.594	31.598	31.602	31.606	31.610
803	31.614	31.618	31.622	31.626	31.630	31.634	31.638	31.642	31.646	31.650
804	31.653	31.657	3 I .66 I	31.665	31.669	31.673	31.677	3 I .68 I	3 r .685	3 I .689
805	31.693	31.697	31.701	31.705	31.709	31.713	31.716	31.720	31.724	3 T .728
806	31.732	31.736	3 I .740	3 I .744	31.748	31.752	31.756	31.760	3 r .764	31.768
807	31.772	31.776	31.779	31.783	31.787	3 I .791	31.795	31.799	31.803	31.807
808	3 I .81 I	3 I .815	31.819	31.823	31.827	31.83 I	31.835	31.839	31.842	31.846
809	31.850	31.854	3 I .853	31.862	31.866	31.870	31.874	31.878	3 I .882	31.886
810	31.890	31.894	31.898	31.902	31.905	31.909	31.913	31.917	31.92I	31.925
8 II	31.929	31.933	31.937	31.941	31.945	3 I .949	31.953	31.957	31.961	31.965
812	31.968	31.972	31.976	31.930	31.984	31.988	31.992	31.996	32.000	32.004
8 I 3	32.008	32.012	32.016	32.020	32.024	32.027	32.031	32.035	32.039	32.043
814	32.047	32.05 I	32.055	32.059	32.063	32.067	32.071	32.075	32.079	32.083
815	32.087	32.090	32.094	32.098	32.102	32.106	32.110	32.114	32.118	32.122
816	32.126	32.130	32. I34	32.138	32.142	32.146	32.150	32.153	32.157	32.16 I
817	32.165	32.169	32. 173	32.177	32.181	32.185	32.189	32.193	32.197	32.201
8 I 8	32.205	32.209	32.213	32.216	32.220	32.224	32.228	32.232	32.236	32.240
819	32.244	32.248	32.252	32.256	32.260	32.264	32.268	32.272	32.276	32.279
820	32.283	32.287	32.291	32.295	32.299	32.303	32.307	32.3 II	32.315	32.319
821	32.323	32.327	32.33 I	32.335	32.339	32.342	32.346	32.350	32.354	32.358
822	32.362	32.366	32.370	32.374	32.373	32.382	32.386	32.390	32.394	32.398
823	32.402	32.405	32.409	32.413	32.417	32.42 I	32.425	32.429	32.433	32.437
824	32.44 I	32.445	32.449	. 32.453	32.457	32.46 I	32.465	32.468	32.472	32.476
825	32.48 o	32.484	32.488	32.492	32.496	32.500	32.504	32.508	32.512	32.516
826	32.520	32.524	32.527	32.53 I	32.535	32.539	32.543	32.547	32.551	32.555
827	32.559	32.563	32.567	32.571	32.575	32.579	32.583	32.587	32.590	32.594
828	32.598	32.602	32.606	32.610	32.614	32.618	32.622	32.626	32.630	32.634
829	32.638	32.642	32.646	32.650	32.653	32.657	32.661	32.665	32.669	32.673
830	32.677	32.68I	32.685	32.689	32.693	32.697	32.701	32.705	32.709	32.713
831	32.716	32.720	32.724	32.72 S	32.732	32.736	32.740	32.744	32.748	32.752
832	32.756	32.760	32.764	32.768	32.772	32.776	32.779	32.783	32.787	32.791
833	32.795	32.799	32.803	32.807	32.81 I	32.815	32.819	32.823	32.827	32.831
834	32.835	32.839	32.842	32.846	32.850	32.854	32.858	32.862	32.866	32.870
835	32.874	32.878	32.882	32.886	32.890	32.894	32.898	32.902	32.905	32.909
836	32.913	32.917	32.92 I	32.925	32.929	32.933	32.937	32.941	32.945	32.949
837	32.953	32.957	32.96 I	32.965	32.968	32.972	32.976	32.980	32.984	32.988
838	32.992	32.996	33.000	33.004	33.008	33.012	33.016	33.020	33.024	33.027
839	33.03 I	33.035	33.039	33.043	33.047	33.051	33.055	33.059	33.063	33.067
840	33.071	33.075	33.079	33.083	33.087	33.090	33.094	33.098	33.102	33.106
841	33.110	33.114	33.118	33.122	33.126	33.130	33.134	33.138	33.142	33.146
842	33.150	33.153	33.157	33.16 I	33.165	33.169	33.173	33.177	33.181	33.185
843	33.189	33.193	33.197	33.201	33.205	33.209	33.213	33.216	33.220	33.224
844	33.228	33.232	33.236	33.240	33.244	33.248	33.252	33.256	33.260	33.264
845	33.268	33.272	33.276	33.279	33.283	33.287	33.291	33.295	33.299	33.303
846	33.307	33.311	33.315	33.319	33.323	33.327	33.331	33.335	33.339	33.342
847	33.346	33.350	33.354	33.358	33.362	33.366	33.370	33.374	33.378	33.382
848	33.386	33.390	33.394	33.398	33.402	33.405	33.409	33.413	33.417	33.42 I
849	33.425	33.429	33.433	33.437	33.44I	33.445	33.449	33.453	33.457	33.461
850	33.464	33.468	33.472	33.476	33.480	33.484	33.488	33.492	33.496	33.500

MILLIMETRES INTO INCHES.
$1 \mathrm{~mm} .=0.03937$ inch .

Milli- metres.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
850	33.464	33.468	33.472	33.476	33.480	33.484	33.488	33.492	33.496	33.500
851	33.504	33.508	33.512	33.516	33.520	33.524	33.527	33.531	33.535	33.539
852	33.543	33.547	33.55I	33.555	33.559	33.563	33.567	33.571	33.575	33.579
853	33.583	33.587	33.590	33.594	33.598	33.602	33.606	33.610	33.614	33.618
854	33.622	33.626	33.630	33.634	33.638	33.642	33.646	33.650	33.653	33.657
855	33.66I	33.665	33.669	33.673	33.677	33.681	33.685	33.689	33.693	33.697
856	33.701	33.705	33.709	33.713	33.716	33.720	33.724	33.728	33.732	33.736
857	33.740	33.744	33.748	33.752	33.756	33.760	33.764	33.768	33.772	33.776
858	33.779	33.783	33.787	33.791	33.795	33.799	33.803	33.807	33.8II	33.8I5
859	33.819	33.823	33.827	33.831	33.835	33.839	33.842	33.846	33.850	33.854
860	33.858	33.862	33.866	33.870	33.874	33.878	33.882	33.886	33.890	33.894
861	33.898	33.902	33.905	33.909	33.913	33.917	33.921	33.925	33.929	33.933
862	33.937	33.94 I	33.945	33.949	33.953	33.957	33.96I	33.964	33.968	33.972
863	33.976	33.980	33.984	33.988	33.992	33.996	34.000	34.004	34.008	34.012
S64	34.016	34.020	34.024	34.027	34.03 I	34.035	34.039	34.043	34.047	34.051
865	34.055	34.059	34.063	34.067	34.07 I	34.075	34.079	34.083	34.087	34.090
856	$34 . \mathrm{c94}$	34.098	34. 102	34. 106	34.1 10	34. I 14	34.118	34. 122	34.126	34.130
867	34. 134	34.138	34.142	34.146	34.150	34. 153	34. 157	34.16I	34.165	34.169
853	34. 173	34.177	34.181	34.185	34.189	34. 193	34.197	34.201	34.205	34.209
869	34.213	34.216	34.220	34.224	34.228	34.232	34.236	34.240	34.244	34.248
870	34.252	34.256	34.260	34.264	34.268	34.272	34.276	34.279	34.283	34.287
871	34.291	34.295	34.299	34.303	34.307	34.31 I	34.315	34.319	34.323	34.327
872	34.331	34.335	34.339	34.342	34.346	34.350	34.354	34.358	34.362	34.366
873	34.370	34.374	34.378	34.382	34.386	34.390	34.394	34.398	34.402	34.405
874	34.409	34.413	34.417	34.42 I	34.425	34.429	34.433	34.437	34.44I	34.445
875	34.449	34.453	34.457	34.46I	34.464	24.468	34.472	34.476	34.480	34.484
876	34.488	34.492	34.496	34.500	34.504	34.508	34.512	34.516	34.520	34.524
877	34.527	34.53 I	34.535	34.539	34.543	34.547	34.55I	34.555	34.559	34.563
878	34.567	34.57 I	34.575	34.579	34.583	34.587	34.590	34.594	34.598	34.602
879	34.606	34.610	34.6I4	34.618	34.622	34.626	34.630	34.634	34.638	34.642
880	34.646	34.650	34.653	34.657	34.66I	34.665	34.669	34.673	34.677	34.68I
88 I	34.685	34.689	34.693	34.697	34.7 OI	34.705	34.709	34.713	34.716	34.720
882	34.724	34.728	34.732	34.736	. 34.740	34.744	34.748	34.752	34.756	34.760
883	34.764	34.768	34.772	34.776	34.779	34.783	34.787	34.791	34.795	34.799
884	34.803	34.807	34.81 I	34.815	34.819	34.823	34.827	34.83 I	34.835	34.839
885	34.842	34.846	34.850	34.854	34.858	34.862	34.866	34.870	34.874	34.878
886	34.882	34.886	34.890	34.894	34.898	34.902	34.905	34.909	34.913	34.917
887	34.921	34.925	34.929	34.933	34.937	34.941	34.945	34.949	34.953	34.957
888	34.96 I	34.964	34.968	34.972	34.976	34.980	34.984	34.988	34.992	34.996
889	35.000	35.004	35.008	35.012	35.016	35.020	35.024	35.027	35.03 I	35.035
890	35.039	35.043	35.047	35.05I	35.055	35.059	35.063	35.067	35.071	35.075
891	35.079	35.083	35.087	35.090	35.094	35.098	35.102	35.106	35.110	35. I 14
892	35.118	35.122	35.126	35.130	35. 134	35.138	35.142	35.146	35.150	35. I 53
893	35.157	35.16I	35.165	35.169	35.173	35.177	35.181	35.185	35.189	35.193
894	35.197	35.201	35.205	35.209	35.213	35.216	35.220	35.224	35.228	35.232
895	35.236	35.240	35.244	35.248	35.252	35.256	35.260	35.264	35.268	35.272
896	35.276	35.279	35.283	35.287	35.291	35.295	35.299	35.303	35.307	35.3 II
897	35.315	35.319	35.323	35.327	35.33 I	35.335	35.339	35.342	35.346	35.350
898	35.354	35.358	35.362	35.366	35.37 O	35.374	35.378	35.382	35.386	35.390
S99	35.394	35.398	35.402	35.405	35.409	35.413	35.417	35.42 I	35.425	35.429
900	35.433	35.437	35.44 I	35.445	35.449	35.453	35.457	35.46I	35.464	35.468

Smithsonian Tables.

TABLE 65.

MILLIMETRES INTO INCHES.

$1 \mathrm{~mm} .=0.03937$ inch.

Millimetres.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
900	35.433	35.437	35.44I	35.445	35.449	35.453	35.457	35.46I	35.464	35.468
901	35.472	35.476	35.480	35.484	35.488	35.492	35.496	35.500	35.504	35.508
902	35.512	35.516	35.520	35.524	35.527	35.53 I	35.535	35.539	35.543	35.547
903	35.55 I	35.555	35.559	35.563	35.567	35.57 I	35.575	35.579	35.583	35.587
904	35.590	35.594	35.598	35.602	35.606	35.610	35.614	35.618	35.622	35.626
905	35.630	35.634	35.638	35.642	35.646	35.650	35.653	35.657	35.66I	35.665
906	35.669	35.673	35.677	35.68I	35.685	35.689	35.693	35.697	35.701	35.705
907	35.709	35.713	35.716	35.720	35.724	35.728	35.732	35.736	35.740	35.744
908	35.748	35.752	35.756	35.760	35.764	35.768	35.772	35.776	35.779	35.783
909	35.787	35.79 I	35.795	35.799	35.803	35.807	35.81 I	35.815	35.819	35.823
910	35.827	35.83 I	35.835	35.839	35.842	35.846	35.850	35.854	35.858	35.862
911	35.866	35.870	35.874	35.878	35.882	35.886	35.890	35.894	35.898	35.902
912	35.905	35.909	35.913	35.917	35.92 I	35.925	35.929	35.933	35.937	35.941
913	35.945	35.949	35.953	35.957	35.96I	35.964	35.968	35.972	35.976	35.980
914	35.984	35.988	35.992	35.996	36.000	36.004	36.008	36.012	36.016	36.020
915	36.024	36.027	36.03I	36.035	36.039	36.043	36.047	36.051	36.055	36.059
916	36.063	36.067	36.071	36.075	36.079	36.083	36.087	36.090	36.094	36.098
917	36. 102	36. 106	36.110	36.114	36.118	36.122	36.126	36.130	36.134	36.138
918	36.142	36.146	36.150	36.153	36.157	36.16I	36.165	36.169	36.173	36.177
919	36.181	36.185	36.189	36.193	36.197	36.201	36.205	36.209	36.213	36.216
920	36.220	36.224	36.228	36.232	36.236	36.240	36.244	36.248	36.252	36.256
921	36.260	36.264	36.268	36.272	36.276	36.279	36.283	36.287	36.291	36.295
922	36.299	36.303	36.307	36.31 I	36.315	36.319	36.323	36.327	36.33 I	36.335
923	36.339	36.342	36.346	36.350	36.354	36.358	36.362	36.366	36.370	36.374
924	36.378	36.382	36.386	36.390	36.394	36.398	36.402	36.405	36.409	36.413
925	36.417	36.42 I	36.425	36.429	36.433	36.437	36.44 I	36.445	36.449	36.453
926	36.457	36.46 I	36.464	36.468	36.472	36.476	36.48 o	36.484	36.488	36.492
927	36.496	36.500	36.504	36.508	36.512	36.516	36.520	36.524	36.527	36.53 I
928	36.535	36.539	36.543	36.547	36.55 I	36.555	36.559	36.563	36.567	36.57 I
929	36.575	36.579	36.583	36.587	36.590	36.594	36.598	36.602	36.606	36.610
930	36.614	36.618	36.622	36.626	36.630	36.634	36.638	36.642	36.646	36.650
931	36.653	36.657	36.66 I	36.665	36.669	36.673	36.677	36.681	36.685	36.639
932	36.693	36.697	36.701	36.705	36.709	36.713	36.716	36.720	36.724	36.728
933	36.732	36.736	36.740	36.744	36.748	36.752	36.756	36.760	36.764	36.768
934	36.772	36.776	36.779	36.783	36.787	36.791	36.795	36.799	36.803	36.807
935	36.8 II	36.815	36.819	36.823	36.827	36.83 I	36.835	36.839	36.842	36.846
936	36.850	36.854	36.858	36.862	36.866	36.870	36.874	36.878	36.882	36.886
937	36.890	36.894	36.898	36.902	36.905	36.909	36.913	36.917	36.921	36.925
938	36.929	36.933	36.937	36.94 I	36.945	36.949	36.953	36.957	36.961	36.964
939	36.968	36.972	36.976	36.980	36.984	36.988	36.992	36.996	37.000	37.004
940	37.008	37.012	37.016	37.020	37.024	37.027	37.03I	37.035	37.039	37.043
941	37.047	37.05I	37.055	37.059	37.063	37.067	37.07 I	37.075	37.079	37.083
942	37.087	37.090	37.094	37.098	37.102	37.106	37.110	37.114	37.118	37. 122
943	37.126	37.130	37.134	37.138	37.142	37.146	37.150	37.153	37.157	37.16I
944	37.165	37.169	37.173	37.177	37.181	37.185	37.189	37.193	37.197	37.201
945	37.204	37.208	37.212	37.216	37.220	37.224	37.228	37.232	37.236	37.240
946	37.244	37.248	37.252	37.256	37.260	37.264	37.268	37.272	37.276	37.279
947	37.283	37.287	37.291	37.295	37.299	37.303	37.307	37.311	37.315	37.319
948	37.323	37.327	37.33 I	37.335	37.339	37.342	37.346	37.350	37.354	37.358
949	37.362	37.366	37.370	37.374	37.378	$37 \cdot 382$	37.386	37.390	37.394	37.398
950	37.402	37.405	37.409	37.413	37.417	37.42 I	37.425	37.429	37.433	37.437

MILLIMETRES INTO INCHES.
$1 \mathrm{~mm} .=0.03937$ inch.

Milli- metres.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inches.	Inche	Inches.	Inches.	Inch	Inch	Inches.	Inches.	Inches.
950	37.402	37.405	37.409	37.413	37.417	37.421	37.425	37.429	37.433	37.437
951	37.44 I	37.445	37.449	37.453	37.457	37.461	37.464	37.468	37.472	37.476
952	37.480	37.484	37.488	37.492	37.496	37.500	37.504	37.508	37.512	37.516
953	37.520	37.524	37.527	37.531	37.535	37.539	37.543	37.547	37.551	37.555
954	37.559	37.563	37.567	37.57	37.575	37.579	37.583	37.587	37.590	37.594
955	37.598	37.602	37.606	37.610	37.614	37.618	37.622	37.626	37.630	37.634
956	37.638	37.642	37.646	37.650	37.653	37.657	37.661	37.665	37.669	37.673
957	37.677	37.681	37.685	37.689	37.693	37.697	37.701	37.705	37.709	37.713
958	37.716 37.756	37.720	37.724	37.728	37.732	37.736	37.740	37.744	37.748	37.752
959	37.756	37.760	37.764	37.768	37.772	37.776	37.779	37.783	37.787	37.791
960	37.795	37.799	37.803	37.807	37.811	37.815	37.819	37.823	37.827	37.831
961	37.835	37.839	37.842	37.846	37.850	37.854	37.858	37.862	37.866	37.870
962	37.874	37.878	37.882	37.886	37.890	37.894	37.898	37.901	37.905	37.909
963	37.913	37.917	37.921	37.925	37.929	37.933	37.937	37.94 I	37.945	37.949
964	37.953	37.957	37.961	37.964	37.968	37.972	37.976	37.980	37.984	37.988
965	37.992	37.996	38.000	38.004	38.008	38.012	38.016	38.020	38.024	38.027
966	38.031	38.035	38.039	38.043	38.047	38.05 I	38.055	38.059	38.063	38.067
967	38.071	38.075	38.079	38.083	38.087	38.090	38.094	38.098	38.102	38. 106
968	38.110	38.114	38.118	38. 122	38.126	38.130	38.134	38.138	38.142	38.146
969	38.150	38.153	38.157	38.161	38.165	38.169	38.173	38.177	38.181	38.185
970	38.189	38.193	38.197	38.201	38.205	38.209	38.213	38.216	38.220	38.224
971	38.228	38.232	38.236	38.240	38.244	38.248	38.252	38.256	38.260	38.264
972	38.268	38.272	38.276	38.279	38.283	38.287	38.291	38.295	38.299	38.303
973	38.307	38.311	38.315	38.319	38.323	38.327	38.331	38.335	38.339	38.342
974	38.346	38.350	38.354	38.358	38.362	38.366	38.370	38.374	38.378	38.382
975	38.386	38.390	38.394	38.398	38.401	38.405	38.409	38.413	38.417	38.421
976	38.425	38.429	38.433	38.437	38.44 I	38.445	38.449	38.453	38.457	38.46 I
977	38.464	38.468	38.472	38.476	38.480	38.484	38.488	38.492	38.496	38.500
978	38.504	38.508	38.512	38.516	38.520	38.524	38.527	38.53 I	38.535	38.539
979	38.543	38.547	38.55I	38.555	38.559	38.563	38.567	38.57 I	38.575	38.579
980	38.583	38.587	38.590	38.594	38.598	38.602	38.606	38.610	38.614	38.618
981 982	38.622 38.66 I	38.626 38.665 38.7	38.630 38.669	38.634 38.673	38.639 38.677 3	38.642	38.646 38.685 8.	38.650	38.653	38.657
982	38.66 I 38.70 I	38.665 38.705	38.669 38.709	38.673 38.713	38.677 38.716	38.68I	38.685 38.724	38.689 38.728	38.693	38.697
984	38.701 38.740	38.705 38.744	38.709 38.748	38.713 38.752	38.716 38.756	38.720 38.760	38.724 38.764	38.728 38.768	38.732 38.772	38.736 38.776
985	38.780	38.783	38.787	38.791	38.795	38.799	38.803	38.807	38.811	38.815
986	38.819	38.823	38.827	38.831	38.835	38.839	38.842	38.846	38.850	38.854
987	38.858	38.862	38.866	38.870	38.874	38.878	38.882	38.886	38.890	38.894
988	38.898	38.901	38.905	38.909	38.913	38.917	38.921	38.925	38.929	38.933
989	38.937	38.941	38.945	38.949	38.953	38.957	38.96I	38.964	38.968	38.972
990	38.976	38.980	38.984	38.988	38.992	38.996	39.000	39.004	39.008	39.012
991	39.016	39.020	39.024	39.027	39.031	39.035	39.039	39.043	39.047	39.05I
992	39.055	39.059	39.063	39.067	39.071	39.075	39.079	39.083	39.087	39.090
993	39.094	39.098	39.102	39. 106	39.110	39.114	39.118	39.122	39.126	39.130
994	39.134	39.138	39.142	39.146	39.150	39.153	39.157	39.161	39.165	39.169
995	39.173	39.177	39.18I	39.185	39.189	39.193	39.197	39.201	39.205	39.209
996	39.213	39.216	39.220	39.224	39.228	39.232	39.236	39.240	39.244	39.248
997	39.252	39.256	39.260	39.264	39.268	39.272	39.276	39.279	39.283	39.287
998	39.291	39.295	39.299	39.303	39.307	39.311	39.315	39.319	39.323	39.327
999	39.33I	39.335	39.339	39.342	39.346	39.350	39.354	39.358	39.362	39.366
1000	39.370	39.374	39.378	39.382	39.386	39.390	39.394	39.398	39.401	39.405

Smithsonian Tableg.

I foot $=0.3048006$ metre.

Feet.	0	1	2	3	4	5	6	7	8	9
	m	m.	m.	m.	m.	m.	m.	m.	m.	m.
0	0.000	0.305	0.610	0.914	1. 219	1. 524	1.829	2. 134	2.438	2.743
10	3.048	$3 \cdot 353$	3.658	3.962	4.267	4.572	4.877	5.182	5.486	5.791
20	6.096	6.401	6.706	7.010	$7 \cdot 315$	7.620	7.925	8.230	8.534	8.839
30	9.144	9.449	9.754	10.058	10.363	10.668	10.973	11.278	11.582	II. 887
40	12.192	12.497	12.802	13.106	13.411	13.716	14.021	14.326	14.630	14.935
50	I5.240	15.545	15.850	16.154	16.459	16.764	17.069	17.374	17.678	17.983
60	18.288	18.593	18.898	19.202	19.507	19.812	20.117	20.422	20.726	21.031
70	21.336	21.64I	21.946	22.250	22.555	22.860	23.165	23.470	23.774	24.079
80	24.384	24.689	24.994	25.298	25.603	25.908	26.213	26.518	26.822	27.127
90	27.432	27.737	28.042	28.346	28.651	28.956	29.26I	29.566	29.870	30.175
	0	10	20	30	40	50	60	70	80	90
100	30.48	33.53	36.58	39.62	42.67	45.72	48.77	51.82	54.86	57.91
200	60.96	64.01	67.06	70.10	73.15	76.20	79.25	82.30	85.34	88.39
300	91. 44	94.49	97.54	100.58	103.63	106.68	109.73	II2.78	115.82	118.87
400	121.92	124.97	128.02	I3I.06	134.11	137.16	140.21	143.26	146.30	149.35
500	152.40	155.45	I58.50	16 I .54	164.59	167.64	170.69	173.74	176.78	179.83
600	I 82.88	185.93	188.98	192.02	195.07	198.12	201.17	204.22	207.26	210.31
700	213.36	216.41	219.46	222.50	225.55	228.60	231.65	234.70	237.74	240.79
800	243.84	246.89	249.94	252.98	256.03	259.08	262.13	265.18	268.22	271.27
900	274.32	277.37	280.42	283.46	286.5I	289.56	292.61	295.66	298.70	301.75
1000	304.80	307.85	310.90	313.94	316.99	320.04	323.09	326.14	329.18	332.23
1100	335.28	33 S. 33	341.38	344.42	347.47	350.52	353.57	356.62	359.67	362.71
1200	365.76	368.8 I	371.86	374.90	377.95	38 I .00	384.05	387.10	390. 14	393.19
1300	396.24	399.29	402.34	405.38	408.43	4II. 48	414.53	4I7.58	420.62	423.67
1400	426.72	429.77	432.82	435.86	438.91	441.96	445.01	448.06	451.10	454. 5
1500	457.20	460.25	463.30	466.34	469.39	472.44	475.49	478.54	481.58	484.63
1600	487.68	490.73	493.78	496.82	499.87	502.92	505.97	509.02	512.07	515.11
1700	518.16	52 I .21	524.26	527.3 I	530.35	533.40	536.45	539.50	542.55	545.59
1800	548.64	551.69	554.74	557.79	560.83	563.88	566.93	569.98	573.03	576.07
1900	579.12	582.17	585.22	588.27	591.3I	594.36	597.41	600.46	603.5I	606.55
2000	609.60	612.65	615.70	618.75	621.79	624.84	627.89	630.94	633.99	637.03
2100	640.08	643.13	646. 18	649.23	652.27	655.32	658.37	66 I .42	664.47	667.51
2200	670.56	673.61	676.66	679.7 I	682.75	685.80	688.85	691.90	694.95	697.99
2300	701.04	704.09	707.14	710.19	713.23	716.28	719.33	722.38	725.43	728.47
2400	73 I .52	734.57	737.62	740.67	743.7 I	746.76	749.81	752.86	755.91	758.95
2500	762.00	765.05	768.10	771.15	774.19	777.24	780.29	783.34	786.39	789.43
2600	792.48	795.53	798.58	801.63	804.67	807.72	810.77	813.82	816.87	819.91
2700	822.96	826.01	829.06	832.11	835.15	838.20	841.25	844.30	847.35	850.39
2800	853.44	856.49	859.54	862.59	865.63	868.68	871.73	874.78	877.83	88 c 87
2900	883.92	886.97	890.02	893.07	896.1 1	899.16	902.2 I	905.26	908.3I	911.35
3000	914.40	917.45	920.50	923.55	926.59	929.64	932.69	935.74	938.79	941.83
3100	944.88	947.93	950.98	954.03	957.07	960.12	963.17	966.22	969.27	972.31
3200	975.36	978.41	981.46	984.5 1	987.55	990.60	993.65	996.70	999.75	1002.79
3300	roo5.84	1008.89	IOII. 94	1014.99	1018.03	1021.08	1024.13	1027.18	1030.23	1033.27
3400	1036.32	1039.37	1042.42	1045.47	1048.5I	1051.56	1054.61	1057.66	1060.71	1063.75
3500	1066.80	1069.85	1072.90	1075.95	1078.99	Io82.04	1085.09	Io88.14	I091.19	Iog4.23
3600	I097.28	1100.33	1103.38	I 106.43	1109.47	II 12.52	1115.57	I I I 8.62	1121.67	1124.71
3700	II 27.76	II30.8I	1133.86	I I 36.91	I 139.95	I 1443.00	II 46.05	I I 49.10	1152.15	I 155.19
3800	II58.24	II61.29	II 64.34	I167.39	1170.43	II73.48	1176.53	II79.58	1182.63	I185.67
3900	1 I 88.72	I 191.77	I 194.82	1197.87	1200.91	1203.96	1207.01	1210.06	1213.11	I216.15
4000	1219.20	I222.25	1225.30	1228.35	1231.39	1234.44	1237.49	I240.54	I243.59	I246.63

FEET INTO METRES.
I $\mathrm{foot}=0.3048006$ metre.

Fect.	0	10	20	30	40	50	60	70	80	90
	m.	m.	m.	m.	m.	m.	m.	m.	m.	m.
4000	1219.2	1222.3	1225.3	1228.3	1231.4	1234.4	1237.5	1240. 5	1243.6	1246.6
4100	1249.7	1252.7	1255.8	1258.8	1261.9	1264.9	1268.0	1271.0	1274. 1	1277. I
4200	1280.2	1283.2	1286.3	1289.3	1292.4	1295.4	1298.5	1301.5	I304.5	I 307.6
4300	1310.6	1313.7	I316.7	1319.8	I322.8	1325.9	1328.9	1332.0	I335.0	I 338.1
4400	I341.1	I 344.2	I 347.2	1350.3	I 353.3	I 356.4	1359.4	1362.5	I365.5	I368.6
4500	1371.6	1374.7	1377.7	1380.7	1383.8	I386.8	1389.9	1392.9	1396.0	1399.0
4600	1402.1	1405.1	1408.2	1411.2	1414.3	1417.3	1420.4	142 j. 4	1426.5	1429.5
4700	1432.6	1435.6	1438.7	1441.7	1444.8	I447.8	1450.9	1453.9	1456.9	1460.0
4800	1463.0	1466.1	1469.1	1472.2	1475.2	1478.3	148r. 3	I484.4	1487.4	1490.5
4900	1493.5	1496.6	1499.6	1502.7	1505.7	1508.8	I5II.8	1514.9	1517.9	1521.0
5000	1524.0	1527.1	1530.1	1533.1	1536.2	1539.2	1542.3	1545.3	1548.4	1551.4
5100	I554.5	1557.5	1560.6	1563.6	I566.7	1569.7	1572.8	I575.8	1578.9	I581.9
5200	1585.0	I588.0	1591. 1	I594.1	1597.2	1600.2	1603.3	1606.3	1609.3	1612.4
5300	16 I 5.4	1618.5	1621.5	1624.6	1627.6	1630.7	1633.7	1636.8	1639.8	1642.9
5400	1645.9	1649.0	1652.0	1655. I	1658. 1	166I. 2	1664.2	1667.3	1670.3	1673.4
5500	1676.4	1679.5	1682.5	1685.5	1688.6	1691.6	1694.7	1697.7	1700.8	1703.8
5600	1706.9	1709.9	1713.0	1716.0	1719.1	1722.1	1725.2	1728.2	1731.3	1734.3
5700	1737.4	1740.4	1743.5	1746.5	1749.6	1752.6	1755.7	1758.7	1761.7	1764.8
5800	1767.8	1770.9	1773.9	1777.0	1780.0	1783.1	1786. 1	1789.2	1792.2	1795.3
5900	1798.3	1801. 4	1804.4	1807.5	1810.5	1813.6	1816.6	1819.7	1822.7	1825.8
6000	1828.8	1831.9	1834.9	1837.9	1841.0	1844.0	1847.1	1850.1	1853.2	1856.2
6100	1859.3	1862.3	1865.4	1868.4	1871.5	1874.5	1877.6	1880.6	1883.7	1886.7
6200	1889.8	1892.8	1895.9	1898.9	1902.0	1905.0	1908. 1	1911.1	1914.1	1917.2
6300	1920.2	1923.3	1926.3	1929.4	1932.4	1935.5	1938.5	1941.6	1944.6	1947.7
6400	1950.7	1953.8	1956.8	1959.9	1962.9	1966.0	1969.0	1972.1	1975.1	1978.2
6500	1981. 2	1984.3	1987.3	1990.3	1993.4	1996.4	1999.5	2002.5	2005.6	2008.6
6600	2011.7	2014.7	2017.8	2020.8	2023.9	2026.9	2030.0	2033.0	2036.1	2039.1
6700	2042.2	2045.2	2048.3	2051.3	2054.4	2057.4	2060.5	2063.5	2066.5	2069.6
6800	2072.6	2075.7	2078.7	2081.8	2084.8	2087.9	2090.9	2094.0	2097.0	2100.1
6900	2103.1	2106.2	2109.2	2112.3	2115.3	2118.4	2121.4	2124.5	2127.5	2130.6
7000	2133.6	2136.7	2139.7	2142.7	2145.8	2148.8	2151.9	2154.9	2158.0	2161.0
7100	2164.1	2167.1	2170.2	2173.2	2176.3	2179.3	2182.4	2185.4	2188.5	2191.5
7200	2194.6	2197.6	2200.7	2203.7	2206.8	2209.8	2212.9	2215.9	2218.9	2222.0
7300	2225.0	2228. 1	2231.1	2234.2	2237.2	2240.3	2243.3	2246.4	2249.4	2252.5
7400	2255.5	2258.6	2261.6	2264.7	2267.7	2270.8	2273.8	2276.9	2279.9	2283.0
7500	2286.0	2289. I	2292.1	2295. I	2298.2	2301.2	2304.3	2307.3	2310.4	2313.4
7600	2316.5	2319.5	2322.6	2325.6	2328.7	2331.7	2334.8	2337.8	2340.9	2343.9
7700	2347.0	2350.0	2353.1	2356.1	2359.2	2362.2	2365.3	2368.3	2371.3	2374.4
7800	2377.4	2380.5	2383.5	2386.6	2389.6	2392.7	2395.7	2398.8	2401.8	2404.9
7900	2407.9	2411.0	2414.0	2417.1	2420.1	2423.2	2426.2	2429.3	2432.3	2435.4
8000	2438.4	2441.5	2444.5	2447.5	2450.6	2453.6	2456.7	2459.7	2462.8	2465.8
8100	2468.9	2471.9	2475.0	2478.0	2481. I	2484. I	2487.2	2490.2	2493.3	2496.3
8200	2499.4	2502.4	2505.5	2508.5	25 II. 6	2514.6	2517.7	2520.7	2523.7	2526.8
8300	2529.8	2532.9	2535.9	2539.0	2542.0	2545. I	2548.1	2551.2	2554.2	2557.3
8400	2560.3	2563.4	2566.4	2569.5	2572.5	2575.6	2578.6	2581.7	2584.7	2587.8
8500	2590.8	2593.9	2596.9	2599.9	2603.0	2606.0	2609. 1	2612.1	2615.2	2618.2
8600	2621.3	2624.3	2627.4	2630.4	2633.5	2636.5	2639.6	2642.6	2645.7	2648.7
8700	2651.8	2654.8	2657.9	2660.9	2664.0	2667.0	2670.1	2673.1	2676. 1	2679.2
8800	2682.2	2685.3	2688.3	2691.4	2694.4	2697.5	2700.5	2703.6	2706.6	2709.7
8900	2712.7	2715.8	2718.8	2721.9	2724.9	2728.0	2731.0	2734. I	2737. 1	2740.2
9000	2743.2	2746.3	2749.3	2752.3	2755.4	2758.4	2761.5	2764.5	2767.6	2770.6

METRES INTO FEET.

1 metre $=39.3700$ inches $=3.280833$ feet

Metres.	0	1	2	3	4	5	6	7	8	9
	Feet.	Feet.	Feet.	Feet.	Fee	Feet.	Feet.	Feet.	Feet.	Feet.
0	0.00	3.28	6.56	9.84	13.12	16.40	19.68	22.97	26.25	53
10	32.81	36.09	39.37	42.65	45.93	49.21	52.49	55.77	59.05	62.34
20	65.62	68.90	72.18	75.46	78.74	82.02	85.30	88.58	91.86	95.14
30	98.42	101.71	104.99	108.27	III. 55	114.83	II8.11	121.39	124.67	127.95
40	I31.23	134.51	137.79	141.08	144.36	147.64	150.92	154.20	157.48	160.76
50	164.04	167.32	170.60	173.88	177.16	180.45	183.73	187.01	190.29	193.57
60	196.85	200.13	203.41	206.69	209.97	213.25	216.53	219.82	223.10	226.38
70	229.66	232.94	236.22	239.50	242.78	246.06	249.34	252.62	255.90	259.19
80	262.47	265.75	269.03	272.31	275.59	278.87	282.15	285.43	288.71	291.99
90	295.27	298.56	301.84	305.12	308.40	311.68	314.96	318.24	321.52	324.80
100	328.08	331.36	334.64	337.93	341.2I	344.49	347.77	351.05	354.33	357.61
110	360.89	364.17	367.45	370.73	374.01	377.30	380.58	383.86	387.14	390.42
120	393.70	396.98	400.26	403.54	4.06 .82	410.10	413.38	416.67	419.95	423.23
130	426.5 I	429.79	433.07	436.35	439.63	442.91	446.19	449.47	452.75	456.04
140	459.32	462.60	465.88	469.16	472.44	475.72	479.00	482.28	485.56	488.84
150	492.12	495.4I	498.69	501.97	505.25	508.53	5II.8I	515.09	518.37	521.65
160	524.93	528.21	531.49	534.78	538.06	541.34	544.62	547.90	551.18	554.46
170	557.74	561.02	564.30	567.58	570.86	574.15	577.43	580.71	583.99	587.27
180	590.55	593.83	597.11	600.39	603.67	606.95	610.23	613.52	616.80	620.08
190	623.36	626.64	629.92	633.20	636.48	639.76	643.04	646.32	649.60	652.89
200	656.17	659.45	662.73	666.0I	669.29	672.57	675.85	679.13	682.41	685.69
210	688.97	692.26	695.54	698.82	702.10	705.38	708.66	711.94	715.22	718.50
220	721.78	725.06	728.34	731.63	734.91	738.19	741.47	744.75	748.03	751.31
230	754.59	757.87	76 t .15	764.43	767.71	771.00	774.28	777.56	780.84	784.12
240	787.40	790.68	793.96	797.24	800.52	803.80	807.08	810.37	813.65	816.93
250	820.21	823.49	826.77	830.05	833.33	836.61	839.89	843.17	846.45	849.74
260	853.02	856.30	859.58	862.86	866.14	869.42	872.70	875.98	879.26	882.54
270	885.82	889.11	892.39	895.67	898.95	902.23	905.5I	908.79	912.07	915.35
280	918.63	92I.91	925.19	928.48	931.76	935.04	938.32	941.60	944.88	948.16
290	951.44	954.72	958.00	961.28	964.56	967.85	971.13	974.4I	977.69	980.97
300	984.25	987.53	990.81	994.09	997.37	1000. 65	1003.93	1007.22	1010.50	IOI3.78
310	IOI7.06	1020.34	I023.62	IO26.90	1030.18	1033.46	1036.74	1040.02	1043.30	1046.59
320	1049.87	I053.15	1056.43	1059.71	1062.99	1066.27	1069.55	1072.83	1076.1I	1079.39
330	Io82.67	1085.96	Io89.24	Io92.52	1095.80	1099.08	I 102.36	1105.64	1109.92	III 2.20
340	I I 15.48	I I I 8.76	I122.04	I 125.33	II28.6I	II31.89	II35.17	I 138.45	1141.73	II45.01
350	I 148.29	I 151.57	I 154.85	I 158.13	II61.41	I 164.70	1167.98	II 71.26	II74.54	1177.82
360	i181.10	II84.38	I 187.66	I 190.94	I 194.22	I 197.50	1200.78	1204.07	I207.35	1210.63
370	[213.91	1217.19	I220.47	1223.75	1227.03	1230.3 I	1233.59	1236.87	I240.15	1243.44
380	1246.72	1250.00	1253.28	1256.56	1259.84	1263.12	1266.40	I269.68	I272.96	1276.24
390	1279.52	1282.81	1286.09	1289.37	1292.65	1295.93	1299.2I	I 302.49	I 305.77	I 309.05
400	${ }^{1} 312.33$	I315.6I	I318.89	I322.18	I 325.46	1328.74	1332.02	I 335.30	I338.58	I341.86
410	I345.14	I348.42	I 351.70	I 354.98	I358.26	I36I.55	1364.83	I368.11	I371.39	I 374.67
420	I377.95	I381.23	I 384.5 I	I 387.79	1391.07	I394.35	I397.63	1400.92	1404.20	1407.48
430	1410.76	I414.04	I417.32	1420.60	1423.88	1427.16	I430.44	1433.72	1437.00	I440.29
440	I443.57	I446.85	1450.13	I453.4I	1456.69	I459.97	1463.25	1466.53	1469.81	1473.09
450	1476.37	1479.66	I482.94	I486.22	1489.50	1492.78	1496.06	1499.34	1502.62	1505.90
460	r509.18	1512.46	1515.74	I519.03	I 522.3 I	1525.59	I 528.87	1532.15	I535.43	1538.71
470	r 54 I .99	${ }^{1} 545.27$	1548.55	${ }^{1} 551.83$	${ }^{1} 555.11$	1558.40	1561.68	1564.96	1568.24	${ }^{1} 571.52$
480	r574.80	1578.08	1581.36	I584.64	1587.92	I591.20	${ }^{1} 594.48$	1597.77	1601.05	1604.33
490	r607.61	1610.89	1614.17	1617.45	1620.73	1624.01	1627.29	1630.57	1633.85	1637.14
500	1640.42	1643.70	1646.98	1650.26	1653.54	r656.82	1660.10	1663.38	I666.66	1669.94

METRES INTO FEET.

1 metre $=39.3700$ inches $=\mathbf{3 . 2 8 0 8 3 3}$ feet

I mile $=1.609347$ kilometres

Miles.	0	I	2	3	4	5	6	7	8	9
	km .	km.	km .	km.	km.	km .	km.	km .	km .	km.
0	0	2	3	5	6	8	10	II	13	14
10	16	18	19	21	23	24	26	27	29	31
20	32	34	35	37	39	40	42	43	45	47
30	48	50	51	53	55	56	58	60	61	63
40	64	66	68	69	71	72	74	76	77	79
50	80	82	84	85	87	89	90	92	93	95
60	97	98	100	101	103	105	106	108	109	III
70	II3	114	116	117	119	121	122	124	126	127
80	129	130	132	134	135	137	138	140	142	143
90	145	146	148	150	151	153	154	156	I 58	[59
100	16I	163	164	166	167	169	171	172	174	175
110	177	179	180	182	183	185	187	188	190	192
120	193	195	196	198	200	201	203	204	206	208
130	209	211	212	214	216	217	219	220	222	224
140	225	227	229	230	232	233	235	237	238	240
150	241	243	245	246	248	249	251	253	254	256
160	257	259	261	262	264	266	267	269	270	272
170	274	275	277	278	280	282	283	285	286	288
I8o	290	291	293	295	296	298	299	301	303	304
190	306	307	309	3 II	312	314	315	317	319	320
200	322	323	325	327	328	330	332	333	335	336
210	338	340	341	343	344	346	348	349	351	352
220	354	356	357	359	360	362	364	365	367	369
230	370	372	373	375	377	378	380	381	383	385
240	386	388	389	391	393	394	396	398	399	401
250	402	404	406	407	409	410	412	414	415	417
260	418	420	422	423	425	426	428	430	431	433
270	435	436	438	439	441	443	444	446	447	449
280	45 I	452	454	455	457	459	460	462	463	465
290	467	468	470	472	473	475	476	478	480	481
300	483	484	486	488	489	491	492	494	496	497
310	499	5 OI	502	504	505	507	509	510	512	513
320	5 I 5	517	518	520	521	523	525	526	528	529
330	53 I	533	534	536	538	539	541	542	544	546
340	547	549	550	552	554	555	557	558	560	562
350	563	565	566	568	570	571	573	575	576	578
360	579	581	583	584	586	587	589	591	592	594
370	595	597	599	600	602	604	605	607	608	610
380	612	613	6 I 5	616	618	620	621	623	624	626
390	628	629	631	632	634	636	637	639	641	642
400	644	645	647	649	650	652	653	655	657	658
410	660	661	663	665	666	668	669	671	673	674
420	676	678	679	681	682	684	686	687	689	690
430	692	694	695	697	698	700	702	703	705	706
440	708	710	711	713	715	716	718	719	721	723
450	724	726	727	729	731	732	734	735	737	739
460	740	742	744	745	747	748	750	752	753	755
470	756	758	760	761	763	764	766	768	769	771
480	772	774	776	778	779	781	782	784	785	787 803
490	789	790	792	793	795	797	798	800	801	803
500	805	806	808	809	8 II	813	814	816	818	819
510	821	822	824	826	827	829	830	832	834	835
520	837	838	840	842	843	845	847	848	850	851
530	853	855	856	858	859	861	863	864	866	867
540	869	87 I	872	874	875	877	879	880	882	884
550	885	887	888	890	892	893	895	896	898	900

Smithbonian Tableb.

MILES INTO KILOMETRES.

Miles.	0	1	2	3	4	5	6	7	8	9
	km .	km.	km.	km .	km.	km.	km.	km.	km .	km.
550	885	887	888	890	892	893	S95	896	898	900
560	901	903	904	906	908	909	911	912	914	916
570	917	919	921	922	924	925	927	929	930	932
580	933	935	937	938	940	941	943	945	946	948
590	950	951	953	954	956	958	959	961	962	964
600	966	967	969	970	972	974	975	977	978	980
610	982	983	985	987	988	990	991	993	995	996
620	998	999	1001	1003	1004	1006	1007	1009	IOII	1012
630	1014	1015	1017	1019	1020	1022	1024	1025	1027	1028
640	1030	1032	1033	1035	1036	1038	1040	1041	1043	1044
650	1046	1048	1049	1051	1053	1054	1056	1057	1059	1061
660	1062	1064	1065	1067	1069	1070	1072	1073	1075	1077
670	1078	1080	1081	1083	1085	1086	ro88	1090	1091	1093
680	1094	1096	1098	1099	IIOI	1102	1104	1106	1107	1109
690	IIIO	1112	III4	III5	III7	1118	1120	1122	1123	1125
700	1127	1128	1130	II3I	1133	1135	II 36	1138	1139	1141
710	1143	1144	1146	1147	1149	1151	I 152	1154	I 156	1157
720	1159	1160	1162	1164	1165	1167	I 168	1170	1172	1173
730	1175	1176	1178	1180	II81	1183	1184	IIS6	1188	1189
740	II9I	1193	II94	1196	1197	1199	I2OI	1202	1204	1205
750	1207	1209	1210	1212	1213	1215	1217	1218	1220	1221
760	1223	1225	1226	1228	1230	1231	1233	1234	1236	1238
770	1239	1241	1242	1244	1246	1247	1249	1250	1252	1254
780	1255	1257	1259	1260	1262	1263	1265	1267	1268	1270
790	1271	1273	1275	1276	1278	1279	1281	1283	1284	1286
800	1287	1289	1291	1292	1294	1296	1297	1299	1300	1302
810	1304	1305	1307	1308	1310	1312	I3I3	1315	I316	1318
820	1320	1321	1323	1324	1326	1328	I 329	1331	1333	1334
830	1336	1337	I 339	1341	I 342	I 344	I 345	1347	1349	1350
840	1352	1353	I 355	1357	1358	I360	I362	1363	1365	I 366
850	ป368	1370	1371	1373	1374	1376	I378	1379	1381	1382
860	1384	1386	1387	1389	1390	1392	I394	1395	1397	1399
870	1400	1402	1403	1405	1407	1408	1410	14II	1413	1415
880	1416	1418	1419	1421	1423	1424	1426	1427	1429	1431
S90	1432	1434	1436	1437	1439	1440	1442	1444	1445	1447
900	1448	1450	1452	1453	1455	1456	1458	1460	1461	1463
910	1464	1466	1468	1469	1471	1473	1474	1476	1477	1479
920	1481	1482	1484	1485	1487	1489	1490	1492	1493	1495
930	1497	1498	1500	1502	1503	1505	1506	1508	1510	1511
940	1513	1514	I516	I5I8	1519	1521	I 522	1524	1526	1527
950	1529	1530	1532	1534	1535	1537	1539	1540	1542	1543
960	1545	1547	1548	I550	1551	1553	1555	1556	1558	1559
970	1561	I563	1564	I 566	1567	1569	1571	1572	1574	1576
980	1577	1579	1580	1582	1584	1585	1587	1588	1590	1592
990	I593	1595	1596	${ }^{1} 598$	1600	1601	1603	1605	1606	1608
1000	1609	1611	1613	1614	1616	1617	1619	162I	1622	1624
	Miles.	km.				,	km.	Miles.	km.	
	1000	1609					17703	16000	25750	
	2000	3219				000	19312	17000	27359	
	3000	4828				000	20922	18000	28968	
	4000	6437				000	22531	19000	30578	
	5000	8047	100			000	24140	20000	32187	

I kilometre $=0.621370 \mathrm{mile}$.

Kilometres.	0	1	2	3	4	5	6	7	8	9
	Miles.	Miles.	Miles.	Miles.	Miles.	Miles.	Miles.	Miles.	Miles.	Miles.
0	0.0	0.6	I. 2	I. 9	2.5	3.1	3.7	4.3	5.0	5.6
Io	6.2	6.8	$7 \cdot 5$	8.1	8.7	$9 \cdot 3$	9.9	10.6	II. 2	II. 8
20	12.4	13.0	13.7	14.3	14.9	15.5	16.2	16.8	17.4	18.0
30	18.6	19.3	19.9	20.5	2 I. 1	21.7	22.4	23.0	23.6	24.2
40	24.9	25.5	26. I	26.7	27.3	28.0	28.6	29.2	29.8	30.4
50	3 I .1	3 I .7	32.3	32.9	33.6	34.2	34.8	35.4	36.0	36.7
60	37.3	37.9	38.5	39.1	39.8	40.4	41.0	41.6	42.3	42.9
70	43.5	44.1	44.7	45.4	46.0	46.6	47.2	47.8	48.5	49.1
80	49.7	50.3	51.0	51.6	52.2	52.8	53.4	54.1	54.7	55.3
90	55.9	56.5	57.2	57.8	58.4	59.0	59.7	60.3	60.9	61.5
100	62.1	62.8	63.4	64.0	64.6	65.2	65.9	66.5	67.1	67.7
110	68.4	69.0	69.6	70.2	70.8	71.5	72.1	72.7	73.3	73.9
120	74.6	75.2	75.8	76.4	77.0	77.7	78.3	78.9	79.5	80.2
130	80.8	8 r .4	82.0	82.6	83.3	83.9	84.5	85. I	85.7	86.4
140	87.0	87.6	88.2	88.9	89.5	90.1	90.7	91.3	92.0	92.6
150	93.2	93.8	94.4	95. I	95.7	96.3	96.9	97.6	98.2	98.8
160	99.4	100.0	100.7	IOI. 3	IOI. 9	102.5	103.1	103.8	104.4	105.0
170	105.6	106.3	106.9	107.5	108. 1	108.7	109.4	I10.O	110.6	III. 2
I80	III. 8	112.5	II3. I	I 13.7	114.3	II5.0	I 15.6	II6.2	I 16.8	117.4
190	IIS. I	II8.7	119.3	119.9	120.5	121.2	121.8	122.4	123.0	123.7
200	124.3	124.9	125.5	I26. 1	126.8	127.4	128.0	I28.6	129.2	129.9
210	I30.5	I3I.I	131.7	132.4	133.0	133.6	I 34.2	I 34.8	I 35.5	136.I
220	136.7	137.3	I 37.9	I 38.6	139.2	139.8	140.4	I41.I	141.7	142.3
230	142.9	143.5	144.2	144.8	145.4	146.0	146.6	147.3	147.9	148.5
240	149.1	149.8	150.4	151.0	151.6	152.2	${ }^{1} 52.9$	153.5	I54. I	154.7
250	155.3	156.0	I56.6	157.2	157.8	158.4	159.1	I59.7	160.3	160.9
260	161.6	162.2	162.8	163.4	164.0	164.7	165.3	165.9	166.5	167.1
270	167.8	168.4	169.0	169.6	170.3	170.9	171.5	172.I	172.7	173.4
280	174.0	174.6	175.2	175.8	176.5	177.1	177.7	178.3	179.0	179.6
290	180.2	180.8	I8I. 4	182. 1	I82.7	183.3	183.9	184.5	I85.2	185.8
300	186.4	187.0	187.7	188.3	188.9	189.5	190.1	190.8	191.4	192.0
310	192.6	193.2	193.9	194.5	195.I	195.7	196.4	197.0	197.6	198.2
320	198.8	199.5	200. 1	200.7	201.3	201.9	202.6	203.2	203.8	204.4
330	205.1	205.7	206.3	206.9	207.5	208.2	208.8	209.4	210.0	210.6
340	211.3	211.9	212.5	213.1	213.8	214.4	215.0	215.6	216.2	216.9
350	217.5	218.1	218.7	219.3	220.0	220.6	221.2	22 I .8	222.5	223. I
360	223.7	224.3	224.9	225.6	226.2	226.8	227.4	228.0	228.7	229.3
370	229.9	230.5	231.1	23 I .8	232.4	233.0	233.6	234.3	234.9	235.5
380	236.I	236.7	237.4	238.0	238.6	239.2	239.8	240.5	241.I	24 I .7
390	242.3	243.0	243.6	244.2	244.8	245.4	246.1	246.7	247.3	247.9
400	248.5	249.2	249.8	250.4	251.0	251.7	252.3	252.9	253.5	254. I
410	254.8	255.4	256.0	256.6	257.2	257.9	258.5	259.I	259.7	260.4
420	261.0	261.6	262.2	262.8	263.5	264.I	264.7	265.3	265.9	266.6
430	267.2	267.8	268.4	269.1	269.7	270.3	270.9	271.5	272.2	272.8
440	273.4	274.0	274.6	275.3	275.9	276.5	277.I	277.8	278.4	279.0
450	279.6	280.2	280.9	281.5	282.I	282.7	283.3	284.0	284.6	285.2
460	285.8	286.5	287.1	287.7	288.3	288.9	289.6	290.2	290.8	291.4
470	292.0	292.7	293.3	293.9	294.5	295.2	295.8	296.4	297.0	297.6
480	298.3	298.9	299.5	300. 1	300.7	301.4	302.0	302.6	303.2	303.8
490	304.5	305.I	305.7	306.3	307.0	307.6	308.2	308.8	309.4	310.1
500	310.7	311.3	3II. 9	312.5	313.2	3 I 3.8	314.4	315.0	315.7	316.3
510	316.9	317.5	318.I	318.8	319.4	320.0	320.6	321.2	32 I .9	322.5
520	323.1	323.7	324.4	325.0	325.6	326.2	326.8	327.5	328.1	328.7
530	329.3	329.9	330.6	331.2	331.8	332.4	333.1	333.7	$334 \cdot 3$	334.9
540	335.5	336.2	336.8	337.4	338.0 .	338.6	339.3	339.9	340.5	341. I

KILOMETRES INTO MILES.

Kilometres.	0	I	2			4	5	6	7	8	9
	Miles.	Miles.	Miles.	Mil		Miles.	Miles.	Miles.	Miles.	Mile	Miles.
550	341.8	342.4	343.0	343		344.2	344.9	345.5	346. I	346.7	347.3
560	348.0	348.6	349.2	349		350.5	35 I . I	351.7	352.3	352.9	353.6
570	354.2	354.8	355.4	356		356.7	357.3	357.9	358.5	359.2	359.8
580	360.4	361.0	36 I .6	362		362.9	363.5	364.1	364.7	365.4	366.0
590	366.6	367.2	367.9			369.I	369.7	370.3	371.0	37 I .6	372.2
600	372.8	373.4	374.I	374		$375 \cdot 3$	375.9	376.6	377.2	377.8	378.4
610	379.0	379.7	380.3	380		38 I .5	382.1	382.8	383.4	384.0	384.6
620	385.2	385.9	386.5	387		387.7	388.4	389.0	389.6	390.2	390.8
630	391.5	392.1	392.7	393		393.9	394.6	395.2	395.8	396.4	397. I
640	397.7	398.3	398.9	399		400.2	400.8	401.4	402.0	402.6	403.3
650	403.9	404.5	405.I	405		406.4	407.0	407.6	408.2	408.9	409.5
660	410.1	410.7	411.3	412		412.6	413.2	413.8	414.5	415. 1	415.7
670	416.3	416.9	417.6	418		418.8	419.4	420.0	420.7	421.3	42 I .9
680	422.5	423.2	423.8	424		425.0	425.6	426.3	426.9	427.5	428. I
690	428.7	429.4	430.0	430		431.2	431.9	432.5	433. I	433.7	434.3
700	435.0	435.6	436.2			437.4	438. 1	438.7	439.3	439.9	440.6
710	441.2	441.8	442.4	443		443.7	444.3	444.9	$445 \cdot 5$	446.1	446.8
720	447.4	448.0	448.6	449		449.9	450.5	45 I .1	451.7	452.4	453.0
730	453.6	454.2	454.8	455		456.1	456.7	$457 \cdot 3$	$457 \cdot 9$	458.6	459.2
740	459.8	460.4	461.1	461		462.3	462.9	463.5	464.2	464.8	465.4
750	466.0	466.6	467.3			468.5	469. 1	469.8	470.4	471.0	471.6
760	472.2	472.9	473.5	474		474.7	475.3	476.0	476.6	477.2	477.8
770	478.5	479. 1	479.7	48		480.9	48 I .6	482.2	482.8	483.4	484.0
780	484.7	485.3	485.9	486		487.2	487.8	488.4	489.0	489.6	490.3
790	490.9	491.5	492. I	492		493.4	494.0	494.6	495.2	495.9	496.5
800	497. 1	497.7	498.3	499		499.6	500.2	500.8	501.4	502. I	502.7
810	503.3	503.9	504.6	505		505.8	506.4	507.0	507.7	508.3	508.9
820	509.5	510.1	510.8	5 II		512.0	512.6	513.3	513.9	514.5	515. I
830	515.7	516.4	517.0	517		518.2	518.8	519.5	520.1	520.7	52 I .3
840	522.0	522.6	523.2	523		524.4	525. 1	525.7	526.3	526.9	527.5
850	528.2	528.8	529.4	53		530.6	531.3	531.9	532.5	533. I	533.8
860	534.4	535.0	535.6	53		536.9	537.5	538.I	538.7	539.3	540.0
870	540.6	541.2	541.8	54		543. 1	543.7	544.3	544.9	545.6	546.2
880	546.8	547.4	548.0	548		549.3	549.9	550.5	55 I .2	551.8	552.4
890	553.0	553.6	554.3	55		555.5	556. I	556.7	557.4	558.0	558.6
900	559.2	559.9	560.5	561		56 I .7	562.3	563.0	563.6	564.2	564.8
910	565.4	566. I	566.7	567	. 3	567.9	568.6	569.2	569.8	570.4	571.0
920	571.7	572.3	572.9	573	. 5	574. 1	574.8	575.4	576.0	576.6	$577 \cdot 3$
930	577.9	578.5	579. I	579	- 7	580.4	581.0	5 Si .6	582.2	582.8	583.5
940	584. 1	584.7	585.3			586.6	587.2	587.8	588.4	589.1	589.7
950	590.3	590.9	591.5	59	2.2	592.8	593.4	594.0	594.7	595.3	595.9
960	596.5	597.1	597.8		8.4	599.0	599.6	600.2	600.9	601.5	602.1
970	602.7	603.4	604.0	60	4.6	605.2	605.8	606.5	607.1	607.7	608.3
980	608.9	609.6	610.2	610	. 8	611.4	612.0	6I2.7	613.3	613.9	614.5
990	615.2	615.8	616.4			617.6	618.3	618.9	619.5	620.1	620.7
1000	621.4	622.0	622.6	62	3.2	623.9	624.5	625.1	625.7	626.3	627.0
	km.	Miles.			M		km.	Miles.	km.	Miles.	
	1000	621.4					1000	6835. 1	16000	9941.9	
	2000	1242.7			434		12000	7456.4	17000	10563.3	
	3000	1864. 1					13000	8077.8	18000	11184.7	
	4000	2485.5					14000	8699.2	19000	11806.0	
	5000	3106.8	100		621		15000	9320.5	20000	12427.4	

TABLE 70.
INTERCONVERSION OF NAUTICAL AND STATUTE MILES.
I nautical mile* $=6080.27$ feet.

Nautical Miles.	Statute Miles.	Statute Miles.	Nautical Miles.
	1.1516	1	0.8684
2	2.3031	1.7368	
3	3.4547	2.6052	
4	4.6062	3	3.4736
5	5.7578	4	4.3420
6	6.9093	5	6.2104
7	8.0609	6	6.9788
8	9.2124	7	7.8155
9	10.3640	9	

*As defined by the United States Coast Survey.

TABLE 71.

CONTINENTAL MEASURES OF LENGTH WITH THEIR METRIC AND ENGLISH EQUIVALENTS.

The asterisk $\left(^{*}\right)$ indicates that the measure is obsolete or seldom used.

Measure	Metric Equivalent.	English Equivalent.
El (Netherlands)	metre.	3.2808 feet.
Fathom, Swedish $=6$ feet	r.7814 "	5.8445 "
Foot, Austrian*	0.31608 "	r. 0370 "
old French*	0.32484 "	1.0657 "
Russian	0.30480 "	"
Rheinlandisch or Rhenish (Prussia*, Denmark, Norway*).	0.31385 "	1.0297 "
Swedish*	0.2969 "	0.9741 "
Spanish* $=1 / 3$ vara	0.2786 "	0.9140 "
*Klafter, Wiener (Vienna)	r. 89648 "	6.2221 "
*Line, old French $=\frac{1}{144}$ foot	0.22558 cm .	0.0888 inch.
Mile, Austrian post* $=24000$ feet	$\begin{aligned} & 7.58594 \mathrm{~km} . \\ & \text { I. } 852 \quad \text { " } \end{aligned}$	4.714 statute miles. 1. 1508
Swedish $=36000$ feet	10.69 "	6.642 " "
Norwegian $=36000$ feet	II. 2986 "	7.02 "
Netherlands (mijl)	"	0.6214 " "
Prussian (law of 1868)	7.500	4.660 " "
Danish	7.5324	4.6804
Palm, Netherlands	0.1 metre.	0.328I feet.
*Rode, Danish	3.7662	12.356 "
*Ruthe, Prussian, Norwegian	3.7662	12.356 "
Sagene (Russian)	2.1336	7 "
*Toise, old French $=6$ feet	1.9490	6.3943
*Vara, Spanish	0.8359 "	2.7424 "
Mexican .	0.8380	2.7293 "
Werst, or versta (Russian) $=500$ sagene	1. 0668 km .	3.500 "

CONVERSION OF MEASURES OF TIME AND ANGLE.

Arc into time 72
Time into arc 73
Days into decimals of a year and angle 74
Hours, minutes and seconds into decimals of a day Table 75
Decimals of a day into hours, minutes and seconds Table 76
Minutes and seconds into decimals of an hour Table 77
Mean time at apparent noon 78
Sidereal time into mean solar time Table 79
Mean solar time into sidereal time Table 80

TAble 72.

ARC INTO TIME.

-	h. m.	-	h. m.	\bigcirc	h. m.	-	h m.	-	h. m.	-	h. m.	,	m. s.	//	s.
0	00	60	4 o	120	8 o	180	12 O	240	16 o	300	200	0	0 O	0	0.000
1	- 4	61	44	121	84	181	124	24 I	164	301	204	1	- 4	I	0.067
2	- 8	62	48	122	88	182	128	242	I6 8	302	208	2	- 8	2	0. 133
3	O 12	63	412	123	812	183	12 I 2	243	1612	303	2012	3	- 12	3	0.200
4	o 16	64	416	124	816	184	1216	244	1616	304	2016	4	- 16	4	0.267
5	- 20	65	420	125	820	185	1220	245	1620	305	2020	5	O 20	5	0.333
6	O 24	66	424	126	824	186	1224	246	1624	306	2024	6	O 24	6	0.400
7	- 28	67	428	127	828	187	1228	247	1628	307	2028	7	- 28	7	0.467
8	- 32	68	432	128	832	188	1232	248	1632	308	2032	8	- 32	8	0.533
9	- 36	69	436	129	836	189	1236	249	1636	309	2036	9	- 36	9	0.600
10	- 40	70	440	130	840	190	1240	250	1640	310	2040	10	040	10	0.667
II	- 44	71	444	131	844	191	1244	251	1644	3 II	2044	II	O 44	II	0.733
12	- 48	72	448	I32	848	192	1248	252	1648	312	2048	12	048	12	0.800
13	- 52	73	452	133	852	193	1252	253	1652	313	2052	13	- 52	13	0.867
14	- 56	74	456	I 34	856	194	1256	254	1656	314	2056	14	- 56	14	0.933
15	I 0	75	5 o	135	9 o	195	I3 0	255	17 o	315	210	15	10	15	1.000
16	I 4	76	54	136	94	196	I3 4	256	I7 4	316	214	16	I 4	16	1.067
17	18	77	58	137	98	197	138	257	178	317	218	17	I 8	17	I. 133
18	112	78	5 I 2	138	912	198	13 I2	258	1712	318	2112	18	112	18	I. 200
19	116	79	516	139	916	199	1316	259	1716	319	2116	19	116	19	1.267
20	120	80	520	140	920	200	1320	260	1720	320	2120	20	120	20	1.333
2	124	81	524	141	924	201	13	261	1724	32 I	21 24	2 I	24	2 I	I. 400
22	I 28	82	528	142	928	202	1328	262	1728	322	2128	22	I 28	22	1.467
23	132	83	532	143	932	203	I3 32	263	1732	323	2132	23	132	23	1.533
24	136	8	536	144	936	204	I3 36	264	1736	324	2136	24	I 36	24	1.600
25	140	85	540	145	940	205	I3 40	265	1740	325	2140	25	I 40	25	1.667
26	I 44	86	544	146	944	206	I3 44	266	1744	326	2I 44	26	I 44	26	1.733
27	148	87	548	147	948	207	I3 48	267	1748	327	2148	27	148	27	1.800
28	I 52	88	552	148	952	208	I3 52	268	1752	328	2I 52	28	I 52	28	1. 867
29	1 56	89	556	149	956	209	1356	269	1756	329	2156	29	I 56	29	1.933
30		90	$6 \quad 0$	150	$10 \quad 0$	210	14 0	270	18 o	330	220	30	2	30	2.000
31	24	91	6 4	151	104	2 II	144	271	184	331	22	31		31	2.067
32	28	92	68	152	Io 8	212	148	72	18 8	332	22	32	2	32	2.133
33	212	93	612	153	1012	213	1412	273	1812	333	2212	33	212	33	2.200
34	216	94	616	154	1016	214	1416	274	I8 16	334	2216	34	216	34	2.267
35	220	95	620	155	Io	215	1420	275	I8 20	335	2220	35	2	35	2.333
36	224	96	624	156	Io 24	216	1424	276	I8 24	336	2224	36	224	36	2.400
37	228	97	628	157	10	217	1428	277	I8 28	337	2228	37	228	37	2.467
38	232	98	632	158	1032	21	1432	278	1832	338	2232	38	232	38	2.533
39	236	99	636	159	10 36	219	1436	279	1836	339	2236	39	236	39	2.600
40	240	100	640	160	1040	22	1440	280	1840	340	2240	40	240	40	2.667
41	244	IOI	644	161	IO 44	221	1444	281	I8 44	341	2244	4	244	41	2.733
42	248	102	648	162	1o 48	222	I4 48	282	1848	342	2248	42	248	42	2.800
43	252	103	652	163	1052	223	1452	283	1852	343	2252	43	252	43	2.867
45	256	104	656	164	Io 56	224	1456	284	1856	345	2256	44	256	44	2.933
45	3 3	105	7 0	165	II 0	225	150	285	190	345	230	45	3 0	45	3.000
46	3	106	$7 \begin{array}{ll}7 & 4\end{array}$	166	II 4	226	I5 4	286	I9 4	346	234	46	3	46	3.067
47	38	107	78	167	II 8	227	I5 8	287	198	347	238	47	38	47	3. I33
48	$\begin{array}{ll}312 \\ 3 & 16\end{array}$	108	712	168	II 12	228	1512	288	19 I2	348	2312	48	312	48	3.200
49	316	109	716	169	II 16	229	1516	289	19 I6	349	2316	49	316	49	3.267
50	320	110	720	170	II 20	230	1520	290	1920	350	2320	50	320	50	$3 \cdot 333$
51	324	III	724	171	II 24	231	I5 24	291	1924	351	2324	51	324	51	3.400
52	328	112	728	172	II 28	232	1528	292	1928	352	2328	52	328	52	3.467
53	332	II3	732	173	II 32	233	1532	293	1932	353	2332	53	332	53	3.533
54	336	114	736	174	II 36	234	I5 36	294	I9 36	354	2336	54	336	54	3.600
55	340	115	740	175	II 40	235	1540	295	1940	355	2340	55	340	55	3.667
56	344	II6	744	176	II 44	236	1544	296	1944	356	2344	56	344	56	3.733
57	348	117	748	177	II 48	237	1548	297	1948	357	2348	57	348	57	3.800
58 59	3 3 3 5	II8	752	178	II 52	238	1552	298	I9 52	358	2352	58	352 3	58	3.867
$\frac{59}{60}$	356	I19	756	179	1156	239	1556	299	1956	359	2356	59	356	59	3.933
60	40	120	8 o	180	12 O	240	16 0	300	20 0	360	24 O	60	40	60	4.000

TABLE 73.
TIME INTO ARC.

Hours into Arc.

Time.	Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.
hrs.	-	hrs.	-	hrs.	-	hrs.	-	hrs.	-	hrs.	-
1	15	5	75	9	135	13	195	17	255	21	315
2	30	6	90	10	150	14	210	18	270	22	330
3	45	7	105	11	165	15	225	19	285	23	345
4	60	8	120	12	180	16	240	20	300	24	360

Minutes of Time into Arc.
Seconds of Time into Arc.

m.	$\bigcirc 1$	m.	- ,	m.	$\bigcirc 1$	s.	, /1	S	/1	s.	1	11
1	- I5	21	515	41	10 I5	1	- 15	21	515	41	10	15
2	- 30	22	530	42	1030	2	- 30	22	530	42	10	30
3	- 45	23	545	43	IO 45	3	- 45	23	545	43	10	45
4	I 0	24	60	44	II 0	4	I 0	24	6 0	44	II	0
5	I 15	25	6 I5	45	1115	5	I 15	25	615	45	II	15
6	I 30	26	630	46	II 30	6	I 30	26	630	46	II	30
7	I 45	27	645	47	II 45	7	I 45	27	645	47	II	45
8	20	28	7 0	48	120	8	20	28	7 0	48	12	0
9	2 I5	29	715	49	12 I 5	9	2 I5	29	715	49	12	15
10	230	30	730	50	1230	10	230	30	730	50	12	30
II	245	3 I	745	5I	1245	II	245	31	745	5 I	12	45
12	30	32	8 0	52	130	12	30	32	8 o	52	13	0
I3	3 I5	33	8 I5	53	13 I5	13	3 I5	33	8 I5	53	13	15
14	$3 \quad 30$	34	830	54	I3 30	14	330	34	830	54	I3	30
15	345	35	845	55	I3 45	15	345	35	845	55	13	45
16	40	36	90	56	14 O	16	40	36	90	56	14	0
17	4 I5	37	9 I5	57	1415	17	4 I5	37	915	57	14	15
18	430	38	930	58	1430	18	430	38	930	58	14	30
19	445	39	945	59	1445	19	445	39	945	59	14	45
20	5 ○	40	10 0	60	150	20	50	40	100	60	15	0

Hundredths of a Second of Time into Arc.

Hundredths of a Second of Time.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
$\begin{gathered} \text { s. } \\ 0.00 \end{gathered}$	ó.00	O.15	0.10	0.10	\% 0.60	0.75	0.190	1.05	I'120	I. 35
.10	1.50	1.65	1.30 1.80	0.45 1.95	2.10	0.75 2.25	0.90 2.40	1.05 2.55	1.20 2.70	1.35 2.85
. 20	3.00	3.15	3.30	3.45	3.60	3.75	3.90	4.05	4.20	4.35
. 30	4.50	4.65	4.80	4.95	5.10	5.25	5.40	5.55	5.70	5.85
. 40	6.00	6.15	6.30	6.45	6.60	6.75	6.90	7.05	7.20	$7 \cdot 35$
0.50	7.50	7.65	7.80	7.95	8.10	8.25	8.40	8.55	8.70	8.85
. 60	9.00	9.15	9.30	9.45	9.60	9.75	9.90	10.05	10.20	10.35
. 70	10.50	10.65	10.80	10.95	II.10	II. 25	II. 40	II. 55	11.70	II. 85
. 80	12.00	12.15	12.30	12.45	12.60	12.75	12.90	13.05	13.20	13.35
. 90	13.50	13.65	13.80	13.95	14.10	14.25	14.40	14.55	14.70	14.85

Smithsonian Tableg.

Table 74.

DAYS INTO DECIMALS OF A YEAR AND ANGLE.

$\begin{gathered} \text { Day } \\ \text { of } \\ \text { Year. } \end{gathered}$	Decimal of a Year.	Angle.	Day of	Month.	$\begin{aligned} & \text { Day } \\ & \text { of } \\ & \text { Year. } \end{aligned}$	Decimal a Year.	Angle.	Day of Month.	
			Common Year.	Bissextile Year.				Common Year.	Bissextile Year.
1	0.00000	$0^{\circ} \mathrm{o}^{\prime}$	Jan. I	Jan. 1	51	0.13689	$49^{\circ} 17^{\prime}$	Feb. 20	Feb. 20
2	. 00274	- 59			52	. 13963	5016	2 I	21
3	. 00548	I 58	3	3	53	. 14237	5115	22	22
4	. 00821	257	4	4	54	. 14511	5214	23	23
5	0.01095	357	5	5	55	0.14784	5313	24	24
6	.01369	456	6	6	56	. 15058	54 I3	25	25
7	. 01643	555	7	7	57	. 15332	5512	26	26
8	.01916	654	8	8	58	. 15606	56 II	27	27
9	.02190	753	9	9	59	. 15880	57 10	28	28
10	0.02464	852	10	10	60	0.16I53	589	Mar. 1	29
11	. 02738	95 I	11	II	6I	. 16427	598		Mar. 1
12	.03011	10 51	12	12	62	. 16701	607	3	2
I3	. 03285	II 50	13	13	63	. 16975	617	4	3
14	. 03559	1249	14	14	64	. 17248	626	5	4
15	0.03833	1348	15	15	65	0. 17522	635	6	5
16	.04107	1447	16	16	66	. 17796	644	7	6
17	.0438I	1546	17	17	67	. 18070	65	8	7
18	. 04654	1645	18	18	68	. 18344	662	9	8
19	. 04928	1744	19	19	69	.186I7	67 I	10	9
20	0.05202	I8 44	20	20	70	0.18891	68 o	II	10
21	. 05476	1943	21	21	71	.19165	69 -	12	II
22	. 05749	2042	22	22	72	. 19439	6959	13	12
23	. 06023	2141	23	23	73	.19713	7058	14	13
24	. 06297	2240	24	24	74	. 19986	7157	15	14
25	0.06571	2339	25	25	75	0.20260	7256	16	15
26	. 06845	2438	26	26	76	. 20534	7355	17	16
27	. 07118	2538	27	27	77	. 20808	7454	I8	17
28	. 07392	2637	28	28	78	. 2108I	7554	19	18
29	. 07666	2736	29	29	79	. 21355	7653	20	19
30	0.07940	$28 \quad 35$	30	30	80	0.21629	7752	2 I	20
31	. 08214	2934	31	3 I	81	. 21903	78 51	22	21
32	. 08487	3033	Feb. I	Feb. 1	82	. 22177	7950	23	22
33	. 08761	3132		2	83	. 22450	8049	24	23
34	. 09035	3232	3	3	84	. 22724	81 48	25	24
35	0.09309	33 31	4	4	85	0.22998	8248	26	25
36	. 09582	3430	5	5	86	. 23272	8347	27	26
37	. 09856	$35 \quad 29$	6	6	87	. 23546	8446	28	27
38	. IOI30	3628	7	7	88	.23819	8545	29	28
39	. 10404	$37 \quad 27$	8	8	89	. 24093	8644	30	29
40	0. 10678	3826	9	9	90	0.24367	8743	3^{31}	30
41	.1095I	3926	10	Io	91	. 24641	8842	Apr. 1	31
42	. 11225	4025	II	II	92	. 24914	8942		Apr. ${ }^{1}$
43	. 11499	41	12	12	93	.25188	9041	3	2
44	. 11773	4223	13	13	94	. 25462	9140	4	3
45	0.12047	4322	14	14	95	0.25736°	9239	5	4
46	. 12320	44 21	15	15	96	. 26010	$93 \quad 38$	6	5
47	. 12594	4520	16	16	97	. 26283	9437	7	6
48	. 12868	46 I9	17	17	98	. 26557	9536	8	7
49	. 13142	47 19	18	18	99	. 2683 I	9635	9	8
50	0.13415	$48 \quad 18$	19	19	100	0.27105	9735	10	9

Emithsonian Tables.

DAYS INTO DECIMALS OF A YEAR AND ANGLE.

$\begin{gathered} \text { Day } \\ \text { of } \\ \text { Year. } \end{gathered}$	Decimal of a Year.	Angle.	Day of Month.		$\begin{aligned} & \text { Day } \\ & \text { of } \\ & \text { Year. } \end{aligned}$	Decimal of a Year.	Angle.	Day of Month.	
			Common Year.	Bissextile Year.				Common Year.	Bissextile Year.
101	0.27379	$98^{\circ} 34^{\prime}$	Apr. 11	Apr. 10	151	0.41068	$147^{\circ} 51^{\prime}$	May 3I	May 30
102	. 27652	9933	12	II	152	. 41342	14850	June 1	$3 I$
103	. 27926	IOO 32	I3	12	I 53	.416I5	14949		June I
104	. 28200	IOI 3I	14	13	154	.41889	15048	3	2
105	0.28474	10230	15	14	155	0.42163	15147	4	3
106	. 28747	10329	16	15	156	. 42437	15246	5	4
107	. 2902 I	10429	17	16	157	. 42710	I53 45	6	5
108	. 29295	10528	18	17	158	. 42984	154 45	7	6
109	. 29569	10627	19	18	159	. 43258	I5544	8	7
110	0.29843	10726	20	19	160	0.43532	15643	9	8
III	. 30116	108 25	21	20	161	. 43806	15742	10	9
II 2	. 30390	10924	22	2 I	162	. 44079	1584 I	II	IO
II3	- 30664	IIO 23	23	22	163	. 44353	I59 40	12	II
II4	- 30938	III 23	24	23	164	. 44627	160 39	13	12
115	0.31211	11222	25	24	165	0.44901	161 39	14	13
116	. 31485	II3 2I	26	25	166	. 45175	16238	15	14
117	-31759	II4 20	27	26	167	. 45448	16337	16	I5
118	- 32033	11519	28	27	168	. 45722	16436	17	16
119	. 32307	11618	29	28	169	. 45996	16535	18	17
120	0.32580	11717	30	29	170	0.46270	16634	19	18
121	. 32854	11817	May I	30	17 !	. 46543	16733	20	19
122	. 33128	11916	2	May I	172	.46817	16833	21	20
123	-33402	12015	3		173	.47091	169 32	22	21
124	-3.3676	12114	4	3	174	. 47365	17031	23	22
125	0.33949	122 I3	5	4	175	0.47639	17130	24	23
126	. 34223	12312	6	5	176	. 47912	17229	25	24
127	- 34497	124 II	7	6	177	. 48186	17328	26	25
128	-34771	12510	8	7	178	. 48460	17427	27	26
129	-35044	126 IO	9	8	179	. 48734	17526	28	27
130	0.35318	1279	IO	9	180	0.49008	17626	29	28
131	. 35592	1288	II	IO	181	. 4928 I	17725	30	29
132	. 35866	1297	12	11	182	. 49555	17824	July 1	3^{30}
133	-36140	1306	I3	12	183	. 49829	17923		July 1
134	. 36413	1315	14	I3	184	. 50103	180 22	3	2
135	0.36687	1324	15	14	185	0.50376	181 21	4	3
136	. 36961	I33 4	16	15	186	. 50650	18220	5	4
137	. 37235	1343	17	16	187	. 50924	18320	6	5
138	. 37509	1352	18	17	188	-51198	18419	7	6
139	. 37782	136 I	19	18	I89	. 51472	18518	8	7
140	0.38056	137 0	20	19	190	0.51745	18617	9	8
141	. 38330	13759	21	20	191	. 52019	18716	10	9
142	. 38604	I38 58	22	21	192	. 52293	188 I5	II	10
143	- 38877	13958	23	22	193	. 52567	18914	12	II
144	-3915I	14057	24	23	194	. 52841	19014	13	12
145	0.39425	141 56	25	24	195	0.53114	I91 I3	14	13
146	. 39699	14255	26	25	196	. 53388	192 I2	15	14
147	. 39973	14354	27	26	197	. 53662	193 II	16	15
148	. 40246	14453	28	27	198	. 53936	194 10	17	16
149	. 40520	14552	29	28	199	. 54209	1959	18	17
150	0.40794	14651	30	29	200	0.54483	196 8	19	18

DAYS INTO DECIMALS OF A YEAR AND ANGLE.

$\begin{array}{\|c} \text { Day } \\ \text { of } \\ \text { Year. } \end{array}$	$\begin{aligned} & \text { Decimal } \begin{array}{c} \text { af } \\ \text { a Year. } \end{array} . \end{aligned}$	Angle.	Day of Month.		$\begin{gathered} \text { Day } \\ \text { of } \\ \text { Year. } \end{gathered}$	Decimal of a Year.	Angle.	Day of Month.	
			$\begin{aligned} & \text { Common } \\ & \text { Year. } \end{aligned}$	$\begin{aligned} & \text { Bissextile } \\ & \text { Year. } \end{aligned}$				Common Year.	Bissextile Year.
201	0.54757	$197^{\circ} 8^{\prime}$	July 20	July 19	251	0.68446	$246^{\circ} 24^{\prime}$	Sept. 8	Sept. 7
202	. 55031	1987	21	20	252	. 68720	24724	9	8
203	- 55305	1996	22	21	253	. 68994	24823	10	9
204	- 55578	2005	23	22	254	. 69268	24922	II	Iо
205	0.55852	2014	24	23	255	0.69541	25021	12	II
206	. 56126	2023	25	24	256	. 69815	25120	13	12
207	. 56400	2032	26	25	257	. 70089	25219	14	13
208	. 56674	204 I	27	26	258	. 70363	25318	15	14
209	. 56947	205 I	28	27	259	. 70637	25417	16	15
210	0.57221	206 o	29	28	260	0.70910	25517	17	16
2 II	. 57495	20659	30	29	261	.71184	25616	18	17
212	. 57769	20758	3 I	30	262	. 71458	25715	19	18
213	. 58042	20857	Aug. 1	31	263	. 71732	258 I4	20	19
214	. 58316	20956	2	Aug. 1	264	. 72005	259 I3	21	20
215	0.58590	21055	3	2	265	0.72279	26012	22	21
216	. 58864	2 II 55	4	3	266	. 72553	26I II	23	22
217	. 59138	21254	5	4	267	. 72827	262 II	24	23
218	-59411	21353	6	5	268	.73101	263 Io	25	24
219	- 59685	21452	7	6	269	. 73374	2649	26	25
220	0.59959	215 51	8	7	270	0.73648	2658	27	26
221	. 60233	21650	9	8	271	. 73922	2667	28	27
222	. 60507	21749	10	9	272	.74196	2676	29	28
223	.60780	21849	II	10	273	. 74470	2685	- 30	29
224	.61054	21948	12	II	274	. 74743	2695	Oct.	30
225	0.61328	22047	13	12	275	0.75017	2704	2	Oct. I
226	.61602	221 46	14	13	276	. 75291	271	3	2
227	.61875	22245	15	14	277	. 75565	2722	4	3
228	. 62149	22344	16	15	278	. 75838	273 I	5	4
229	. 62423	22443	17	16	279	.76112	274 o	6	5
230	0.62697	22543	18	17	280	0.76386	27459	7	6
231	.62971	22642	19	18	281	. 76660	27559	8	7
232	. 63244	227 41	20	19	282	. 76934	27658	9	8
233	. 63518	22840	21	20	283	. 77207	27757	Io	9
234	. 63792	22939	22	21	284	.7748I	27856	11	то
235	0.64066	23038	23	22	285	0.77755	27955	12	11
236	. 64339	23137	24	23	286	. 78029	28054	13	12
237	. 64613	23236	25	24	287	. 78303	281 53	14	13
238	. 64887	23336	26	25	288	. 78576	28252	15	14
239	.6516r	23435	27	26	289	. 78850	28352	16	15
240	0.65435	23534	28	27	290	0.79124	28451	17	16
241	. 65708	23633	29	28	291	. 79398	28550	18	17
242	. 65982	23732	30	29	292	. 7967 I	28649	19	18
243	. 66256	23831	3 I	30	293	. 79945	28748	20	19
244	. 66530	23930	Sept. 1	31	294	. 80219	28847	2 I	20
245	0.66804	24030	2	Sept. I	295	0.80493	28946	22	2 I
246	. 67077	24129	3	2	296	. 80767	29046	23	22
247	. 6735 I	24228	4	3	297	. 81040	291 45	24	23
248	. 67625	24327	5	4	298	. 81314	29244	25	24
249	. 67899	24426	6	5	299	. 81588	29343	26	25
250	0.68172	24525	7	6	300	0.81862	29442	27	26

DAYS INTO DECIMALS OF A YEAR AND ANGLE.

$\begin{aligned} & \text { Day } \\ & \text { of } \\ & \text { Year. } \end{aligned}$	Decimal of a Year.	Angle.	Day of Month.		$\begin{gathered} \text { Day } \\ \text { of } \\ \text { Year. } \end{gathered}$		Angle	Day of Month.		
			Common Year	Bissextile Year.					Common Year.	Bissextile Year.
301	0.82136	$295{ }^{\circ} 4 \mathrm{I}^{\prime}$	Oct. 28	Oct. 27	351	0.95825	344°	$8{ }^{\prime}$	Dec. 17	Dec. 16
302	. 82409	29640		28	352	. 96099	345		18	
303	. 82683	29740	30	29	353	. 96372	346		19	18
304	. 82957	29839	3 I	30	354	. 96646	347		20	19
305	0.83231	29938	Nov. I	-31	355	0.96920	348		21	20
306	. 83504	30037	2	Nov. 1	356	.97194	3495	4	22	21
307	. 83778	30136	3	2	357	. 97467	350	3	23	22
308	. 84052	30235	4	3	358	.9774I	351	2	24	23
309	. 84326	30334	5	4	359	.98015	352		25	24
310	0.84600	30434	6	5	360	0.98289	353		26	25
3 II	. 84873	30533	7	6	361	. 98563	354		27	26
312	. 85147	30632	8	7	362	. 98836	355		28	27
3 I 3	. 8542 I	30731	9	8	363	.9910	356		29	28
314	. 85695	30830	10	9	364	. 99384	357		30	29
315	0.85969	30929	II	10		0.99658	358		31	30
316	. 86242	31028	12	II	366	. 99932	359			3 I
317	. 86516	3 II 27	13	12						
318	. 86790	31227	14	13						
319	. 87064	31326	15	14	Conv	ersion for	ours.	Conv	version for	Minutes.
320	0.87337	31425	16	15						
321	. 87611	315 316	17	16	Hrs.	Dec. of Year.	Angle.	Min.	Dec. of	Angle.
322	. 87885	31623	18	17						
323	. 88159	31722	19	18						
324	. 88433	3 I 8 2I	20	19	I	0.00011	2.5	1	0.00000	0.04
325	0.88706	319 2I	21	20	2	23	4.9	2	0	. 08
326	. 88980	32020	22	2 I	3	34	7.4	3	I	. 12
327	. 89254	32119	23	22	4	46	9.9	4	I	. 16
328	. 89528	322 18	24	23				5		
329	. 89802	32317	25	24	6	$\begin{gathered} 57 \\ 68 \end{gathered}$	12.3	6	0.00001	0.21 .25
330	0.90075	32416	26	25	7	80	17.2	7	I	. 29
331	. 90349	32515	27	26	8	91	19.7	8	2	. 33
332	. 90623	32615	28	27	9	103	22.2	9	2	. 37
333	-90897	32714	29	28						
334	.91170	32813	30	29	10	0.00114	24.6	10	0.00002	0.41
335			Dec. 1		II	126	27.1	20	- 4	. 82
	0.91444 .91718	329 I2 330	Dec. 1	Dec. ${ }^{30}$	12	137	29.6	30	6	1.23
336	-91718	330 II	2	Dec. 1	I3	148	32.0	40	8	1.64
337	.91992	33110	3	2	14	160	34.5	50	10	2.05
338	. 92266	3329	4	3						
339	. 92539	3339	5	4	15	0.00171	37.0	60	0.00011	2.46
340	0.92813	3348	6		16	183	39.4			
341	. 93087	335	7	6	I7	194	41.9			
342	. 93361	3366	8	7	18	2 5	44.4			
343	. 93634	3375	9	8	19	217	46.8			
344	. 93908	3384	10	9	20	0.00228	49.3			
345	0.94182	3393	II	Io	21	240	51.7			
346	. 94456	3402	12	II	22	251	54.2			
347	. 94730	34 I 2	13	12	23	262	56.7			
348	. 95003	342 I	14	13	24	274	59.1			
349	. 95277	343 o	15	14			-			
350	0.95551	34359	16	15						

Smithbonian Tablee

TABLE 75.
HOURS, MINUTES AND SECONDS INTO DECIMALS OF A DAY.

Hours.	Day.	Min.	Day.	Min.	Day.	Sec.	Day.	Sec.	Lay.
- I	0.041 667	1	0.000694	31	0.021 528	I	0.000012	31	0.000359
2	. 083333	2	.OOI 389	32	. 022222	2	. 000023	32	. 000
3	. 125000	3	. 002083	33	. 022917	3	. 000035	33	. 000382
4	.166667	4	. 002778	34	. 023611	4	. 000046	34	. 000394
5	0.208333	5	0.003472	35	0.024305	5	0.000058	35	0.000405
6	. 250000	6	. 004167	36	. 025000	6	. 000069	36	. 000417
7	. 291667	7	. 004 86r	37	. 025694	7	. 000081	37	. 000428
8	. 333333	8	. 005556	38	.026389	8	. 000093	38	. 000440
9	. 375000	9	. 006250	39	. 027083	9	. 000104	39	. 000 451
10	0.416667	10	0.006944	40	0.027778	10	0.000 I16	40	0.000463
11	. 458333	11	. 007639	4 I	. 028472	11	. 000127	41	. 000475
12	. 500000	12	. 008333	42	.029167	12	. 000 I39	42	. 000486
I3	. 541667	13	. 009028	43	. 029 861	I3	. 000 I50	43	. 000498
14	. 583333	14	. 009722	44	. 030556	14	.000 I62	44	. 000509
15	0.625000	15	0.010417	45	0.031250	15	0.000174	45	0.00052 I
16	. 666667	16	. OII III	46	.031 944	16	. 000185	46	. 000532
17	. 708333	17	. 011806	47	. 032639	17	. 000197	47	. 000544
18	. 750000	18	.OI2 500	48	. 033333	18	. 000208	48	. 000556
19	.791 667	19	.OI3 I94	49	. 034028	19	. 000220	49	. 000567
20	0.833333	20	0.013889	50	0.034722	20	0.00023 I	50	0.000579
21	. 875000	21	.OI4 583	5 I	. 035417	2 I	. 000243	5 I	. 000590
22	. 916667	22	. 015278	52	. 036 III	22	. 000255	52	. 000602
23	.958 333	23	.OI5 972	53	. 036806	23	. 000266	53	. 000613
24	1.000000	24	.or6 667	54	. 037500	24	. 000278	54	. 000625
		25	0.017361	55	0.038194	25	0.000289	55	0.000637
		26	. 018 O56	56	. 038889	26	. 000301	56	. 000648
		27	.or8 750	57	. 039583	27	. 000313	57	. 000660
		28	.or9 444	58	. 040278	28	. 000324	58	. 000671
		29	.020 I39	59	. 040972	29	. 000336	59	. 000683
		30	0.020833	60	0.04I 667	30	0.000347	60	. 000694

Table 76.
DECIMALS OF A DAY INTO HOURS, MINUTES AND SECONDS.

Hundredths of a Day.			Ten Thousandths of a Day.		Millionths of a Day.	
d.	h. m.	S.	d.	min. sec.	d.	sec.
0.01	14		0.0001	8.64	0.000001	0.09
. 02	28		2	17.28	2	0.17
. 03	43		3	25.92	3	0.26
. 04	57	36	4	34.56	4	0.35
0.05	I 12	0	0.0005	4.3 .20	0.000005	0.43
. 06	I 26		6	5 I .84	6	0.52
. 07	I 40		7	I 0.48	7	0.60
. 08	I 55		8	I 9.12	8	0.69
. 09	29		9	I 17.76	9	0.78
0.10	224	0	0.0010	I 26.40	0.000010	0.86
. 20	448	0	20	252.80	20	1.73
. 30	7 12	o	30	419.20	30	2.59
. 40	936	-	40	$5 \quad 45.60$	40	3.46
0.50	120		0.0050	712.00	0.000050	4.32
. 60	1424		60	$8 \quad 38.40$	60	5.18
. 70	1648		70	104.80	70	6.05
. 80	19. 12		80	II 31.20	80	6.91
. 90	$2 \mathrm{I}^{*} 36$	0	90	$12 \quad 57.60$	90	$7 \cdot 78$

TABLE 77.
MINUTES AND SECONDS INTO DECIMALS OF AN HOUR.

Min.	Decimals of an hour.	Min.	Decimals of an hour.	Sec.	Decimals of an hour.	Sec.	Decimals of an hour.
I	0.016 667	31	0.516 667	1	0.000278	31	0.0086 II
2	. 033333	32	. 533333	2	. 000556	32	.008 889
3	. 050000	33	. 550000	3	. 000833	33	. 009167
4	. 066667	34	. 566667	4	.OOI III	34	. 009444
5	0.083333	35	0.583333	5	0.001389	35	0.009722
6	. 100000	36	. 600000	6	.001 667	36	. 010000
7	.ri6 667	37	. 616667	7	.OOI 944	37	.OIO 278
8	. 133333	38	. 633333	8	. 002222	38	.oIO 556
9	. 150000	39	. 650000	9	. 002500	39	. 010833
10	0.166 667	40	0.666667	10	0.002778	40	O.OII III
II	.183 333	4 I	. 683333	II	. 003056	41	.oir 389
12	. 200000	42	. 700000	12	. 003333	42	.OII 667
13	. 216667	43	.716 667	13	. 0036 II	43	. OI I 944
14	. 233333	44	. 733333	14	. 003889	44	.OI2 222
15	0.250000	45	0.750000	15	0.004167	45	0.012500
16	. 266667	46	. 766667	16	. 004444	46	. 012778
17	. 283333	47	. 783333	17	. 004722	47	.OI3 056
18	. 300000	48	. 800000	18	. 005000	48	.OI3 333
19	.316 667	49	.816 667	19	. 005278	49	.OI36II
20	0.333333	50	0.833333	20	0.005556	50	0.013 889
21	. 350000	5 I	. 850000	21	. 005833	5 I	.OI4 167
22	. 366667	52	. 866667	22	. 006 I II	52	.OI4 444
23	. 383333	53	. 883333	23	. 006389	53	.OI4 722
24	. 400000	54	. 900000	24	. 006667	54	.OI5 000
	0.416667	55	0.916667	25	0.006944	55	0.015278
26	. 433333	56	. 933333	26	. 007222	56	.OI5 556
	. 450000		. 950000		. 007500	57	. 015833
28	. 466667	58	. 966667	28	. 007778	58	. 016111
29	. 483333	59	. 983333	29	. 008056	59	.016 389
30	0.500000	60	1.000000	30	0.008333	60	0.016667

Table 78.
MEAN TIME AT APPARENT NOON.

Day of Month.	JAN.	FEB.	MAR.	APR.	MAY.	JUNE.
181624	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
	124	1214	12 12	124	II 57	II 58
	127	1214	12 II	122	II 56	II 59
	12 10	1214	129	12 O	II 56	120
	$12 \quad 12$	12 I3	126	II 58	II 57	122
	JUL,	AUG.	SEPT.	OCT.	Nov.	DEC.
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
	123	126	12 O	II 50	II 44	II 50
8	125	125	II 58	II 48	II 44	II 53
16	126	124	II 55	II 46	II 45	II 56
24	126	122	II 52	II 45	II 47	120

TABLE 79.

SIDEREAL TIME INTO MEAN SOLAR TIME.

The tabular values are to be subtracted from a sidereal time interval.

Hrs.	Reduction to Mean Time.	Min.	Reduc- to Mean Time.	Min.	Reducto Mon Time.
h.	m. s.	m.	s.	m.	s.
1	- 9.83	1	0.16	31	5.08
2	- 19.66	2	0.33	32	5.24
3	- 29.49	3	0.49	33	5.41
4	- 39.32	4	0.66	34	$5 \cdot 57$
5	- 49.15	5	0.82	35	5.73
6	- 58.98	6	0.98	36	5.90
7	I 8.8 I	7	I. 15	37	6.06
8	1 I 8.64	8	1.31	38	6.23
9	I 28.47	9	1.47	39	6.39
10	I 38.30	10	I. 64	40	6.55
11	I 48.13	11	1.80	41	6.72
12	I 57.96	12	1.97	42	6.88
13	$2 \quad 7.78$	13	2.I3	43	7.05
14	217.61	14	2.29	44	7.21
15	227.44	15	2.46	45	7.37
16	237.27	16	2.62	46	7.54
17	2 47.10	17	2.79	47	7.70
18	256.93	18	2.95	48	7.86
19	$3 \quad 6.76$	19	3.11	49	8.03
20	316.59	20	3.28	50	8.19
21	326.42	21	3.44	51	8.36
22	336.25	22	3.60	52	8.52
23	346.08	23	3.77	53	8.68
24	3 55.91	24	3.93	54	8.85
		25	4. 10	55	9.01
		26	4.26	56	9.17
		27	4.42	57	9.34
		28 29	4.59	58	9.50
		29	4.75	59	9.67
		30	4.92	60	9.83

TABLE 80.

MEAN SOLAR TIME INTO SIDEREAL TIME.

The tabular values are to be added to a mean solar time interval.

Hrs.	Reduction to Sidereal Time.	Min.	Reduction to Siderea Time.	Min.	Reduc- tion to Sidereal Time.
h.	m. s.	m.	s.	m.	s.
1	- 9.86	1	0.16	31	5.09
2	- 19.71	2	0.33	32	5.26
3	- 29.57	3	0.49	33	5.42
4	- 39.43	4	0.66	34	$5 \cdot 59$
5	- 49.28	5	0.82	35	5.75
6	- 59.14	6	0.99	36	5.91
7	I 9.00	7	1.15	37	6.08
	$\begin{array}{ll}1 & 18.85\end{array}$	8	I. 31	38	6.24
9	1828.71	9	I. 48	39	6.41
10	I 38.57	10	1. 64	40	6.57
11	I 48.42	11	1.81	4 I	6.74
12	I 58.28	12	I. 97	42	6.90
13	28.13	13	2.14	43	7.06
14	217.99	14	2.30	44	7.23
15	227.85	15	2.46	45	7.39
16	237.70	16	2.63	46	7.56
17	247.56	17	2.79	47	7.72
18	257.42	18	2.96	48	7.89
19	$3 \quad 7.27$	19	3.12	49	8.05
20	317.13	20	3.29	50	8.21
21	326.99	21	3.45	5 I	8.38
22	336.84	22	3.61	52	8.54
23	346.70	23	3.78	53	8.71
24	356.56	24	3.94	54	8.87
		25	4.11	55	9.04
		26	4.27	56	9.20
		27	4.43	57	9.36
		28	4.60	58	9.53
		29	4.76	59	9.69
		30	4.93	60	9.86

Reduction for Seconds-sidereal or mean solar.

The tabular values are to be $\left\{\begin{array}{l}\text { subtracted from a sidereal } \\
\text { added to a mean solar }\end{array}\right\}$ time interval.

$\left\|\begin{array}{c} \text { Sidereal } \\ \text { or } \\ \text { or Time. } \end{array}\right\|$	0	1	2	3	4	5	6	7	8	9
s.	s.	s.	s.	s.	s.	s.	s.	s.	s.	s.
0	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.03
10	. 03	. 03	. 03	. 04	. 04	. 04	. 04	. 05	. 05	. 05
20	. 06	. 06	. 06	. 06	. 07	. 07	. 07	. 07	. 08	. 08
30	. 08	. 09	. 09	. 09	. 09	. 10	.ro	.ro	.10	. 11
40	. 11	.II	. 12	. 12	. 12	. 12	. 13	. 13	. 13	. 13
50	0.14	0.14	0.14	0.15	0.15	0.15	0.15	0.16	0.16	0.16

Smithbonian Tables.

MISCELLANEOUS TABLES.

Density of air at different temperatures Fahrenheit . Table 8I
Density of air at different humidities and pressures-Englishmeasures.
Term for humidity : auxiliary to Table 83 Table 82
Values of $\frac{h}{29.92 \mathrm{I}}=\frac{b-0.378 e}{29.92 \mathrm{I}}$ 83
Density of air at different temperatures Centigrade Table 84
Density of air at different humidities and pressures - Metricmeasures.
Term for humidity : auxiliary to Table 86 Table 85
Values of $\frac{h}{760}=\frac{b-0.378 e}{760}$ 86
Conversion of avoirdupois pounds and ounces into kilogrammes Table 87
Conversion of kilogrammes into avoirdupois pounds and ounces 88
Conversion of grains into grammes 89
Conversion of grammes into grains 90
Conversion of units of magnetic intensity Table 9I
Quantity of water corresponding to given depths of rainfall . TABLE 92
Dates of Dove's pentades 93
Division by 28 of numbers from 28 to 867972 94
Division by 29 of numbers from 29 to 898971 95
Division by 31 of numbers from 31 to 960969 96
Natural sines and cosines Table 97
Natural tangents and cotangents Table 98
Logarithms of numbers Table 99
List of meteorological stations Table 100

TAble 81.

DENSITY OF AIR AT DIFFERENT TEMPERATURES FAHRENHEIT.

$$
\delta_{t}=\frac{0.00129305}{1+0.0020389\left(t-32^{\circ}\right)} .
$$

I cubic centimetre of dry air at the temperature $32^{\circ} F$. and pressure 760 mm ., and under the standard value of gravity at latitude 45° and sea-level, weighs 0.00129305 gramme.

Temperature.	δ_{t}	$\log \delta_{t}$	Temperature.	δ_{t}	$\log \delta_{t}$	Temperature.	δ_{t}	$\log \delta_{t}$
F.	0.00	- Io	F.	0.00	- 10	F.	0.00	- 10
-45°	15339	7.18579	30°	12983	7.11339	75°	11888	7.07512
-40	15155	. 18056	31	12957	. II 250	76	11866	. 07430
-35	14977	. 17541	32	I2931	. 11162	77	11844	. 07349
-30	14802	.17031	33	12904	. 11073	78	11822	. 07268
-25	14631	. 16527	34	12878	. 10985	79	11800	.07187
	0.00			0.00			0.00	
-20	14464	7.16029	35	12852	7.10897	80	11778	7.07107
-18	14398	. 1583 I	36	12826	. 10809	81	İ756	. 07026
- 16	14333	. 15634	37	12800	. 1072I	82	11734	. 06946
- I4	14269	. 15439	38	12774	. 10633	83	11713	. 06865
- 12	14205	. 15244	39	12749	. 10546	84	11691	. 06785
	0.00			0.00			0.00	
-10	14142	7.15050	40	12723	7.10459	85	11670	7.06705
-8	14079	. 14856	41	I2698	. 10372	86	11648	. 06625
- 6	14017	. 14664	42	12672	. 10285	87	11627	. 06546
- 4	I3955	. 14472	43	I2647	. 10198	88	11605	. 06466
- 2	13894	. 14282	44	12622	. 10112	89	II584	. 06387
	0.00			0.00			0.00	
+ 0	13833	7.14092	45	12597	7.10025	90	11563	7.06307
	13803	. 13997	46	12572	. 09939	91	11542	. 06228
2	13773	. 13903	47	12547	. 09853	92	II52I	.06I49
3	13743	. 13808	48	12522	. 09767	93	I 1500	. 06070
4	13713	. 13714	49	12497	. 09682	94	11479	. 05992
	0.00			0.00			0.00	
5	13684	7.13621	50	12473	7.09596	95	11458	7.05913
6	13654	. 13527	51	12448	.095II	96	11438	. 05835
7	13625	. 13434	52	12424	. 09426	97	II418	. 05757
8	13596	. 13340	53	12400	. 09341	98	11397	. 05678
9	13567	. 13247	54	12375	. 09256	99	11376	. 05600
	0.00			0.00			0.00	
10	13538	7.13155	55	12351	7.09171	100	II356	7.05523
11	13509	.13062	56	12327	. 09087	IOI	II336	. 05445
12	13480	. 12970	57	12303	. 09002	102	11315	.05367
13	13452	. 12877	58	12280	.08918	103	11295	. 05290
14	13423	. 12785	59	12256	. 08834	104	11275	.05213
	0.00			0.00			0.00	
15	I 3395	7.12694	60	12232	7.08750	105	11255	7.05136
16	13367	. 12602	61	12209	. 08667	106	II235	. 05058
17	13338	. 12510	62	12185	.08583	107	II2I5	. 04982
I8	13310	. 12419	63	I2162	. 08500	108	III96	. 04905
19	13282	. 12328	64	12138	.08416	109	III76	. 04828
	0.00			0.00			0.00	
20	13255	7.12237	65	I2II5	7.08334	110	11156	7.04752
21	13227 I3200	. 12147	66	12092	.0825I	112	IIII7	. 04599
22	13200	. 12056	67	12069	.08168	II4	11078	. 04447
23 24	I3I72	. 11966	68	12046	. 08085	II6	I 1040	. 04296
	0.00			0.00	.0803		0.00	
25	13118	7.11786	70	12001	7.07921	120	10963	7.03994
26	13091	.11696	71	11978	.07839	125	10870	.0362I .
27	I3064	. 11606	72	11956	. 07757	130	10776	.03248
28	13037	. 11517	73	11933	. 07675	I35	10686	. 02883
29	I3010	. 11428	74	I1910	. 07593	140	10597	.02518

TABLE 82.

DENSITY OF AIR AT DIFFERENT HUMIDITIES AND PRESSURES.

ENGLISH MEASURES.
Term for Humidity: Values of $0.378 e$. Auxiliary to Table 83 .
$e=$ Vapor pressure in inches.

DewPoint.	Vapor Pressure. e.	0.378e.	DewPoint.	Vapor Pres. sure. e.	0.378 e.	DewPoint.	Vapor Prese.	0.378 e	Dew. Point.	Vapor Pres. e.	0.378 e
F.	Inch.	Inch.	F.	Inch.	Inch.	F.	Inch.	Inch.	F.	Inches.	Inches.
-40°	0.0054	0.002	5°	0.057	0.021	50°	0.360	0.136	95°	1.645	0.622
-39	. 0058	. 002	6	. 059	022	5 I	. 373	. 141	96	1.696	.641
-38	.0061	. 002	7	. 062	. 023	52	. 387	. 146	97	1.749	.66I
-37	. 0065	. 002	8	. 065	. 025	53	. 402	. 152	98	1.803	. 682
-36	. 0069	. 003	9	. 068	. 026	54	. 417	. 158	99	I. 859	. 703
-35	0.0073	0.003	10	0.071	0.027	55	0.432	0.163	100	1.916	0.724
-34	. 0077	. 003	II	. 074	. 028	56	. 448	. 169	101	1.975	. 747
-33	. 0082	. 003	12	. 078	. 029	57	. 465	. 176	102	2.035	. 769
-32	. 0087	. 003	13	.081	. 031	58	.48I	. 182	103	2.097	. 793
-31	.0092	. 003	14	. 085	. 032	59	. 499	.189	104	2.160	.8I6
-30	0.0097	0.004	15	0.088	0.033	60	0.517	0. 195	105	2.225	0.841
-29	. 0103	. 004	16	. 092	. 035	6 I	. 536	. 203	106	2.292	. 866
-28	. 0109	. 004	17	. 096	. 036	62	. 555	. 210	107	2.360	. 892
-27	. OII 5	. 004	18	. 101	. 038	63	. 575	. 217	108	2.431	. 919
-26	. 0121	. 005	19	. 105	. 040	64	. 595	. 225	109	2.503	. 946
-25	0.0128	0.005	20	0.110	0.042	65	0.616	0.233	110	2.576	0.974
-24	. 0135	. 005	21	.114	. 043	66	. 638	. 241	III	2.652	1.002
-23	.OI42	. 005	22	.119	. 045	67	. 661	. 250	112	2.730	1.031
-22	. 0150	. 006	23	. 124	. 047	68	. 684	. 259	113	2.810	1.062
-2I	. 0158	. 006	24	. 130	. 049	69	. 707	. 267	114	2.891	1.093
-20	0.0167	0.006	25	0.135	0.051	70	0.732	0.277	115	2.975	1.125
- 19	. 0176	. 007	26	.141	. 053	71	. 757	. 286	116	3.061	I. 157
- 18	. 0185	. 007	27	. 147	. 056	72	. 783	. 296	117	3.148	I. 190
- I7	. 0195	. 007	28	. 153	. 058	73	. 810	-306	118	3.239	1.224
- 16	. 0205	. 008	29	. 159	. 060	74	. 838	-317	119	$3 \cdot 33$ I	1.259
- 15	0.0216	0.008	30	0.166	0.063	75	0.866	0.327	120	3.425	I. 295
- 14	. 0227	. 009	31	. 173	. 065	76	. 896	- 339	121	3.522	1.33 I
- 13	. 0239	. 009	32	. 180	. 068	77	. 926	-350	122	3.621	I. 369
-12	. 0251	. 009	33	. 187	. 071	78	. 957	- 362	123	3.723	1.407
II	. 0264	. 010	34	. 195	. 074	79	. 989	- 374	124	3.827	1.447
-10	0.0277	0.010	35	0.203	0.077	80	1.022	0.386	125	3.933	1. 487
- 9	. 0292	. 011	36	. 211	. 080	8 I	1.056	- 399	126	4.042	1.528
- 8	. 0306	. 012	37	. 219	. 083	82	1.091	.412	127	4. 154	1.570
-7	. 0322	. 012	38	. 228	. 086	83	1.127	. 426	128	4.268	1.613
- 6	. 0338	. 013	39	. 237	. 090	84	1.163	. 440	129	$4 \cdot 385$	1.658
-5	0.0354	0.013	40	0.246	0.093	85	I. 201	0.454	130	4.504	1.703
- 4	. 0372	. 014	4 I	. 256	. 097	86	1.241	. 469	131	4.627	1.749
- 3	. 0390	. 015	42	. 266	101	87	1.281	. 484	132	4.752	1. 796
- 2	. 0409	. 015	43	. 276	. 105	88	I. 322	. 500	133	4.880	1.844
$-\mathrm{I}$. 0429	. 1016	44	. 287	. 109	89	1.364	. 516	134	5.011	1.894
0	0.0449	0.017	45	0.298	O.113	90	1.408	0.532	135	5.145	1.945
+ 1	. 0471	. 018	46	-310	. 117	91	I. 453	. 549	136	5.282	1.997
	. 0493	. 019	47	- 322	. 122	92	1.499	. 567	137	5.422	2.050
3	.0517	. 020	48	. 334	. 126	93	1.546	. 584	138	$5 \cdot 565$	2.104
4	.054I	. 020	49	-347	. 131	94	1.595	. 603	139	$5 \cdot 712$	2.159
5	0.0567	0.021	50	0.360	0.136	95	1.645	0.622	140	5.862	2.216

TABLE 83.
DENSITY OF AIR AT DIFFERENT HUMIDITIES AND PRESSURES. ENGLISH MEASURES.
Values of $\frac{h}{29.92 I}$.
$\frac{\delta}{\delta_{0}}=\frac{h}{29.92 \mathrm{I}}=\frac{b-0.378 e}{29.92 \mathrm{I}}$.
$b=$ Barometric pressure in inches ; $e=$ Vapor pressure in inches.

h.	$\frac{h}{29.92 \mathrm{I}}$.	$\log \frac{h}{29.92 \mathrm{I}}$	h.	$\frac{h}{29.291}$.	$\log \frac{h}{29.92 \mathrm{I}}$.	h.	$\frac{\mathrm{h}}{29.92 \mathrm{I}}$.	$\log \frac{h}{29.92 I}$
Inch's.		- 10	Inches.		- 10	Inches.		- 10
10.0	0.3342	9.52402	15.0	0.5013	9.70012	20.0	0.6684	9.82505
10. 1	. 3376	. 52835	15. 1	. 5047	. 70300	20.1	. 6718	. 82722
10.2	. 3409	. 53262	15.2	. 5080	. 70587	20.2	.6751	. 82938
10.3	- 3442	. 53686	15.3	.5113	. 70871	20.3	. 6784	.83152
10.4	. 3476	.54106	15.4	. 5147	. 71154	20.4	.68I8	. 83365
10.5	0.3509	9.5452 I	15.5	0.5180	9.71435	20.5	0.6851	9.83578
10.6	. 3543	. 54933	15.6	. 5214	. 71715	20.6	. 6885	. 83789
10.7	-3576	. 55341	15.7	. 5247	. 71992	20.7	. 6918	. 83999
10.8	. 3609	. 55745	15.8	.528I	. 72268	20.8	. 6952	. 84209
10.9	. 3643	. 56145	15.9	. 5314	. 72542	20.9	. 6985	. 84417
11.0	0.3676	9.56542	16.0	0.5347	9.72814	21.0	0.7018	9.84624
II. I	. 3710	. 56935	16. 1	. 5381	. 73085	21.1	. 7052	. 84831
II. 2	. 3743	. 57324	16.2	. 5414	. 73354	21.2	. 7085	. 85036
11.3	. 3777	. 57710	16.3	. 5448	.7362I	21.3	.7119	. 85240
II. 4	. 38 Io	. 58093	16.4	.548I	. 73887	21.4	.7152	. 85444
11.5	0.3843	9.58472	16.5	0.5515	9.74151	21.5	0.7186	9.85646
11.6	. 3877	. 58848	16.6	. 5548	. 74413	21.6	. 7219	. 85848
11.7	. 3910	. 5922 I	16.7	.5581	. 74674	21.7	. 7252	. 86048
II. 8	- 3944	. 59591	16.8	.5615	. 74933	21.8	. 7286	. 86248
II. 9	. 3977	. 59957	16.9	. 5648	.75191	21.9	.7319	. 86447
12.0	0.4011	9.6032I	17.0	0. 5682	9.75447	22.0	0.7353	9.86645
12.1	. 4044	.6068I	17.1	. 5715	. 75702	22.1	. 7386	. 86842
12.2	. 4077	.61038	17.2	. 5748	. 75955	22.2	. 7420	. 87038
12.3	.4III	.61393	17.3	. 5782	. 76207	22.3	. 7453	. 87233
12.4	.4144	.6I745	17.4	.5815	. 76457	22.4	. 7486	. 87427
12.5	0.4178	9.62093	17.5	0.5849	9.76706	22.5	0.7520	9.87621
12.6	.42II	. 62439	17.6	. 5882	. 76954	22.6	. 7553	. 87813
12.7	. 4244	. 62782	17.7	. 5916	. 77200	22.7	. 7587	. 88005
12.8	. 4278	. 63123	17.8	. 5949	. 77444	22.8	. 7620	.88196
12.9	.43II	.6346I	17.9	. 5982	. 77687	22.9	. 7653	. 88386
13.0	0.4345	9.63797	18.0	0.6016	9.77930	23.0	0.7687	9.88575
13.1	. 4378	. 64130	18.1	. 6049	. 78170	23.1	. 7720	. 88764
13.2	. 4412	. 64460	18.2	. 6083	. 78410	23.2	. 7754	.88951
13.3	. 4445	. 64788	18.3	.6II6	. 78648	23.3	. 7787	. 89138
13.4	. 4478	.65113	18.4	. 6149	. 78884	23.4	.7821	. 89324
13.5	0.4512	9.65436	18.5	0.6183	9.79120	23.5	0.7854	9.89509
13.6	. 4545	. 65756	18.6	. 6216	. 79354	23.6	. 7887	. 89693
13.7	. 4579	. 66074	18.7	. 6250	. 79587	23.7	. 7921	. 89877
I 3.8	.4612	. 66390	18.8	. 6283	.79818	23.8	. 7954	. 90060
13.9	. 4646	. 66704	18.9	. 6317	. 80049	23.9	. 7988	. 90242
14.0	0.4679	9.67015	19.0	0.6350	9.80278	24.0	0.8021	9.90424
14. 1	. 4712	. 67324	19.1	. 6383	. 80506	24.1	. 8054	. 90604
14.2	. 4746	.6763I	19.2	.6417	. 80733	24.2	. 8088	. 90784
14.3	. 4779	. 67936	19.3	. 6450	. 80958	24.3	.8I2I	. 90963
14.4	.4813	. 68239	19.4	. 6484	.8II83	24.4	.8155	.9114I
14.5	0.4846	9.68539	19.5	0.6517	9.81406	24.5	0.8188	9.91319
14.6	. 4879	. 68837	19.6	. 6551	. 81628	24.6	. 8222	. 91496
14.7	. 4913	. 69134	19.7	. 6584	.81849	24.7	. 8255	. 91672
14.8	. 4946	. 69429	19.8	.6617	. 82069	24.8	. 8289	.91848
14.9	. 4980	. 6972 I	19.9	.665I	. 82288	24.9	.8322	. 92022

TAble 83.
DENSITY OF AIR AT DIFFERENT HUMIDITIES AND PRESSURES.

ENGLISH MEASURES.

Values of $\frac{{ }^{h}{ }^{h} .921}{}$.

$$
\frac{\delta}{\delta_{0}}=\frac{h}{29.92 \mathrm{I}}=\frac{b-0.378 e}{29.92 \mathrm{I}} .
$$

$b=$ Barometric pressure in inches ; $e=$ Vapor pressure in inches.

h.	$\frac{h}{29.92 \mathrm{I}}$	$\log \frac{h}{29.921}$	h.	$\frac{h}{29.921}$	$\log \frac{h}{29.92 I}$	h.	$\frac{h}{29.921}$	$\log \frac{h}{29.92 \mathrm{I}}$
Inches.		- 10	Inches.		- 10	Inches.		- 10
25.00	0.8355	9.92196	27.25	0.9107	9.95939	29.50	0.9859	9.99385
25.05	. 8372	. 92283	27.30	. 9124	. 96019	29.55	. 9876	. 99458
25.10	. 8389	. 92370	27.35	.9141	. 96098	29.60	. 9893	. 99532
25.15	. 8405	. 92456	27.40	.9157	.96I77	29.65	. 9909	. 99605
25.20	. 8422	. 92542	27.45	. 9174	. 96256	29.70	. 9926	. 99678
25.25	0.8439	9.92628	27.50	0.9191	9.96336	29.75	0.9943	9.99751
25.30	. 8456	. 92714	27.55	. 9208	.96414	29.80	. 9960	. 99824
25.35	. 8472	. 92800	27.60	. 9224	. 96493	29.85	. 9976	. 99897
25.40	. 8489	. 92886	27.65	.924I	. 96572	29.90	. 9993	. 99970
25.45	. 8506	.9297I	27.70	. 9258	. 96650	29.95	1.0010	0.00042
25.50	0.8522	9.93056	27.75	0.9274	9.96728	30.00	1.0026	0.00115
25.55	. 8539	.93141	27.80	. 9291	. 96807	30.05	1.0043	.00187
25.60	. 8556	. 93226	27.85	. 9308	. 96885	30. 10	1.0060	. 00259
25.65	. 8573	.933II	27.90	. 9325	. 96963	30.15	1.0076	.0033I
25.70	. 8589	. 93396	27.95	.934I	. 97040	30.20	1.0093	. 00403
25.75	0.8606	9.93480	28.00	0.9358	9.971 18	30.25	1.OIIO	0.00475
25.80	. 8623	. 93564	28.05	. 9375	.97195	30.30	1.0127	. 00547
25.85	. 8639	. 93648	28.10	. 9391	. 97273	30.35	I. 0143	.00618
25.90	. 8656	. 93732	28.15	. 9408	. 97350	30.40	I.or60	.00690
25.95	. 8673	.93816	28.20	. 9425	. 97427	30.45	I.OI77	.0076I
26.00	0.8690	9.93900	28.25	0.944 I	9.97504	30.50	1.OI93	0.00832
26.05	. 8706	. 93983	28.30	. 9458	.9758I	30.55	1.0210	. 00903
26. IO	. 8723	. 94066	28.35	. 9475	. 97657	30.60	1.0227	. 00975
26. 15	. 8740	. 94149	28.40	. 9492	. 97734	30.65	1.0244	.oro45
26.20	. 8756	. 94233	28.45	. 9508	.97810	30.70	1.0260	.oril 6
26.25	0.8773	9.94315	28.50	0.9525	9.97887	30.75	1.0277	0.01187
26.30	. 8790	. 94398	28.55	. 9542	. 97963	30.80	1.0294	. 01257
26.35	. 8806	. 94480	28.60	. 9558	. 98039	30.85	1.0310	.OI328
26.40	. 8823	. 94563	28.65	. 9575	.98115	30.90	1.0327	. O1398
26.45	. 8840	. 94645	28.70	. 9592	.98i91	30.95	I. 0344	. 01468
26.50	0.8857	9.94727	28.75	0.9609	9.98266	31.00	1.0361	0.OI539
26.55	. 8873	. 94809	28.80	. 9625	. 98342	31.05	1.0377	. 01608
26.60	. 8890	. 94891	28.85	. 9642	. 98417	31.10	1.0394	. 01678
26.65	. 8907	. 94972	28.90	. 9659	. 98492	3 I .15	I.04II	.OI748
26.70	. 8924	. 95054	28.95	. 9675	. 98567	31.20	1.0427	.or8i8
26.75	0.8940	$9.95{ }^{1} 35$	29.00	0.9692	9.98642	31.25	1.0444	0.01887
26.80	. 8957	. 95216	29.05	. 9709	. 98717	3 I .30	1.0461	. 01957
26.85	. 8974	. 95297	29. IO	. 9726	. 98792	3 I .35	I. 0478	. 02026
26.90 26.95	. 8990	. 95378	29.15	. 9742	. 98866	31.40	1.0494	. 02095
26.95	.9007	. 95458	29.20	. 9759	.98941	31.45	1.05II	. 02164
27.00	0.9024	9.95539	29.25	0.9776	9.99015	31.50	1.0528	0.02233
27.05	. 9040	. 95619	29.30	. 9792	. 99089	31.55	1.0544	. 02302
27.10	. 9057	. 95699	29.35	. 9809	. 99163	31.60	1.0561	. 02371
27.15	. 9074	. 95779	29.40	. 9826	. 99237	31.65	1.0578	. 02439
27.20	.9091	. 95859	29.45	. 9843	.993II	31.70	1. 0594	. 02508

TABLE 84.
DENSITY OF AIR AT DIFFERENT TEMPERATURES CENTIGRADE.

$$
\delta_{t, 760}=\frac{0.00129305}{1+0.003670 t} .
$$

I cubic metre of dry air at the temperature $\circ^{\circ} C$. and pressure 760 mm ., and under the standard value of gravity at latitude 45° and sea level, weighs x .29305 kilogramme.

t.	$\delta_{t, 760}$	$\log \delta_{\mathrm{t}, 760}$	t.	$\delta_{t, 760}$	$\log \delta_{t, 760}$	t.	$\delta_{t, 760}$	$\log \delta_{t, 760}$
c.	0.00	- Io	c.	0.00	- Io	c.	0.00	- 10
-34°	14774	7.16950	-4.5	13148	7.11885	18.0	12129	7.08383
-33	14712	. 16768	- 4.0	13123	. 11804	18.5	12108	8309
-32	14651	. 16587	-3.5	13099	.11723	19.0	12088	8234
$-3 \mathrm{I}$	14590	. 16407	-3.0	13074	. 11642	19.5	12067	8160
	0.00			0.00			0.00	
-30	14530	7.16227	- 2.5	13050	7.11562	20.0	12046	7.08085
-29	14471	. 16049	2.0	13026	.11481	20.5	12026	8011
-28	14412	.r5871	- 1.5	13002	. 11401	21.0	12005	7937
-27	14353	. 15693	- 1.0	12978	.II32I	21.5	11985	7863
-26	14295	. 15517	- 0.5	12954	. 11241	22.0	11965	7789
-25	0.00 I4237	7.153	0.0	${ }_{\text {I }}^{0.00}$	7.111	22.5	${ }_{0}^{0.00} 11944$	07716
-24	14179	. 15166	+ 0.5	12907	. 1108	23.0	11924	7642
23	14123	. 14991	1.0	12884	. 11006	23.5	11904	7569
22	14066	. 14818	I. 5	12860	. 10923	24.0	11884	7496
21	I4010	. 14645	2.0	12836	. 10844	24.5	11864	7422
-20.0	0.00			0.00			$\stackrel{0.00}{\text { I } 1844}$	
	13955	7.14472	2.5	12813	7.1076	25.0	11844	7.07349
- 19.5	13927	. 14386	3.0	12790	. 10686	25.5	11824	7276
- 19.0 -18.5	13900 13872	. I 432 I 5	3.5 4.0	12766	.10607	26.0 26.5	11804 11784	7204 7131
8.0	I3845	.14130	4.5	12720	. 10450	27.0	11765	7058
	0.00			0.00			0.00	
- 17.5	13818	7.14044	5.0	12698	7.10372	27.5	11745	7.06986
- 17.0	13791	. 13959	5.5	12675	. 10294	28.0	11726	6913
- 16.5	13764	. 13874	6.0	12652	. 10215	28.5	11706	6841
- 16.0	13737	. 13790	6.5	12629	.10138	29.0	11687	6769
- 15.5	13710	. 13705	7.0	12607	. 10069	29.5	11667	6697
	0.00			0.00			0.00	
- 15.0	13684	7.13621	7.5	12584	7.09982	30.0	11648	7.06625
-14.5	13657	. 13536	8.0	12562	9905	30.5	11629	6554
- 14.0	13631	. 13452	8.5	12539	9828	31.0	11610	6482
-13.5	13604	. 13368	9.0	12517	9750	31.5	11591	6411 6340
- 13.0	${ }_{\text {13578 }}$. 13285	9.5	${ }_{0}^{12495}$	9673	32.0	${ }_{0.00}^{11572}$	6340
- 12.5		7.13201	10.0	${ }^{0.00} 12473$	7.09596	32.5	${ }_{\text {II553 }}^{0.00}$	7.06268
- 12.0	13526	. 13117	10.5	1245 I	9519	33.0	${ }^{1} 1534$	6197
- II. 5	${ }^{1} 3500$. 13034	11.0	12429	9443	33.5	11515	6126
- I1.0	13473	. 12951	11.5	12407	9366	34.0	11496	6055
- 10.5	13449	. 12868	12.0	12385	9290°	34.	11477	5984
- 10.0	${ }_{\text {I }}^{0.00}$	7.12785	12.5	${ }^{0.00} 12363$	7.09214	35.0	${ }_{\text {I }}^{0.00}$	7.05913
- 9.5	I3398	. 12703	13.	12342	9137	35.5	11440	5843
- 9.0	${ }_{1} 13372$. 12620	13.5	12320	9061	36.0	11421	5772
-8.5	${ }_{1} 13347$. 12538	14.0	12299	8986	36.5	11403	5702
- 8.0	${ }^{1} 13322$. 12456	14.5	${ }_{\text {o. }} 12277$	8910	37.0	${ }_{\text {I }}^{11} 388$	5632
- 7.5	-0.00	7.12374	15.0	0.00 I2256	7.08834	37.5		7.05562
- 7.0	13271	. 12292	15.5	12235	8759	38.0	r1348	5492
- 6.5	13246	. 12210	16.0	12213	8683	38.5	11330	5422
- 6.0	13222	. 12128	16.5	12192	8608	39.0	11311	5352
- 5.5	13197	. 12047	17.0	12171	8533	39.5	11293	5282
- 5.0	${ }_{\text {- }}^{0.00} 13172$	7.11966	17.5	${ }_{12150}^{0.00}$	7.08458	40.0	${ }^{0.00} 11275$	7.05213

TAble 84
DENSITY OF AIR AT DIFFERENT TEMPERATURES CENTIGRADE.
(Continued.)

t.	$\delta_{t, 760}$	$\log \delta_{t, 760}$	t.	$\delta_{\text {t, } 760}$	$\log \delta_{t, 760}$	t.	$\delta_{t, 760}$	$\log \delta_{t, 760}$
c.	0.00	- 10	c.	0.00	- 10	C.	0.00	- 10
40°	11275	7.05213	50°	10926	7.03845	60°	10597	7.02518
41	11239	. 05074	5 I	10892	. 03710	6I	10565	. 02388
42	11204	. 04936	52	IoS58	. 03576	62	10534	. 02258
43	11168	. 04798	53	10825	. 03443	63	10502	. 02128
44	III33	. 04660	54	10792	. 03309	64	10471	.OI999
	0.00			0.00			0.00	
45	11098	7.04523	55	10759	7.03177	65	, I0440	7.01870
46	$1 \mathrm{I}_{0} 63$. 04387	56	10726	. 03044	66	10489	.or742
47	11028	.0425I	57	10694	. 02912	67	10379	.OI6I4
48	10994	.04115	58	10661	. 02780	68	10348	.OI486
49	10960	.03980	59	10629	. 02649	69	10318	. OI 358

TABLE 85.
DENSITY OF AIR AT DIFFERENT HUMIDITIES AND PRESSURES. METRIC MEASURES.
Term for humidity: values of $0.378 e$. Auxiliary to Table 86.
$\rho=$ vapor pressure in mm .

Dewpoint.	Vapor Pressure. e	$0.378 e$	Dewpoint.	Vapor Pressure. e	0.378 e	Dewpoint.	Vapor Pressure. e	$0.378 e$
c.	mm .	mm .	c.	mm .	mm .	c.	mm.	mm.
-30°	0.38	o. 14	0°	4.57	1.73	30°	31.51	II.9I
29	. 42	. 16	I	$4 \cdot 91$	1.86	3 I	33.37	12.61
28	. 46	. 17	2	5.27	I. 99	32	$35 \cdot 32$	13.35
27	. 50	. 19	3	5.66	2. 14	33	$37 \cdot 37$	14. I3
26	. 55	. 21	4	6.07	2.29	34	39.52	14.94
-25	0.61	0.23	5	6.51	2.46	35	4 I .78	15.79
24	. 66	. 25	6	6.97	2.63	36	44.16	16.69
23	. 73	. 28	7	7.47	2.82	37	46.65	17.63
22	. 79	. 30	8	7.99	3.02	38	49.26	18.62
21	. 87	. 33	9	8.55	3.23	39	52.00	19.66
-20	0.94	0. 36	10	9.14	3.45	40	54.87	20.74
19	1.03	. 39	11	9.77	3.69	41	57.87	21.86
18	1.12	. 42	12	10.43	3.94	42	61.02	23.06
17	1.22	. 46	13	II. 14	4.21	43	64.31	24.31
16	1.32	. 50	14	II. 88	4.49	44	67.76	25.61
-15	I. 44	0.54	15	12.67	4.79	45	71.36	26.97
14	1.56	. 59	16	13.51	5.11	46	75.13	28.40
13	I. 69	. 64	17	14.40	5.44	47	79.07	29.89
12	I. 84	. 70	18	15.33	5.79	48	83.19	31.45
II	1.99	. 75	19	16.32	6.17	49	87.49	33.07
-10	2. I5	0.81	20	17.36		50	91.98	34.77
9	2.33	. 88	21	18.47	6.98	51	96.66	36.54
8	2.51	. 95	22	19.63	7.42	52	101.55	38.39
7	2.72	1.03	23	20.86	7.89	53	106.65	40.31
6	2.93	I.II	24	22.15	8.37	54	III. 97	42.32
-5	3.16	I. 19	25	23.52	8.89	55	117.52	44.42
4	3.41	I. 29	26	24.96	9.43	56	123.29	46.60
3	3.67	I. 39	27	$26.47{ }^{\circ}$	Io.OI	57	129.31	48.88
2	3.95	1.49	28	28.07	10.61	58	I 35.58	51.25
I	4.25	1.6I	29	29.74	11.24	59	142.10	53.71

Smithsonian Tables.

TAble 86.
DENSITY OF AIR AT DIFFERENT HUMIDITIES AND PRESSURES. METRIC MEASURES.
Values of $\frac{h}{760}$.

$$
\frac{\delta}{\delta_{0}}=\frac{h}{760}=\frac{b-0.378 e}{760}
$$

$b=$ Barometric pressure in mm.; $e=$ Vapor pressure in mm .

h.	$\frac{\mathrm{h}}{760}$.	$\log \frac{h}{760}$.	h.	$\frac{h}{760}$.	Log $\frac{h}{760}$.	h.	$\frac{\mathrm{h}}{760}$.	Log $\frac{\mathrm{h}}{760}$.
mm.		- 10	mm.		Io	mm.		o
300	0.3947	9.59631	400	0.5263	9.72125	450	0.5921	9.77240
302	-3974	. 59919	401	. 5276	. 72233	451	. 5934	. 77336
304	. 4000	. 60206	402	. 5289	.72341	452	. 5947	. 77432
306	. 4026	. 60491	403	. 5303	. 72449	453	.5961	. 77528
308	. 4053	. 60774	404	.5316	. 72557	454	. 5974	. 77624
310	0.4079	9.61055	405	0.5329	9.72664	455	0.5987	9.77720
312	.4105	.61334	406	. 5342	.72771	456	. 6000	.77815
314	.4132	. 61612	407	. 5355	. 72878	457	. 6013	.77910
316	.4158	. 61887	408	. 5369	. 72985	458	. 6026	.78005
318	-4184	.62161	409	. 5382	.73091	459	. 6040	.78100
320	0.4211	9.62434	410	0.5395	9.73197	460	0.6053	9.78194
322	. 4237	. 62704	411	. 5408	. 73303	461	. 6066	. 78289
324	. 4263	. 62973	412	. 5421	. 73408	462	. 6079	. 78383
326	. 4289	. 63240	413	. 5434	. 73514	463	. 6092	.78477
328	.4316	. 63506	414	. 5447	. 73619	464	.6105	. 78570
330	0.4342	9.63770	415	0.5461	9.73723	465	0.6118	9.78664
332	. 4368	. 64032	416	. 5474	. 73828	466	.6132	. 78757
334	. 4395	. 64293	417	. 5487	. 73932	467	.6145	. 78850
336	.442I	. 64552	418	. 5500	. 74036	468	.6158	. 78943
338	. 4447	.64810	419	.5513	. 74140	469	.6171	. 79036
340	0.4474	9.65066	420	0.5526	9.74244	470	0.6184	9.79128
342	. 4500	. 6532 I	421	. 5540	. 74347	47 I	.6197	.7922I
344	-4526	. 65574	422	. 5553	. 74450	472	. 6210	.79313
346	-4553	. 65826	423	. 5566	. 74553	473	. 6224	. 79405
348	. 4579	. 66076	424	. 5579	. 74655	474	. 6237	. 79496
350	0.4605	9.66325	425	0. 5592	9.74758	475	0.6250	9.79588
352	. 4632	. 66573	426	. 5605	. 74860	476	. 6263	. 79679
354	. 4658	. 66819	427	. 5618	.74961	477	. 6276	. 79770
356	. 4684	. 67064	428	. 5632	. 75063	478	. 6289	.79861
358	.471I	. 67307	429	. 5645	. 75164	479	. 6303	.7995 ${ }^{2}$
360	0.4737	9.67549	430	0. 5658	9.75265	480	0.6316	9.80043
362	. 4763	. 67790	431	. 5671	. 75366	48 I	. 6329	. 80133
364	. 4789	. 68029	432	. 5684	. 75467	482	. 6342	. 80223
366	.4816	. 68267	433	. 5697	. 75567	483	. 6355	. 80313
368	. 4842	. 68503	434	. 5711	. 75668	484	. 6368	. 80403
370	0.4868	9.68739	435	0.5724	9.75768	485	0. 6382	9.80493
372	. 4895	. 68973	436	. 5737	. 75867	486	. 6395	. 80582
374	.492I	. 69206	437	. 5750	. 75967	487	. 6408	. 80672
376	-4947	. 69437	438	. 5763	. 76066	488	. 642 I	. 80761
378	. 4974	. 69668	439	. 5776	. 76165	489	. 6434	. 80850
380	0.5000	9.69897	440	0.5790	9.76264	490	0.6447	9.80938
382	. 5026	.70125	44 I	. 5803	. 76362	49 I	.6461	. 81027
384	. 5053	. 70352	442	. 5816	. 76461	492	. 6474	.81115
386	. 5079	. 70577	443	. 5829	. 76559	493	. 6487	.81203
388	. 5105	. 70802	444	. 5842	. 76657	494	.6500	.81291
390	0.5132	9.71025	445	0. 5855	9.76755	495	0.6513	9.81379
392	. 5158	. 71247	446	. 5868	. 76852	496	. 6526	. 81467
394	. 5184	. 71468	447	. 5882	. 76949	497	. 6540	. 81556
396	.5211	. 71688	448	. 5895	. 77046	498	. 6553	.81642
398	. 5237	.71907	449	. 5908	. 77143	499	. 6566	.81729

TABLE 86.
DENSITY OF AIR AT DIFFERENT HUMIDITIES AND PRESSURES. METRIC MEASURES.
Values of ${ }_{760^{h}}{ }^{\boldsymbol{h}} \quad \frac{\delta}{\delta_{0}}=\frac{h}{760}=\frac{b-0.378 e}{760}$.
$b=$ Barometric pressure in mm.; $e=$ Vapor pressure in mm .

h.	$\frac{h}{760}$.	$\log \frac{h}{760}$.	h.	$\frac{h}{760}$.	$\log \frac{h}{760}$.	h.	$\frac{\mathrm{h}}{760}$.	$\log \frac{h}{760}$.
mm .		- 10	mm .		- 10	mm .		- 10
500	0.6579	9.81816	550	0.7237	9.85955	600	0.7895	9.89734
501	. 6592	.81902	551	. 7250	. 86034	601	. 7908	. 89806
502	. 6605	.81989	552	. 7263	.86112	602	.7921	. 89878
503	.66I8	. 82075	553	. 7276	.86191	603	. 7934	. 89950
504	. 6632	. 82162	554	. 7290	. 86270	604	. 7947	.90022
505	0.6645	9.82248	555	0.7303	9.86348	605	0.7961	9.90094
506	. 6658	. 82334	556	. 7316	. 86426	606	. 7974	. 90166
507	. 6671	. 82419	557	. 7329	. 86504	607	. 7987	. 90238
508	. 6684	. 82505	558	. 7342	. 86582	608	. 8000	. 90309
509	. 6697	. 82590	559	. 7355	. 86660	609	. 8013	. 90380
510	0.67 II	9.82676	560	0. 7368	9.86737	610	0.8026	9.90452
511	. 6724	. 82761	561	. 7382	.86815	6II	. 8040	. 90523
512	. 6737	. 82846	562	. 7395	. 86892	612	. 8053	. 90594
513	. 6750	. 82930	563	. 7408	. 86969	613	. 8066	. 90665
514	. 6763	.83015	564	. 742 I	. 87046	614	. 8079	. 90735
515	0.6776	9.83099	565	0.7434	9.87123	615	0.8092	9.90806
516	. 6789	. 83184	566	. 7447	. 87200	616	.8105	. 90877
517	. 6803	. 83268	567	. 7461	. 87277	617	.8Ir8	. 90947
518	.6816	. 83352	568	. 7474	. 87353	618	.8I32	.91017
519	. 6829	. 83435	569	. 7487	. 87430	619	.8145	.91088
520	0.6842	9.83519	570	0.7500	9.87506	620	o.8158	9.91158
521	. 6855	. 83602	571	.7513	. 87582	621	.8171	.91228
522	. 6869	. 83686	572	. 7526	. 87658	622	.8184	-91298
523	. 6882	. 83769	573	. 7540	. 87734	623	.8197	.91367
524	. 6895	. 83852	574	. 7553	.87810	624	.82II	.91437
525	0.6908	9.83934	575	0.7566	9.87885	625	0.8224	9.91507
526	.692I	. 84017	576	. 7579	. 87961	626	. 8237	.91576
527	. 6934	. 84100	577	. 7592	. 88036	627	. 8250	. 91645
528	. 6947	. 84182	578	. 7605	.88III	628	. 8263	.91715
529	.696I	. 84264	579	.76I8	.88I86	629	. 8276	.91784
530	0.6974	9.84346	580	0.7632	9.8826 I	630	0.8289	9.91853
531	. 6987	. 84428	581	. 7645	. 883336	631	. 8303	. 91922
532	. 7000	. 84510	582	. 7658	.884II	632	. 8316	. 91990
533	.7013	. 84591	583	. 7671	. 88486	633	. 8329	. 92059
534	. 7026	. 84673	584	.7684	. 88560	634	. 8342	.92128
535	0.7040	9.84754	585	0.7697	9.88634	635	0.8355	9.92196
536	. 7053	. 84835	586	.771 I	. 88708	636	. 8368	. 92264
537	. 7066	. 84916	587	. 7724	. 88782	637	. 8382	. 92332
538	. 7079	. 84997	588	. 7737	. 88856	638	. 8395	.92401
539	.7092	. 85078	589	. 7750	. 88930	639	. 8408	. 92469
540	0.7105	9.85158	590	0.7763	9.89004	640	0.842I	
541	. 7118	. 85238	591	. 7776	. 89077	641	. 8434	. 92604
542	.7132	. 85318	592	.7789	.8915I	642	. 8447	. 92672
543	. 7145	. 85399	593	.7803	. 89224	643	. 8461	. 92740
544	.7158	. 85478	594	.7816	. 89297	644	. 8474	.92807
545	0.7171	9.85558	595	0.7829	9.89370	645	0.8487	9.92875
546	. 7184	. 85638	596	.7842	. 89443	646	. 8500	. 92942
547	. 7197	. 85717	597	.7855	. 89516	647	. 8513	. 93009
548	.7211	. 85797	598	. 7868	. 89589	648	. 8526	. 93076
549	.7224	. 85876	599	.7882	. 89662	649	. 8539	.93143

TABLE 86.
DENSITY OF AIR AT DIFFERENT HUMIDITIES AND PRESSURES. METRIC MEASURES.

Values of ${ }_{760^{\mathrm{h}}}$.

$$
\frac{\delta}{\delta_{o}}=\frac{h}{760}=\frac{b-0.378 e}{760}
$$

$b=$ Barometric pressure in mm.; $e=$ Vapor pressure in mm.

h.	$\frac{\mathrm{h}}{760}$.	Log $\frac{\mathrm{h}}{760}$.	h.	$\frac{\mathrm{h}}{760}$.	$\log \frac{\mathrm{h}}{760}$.	h.	$\frac{\mathrm{h}}{760}$.	Log $\frac{\mathrm{h}}{760}$.
mm.		- 10	mm.		- 10	mm.		- 10
650	0. 8553	9.93210	700	0.9211	9.96428	750	0. 9868	9.99425
651	. 8566	.93277	701	. 9224	. 96490	751	. 9882	. 99483
652	. 8579	.9334I	702	. 9237	. 96552	752	. 9895	. 99540
653	. 8592	.93410	703	. 9250	. 96614	753	. 9908	. 99598
654	. 8605	. 93476	704	. 9263	. 96676	754	.992I	. 99656
655	0.8618	9.93543	705	0.9276	9.96738	755	0.9934	9.99713
656	. 8632	. 93609	706	. 9289	. 96799	756	. 9947	. 9977 I
657	. 8645	. 93675	707	. 9303	. 96860	757	.9961	. 99828
658	. 8658	.9374I	708	.9316	. 96922	758	. 9974	. 99886
659	. 8671	. 93807	709	. 9329	. 96983	759	. 9987	. 99943
660	0.8684	9.93873	710	0.9342	9.97044	760	1.0000	0.00000
661	. 8697	. 93939	711	. 9355	.97106	761	. 0013	. 00057
662	. 8711	. 94004	712	. 9368	. 97167	762	. 0026	. 00114
663	. 8724	. 94070	713	. 9382	. 97228	763	. 0039	.00171
664	. 8737	.94I35	714	. 9395	. 97288	764	. 0053	. 00228
665	0.8750	9.94201	715	0.9408	9.97349	765	1.0066	0.00285
666	. 8763	. 94266	716	. 942 I	. 97410	766	. 0079	. 00342
667	. 8776	. 94331	717	. 9434	. 97470	767	. 0092	. 00398
668	. 8790	. 94396	718	. 9447	.9753I	768	. 0105	. 00455
669	. 8803	.9446I	719	.946I	. 97592	769	. 118	. 00515
670	0.8816	9.94526	720	0.9474	9.97652	770	I.OI32	0.00568
671	. 8829	. 94591	721	. 9487	. 97712	771	.or45	. 00624
672	. 8842	. 94656	722	. 9500	. 97772	772	. 0158	. 00680
673	. 8855	. 94720	723	.9513	. 97832	773	.0171	. 00736
674	. 8869	. 94785	724	. 9526	. 97892	774	.or84	. 00793
675	0.8882	9.94849	725	0.9539	$9.9795{ }^{2}$	775	1.0197	0.00849
676	. 8895	.94913	726	. 9553	.98012	776	. 0211	.00905
677	. 8908	. 94978	727	. 9566	. 98072	777	. 0224	.0096I
678	. 8921	. 95042	728	. 9579	. 98132	778	. 0237	. 01017
679	. 8934	.95106	729	. 9592	.98191	779	. 0250	.01072
680	0.8947	9.95170	730	0.9605	9.98250	780	1.0263	0.01128
681	. 8960	. 95233	731	. 9618	. 98310	781	. 0276	.ori84
682	. 8974	. 95297	732	. 9632	. 98370	782	. 0289	.O1239
683	. 8987	.95361	733	. 9645	. 98429	783	. 0303	.OI295
684	. 9000	. 95424	734	. 9658	. 98488	784	. 0316	.oI350
685	0.9013	9.95488	735	0.967 I	9.98547	785	1.0329	0.01406
686	. 9026	.95551	736	. 9684	. 98606	786	. 0342	. 01461
687	. 9039	. 95614	737	. 9697	. 98665	787	. 0355	.orsi6
688	. 9053	. 95677	738	.9711	. 98724	788	. 0368	.0157I
689	. 9066	. 95740	739	. 9724	. 98783	789	. 0382	.oi626
690	0.9079	9.95804	740	0.9737	9.98842	790	1.0395	0.01681
691	. 9092	. 95866	741	. 9750	. 98900	791	. 0408	. 01736
692	.9105	. 95929	742	. 9763	. 98959	792	. 042 I	.oI791
693	.9118	. 95992	743	. 9776	. 99018	793	. 0434	.o1846
694	.9132	. 96054	744	. 9789	. 99076	794	. 0447	.01901
695	0.9145	9.96117	745	0.9803	9.99134	795	1.0461	0.01955
696	. 9158	. 96180	746	. 9816	. 99192	796	. 0474	. 02010
697	.9171	. 96242	747	. 9829	. 99251	797	. 0487	. 02064
698	.9184	. 96304	748	. 9842	. 99309	798	. 0500	. 02119
699	.9197	. 96366	749	. 9855	. 99367	799	.0513	. 02173

AVOIRDUPOIS POUNDS AND OUNCES INTO KILOGRAMMES.

I avoirdupois pound $=0.4535924$ kilogramme.
I avoirdupois ounce $=0.0283495$ kilogramme.

Pounds.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	kg.	kg.	kg.	kg .	kg.	kg.	kg.	kg.	kg.	kg.
0	0.0000	0.0454	0.0907	0.1361	0.1814	0.2268	0.2722	0.3175	0.3629	0.4082
1	0.4536	0.4990	0.5443	0.5897	0.6350	0.6804	0.7257	0.77 II	0.8165	0.8618
2	0.9072	0.9525	0.9979	1.0433	1. 0886	I. 1340	1.1793	1.2247	1.2701	I.3154
3	1.3608	1.4061	1.4515	I. 4969	1.5422	I. 5876	1.6329	1.6783	1.7237	1.7690
4	1.8144	1. 8597	1.905 1	1.9504	I. 9958	2.0412	2.0865	2.1319	2.1772	2.2226
5	2.2680	2.3133	2.3587	2.4040	2.4494	2.4948	2.5401	2.5855	2.6308	2.6762
6	2.7216	2.7669	2.8123	2.8576	2.9030	2.9484	2.9937	3.0391	3.0844	3.1298
7	3.175I	3.2205	3.2659	3.3112	3.3566	3.4019	3.4473	3.4927	3.5380	3.5834
8	3.6287	3.6741	3.7195	3.7648	3.8102	3.8555	3.9009	3.9463	3.9916	4.0370
9	4.0823	4.1277	4.173 I	4.2184	4.2638	4.3091	4.3545	4.3998	4.4452	4.4906
Ounces.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	kg .	kg.	kg.	kg.	kg.	kg.	kg.	kg .	kg.	kg.
0	0.0000	0.0028	0.0057	0.0085	0.0113	0.0142	0.0170	0.0198	0.0227	0.0255
1	. 0283	.0312	. 0340	. 0369	. 0397	. 0425	. 0454	. 0482	. 0510	. 0539
2	. 0567	. 0595	. 0624	. 0652	.0680	. 0709	. 0737	. 0765	. 0794	. 0822
3	. 0850	.0879	. 0907	. 0936	. 0964	. 0992	. 1021	. 1049	. 1077	. 1106
4	. 1134	. 1162	.ri9I	. 1219	. 1247	. 1276	. 1304	. 1332	. 136 I	. 1389
5	0.1417	0.1446	0.1474	0. 1503	0.153I	O. 1559	0.1588	0.1616	0. 1644	-. 1673
6	.1701	. 1729	. 1758	. 1786	.18I4	. 1843	.1871	. 1899	. 1928	. 1956
7	. 1984	. 2013	. 2041	. 2070	. 2098	. 2126	. 2155	. 2183	. 22 II	. 2240
8	. 2268	. 2296	. 2325	. 2353	. 2381	.2410	. 2438	. 2466	. 2495	. 2523
9	. 2551	.2580	. 2608	. 2637	. 2665	. 2693	. 2722	. 2750	. 2778	. 2807
10	0.2835	0.2863	0.2892	0.2920	0.2948	0.2977	0.3005	0.3033	0.3062	0.3090
11	. 3118	. 3147	. 3175	. 3203	. 3232	. 3260	. 3289	. 3317	. 3345	. 3374
12	- 3402	. 3430	- 3459	- 3487	-3515	- 3544	. 3572	. 3600	. 3629	. 3657
13	. 3685	. 3714	. 3742	. 3770	- 3799	. 3827	.3856	. 3884	.3912	. 394 I
14	. 3969	. 3997	. 4026	. 4054	. 4082	.4III	. 4139	.4167	.4196	. 4224
15	.4252	.428r	. 4309	. 4337	.4366	. 4394	.4423	.445 ${ }^{\text {I }}$. 4479	. 4508

Emthionian Tables.

Table 88.
KILOGRAMMES INTO AVOIRDUPOIS POUNDS AND OUNCES.
I kilogramme $=\mathbf{2 . 2 0 4 6 2 2}$ avoirdupois pounds.

Table 89.

GRAINS INTO GRAMMES.

I grain $=0.06479892$ gramme.

Smithbonian Tableg.

GRAMMES INTO GRAINS.
TAble 90.

I gramme $=15.43235$ I grains.

TAble 91.
CONVERSION OF UNITS OF MAGNETIC INTENSITY.

English Units.	Dynes.	Dynes.	English Units.
1	0.046108	0.1	2.16882
2	.092216	.2	4.33764
3	.138324	.5	8.60646
4	.184432	.4	
$\mathbf{5}$	0.230540	0.5	10.84410
6	.276648	.6	13.01292
7	.322756	.7	15.18174
8	.368864	.8	17.35056
9	.414972	.9	19.51938

The English unit of magnetic intensity is the force which acting for 1 second on a unit of magnetism, associated with a mass of I grain, produces a velocity of I foot per second.
The C. G. S. unit of magnetic intensity is the dyne-the force which, acting on one gramme for one second, generates a velocity of I centimetre per second.
The dimensions of magnetic intensity are $\left[M^{\frac{1}{3}} / L^{\frac{1}{2}} T\right]$.

TAble 92.
QUANTITY OF RAINFALL CORRESPONDING TO GIVEN DEPTHS.
r inch of rainfall $=22624.0417$ imperial gallons per acre. $\quad 1$ inch of rainfall $=113.3068$ tons per acre.

$$
=226613.713 \mathrm{lbs} . \text { per acre. }
$$

$=72516.3^{8} 78$ tons persq. mile.

$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { Rainfall. } \end{gathered}$	Imperial Gallons per acre.	Tons per square Mile.	Depth of Rainfall.	Imperial Gallons per acre.	Tons per square Mile.	Depth of Rainfall.	Imperial Gallons per acre.	Tons per square Mile.
Inches. 0.00			Inches. 0.20			Inches. 0.40		
. OI	226.24	725.16	. 21	4751.04	15228.44	0.40 .41	9275.85	
. 02	452.48	14.50 .32	. 22	4977 . 28	1 5953.60	. 42	9502.09	30456.88
. 03	678.72	2175.49	. 23	$5203 \cdot 52$	1667S.76	. 43	9728.33	31182.04
. 04	904.96	2900.65	. 24	$5429 \cdot 77$	17403.93	. 44	9954.57	31907.21
0.05	1131.20	3625.8 I	0.25	$5656 . \mathrm{ol}$	18129.09	0.45	10180.8r	32632.37
. 06	1357.44	4350.98	. 26	5882.25	18854.26	. 46	10407.05	33357.53
. 07	1583.68	5076.14	. 27	6108.49	19579.42	. 47	10633.29	34082.70
. 08	1809.92	$5 \mathrm{SOI} \cdot 31$. 28	$6334 \cdot 73$	20304.58	. 48	10859.53	34807.86
. 09	2036.16	6526.47	. 29	6560.97	21029.75	. 49	$11085 \cdot 77$	35533.03
0.10	2262.40	7251.63	0.30	6787.21	21754.91	0.50	11312.02	36258.19
. 11	2488.64	7976.80	. 31	7013.45	22480.08	. 60	13574.42	43.509 .83
. 12	2714.88	8701.96	. 32	7239.69	23205.24	. 70	15836.82	5076ı. 47
. 13	2941.12	9427.13	- 33	7465.93	23930.40	. 80	18099.23	58013.11
. 14	3167:36	10152.29	. 34	7692.17	24655.57	. 90	20361.63	6526474
0.15	3393.60	10877.45	0.35	79 I 8.41	25380.73	1.00	22624.04	72516.38
. 16	3619.84	11602.62	-36	8144.65	26105.89	2.00	45248.08	145032.77
. 17	3846.08	12327.78	. 37	8370.89	26831.06	3.00	67872.12	217549.16
. 18	4072.32	13052.94	-38	8597.13	275.56 .22	4.00	90496.16	290065.55
. 19	4298.56	13778.11	. 39	$8823 \cdot 37$	2828I. 39	5.00	113120.20	362581.93
0.20	4524.80	14503.27	0.40	9049.6I	29006. 55	6.00	1 35744.24	435098. 32

TABLE 93.
DATES OF DOVE'S PENTADES.

No. of Pentade.	Epoch of the Year.	No. ${ }^{\circ} \mathrm{P}$ tade	Epoch of the Year.	No. of Pen- tade	Epoch of the Year.	No. of Pen- tade	Epoch of the Year.
1	Jan. I to 5	19	Apr. I to 5	37	June 30 to July 4	55	Sept. 28 to Oct. 2
2	610	20	6 Io	38	July 59	56	Oct. 37
3	II 15	2 I	II 15	39	1014	57	8 12
4	1620	22	1620	40	1519	58	$13 \quad 17$
5	Jan. 21 to 25	23	Apr.2I to 25	41	$\text { July } 20 \text { to } 24$	59	Oct. 18 to 22
6	$26{ }^{26} 30$	24	2630	42	$25,29$	60	23 27 27
7	Feb. ${ }^{31} 50.4$	25	$\begin{array}{llr}\text { May } & \text { I } & 5 \\ & 6 & 10\end{array}$	43 44	Aug. ${ }^{30}$ Aug. 3	$6 \mathrm{6I}$	Nov. ${ }^{28}$ Nov. 1
9	Feb. 5 10 $\quad 94$	27	$\begin{array}{rr}6 & 10 \\ 11 & 15\end{array}$	45	Aug. 4 9 9	63	Nov. $2 \times r$
10	Feb. 15 to 19	28	May 16 to 20	46	Aug. 14 to 18	64	Nov. 12 to 16
II	20.24	29	21.25	47	1923	65	$17 \quad 2 \mathrm{I}$
12*	Mar 25 Mar. 1	30	$26 \quad 30$	48	24 28	66	$22 \quad 26$
13	Mar. 26	31	31 June 4	49	S 29 Sept. 2	67	${ }^{27}$ Dec. 1
14	7 II	32	June 59	50	Sept. 37	68	Dec. 26
15	Mar. 12 to 16	33	Tune io to I4	51	Sept. 8 to 12	69 70	$\begin{array}{rr}7 & \text { II } \\ \text { 12 } & \text { I6 }\end{array}$
16	$\begin{array}{cc}17 & 21\end{array}$	34	15 19	52	Sept. 1317	7 I	$17 \begin{array}{ll}12 & \\ 7\end{array}$
17	2226	35	$20 \quad 24$	53	$18 \quad 22$	72	$22 \quad 26$
18	27 3I	36	$25 \quad 29$	54	$23 \quad 27$	73	27 3I

* In the bissextile year the 12 th pentade contains six days.

DIVISION BY 28 OF NUMBERS FROM 28 TO 867972.

0	100	200	300	400	500	600	700	800	900						
-	28	56	84	112	140	168	196	224	252	D.	-	28	56	84	840
1	29	57	85	113	141	169	197	225	253	${ }_{\text {D }}$ D.	12	40	68	${ }^{03}$	${ }^{30}$
2	30	58	86	14	142	170	198	226		Q.	04	05	06	07	29
									25	Q.	28	${ }_{0}^{52}$	10		$\begin{array}{r}784 \\ 28 \\ \hline\end{array}$
3	3 I	59	87	115	143	171	199	227	255	D.	$\left\lvert\, \begin{aligned} & 08 \\ & 08 \\ & 11 \end{aligned}\right.$	12	13	14	756 27
4	32	60	88	116	144	172	200	228	256	D.	20	48	76		28
5	33	6 I	89	117	145	173	201	229	257	D.	15	16	17 60	88	26 700
6	34	62	90	118	146					Q.	18	19	20	21	25
	34		90	118	146	174	202	230	258	${ }_{\text {D }} \mathrm{D}$.	${ }_{22}^{16}$	44	${ }_{2}{ }^{72}$		672 24
7	35	63	91	119	147	175	203	231	259	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{D}} .}{\mathrm{O}}$	$\begin{aligned} & 00 \\ & 02 \\ & 25 \end{aligned}$	$\begin{aligned} & 28 \\ & 26 \end{aligned}$	$\begin{aligned} & 56 \\ & 27 \end{aligned}$	84 28	644 23
8	36	64	92	120	148	176	204	232	260	D.	12	40	68		616
										${ }_{\sim}^{\text {D. }}$	29	30	31	32	22
9	37	65	93	121	149	177	205	233	261	D.	24	32	80 35		588 28 21
го	38	66	94	122	150	178	206	234	262	D.	os	36	64	92	560
11	39	67	95	123	151	179	207	235	263	${ }_{\text {D }}$.	36 20	48			20 532
0	100	200	300	400	500	600	700	800	900	Q.	40	41	42		19
12	40	68	96	124	15	180	208	236	264	D.	04	32	60	88	504
13	41	69	97	125	153	181	209	237	265	${ }^{\text {D. }}$	16	44	72		476
14	42	70	98	126	154	182	210	238	266	D.	47	${ }_{28}^{48}$	49		17 448
										Q.	50	51	52	53	14
15	43	71	99	127	155	183	211	239	267	$\begin{aligned} & \mathrm{O}, \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	I2 54	4	$\begin{aligned} & 68 \\ & 56 \end{aligned}$	$\begin{aligned} & 96 \\ & 57 \end{aligned}$	420 15
16	44	72	100	128	156	184	212	240	268	D.	24		80		392
17	45	73	ror	129	157	185	213	241	269	${ }_{\text {D }}$	-88	59 36			14 364
18	46	74	102	130	158	186	214	242	270	${ }_{\text {D }}$	21	62		64	13 336
										Q.	65	66	67		13 12
19	47	75	103	131	159	187	215	243	271	$\begin{aligned} & \mathrm{Q} .0 \\ & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & 04 \\ & 08 \\ & 68 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \\ & 69 \end{aligned}$	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 88 \\ & 71 \end{aligned}$	308 11
20	48	76	104	132	160	188	216	244	272	D.	16				280
21	49	77	105	133	161	189	217	245	273	D.	72	${ }_{28}^{73}$	74		10
22	50	78	106	134	162	190	218	246	27	${ }_{\text {D }} \mathrm{D}$	75	76	77	78	9
										Q.	79	80	81	82	224
23	51	79	107	135	163	191	219	247	275	$\begin{aligned} & \stackrel{\mathrm{C}}{\mathrm{D}} . \\ & \mathrm{Q} \end{aligned}$	$\begin{aligned} & 24 \\ & 83 \\ & 83 \end{aligned}$	$\begin{aligned} & 52 \\ & 54 \\ & 84 \end{aligned}$	$\begin{aligned} & 80 \\ & 85 \\ & 85 \end{aligned}$		${ }^{196}$
24	52	80	108	${ }_{136}$	164	192	22	248	276	D.	08	36		92	168
25	53	81	109	137	I65	193	221	249	277	${ }_{\text {D }}$ D.	${ }^{86}$	48	76	89	6 4 0
26	54	82	İо	138	166	194	222	250	278	D.	O4	91	92		5 112
27	55	83	II	139	167	195				${ }_{\text {D }}$	93	94	95	96	4
0	100	200	300	400	500	$\frac{195}{600}$	$\frac{22}{700}$	$\frac{251}{800}$	$\frac{279}{900}$	D.	16 97	44 98	72 99		84 3

TABLE 95.
DIVISION BY 29 OF NUMBERS FROM 29 TO 898971.

TABLE 96.
DIVISION BY 31 OF NUMBERS FROM 31 TO 960969.

Table 97.
NATURAL SINES AND COSINES.
Natural Sines.

Angle.	0^{\prime}	10^{\prime}	20^{\prime}	30'	40^{\prime}	50^{\prime}	60'	Angle.	Prop Parts for 1^{\prime}
$0{ }^{\circ}$. 000000	. 002909	. 005818	. 008727	. 011635	. 014544	.Or 745^{2}	89°	
1	. 01745^{2}	. 02036	.02327	.02618	. 02908	.0319 9	. 03490	88	
2	. 03490	. 0378 I	.0407 I	. 04362	. 04653	. 04943	. 05234	87	
3	.05234	. 05524	.0581 4	. 06105	. 06395	. 06685	. 06976	86	
4	. 06976	. 07266	. 07556	. 07846	.08I3 6	. 08426	.0871 6	85	
5	.0871 6	. 09005	. 09295	. 09585	. 09874	.ro16 4	. 10453	84	
6	. 10453	.1074 2	.1103 I	.1132 ${ }^{\text {o }}$.rr60 9	.1189 8	. 12187	83	
7	. 12187	. 12476	. 12764	. 13053	.1334	. 1363	. 1392	82	
8	. 1392	. 1421	. 1449	. 1478	. 1507	. 1536	. 1564	8 8	2.9
9	. 1564	. 1593	. 1622	. 1650	. 1679	. 1708	. 1736	80	2.9
10	. 1736	. 1765	.1794	. 1822	.1851	. 1880	. 1908	79	2.9
II	. 1908	. 1937	. 1965	. 1994	. 2022	. 2051	. 2079	78	2.9
12	. 2079	. 2108	. 2136	. 2164	. 2193	. 2221	. 2250	77	2.8
13	. 2250	. 2278	. 2306	. 2334	. 2363	.2391	. 2419	76	2.8
14	. 2419	. 2447	. 2476	. 2504	. 2532	. 2560	. 2588	75	2.8
15	. 2588	. 2616	. 2644	. 2672	. 2700	. 2728	. 2756	74	2.8
16	. 2756	. 2784	. 2812	. 2840	. 2868	. 2896	. 2924	73	2.8
17	. 2924	. 2952	. 2979	. 3007	-3035	- 3062	-3090	72	2.8
18	-3090	-3118	-3145	. 3173	-3201	-3228	. 3256	71	2.8
19	. 3256	- 3283	.33II	- 3338	. 3365	- 3393	. 3420	70	2.7
20	. 3420	. 3448	. 3475	. 3502	. 3529	- 3557	- 3584	69	2.7
21	. 3584	-3611	-3638	- 3665	-3692	-3719	- 3746	68	2.7
22	- 3746	. 3773	-3800	- 3827	-3854	-388I	- 3907	67	2.7
23	- 3907	- 3934	-396I	- 3987	-4014	-404I	-4067	66	2.7
24	. 4067	. 4094	. 4120	.4147	.4173	. 4200	. 4226	65	2.7
25	. 4226	. 4253	. 4279	. 4305	. 4331	. 4358	. 4384	64	2.6
26	. 4384	.4410	. 4436	. 4462	. 4488	. 4514	. 4540	63	2.6
27	. 4540	. 4566	. 4592	-4617	. 4643	. 4669	. 4695	62	2.6
28	. 4695	. 4720	. 4746	-4772	. 4797	. 4823	. 4848	61 60	2.6 2.5
29	. 4848	. 4874	. 4899	. 4924	. 4950	-4975	. 5000	60	2.5
30	. 5000	. 5025	. 5050	. 5075	. 5100	. 5125	. 5150	59	2.5
31	. 5150	. 5175	. 5200	. 5225	. 5250	. 5275	. 5299	58	2.5
32	. 5299	. 5324	- 5348	. 5373	. 5398	. 5422	-5446	57	2.5
33	. 5446	. 547 I	. 5495	.5519	. 5544	. 5568	. 55592	56	2.4
34	. 5592	. 5616	- 5640	. 5664	. 5688	. 5712	-5736	55	2.4
35	. 5736	. 5760	.5783	. 5807	. 5831	. 5854	. 5878	54	2.4
36	. 5878	. 5901	. 5925	. 5948	. 5972	. 5995	. 6018	53	2.3
37	. 6018	. 6041	. 6065	. 6088	. 6111	. 6134	. 6157	52	2.3
38 39	. 6157	. 6180	. 6202	. 6225	. 6248	. 6271	. 6293	51 50	2.3
39	. 629		. 6338	. 6361	. 6383	. 6406	. 6428	50	2.3
40	. 6428	. 6450	. 6472	. 6494	. 6517	. 6539	.656r	49	2.2
4 I	.6561	. 6583	. 6604	. 6626	. 6648	. 6670	. 6691	48	2.2
42	. 6691	. 6713	. 6734	. 6756	. 6777	. 6799	. 6820	47	2.2
43	. 6820	. 684 4	. 6862	. 6884	. 6905	. 6926	. 6947	46	2.1
44	. 6947	. 6967	. 6988	. 7009	. 7030	. 7050	. 7071	45	2.1
	60^{\prime}	50^{\prime}	40^{\prime}	30^{\prime}	20^{\prime}	10^{\prime}	0^{\prime}	Angle.	

Smithsonian Tableg.
Natural Cosines.

NATURAL SINES AND COSINES.
Natural Sines.

Angle.	0^{\prime}	10^{\prime}	20^{\prime}	30^{\prime}	40^{\prime}	50^{\prime}	60^{\prime}	Angle.	Prop. Parts for 1^{\prime}
45°	. 7071	. 7092	. 7112	. 7133	. 7153	. 7173	. 7193	44°	2.0
46	. 7193	. 7214	. 7234	. 7254	. 7274	. 7294	. 7314	43	2.0
47	. 7314	. 7333	. 7353	. 7373	. 7392	.7412	. 7431	42	2.0
48	. 7431	. 7451	. 7470	. 7490	.7509	. 7528	. 7547	4 I	1.9
49	. 7547	. 7566	. 7585	. 7604	. 7623	. 7642	. 7660	40	1.9
50	. 7660	. 7679	. 7698	. 7716	. 7735	. 7753	. 7771	39	1.9
51	. 7771	. 7790	. 7808	. 7826	. 7844	. 7862	. 7880	38	1.8
52	. 7880	. 7898	. 7916	. 7934	. 7951	. 7969	. 7986	37	1.8
53	. 7986	. 8004	. 8021	. 8039	. 8056	. 8073	.8090"	36	1.7
54	. 8090	.8107	.8124	.8I4I	.8r58	.8175	.8192	35	1.7
55	. 8192	. 8208	. 8225	. 8241	. 8258	. 8274	. 8290	34	1.6
56	. 8290	. 8307	. 8323	. 8339	. 8355	.837I	. 8387	33	1.6
57	. 8387	. 8403	. 8418	. 8434	. 8450	. 8465	. 8480	32	1.6
58	. 8480	. 8496	. 8511	. 8526	. 8542	. 8557	. 8572	31	I. 5
59	. 8572	. 8587	. 8601	.8616	. 8631	. 8646	. 8660	30	1.5
60	. 8660	. 8675	. 8689	. 8704	. 8718	. 8732	. 8746	29	1.4
61	. 8746	. 8760	. 8774	. 8788	. 8802	.88ı6	. 8829	28	I. 4
62	. 8829	. 8843	. 8857	. 8870	. 8884	. 8897	. 8910	27	1.4
63	. 8910	. 8923	. 8936	. 8949	. 8962	. 8975	. 8988	26	1.3
64	. 8988	.9001	. 9013	. 9026	. 9038	.9051	:9063	25	I. 3
65	. 9063	. 9075	. 9088	. 9100	. 9112	. 9124	. 9135	24	1.2
66	9135	. 9147	. 9159	. 9171	-9182	. 9194	. 9205	23	1.2
67	. 9205	. 9216	-9228	. 9239	-9250	. 9261	- 9272	22	I.I
68	. 9272	. 9283	. 9293	. 9304	. 9315	. 9325	. 9336	21	I.I
69	. 9336	. 9346	. 9356	. 9367	. 9377	. 9387	. 9397	20	1.0
70	-9397	. 9407	-9417	. 9426	. 9436	. 9446	. 9455	19	1.0
71	. 9455	. 9465	. 9474	. 9483	. 9492	. 9502	.95II	18	0.9
72	. 951 I	. 9520	. 9528	. 9537	. 9546	. 9555	. 9563	17	0.9
73	.9563	. 9572	. 9580	. 9588	. 9596	. 9605	. 9613	16	0.8
74	. 9613	. 962 I	. 9628	. 9636	9644	. 9652	. 9659	15	0.8
75	. 9659	. 9667	. 9674	.9681	. 9689	. 9696	. 9703	14	0.7
76	. 9703	. 9710	. 9717	. 9724	. 9730	. 9737	. 9744	13	0.7
77	- 9744	. 9750	. 9757	. 9763	. 9769	. 9775	.978i	12	0.6
78	.9781	. 9787	.9793	. 9799	. 9805	.98II	.9816	11	0.6
79	.9816	. 9522	. 9827	. 9833	.9838	. 9843	. 9848	10	0.5
80	. 9848	. 9853	. 9858	. 9863	. 9868	. 9872	. 9877		0.5
81	. 9877	. 988 I	. 9886	. 9890	. 9894	. 9899	. 9903	8	0.4
82	. 9903	. 9907	.991 1	. 9914	. 9918	. 9922	. 9925	7	0.4
83	. 9925	. 9929	. 9932	. 9936	. 9939	. 9942	. 9945	6	0.3
84	. 9945	. 9948	.9951	. 9954	. 9957	. 9959	. 9962	5	0.3
85	. 9962	. 9964	. 9967	. 9969	.9971	. 9974			0.2
86	. 9976	. 9978	. 9980	.998i	. 9983	. 9985	. 9986	3	0.2
87	. 9986	. 9988	. 9989	. 9990	. 9992	. 9993	. 9994	2	O. I
88	. 9994	. 9995	. 9996	. 9997	. 9997	. 9998	. 9998	0	O. 1
89	. 9998	. 9999	. 9999	1.0000	1.0000	1.0000	1.0000	0	0.0
	60^{\prime}	50^{\prime}	40^{\prime}	30^{\prime}	20^{\prime}	10^{\prime}	0^{\prime}	Angle.	

TABLE 98.
NATURAL TANGENTS AND COTANGENTS.
Natural Tangents.

Angle.	0^{\prime}	10^{\prime}	20^{\prime}	30^{\prime}	40^{\prime}	50^{\prime}	60^{\prime}	Angle.	Prop. Parts for 1^{\prime}.
0°	. 00000	. 0029 I	. 00582	. 00873	.ori6 4	.OI45 5	. 01746	89°	2.9
1	. 01746	. 02036	. 02328	.026I 9	. 02910	. 0320 I	. 03492	88	2.9
2	. 03492	. 03783	. 04075	. 04366	. 04658	. 04949	. 0524 I	87	2.9
3	. 0524 I	. 05533	.05824	.06II 6	. 06408	. 06700	. 06993	86	2.9
4	. 06993	. 07285	. 07578	. 07870	.08I6 3	. 08456	. 08749	85	2.9
5	. 08749	. 09042	. 09335	. 09629	.09923	.102I 6	. 10510	84	2.9
6	.105I 0	. .1080 5	.1109 9	.II39 4	.II688	.II98 3	. 12278	83	2.9
7	. 12278	. 12574	. 12869	.13I6 5	. 1346	. 1376	. 1405	82	3.0
8	. 1405	. 1435	. 1465	. 1495	. 1524	. 1554	. 1584	8 I	3.0
9	.IS84	.16I4	. 1644	. 1673	. 1703	. 1733	. 1763	80	3.0
10	. 1763	. 1793	. 1823	.I853	.1883	.1914	. 1944	79	3.0
II	. 1944	. 1974	. 2004	. 2035	. 2065	. 2095	. 2126	78	3.0
12	. 2126	. 2156	. 2186	.2217	. 2247	. 2278	. 2309	77	3.1
13	. 2309	. 2339	. 2370	.2401	. 2432	. 2462	. 2493	76	3.1
14	. 2493	. 2524	. 2555	. 2586	.2617	. 2648	. 2679	75	3.1
15	. 2679	. 2711	. 2742	. 2773	. 2805	. 2836	. 2867	74	3.1
16	. 2867	. 2899	. 2931	. 2962	. 2994	. 3026	. 3057	73	3.2
17	. 3057	. 3089	. 3121	.3I53	. 3185	. 3217	. 3249	72	3.2
18	. 3249	.3281	. 3314	. 3346	. 3378	.34II	. 3443	7 I	3.2
19	. 3443	. 3476	. 3508	.354I	. 3574	. 3607	. 3640	70	$3 \cdot 3$
20	. 3640	. 3673	. 3706	. 3739	- 3772	.3805	. 3839	69	$3 \cdot 3$
21	.3839	. 3872	. 3906	. 3939	- 3973	. 4006	. 4040	68	$3 \cdot 4$
22	. 4040	. 4074	. 4108	. 4142	. 4176	. 4210	. 4245	67	3.4
23	. 4245	. 4279	. 4314	. 4348	. 4383	. 4417	. 4452	66	$3 \cdot 5$
24	. 4452	. 4487	. 4522	. 4557	.4592	. 4628	. 4663	65	$3 \cdot 5$
25	. 4663	. 4699	. 4734	. 4770	. 4806	. 4841	. 4877	64	3.6
26	. 4877	.4913	. 4950	. 4986	. 5022	. 5059	. 5095	63	3.6
27	. 5095	.5132	. 5169	. 5206	. 5243	. 5280	.5317	62	3.7
28	. 5317	. 5354	. 5392	. 5430	. 5467	. 5505	. 5543	6 I	3.8
29	. 5543	.558r	.5619	. 5658	.5696	. 5735	. 5774	60	3.8
30	. 5774	. 58 I 2	. 5851	. 5890	. 5930	. 5969	. 6009	59	$3 \cdot 9$
31	. 6009	. 6048	. 6088	.6128	. 6168	. 6208	. 6249	58	4.0
32	. 6249	. 6289	. 6330	. 6371	. 6412	. 6453	. 6494	57	4. I
33	. 6494	. 6536	. 6577	.6619	.666I	. 6703	. 6745	56	4.2
34	. 6745	. 6787	. 6830	. 6873	. 6916	. 6959	. 7002	55	4.3
35	. 7002	. 7046	. 7089	. 7133	.7177	.722I	. 7265	54	4.4
36	. 7265	.7310	. 7355	. 7400	. 7445	. 7490	. 7536	53	4.5
37	. 7536	.7581	. 7627	. 7673	. 7720	. 7766	.7813	52	4.6
38	.7813	. 7860	. 7907	. 7954	. 8002	. 8050	. 8098	5 I	4.7
39	. 8098	. 8146	.8195	. 8243	. 8292	. 8342	. 8391	50	4.9
40	. 8391	.844I	. 8491	.854I	.8591	. 8642	. 8693	49	5.0
41	. 8693	. 8744	. 8796	. 8847	. 8899	. 8952	. 9004	48	5.2
42	. 9004	. 9057	.91 10	.9163	. 9217	.927I	. 9325	47	$5 \cdot 4$
43	. 9325	. 9380	. 9435	. 9490	. 9545	.9601	. 9657	46	$5 \cdot 5$
44	. 9657	.9713	. 9770	. 9827	. 9884	. 9942	1.0000	45	$5 \cdot 7$
	60^{\prime}	50^{\prime}	40^{\prime}	30^{\prime}	20^{\prime}	10^{\prime}	0^{\prime}	Angle.	

NATURAL TANGENTS AND COTANGENTS.
Natural Tangents.

Angle.	0^{\prime}	10^{\prime}	20^{\prime}	30^{\prime}	40^{\prime}	50^{\prime}	60^{\prime}	Angle.	Prop. Parts for 1^{\prime}.
45°	1.0000	1.0058	I.OII7	I.0176	1.0235	1.0295	1.0355	44°	5.9
46	1.0355	1.0416	1.0477	1.0538	1.0599	1.066I.	1.0724	43	6.1
47	1.0724	1.0786	1.0850	r.o913	1.0977	I.104I	I. 1106	42	6.4
48	I. 1106	1.1171	I. 1237	I.1303	r. 1369	1.1436	I. 1504	4 I	6.6
49	1. 1504	1.157I	I. 1640	I. 1708	r. 1778	I. 1847	I. 1918	40	6.9
50	1.1918	1. 1988	I. 2059	1.2I3I	1.2203	1.2276	1.2349	39	7.2
5 I	I. 2349	1.2423	I. 2497	1.2572	I. 2647	1.2723	I. 2799	38	$7 \cdot 5$
52	1.2799	1.2876	1.2954	1.3032	I.3III	1.3190	1.3270	37	$7 \cdot 9$
53	1.3270	I.3351	1. 3432	I.3514	I. 3597	1.3680	1.3764	36	8.2
54	I. 3764	1.3848	I. 3934	1.4019	1.4106	1.4193	1.428 I	35	86
55	1.4281	1.4370	1.4460	1.4550	1.4641	1.4733	1.4826	34	9.1
56	1.4826	1.4919	1.5013	1.5108	I. 5204	1.5301	I. 5399	33	9.6
57	I. 5399	1.5497	I. 5597	I. 5697	1.5798	1.5900	1.6003	32	10.I
58	1.6003	1.6107	1.6212	1.6319	1.6426	1.6534	1.6643	3 I	10.7
59	1. 6643	1. 6753	1. 6864	1. 6977	1.7090	1.7205	1.732I	30	II. 3
60	1.732 I	1.7437	1. 7556	1.7675	1.7796	1.7917	1.8040	29	12.0
6 I	1.8040	I.8165	1.8291	1.8418	1. 8546	1.8676	1.8807	28	12.8
62	1.8807	1.8940	1.9074	1.9210	1.9347	1.9486	1.9626	27	13.6
63	I. 9626	1.9768	1.9912	2.0057	2.0204	2.0353	2.0503	26	14.6
64	2.0503	2.0655	2.0809	2.0965	2.1123	2.1283	2.1445	25	I5.7
65	2.1445	2.1609	2. 1775	2. 1943	2.2113	2.2286	2.2460	24	16.9
66	2.2460	2.2637	2.2817	2.2998	2.3183	2.3369	2.3559	23	18.3
67	2.3559	2.3750	2.3945	2.4142	2.4342	2.4545	2.475 I	22	19.9
68	2.475 I	2.4960	2.5172	2.5386	2.5605	2.5826	2.6051	21	21.7
69	2.6051	2.6279	2.651 I	2.6746	2.6985	2.7228	2.7475	20	23.7
70	2.7475	2.7725	2.7980	2.8239	2.8502	2.8770	2.9042	19	
71	2.9042	2.9319	2.9600	2.9887	3.0178	3.0475	3.0777	18	
72	3.0777	3.1084	3. I397	3.1716	3.2041	3.2371	3.2709	17	
73	3.2709	3.3052	$3 \cdot 3402$	$3 \cdot 3759$	3.4124	3.4495	3.4874	16	
74	3.4874	$3 \cdot 526 \mathrm{I}$	3.5656	3.6059	3.6470	3.6891	3.732 I	15	
75	3.732 I	3.7760	3.8208	3.8667	3.9136	3.9617	4.0108	14	
76	4.0108	4.0611	4.1126	4.1653	4.2193	4.2747	4.3315	13	
77	4.3315	$4 \cdot 3897$	4.4494	4.5107	4.5736	4.6382	4.7046	12	
78	4.7046	4.7729	4.8430	4.9152	4.9894	5.0658	5.1446	II	
79	5.1446	5.2257	5.3093	$5 \cdot 3955$	5.4845	5.5764	5.67 I 3	IO	
80	5.6713	5.7694	5.8708	5.9758	6.0844	6.1970	6.3138	9	
81	6.3138	6.4348	6.5606	6.6912	6.8269	6.9682	7.1154	8	
82	7.1154	7.2687	7.4287	7.5958	7.7704	7.9530	8.1443	7	
83	8. 1443	8.3450	8.5555	8.7769	9.0098	9.2553	9.5144	6	
84	9.5144	9.7882	10.0780	10.3854	10.7119	II. 0594	11.4301	5	
85	II.4301	11.8262	12.2505	12.7062	13.1969	13.7267	14.3007	4	
86	14.3007	14.9244	15.6048	16.3499	17.1693	18.0750	19.08I I	3	
87	19.081 I	20.2056	21.4704	22.9038	24.5418	26.4316	28.6363	2	
88	28.6363	31.2416	34.3678	38.1885	42.9641	49.1039	57.2900	1	
89	57.2900	68.7501	85.9398	II 4.5887	171.8854	343.7737	∞	0	
	60^{\prime}	50^{\prime}	40^{\prime}	30^{\prime}	20^{\prime}	10^{\prime}	0^{\prime}	Angle.	

N.	0	1	2	3	4	5	6		7	8	9	d.	Prop. Parts.				
0	. 0	00003	3010	4771	6021	699	778	84	451	9031	9542						
1	00000	0414	O792	II39	146I	176	20	23	04	2553	2788						
2	3010	3222	3424	3617	3802	397			14	4472	4624						
3	4771	49145	5051	5185	5315	54		56	682	5798	5911			4,3	4,2	4,1	
4	60216	6128	6232	6335	6435	653			721	6812	6902			8,6		8,2	
5	69907	70767	7160	7243	7324	740	748	75	559	7634	7709			12,9 17,2	12,6	12,3 16,4	
6	77827	78537	7924	7993	8062	812	819		6I	8325	8388			12,	21,0	120,	
7	845I 8	85138	8573	8633	8692	875	880	88	865	8921	8976		6	25,8	25,2 29,4	24,6	24,0 28,0
8	90319	9085	9138	9191	9243	929	93		395	9445	9494		8	34,4			32,0
9	95429	95909	9638	9685	973I	977	98	98	68	9912	9956						
10	0000	0043	0086	OI28	or70	021	025	02	94	0334	0374	4 I					
II	0414	04530	0492	0531	0569	06	06	06	82	0719	O755	38					
12	07920	0828	0864	0899	0934	096	100		038	1072	1106	35					36
13	11391	1173	1206	1239	1271	130	I33	I3	367	I 399	1430	32	1	3,9 7,8	3,8 7,6	3,7 7,4 1	
14	1461	1492 I	1523	${ }^{1} 553$	1584	161	164	16	673	1703	1732	30	2	11,7		II, $\begin{array}{r}7, \\ \text { II, }\end{array}$	
15	I76I I	17901	1818	1847	1875	190	193		959	1987	2014	28	4	15,6 19,5			
16	20412	20682	2095	2122	2148	217	220		227	2253	2279	26	5	19,5 23,4			
17	23042	23302	2355	2380	2405	243	245		480	2504	2529	25	7				
18	25532 27882	25772	2601	2625	2648	2672	269		718	2742	2765	24	8	31,2 35,1			
20	30103	30323	3054	3075	3096	3 I	31	31	60	3181	3201	21					
2 I	32223	3243	3263	3284	3304	332	334	33	365	3385	3404	20					
22	34243	3444	3464	3483	3502	352	354		560	3579	3598	19				33	32
23	36173	36363	3655	3674	3692	371	372		777	3766	3784	18	1		3,4	3,6	
24	38023	38203	3838	3856	3874	389	390		927	3945	3962	18	3				
25	39793	39974	4014	4031	4048	406	408		099	4116	4133	17	4				
26	41504	41664	4183	4200	4216	423	424		5	4281	4298	16	5				
27	43144	43304	4346	4362	4378	439			425	4440	4456	16	7		23,8		
28	44724	44874	4502	4518	4533	454	456		579	4594	4609	15	8 9				
29	46244	46394	4654	4669	4683	4698	471		728	4742	4757	15					
30	4771	4786	4800	48I4	4829	48	48	48	71	4886	4900	14					
31	49144	49284	4942	4955	4969	498	499	5	OII	5024	5038	14					
32	50515 51855	50655	50795	5092	5105	511	513		145	5159	5172 5302	13					
33	51855	51985	5211	5224	5237	525	526		276	5289	5302	13	2	6,2		5,8	5,6
34	53155	53285	5340	5353	5366	5378	539		403	5416	5428	13	4	9,3			8,4 11,2
35	54415	54535	54655	5478	5490	550	551		527	5539	5551	12	4				
36	55635	55755	5587	5599	5611	562	563		647	5658	5670	12		18,6			16,8 19,6
37 38	56825	56945	5705	5717	5729	574			763	5775	5786	12	8	2, 2,7 24,8			22,4
38 39	57985	58095	5821	5832	5843	585	586		8775		5899	II		27,9	27,0		25,2
39	5911 5	59225	5933	5944	5955	596	597		988	5999	6010	II					
40	60216	60316	6042	605	6064	60	608	60	6	O7	6117	II					
4	6i28 6	6 I 386	6149	6160	6170	618		62	I	212	6222	IO		27	26	25	24
42	62326	62436	6253	6263	6274	628	629		304	6314	6325	10	2	2,7 5,4	2,6 5,2	2,5	2,4 4,8
43	63356	6345	6355	6365	6375	638	639		405	6415	6425	10	2	5,4	5,2	5,0	4,8 7,2
44	64356	64446	6454	6464	6474	648	649		503	6513	6522	10		10,8 13,5	10,4 13,0	$\begin{aligned} & 10,0 \\ & 12,5 \end{aligned}$	9,6 r2,0
45	65326	65426	6551	6561	6571	658	659		599	6609	6618	10	6	16,2	15,6	15,0	14,4
46	66286	6637	6646	6656	6665	667	668		693	6702	6712	9			18,2 18,2 2,8		16,8 19,2
47	67216	67306	67396	6749	6758	676			785	6794	6803	9	8	21,6 24,3	20,8 23,4	20,0	19,2 21,6
48	68126	6821	6830	6839	6848	685	686		875	6884	6893	9					
49	69026	69116	6920	6928	6937	694	695		964	6972	6981						
50	69906	69987	7007	7016	7024	703	70		50	7059	7067	9					
N.	0	1	2	3	4	5	6		7	8	9	d.		Pro	p. P	Parts	

LOGARITHMS OF NUMBERS.

N.	0	1	2	3	4	5	6	7	8	9	d.	Prop. Parts.				
50	69906	6998	7007	7016	7024	70337	7042	7050	7059	7067	9					
51	70767	7084	7093	7101	7110	71187	7126	7135	7143	7152	8					
52	71607	7168	7177	7185	7193	72027	7210	7218	7226	7235	8					
53	72437	7251	7259	7267	7275	72847	7292	7300	7308	7316	8					
54	73247	7332	7340	7348	7356	73647	7372	7380	7388	7396	8					
55	74047	7412	7419	7427	7435	74437	7451	7459	7466	7474	8	$\begin{array}{ll}1 & 23 \\ \text { 2,3 }\end{array}$	2, 22			
56	74827	7490	7497	7505	7513	75207	7528	7536	7543	7551	8	1 2 2 4,6 3 6	4,4	4,	4,	
57	75597	7566	7574	7582	7589	75977	7604	7612	7619	7627	8	3 6,9 4 9,2 	6,6			
58	76347	7642	7649	7657	7664	76727	7679	7686	7694	7701	7		II, 0			
59	77097	7716	7723	7731	7738	77457	7752	7760	7767	7774	7		13,2 15,4			
60	77827	7789	7796	7803	7810.	78187	7825	7832	7839	7846	7	8 18,4 9 20,7				
6I	78537	7860	7868	7875	7882	78897	7896	7903	7910	7917	7					
62	79247	7931	7938	7945	7952	79597	7966	7973	7980	7987	7					
63	79938	8000	8007	8014	8021	80288	8035	804I	8048	8055	7					
64	80628	8069	8075	8082	8089	80968	8102	8ı09	8116	8122	7					
65	81298	8136	8142	8149	8ı56	8162 8	8169	8176	8182	8189	7					
66	8195 8	8202	8209	8215	8222	82288	8235	8241	8248	8254	7					
67	8261	S267	8274	8280	8287	82938	8299	8306	8312	8319	6	1 18 2 1,8 3 6	I,7			
68	8325	833 I	8338	8344	8351	83578	8363	8370	8376	8382	6	2 3,6 3 5,4	3,4			
69	83888	8395	8401	8407	8414	84208	8426	8432	8439	8445	6	$\begin{array}{lll}3 & 3 \\ 4 & 5,4 \\ 7,2\end{array}$	6,8	6,4	6,0	
70	845I 8	8457	8463	8470	8476	84828	8488	8494	8500	8506	6		8,5 102		7,5	
71	85138	8519	8525	8531	8537	85438	8549	8555	856I	8567	6		15			
72	8573.8	8579	8585	8591	8597	8603.8	8609	8615	8621	8627	6					
73	86338	8639	8645	8651	8657	86638	8669	8675	868I	8686	6					
74	86928	8698	8704	8710	8716	87228	8727	8733	8739	8745	6					
75	S751 8	8756	8762	8768	8774	87798	8785	8791	8797	8802	6					
76	88088	8814	8820	8825	883 I	88378	8842	8848	8854	8859	6					
77	88658	8871	8876	8882	8887	88938	8899	8904	8910	8915	6					
78	89218	8927	8932	8938	8943	89498	8954	8960	8965	8971	6	13				
79	89768	8982	8987	8993	8998	90049	9009	9015	9020	9025	5	1 1,3 2 2,6	I,2	I, I	1,0 2,0 S	
80	90319	9036	9042	9047	9053	9058	9063	9069	9074	9079	5	3 3,6 4 3,9 5 5,2	3,6			
8 I	90859	9090	9096	9101	9106	91129	9117	9122	9128	9133	5	5 6,5 6 7,8	6,0			
82	9138	9143	9149	9154	9159	91659	9170	9175	9180	9186	5	7 7 9,1	8,4			
83	91919	9196	9201	9206	9212	92179	9222	9227	9232	9238	5		¢0,8			7,2 8,1
84	92439	9248	9253	9258	9263	92699	9274	9279	9284	9289	5					
85	92949	9299	9304	9309	9315	93209	9325	9330	9335	9340	5					
86	93459	9350	9355	9360	9365	93709	9375	9380	9385	9390	5					
87	93959	9400	9405	9410	9415	94209	9425	9430	9435	9440	5					
85	94459	9450	9455	9460	9465	94699	9474	9479	9484	9489	5					
89	94949	9499	9504	9509	9513	95189	9523	9528	9533	9538	5					
90	95429	9547	9552	9557	9562	95669	9571	9576	9581	9586	5	$\xrightarrow{1}{ }_{\text {8 }}^{8}$	0,7		-5	4 0,4
91	95909	9595	9600	9605	9609	96149	9619	9624	9628	9633	5	 3 2,	[1,1	1,8		
92	96389	9643	9647	9652	9657	96619	9666	9671	9675	9680	5	4 3,2 5 4,0	2,8	2,4		
93	96859	9689	9694	9699	9703	97089	9713	9717	9722	9727	5	 5 3,8 7 4,8 5 5	4,2	3,6		
94	97319	9736	9741	9745	9750	97549	9759	9763	9768	9773	5	7 5,8 88 8,6 6	4,9	4,2	3,5	
95	97779	9782	9786	9791	9795	98009	9805	9809	9814	9818	5	8 9 6,4 7,2	6,3			
96	98239	9827	9832	9836	9841	98459	9850	9854	9859	9863	4					
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	4					
98	99129	9917	9921	9926	9930	99349	9939	9943	9948	9952	4					
99	99569	9961	9965	9969	9974	99789	9983	9987	9991	9996	4					
100	0000	0004	0009	OOI3	0017	00220	0026	0030	0035	0039	4					
N.	0	1	2	3	4	5	6	7	8	9	d.		rop.	Par	rts.	

Smithsonian Tablee.

LIST OF METEOROLOGICAL STATIONS.

North America -
Canada PAGE 244
Central America 244
Greenland 244
Mexico 244
United States 245
West Indies 244
South America Page 246
Europe-
Austro-Hungary Page 247
Belgium 248
British Isles 248
Denmark 249
France 249
Germany 250
Greece 248
Holland 248
Italy 25 I
Norway 249
Portugal 253
Roumania 248
Russia 251
Spain 253
Sweden 249
Switzerland 253
Turkey 248
Asia Page 254
Australasia Page 256
Africa and neighboring islands Page 256
International polar stations PAGE 257
Miscellaneous islands Page 257

TABLE 100.

LIST OF METEOROLOGICAL STATIONS.

(The asterisk * designates stations of the first order.)

NORTH AMERICA.	Latitude.	Longitude from $\underset{\text { Greenwich. }}{\substack{\text { from } \\ \hline}}$	Height above Sea-level.	
			Feet.	m.
CANADA.				
Father Point	$48^{\circ} 3 \mathrm{I}^{\prime} \mathrm{N}$.	$68^{\circ} 28^{\prime} \mathrm{W}$.	20	6
* Frederickton	$45 \quad 57$	6638	164	50
* Halifax	4439	$63 \quad 36$	122	37
* Kingston	$44 \quad 14$	$76 \quad 29$	307	94
* Montreal	4530	$73 \quad 35$	187	57
Parry Sound	$45 \quad 19$	80 o	641	195
Qu'Appelle	5044	10342		
* Quebec.	$46 \quad 48$	71	293	89
* Saint John	$\begin{array}{ll}45 & 17\end{array}$	663	116	35
*Sydney .	468	60 10	37	11
* Toronto	4329	$79 \quad 23$	350	107
* Westminster	4912	12253	33	ı
* Winnepeg	49 51	$97 \quad 7$	758	231
* Woodstock	438	8047	980	299
CENTRAL AMERICA. (See Mexico.)				
GREENLAND.				
Godthaab	64 II N.	5 L 46 W.	36	11
Iviktut	6112	48 II	16	5
Upernivik	7247	$55 \quad 53$	39	12
MEXICO, CENTRAL AMERICA, WEST INDIES, ETC.				
Bermuda, West Indies	$32 \quad 18 \mathrm{~N}$.	$64 \quad 47$ W.	151	46
Guanajuato, Mexico	210	101 15	6759	2060
* Habana, Cuba . .	$23 \quad 8$	$76 \quad 35$	62	19
Kingston, West Indies	$17 \quad 58$	$76 \quad 48$	10	3
Leon, Mexico	217	IOI 41	5899	1798
Mazatlan, Mexico	23 II	10625	249	76
Mexico (City of)	1926	$99 \quad 8$	7487	2282
* Nassau, Bahamas	25 5	77 21	44	13
New Castle, Jamaica	$18 \quad 6$	$76 \quad 42$	3800	1158
Pabellon, Mexico	$22 \quad 4$	10212	6312	1924
Port au Prince, Haiti.	1834	72 21	1 I 8	36
Puebla, Mexico	$19 \quad 2$	98 II	7119	2170
St. Thomas, West Indies .	$18 \quad 20$	6456	131	40
Saltillo, Mexico	$25 \quad 25$	10038	5358	1633
San Luis Potosi, Mexico.	$22 \quad 9$	10058	6201	1890
San Salvador, Central America	1344	899	2156	657
Santiago, Cuba	1955	75 50	21	6
Tacubaya, Mexico.	1924	9912	7621	2323
Vera Cruz, Mexico	1912	968	23	7
Zacatecas, Mexico	$22 \quad 47$	10015	8189	2496

LIST OF METEOROLOGICAL STATIONS.

(The asterisk * designates stations of the first order.)

WEST INDIES. (See Mexico.)	Latitude.	$\begin{gathered} \text { Longitude } \\ \text { from } \end{gathered}$ Greenwich.	Height above Sea-level.	
			Feet.	m.
UNITED STATES.				
* Abilene, Texas	$32^{\circ} 23^{\prime} \mathrm{N}$.	$99^{\circ} 40^{\prime} \mathrm{W}$.	1748	533
* Albany, New York	4239	7345	85	26
* Alpena, Michigan	$45 \quad 5$	8330	609	186
* Atlanta, Georgia	3345	8423	1131	345
* Augusta, Georgia	$33 \quad 28$	81 54	209	64
* Bismarck, North Dakota	$46 \quad 47$	10038	1698	518
* Blue Hill, Massachusetts	42 13	7 7	640	195
* Boston, Massachusetts	$42 \quad 21$	71	125	38
* Buffalo, New York	4253	$78 \quad 53$	690	210
* Chicago, Illinois.	4152	$87 \quad 38$	824	251
* Cincinnati, Ohio	396	8430	628	191
* Cleveland, Ohio.	4130	81 42	751	229
* Columbus, Ohio.	$39 \quad 58$	83 o	837	255
* Davenport, Iowa	4130	$90 \quad 38$	613	187
* Denver, Colorado	3945	105 o	5287	1612
* Des Moines, Iowa	415	$93 \quad 37$	869	265
* Detroit, Michigan	$42 \quad 20$	83	724	221
* Dodge City, Kansas .	$37 \quad 45$	100	2523	769
* Duluth, Minnesota	$46 \quad 48$	926	656	200
* Eastport, Maine	4454	6659	53	16
* E1 Paso, Texas	3147	10630	3796	1157
* Fort Assiniboine, Montana	$48 \quad 32$	10942	2690	820
* Galveston, Texas	29.18	9450	42	13
* Hamilton, Mount, California	$37 \quad 20$	12 I 39	4300	1311
* Helena, Montana	$46 \quad 34$	1124	4118	1255
* Huron, South Dakota	44 21	$98 \quad 14$	1310	399
* Indianapolis, Indiana.	$39 \cdot 46$	86 то	766	234
*Jacksonville, Florida	3020	8r 39	43	13
* Kansas City, Missouri	395	9437	963	294
* Keeler, California	$36 \quad 35$	11750	3622.	1104
* Key West, Florida	$24 \quad 34$	81 49	22	7
* Knoxville, Tennessee	$35 \quad 56$	8358	980	299
* Lynchburg, Virginia	$37 \quad 25$	799	685	209
* Manistee, Michigan .	$44 \quad 13$	86 16	615	187
* Marquette, Michigan	4634	8724	734	224
* Memphis, Tennessee	359	903	330	IOI
* Milwaukee, Wisconsin	$43 \quad 2$	$87 \quad 54$	673	205
* Moorhead, Minnesota .	$46 \quad 52$	9644	935	285
* Nantucket, Massachusetts	417	706	14	4
* Nashville, Tennessee	36 10	8647	553	169
* New Orleans, Louisiana	2958	904	54	16
* New York City, (Weather Bureau).	4043	$74 \quad 0$	185	56
* New York, (Central Park)	$40 \quad 46$	$73 \quad 58$	97	30
* Norfolk, Virginia.	$36 \quad 51$	$\begin{array}{ll}76 & 17\end{array}$	43	13

LIST OF METEOROLOGICAL STATIONS.

(The asterisk * designates stations of the first order.)

UNITED STATES. (Continued.)	Latitude.	Longitude Greenwich. Greenwich	Height above Sea-level.	
			Feet.	m.
	$47^{\circ} \quad 3^{\prime} \mathrm{N}$.	$122^{\circ} 53^{\prime} \mathrm{W}$.	44	13
* Omaha, Nebraska	4 I 16	$95 \quad 56$	1113	339
* Philadelphia, (Girard College)	$39 \quad 58$	75 11	112	34
* Philadelphia, (Weather Bureau)	3957	$75 \quad 9$	117	36
* Pike's Peak, Colorado.	$38 \quad 50$	1052	14134	4308
* Pittsburg, Pennsylvania	4032	80 2	847	258
* Portland, Oregon	$45 \quad 32$	12243	80	24
* Rochester, New York	438	$77 \quad 42$	523	159
* Roseburg, Oregon	43 I3	12320	523	159
* St. Louis, Missouri	$38 \quad 38$	$90 \quad 12$	571	174
* St. Paul, Minnesota	4458	933	851	259
* Salt Lake City, Utah	$40 \quad 46$	11154	4345	1324
* San Diego, California	3243	117 10	93	28
* San Francisco, California	3748	12226	109	33
* Santa Fe, New Mexico	3541	105. 57	7026	2142
* Sault de Ste. Marie, Michigan	$46 \quad 28$	8422	642	196
* Savannah, Georgia	325	81 5	87	26
Sitka, Alaska	57	$135 \quad 19$	63	19
* Spokane, Washington	4740	11725	1938	591
* Tampa, Florida	$27 \quad 57$	$82 \quad 27$	36	11
* Toledo, Ohio	4140	$83 \quad 34$	674	205
Unalaska, Alaska	5353	16632	13	4
* Vicksburg, Mississippi	$32 \quad 22$	$90 \quad 53$	254	77
* Washington City, (Weather Bureau)	3854	$77 \quad 3$	112	34
* Washington City, (Naval Obs'v'y).	$38 \quad 54$	77 3	110	33
Washington, Mount, N. H	4416	718	6279	1914
* Wilmington, North Carolina	$\begin{array}{lll}34 & 14\end{array}$	$77 \quad 57$	78	24
* Yuma, Arizona	3245	11436	141	43
SOUTH AMERICA.				
Arequipa	1622 S.	7122 W.	8050	2454
Bahia-Blanca, Argentine Republic	3844 S .	62 II	49	15
Bogota, United States of Colombia	436 N.	7315		
Buenos Aires, Argentine Republic	3436 S .	$58 \quad 22$	72	22
Caldera, Chile	273 S .	7053	85	26
Caracas, Venezuela	10 31 N .	6655		
Catamarca, Argentine Republic	2828 S.	$65 \quad 56$	1788	545
Cayenne, French Guiana	456 N.	52 21		
Charchani, Peru, (Arequipa)			16650	5075
Concordia, Argentine Republic . .	3 I 23 S .	$58 \quad 4$	200	61
Coquimbo, Chile	2956 S .	7121	72	22
Cordoba, Argentine Republic	3 I 25 S .	$64 \quad 12$	1434	437
Corrientes, Argentine Republic .	2728 S .	5850	253	77
El Misti, Peru, (Arequipa)			19300	5883
Georgetown, British Guiana	647 N.			
Iquique, Chile	2012 S .	70 11	26	8
La Plata, Argentine Republic	3455 S .	$57 \quad 54$		

LIST OF METEOROLOGICAL STATIONS.
(The asterisk * designates stations of the first order.)

LIST OF METEOROLOGICAL STATIONS.

(The asterisk * designates stations of the first order.)

AUSTRO-HUNGARY. (Continued.)	Latitude.	$\begin{gathered} \text { Longitude } \\ \text { from } \\ \text { Greenwich. } \end{gathered}$	Height above Sea-level.	
			Feet.	m.
Schafberg	$47^{\circ} 47^{\prime} \mathrm{N}$.	$13^{\circ} 26^{\prime} \mathrm{E}$.	5827	1776
Sonnblick	473	1257	10154	3095
*Triest	$45 \quad 39$	1346	85	26
* Wien	$48{ }^{\circ} \mathrm{I} 5$	16 2I	663	202
Zágráb (see Agram)				
GREECE, ROUMANIA, TURKEY.				
Athens, Greece	3758 N.	2345 E.		
Bagdad, Asiatic Turkey .	3319	4426		
Beirut, Turkey .	3354	$35 \quad 28$	112	34
* Bucarest, Roumania	4425	$26 \quad 6$	285	87
Constantinople, Turkey	412	2859		
Samsoun, Asiatic Turkey	418	3619	26	8
Sinaia, Roumania	45 21	$25 \quad 34$	2822	860
Sinope, Turkey	42 I	$35 \quad 19$	49	15
Sulina, Roumania	459	2940	7	
Trebizond, Asiatic Turkey	4 I	3945	92	28
BELGIUM AND HOLLAND.				
Arlon, Belgium	4940 N.	548 E .	1286	392
Bruxelles, Belgium	50 51	422	177	54
Furnes, Belgium	51	240	1о	3
* Groningen, Holland	53 I3	634	49	15
* Helder, Holland .	5257	445	-	0
* Liè̀ge, Belgium .	5037	534	200	61
Maeseyck, Belgium	51	548	115	35
Maestricht, Holland	50 51	541	164	50
* Ostende, Belgium	5114	255	16	
* Utrecht, Holland	525	57	43	13
BRITISH ISLES.				
* Aberdeen.	57 ıo N.	26 W.	88	27
* Armagh	54 21	639	196	60
* Ben Nevis	5648	58	4406	1343
Dublin	5322	621	155	47
Dundee.	$56 \quad 28$	256	160	49
Edinburgh	$55 \quad 56$	3 II		
* Falmouth	509	54	183	56
* Glasgow	$55 \quad 53$	$4 \quad 18$	180	55
* Kew	$\begin{array}{ll}51 & 28\end{array}$	- 19	34	10
Londonderry.	55 -	$7 \quad 19$	220	67
* Markree Castle .	54 II	$8 \quad 27$	122	37
* Oxford	51 46	120	212	65
Greenwich Observatory	51 29	- 0	159	48

LIST OF METEOROLOGICAL STATIONS.

(The asterisk * designates stations of the first order.)

$\underset{\text { (Continued.) }}{\text { BRITSH }}$	Latitude.	Longitude Greromich.	Height above Seai-vel.	
			Feet.	m.
Southampton .	$50^{\circ} 55^{\prime} \mathrm{N}$.	$\mathrm{I}^{\circ} 24^{\prime} \mathrm{W}$.	78	24
Southbourne	5044	I 48	295	90
* Stonyhurst	5351	228	375	114
* Valencia	5155	1о 18	23	7
York	5357	1	167	51
DENMARK, NORWAY, SWEDEN.				
Bodö, Norway	$67 \quad 17 \mathrm{~N}$.	$14 \quad 24 \mathrm{E}$.	23	7
Carlshamn, Sweden	56 ıо	$14 \quad 52$	30	9
* Christiania, Norway .	5955	10 43	82	25
Christiansund, Norway	637	745	52	16
Dovre, Norway	625	97	2110	643
Fanö, Denmark	$55 \quad 27$	824	20	6
Florö, Norway	61 36	$5 \quad 2$	26	8
Haparanda, Sweden	6550	$24 \quad 9$	30	9
Hernösand, Sweden	6238	$17 \quad 57$	49	15
Kjöbenhavn, Denmark	5541	1236	43	13
Skagen, Denmark	5744	10 38	ıо	3
Skudesnes, Norway	599	516	13	4
Stockholm, Sweden	59 21	184	144	44
* Upsal, Sweden	5952	$17 \quad 38$		
* Vandrup, Denmark	5525	9 18	13 I	40
FRANCE.				
Bagnères-de-Bigorre	$43 \quad 4 \mathrm{~N}$.	$\bigcirc 9 \mathrm{E}$.	${ }^{1795}$	547
Besançon	$47 \quad 14$	$559 \mathrm{E}$. .	896	273
Bordeaux	4450	- 3r W.		
Brest	4824	430 W.	210	64
Cherbourg	4939	130 W.		
Chamonix	4555	72 E .	3406	1038
Dunkerque	513	222 E .	23	7
Langres	$47 \quad 52$	520 E .	1529	466
* Lyon	4541	447 E .	98ı	299
* Marseille	4317	$523 \mathrm{E}$. .	246	75
Mont Blanc (Haute Savoie)	45 50	72 E .	15780	4810
* Mont Ventoux	4417	$516 \mathrm{E}$. .	6234	1900
Nautes	47 I3	133 W.	135	41
Nice	4343	718 E .	1115	340
* Paris, (Parc de Saint-Maur)	4849	230 E .	161	49
* Paris, (Tour Eiffel)	4852	218 E .	1027	313
Paris, (Montsouris)	4849	220 E .		
* Perpignan	4242	253 E .	105	32
* Pic-du-Midi .	4257	- 8 E .	9380	2859
Puy-de-Dome, (Plaine)	4546	35 E .	1273	388
* Puy-de-Dome, (Sommet)	4547	257 E.	4813	1467
* Saint-Martin-de-Hinx	4335	116 W.	131	40
* Toulouse	$43 \quad 37$	I 26 E .	636	194

LIST OF METEOROLOGICAL STATIONS.

(The asterisk * designates stations of the first order.)

GERMANY. Bamberg, Bavaria	Latitude.	Longitude from Greenwich.	Height above Sea-level.	
			Feet.	m.
	$49^{\circ} 54^{\prime} \mathrm{N}$.	$10^{\circ} 53^{\prime} \mathrm{E}$.	817	249
Berlin, Prussia	5230	1323	161	49
Borkum, Prussia	5335	640	33	ı
Bremen	53 51	848	13	4
Breslau, Prussia	517	$17 \quad 2$	482	147
Bromberg, Prussia	538	18 o	138	42
Chemnitz, Saxony	5050	1255	1037	316
Danzig, Prussia	54 21	1840	72	22
Dresden, Saxony .	51	1344	390	119
Eichberg, Prussia	5055	1548	1145	349
Freiberg, Saxony	5055	13 21	1335	407
Friedrichshafen, Württemberg	4739	928	1335	407
Göttingen, Prussia .	51	956	492	150
Halle, Prussia	5129	1138	364	III
* Hamburg	5333	958	85	26
Heidelberg, Baden.	$49 \quad 25$	842	394	120
Hirschberg, Bavaria	4740	II 42	4954	1510
Hohenpeissenberg, Bavaria	$47 \quad 48$	II	3261	994
Jena, Saxony	5056	1135	525	160
* Kaiserslautern, Bavaria	$49 \quad 27$	746	794	242
Karlsruhe, Baden	49 I	825	407	124
Kassel, Prussia	51.19	930	669	204
* Keitum, Prussia	5454	822	30	9
Kiel, Prussia	5420	10 9	154	47
Leipzig, Saxony	5 I 20	$12 \quad 23$	390	119
* Magdeburg, Prussia	528	$\begin{array}{ll}11 & 38\end{array}$	177	54
Mannheim, Baden	$49 \quad 29$	828	367	112
* Memel, Prussia	5543	217	13	4
Metz, Lorraine	497	6 ıо	600	183
Mülhausen, Alsace	$47 \quad 45$	$7 \quad 20$	787	240
* München, Bavaria	$48 \quad 9$	1136	1736	529
* Neufahrwasser, Prussia	$54 \quad 24$	1840	13	4
Nürnberg, Bavaria	$49 \quad 27$	114	1033	315
Regensburg, Bavaria	49 I	126	1175	358
Rostock, Mecklenburg	545	127	72	22
Rügenwaldermünde, Prussia	$54 \quad 26$	$16 \quad 23$	13	4
Schneekoppe, Prussia	5044	1544	5259	1603
Strassburg, Alsace	$48 \quad 35$	745	472	144
Stuttgart, Württemberg	$48 \quad 47$	9 10	879	268
*Swinemünde, Prussia	$53 \quad 56$	$14 \quad 16$	33	Iо
Wendelstein, Bavaria.	$47 \quad 42$	12 I	5666	1727
Wilhelmshaven, Oldenburg	$53 \quad 32$	89	26	8
Würzburg, Bavaria	4948	956	587	179
* Wustrow, Mecklenburg	$54 \quad 21$	$12 \quad 24$	23	7
HOLLAND. (See Belgium.)				

Smitheonian Tables.

Table 100.
LIST OF METEOROLOGICAL STATIONS.
(The asterisk * designates stations of the first order.)

Smithsonian Tables.

LIST OF METEOROLOGICAL STATIONS.
(The asterisk * designates stations of the first order.)

LIST OF METEOROLOGICAL STATIONS.
(The asterisk * designates stations of the first order.)

RUSSIA. (Continued.)	Latitude.	Longitude from Greenwich.	Height above Sea-level.	
			Feet.	m.
Tjumen, Siberia	$57^{\circ} 10^{\prime} \mathrm{N}$.	$65^{\circ} 32^{\prime} \mathrm{E}$.	272	83
Tobolsk, Siberia	58 12	68 14	171	52
Tomsk, Siberia	5630	8458	305	93
Tunka, Siberia.	51 45	10233	2434	742
Uman	4845	$30 \quad 13$	735	224
Uralsk	5 I 12	$5 \mathrm{I} \quad 22$	98	30
Urjupinskaja	5048	420	302	92
Ust-Ssyssolsk	6140	$50 \quad 51$	413	126
Walaam, Finland	6123	3057	141	43
Warschau	5213	212	390	119
Wernyj, Siberia	43 16	7653	2402	732
Wilna	54 4I	25. 18	348	106
Wjatka	$58 \quad 36$	49 4I	587	179
Wladikawkas.	432	44 4I	2244	684
Wologda	5914	3953	387	118
Wyschnij-Wolotschek	$57 \quad 35$	3434	545	166
SPAIN AND PORTUGAL.				
Barcelona, Spain Cádiz, Spain	$\begin{array}{lll} 4 \mathrm{I} \cdot & 22 & \mathrm{~N} . \\ 36 & 3 \mathrm{I} & \end{array}$	$\begin{array}{lll} 2 & \text { Io } & \mathrm{E} . \\ 6 & \text { I8 } & \mathrm{W} . \end{array}$	69	2 I
* Coimbra, Portugal	$40 \quad 12$	825 W .	459	140
Gibralter.	366	5 2I W.	53	16
* Lisboa, Portugal	3843	99 W .	312	95
Madrid, Spain	$40 \quad 24$	3 4I W.	2149	655
Oporto, Portugal	$4 \mathrm{I} \quad 9$	827 W.	279	85
Oviedo, Spain .	$43 \quad 23$	548 W.	801	244
San Fernando, Spain.	$36 \quad 28$	- 25 W .	92	28
* Sierra da Estrella, Portugal	$40 \quad 25$	735 W .	4728	1441
Valencia, Spain .	$39 \quad 28$	- 22 W .	59	18
SWEDEN. (See Denmark.)				
SWITZERLAND.				
Altstätten	4723 N.	933 E.	1542	470
Altdorf.	$46 \quad 53$	839	I588	484
Basel .	$47 \quad 33$	$7 \quad 35$	912	278
* Bern	$46 \quad 57$	726	1880	573
Castasegna	$46 \quad 20$	931	2297	700
Chaumont.	47 I	659	3701	1128
Gäbris	$47 \quad 23$	$9 \quad 28$	4III	1253
Genf	$46 \quad 12$	69	1339	408
Lugano	46 o	857	902	275
Neuenburg	47 ○	657	1601	488
Rigi-Kulm .	473	830	5873	1790
* St. Bernhard.	$45 \quad 52$	7 II	8130	2478

Table 100.
LIST OF METEOROLOGICAL STATIONS.
(The asterisk * designates stations of the first order.)

$\begin{gathered} \text { SWITZERLAND. } \\ \text { (Continued.) } \\ \text { * Säntis } \end{gathered}$	Latitude.	Longitude Greenwich Greenwich.	Height above Sea-level.	
			Feet.	m.
	$47^{\circ} 15^{\prime} \mathrm{N}$.	$9^{\circ} 20^{\prime} \mathrm{E}$.	8202	2500
Sils-Maria	$46 \quad 26$	946	5938	18ı0
Zürich	$47 \quad 23$	833	1542	470
TURKEY. (See Greece.)				
ASIA.				
[The Stations are in India unless otherwise indicated. For Siberian Stations, see Russia.]				
Aden, Arabia	1245 N.	453 E.	94	29
Ajmere	$26 \quad 28$	7437	1611	491
Akyab.	$20 \quad 28$	9257	20	6
* Allahabad	$25 \quad 26$	8 5 5	309	94
Amini Divi	II 6	7248	15	5
Bangalore .	1259	$77 \quad 38$	2981	909
Belgaum	$15 \quad 52$	$74 \quad 42$	2524	769
Bellary	159	$76 \quad 57$	1475	450
Benares	$25 \quad 20$	$83 \quad 2$	267	81
Berhampore	$24 \quad 6$	88 17	66	20
Bhamo	$24 \quad 12$	$96 \quad 58$		
* Bombay	$18 \quad 54$	7249	37	11
Bushire, Persia	$28 \quad 59$	$50 \quad 49$	25	8
* Calcutta	$22 \quad 32$	8820	21	6
Chamba	3234	76 ıо	3005	916
Chemulpo, Corea	3729	12633	30	9
Chittagong	22 21	9150	87	26
Colombo	656	$79 \quad 52$	40	12
Cuttack	$20 \quad 29$	8554	80	24
Dacca	2343	$90 \quad 27$	22	7
Deesa	$24 \quad 16$	7214	466	142
Delhi	2840	77 16	718	219
Dhubri	$26 \quad 7$	8950	115	35
Diamond Island	$15 \quad 52$	$94 \quad 19$	41	12
Fusan, Corea	356	12930		
Hakodate, Japan	$4 \mathrm{I} \quad 46$	14044	ıо	3
Hiroshima, Japan	3423	13227	14	4
* Hong-Kong, China	$22 \quad 18$	114 II	110	34
Hyderabad	$25 \quad 25$	$68 \quad 27$	117	36
Indore	2244	$75 \quad 53$	1823	556
Jeypore	$26 \quad 55$	75 50	1431	436
Jhansi	$25 \quad 27$	$78 \quad 37$	840	256
Jubbulpore	$23 \quad 9$	7959	1341	409
Kagoshima, Japan	3135	13033	13	4
Kanazawa, Japan	3633	13640	95	29
Kandy	$7 \quad 18$	80	1696.	517
Kaschgar, China	3925	$76 \quad 7$	3999	1219
Katmandu	$27 \quad 42$	$85 \quad 12$	4388	13388
Kelung, China	$25 \quad 20$	12146	33	Iо

LIST OF METEOROLOGICAL STATIONS.
(The asterisk * designates stations of the first order.)

ASIA. (Continued.)	Latitude.	$\begin{gathered} \text { Longitude } \\ \text { from } \end{gathered}$ $\begin{gathered} \text { Grom } \\ \text { freenwich. } \end{gathered}$	Height above Sea-level.	
			Feet.	m.
Kioto, Japan	$35^{\circ} \quad \mathrm{I}^{\prime} \mathrm{N}$.	$135^{\circ} 46^{\prime} \mathrm{E}$.	161	49
Kurrachee	2447	$67 \quad 4$	49	15
* Lahore	3134	7420	702	214
Leh	34 1о	7742	11503	3506
Lucknow	2650	8 I o	369	112
Madras	134	8014	22	7
Mandalay	2159	968		
Mangalore	1252	7454	26	8
Matsuyama, Japan	3350	13245	105	32
Mergui	12 II	$98 \quad 38$	96	29
Moulmein	$16 \quad 29$	9740	94	29
Mussooree	$30 \quad 28$	$78 \quad 7$	6881	2097
Nagasaki, Japan	3244	12952	190	58
Nagoya, Japan	35 10	13655	49	15
Nagpur	219	79 II	1025	312
Nemuro, Japan .	4320	14535	89	27
Niigata, Japan	3755	1393	85	26
Oita, Japan	3313	13136	26	8
Osaka, Japan	3442	135 31	23	7
Patna	$25 \quad 37$	8514	183	56
Peking, China	3957	11628	125	38
Peshawar	$34 \quad 2$	7137	1110	338
Poona	$18 \quad 28$	74 1о	1840	56I
Quetta, Beluchistan	3011	$67 \quad 3$	5502	1677
Raipur	$21 \quad 15$	8 rar	960	293
Rajkot.	$22 \quad 17$	7052	429	131
Rangoon	1646	$96 \quad 12$	4 I	12
Sakai, Japan	$35 \quad 33$	13314	7	2
Sapporo, Japan	$43 \quad 4$	14122	56	17
Saugor Island	2 Cl	88	25	8
Silchar	2449	9250	104	32
Simla	316	$77 \quad 12$	7048	2148
Si-wan-tse, China	4059	$115 \quad 18$	3904	1190
Söul, Corea	$37 \quad 35$	$127 \quad 7$	118	36
Soya, Japan	$45 \quad 31$	14155	79	24
Surat	$21 \quad 13$	7246	36	11
Taku, China	$38 \quad 59$	11740	33	10
Tezpur	$26 \quad 36$	9250	251	76
Tokio, Japan	3541	13945	69	21
Trichinopoly	10 50	$78 \quad 44$	255	78
Udan, China	4435	11110		
Urga, China	$47 \quad 55$	10650	3773	1150
Vizagapatam	1742	$83 \quad 22$	31	9
Wakayama, Japan	$34 \quad 14$	1359	49	15
Yuensan, Corea	39 וо	12725		
* Zi-Ka-Wei, China	$31 \quad 12$	1196	23	7

LIST OF METEOROLOGICAL STATIONS.

(The asterisk * designates stations of the first order.)

AUSTRALASIA. Adelaide, South Australia .	Latitude.	Longitude Greenwich Greenwich	Height above Sea-level.	
	$34^{\circ} 57^{\prime} \mathrm{S}$.	$138^{\circ} 35^{\prime} \mathrm{E}$.	Feet.	m.
Albany, West Australia	$35 \quad 2$	11754	88	27
Alice Springs, South Australia	$23 \quad 38$	13337	2100	640
Auckland, New Zealand	3650	174 51	258	79
* Batavia, Java.	6 II	10650	26	8
* Boulia, Queensland	2255	13938		
Bourke, New South Wales	303	14558	347	106
* Brisbane, Queensland.	$27 \quad 28$	1536	137	42
* Burketown, Queensland	1748	13934		
* Cooktown, Queensland	$15 \quad 28$	14517		
Derby, West Australia	178	12339	17	5
Eucla, South Australia	3145	12858	7	2
Hobart, Tasmania.	4253	14720	190	58
* Mackay, Queensland	219	149 I3		
Malacca, Straits Settlements	2 10 N.	10214	12	4
* Manila, Philippine Islands .	1435 N.	12058	46	14
Melbourne, Victoria .	3750 S .	145 o	91	28
Penang, Straits Settlement.	52 N .	10020	20	6
Perth, West Australia .	$3 \mathrm{I} \quad 57 \mathrm{~S}$.	$115{ }^{1} 5$	47	14
Port Darwin, South Australia	1228 S .	13051	70	21
Province Wellesley, Straits Settlement.	522 N.	10030	43	13
Singapore, Straits Settlement	17 N.	103 51	10	3
* Sydney, New South Wales .	$33 \quad 52 \mathrm{~S}$.	15112	155	47
* Thargomindah, Queensland	27. $5^{8} \mathrm{~S}$.	14343		
* Thursday Island, Queensland	10 34 S .	14212		
Wellington, New Zealand	41 I 6 S.	17447	140	43
AFRICA AND NEIGHBORING ISLANDS.				
Alexandria, Egypt	$3 \mathrm{I} \quad 12 \mathrm{~N}$.	2953 E .	62	19
Assab, Abyssinia	1259	4245	36	11
Alger, Algeria	3647	34	125	38
Biskra, Algeria	34 51	540	400	122
Bizerte, Tunis	3717	950	20	6
Cairo, Egypt .	305	3117		
Cape Town, Cape Colony	3356 S .	$18 \quad 29$	40	12
Ceres, Cape Colony	$33 \quad 22 \mathrm{~S}$.	1920	1493	455
Constantine, Algeria	$36 \quad 22 \mathrm{~N}$.		2165	660
Cradock, Cape Colony .	32 Ir S.	$25 \quad 38$	2856	870
Fort Napier, Natal .	2936 S.	3023	2200	671
Fort National, Algeria	$36 \quad 38 \mathrm{~N}$.	412	3005	916
Gabès, Tunis	3353 N.	10 7	33	10
Ghardaia, Algeria	3235 N .	340	1706	520
Grahamstown, Cape Colony	3320 S .	2633	1800	549
Ismailia, Egypt	$30 \quad 36 \mathrm{~N}$.	3216	30	9
Kimberley, Cape Colony	$28 \quad 43 \mathrm{~S}$.	2646	4050	1234

LIST OF METEOROLOGICAL STATIONS.
(The asterisk * designates stations of the first order.)

AFRICA AND NEIGHBORING ISLANDS. (Continued.)	Latitude.	Longitude Greenwich Greenwic	Height above	
			Feet.	m.
Laghouat, Algeria	$33^{\circ} 48^{\prime} \mathrm{N}$.	$2^{\circ} 55^{\prime} \mathrm{E}$.	2454	748
Memours, Algeria	356 N.	15 W .	13	4
Oran, Algeria	3542 N.	- 39 W .	197	60
Port Elizabeth, Cape Colony	3357 S .	2537 E .	18 r	55
Port-Saïd, Egypt .	$3 \mathrm{I} \quad 16 \mathrm{~N}$.	3218 E .	20	6
Queenstown, Cape Colony	3 I 51 S.	26 51 E.	3500	1067
* St. Paul de Loando, Angolo	849 S .	137 E .	194	59
Sierra Leone, Senegambia	830 N.	139 W .	224	68
Sidi-Bel-Abbes, Algeria	$35 \quad 2 \mathrm{~N}$.	- 39 W.	1562	476
Suez, Egypt	2959 N.	3230 E .	ıо	3
Tamatave, Madagascar	18 10 S.	4925 E .	го	3
Tananarive, Madagascar	1855 S.	4736 E .	4593	1400
Tripoli	3253 N.	13 II E.	66	20
Vivi, Congo	540 S .	1349 E .	364	111
INTERNATIONAL POLAR STATIONS.				
Bossekop, (Norway)	${ }_{69} 97 \mathrm{~N}$.	2315 E .		
Dicksonhavn, (Holland)	$73 \quad 30$	8 I ○ E.		
Fort Rae, (Great Britain)	6239	11544 W.		
Godthaab, (Denmark)	64 II	5144 W.		
Jan Mayen, (Austria)	$70 \quad 59$	828 W.		
Kingua-Fjord, Cumberland Sound, (Germany).	$66 \quad 36$	679 W .		
Lady Franklin Bay, (United States)	8I 44	6445 W.		
Nowaja Semlja, (Russia)	7230	5245 E .		
Orange Baie, Cape Horn, (France)	5531 S .	7025 W .		
Point Barrow, (United States)	$7 \mathrm{7} \quad 23 \mathrm{~N}$.	15640 W.		
Sagastyr, Lena River, (Russia)	73 ll 23.	1245 E .		
Sodankylä, (Finland)	$\begin{array}{ll}67 & 27 \mathrm{~N} .\end{array}$	2636 E .		
Spitzbergen,(Sweden), Cap Thordsen	$78 \quad 28 \mathrm{~N}$.	1542 E .		
Suid-Georgien, (Germany)	5431 S .	36 ○ W.		
MISCELLANEOUS ISLANDS.				
Barbados	$13 \quad 8 \mathrm{~N}$.	5940 W.	31	
Honolulu, Hawaiian Islands	21.18	15750 W.	50	15
La Canee, Crête	3530	24 o E.	141	43
Las Palmas, Canaries	2728	1527 W.	30	
Malta, Mediterranean	3554	$14 \mathrm{3I} \mathrm{E}$.	70	2 I
Massaua, Red Sea	1536	3927 E .	ıо	3
* Port Louis, Mauritius	206 S.	5733 E .	180	55
*St. Helena	1555 S.	543 W .	40	12
Sainte-Croix, Teneriffe	2829 N.	1621 W.	118	36
Stanley, Falkland Islands	514 S .	575 Fl W.		
Stykkisholm, Iceland	$65 \quad 5 \mathrm{~N}$.	2246 W.	36	11
Thorshavn, Färoë Islands	$62 \quad 2 \mathrm{~N}$.	644 w .	30	9

APPENDIX.

CONSTANTS.

Numerical Constants.

Base of natural (Naperian) logarithms, Log e, modulus of common logarithms, Circumference of circle in degrees,
" " " " in minutes,

Circumference of circle, diameter unity,

> Number. Logarithm.

| 2π | $=6.2831853$ | 0.7981799 |
| ---: | :--- | ---: | :--- |
| $\frac{\pi}{3}$ | $=1.0471976$ | 0.0200286 |
| $\frac{1}{\pi}$ | $=0.3183099$ | 9.5028501 |
| π^{2} | $=9.8696044$ | 0.9942997 |

$e=2.7182818$	0. 4342945
$M=0.4342945$	9.6377843 - 10
360	2.5563025
21600	4.3344538
$=1296000$	6.1126050
$\pi=3.14159265$	0.4971499
1/ $\boldsymbol{\pi}^{2}=0.1013212$	9.0057003 - Io
$\sqrt{\bar{\prime}}=1.7724539$	0.2485749
$\frac{\mathrm{I}}{\sqrt{\bar{\pi}}}=0.5641896$	9.751425 I - 10
$\sqrt{2}=1.4142136$	0.1505150
$\sqrt{3}=1.7320508$	0.2385607

The arc of a circle equal to its radius is in degrees, $\rho^{\circ}=180 / \pi$ in minutes, $\rho^{\prime}=60 \rho^{\circ}$ in seconds, $\rho^{\prime \prime}=60 \rho^{\prime}$
For a circle of unit radius, the arc of $I^{\circ}=1 / \rho^{\circ}$ arc of $\mathrm{I}^{\prime}=\mathrm{I} / \rho^{\prime}$ arc (or sine) of $\mathrm{I}^{\prime \prime}=1 / \rho^{\prime \prime}$
$=57.29578 \quad$ 1.7581226
$=3437.7468^{\prime} \quad 3.5362739$
$=206264.8^{\prime \prime} \quad 5.3144251$

Geodetical Constants.

Dimensions of the earth (Clarke's spheroid, 1866) and derived quantities :

Equatorial semi-axis in feet,
in miles,
Polar semi-axis in feet,
in miles,
$a=20926062$.
$a=3963.3$
7.3206875
$b=2085512 \mathrm{I}$.
3.5980536
$b=\quad 39498$
$(\text { Eccentricity })^{2}=\frac{a^{2}-b^{2}}{a^{2}}$
Flattening $=\frac{a-b}{a}$
Perimeter of meridian ellipse,
Circumference of equator,
Area of earth's surface,
Mean density of the earth (Harkness)
Surface density "
Acceleration of gravity (Harkness) :
$g_{\phi}(\mathrm{cm}$. per second $)=980.60(\mathrm{I}-0.002662 \cos 2 \phi)$, for latitude ϕ and sea level. g, at equator $=977.99 ; g$, at Washington $=980.07 ; g$, at Paris $=980.94$. g, at poles $=983.2 \mathrm{I} ; g$, at Greenwich $=98 \mathrm{I} .17$;
Length of the seconds pendulum (Harkness) :
$l=39.012540+0.208268 \sin ^{2} \phi$ inches $=0.990910+0.005290 \sin ^{2} \phi$ metres.

CONSTANTS.- Continued.

Astronomical Constants (Harkness).

Sidereal year $=365.2563578$ mean solar days.
Tropical year $=365.2422 \mathrm{~d}$. Sidereal day $=23^{h} 5^{6 m} 4$. Ioos mean solar time. Mean solar day $=24^{h} 3^{m} 56.546 s$ sidereal time.
Mean distance of the earth from the sun $=92800000$ miles.

Physical Constants.

Velocity of light (HARKNESS $)=186337$ miles per second $=299878 \mathrm{~km}$. per second. Velocity of sound through dry air $=1090 \sqrt{\mathrm{I}+0.00367 t^{\circ} C}$. feet per second. Weight of distilled water, free from air, barometer 30 inches:

Volume.

r cubic inch (determination of 1890)
x cubic centimetre (1890)
I cubic foot (1890) at $62^{\circ} F$.

Weight in grains.	
$62^{\circ} \mathrm{F}$.	$4^{\circ} \mathrm{C}$.
252.286	252.568
15.3953	15.4125
62.2786 lbs.	

Weight in grammes. $62^{\circ} \mathrm{F}$. $\quad 4^{\circ} \mathrm{C}$.
$16.3479 \quad \mathrm{I} 6.3662$ $0.9976 \quad 0.9987$ 62.2786 lbs .

A standard atmosphere is the pressure of a vertical column of pure mercury whose height is 760 mm . and temperature $0^{\circ} C$., under standard gravity at latitude 45° and at sea level.
r standard atmosphere $=1033$ grammes per sq. $\mathrm{cm} .=14.7$ pounds per sq. inch.
Pressure of mercurial column I inch high $=34.5$ grammes per sq. $\mathrm{cm} .=0.49 \mathrm{I}$ pounds per sq. inch.
Weight of dry air (containing 0.0004 of its weight of carbonic acid) :
I cubic centimetre at temperature $32^{\circ} \mathrm{F}$. and pressure 760 mm . and under the standard value of gravity weighs 0.00129305 gramme.
Density of mercury at $o^{\circ} C$. (compared with water of maximum density under atmospheric pressure) $=13.5956$.
Freezing point of mercury $=-38^{\circ} .5 \mathrm{C}$. (REGNAULT, I862.)
Coefficient of expansion of air (at const. pressure of 760 mm) for $\mathrm{I}^{\circ} \mathrm{C}$. (DO.): 0.003670 .
Coefficient of expansion of mercury for Centigrade temperatures (BROCH):
$\Delta=\Delta_{0}$ ($1-0.00018 \mathrm{I} 792 t-0.000000000 \mathrm{r}^{7} \mathrm{t}^{2}$-. $000000000035 \mathrm{II} 6 t^{3}$).
Coefficient of linear expansion of brass for $I^{\circ} C$., $\beta=0.0000174$ to 0.000 orgo.
Coefficient of cubical expansion of glass for $\mathrm{r}^{\circ} C$., $\gamma=0.000021$ to 0.000028.
Ordinary glass (Recknagel): at $10^{\circ} C ., \gamma=0.0000255$; at $100^{\circ}, \gamma=0.0000276$.
Specific heat of dry air compared with an equal weight of water :
at constant pressure, $K_{p}=0.2374$ (from 0° to $100^{\circ} C_{\text {., Regnaulit). }}$ at constant volume, $K_{v}=0.1689$.
Ratio of the two specific heats of air (RÖNTGEN): $K_{p} / K_{v}=1.4053$.
Thermal conductivity of air (GraETz) : $k=0.0000484$ ($\mathrm{I}+0.00185 t^{\circ} \mathrm{C}$.) $\frac{\text { gramme }}{\mathrm{cm} . \mathrm{sec} .}$.
[The quantity of heat that passes in unit time through unit area of a plate of unit thickness, when its opposite faces differ in temperature by one degree.]
Latent heat of liquefaction of ice (BUNSEN) $=80.025$ mass-degrees, C.
Latent heat of vaporization of water $=606.5-0.695 t^{\circ} \mathrm{C}$.
Absolute zero of temperature (Thomson, Heat, Encyc. Brit.): -273.0 C. $=-459.4$ F.
Mechanical equivalent of heat*:
I pound-degree, F. (the British thermal unit) $=$ about 778 foot-pounds.
I pound-degree, C. $=1400$ foot-pounds.
r calorie or kilogramme-degree, C. $=3087$ foot-pounds $=426.8$ kilogrammetres $=4187$ joules (for $g=98 \mathrm{Icm}$.).

[^10]APPIENDIX.

SYNOPTIC CONVERSION OF ENGLISH AND METRIC UNITS. English to Metric.

Units of length.

I inch.
I foot.
I yard.
I mile.

Units of area.

I square inch.
I square foot.
I square yard.
I acre.
I square mile.

Units of volume.

I cubic inch.
I cubic foot.
I cubic yard.

Metric equivalents.

2.54000
0.304801
0.914402

1. 60935

6.4516 929.034 0.83613 0.404687
2.5900 259
centimetres.
metre.
kilometres.
square centimetres.
square metre.
hectares.
square kilometres. hectares.
16.3872 cubic centimetres.
0.028317 cubic metres or steres.
0.76456

Logarithms.

0.404835
9.484 OI6 - 10
9.96 I 137 - 10
0.206650
0.809669
2.968032
9.922274 - 10
9.607120 - 10
0.413300
2.413300

1. 214504
8.452047 - 10
9.883 4II - IO

Units of capacity.

1 gallon (U.S.) $=231$ cubic inches.
I quart (U. S.)
I Imperial gallon (British).
277.463 cubic inches (1890).

I bushel (U. S.) $=2150.42$ cubic inches.
I bushel (British).
Units of mass.
I grain.
I ounce avoirdupois.
I ounce troy.
I ton (2240 lbs.).

Units of velocity.

I foot per sec. (0.68 I 8 miles per hr. $)=0.30480$ metres per sec. $=1.0973 \mathrm{~km}$. per hr.
I mile per hr. (1.46667 feet per sec. $)=0.44704$ metres per sec. $=1.6093 \mathrm{~km}$. per hr.

Units of force.

1 poundal. 13825.5 dynes. 4.140682
Weight of I grain (for $g=98 \mathrm{Icm}$.). $\quad 63.57$ dynes. 1.803237
Weight of 1 pound av. (for $g=98 \mathrm{Icm}$.). 4.45×10^{5} dynes. 5.648335

Units of stress-in gravitation measure.

I pound per square inch $=70.307$ grammes per sq. centimetre. $\quad 1.846997$
I pound per square foot $=4.8824$ kilogrammes per sq. metre.
0. 688634

Units of work-in absoiute measure.

I foot-poundal.
421403 ergs.
5.624697
-in gravitation measure.
I foot-pound (for $g=98 \mathrm{Icm}$.) $=1356.3 \times 10^{4}$ ergs $=0.138255$ kilogram-metres.
Units of activity (rate of doing work).
I foot-pound per minute (for $g=98 \mathrm{Icm}$.) $=0.022605$ watts.
r horse-power (33000 foot-pounds per min.) $=746 \mathrm{watts}=1.01387$ force de cheval.

Units of heat.

I pound-degree, F.
$=252$ small calories or gramme-degrees, C.
I pound-degree, C.
$=\mathrm{r} .8$ pound-degrees, F.

APPENDIX.

SYNOPTIC CONVERSION OF ENGLISH AND METRIC UNITS.

Metric to English.

Units of length.

1 metre (10^{6} microns).
"
I kilometre.
Units of area.
I square centimetre.
I square metre.
1 are ($=$ Ioo square metres).
I hectare.
I square kilometre.
Units of volume.
I cubic centimetre.
I cubic metre or stere.

Units of capacity.

I litre (61.023 cubic inches).
"،
hectolitre.

Units of mass.

I gramme.
I kilogramme.
،
I tonne.

Units of velocity,

I metre per second.
I km. per hr. (0.2778 m . per sec.)

English equivalents.
39.3700
3.28083
1.09361
0.62137

0.15500
10.7639
1.19599
19.599
2.47104
0.38610

Logarithms.

1. 595165
0.515984
0.038863
9.793350 - 10
2. 19033 I - 10
I.03I 968
0.077726
2.077726
0.392880
9.586700 - 10

0.06 Io234	cubic inches.	$8.785496-$ Iо
35.3145	cubic feet.	I. 547953
I.30794	cubic yards.	0.116589

I. 30794 cubic yards.
0.26417 gallons (U. S.). 9.42I 884 - 10
$\begin{array}{ll}\text { I. } 05668 & \text { quarts (U. S.). } \\ 0.21993 & \text { Imp. gallons (British). }\end{array}$

$$
0.023944
$$

9.342 291 - 10
2.7512 bushels (British)
0.452973
0.439523

15.4324	grains.	I. 188432
2.20462	pounds avoirdupois.	0.343334
35.274	ounces avoirdupois.	I.547454
32.1507	ounces troy.	1.507191
0.9842 I	tons (2240 1bs.).	$9.993086-$ Io

3.2808 feet per second. 0.5 I 5984
2.2369 miles per hour. 0.349653
0.62137 miles per hour.
9.793350 - 10

Units of force.

I dyne (weight of $(98 \mathrm{I})^{-1}$ grammes, for $g=98 \mathrm{rcm}$.) $=7.2330 \times 1 \mathrm{o}^{-5}$ poundals.
Units of stress-in gravitation measure.

I gramme per square centimetre.
I kilogramme per square metre. I standard atmosphere.
0.014223 pounds per sq. inch.
0.20482 pounds per sq. foot.
14.7 pounds per sq. inch. (See def. p. 259.)

Units of work-in absolute measure.

1 erg.
2.3730×10^{-6} foot-poundals.
I megalerg $=10^{6}$ ergs; r joule $=10^{7}$ ergs.
-in gravitation measure.
I kilogram-metre (for $g=98 \mathrm{rcm}$.) $=98 \mathrm{r} \times 10^{5} \mathrm{ergs}=7.2330$ foot-pounds.
Units of activity (rate of doing work).
I watt.
44.2385 foot-pounds per minute, for $g=98 \mathrm{Icm}$.

I watt $=1$ joule per sec. $=0$. 10194 kilogram-metre per sec., for $g=98 \mathrm{Icm}$.
r force de cheval $=75$ kilogram-metres per sec. $=735^{\frac{3}{4}}$ watts $=0.98632$ horse-power.
Units of heat.
I calorie or kilogramme-degree $=3.968$ pound-degrees, $F=\mathbf{2 . 2 0 4 6}$ pound-degrees, C. I small calorie or therm, or gramme-degree $=0.001$ calorie or kilogramme-degree.

DIMENSIONS OF PHYSICAL QUANTITIES.

$\mathrm{L}=$ length $; \mathbf{M}=$ mass ; $\mathrm{T}=$ time .

INTERNATIONAL METEOROLOGICAL SYMBOLS.

The International Meteorological Congress, held at Vienna, in September, 1873, decided that it was desirable to introduce for various meteorological conditions, symbols which should be independent of any national language and therefore universally intelligible. From the symbols and abbreviations then in use among different nations, the Permanent Committee of the Congress selected a number for international use. The symbols were modified by the Congress at Munich, in 189r, and the abbreviations for clouds by the Conference at Upsala, in 1894.

References :
"Summary of Resolutions of the Vienna Congress, Appendix K." p. 64. Prepared by Mr. Robert H. Scott, Secretary.
" Bericht über die Int. Meteor. Conferenz in München, I89r," p. 19.
"Report of the Int. Met. Conference at Munich," p. 20.
" Circular of the U. S. Weather Bureau, January I, 1894.
The intensity of the condition is indicated by the small figures ${ }^{\circ}$ and ${ }^{2}$ which are used as exponents of the symbols. Zero $\left({ }^{\circ}\right)$ denotes very slight intensity; two (${ }^{2}$) strong or marked. Absence of an exponent indicates moderate intensity. A dash (-) indicates continuance.

Example.

Translation.
Light rain. Moderate rain. Heavy rain.
rst. Silent lightning from 9-10 p. m. in the E .
4th. Heavy rain ended io a. m.; thunderstorm from 3 to $5 \mathrm{p} . \mathrm{m}$.
16th. Dense haze in the morning; heavy snow from ir. $30 \mathrm{a} . \mathrm{m}$. to $2.50 \mathrm{p} . \mathrm{m}$.

The time of occurrence is expressed in hours; morning and afternoon by a. and p. respectively. The hours are counted from o to 12 commencing with midnight.

Where tables are printed, maximum and minimum values will be in heavy-faced type.

Absence of precipitation is denoted by a dot (.), and amounts less than .or inch (formerly marked T) are recorded .oo.

-	means	Degree.	Mi.	means	Miles.
F	"	Fahrenheit.	Kil.	"	Kilometers.
C	"	Centigrade.	N.	"	Nimbus.
Ci.	"	Cirrus.	AS.	"	Alto-stratus.
Ci. Cu .	"	Cirro-cumulus.	CuN .	"	Cumulo-nimbus.
Ci. S.	"	Cirro-stratus.	Fr. Cu .	"	Fracto-cumulus.
A. Cu .	"	Alto-cumulus.	Fr. N.	"	Fracto-nimbus.
Cu .	"	Cumulus.	Fr. S.	،	Fracto-stratus.
S. Cu.	"	Strato-cumulus.	Scf.	"	Stratus cumuliformis.
S	"	Stratus.	Ncf.	"	Nimbus cumuliformis
Max.	"	Maximum.	MCu .	"	Mammato cumulus.
Min.	"	Minimum.			

1. Rainfall-Indicates that an appreciable quantity of rain (one hundredth of an inch or more) has fallen during the day or since the last observation; also, that the day is a rainy day as distinguished from snowy or clear days.
2. * Snowfali-Indicates that an appreciable quantity of snow has fallen during the day. *o may be used to denote flurries of snow.
3. - Hailstones-Hard semi-transparent ice, whether small or large, crystalline or rounded. $\boldsymbol{\Lambda}^{\circ}$ small quantity of hailstones; $\boldsymbol{\Delta}^{2}$ large quantity of hailstones.
4. \triangle SleET-Or pellets of snow or soft hail without any crystalline structure. This symbol is used by the Germans for Graupeln, or snow pellets, and for the semi-transparent mixture of snow and ice that in the dry weather of Central Europe nearly corresponds to the sleet of the coasts of England and America. Δ° small quantity of sleet; Δ^{2} much sleet.
5. V Silver Frost-(English, "silver thaw," French, givre, German, Rauhfrost or duft-anhang); this refers to an accumulation of snow and sleet on the limbs of trees, in which the snow is the main feature, so that the external appearance is silvery white and rough.
6. \bigcirc Glazed Frost-(French, verglas, Germàn, Glatteis); this refers to an accumulation of snow and ice on the trees, in which the ice is in excess and the external appearance is smooth and transparent. In using the symbols for "silver frost" and "glazed frost," the Munich Conference requests that these terms be considered as descriptive of the resulting phenomena, no matter how they are brought about, therefore the definitions avoid any statement as to the conditions attending the formation of the depositions. The same rule applies to the use of the symbol for "hoar frost."
7. \leftarrow Ice-needles-(Not yet well defined by international usage).

8．\uparrow Drifting snow－（German，schneegestober）；this symbol indicates that strong winds are raising the snow from the ground，filling the air with it like dust，and transporting it horizontally；this may occur under a clear sky．The symbol does not refer to snow falling from the clouds，nor to the mere fact that the snow is lying in drifts on the ground．When the air is filled with blinding snow－dust，use the symbol $\hat{\rightarrow}^{2}{ }^{2}$ ，but for light winds and light snow－dust use $\hat{\uparrow}>0$ ．
9．図 Snow－covering－Or quantity of snow lying on the ground；when more than half the soil in the neighborhood of any station is covered with snow this is indicated by $⿴ 囗 大$ ，if the snow covering is thin，use \mathbb{Z}^{0} ，but if it is considered deep for that station use \mathbb{Z}^{2} ．
1．\equiv FoG \equiv Ground fog not exceeding height of a man；$\equiv{ }^{\circ}$ thin fog or mist enveloping and above the observer ；\equiv^{2} heavy fog or mist， such as the Scotch mist，drizzling down upon the observer． Fog symbols should not be used when an observer at a high station notices fog in the valley below him；this should be expressed by a note in the daily journal．
if．∞ High haze－Such as makes distant mountains appear hazy，or such as covers the sky in the case of Indian summer haze or prairie fires；German，Moorrauch．If clouds are also prevalent in connection with this haze，the additional cloud signal should be given．The intensity，or density，of the haze is expressed by ∞° for light haze and ∞^{2} for dense haze．The symbol ∞ indi－ cates merely the hazy condition，or the optical result，without considering whether the haze is caused by dust or moisture．
12．$ص$ Dew；\perp^{0} light Dew；$ص^{2}$ heavy DEw－As the formation of dew depends upon the nature and exposure of the horizontal surface on which dew is deposited，the observer should use the same horizontal object uniformly throughout the season．
13．\square Hoar frost ；\square^{0} light hoar frost ；\square^{2} heavy hoar frost， injurious to vegetation－The expression＂frosty weather＂refers to the low temperature as such；but the expression＂hoar frost＂to the crystalline ice deposited upon the surface of solids in the open air．Hoar frost is deposited on horizontal objects generally under a clear sky at night．
14．Strong wind－An arrow with four feathers indicates a wind whose strength is 8,9 ， 10 ， 11 ，or 12 on the Beaufort scale，or 8,9 ，or ro，on the international scale，or anything in excess of 50 miles per hour or 20 metres per second in absolute measures； $\boldsymbol{-}^{2}$ a remarkably strong wind or one exceeding ir on the Beaufort scale，or 80 miles per hour，or 35 metres per second．
15．I．Thunderstorm－Namely thunder，whether with or without light－ ning，rain，hail，or wind．
16. \& Lightning-Distant lightning or any form of lightning that occurs without audible thunder, even when it occurs in the zenith, which is sometimes the case (this latter occurrence should be especially described in the journal of the observer); $x^{\circ} 0$ infrequent lightning, or lightning that is confined to a small region of the sky; \mathbb{L}^{2} lightning that occurs very frequently or extends over a large region of the sky. When distant lightning appears at a definite direction in the horizon, the observer should add the letters indicating the points of the compass, for instance, 5° NW. וo p. indicates that occasional distant lightning occurred in the northwest at ten $\mathrm{p} . \mathrm{m}$.
17. (1) Solar aureola, corona, or glory-German, Kranz Lichtkron, "Corona," Sonnenhof. These are small circles of prismatic colors surrounding the sun, the radii of these circles are usually less than six degrees, but in the extreme case of Bishop's ring, its radius was fifteen degrees. Several concentric circles are sometimes visible ; each circular band of prismatic colors has its red on the outside, and its blue, violet, or purple on the inside, with respect to the sun; such rings are generally formed when the sun shines through a thin cloud and may be seen if the sun is viewed through neutral-tinted glass or by reflection in water. Similar circles surrounding the shadow of the observer's head are called '"anthelia," "aureolæ," "glories," or "fog-shadows," (German, Gegensonne, Brockenspectra).
18. U Lunar aureola or corona-(German, Mondhof); circles surrounding the moon similar to the solar corona.
19. \bigoplus Solar halo-(German, Sonnenring); these are larger circles surrounding the sun whose sizes are quite definite, namely, about twenty-two degrees and about forty degrees radius from the sun; they are easily distinguishable from the coronæ by the fact that the colors are feebler and are so arranged that the red light is inside or nearest the sun and the blue light is outside; the greater part of the breadth of the halo is white. Complex combinations of halos, parhelia, horizontal circles, and vertical columns sometimes occur, all of which may be indicated in general by the symbol \oplus^{2}, where the figure ${ }^{2}$ indicates that the display is more brilliant than usual ; a detailed statement of the radii or diameters of the rings and columns and of their arrangements should be given in the text.
20. \mathbb{T} Lunar halo-(German, Mondring); phenomena surrounding the moon similar to the solar halo.
21. \sim Rainbow-Double rainbows and those with adjacent supernumerary bows may be indicated by \frown^{2}.
22. \sim AURORAL LIGHTS-Namely, any display of the Aurora Borealis.

INDEX.

Abbe, C., work cited xxxiii, lv
Absolute measure 260, 261
zero of temperature. 259
Acceleration, dimensions of 262
of gravity 258
Activity, units of. 260, 26I
Air, coefficient of expansion of. 259
density of, at different humidities,British.liv-1v, 221-223
Metric liv-1vi, 225-228
density of, at different pressures, British liv, 1v, 1vi, 22I-223
Metric. liv-1vi, 225-228
density of, at different temperatures, British liv-1v, 220
Metric. liv-lvi, 224-225
specific heat of dry. 259
thermal conductivity of. 259
weight of, dry 259
Ampere, dimensions of. 262
Angle, 262
conversion of days into 212-215
Angular velocity, dimensions of. 262
Angot, A., treatise cited. xxii
Aqueous vapor, decrease of pressure with altitude xliii, 146
pressure of,British......xxxviii, xxxix, 134, I35Metric.......................xli, 142, 143pressure of, at low temperature,
xxxvi, 130 , 13 131
in saturated air,
British. .xxxv, xxxvi, 122-127
Metric. xxxv, xxxvi, 128, 129
weight of, British xxxvii, 132
weight of, Metric. xxxvii, 133
Arc, conversion into time. 1i, 210
of circle equal to its radius. 258
Area, dimensions of. 262
of surface of earth. 258
units of. 260, 261
Astronomical constants. 259
Atmosphere, standard pressure of...259, 261
weight of unit of volume 259
Aureola, solar 266
Aureola, lunar
Aureola, lunar 266 266
Auroral lights 266
Avoirdupois, conversion into metric, 1vi, 229-230, 260
Babinet, barometric formula of....xxxii, II8
Barometer, correction for average de-gree of humidity,xxviii, xxix, xxx, 108, I12, II3latitude and weight of mercury,
xxviii, xxx, 106, 107, 114
variation of gravity with altitude,
xix, 109, 115
determination of heights by,British measures,xxvi-xxix, xxxii, 100-109, 118Metric measures,
xxix-xxxi, xxxii, IIO-115, II8
difference of height corresponding
to .or inch change. xxxi, 116
1 mm xxxii, 117
Barometric readings,
reduction to standard gravity,xviii-xx, 58-59
sea level, British. xx-xxv, 60-77
Metric xx-xxvi, 78-98
standard temperature,British.xv-xvii, $14-33$
Metric. xvii-xviii, 34-56
when below $\mathrm{O}^{\circ} \mathrm{C}$ xviii
pressures corresponding to tempera-
ture of boiling water, xxxv, 119
Beaufort, Admiral, wind, scale xlvi, 160, 265Belli, work cited.xxxviii
Bessel, " " lii
Bishop's ring. 266
Boiling point, of water. 119
corresponding barometric pressures,
XXXV, II9
Brass, coefficient of linear expansion. 259
Broch, work cited xxxv, 1v, 259
Brockenspectra 266
Bunsen, work cited 259

Caloric 259, 260, 26I
Capacity, electromagnetic........................ 262
magnetic inductive............................. 262
measures of, British............................. 260
" Metric..............................26r
of an accumulator............................... 262
specific inductive................................. 262
units of...260, 261
Centigrade, conversion into Fahrenheit, xii, 7-9
when near the boiling point........xii, 9 of differences into Fahrenheit.....xiii, 9
C. G. S. unit of magnetic intensity...1vii, 23 I

Circle, arc of.. 258
circumference of.................................. 258
diameter... 25^{8}
circumference of earth....................... 258
equator.. 258
Clarke, A. R., treatise cited.........xxii, xlvii
Clarke's spheroid...............................xlvii, 258
Clouds, names and abbreviations.......... 264
Coefficient of expansion of air................ 259
linear 6 " brass............ 259
cubical " 6 glass............. 259
expansion of mercury......................... 259
Conductivity, dimensions of, thermal... 262
specific, electromagnetic.................. 262
thermal, of air...................................... 259
Conductor, resistance of........................... 262
C'onstants, astronomical................................ 259
geodetical... 258
numerical.. 258
physical.. 259
Continental measures of length and
equivalents
208
Conversion of measures of time and
angle.....................................1i, 209-218
linear measures...............xlix, 180-208
British and Metric units...........260-26I
thermometric scales....................xi, 2-9
Correction, for air temperature in determining heights by barometer, British...................xxvii-xxviii, 104-105
for air temperature in determining heights by barometer, Metric, xxix-xxx, III
for temperature of the Mercury in the thermometer stem. .xiv, 12
for gravity, in determining heights by the barometer, British, xxviii, 109 for gravity, in determining heights by the barometer, Metric...xxxi, II5
for humidity in determining heights by the barometer, British, xxviii, 108

Correction (Continued).
for humidity in determining heights
by the barometer, Metric, Xxx, II2-I I 3
for latitude, in determining heights by the barometer, British, xxviii, 106-107
for latitude, in determining heights by the barometer, Metric.....xxx, II4
Corona .. 266
Cosines, table of natural...........lix, 236-237
Cotangents, table of natural.....lix, 238-239
Coulomb.. 262
Current, intensity of............................ 262
Days, conversion into decimals of year
and angle..............................lii, 212-215
Day decimals of, into hours, minutes
and seconds................................liii, 216
mean solar....................................... 259
sidereal.. 259
Declination of sun.................xlix, 177
Degree, length of, of meridian and any
parallel.............................xlvii, 164, i65
length of, of meridian and any parallel at different latitudes, xlvii, 164,165
Degrees, Centigrade into Fahrenheit
and Reaumur...................xi, xii, 7, 8, 9
Fahrenheit into Centigrade xi, xii, 3-6
Reaumur into Fahrenheit and Cen-
tigrade......................................xi, 2
Density, of air.............liv-lvi, 220-228, 259
of earth, mean 258
surface...................................... 258
dimensions of 262
surface...................................... 262
of mercury....................................... 259
Depth of rainfall, corresponding quan-
tity of water..............................1viii, 232
Determination of heights by barometer,
British measures.....xxvi-xxix, 100-109
Metric measures.....xxix-xxxi, IIO-II5
Depression of dew-point..................138-14r
Dew.. 265
Dew-point................................xxxviii-xli
Difference of heights by barometer, xxxi, xxxii, II6, II7
of potential 262
Differences Fahrenheit to Centigrade, xiii, 9
Centigrade to Fahrenheit............xiii, 9
Dimensions, in electrostatic system...... 262
electromagnetic system.................... 262
of the earth...................................... 258
physical quantities........................... 262
Distance, mean of earth from sun. 259
Division tables of, for 28,29 and 31 ,1viii, lix, 233-235
Dove's pentades. 1viii, 232
Dry air, weight of. 259
Drifting snow 265
Duft-anhang 265
Duration of sunshine. xlviii, $166-177$
Dyne .1vii, 23I, 260, 26I
Earth, area of surface of 258
density of. 258
dimensions of. 258
eccentricity of. 258
elliplicity of. 258
equatorial semi-axis. 258
flattening of 258
mean distance from the sun 259
El, value of the 208
Electricity quantity of 262
Electric force or electro-motive intensity,262
Electrostatics, quantities in. 262
Electromagnetics ' 262
Energy, dimensions of. 262
Equator, circumference of. 258
Equator, length of semi-axis. 258
Erg. 260, 26I
Espy, treatise cited. xxxviii
Expansion, coefficient of, air. 259
brass. 259
glass. 259
mercury. 259
Fahrenheit, conversion into Centigrade
and Reaumur. xi, xii, 3-6
differences into differences Centi-
differences into differences Centi- grade xiii, 9
Farad, dimensions of. 262
Fathom, Swedish, value of. 208
Ferrel, Wm., treatise cited, xxii, xxxi, xxxix, xlix
Feet, conversion into metres. 1, 200-20I
per second into miles per hour, $\mathrm{xlv}, \mathrm{I}_{55}$
metres per second 260
kilometres per hour. 260
Flattening of the earth 258
Fog, symbol for. 265
Foot, value of, Austrian 208
old French. 208
Russian. 208
Rhenish 208
Spanish 208
Swedish. 208
Foot-pound. 260, 26 I
Foot-poundal. 260, 26I
Force, dimensions of. 262
units of. 260, 26 I
electric. 262
magnetic 262
electromagnetic. 262
Force-de-cheval. 260, 26I
Formula, Babinet's barometric....xxxii, 118
Lambert's, wind direction, xliii, 148 -I 53
Freezing point of mercury 259
Frost, glazed, hoar, silver,symbols, 264, 265
Gallon (U. S.) and Imperial 260, 26I
Gaussian units. 1vii, 23 I
Gegensonne, symbol for 266
Geodetical constants. 258
tables. I6I
Givre or silver frost. 264
Glass, coefficient of cubical expansion. 259
Glatteis, or glazed frost. 264
Glazed frost 264
Glory or corona, symbol for. 266
Graetz, work cited. 259
Grains, conversion into grammes...1vii, 230
Grammes, conversion into grains...lvii, 231
Gramme-degree or therm 26I
Grammes per square centimetre. 26I
Graupeln 264
Gravitation measure, units in. 260, 26I
Gravity, acceleration of. 258
correction for variation of, withaltitude,..............xix, xxxi, IO9, II5correction for variation of, withlatitude.................xix, xxx, 106, II4
reduction of barometric readings to standard................xviii-xxiv, 58-98
relative acceleration of, in different latitudes xlvi, 162,163
Guyot, A., treatise cited. xxii
Hailstones, description and symbol for.. 264Halo, solar and lunar.266
Hann, J., treatise cited xliii
Harkness, Wm., treatise cited,
xix, xxii, xlvi, 258, 259
Haze, symbol for 265
Hazen, H. A., treatise cited..xliv, xlv, 1viiiHeat, dimensions of.262
latent, of liquefaction of ice. 259
vaporization of water. 259
mechanical equivalent of. 259
Heat (Continued).
specific, of dry air 259
ratio of the two, of air 259
units of. 260, 26 I
Hectare 260, 261
Hectolitre 261
Heights, determinatian of, by barometer,British.xxvi-xxix, 100-109
Metric. xxix-xxxi, 110-115
thermometrical measurement of,xxxiii, 119
Hoar-frost, symbol for 265
Horse-power 260, 261
Hours, conversion into decimals of aday.lii, 216
of minutes and seconds into deci- mals of. liii, 217
Humidity relative, British,
xxxviii-xlii, 138 - 14 I
Metric,
xxxviii-xlii, 144-145
term for 1vi, 225
Hygrometrical tables. xxxv, 122-146
Hypsometry xxxiii, xxxiv, 119
Ice, latent heat of liquefaction of 259
needles, symbol for. 264
Inches, conversion into millimetres, xlix, 180-186
Inductive capacity, magnetic 262
specific 262
Inertia, moment of. 262
Intensity, electro-motive 262
of current 262
of field. 262
of magnetization 262
Interconversion, of British and Metric units. 260, 26I
nautical and statute miles. 1i, 208
sidereal and solar time liii, 218
International meteorological symbols. 263
James, H., treatise cited. 160
Joule, value of 259, 26I
Kilogramme-degree. 259
Kilogrammes, conversion into avoirdu- pois 1vi, 230, 260
Kilogram-metres 260, 26I
Kilogramme, prototype. 1vi
Kilometres into miles. 1i, 206, 207
per hour into metres per second,
xlvi, 159miles per hour.26I
Klafter, Wiener, value in metres and feet. 208
Kranz or corona 266
Lambert's formula, mean wind direc- tion. .xliii, $148-153$
Laplace, formula of. xx
Latent heat of liquefaction of ice. 259
vaporization of water. 259
Latitude, gravity correction for, xix, xxx, 106, II4
Laughton, J. K. treatise cited 160
Length of arc of meridian xlvii, 16
parallel. xlvii, 165
dimensions of. 262
of equator of earth 258
meridian circumference of. 258
second's pendulum 258
measures of, Continental with met-
ric and British equivalents......1i, 208units of.260
Libby, Wm., work cited,
xxxviii, xlviii, lvii
Lichtkron or corona 266
Light, velocity of. 259
Lightning, symbol for 266
Line, old French, value of. 208
Linear measures 179-208
Litre, value of. 260, 261
Logarithms, table of. lix, 240-241
Naperian base. 258
Modulus of common 258
Lunar aureola, halo, corona. 266
Magnetic force 262
inductive capacity 262
intensity, units of. 1vii
table for converting 231
moment 262
potential 262
Magnetism, quantity of 262
Magnetization, intensity of. 262
Marek, M., treatise cited xxi
Marvin, C. F., treatise cited xxxvi
Mass, dimensions of. 262
units of 260, 261
Mean density of the earth 258
Mean distance of earth from sun. 259
Mean solar time, conversion into sidereal, 1iii, 218
Mean time at apparent noon. liii, 217
Measures of angle li, 209
of length, continental, Metric and British. 1i, 208
Measures (Continued).
time.li, 209
tables for interconversion of. ...260, 261
Mechanical equivalent of heat 259
Megalerg. 261
Mercury, coefficient of expansion...xvi, 259
density of 259
freezing point of. 259
Mercurial column, one inch high, pres-
sure of. 259
Meridian, arcs of terrestrial xlvii
length of a degree. xlvii, 164 xlvii, 164
ellipse, perimeter of 258
Meteorological stations, list of...lix, 243-257
\qquadvi, xlix, 260, 261
Metres, conversion into feet, 1, 202-203, 261per second into kilometres per hour,xlvi, 158,159
miles per hour....xlv, $156,157,261$
Micron. 26I
Mile, Austrian post, value of. 208
Danish, 208
German sea, 208
Nautical, li, 208
Netherlands (migl), 208
Norwegian, 208
Prussian, 208
Swedish, 208
Statute (British), 208
Miles, conversion into kilometres,
1i, 204-205, 26I
nautical1i, 208
statute 1i, 208
per hour into feet per second,

$$
\mathrm{xlv}, \mathrm{I} 54, \mathrm{I} 55
$$

metres per second, $\mathrm{xlv}, \mathrm{I} 54, \mathrm{I} 57,260$kilometres per hour...xlv, 154,260Millimetres, conversion into inches,1, 187-199
Minutes of time, into arc lii, 2 II
into decimals of a day lii, 216
conversion of day into liii, 2 I6
conversion into decimals of an hour,liii, 217
Moment of inertia 262
Momentum, dimensions of. 262
Mondhof or lunar corona. 266
Mondring or lunar halo. 266
Moorrauch or high haze. 265
Moritz, A., treatise cited xxxv
Munich Conference. 263, 264
Naperian base of logarithms 258
Nautical mile, equivalent in statute, li, 208
Neumayer, G., treatise cited 160
Numerical constants 258
Numbers, logarithms of. lix, 240, 241
Ohm, dimensions of. 262
Ounces, conversion into kilogrammes, 1vi, 229
kilogrammes into.......1vi, 1vii, 230, 26I
Palm, Netherlands, value of. 208
Parallel, length of a degree on.....xlvii, 65
Pendulum, length of second's. 258
Pentades, Dove's 1viii, 232
Perimeter of meridian ellipse 258
Physical constants 259
quantities, dimensions of. 262
Potential, difference of 262
in electro-magnetics 262
magnetic 262
Pound, avoirdupois, conversion into kilogramme 1vi, 229, 260
imperial standard 1vi
Pounds, per square foot 260
inch 260
Poundal. 260, 261
Pound-degree 259, 260, 261
Power or rate of working. 262
Pressure of aqueous vapor, British, xxxviii, 122, 128 , 134 , 135
Pressure of aqueous vapor, Metric,
xli, 128, 129, 142
Pressure of aquenus vapor at low tem-peratures.
I3IPressure of standard atmosphere
decrease of vapor pressure with alti- tude xliii, 146
Prototype kilogramme 1vi
Psychrometer, whirled xxxviii, xxxix
Psychrometric observations,
reduction of, British.....xxxix, 134, 137
Metric. xli, 142-143
Quantity of electricity 262
conveyed by current. 262
magnetism 262
Quantities physical, dimensions of. 262
Quantity of water corresponding to given depths of rainfall 1viii, 232
Rainbow, symbol for 266
Rainfall, conversion of depth of, into gallons and tons 1viii, 232
symbol for. 264
Rate of decrease of vapor pressure with altitude xliii, 146
Rate of working, dimensions of. 262
Ratio of specific heats of air 259
yard to metre vi
Rauhfrost, or silver frost 264
Reaumur, conversion to centigrade... xi, 2
Fahrenheit xi, 2
Regnault, treatise cited...xxxiv, xxxv, 259
Recknagel, work cited 259
Reduction of barometer to sea level, xx-xxiv, 60-98
standard temperature, xv-xix, $14-56$gravity.......................xxxi, 58, 59psychrometric observations, xli, 142, I43of snowfall measurement.........xlii, 146Relative humidity,xxxviii, xlii, r38-141, 144-145
Relative intensity of solar radiation,xlix, 178
Resistance of a conductor 262
specific 262
Rode, Danish, value of. 208
Röntgen, work cited. 259
Rowland, H. A., treatise cited. 259
Ruthe, Prussian, value of. 208
Norwegian, 208
Sagene (Russian), value of 208
Scales, comparison of thermometric. xi
Reaumur to Fahrenheit. 2
Ceutigrade 2
Fahrenheit to Centigrade 3-6
Centigrade to Fahrenheit 7-9
Schott, C. A., treatise cited 160
Scott, R. H., treatise cited 160
Schneegestober or drifting snow 265
Sea-level, reduction of barometer to,British.$. x x-x x y, 60-77$
Metric. xx-xxvi, 78-98
Seconds, of time into arc $21 I$
decimals of a day lii, 216
conversion of decimals of a day into, liii, 216
of time into decimals of an hour,
liii, 217
pendulum, length of. 258
reduction for, sidereal or solar time, liv, 218
circumference of circle in 258
arc of circle in 258
Sidereal day and year. 259
time, conversion to mean solar,
Silver frost264
Sines, table of natural. 237
Sleet, symbol for. 264
Snowfall, symbol for 264
weight of and corresponding depth of water 146
Solar, day mean 259
time, mean, conversion to sideral, liii, liv, 218
aureola, symbol for 266
corona 266
halo 266
radiation, relative intensity of, xlix, 178
Sonnenhof, symbol for 266
Sonnenring 266
Sound, velocity of. 259
Specific heat of dry air 259
heats, ratio of, of air 259
conductivity. 262
inductive capacity 262
resistance 262
Spheroid, Clarke's. xlvii, 258
Standard atmosphere 259, 261
Stations, International Polar. 257
list of meteorological 1ix, 243-257
of first order lix
in Africa 256-257
Asia, 254-255, Australasia, 256,Europe, 247-254, North America,244-246, South America, 246-247,Austro-Hungary, 247-248, Bel-gium, 248, British Isles, 248-249,Canada, 244, Central America, 244,Denmark, 249, France, 249, Ger-many, 250, Greece, 248, Green-land, 244, Holland, 248, Italy,25I, Mexico, 244, Norway, 249,Portugal, 253, Roumania, 248,Russia, 25I-253, Spain, 253,Sweden, 249, Switzerland, 253,254, Turkey, 248, United States,245-246, West Indies, 244.
Statute miles, conversion of. 1i, 208
Stere, value of. 260, 26I
Strength of field 262
pole, in magnetics. 262
Stress, dimensions of. 262
units of. 260, 261
Sun, declination of. xlix, 17
mean distance from the earth 259
Sunshine, duration of, at different lati-
tudes and declinations......xlviii, 166-177
Surface (area), units of. 260, 26 rSurface (Continued).density of the earth258
in electro-statics 262
Symbols, International Meteorologic,

$$
263-266
$$

Synoptic conversion of British and Metric units 260-26I
Table for conversion of arc into time li, 210linear measures180-208
mean solar into sidereal.....liii, liv, 218
measures of weight. 229-23I
sidereal into mean solar.....liii, liv, 218time into arc...........................lii, 211
Centigrade readings into Fahren-heit and Reaumur.......xi, xii, 7, 8, 9near boiling point.......xii, 9
velocities 154-159
differences F to differences Cxiii, 9
F......xiii, 9
Fahrenheit readings into Centi-grade.xi, xii, 3-6
Reaumur readings into F and $\mathrm{C} . . . \mathrm{xi}, 2$determination of heights by baro-meter, British.100-109
determination of heights by baro-meter, Metric.IIO-II5
decrease of vapor pressure with al- titude 146
dividing by 28 lviii, lix, 233
29. .1viii, lix, 234
30. lviii, lix, 235
density of air 220, 228
reduction of barometer to standardtemperature14-56
gravity 58-59
sea-level 60-98
psychrometric observations,
136-145
snowfall measurements 146
temperature to sea-level. Io, II
of duration of sunshine 166-177
intensity of solar radiation. 178
lengths of degree. 164-165
natural cosines and sines. 236-237
cotangents and tangents. 238-239
pressure of aqueous vapor 122-13I
pressures and corresponding boil-ing points.119
quantity of rainfall and corres- ponding depths. 232
of relative acceleration of gravity,162, 163

Tables of relative humidity,

$$
\text { I38-141, } 144-145
$$

Table of weight of aqueous vapor...132-133
Tangents, table of natural......1ix, 238, 239259
of freezing point of mercury 259
decrease of, with altitude,
xiii, xiv, 10,11
reduction to sea level, British,xiii, xiv, 10
reduction to sea level, Metric,
xiii, xiv, II
Thermometer, hypsometric. xxxiv
stem, correction for temperature of mercury xiv, 12
Therm or gramme degree 26I
Thermal conductively of air 259
Thermometric scales -9
Thomson, W., treatise, cited 259
Thorpe, T. E., xiv
Thunderstorm, symbol for. 265
Time, conversion into arc. lii, 211
of arc into 1i, 210
dimensions of 262
mean, at apparent noon. liii, 217
mean solar into sidereal......liii-liv, 218
minutes of, into arc. 21
seconds of, 211
sidereal into mean solar.....liii-liv, 218
Toisè, old French. 208
Ton 260
Tonne 261
Tropical year liii, 259
Units of magnetic intensity 1vii, 23 I
interconversion of British and Met-
ric. 260, 261
Vapor aqueous, pressure of, British,XXXV, I22-I27
Metric, xxxvi, 128 -129
at low temperaturexxxvi, 130,131decrease of pressure with altitude,

$$
\text { xliii, } 146
$$

weight of........xxxvii, xxxviii, I32, I33
Vaporization, latent heat of, of water... 259
Vara, Mexican, value of. 208
Spanish, 208
Velocity, dimensions of. 262
of light. 259
sound 259
units of 260, 261
Velocities, conversion of...xlv, xlvi, 154-159Verglas or glazed frost, symbol for.264
Versta or Werst (Russian) 208
Volt, dimensions of. 262
Volume, dimensions of. 262
units of. 260, 26I
of distilled water. 259
Water, distilled, volume and weight of,259
latent heat of vaporization of 259
specific heat of, compared with air... 259
Watt. 260, 26I
Weight of aqueous vapor,
xxxvii, xxxviii, 132, I33
distilled water 259
dry air 259
one grain in dynes. 260
pound in dyres. 260
dyne 26I
Werst or versta, Russian 208
Wind, mean direction by Lambert'sformula...............................xliii, I48-I53
scale, Beaufort, conversion.....xlvi, 160
symbols for. 265
tables. xliii, $148-160$
Work, dimensions of 262
units of, in absolute measure... 260 , $26 I$
Working, rate of 262
Yard, ratio of to metre. vi
Year, conversion of days into decimalsof, and angle.lii, 212-215
bissextile, days into decimals of,lii, 212-215
length of tropical liii, 259
sidereal 259
Zero, absolute, of temperature 259

UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY

Return to desk from which borrowed.
This book is DUE on the last date stamped below.

ASTRONOMY LIERARY

LD 21-100m-11,'49 (B7146s16)476

[^0]: *Wm. Harkness: The solar parallax and its related constants. Washington, 1891, 4°, pp. 169 .

[^1]: *A. Angot : Annales du Bureau Central Météorologique. Année i878, t. I, p. C. 13.

[^2]: * Due to the use of a slightly different value for the coefficient of expansion, Prof. Ferrel's formula, upon which the table is computed, is

 $$
 d Z=-\frac{2628.4}{B}\left(\mathrm{r}+0.002034\left(\theta-32^{\circ}\right)\right)(\mathrm{r}+\beta)
 $$

[^3]: * Comptes Rendus, Paris, 1850, vol. xxv., page 309.

[^4]: *The table has been computed with the factor II.7449; which results from Clarke's value for the conversion of the metre, instead of with the value II. 7459 above derived.

[^5]: * From Hand-book of Meteorological Tables. By H. A. Hazen. Washington, 1888. With permission of the author.

[^6]: * Comparisons of standards of length, made at the Ordnance Survey office, Southampton, England, by Capt. A. R. Clarke, R. E., 1866.

[^7]: *The length of the tropical year is not absolutely constant. The value here given is for the year 1800 . Its decrease in 100 years is about 0.6 s .

[^8]: Smithbonian Tables.

[^9]: Smithbonian Tables.

[^10]: * Based on Prof. Rowland's determinations. (Proc. Am. Acad. Arts and Sci., 1880.)

