

## MEDICAL SCHOOL LIBRARY



Hooper Foundation Accession

## HOOPER FRIINDATION



SMITHSONIAN MISCELLANEOUS COLLECTIONS
VOLUME 71, NUMBER 1

# SMITHSONIAN PHYSICAL TABLES

REPRINT OF SEVENTH REVISED EDITION

FREDERICK E. FOWLE



(PUBLICATION 2539)



CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION
1921



 QC61 F78 1921

#### ADVERTISEMENT.

In connection with the system of meteorological observations established by the Smithsonian Institution about 1850, a series of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and the first edition was published in 1852. Though primarily designed for meteorological observers reporting to the Smithsonian Institution, the tables were so widely used by physicists that it seemed desirable to recast the work entirely. It was decided to publish three sets of tables, each representative of the latest knowledge in its field, and independent of one another, but forming a homogeneous series. The first of the new series. Meteorological Tables, was published in 1893, the second, Geographical Tables, in 1894, and the third, Physical Tables, in 1896. In 1909 yet another volume was added, so that the series now comprises: Smithsonian Meteorological Tables, Smithsonian Geographical Tables, Smithsonian Physical Tables, and Smithsonian Mathematical Tables.

The fourteen years which had elapsed in 1910 since the publication of the first edition of the Physical Tables, prepared by Professor Thomas Gray, had brought such changes in the material upon which the tables must be based that it became necessary to make a radical revision for the fifth and sixth revised editions published in 1910 and 1914. The latter edition was reprinted thrice. For the present seventh revision extended changes have been made with the inclusion of new data on old and new topics.

CHARLES D. WALCOTT,
Secretary of the Smithsonian Institution.

June, 1919.

### PREFACE TO 7TH REVISED EDITION.

The present edition of the Smithsonian Physical Tables entails a considerable enlargement. Besides the insertion of new data in the older tables, about 170 new tables have been added. The scope of the tables has been broadened to include tables on astrophysics, meteorology, geochemistry, atomic and molecular data, colloids, photography, etc. In the earlier revisions the insertion of new matter in a way to avoid renumbering the pages resulted in a somewhat illogical sequence of tables. This we have tried to remedy in the present edition by radically rearranging the tables; the sequence is now, — mathematical, mechanical, acoustical, thermal, optical, electrical, etc.

Many suggestions and data have been received: from the Bureau of Standards, — including the revision of the magnetic, mechanical, and X-ray tables, — from the Coast and Geodetic Survey (magnetic data), the Naval Observatory, the Geophysical Laboratory, Department of Terrestrial Magnetism, etc.; from Messrs. Adams of the Mount Wilson Observatory, Adams of the Geophysical Laboratory (compressibility tables), Anderson (mechanical tables), Dellinger, Hackh, Humphreys, Mees and Lovejoy of the Eastman Kodak Co. (photographic data), Miller (acoustical data), Van Orstrand, Russell of Princeton (astronomical tables), Saunders, Wherry and Lassen (crystal indices of refraction), White, Worthing and Forsythe and others of the Nela Research Laboratory, Zahm (aeronautical tables). To all these and others we are indebted for valuable criticisms and data. We will ever be grateful for further criticisms, the notification of errors, and new data.

FREDERICK E. FOWLE.

Astrophysical Observatory, Smithsonian Institution, May, 1919.

#### NOTE TO REPRINT OF 7TH REVISED EDITION.

Opportunity comes with this reprint to insert in the plates a number of corrections as well as some newer data. Gratitude is especially due to Messrs. Wherry and Smith of the Bureau of Chemistry, Department of Agriculture, for suggestions.

FREDERICK E. FOWLE.

ASTROPHYSICAL OBSERVATORY, SMITHSONIAN INSTITUTION, March, 1921.

## TABLE OF CONTENTS.

| standards:                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| General discussion, xxiii; Fundamental units, xxiii; Derived units, xxiv; Con-                                                                           |
| version factors and dimensional formulae, xxv; Dimensional reason-                                                                                       |
| ing, xxv.                                                                                                                                                |
| Dimensional formulae:                                                                                                                                    |
| Geometrical and mechanical units, xxvi; Heat units, xxviii; Electric and magnetic units, xxix; Electrostatic system, xxxi; Electromagnetic system, xxxi. |
| Fundamental standards:                                                                                                                                   |
| Numerically different systems of units:                                                                                                                  |
| The standards of the International Electric Units:                                                                                                       |
| Power and energy, xlv: Watt, xlv; Standards and measurement, xlv.                                                                                        |
| Magnetic units, xlv: Table II. — The ordinary and ampere-turn units xlvi.                                                                                |
| TABLE PAGE                                                                                                                                               |
| 1. Spelling and abbreviations of common units of weight and measure 2                                                                                    |
| 2. Fundamental and derived units, conversion factors                                                                                                     |
| (a) Fundamental units                                                                                                                                    |
| (b) Derived units                                                                                                                                        |
| 3. Tables for converting U. S. weights and measures:                                                                                                     |
| (1) Customary to metric                                                                                                                                  |
| (2) Metric to customary 6                                                                                                                                |
| 4. Miscellaneous equivalents U. S. and metric weights and measures 7                                                                                     |
|                                                                                                                                                          |

| 5.  | Equivalents of metric and British imperial weights and measures:                                                                                                          |    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | (1) Metric to imperial                                                                                                                                                    |    |
|     | (2) Multiples, metric to imperial                                                                                                                                         |    |
|     | (3) Imperial to metric                                                                                                                                                    | I  |
|     | (4) Multiples, imperial to metric                                                                                                                                         | I  |
|     |                                                                                                                                                                           |    |
|     | MATHEMATICAL TABLES                                                                                                                                                       |    |
| ,   |                                                                                                                                                                           |    |
|     |                                                                                                                                                                           | I  |
| 7.  | Series                                                                                                                                                                    | I  |
| 8.  | Mathematical constants                                                                                                                                                    | I  |
| 9.  | Reciprocals, squares, cubes and square roots of natural numbers                                                                                                           | I  |
| 10. | Logarithms, 4-place, 1000–2000                                                                                                                                            | 2. |
| II. | Logarithms, 4-place.                                                                                                                                                      | 2  |
| 12. | Antilogarithms, 4-place                                                                                                                                                   | 2  |
| 13. | Antilogarithms, 4-place, 0.9000-1.0000                                                                                                                                    | 3  |
| 14. | Circular (trigonometric) functions, arguments (°, ′)                                                                                                                      | 3  |
| 15. |                                                                                                                                                                           | 3  |
|     | Logarithmic factorials, n!, n = 1 to 100                                                                                                                                  | 4  |
| 17. | Hyperbolic functions                                                                                                                                                      | 4  |
| 18. | Factorials, I to 20                                                                                                                                                       | 4  |
| 19. | Exponential functions                                                                                                                                                     | 4  |
| 20. | Values of $e^{-x^2}$ and $e^{-x^2}$ and their logarithms                                                                                                                  | 5  |
| 21. | $" e^{\frac{1}{4}x} " e^{-\frac{1}{4}x} " \cdots $ | 5  |
| 22. | " " $\frac{\pi}{e^4}x$ " " " " " " " " " " " " " " " " " " "                                                                                                              | 5  |
| 23. | " " $e^x$ " $e^{-x}$ " " , x fractional                                                                                                                                   | 5  |
| 24. | Least squares: probability integral, argument hx                                                                                                                          | 5  |
| 25. | x/r                                                                                                                                                                       | 5  |
| 26. | values of $0.6745\sqrt{1/(n-1)}$                                                                                                                                          | 5  |
| 27. | " $0.6745\sqrt{1/n(n-1)}$                                                                                                                                                 | 5  |
| 28. | " 0.8453 $\sqrt{1/n(n-1)}$                                                                                                                                                | 5  |
| 29. | " 0.8453 $\{1/n\sqrt{n-1}\}$                                                                                                                                              | 5  |
| 30. | formulae                                                                                                                                                                  | 59 |
| 31. | Inverse probability integral, diffusion integral                                                                                                                          | 60 |
| 32. | Logarithms of gamma function, n between 1 and 2                                                                                                                           | 6: |
| 33. | Values for the first seven zonal harmonics, $\theta = 0^{\circ}$ to $\theta = 90^{\circ}$                                                                                 | 64 |
| 34. | Cylindrical harmonics, oth and 1st orders, $x = 0$ to 3.5, 6-place                                                                                                        | 60 |
| 35. | " $x = 4 \text{ to } 15, 4\text{-place} \dots$                                                                                                                            | 68 |
|     | (a) 1st ten roots cylindrical harmonic of zeroth order = 0                                                                                                                | 68 |
|     | (b) " fifteen " " " first " = 0                                                                                                                                           | 68 |
|     | Notes, general formulae of Bessel's functions                                                                                                                             | 68 |
| 37. | Values for $\int_0^{\frac{\pi}{2}} (1 - \sin^2\theta \sin^2\Phi)^{\pm \frac{1}{2}} d\Phi$ ; argument $\theta$ ; also logs                                                 | 69 |
|     |                                                                                                                                                                           |    |
|     | Moments of inertia, radii of gyration, corresponding weights                                                                                                              | 79 |
| 39. | International atomic weights, valencies                                                                                                                                   | 71 |

|             | CONTENTS.                                                                  | vii      |
|-------------|----------------------------------------------------------------------------|----------|
| 40.         | Volume of glass vessel from weight of its volume of H <sub>2</sub> O or Hg | 72       |
|             | Reductions of weighings in air to vacuo                                    | 73       |
|             | Reductions of densities in air to vacuo                                    | 73       |
|             |                                                                            | , 0      |
|             | Mechanical Properties                                                      |          |
| 43.         | Introduction and definitions                                               | 74       |
| 44.         | Ferrous metals and alloys: Iron and iron alloys                            | 75       |
| 45.         | " " carbon steels                                                          | 76       |
| 46.         | " " " heat treatments                                                      | 76       |
| 47.         | " " alloy steels                                                           | 77       |
| 48.         | " " steel wire, specification values                                       | 78       |
| 49.         | " " " experimental values                                                  | 78       |
| 50.         | " " semi-steel                                                             | 78       |
| 51.         | " " steel wire rope, specification values                                  |          |
| 52.         | " " " plow-steel rope, " "                                                 | 79<br>79 |
|             | " " steel wire rope, experimental values                                   |          |
| 53.         | Aluminum, miscellaneous                                                    | 79<br>80 |
| 54.         | Aluminum: (a) sheet, experimental values                                   | 80       |
| 55.         | " (b) " specification values                                               | 81       |
| 56.         | Aluminum alloys                                                            | 81       |
|             | Copper: miscellaneous experimental values                                  | 82       |
| 57-         | " rolled, experimental values                                              | 82       |
| 58.         | " wire, specification values, hard-drawn                                   |          |
| 59.         | " medium hard-drawn                                                        | 82       |
| 60.         | " soft or annealed                                                         | 83       |
| 61.         |                                                                            | 83       |
| 62.         | places                                                                     | 83       |
| 63.         | Copper alloys: nomenclature                                                | 83       |
| 64.         | " copper-zinc alloys or brasses                                            | 84       |
|             |                                                                            | 84       |
| 65.         | three of more metals                                                       | 85       |
| 66.         | Miscellaneous alloys                                                       | 88       |
| 67.         | metals, tungsten, zinc, winte metal                                        | 89       |
| 68.         | Cement and concrete: (a) cement                                            | 90       |
|             | (b) cement and cement mortars                                              | 90       |
| ,           | (b) concrete                                                               |          |
| <b>6</b> 9. | Stone and clay products: (a) American building stones                      | 92       |
|             | " " (b) Bavarian building stones                                           | 92       |
|             | " " (c) American building bricks                                           | 93       |
|             | " " (d) brick piers, terra-cotta piers                                     | 93       |
|             | " " (e) various bricks                                                     | 93       |
| 70.         | (a) Sheet rubber                                                           | 94       |
|             | (b) Leather belting                                                        | 94       |
| 71.         | Manilla rope                                                               | 95       |
| 72.         | Woods: hardwoods, metric units                                             | 96       |
| 73.         | " conifers, metric units                                                   | 97       |

viii CONTENTS.

| 74.          | Woods: hardwoods, English units                                                                 | 9   |
|--------------|-------------------------------------------------------------------------------------------------|-----|
| 75.          | " conifers, English units                                                                       | 9   |
| 76.          | Rigidity Modulus                                                                                | 100 |
| 77.          | Variation of moduli of rigidity with the temperature                                            | 100 |
| 78.          | Interior friction, variation with the temperature                                               | IO  |
| 79.          | Hardness                                                                                        | IO  |
| 80.          | Relative hardness of the elements                                                               | 10  |
| 8r.          | Poisson's ratio                                                                                 | 10  |
| 82.          | Elastic moduli of crystals, formulae                                                            | 10  |
| 83.          | ", " " numerical results                                                                        | 10  |
| J            |                                                                                                 | ,   |
|              | Compressibility of Gases                                                                        |     |
| 84.          | Compressibility of O, air, N, H, different pressures and temperatures .                         | 10  |
| 85.          | " " ethylene at " " " " "                                                                       | 10  |
| 86.          | Relative gas volumes at various pressures, H, N, air, O, CO <sub>2</sub>                        | 10  |
| 87.          | Compressibility of carbon dioxide, pressure-temperature variation                               | 10  |
| 88.          | " gases, values of                                                                              | 10  |
| 89.          | " air and oxygen between 18° and 22° C                                                          | 10  |
| 90.          | Relation between pressure, temperature and volume of sulphur dioxide                            | 100 |
| 91.          | " " " ammonia                                                                                   | 100 |
|              |                                                                                                 |     |
| 92.          | Compressibility of liquids                                                                      | 10  |
| 93.          | " solids                                                                                        | 108 |
|              | Densities                                                                                       |     |
| 94.          | Specific gravities corresponding to the Baumé scale                                             | 100 |
| 95.          |                                                                                                 | 110 |
| 95.          |                                                                                                 | III |
| 97.          | // // // 24.3                                                                                   | II  |
| 98.          |                                                                                                 | II  |
| 99.          | // // // // 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                         | II  |
| 100.         |                                                                                                 | II  |
| 101.         |                                                                                                 | 116 |
| 101.         |                                                                                                 | 116 |
| 102.         |                                                                                                 | 117 |
| 103.         |                                                                                                 | 117 |
| 104.         |                                                                                                 | II  |
| 105.<br>106. |                                                                                                 | 120 |
| 100.         |                                                                                                 | 121 |
| 107.         |                                                                                                 |     |
|              |                                                                                                 | 122 |
| 109.         | ethyr alcohor, temperature variation                                                            | 124 |
| 110.         | methyr aconor, cane-sugar, surphuric acid                                                       |     |
| III.         | various gases                                                                                   | 127 |
| 112.         |                                                                                                 | 128 |
|              | (a) for values of t between o° and 10° C by 0.1° steps (b) " " " —90° and +1990° C by 10° steps |     |
|              | (b) " " " " $-90^{\circ}$ and $+1990^{\circ}$ C by $10^{\circ}$ steps .                         | 129 |

| CONTENTS. |  |
|-----------|--|
|           |  |

ix

|       | •                                                                                                                                                        |       |  |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|
|       | (c) logarithms for $t$ between $-49^{\circ}$ and $399^{\circ}$ C by $1^{\circ}$ steps (d) """" $+400^{\circ}$ and $1000^{\circ}$ C by $10^{\circ}$ steps | 130   |  |  |  |  |
|       | (a)                                                                                                                                                      | 132   |  |  |  |  |
|       | Density of moist air: $h/760$ , $h$ from 1 to 9                                                                                                          | 133   |  |  |  |  |
| 114.  | $\log n/700$ , $n$ from 80 to 800                                                                                                                        | 133   |  |  |  |  |
| 115.  | " " o.378e in equation $h = B - 0.378e$                                                                                                                  | 135   |  |  |  |  |
| 116.  | Maintenance of air at definite humidities                                                                                                                | 135   |  |  |  |  |
| 117.  | Pressure of mercury and water columns                                                                                                                    | 136   |  |  |  |  |
|       | BAROMETRIC TABLES                                                                                                                                        |       |  |  |  |  |
| тт8   | Reduction of barometer to standard temperature                                                                                                           | 137   |  |  |  |  |
| 110.  | " " " gravity, in. and mm, altitude term                                                                                                                 | 138   |  |  |  |  |
| 120.  | " " latitude 45°, 0° to 45°, mm                                                                                                                          | 130   |  |  |  |  |
| 121.  | " " " 45° to 90°, mm                                                                                                                                     | 140   |  |  |  |  |
| 122.  | " " " " o° to 45°, inches                                                                                                                                | 141   |  |  |  |  |
| 123.  | " " " " 45° to 90°, inches                                                                                                                               | 142   |  |  |  |  |
| 124.  |                                                                                                                                                          | 143   |  |  |  |  |
|       | Volume of mercury meniscus in mm <sup>3</sup>                                                                                                            | 143   |  |  |  |  |
|       | Barometric pressure corresponding to the boiling point of water:                                                                                         | 143   |  |  |  |  |
| 120.  | (a) metric scale                                                                                                                                         | 144   |  |  |  |  |
|       | (b) inch scale                                                                                                                                           | 144   |  |  |  |  |
| T 2 7 | Determination of heights by the barometer                                                                                                                |       |  |  |  |  |
| 12/.  | Determination of neights by the barometer                                                                                                                | 145   |  |  |  |  |
|       | Acoustics                                                                                                                                                |       |  |  |  |  |
| 128.  | Velocity of sound in solids                                                                                                                              | 146   |  |  |  |  |
| 129.  | " " " liquids and gases                                                                                                                                  | 147   |  |  |  |  |
| 130.  | Musical scales                                                                                                                                           | 148   |  |  |  |  |
| 131.  | " "                                                                                                                                                      | 148   |  |  |  |  |
| 132.  | Fundamental tone, its harmonics and equal tempered scale 14                                                                                              |       |  |  |  |  |
|       | Relative strength of the partials of musical instruments                                                                                                 | 149   |  |  |  |  |
| 134.  | Characteristics of the vowels                                                                                                                            | 149   |  |  |  |  |
| 135.  | Miscellaneous sound data                                                                                                                                 | 149   |  |  |  |  |
|       | Aerodynamics                                                                                                                                             |       |  |  |  |  |
| 7.26  | Kinetics of bodies in resisting medium, Stokes law                                                                                                       | T = 0 |  |  |  |  |
| -     |                                                                                                                                                          | 150   |  |  |  |  |
|       | Flow of gas through tubes                                                                                                                                |       |  |  |  |  |
|       | Air pressure, large square normal planes, various speeds                                                                                                 |       |  |  |  |  |
| 139.  | Correction factor for small square normal planes                                                                                                         |       |  |  |  |  |
|       | Effect of aspect ratio                                                                                                                                   | 152   |  |  |  |  |
| 141.  | Skin friction                                                                                                                                            | 152   |  |  |  |  |
| 142.  | Variation of air resistance with aspect and angle                                                                                                        | 152   |  |  |  |  |
| 143.  | " " shape and size                                                                                                                                       | 153   |  |  |  |  |
| 144.  | " " and speed                                                                                                                                            | 153   |  |  |  |  |
| 145.  | and speed                                                                                                                                                | 153   |  |  |  |  |
| 146.  | Friction                                                                                                                                                 | 154   |  |  |  |  |
|       |                                                                                                                                                          | UT    |  |  |  |  |

| 147. | Lubrican   | ts       |              |            |                                       | 154           |
|------|------------|----------|--------------|------------|---------------------------------------|---------------|
|      | Lubrican   |          |              |            |                                       | 154           |
|      |            | -        |              |            |                                       |               |
|      |            |          |              |            | VISCOSITY                             |               |
| 149. |            |          |              |            | general considerations                |               |
| 150. | "          |          |              |            | es, temperature variation             |               |
| 151. | "          |          |              |            | er mixtures, temperature variation    |               |
| 152. | "          |          |              |            | se aqueous solutions, temp. variation |               |
| 153. | 66         | "        |              | " glycer   |                                       | . 156         |
| 154. | "          | "        | "            | " castor   | oil, temperature variation            | . 156         |
| 155. | "          | of mis   | cellane      | ous liqu   | ids                                   | . 157         |
| 156. | "          |          |              |            |                                       |               |
| 157. | Specific v |          |              |            | density and temperature variation     |               |
| 158. | "          | "        | "            | "          | atomic concentrations, 25° C          | . 163         |
| 159. | Viscosity  |          |              | vapors .   |                                       | . 164         |
| 160. | "          | "        | "            | ":         | temperature and pressure variation    | . 165         |
|      |            |          |              |            |                                       |               |
| 161. | Diffusion  | of an    | aqueou       | s solution | on into pure water                    | . 166         |
| 162. | "          | " var    | ors .        |            |                                       | . 167         |
| 163. | "          | " gas    | es and       | vapors .   | ·                                     | . 168         |
| 164. | . "        | " me     | tals int     | o metals   | 5                                     | . 168         |
| 165. | Solubility | y of inc | rganic       | salts in   | water, temperature variation          | . 169         |
| 166. |            | "af      | ew orga      | anic salt  | s in water, temperature variation .   | . 170         |
| 167. | "          | " ga     | ses in w     | ater .     |                                       | . 170         |
| 168. | "          | " ch     | ange of      | , produc   | ced by uniform pressure               | . 171         |
| 169. | Absorption |          |              |            |                                       | . 172         |
| 170. | Capillari  | ty and   | surface      | tension    | , water and alcohol in air            | . 173         |
| 171. |            | "        | "            | "          | miscellaneous liquids in air          |               |
| 172. | "          | 66       | "            | "          | aqueous solutions of salts            |               |
| 173. | "          | 66       | "            | "          | liquids-air, -water, -mercury         |               |
| 174. | "          | 66       | "            | "          | liquids at solidifying point          |               |
| 175. | "          | 66       | "            | "          | thickness of soap films               | . 174         |
|      |            |          |              | 37         | -                                     |               |
|      |            |          |              |            | DR PRESSURES                          |               |
|      | Vapor pr   |          |              |            |                                       | . 175         |
| 177. | 66         | "        |              |            | vaporation, Mo, W, Pt                 | . 175         |
| 178. | 66         | "        |              |            | 5                                     | . 176         |
| 179. | 66         | "        | of eth       | yl alcoh   | ol                                    | . 178         |
| 180. | "          | "        |              |            | ohol                                  | . 178         |
| 181. | 66         | "        |              |            | disulphide                            | . 179         |
|      |            |          | ` '          |            | penzene                               | . 179         |
|      |            |          | (c)          | bromol     | penzene                               | . <b>17</b> 9 |
|      |            |          | (d)          | aniline    |                                       | . 179         |
|      |            |          | (e)          |            | salicylate                            | . 180         |
|      |            |          | ( <i>f</i> ) | bromor     | naphthalene                           | . 180         |
|      |            |          | (g)          | mercur     | y                                     | . 180         |

| CONTENTS. | • | 2 |
|-----------|---|---|
|           |   |   |

i

| 182. | Vapor pressure of solutions of salts in water                           | 181 |
|------|-------------------------------------------------------------------------|-----|
| 183. | Pressure of saturated water vapor over ice, low temperatures            | 183 |
| 184. | " " water, low temperatures                                             | 183 |
| 185. | " " " " o° to 374° C                                                    | 183 |
| 186. | Weight in g per m³ of saturated water vapor                             | 185 |
| 187. | Weight in grains per ft <sup>3</sup> of saturated water vapor           | 185 |
| 188. | Pressure of aqueous vapor in atmosphere, various altitudes              | 185 |
| 189. | " " " " sea-level                                                       | 186 |
| 190. |                                                                         | 187 |
| 191. | " wet and dry thermometers                                              | 189 |
|      |                                                                         |     |
|      | THERMOMETRY                                                             |     |
| 192. | Stem correction for thermometers, centigrade                            | 190 |
| 193. | " " Jena glass, o° to 360° C                                            | 190 |
| 194. | " " " " ° ° " " "                                                       | 191 |
| 195. | " " normal, o° to 100° C.                                               | 191 |
| 196. | Gas and mercury thermometers, formulae                                  | 192 |
| 197. | Comparison of hydrogen and 16 <sup>III</sup> thermometers, 0° to 100° C | 192 |
| 198. | " " " 59 <sup>m</sup> " 0° " 100° C                                     | 192 |
| 199. | " " 16 <sup>m</sup> and 59 <sup>m</sup> thermometers, -5° to            |     |
|      | $-3\xi^{\circ}$ C                                                       | 192 |
| 200. | Comparison of air and 16 <sup>III</sup> thermometers, 0° to 300° C      | 193 |
| 201. | " " " " 59 <sup>πι</sup> " 100° to 200° C                               | 193 |
| 202. | " hydrogen and various mercury thermometers                             | 194 |
| 203. | " air and high temperature (59 <sup>m</sup> ) mercury thermometer       | 194 |
| 204. | " H, toluol, alcohol, petrol ether, pentane thermometers                | 194 |
| 205. | Platinum resistance thermometry                                         | 195 |
| 206. | Thermodynamic scale; temperature of ice point, Kelvin scale             | 195 |
| 207. | Standard points for the calibration of thermometers                     | 195 |
| 208. | Calibration of thermo-element, Pt-Pt·Rh                                 | 196 |
| 209. | " Cu-constantan                                                         | 196 |
|      |                                                                         |     |
| 210. | Mechanical equivalent of heat, summary to 1900 (Ames)                   | 197 |
| 211. | " " best value                                                          | 197 |
| 212. |                                                                         | 197 |
| 213. | English and American horse power, altitude and latitude variation .     | 197 |
|      |                                                                         |     |
|      | MELTING AND BOILING POINTS                                              |     |
| 214. | Melting points of the chemical elements                                 | 198 |
| 215. | Boiling points of the chemical elements                                 | 199 |
| 216. | Melting points, effect of pressure                                      | 200 |
| 217. | Freezing point of water, effect of pressure                             | 200 |
| 218. | Boiling point, effect of pressure                                       | 200 |
| 210. | Inorganic compounds, melting and boiling points, densities              | 201 |

xii · CONTENTS.

| 220. | Organic compounds, melting and boiling points, densities:          | 203        |
|------|--------------------------------------------------------------------|------------|
|      | (a) Paraffin series                                                | 203        |
|      | (b) Olefine series                                                 | 203        |
|      | (c) Acetylene series                                               | 204        |
|      | (d) Monatomic alcohols                                             | 204        |
|      | (e) Alcoholic ethers                                               | 204        |
|      | (f) Ethyl ethers                                                   | 204        |
|      | (g) Miscellaneous                                                  | 205        |
| 221. | Melting points of various mixtures of metals                       | 206        |
| 222. |                                                                    | 206        |
| 223. | Low-melting-point alloys                                           | 206        |
|      | Transformation and melting points, minerals and eutectics          | 207        |
|      | Lowering of freezing points by salts in solution                   | 208        |
| _    | Raising of boiling points by salts in solution                     | 210        |
|      | Freezing mixtures                                                  | 211        |
|      | Critical temperatures, pressures, volumes, densities of gases      | 212        |
| 220. | oricles competation, prosocion, volumes, densities of gases        | 212        |
|      | THERMAL CONDUCTIVITY                                               |            |
| 229. |                                                                    |            |
|      |                                                                    | 213        |
| 230. | misulators, fingli temperatures                                    | 214        |
| 231. | various substances                                                 | 214        |
| 232. | building materials                                                 | 215        |
| 233. | various insulators                                                 | 216        |
| 234. | water and salt solutions                                           | 216        |
| 235. | " organic liquids                                                  | 217        |
| 236. | " gases                                                            | 217        |
| 237. | Diffusivities                                                      | 217        |
|      |                                                                    |            |
|      | Expansion Coefficients                                             |            |
| 238. | Linear expansion of the elements                                   | 218        |
| 239. | " " miscellaneous substances                                       | 219        |
| 240. | 0.11.1                                                             | 220        |
| 241. | " " " liquids                                                      | 221        |
| 242. | " " gases                                                          | 222        |
| -4   | 8                                                                  |            |
|      | SPECIFIC HEATS                                                     |            |
| 242  | Specific heats of elements                                         | 223        |
|      | Heat capacities, true and mean specific heats, and latent heats of | 223        |
| 244. | fusion of the metallic elements, o° to 1600° C                     | 225        |
|      |                                                                    | 225<br>226 |
|      | Atomic heats, atomic volumes, specific heats at 50° K, elements    |            |
| 246. | Specific heats of various solids                                   | 227        |
| 247. | water and mercury                                                  | 227        |
| 248. | various figures                                                    | 228        |
| 249. | " heat of saturated liquid ammonia, -50° to +50° C                 | 228        |
| 250  | Heat contents of saturated liquid ammonia50° to +50° C             | 228        |

|      | CONTENTS.                                                            | xii |
|------|----------------------------------------------------------------------|-----|
| 251. | Specific heats of minerals and rocks                                 | 220 |
| 252. |                                                                      | 220 |
| 253. | // // 6 3 1 /                                                        | 230 |
| -    |                                                                      | -3. |
|      | LATENT HEATS                                                         |     |
| 251. | Latent heats of vaporization                                         | 221 |
| 255. |                                                                      | 231 |
| 256. |                                                                      | 232 |
|      | "Latent heat of pressure variation" of liquid ammonia                | 232 |
|      | Latent and total heats of vaporization of elements, — theoretical    | 233 |
|      | Properties of saturated steam                                        | 234 |
|      | Latent heats of fusion                                               | 240 |
|      |                                                                      |     |
|      | HEATS OF COMBUSTION, FORMATION, ETC.                                 |     |
| 261. | Heats of combustion of some carbon compounds                         | 241 |
| 262. |                                                                      | 241 |
| 263. | Heat values and analyses of various fuels: (a) coals and coke        | 242 |
|      | (b) peats and woods                                                  | 242 |
|      | (c) liquid fuels                                                     | 242 |
|      | (d) gases                                                            | 242 |
| 264. | Chemical and physical properties of explosives                       | 243 |
|      | Additional data on explosives                                        | 244 |
|      | Ignition temperatures of gaseous mixtures                            | 244 |
|      | Explosive decomposition, ignition temperatures                       | 244 |
| 268. | Flame temperatures                                                   | 244 |
| 269. | Thermochemical data: heats of formation from elements                | 245 |
| 270. | " " " of ions                                                        | 246 |
| 271. | " " neutralization                                                   | 246 |
| 272. | " " " dilution of sulphuric acid                                     | 246 |
|      |                                                                      |     |
|      | RADIATION                                                            |     |
| 273. | Radiation formulae and constants for perfect (black-body) radiator . | 247 |
| 274. | " in calories for perfect radiator, various temperatures             | 247 |
| 275. | " distribution in spectrum for various temperatures                  | 247 |
| 276. | Black-body spectrum intensities, 50° to 20000° K                     | 248 |
| 277. | Relative emissive powers of various bodies for total radiation       | 249 |
| 278. |                                                                      | 249 |
| 279. |                                                                      | 249 |
| 280. | Temperature scale for tungsten, — color, black-body and true tem-    |     |
| 0    | peratures                                                            | 250 |
| 281. | Color minus brightness temperature for carbon                        | 250 |
|      | Cooling by Radiation, Conduction, and Convection                     |     |
| 202  |                                                                      |     |
| 282. | 0 ,                                                                  | 251 |
| 283. | " " different pressures                                              | 251 |

xiv CONTENTS.

| 284. | Cooling by radiation and convection: very small pressures             | 252 |
|------|-----------------------------------------------------------------------|-----|
| 285. | " " temperature and pressure effect                                   | 252 |
| 286. | Conduction of heat across air spaces, ordinary temperatures           | 253 |
| 287. | Convection of heat in air at ordinary temperatures                    | 253 |
| 288. | " and conduction of heat by gases at high temperatures: .             | 254 |
|      | (a) s as function of $a/B$                                            | 254 |
|      | (b) $\phi$ in watts per cm. as $f(T^{\circ}K)$                        | 254 |
| 289. | Heat losses from incandescent filaments:                              | 255 |
|      | (a) Wires of platinum sponge                                          | 255 |
|      | (b) " " bright platinum                                               | 255 |
|      |                                                                       |     |
|      | THE EYE AND RADIATION                                                 |     |
| 290. | Spectral variation of sensitiveness as function of intensity (Lumina- |     |
|      | tion intensities under various circumstances)                         | 256 |
|      | Threshold sensibility as related to field brightness                  | 256 |
| 292. | Heterochromatic threshold sensibility                                 | 257 |
| 293. |                                                                       | 257 |
|      | Glare sensibility                                                     | 257 |
|      | Rate of adaptation of sensibility                                     | 257 |
|      | Apparent diameter of pupil and flux density at retina                 | 258 |
|      | Relative visibility of radiation of different wave-lengths            | 258 |
| 298. | Miscellaneous eye data: physiological; persistence of vision; sensi-  |     |
|      | bility to small differences of color; flicker                         | 258 |
|      | PHOTOMETRIC TABLES                                                    |     |
| 200  | Photometric definitions and units                                     | 259 |
| 300. |                                                                       | 259 |
|      | Intrinsic brightness of various light sources                         | 260 |
| -    | Visibility of white lights                                            | 260 |
|      | Brightness, Crova wave-length, mechanical equivalent of light         | 261 |
| 304. | Luminous and total intensity and radiant luminous efficiency of a     | 201 |
| 304. | black-body; minimum energy necessary for light sensation              | 261 |
| 205. | Color of light emitted by various sources                             | 261 |
|      | Efficiency of various electric lights                                 | 262 |
| 500. | Zantionoj de turious discours agains ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  |     |
|      | PHOTOGRAPHIC DATA                                                     |     |
| 307. | Numerical constants characteristic of a photographic plate            | 263 |
|      | Relative speeds of various photographic materials                     | 263 |
|      | Variation of resolving power with plate and developer                 | 263 |
|      | Photographic efficiencies of various lights                           | 264 |
| 311. | Relative intensification of various intensifiers                      | 264 |
|      | Spectrum Wave-lengths                                                 |     |
|      |                                                                       | ,   |
| 312. | Wave-lengths of the Fraunhofer lines                                  | 265 |
| 313. | Standards: Red cadmium line, 76 cm, 15° C, Angstroms                  | 266 |

CONTENTS. XV

| 314.          | Standards: International secondary Fe arc standards, Angstroms                         | 266 |
|---------------|----------------------------------------------------------------------------------------|-----|
| 315.          | " International secondary Fe arc standards, Angstroms                                  | 266 |
| 316.          | Neon wave-lengths                                                                      | 266 |
| 317.          | " International tertiary Fe arc standards, Angstroms                                   | 267 |
| 318.          | Reduction of wave-lengths in air to standard conditions:                               | 268 |
|               | (a) $(d - d_0)/d_0 \times 1000$ ; B, 60 to 78 cm, t, 9° to 35° C                       | 268 |
|               | (b) $\delta = \lambda_0 (n_0 - n_0')(d - d_0)/d_0 \dots \dots \dots \dots \dots \dots$ | 268 |
| 319.          | Spectra of the elements                                                                | 269 |
| 320.          | Spectrum lines of the elements (Kayser)                                                | 270 |
| 321.          | Standard solar wave-lengths (Rowland)                                                  | 272 |
| 322.          | Spectrum series, general discussion                                                    | 275 |
| 3 <b>2</b> 3. | " limits of some of the series                                                         | 276 |
| 3 <b>24</b> . | " first terms and vibration differences                                                | 276 |
|               |                                                                                        |     |
|               | INDICES OF REFRACTION                                                                  |     |
|               | Indices of refraction of glass (American)                                              |     |
| 325.          | Dispersion of glasses of Table 325                                                     | 277 |
| 326.          | Indices of refraction of glasses made by Schott and Gen, Jena                          | 277 |
| 327.          |                                                                                        | 278 |
| 328.          | Dispersion of Jena glasses                                                             | 278 |
| 329.          | Changes of indices for 1° C change for some Jena glasses                               | 278 |
| 330.          | Index of refraction of rock-salt in air                                                | 279 |
| 331.          | Change of indices for 1° C change for rock-salt                                        | 279 |
| 332.          | Index of refraction of silvine (potassium chloride) in air                             | 279 |
| 333.          | nuonte m an                                                                            | 280 |
| 334.          | Change of indices for r° C change for fluorite                                         | 280 |
| 335.          | Index of refraction of iceland spar (CaCO <sub>3</sub> ) in air                        | 280 |
| 336.          | introso-dimethyl-annine                                                                | 280 |
| 337.          | quartz (SiO2)                                                                          | 281 |
| 338.          | Indices of refraction for various alums                                                | 281 |
| 339.          | Terraction. Selected isotropic nimerals                                                | 282 |
| 340.          | Miscenaneous isotropic solids                                                          | 283 |
| 341.          | Selected unlaxial inflierals (positive)                                                | 284 |
|               | (negative)                                                                             | 284 |
| 342.          | " " Miscellaneous uniaxial crystals                                                    | 285 |
| 343.          | " " Selected biaxial minerals (a) positive                                             | 286 |
|               | " " (b) negative                                                                       | 287 |
| 344.          | " " Miscellaneous biaxial crystals                                                     | 289 |
| 345.          | " " Liquefied gases, oils, fats, waxes                                                 | 289 |
| 346.          | " " Liquids relative to air                                                            | 290 |
| 347-          | " " Solutions of salts and acids relative to air                                       | 291 |
| 348.          | " " Gases and vapors                                                                   | 292 |
| 349.          | " " Air, 15° C, 76 cm; also corrections for reduc-                                     |     |
|               | ing wave-lengths and frequencies in air to vacuo (see Table 318).                      | 293 |
| 350.          |                                                                                        |     |
|               | with $n_{\rm p}(0.5800) = 7.74$ to $7.87$                                              | 204 |

| •   |           |
|-----|-----------|
| IVI | CONTENTS. |

| 351. | Media for microscopic determinations of refractive indices: resin-like                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|      | substances, $n_D(0.589\mu) = 1.88$ to 2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 294   |
| 352. | Media for microscopic determinations of refractive indices: perma-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|      | nent standard resinous media, $n_D = 1.546$ to $1.682$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 294   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 353. | Optical constants of metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 295   |
| 354. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 296   |
| 001  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - , - |
| •    | The state of the s |       |
|      | REFLECTING POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 355. | Reflecting power of metals (see Table 359)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 296   |
| 356. | Light reflected when incident light is normal to transparent medium .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 297   |
| 357. | " " is near unity or equals $i + dn$ , $i = 0^{\circ}$ to $90^{\circ}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 297   |
| 358. | " $n = 1.55$ , $i = 0^{\circ}$ to $90^{\circ}$ , polarization percentages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 297   |
|      | Reflecting power of metals (see Table 355)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 298   |
|      | Percentage diffuse reflection from various substances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 298   |
| 361. | Reflecting power of pigments, $\lambda = 0.44\mu$ to $0.70\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 299   |
| 362. | Infra-red diffuse reflecting power of dry pigments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 299   |
| 363. | Reflecting power of powders (white light)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300   |
|      | Variation of reflecting power of matt and silvered surfaces with angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300   |
|      | Infra-red reflectivity of tungsten, temperature variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|      | Transmissive Powers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 366. | Transmissibility of radiation by dyes, $\lambda = 0.44\mu$ to $0.70\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 301   |
| 367. | " " Jena glasses, 0.375 to $3.1\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 302   |
| 368. | " " " " 0.280 to 0.644μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 302   |
| 369. | " by Jena ultra-violet glasses, 0.280 to 0.397 $\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 302   |
| 370. | " of radiation by glasses (American) 0.5 to 5.0 $\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 303   |
| 371. | " by same glasses for various lights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 304   |
| 372. | " of radiation by substances of Tables 330 to 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 305   |
| 373. | Color screens (Landolt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 306   |
| 374. | " " (Wood)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 306   |
| 375. | " (Jena glasses)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 307   |
| 376. | Transmissibility of radiation by water, $\lambda = 0.186\mu$ to $0.945\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 307   |
| 377. | Transmission percentages of radiation by moist air, $0.75\mu$ to $20\mu$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 308   |
| 378. | Long-wave absorption by gases, $23\mu$ to $314\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 309   |
| 379. | Properties with wave-lengths $108 \pm \mu$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
|      | (a) Percentage reflection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 309   |
|      | (b) Percentage transparency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 309   |
|      | (c) Transparency of black absorbers, $2\mu$ to $108\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 309   |
| 380. | Rotation of plane of polarized light by solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 310   |
| 381. | " " " sodium chlorate and quartz .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 310   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 382. | Electrical equivalents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 311   |

|         | CONTENTS.                                                           | xvii |
|---------|---------------------------------------------------------------------|------|
|         | Electromotive Powers                                                |      |
| 282     | Data for voltaic cells: (a) double-fluid cells                      | 272  |
| 303.    | (b) single-fluid cells                                              | 312  |
|         | (c) standard cells                                                  | 313  |
|         | (d) secondary cells                                                 | 313  |
| . 0 .   |                                                                     | 313  |
| 384.    | Contact potential differences, solids with liquids and liquids with |      |
| 0       | liquids in air                                                      | 314  |
| 385.    | Contact potential differences between metals in salt solutions      | 316  |
| 386.    | Thermoelectric power of metals                                      | 317  |
| 387.    | anoys                                                               | 318  |
| 388.    | agamst platmum                                                      | 319  |
| 389.    | " " of platinum-rhodium alloys .                                    | 319  |
| 390.    | " pressure effect                                                   | 320  |
| 391.    | Peltier and Thomson heats, pressure effects                         | 320  |
| 392.    | Peltier effect                                                      | 321  |
| 393.    | " Fe-constantan, Ni-Cu, o° to 560° C                                | 321  |
| 394.    | " electromotive force in millivolts                                 | 322  |
| 395.    | The tribo-electric series                                           | 322  |
|         |                                                                     |      |
|         | Electrical Resistance                                               |      |
| 396.    | Auxiliary table for computing wire resistances                      | 322  |
| 397.    | Resistivity of metals and some alloys, temperature coefficients     | 323  |
| 398.    | Resistance of metals under pressure, temperature coefficients       | 326  |
| 399.    | Resistance of mercury and manganin under pressure                   | 326  |
| 400.    | Conductivity and resistivity of miscellaneous alloys                | 327  |
| 401.    | Conducting power of alloys, temperature coefficients                | 328  |
| 402.    | Allowable carrying capacity of rubber-covered copper wires          | 329  |
| 403.    | Resistivities at high and low temperatures                          | 330  |
| 404.    | Volume and surface resistivity of solid dielectrics                 | 331  |
| 405.    | Variation of resistance of glass and porcelain with temperature     | 332  |
| 4 - 3 - | (a) Temperature coefficients for glass, porcelain and quartz        | 332  |
|         | ,                                                                   | 00   |
|         | WIRE TABLES                                                         |      |
| 406.    | Tabular comparison of wire gages                                    | 333  |
|         | Introduction; mass and volume resistivity of copper and aluminum.   | 334  |
| 408.    | Temperature coefficients of copper                                  | 335  |
| 400.    | Reduction to standard temperature, copper                           | 335  |
| 410.    | Annealed copper wire table, English units, B. & S. gage             | 336  |
| 411.    | " " Metric units, B. & S. gage                                      | 339  |
| 412.    | Hard-drawn aluminum wire table, English units, B. & S. gage         | 342  |
| 413.    | " " Metric units, B. & S. gage                                      | 343  |
| 4-3.    | metric units, D. & J. gage                                          | 343  |
| 414.    | Ratio of alternating to direct current resistances for copper wire  | 344  |
| 415.    |                                                                     |      |
|         | current ratio of 1.01                                               | 344  |

xviii contents.

|      | ELECTROLYSIS                                                                                                             |       |
|------|--------------------------------------------------------------------------------------------------------------------------|-------|
| 416. | Electrochemical equivalents                                                                                              | 345   |
| 417. | Conductivity of a few dilute solutions                                                                                   | 346   |
| 418. | Electrochemical equivalents and densities of nearly normal solutions                                                     | 346   |
| 410. | Specific molecular conductivity of solutions                                                                             | 347   |
| 420. | " " limiting values                                                                                                      | 348   |
| 421. | " temperature coefficient.                                                                                               | 348   |
| 422. |                                                                                                                          | 349   |
| 423. | " some additional salts in solution                                                                                      | 351   |
| 424. | " conductance of separate ions                                                                                           | 352   |
|      | Hydrolysis of ammonium acetate and ionization of water                                                                   | 352   |
| 423. | Try drong sis or diffinition decease and formation or fider                                                              | 334   |
|      |                                                                                                                          |       |
|      | DIELECTRIC STRENGTH                                                                                                      |       |
| 426. | Steady potential for spark in air, ball electrodes                                                                       | 353   |
| 427. | Alternating potential for spark in air, ball electrodes                                                                  | 353   |
| 428. | Steady and alternating potential for longer sparks in air                                                                | 354   |
| 429. | Effect of pressure of the gas on the dielectric strength                                                                 | 354   |
| 430. | Dielectric strength of various materials                                                                                 | 355   |
| 431. | Potential in volts for spark in kerosene                                                                                 | 353   |
|      |                                                                                                                          |       |
|      | DIELECTRIC CONSTANTS                                                                                                     |       |
|      |                                                                                                                          | 2=1   |
| 432. | Specific inductive capacity of gases, atmospheric pressure Variation of dielectric constant with the temperature (gases) | 350   |
| 433. |                                                                                                                          | 350   |
| 434. | pressure (gases)                                                                                                         | 35    |
| 435. | Dielectric constant of liquids                                                                                           | 35    |
| 436. | ilquids, temperature coefficients                                                                                        | 359   |
| 437. | inquened gases                                                                                                           | 359   |
| 438. | standard solutions for campration                                                                                        | 360   |
| 439. | Solids                                                                                                                   | 360   |
| 440. | " " " crystals ,                                                                                                         | 36:   |
|      |                                                                                                                          |       |
|      | Wireless Telegraphy                                                                                                      |       |
| 441. | Wave-lengths, frequencies and oscillation constants                                                                      | 36:   |
| 442. | Antennae resistances for various wave-lengths and heights                                                                | 364   |
|      |                                                                                                                          |       |
| 443. | Dielectric properties of non-conductors                                                                                  | 364   |
| 770  | r-r                                                                                                                      |       |
|      | Magnetic Properties                                                                                                      |       |
|      |                                                                                                                          | 26    |
| 444. |                                                                                                                          | 365   |
|      | Composition and magnetic properties of iron and steel (old data)                                                         | 367   |
|      | Magnetic properties of iron and steel                                                                                    | 368   |
|      |                                                                                                                          | . 368 |
| 118  | Corrections for ring specimens                                                                                           | 268   |

| CONTENTS. | xix |
|-----------|-----|
|           |     |

| 449.         | Magnetic properties of various types of iron and steel              | 369        |
|--------------|---------------------------------------------------------------------|------------|
| 450.         | " a specimen of very pure iron (0.017% C)                           | 369        |
| 451.         | " " electrical sheets                                               | 369        |
| 452.         | " " American magnet steel                                           | 370        |
| 453.         | " " a ferro-cobalt alloy                                            | 370        |
| 454.         | " " a ring sample transformer steel, weak field                     | 370        |
| 455.         | " " iron in very weak fields                                        | 370        |
| 456.         | Permeability of some specimens of Table 445                         | 371        |
| 457.         | Magnetic properties of soft iron at o° and 100° C                   | 371        |
| 458.         | " " steel at o° and 100° C                                          | 371        |
| 459.         | Magnetism and temperature, critical temperature                     | 372        |
| 460.         | Temperature variation for paramagnetic substances                   | 372        |
| 461.         | " effect on susceptibility of diamagnetic elements                  | 372        |
| 462.         | " " paramagnetic elements                                           | 372        |
| 463.         | Magnetic properties of cobalt at o° and 100° C                      | 373        |
| 464.         | " " " nickel " " " " "                                              | 373        |
| 465.         | " " magnetite                                                       | 373        |
| 466.         | " "Lowmoor wrought iron                                             | 373        |
| 467.         | " " Vicker's tool steel                                             | 373        |
| 468.         | " " Hadfield's manganese steel                                      | 373        |
| 469.         | " saturation values for steels                                      | 373        |
| 470.         | Demagnetizing factors for rods                                      | 374        |
| 471.         |                                                                     | 374        |
| 472.         | Dissipation of energy in cyclic mangetization, Steinmetz constant . | 375        |
| 473.         | Energy losses in transformer steels                                 | 376        |
| 474.         | Magnetic susceptibility                                             | 377        |
|              |                                                                     |            |
|              | Magnèto-optic Rotation                                              |            |
| 4 50 17      |                                                                     | 0          |
| 475.         | // // // 111 77 1 11                                                | 378        |
| 476.         |                                                                     | 379        |
| 477·<br>478. |                                                                     | 380        |
|              |                                                                     | 381<br>382 |
| 479.         | · · · · · · · · · · · · · · · · · · ·                               | 382        |
| 481.         |                                                                     | 383        |
| •            |                                                                     | 383        |
| 483.         |                                                                     | 383        |
| 403.         |                                                                     | 3°3        |
|              | VARIOUS MAGNETIC EFFECTS                                            |            |
| 484.         | Resistance of metals, variation in transverse magnetic field (Bi)   | 384        |
| 485.         | Increase of resistance in transverse magnetic field (Ni)            | 384        |
| 486.         |                                                                     | 384        |
| 487.         | · · · · · · · · · · · · · · · · · · ·                               | 385        |
|              |                                                                     | 385        |

|      | CATHODE AND CANAL RAYS                                                      |   |   |     |
|------|-----------------------------------------------------------------------------|---|---|-----|
| 489. | Cathode and canal rays                                                      |   |   | 38  |
|      | Speed of cathode rays                                                       |   |   | 38  |
|      | Cathodic sputtering                                                         |   |   | 38  |
|      | RÖNTGEN (X-RAYS) RAYS                                                       |   |   |     |
| 402  | X-rays, general properties                                                  |   |   | 38  |
| 493. | Röntgen secondary rays                                                      |   |   | 38  |
| 493. | Corpuscular rays                                                            |   |   | 38  |
| 494. | Intensity of X-rays; ionization                                             | • |   | 38  |
| .,.  | Mass absorption coefficients, $\lambda/d$                                   |   |   | 38  |
|      | Absorption coefficients of characteristic radiations in gases               |   |   | 38  |
|      | X-ray spectra and atomic numbers                                            |   |   |     |
| 490. | (a) K-series                                                                |   |   | 39  |
|      |                                                                             |   |   | 39  |
|      | (b) L-series                                                                |   |   | 39  |
|      | (c) M-series                                                                | • | • | 39  |
| 400  | X-ray absorption spectra and atomic numbers                                 |   |   | 39  |
| 499. | A-ray absorption spectra and atomic numbers                                 | • | • | 39. |
|      | RADIOACTIVITY                                                               |   |   |     |
| 500. | Relative phosphorescence excited by radium                                  |   |   | 39. |
| 501. | The production of $\alpha$ particles (Helium)                               |   |   | 39  |
| 502. | Heating effect of radium and its emanation                                  |   |   | 39  |
| 503. | Stopping powers of various substances for $\alpha$ rays                     |   |   | 39. |
| 504. |                                                                             |   |   | 39. |
| 305. | " $\gamma$ rays by various substances                                       |   |   | 39. |
|      | Table of miscellaneous properties                                           |   |   | 39  |
| 507. | Total number of ions produced by the $\alpha$ , $\beta$ , and $\gamma$ rays |   |   | 398 |
| 508. |                                                                             |   |   | 398 |
| 509. | Vapor pressure of the radium emanation in cm of Hg                          |   |   | 398 |
| 510. |                                                                             |   |   | 398 |
|      | Molecular, Atomic and Ionic Data                                            |   |   |     |
|      | ·                                                                           |   |   |     |
| 511. |                                                                             |   |   | 399 |
| 512. | " free paths, collision frequencies and diameters                           |   |   | 399 |
| 513. |                                                                             |   |   | 400 |
|      | Size of diffracting units in crystals                                       |   |   | 400 |
|      | Electrons; Rutherford atom; Bohr atom; Magnetic field of atom               |   | • | 401 |
|      | Electron emission from hot metals                                           | • | • | 403 |
| 517. |                                                                             |   | • | 40  |
| 518. | Ionizing potentials, resonance potentials, single line spectra              |   |   | 403 |
| 519. | Contact (Volta) potentials                                                  |   |   | 404 |
|      | (a) Electron affinity of the elements                                       |   |   | 404 |
|      | (b) Voltage of electrolytic cells                                           |   | • | 404 |
| 520. | Ionic mobilities and diffusions, — ionic mobilities                         |   |   | 40  |
|      |                                                                             |   |   |     |

CONTENTS. XXI

#### COLLOIDS

| 522. | General properties of colloids                                       | 406 |
|------|----------------------------------------------------------------------|-----|
| 523. | Molecular weights of colloids                                        | 406 |
| 524. | Brownian movement                                                    | 406 |
| 525. | Adsorption of gas by finely divided particles                        | 407 |
| 526. | Heats of adsorption                                                  | 407 |
| 527. | Molecular heats of adsorption and liquefaction                       | 407 |
|      |                                                                      |     |
| 528. | Miscellaneous constants, atomic, molecular, etc                      | 408 |
| 529. | Radiation wave-length limits                                         | 408 |
| 530. | Periodic system of the elements (Mendelejeff)                        | 409 |
| 531. | Atomic numbers                                                       | 409 |
| 532. | Periodic system of the elements and radioactive isotopes (Hackh)     | 410 |
|      |                                                                      |     |
|      | ASTRONOMICAL DATA                                                    | 4   |
| 533. | Stellar spectra and related characteristics                          | 411 |
| 534. | The Harvard spectrum classification                                  | 411 |
| 535. | Apex and velocity of solar motion                                    | 411 |
| 536. | Motion of the stars                                                  | 412 |
| 537. | Distances of the stars                                               | 412 |
| 538. | Brightness of the stars                                              | 413 |
| 539. | Masses and densities                                                 | 413 |
| 540. | Miscellaneous astronomical data                                      | 414 |
| 541. | The first-magnitude stars                                            | 415 |
| 542. | Wolf's observed sun-spot numbers, 1750 to 1917                       | 415 |
| 543. | Length of degrees on the earth's surface                             | 416 |
| 544. | Equation of time                                                     | 416 |
| 545. | Planetary data                                                       | 416 |
| 546. | Numbers and equivalent light of the stars                            | 417 |
| 547. | Albedos                                                              | 417 |
| 548. | Duration of sunshine                                                 | 417 |
| 549. | The solar constant                                                   | 418 |
| 550. | Solar spectrum energy and its transmission through the atmosphere .  | 418 |
| 551. | Intensity of solar energy in various sections of spectrum            | 418 |
| 552. | Distribution of brightness (radiation) over the solar disk           | 418 |
| 553- | Transmission of radiation through moist and dry air (see Table 376). | 419 |
| 554. | Brightness of sky at altitudes of 1730 m and sea-level               | 415 |
| 555- | Relative distribution in normal spectrum of sun and sky light        | 419 |
| 556. | Air masses                                                           | 419 |
| 557- | Relative intensity of solar radiation for various months             | 420 |
|      | METEOROLOGICAL DATA                                                  |     |
| 558. | Mean monthly and yearly temperatures for representative stations .   | 420 |
|      | The earth's atmosphere, variation with latitude, miscellaneous       | 421 |
| 201  | ,                                                                    |     |

possible of the complex relationships involving them. Further it seems desirable that the units should be extensive in nature. It has been found possible to express all measurable physical quantities in terms of five such units: 1st, geometrical considerations — length, surface, etc., — lead to the need of a length; 2nd, kinematical considerations — velocity, acceleration, etc., — introduce time; 3rd, mechanics — treating of masses instead of immaterial points — introduces matter with the need of a fundamental unit of mass; 4th, electrical, and 5th, thermal considerations require two more such quantities. The discovery of new classes of phenomena may require further additions.

As to the first three fundamental quantities, simplicity and good use sanction the choice of a length, L, a time interval, T, and a mass, M. For the measurement of electrical quantities, good use has sanctioned two fundamental quantities, — the dielectric constant, K, the basis of the "electrostatic" system and the magnetic permeability,  $\mu$ , the basis of the "electromagnetic" system. Besides these two systems involving electrical considerations, there is in common use a third one called the "international" system which will be referred to later. For the fifth, or thermal fundamental unit, temperature is generally chosen.

Derived Units. — Having selected the fundamental or basic units, — namely, a measure of length, of time, of mass, of permeability or of the dielectric constant, and of temperature, — it remains to express all other units for physical quantities in terms of these. Units depending on powers greater than unity of the basic units are called "derived units." Thus, the unit volume is the volume of a cube having each edge a unit of length. Suppose that the capacity of some volume is expressed in terms of the foot as fundamental unit and the volume number is wished when the yard is taken as the unit. The yard is three times as long as the foot and therefore the volume of a cube whose edge is a yard is  $3 \times 3 \times 3$  times as great as that whose edge is a foot. Thus the given volume will contain only 1/27 as many units of volume when the yard is the unit of length as it will contain when the foot is the unit. To transform from the foot as old unit to the yard as new unit, the old volume number must be multiplied by 1/27, or by the ratio of the magnitude of the old to that of the new unit of volume. This is the same rule as already given, but it is usually more convenient to express the transformations in terms of the fundamental units directly. In the present case, since, with the method of measurement here adopted, a volume number is the cube of a length-number, the ratio of two units of volume is the cube of the ratio of the intrinsic values of the two units of length. Hence, if l is the ratio of the magnitude of the old to that of the new unit of length, the ratio of the corresponding units of volume is  $l^3$ . Similarly the ratio of two units of area would be  $l^2$ , and so on for other quantities.

<sup>&</sup>lt;sup>1</sup> Because of its greater psychological and physical simplicity, and the desirability that the unit chosen should have extensive magnitude, it has been proposed to choose as the fourth fundamental quantity, a quantity of electrical charge, e. The standard unit of electrical charge would then be the electronic charge. For thermal needs, entropy has been proposed. While not generally so psychologically easy to grasp as temperature, entropy is of fundamental importance in thermodynamics and has extensive magnitude. (R. C. Tolman, The Measurable Quantities of Physics, Physical Review, 9, p. 237, 1917.)

Conversion Factors and Dimensional Formulae. — For the ratios of length, mass, time, temperature, dielectric constant and permeability units the small bracketed letters, [l], [m], [t],  $[\theta]$ , [k], and  $[\mu]$  will be adopted. These symbols will always represent simple numbers, but the magnitude of the number will depend on the relative magnitudes of the units the ratios of which they represent. When the values of the numbers represented by these small bracketed letters as well as the powers of them involved in any particular unit are known, the factor for the transformation is at once obtained. Thus, in the above example, the value of l was 1/3, and the power involved in the expression for volume was 3; hence the factor for transforming from cubic feet to cubic yards was  $l^3$  or 1/27. These factors will be called *conversion factors*.

To find the symbolic expression for the conversion factor for any physical quantity, it is sufficient to determine the degree to which the quantities length, mass, time, etc., are involved. Thus a velocity is expressed by the ratio of the number representing a length to that representing an interval of time, or  $\lfloor L/T \rfloor$ , and acceleration by a velocity number divided by an interval-of-time number, or  $\lfloor L/T^2 \rfloor$ , and so on, and the corresponding ratios of units must therefore enter in precisely the same degree. The factors would thus be for the just stated cases,  $\lfloor l/t \rfloor$  and  $\lfloor l/t^2 \rfloor$ . Equations of the form above given for velocity and acceleration which show the dimensions of the quantity in terms of the fundamental units are called *dimensional equations*. Thus  $\lfloor E \rfloor = \lfloor ML^2T^{-2} \rfloor$  will be found to be the dimensional equation for energy, and  $\lfloor ML^2T^{-2} \rfloor$  the dimensional formula for it. These expressions will be distinguished from the conversion factors by the use of bracketed capital letters.

In general, if we have an equation for a physical quantity,

$$Q = CL^a M^b T^c,$$

where C is a constant and L, M, T represent length, mass, and time in terms of one set of units, and it is desired to transform to another set of units in terms of which the length, mass, and time are  $L_l$ ,  $M_l$ ,  $M_l$ ,  $M_l$ , we have to find the value of  $L_l/L$ ,  $M_l/M$ ,  $M_l/M$ , which, in accordance with the convention adopted above, will be l, m, t, or the ratios of the magnitudes of the old to those of the new units.

Thus  $L_i = Ll$ ,  $M_i = Mm$ ,  $T_i = Tt$ , and if  $Q_i$  be the new quantity number,

$$\begin{aligned} Q_{I} &= CL_{I}^{a}M_{I}^{b}T_{I}^{c}, \\ &= CL^{a}l^{a}M^{b}m^{b}T^{c}t^{c} = Ql^{a}m^{b}t^{c}, \end{aligned}$$

or the conversion factor is  $[l^a m^b t^c]$ , a quantity precisely of the same form as the dimension formula  $[L^a M^b T^c]$ .

Dimensional equations are useful for checking the validity of physical equations. Since physical equations must be homogeneous, each term appearing in them must be dimensionally equivalent. For example, the distance moved by a uniformly accelerated body is  $s = v_0 t + \frac{1}{2} a t^2$ . The corresponding dimensional equation is  $[L] = [(L/T)T] + [(L/T^2)T^2]$ , each term reducing to [L].

Dimensional considerations may often give insight into the laws regulating physical phenomena.<sup>1</sup> For instance Lord Rayleigh, in discussing the intensity

<sup>&</sup>lt;sup>1</sup> See "On Physically Similar Systems; Illustrations of the Use of Dimensional Equations," E. Buckingham, Physical Review, (2) 4, p. 345, 1914.

Absolute Force of a Center of Attraction, or "Strength of a Center," is the intensity of force at unit distance from the center, and is the force per unit mass at any point multiplied by the square of the distance from the center. The dimensional formula is  $[FL^2M^{-1}]$  or  $[L^3T^{-2}]$ .

**Modulus of Elasticity** is the ratio of stress intensity to percentage strain. The dimensional of percentage strain, a length divided by a length, is unity. Hence the dimensional formula of a modulus of elasticity is that of stress intensity  $[ML^{-1}T^{-2}]$ .

**Work** is done by a force when the point of application of the force, acting on a body, moves in the direction of the force. It is measured by the product of the force and the displacement. The dimensional formula is [FL] or  $[ML^2T^{-2}]$ .

Energy. — The work done by the force produces either a change in the velocity of the body or a change of its shape or configuration, or both. In the first case it produces a change of kinetic energy, in the second, of potential energy. The dimensional formulae of energy and work, representing quantities of the same kind, are identical  $[ML^2T^{-2}]$ .

**Resilience** is the work done per unit volume of a body in distorting it to the elastic limit or in producing rupture. The dimensional formula is  $[ML^2T^{-2}L^{-3}]$  or  $[ML^{-1}T^{-2}]$ .

\*Power or Activity is the time rate of doing work, or if W represents work and P power, P = dw/dt. The dimensional formula is  $[WT^{-1}]$  or  $[ML^2T^{-3}]$ , or for problems in gravitation units more conveniently  $[FLT^{-1}]$ , where F stands for the force factor.

Exs. — Find the number of gram-cms in one ft.-pd. Here the units of force are the attraction of the earth on the pound and the gram of matter. (In problems like this the terms "grams" and "pd." refer to force and not to mass.) The conversion factor is [fl], where f is 453.59 and l is 30.48. The answer is  $453.59 \times 30.48 = 13825$ .

Find the number of ft.-poundals in 1000000 cm-dynes. Here m = 1/453.59, l = 1/30.48, l = 1;  $ml^2t^2 = 1/453.59 \times 30.48^2$ , and  $10^6ml^2t^2 = 10^6/453.59 \times 30.48^2 = 2.373$ .

If gravity produces an acceleration of 32.2 ft./sec./sec., how many watts are required to make one horse-power? One horse-power is 550 ft.-pds. per sec., or  $550 \times 32.2 = 17710$  ft.-poundals per second. One watt is  $10^7$  ergs per sec., that is,  $10^7$  dyne-cms per sec. The conversion factor is  $[ml^2t^{-8}]$ , where m is 453.59, l is 30.48, and l is 1, and the result has to be divided by  $10^7$ , the number of dyne-cms per sec. in the watt.  $17710 \ ml^2t^{-8}/10^7 = 17710 \times 453.59 \times 30.48^2/10^7 = 746.3$ .

#### HEAT UNITS.

Quantity of Heat, measured in dynamical units, has the same dimensions as energy  $[ML^2T^{-2}]$ . Ordinary measurements, however, are made in *thermal units*, that is, in terms of the amount of heat required to raise the temperature of a unit mass of water one degree of temperature at some stated temperature. This involves the unit of mass and some unit of temperature. If we denote temperature numbers by  $\Theta$ , the dimensional formula for quantity of heat, H, will be  $[M\Theta]$ . Unit volume is sometimes used instead of unit mass in the measurement of heat, the units being called *thermometric units*. The dimensional formula now changed by the substitution of volume for mass is  $[L^3\Theta]$ .

Specific Heat is the relative amount of heat, compared with water as standard substance, required to raise unit mass of different substances one degree in temperature and is a simple number.

Coefficient of Thermal Expansion of a substance is the ratio of the change of length per unit length (linear), or change of volume per unit volume (voluminal), to the change of temperature. These ratios are simple numbers, and the change of temperature varies inversely as the magnitude of the unit of temperature. The dimensional formula is  $[\Theta^{-1}]$ .

Thermal Conductivity, or Specific Conductance, is the quantity of heat, H, transmitted per unit of time per unit of surface per unit of temperature gradient. The equation for conductivity is therefore  $K = H/L^2T\Theta/L$ , and the dimensional formula  $[H/\Theta LT] = [ML^{-1}T^{-1}]$  in thermal units. In thermometric units the formula becomes  $[L^2T^{-1}]$ , which properly represents diffusivity, and in dynamical units  $[MLT^{-3}\Theta^{-1}]$ .

Thermal Capacity is mass times the specific heat. The dimensional formula is [M].

Latent Heat is the quantity of heat required to change the state of a body divided by the quantity of matter. The dimensional formula is  $[M\Theta/M]$  or  $[\Theta]$ ; in dynamical units it is  $[L^2T^{-2}]$ .

Note. — When  $\Theta$  is given the dimensional formula  $[L^2T^{-2}]$ , the formulae in thermal and dynamical units are identical.

Joule's Equivalent, J, is connected with the quantity of heat by the equation  $ML^2T^{-2}=JH$  or  $JM\Theta$ . The dimensional formula of J is  $[L^2T^{-2}\Theta^{-1}]$ . In dynamical units J is a simple number.

**Entropy** of a body is directly proportional to the quantity of heat it contains and inversely proportional to its temperature. The dimensional formula is  $[M\theta/\theta]$  or [M]. In dynamical units the formula is  $[ML^2T^{-2}\theta^{-1}]$ .

Exs. — Find the relation between the British thermal unit, the large or kilogram-calorie and the small or gram-calorie, sometimes called the "therm." Referring all the units to the same temperature of the standard substance, the *British thermal unit* is the amount of heat required to warm one pound of water 1° C, the *large calorie*, 1 kilogram of water, 1° C, the *small calorie* or *therm*, 1 gram, 1° C. (1) To find the number of kg-cals. in one British thermal unit. m = .45359,  $\theta = .5/9$ ;  $m\theta = .45359 \times 5/9 = .25199$ . (2) To find the number therms in one kg-cal. m = 1000, and  $\theta = 1$ ;  $m\theta = 1000$ . (3) Hence the number of small calories or therms in one British thermal unit is  $1000 \times .25199 = 251.99$ .

#### ELECTRIC AND MAGNETIC UNITS.

A system of units of electric and magnetic quantities requires four fundamental quantities. A system in which length, mass, and time constitute three of the fundamental quantities is known as an "absolute" system. There are two absolute systems of electric and magnetic units. One is called the electrostatic, in which the fourth fundamental quantity is the dielectric constant, and one is called the electromagnetic, in which the fourth fundamental quantity is magnetic permeability. Besides these two systems there will be described a third in common use called the "international" system.

In the electrostatic system, unit quantity of electricity, Q, is the quantity which exerts unit mechanical force upon an equal quantity a unit distance from it in a vacuum. From this definition the dimensions and the units of all the other electric and magnetic quantities follow through the equations of the mathematical theory of electromagnetism. The mechanical force between two quantities of electricity in any medium is

 $F = \frac{QQ'}{Kr^2},$ 

where K is the dielectric constant, characteristic of the medium, and r the distance between the two points at which the quantities Q and Q' are located. K is the fourth quantity entering into dimensional expressions in the electrostatic system. Since the dimensional formula for force is  $[MLT^{-2}]$ , that for Q is  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]$ .

The electromagnetic system is based upon the unit of the magnetic pole strength. The dimensions and the units of the other quantities are built up from this in the same manner as for the electrostatic system. The mechanical force between two magnetic poles in any medium is

$$F=\frac{mm'}{\mu r^2},$$

in which  $\mu$  is the permeability of the medium and r is the distance between two poles having the strengths m and m'.  $\mu$  is the fourth quantity entering into dimensional expressions in the electromagnetic system. It follows that the dimensional expression for magnetic pole strength is  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}]$ .

The symbols K and  $\mu$  are sometimes omitted in the dimensional formulae so that only three fundamental quantities appear. There are a number of objections to this. Such formulae give no information as to the relative magnitudes of the units in the two systems. The omission is equivalent to assuming some relation between mechanical and electrical quantities, or to a mechanical explanation of electricity. Such a relation or explanation is not known.

The properties K and  $\mu$  are connected by the equation  $1/\sqrt{K\mu} = v$ , where v is the velocity of an electromagnetic wave. For empty space or for air, K and  $\mu$  being measured in the same units,  $1/\sqrt{K\mu} = c$ , where c is the velocity of light in vacuo,  $3 \times 10^{10}$  cm per sec. It is sometimes forgotten that the omission of the dimensions of K or  $\mu$  is merely conventional. For instance, magnetic field intensity and magnetic induction apparently have the same dimensions when  $\mu$  is omitted. This results in confusion and difficulty in understanding the theory of magnetism. The suppression of  $\mu$  has also led to the use of the "centimeter" as a unit of capacity and of inductance; neither is physically the same as length.

#### ELECTROSTATIC SYSTEM.

Quantity of Electricity has the dimensional formula  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]$ , as shown above.

Electric Surface Density of an electrical distribution at any point on a surface is measured by the quantity per unit area. The dimensional formula is the ratio of the formulae for quantity of electricity and for area or  $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{\frac{1}{2}}]$ .

**Electric Field Intensity** is measured by the ratio of the force on a quantity of electricity at a point to the quantity of electricity. The dimensional formula is therefore the ratio of the formulae for force and electric quantity or  $[MLT^{-2}/M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]$  or  $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}]$ .

Electric Potential and Electromotive Force. — Change of potential is proportional to the work done per unit of electricity in producing the change. The dimensional formula is the ratio of the formulae for work and electrical quantity or  $[ML^2T^{-2}/M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{\frac{1}{2}}]$  or  $[M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}]$ .

Capacity of an Insulated Conductor is proportional to the ratio of the quantity of electricity in a charge to the potential of the charge. The dimensional formula is the ratio of the two formulae for electric quantity and potential or  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]$  or [LK].

Specific Inductive Capacity is the ratio of the inductive capacity of the substance to that of a standard substance and therefore is a number.

Electric Current is quantity of electricity flowing past a point per unit of time. The dimensional formula is the ratio of the formulae for electric quantity and for time or  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}/T]$  or  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}K^{\frac{1}{2}}]$ .

**Electrical Conductivity,** like the corresponding term for heat, is quantity per unit area per unit potential gradient per unit of time. The dimensional formula is  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}/L^{2}T^{-1}K^{-\frac{1}{2}}/L)T]$  or  $[T^{-1}K]$ .

**Resistivity** is the reciprocal of conductivity. The dimensional formula is  $[TK^{-1}]$ .

Conductance of any part of an electric circuit, not containing a source of electromotive force, is the ratio of the current flowing through it to the difference of potential between its ends. The dimensional formula is the ratio of the formulae for current and potential or  $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}K^{\frac{1}{2}}/M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}K^{-\frac{1}{2}}]$  or  $[LT^{-1}K]$ .

**Resistance** is the reciprocal of conductance. The dimensional formula is  $[L^{-1}TK^{-1}]$ .

Exs. — Find the factor for converting quantity of electricity expressed in ft.-grain-sec. units to the same expressed in c.g.s. units. The formula is  $[m^{\frac{1}{2}}l^{\frac{3}{2}}l^{-1}k^{\frac{1}{2}}]$ , in which m=0.0648, l=30.48, l=1, k=1; the factor is  $0.0648^{\frac{1}{2}} \times 30.48^{\frac{3}{2}}$ , or 42.8.

Find the factor required to convert electric potential from mm-mg-sec. units to c.g.s. units. The formula is  $[m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}k^{-\frac{1}{2}}]$ , in which m = 0.001, l = 0.1, l = 1, k = 1; the factor is  $0.001^{\frac{1}{2}} \times 0.1^{\frac{1}{2}}$ , or 0.01.

Find the factor required to convert electrostatic capacity from ft.-grain-sec. and specific-inductive capacity 6 units to c.g.s. units. The formula is [lk] in which l = 30.48, k = 6; the factor is  $30.48 \times 6$ , or 182.88.

#### ELECTROMAGNETIC SYSTEM.

Many of the magnetic quantities are analogues of certain electric quantities. The dimensions of such quantities in the electromagnetic system differ from those of the corresponding electrostatic quantities in the electrostatic system only in the substitution of permeability  $\mu$  for K.

ence standards are accurately compared copies, not necessarily duplicates, of the primaries for use in the work of standardizing laboratories and the production of working standards for everyday use.

Standard of Length. — The primary standard of length which now almost universally serves as the basis for physical measurements is the meter. It is defined as the distance between two lines at o° C on a platinum-iridium bar deposited at the International Bureau of Weights and Measures. This bar is known as the International Prototype Meter, and its length was derived from the "métre des Archives," which was made by Borda. Borda, Delambre, Laplace, and others, acting as a committee of the French Academy, recommended that the standard unit of length should be the ten-millionth part of the length, from the equator to the pole, of the meridian passing through Paris. In 1795 the French Republic passed a decree making this the legal standard of length, and an arc of the meridian extending from Dunkirk to Barcelona was measured by Delambre and Mechain for the purpose of realizing the standard. From the results of that measurement the meter bar was made by Borda. The meter is now defined as above and not in terms of the meridian length; hence subsequent measures of the length of the meridian have not affected the length of the meter.

Standard of Mass. — The primary standard of mass now almost universally used as the basis for physical measurements is the kilogram. It is defined as the mass of a certain piece of platinum-iridium deposited at the International Bureau of Weights and Measures. This standard is known as the International Prototype Kilogram. Its mass is equal to that of the older standard, the "kilogram des Archives," made by Borda and intended to have the same mass as a cubic decimeter of distilled water at the temperature of 4° C.

Copies of the International Prototype Meter and Kilogram are possessed by the various governments and are called National Prototypes.

Standard of Time. — The unit of time universally used is the second. It is the mean solar second, or the 86400th part of the mean solar day. It is founded on the average time required for the earth to make one rotation on its axis relatively to the sun as a fixed point of reference.

Standard of Temperature. — The standard scale of temperature as adopted by the International Committee of Weights and Measures (1887) depends on the constant-volume hydrogen thermometer. The hydrogen is taken at an initial pressure at o° C of one meter of mercury, o° C, sea-level at latitude 45°. The scale is defined by designating the temperature of melting ice as o° and of condensing steam as 100° under standard atmospheric pressure. This is known as the Centigrade scale (abbreviated C).

A scale independent of the properties of any particular substance, and called the thermodynamic, or absolute scale, was proposed in 1848 by Lord Kelvin. In it the temperature is proportional to the average kinetic energy per molecule of a perfect gas. The temperature of melting ice is taken as 273.13°, that of the boiling point, 373.13°. The scale of the hydrogen thermometer varies from it only in the sense that the behavior of hydrogen departs from that of a perfect gas. It is customary to refer to this scale as the Kelvin scale (abbreviated K).

#### NUMERICALLY DIFFERENT SYSTEMS OF UNITS.

The fundamental physical quantities which form the basis of a system for measurements have been chosen and the fundamental standards selected and made. Custom has not however generally used these standards for the measurement of the magnitudes of quantities but rather multiples or submultiples of them. For instance, for very small quantities the micron  $(\mu)$  or one-millionth of a meter is often used. The following table <sup>1</sup> gives some of the systems proposed, all built upon the fundamental standards already described. The centimeter-gram-second (cm-g-sec. or c.g.s.) system proposed by Kelvin is the only one generally accepted.

TABLE I.
PROPOSED SYSTEMS OF UNITS.

|        | Weber • and Gauss | Kelvin<br>c.g.s. | Moon<br>1891 | Giorgi<br>MKS<br>(Prim.<br>Stds.) | France<br>1914    | B. A.<br>Com.,<br>1863 | Practical<br>(B. A.<br>Com.,<br>1873) | Strout<br>1891     |
|--------|-------------------|------------------|--------------|-----------------------------------|-------------------|------------------------|---------------------------------------|--------------------|
| Length | mm                | cm               | dm           | m                                 | m                 | m                      | 10 <sup>9</sup> cm                    | 10 <sup>9</sup> cm |
| Mass   | mg                | g                | Kg           | Kg                                | 10 <sup>6</sup> g | g                      | 10 <sup>-11</sup> g                   | 10 <sup>-9</sup> g |
| Time   | sec.              | sec.             | sec.         | sec.                              | sec.              | sec.                   | sec.                                  | sec.               |

Further the choice of a set of fundamental physical quantities to form the basis of a system does not necessarily determine how that system shall be used in measurements. In fact, upon any sufficient set of fundamental quantities, a great many different systems of units may be built. The electrostatic and electromagnetic systems are really systems of electric quantities rather than units. They were based upon the relationships  $F = QQ'/Kr^2$  and  $mm'/\mu r^2$ , respectively. Systems of units built upon a chosen set of fundamental physical quantities may differ in two ways: (1) the units chosen for the fundamental quantities may be different; (2) the defining equations by which the system is built may be different.

The electrostatic system generally used is based on the centimeter, gram, second, and dielectric constant of a vacuum. Other systems have appeared, differing from this in the first way, — for instance using the foot, grain and second in place of the centimeter, gram and second. A system differing from it in the second way is that of Heaviside which introduces the factor  $4\pi$  at different places than is usual in the equations. There are similarly several systems of electromagnetic units in use.

Gaussian Systems. — "The complexity of the interrelations of the units is increased by the fact that not one of the systems is used as a whole, consistently for all electromagnetic quantities. The 'systems' at present used are therefore combinations of certain of the systems of units.

<sup>&</sup>lt;sup>1</sup> Circular 60 of the Bureau of Standards, Electric Units and Standards, 1916. The subsequent matter in this introduction is based upon this circular.

"Some writers 1 on the theory of electricity prefer to use what is called a Gaussian system, a combination of electrostatic units for purely electrical quantities and electromagnetic units for magnetic quantities. There are two such Gaussian systems in vogue, — one a combination of c.g.s. electrostatic and c.g.s electromagnetic systems, and the other a combination of the two corresponding Heaviside systems.

"When a Gaussian system is used, caution is necessary when an equation contains both electric and magnetic quantities. A factor expressing the ratio between the electrostatic and electromagnetic units of one of the quantities has to be introduced. This factor is the first or second power of c, the number of electrostatic units of electric charge in one electromagnetic unit of the same. There is sometimes a question as to whether electric current is to be expressed in electrostatic or electromagnetic units, since it has both electric and magnetic attributes. It is usually expressed in electrostatic units in the Gaussian system."

It may be observed from the dimensions of K given in Table 1 that  $[1/K\mu] = [L^2/T^2]$  which has the dimensions of a square of a velocity. This velocity was found experimentally to be equal to that of light, when K and  $\mu$  were expressed in the same system of units. Maxwell proved theoretically that  $1/\sqrt{K\mu}$  is the velocity of any electromagnetic wave. This was subsequently proved experimentally. When a Gaussian system is used, this equation becomes  $c/\sqrt{K\mu} = v$ . For the ether K = 1 in electrostatic units and  $\mu = 1$  in electromagnetic units. Hence c = v for the ether, or the velocity of an electromagnetic wave in the ether is equal to the ratio of the c.g.s. electromagnetic to the c.g.s. electrostatic unit of electric charge. This constant c is of primary importance in electrical theory. Its most probable value is  $2.9986 \times 10^{10}$  centimeters per second.

"Practical" Electromagnetic System. — This electromagnetic system is based upon the units of  $10^9$  cm,  $10^{-11}$  gram, the sec. and  $\mu$  of the ether. It is never used as a complete system of units but is of interest as the historical basis of the present International System. The principal quantities are the resistance unit, the ohm =  $10^9$  c.g.s. units; the current unit, the ampere =  $10^{-1}$  c.g.s. units; and the electromotive force unit, the volt =  $10^8$  c.g.s. units.

The International Electric Units. — The units used in practical measurements, however, are the "International Units." They were derived from the "practical" system just described, or as the latter is sometimes called, the "absolute" system. These international units are based upon certain concrete standards presently to be defined and described. With such standards electrical comparisons can be more accurately and readily made than could absolute measurements in terms of the fundamental units. Two electric units, the international ohm and the international ampere, were chosen and made as nearly equal as possible to the ohm and ampere of the "practical" or "absolute" system.

<sup>&</sup>lt;sup>1</sup> For example, A. G. Webster, "Theory of Electricity and Magnetism," 1897; J. H. Jeans, "Electricity and magnetism," 1911; H. A. Lorentz, "The Theory of Electrons," 1909; and O. W. Richardson, "The Electron Theory of Matter," 1914.

This system of units, sufficiently near to the "absolute" system for the purpose of electrical measurements and as a basis for legislation, was defined as follows:

- "1. The *International Ohm* is the resistance offered to an unvarying electric current by a column of mercury at the temperature of melting ice, 14.4521 grams in mass, of a constant cross-sectional area and of a length of 106.300 centimeters.
- "2. The *International Ampere* is the unvarying electric current which, when passed through a solution of nitrate of silver in water, in accordance with specification II attached to these Resolutions, deposits silver at the rate of 0.00111800 of a gram per second.
- "3. The *International Volt* is the electrical pressure which, when steadily applied to a conductor the resistance of which is one international ohm will produce a current of one international ampere.
- "4. The *International Watt* is the energy expended per second by an unvarying electric current of one international ampere under the pressure of one international volt."

In accordance with these definitions, a value was established for the electromotive force of the recognized standard of electromotive force, the Weston normal cell, as the result of international coöperative experiments in 1910. The value was 1.0183 international volts at 20° C.

The definitions by the 1908 International Conference supersede certain definitions adopted by the International Electrical Congress at Chicago in 1893. Certain of the units retain their Chicago definitions, however. They are as follows:

- "Coulomb. As a unit of quantity, the International Coulomb, which is the quantity of electricity transferred by a current of one international ampere in one second.
- "Farad. As a unit of capacity, the International Farad, which is the capacity of a condenser, charged to be a potential of one international volt by one international coulomb of electricity.
- "Joule. As a unit of work, the Joule, which is equal to ro<sup>7</sup> units of work in the c.g.s. system, and which is represented sufficiently well for practical use by the energy expended in one second by an international ampere in an international ohm.
- "Henry. As the unit of induction, the Henry, which is the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second."

"The choice of the ohm and ampere as fundamental was purely arbitrary. These are the two quantities directly measured in absolute electrical measurements. The ohm and volt have been urged as more suitable for definition in terms of arbitrary standards, because the primary standard of electromotive force (standard cell) has greater simplicity than the primary standard of current (silver voltameter). The standard cell is in fact used, together with resistance standards, for the actual maintenance of the units, rather than the silver voltameter and resistance standards. Again, the volt and ampere have some claim

for consideration for fundamental definition, both being units of quantities more fundamental in electrical theory than resistance."

For all practical purposes the "international" and the "practical" or "absolute" units are the same. Experimental determination of the ratios of the corresponding units in the two systems have been made and the mean results are given in Table 382. These ratios represent the accuracy with which it was possible to fix the values of the international ohm and ampere at the time they were defined (London Conference of 1908). It is unlikely that the definitions of the international units will be changed in the near future to make the agreement any closer. An act approved July 12, 1894, makes the International units as above defined the legal units in the United States of America.

## THE STANDARDS OF THE INTERNATIONAL ELECTRICAL UNITS.

#### RESISTANCE

Resistance. — The definition of the international ohm adopted by the London Conference in 1908 is accepted practically everywhere.

Mercury Standards. — Mercury standards conforming to the definition were constructed in England, France, Germany, Japan, Russia and the United States. Their mean resistances agree to about two parts in 100,000. To attain this accuracy, elaborate and painstaking experiments were necessary. Tubes are never quite uniform in cross-section; the accurate measurement of the mass of mercury filling the tube is difficult, partly because of a surface film on the walls of the tube; the greatest refinements are necessary in determining the length of the tube. In the electrical comparison of the resistance with wire standards, the largest source of error is in the filling of the tube. These and other sources of error necessitated a certain uniformity in the setting up of mercury standards and at the London Conference the following specifications were drawn up:

#### SPECIFICATION RELATING TO MERCURY STANDARDS OF RESISTANCE.

The glass tubes used for mercury standards of resistance must be made of a glass such that the dimensions may remain as constant as possible. The tubes must be well annealed and straight. The bore must be as nearly as possible uniform and circular, and the area of cross-section of the bore must be approximately one square millimeter. The mercury must have a resistance of approximately one ohm.

Each of the tubes must be accurately calibrated. The correction to be applied to allow for the area of the cross-section of the bore not being exactly the same at all parts of the tube must not exceed 5 parts in 10,000.

The mercury filling the tube must be considered as bounded by plane surfaces placed in contact with the ends of the tube.

The length of the axis of the tube, the mass of mercury the tube contains, and the electrical resistance of the mercury are to be determined at a temperature as near to o° C as possible. The measurements are to be corrected to o° C.

For the purpose of the electrical measurements, end vessels carrying connections for the current and potential terminals are to be fitted on to the tube. These end vessels are to be spherical in shape (of a diameter of approximately four centimeters) and should have cylindrical pieces attached to make connections with the tubes. The outside edge of each end of the tube

is to be coincident with the inner surface of the corresponding end vessel. The leads which make contact with the mercury are to be of thin platinum wire fused into glass. The point of entry of the current lead and the end of the tube are to be at opposite ends of a diameter of the bulb; the potential lead is to be midway between these two points. All the leads must be so thin that no error in the resistance is introduced through conduction of heat to the mercury. The filling of the tube with mercury for the purpose of the resistance measurements must be carried out under the same conditions as the filling for the determination of the mass.

The resistance which has to be added to the resistance of the tube to allow for the effect of the end vessels is to be calculated by the formula

$$A = \frac{0.80}{1063\pi} \left( \frac{1}{r_1} + \frac{1}{r_2} \right) \text{ ohm,}$$

where  $r_1$  and  $r_2$  are the radii in millimeters of the end sections of the bore of the tube.

The mean of the calculated resistances of at least five tubes shall be taken to determine the value of the unit of resistance.

For the purpose of the comparison of resistances with a mercury tube the measurements shall be made with at least three separate fillings of the tube.

Secondary Standards. — Secondary standards, derived from the mercury standards and used to give values to working standards, are certain coils of manganin wire kept in the national laboratories. Their resistances are adjusted to correspond to the unit or its decimal multiples or submultiples. The values assigned to these coils are checked from time to time with the similar coils of the other countries. The value now in use is based on the comparison made at the U. S. Bureau of Standards in 1910 and may be called the "1910 ohm." Later measurements on various mercury standards checked the value then used within 2 parts in 100,000. Thus the basis of resistance measurement is maintained not by the mercury standards of a single laboratory, but by all the mercury standards of the various national laboratories; it is furthermore the same in all countries, except for very slight outstanding discrepancies due to the errors of measurement and variations of the standards with time.

Resistance Standards in Practice. — In ordinary measurements, working standards of resistance are usually coils of manganin wire (approximately 84 per cent Cu + 12 per cent Mn + 4 per cent Ni). They are generally used in oil which carries away the heat developed by the current and facilitates regulation and measurement of the temperature. The best type is inclosed in a sealed case for protection against atmospheric humidity. Varying humidity changes the resistance of open coils often to several parts in 10,000 higher in summer than in winter. While sealed r ohm and 0.1 ohm coils may remain constant to about 1 part in 100,000.

Absolute Ohm. — The absolute measurement of resistance involves the precise determination of a length and a time (usually an angular velocity) in a medium of unit permeability. Since the dimensional formula of resistance in the electromagnetic system is  $\lfloor L\mu/T \rfloor$ , such an absolute measurement gives R not in cm/sec. but in cm  $\times \mu$ /sec. The definitions of the ohm, ampere and volt by the 1908 London conference tacitly assume a permeability equal to unity. The relation of the international ohm to the absolute ohm has been measured in different ways involving revolving coil, revolving disk, and alternate current methods. Probably the most accurate determination was made

in 1913 by F. E. Smith of the National Physical Laboratory of England, using a modification of the Lorentz revolving disk method. His result was

1 international ohm = 1.00052 ± 0.00004 absolute ohms,

or, in other words, while one international ohm is represented by a mercury column 106.300 cm long as specified above, one absolute ohm requires a similar column 106.245 cm long. Table 305 of the 6th revised edition of these tables contains data relative to the various determinations of the ohm.

#### CURRENT.

The Silver Voltameter. — The silver voltameter is a concrete means of measuring current in accordance with the definition of the international ampere. As used for the realization of the international ampere "it consists of a platinum cathode in the form of a cup holding the silver nitrate solution, a silver anode partly or wholly immersed in the solution, and some means to prevent anode slime and particles of silver mechanically detached from the anode from reaching the cathode. As a standard representing the international ampere, the silver voltameter includes also the chronometer used to measure time. The degree of purity and the mode of preparation of the various parts of the voltameter affect the mass of the deposit. There are numerous sources of error, and the suitability of the silver voltameter as a primary standard of current has been under investigation since 1803. Differences of as much as 0.1 per cent or more may be obtained by different procedures, the larger differences being mainly due to impurities produced in the electrolyte (by filter paper, for instance). Hence, in order that the definition of current be precise, it must be accompanied by specifications for using the voltameter."

The original specifications were recognized to be inadequate and an international committee on electrical units and standards was appointed to complete the specifications. It was also recognized that in practice standard cells would replace secondary current standards so that a value must be fixed for the electromotive force of the Weston normal cell. This was attempted in 1910 at the Bureau of Standards by representatives of that institution together with one delegate each from the Physikalische-Technische Reichanstalt, The National Physical Laboratory and the Laboratoire Central d'Electricité. Voltameters from all four institutions were put in series under a variety of experimental conditions. Standard Weston cells and resistance standards of the four laboratories were also intercompared. From the joint comparison of standard cells and silver voltameters particular values were assigned to the standard cells from each laboratory. The different countries thus have a common basis of measurement maintained by the aid of standard cells and resistance standards derived from the international voltameter investigation of 1910.

It was not found possible to draw up satisfactory and final specifications for the silver voltameter. Provisional specifications were submitted by the U. S. Bureau of Standards and more complete specifications have been proposed in correspondence between the national laboratories and members of the international committee since 1910, but no agreement upon final specifications has yet been reached.

Resistance Standards Used in Current Measurements. — Precise measurements of currents require a potentiometer, a standard cell and a resistance standard. The resistance must be so designed as to carry the maximum current without undue heating and consequent change of resistance. Accordingly the resistance metal must have a small temperature resistance coefficient and a sufficient area in contact with the air, oil, or other cooling fluid. It must have a small thermal electromotive force against copper. Manganin satisfies these conditions and is usually used. The terminals of the standard must have sufficient contact area so that there shall be no undue heating at contacts.¹ It must be so designed that the current distribution does not depend upon the mode of connection to the circuit.

Absolute Ampere. — The absolute ampere ( $10^{-1}$ c.g.s. electromagnetic units) differs by a negligible amount from the international ampere. Since the dimensional formula of the current in the electromagnetic system is  $[L^{\frac{1}{2}}M^{\frac{1}{2}}/T\mu^{\frac{1}{2}}]$  which is equivalent to  $[F^{\frac{1}{2}}/\mu^{\frac{1}{2}}]$ , the absolute measurement of current involves fundamentally the measurement of a force in a medium of unit permeability. In most measurements of high precision an electrodynamometer has been used of the form known as a current balance. A summary of the various determinations will be found in Table 293 of the 6th Revised Edition of these tables.

The best value is probably the mean of the determinations made at the U. S. Bureau of Standards, the National Physical Laboratory and at the University of Gröningen, which gives

1 international ampere = 0.99991 absolute ampere.

The separate values were 0.99992, 0.99988 and 0.99994, respectively. "The result may also be expressed in terms of the electrochemical equivalent of silver, which, based on the '1910 mean voltameter,' thus equals 0.00111810 g per absolute coulomb. By the definition of the international ampere, the value is 0.00111800 g per international coulomb."

#### ELECTROMOTIVE FORCE.

International Volt. — "The international volt is derived from the international ohm and ampere by Ohm's law. Its value is maintained by the aid of the Weston normal cell. The national standardizing laboratories have groups of such cells, to which values in terms of the international ohm and ampere have been assigned by international experiments, and thus form a basis of reference for the standardization of the standard cells used in practical measurements."

Weston Normal Cell. — The Weston normal cell is the standard used to maintain the international volt and, in conjunction with resistance standards, to maintain the international ampere. The cell is a simple voltaic combination

<sup>&</sup>lt;sup>1</sup> See "Report to the International Committee on Electrical Units and Standards," 1912, p. 199. For the Bureau of Standards investigations see Bull. Bureau of Standards, 9, pp. 209, 493; 10, p. 475, 1912-14; 13, p. 147, 1915; 9, p. 151, 1912: 13, pp. 447, 479, 1916.

difference which exists between the terminals of a resistance of one *international* ohm when the latter carries a current of one *absolute* ampere. The emf of the Weston normal cell may be taken as 1.01821 semi-absolute volts at 20° C.

### QUANTITY OF ELECTRICITY.

The international unit of quantity of electricity is the coulomb. The faraday is the quantity of electricity necessary to liberate 1 gram equivalent in electrolysis. It is equivalent to 96,500 coulombs.

Standards. — There are no standards of electric quantity. The silver voltameter may be used for its measurement since under ideal conditions the mass of metal deposited is proportional to the amount of electricity which has flowed.

#### CAPACITY.

The unit generally used for capacity is the international microfarad or the one-millionth of the international farad. Capacities are commonly measured by comparison with standard capacities. The values of the standards are determined by measurement in terms of resistance and time. The standard is some form of condenser consisting of two sets of metal plates separated by a dielectric. The condenser should be surrounded by a metal shield connected to one set of plates rendering the capacity independent of the surroundings. An ideal condenser would have a constant capacity under all circumstances, with zero resistance in its leads and plates, and no absorption in the dielectric. Actual condensers vary with the temperature, atmospheric pressure, and the voltage, frequency, and time of charge and discharge. A well-constructed air condenser with heavy metal plates and suitable insulating supports is practically free from these effects and is used as a standard of capacity.

Practically air condenser plates must be separated by 1 mm or more and so cannot be of great capacity. The more the capacity is increased by approaching the plates, the less the mechanical stability and the less constant the capacity. Condensers of great capacity use solid dielectrics, preferably mica sheets with conducting plates of tinfoil. At constant temperature the best mica condensers are excellent standards. The dielectric absorption is small but not quite zero, so that the capacity of these standards with different methods of measurement must be carefully determined.

#### INDUCTANCE.

The henry, the unit of self-inductance, is also the unit of mutual inductance. The henry has been known as the "quadrant" and the "secohm." The length of a quadrant or quarter of the earth's circumference is approximately 109 cms. and a henry is 109 cms. of inductance. Secohm is a contraction of second and ohm; the dimensions of inductance are [TR] and this unit is based on the second and ohm.

Inductance Standards. — Inductance standards are measured in international units in terms of resistance and time or resistance and capacity by alternate-

current bridge methods. Inductances calculated from dimensions are in absolute electromagnetic units. The ratio of the international to the absolute henry is the same as the ratio of the corresponding ohms.

Since inductance is measured in terms of capacity and resistance by the bridge method about as simply and as conveniently as by comparison with standard inductances, it is not necessary to maintain standard inductances. They are however of value in magnetic, alternating-current, and absolute electrical measurements. A standard inductance is a circuit so wound that when used in a circuit it adds a definite amount of inductance. It must have either such a form or so great an inductance that the mutual inductance of the rest of the circuit upon it may be negligible. It usually is a wire coil wound all in the same direction to make self-induction a maximum. A standard, the inductance of which may be calculated from its dimensions, should be a single layer coil of very simple geometrical form. Standards of very small inductance, calculable from their dimensions, are of some simple device, such as a pair of parallel wires or a single turn of wire. With such standards great care must be used that the mutual inductance upon them of the leads and other parts of the circuit is negligible. Any inductance standard should be separated by long leads from the measuring bridge or other apparatus. It must be wound so that the distributed capacity between its turns is negligible; otherwise the apparent inductance will vary with the frequency.

#### POWER AND ENERGY.

Power and energy, although mechanical and not primarily electrical quantities, are measurable with greater precision by electrical methods than in any other way. The watt and the electric units were so chosen in terms of the c.g.s. units that the product of the current in amperes by the electromotive force in volts gives the power in watts (for continuous or instantaneous values). The international watt, defined as "the energy expended per second by an unvarying electric current of one international ampere under an electric pressure of one international volt," differs but little from the absolute watt.

Standards and Measurements. — No standard is maintained for power or energy. Measurements are always made in electrical practice in terms of some of the purely electrical quantities represented by standards.

#### MAGNETIC UNITS.

C.G.S. units are generally used for magnetic quantities. American practice is fairly uniform in names for these units: the c.g.s. unit of magnetomotive force is called the "gilbert," of reluctance, the "oersted," following the provisional definitions of the American Institute of Electrical Engineers (1894). The c.g.s. unit of flux is called the "maxwell" as defined by the 1900 Paris conference. The name "gauss" is used unfortunately both for the unit of induction (A.I.E.E. 1894) and for the unit of magnetic field intensity or magnetizing force. "This double usage, recently sanctioned by engineering societies, is based upon the mathematical convenience of defining both induction and magnetizing force

as the force on a unit magnetic pole in a narrow cavity in the material, the cavity being in one case perpendicular, in the other parallel, to the direction of the magnetization: this definition however applies only in the ordinary electromagnetic units. There are a number of reasons for considering induction and magnetizing force as two physically distinct quantities, just as electromotive force and current are physically different."

In the United States "gauss" has been used much more for the c.g.s. unit of induction than for the unit of magnetizing force. The longer name of "maxwell per cm²" is also sometimes used for this unit when it is desired to distinguish clearly between the two quantities. The c.g.s. unit of magnetizing force is usually called the "gilbert per cm."

A unit frequently used is the ampere-turn. It is a convenient unit since it eliminates  $4\pi$  in certain calculations. It is derived from the "ampere turn per cm." The following table shows the relations between a system built on the ampere-turn and the ordinary magnetic units.<sup>1</sup>

TABLE II.

THE ORDINARY AND THE AMPERE-TURN MAGNETIC UNITS.

| Quantity                                                                     |                  | Ordinary<br>magnetic<br>units.             | Ampere-turn<br>units.                                           | Ordinary<br>units in 1<br>ampere-<br>turn unit |
|------------------------------------------------------------------------------|------------------|--------------------------------------------|-----------------------------------------------------------------|------------------------------------------------|
| Magnetomotive force<br>Magnetizing force                                     | F                | Gilbert per                                | Ampere-turn<br>Ampere-turn per                                  | $4\pi/10$ $4\pi/10$                            |
| Magnetic flux Magnetic induction  Permeability Reluctance                    | Φ<br>B<br>μ<br>R | cm. Maxwell Maxwell per cm.² Gauss Oersted | cm. Maxwell  Maxwell per cm.²  Gauss   Ampere-turn per  Maxwell | 1<br>1<br>4π/10                                |
| Magnetization intensity<br>Magnetic susceptibility<br>Magnetic pole strength | J<br>κ<br>m      |                                            | Maxwell per cm. <sup>2</sup> Maxwell                            | 1/4π<br>1/4π<br>1/4π                           |

<sup>&</sup>lt;sup>1</sup> Dellinger, International System of Electric and Magnetic Units, Bull. Bureau of Standards, 13. p. 599, 1916.

# PHYSICAL TABLES

#### SPELLING AND ABBREVIATIONS OF THE COMMON UNITS OF WEIGHT AND MEASURE.

The spelling of the metric units is that adopted by the International Committee on Weights and Measures and given in the law legalizing the metric system in the United States (1866). The period is omitted after the metric abbreviations but not after those of the customary system. The exponents "2" and "3" are used to signify area and volume respectively in the metric units. The use of the same abbreviation for singular and plural is recommended. It is also suggested that only small letters be used for abbreviations except in the case of A. for acre, where the use of the capital letter is general. The following list is taken from circular 87 of the U. S. Bureau of Standards.

| • Unit.                 | Abbreviation.   | Unit.                  | Abbreviation.   |
|-------------------------|-----------------|------------------------|-----------------|
| acre                    | A               | kilogram               | kg              |
| are                     | a               | kiloliter              | kl              |
| avoirdupois             | av.             | kilometer              | km              |
| barrel                  | bbl.            | link                   | li.             |
| board foot              | bd. ft.         | liquid                 | lig.            |
| bushel                  | bu.             | - liter                | 1               |
| carat, metric           | c               | meter                  | m               |
| centare                 | ca              | metric ton             | t               |
| centigram               | cg              | micron                 | μ               |
| centiliter              | cl              | mile                   | mi.             |
| centimeter              | cm              | milligram              | mg              |
| chain                   | ch.             | milliliter             | ml              |
| cubic centimeter        | cm <sup>3</sup> | millimeter             | mm              |
| cubic decimeter         | dm³             | millimicron            | mμ              |
| cubic dekameter         | dkm³            | minim                  | min. or m       |
| cubic foot              | cu. ft.         | ounce                  | OZ.             |
| cubic hectometer        | hm³             | ounce, apothecaries'   | oz. ap. or 3    |
| cubic inch              | cu. in.         | ounce, avoirdupois     | oz, av.         |
| cubic kilometer         | km³             | ounce, fluid           | fl. oz.         |
| cubic meter             | m³              | ounce, troy            | oz. t.          |
| cubic mile              | cu. mi.         | peck                   | pk.             |
| cubic millimeter        | mm <sup>3</sup> | pennyweight            | dwt.            |
| cubic yard              | cu. yd.         | pint                   | pt.             |
| decigram                | dg              | pound                  | lb.             |
| deciliter               | dľ              | pound, apothecaries'   | lb. ap.         |
| decimeter               | dm              | pound, avoirdupois     | lb. av.         |
| decistere               | ds              | pound, troy            | lb. t.          |
| dekagram                | dkg             | quart                  | qt.             |
| dekaliter               | dkl             | rod                    | rd.             |
| dekameter               | dkm             | scruple, apothecaries' | s. ap. or D     |
| dekastere               | dks             | square centimeter      | cm <sup>2</sup> |
| dram                    | dr.             | square chain           | sq. ch.         |
| dram, apothecaries'     | dr. ap. or 3    | square decimeter       | dm²             |
| dram, avoirdupois       | dr. av.         | square dekameter       | dkm²            |
| dram, fluid             | fl. dr.         | square foot            | sg. ft.         |
| fathom                  | fath.           | square hectometer      | hm²             |
| foot                    | ft.             | square inch            | sq. in.         |
| firkin                  | fir.            | square kilometer       | km²             |
| furlong                 | fur.            | square meter           | m²              |
| gallon                  | gal.            | square mile            | sq. mi.         |
| grain                   | gr.             | square millimeter      | mm²             |
| gram                    | g               | square rod             | sq. rd.         |
| hectare                 | ha              | square yard            | sq. yd.         |
| hectogram<br>hectoliter | hg<br>hl        | stere                  | s<br>tn.        |
|                         | hm              | ton metric             |                 |
| hectometer              | nm<br>hhd.      | ton, metric            | t<br>t          |
| hogshead                | cwt.            | troy                   | t.              |
| hundredweight<br>inch   | in.             | yard                   | yd.             |
| HICH                    | 111.            |                        |                 |

#### FUNDAMENTAL AND DERIVED UNITS.

#### Conversion Factors.

To change a quantity from one system of units to another: substitute in the corresponding conversion factor from the following table the ratios of the magnitudes of the old units to the new and multiply the old quantity by the resulting number. For example: to reduce velocity in miles per hour to feet per second, the conversion factor is  $lt^{-1}$ ; l = 5280/1, t = 3600/1, and the factor is 5280/3600 or 1.467. Or we may proceed as follows: e. g., to find the equivalent of 1 c.g.s. unit of angular momentum in the pd.ft.m. unit, from the Table 1 g cm²/sec.=x lb. ft.²/min, where x is the factor sought. Solving, x = 1g/lb.  $\times cm²/ft.² \times min./sec.=1 \times .002205 \times .001076 \times 60=.0001425$ .

The dimensional formulæ lack one quality which is needed for completeness, an indication of their vector characteristics; such characteristics distinguish plane and solid angle, torque and

energy, illumination and brightness.

### (a) FUNDAMENTAL UNITS.

The fundamental units and conversion factors in the systems of units most commonly used are: Length [l]; Mass [m]; Time [l]; Temperature [l]; and for the electrostatic system, Dielectric Constant [l]; for the electromagnetic system, Permeability [l]. The formulae will also be given for the International System of electric and magnetic units based on the units length, resistance [l], current [l], and time.

#### (b) DERIVED UNITS.

| Name of unit.                                            | Conversion factor. [m²lvi²] |              |                                                | Name of units. (Heat and light.)                                        | Conversion factor. [m:lvt:\theta v] |                     |          |                |  |
|----------------------------------------------------------|-----------------------------|--------------|------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------|---------------------|----------|----------------|--|
| dynamical.)                                              | x                           | x y z        |                                                |                                                                         | x                                   | y                   | z        | r              |  |
| Area, surface<br>Volume<br>Angle                         | 0 0 0                       | 2<br>3<br>0  | 0 0                                            | Quantity of heat:<br>thermal unitsthermometric units<br>dynamical units | IOI                                 | 0 3 2               | 0 0 -2   | I              |  |
| Solid angle                                              | 0 0 0                       | 0<br>-I<br>0 | 0<br>0<br>-I                                   | Coefficient of thermal expansion                                        | 0                                   | 0                   | 0        | -1             |  |
| Linear velocity Angular acceleration Linear acceleration | 0 0                         | I<br>0<br>I  | -I<br>-2<br>-2                                 | Thermal conductivity: thermal units thermometric units or diffusivity   | 1 0                                 | -I<br>2             | -1<br>-1 | 0              |  |
| Density  Moment of inertia Intensity of attraction       | I                           | -3<br>2<br>1 | 0<br>0<br>-2                                   | dynamical units  Thermal capacity                                       | I                                   | 0                   | -3       | 0              |  |
| Momentum Moment of momentum Angular momentum             | I                           | 1<br>2<br>2  | -I<br>-I                                       | Latent heat: thermal units dynamical units                              | 0 0                                 | 0 2                 | 0<br>-2  | I<br>0         |  |
| Force                                                    | I                           | 2            | -2<br>-2                                       | Joule's equivalent  Entropy: heat in thermal units                      | 0                                   | 2                   | -2       | I              |  |
| Work, energy  Power, activity Intensity of stress        | I                           | 2<br>2<br>-I | $\begin{vmatrix} -2 \\ -3 \\ -2 \end{vmatrix}$ | heat in thermal units<br>heat in dynamical<br>units                     | I                                   | 2                   | O<br>-2  | ı              |  |
| Modulus of elasticity  Compressibility Resilience        | -I                          | -I           | $\begin{vmatrix} -2 \\ 2 \\ -2 \end{vmatrix}$  | Luminous intensity Illumination Brightness Visibility                   |                                     | 0<br>-2<br>-2<br>-2 | 0 0 0 3  | I*<br>I*<br>I* |  |
| Viscosity                                                | I                           | -1           | -1                                             | Luminous efficiency                                                     | -I                                  | -2                  | 3        | 1*             |  |

<sup>\*</sup> For these formulæ the numbers in the last column are the exponents of F where F refers to the luminous flux. For definitions of these quantities see Table 299, page 259.

#### FUNDAMENTAL AND DERIVED UNITS.

#### Conversion Factors.

(b) DERIVED UNITS.

|                                                                              | -                          |         |                                      |                |                                              | a la company     |                                                  |                |                                              |                                                        | -           | _           |                   |              |
|------------------------------------------------------------------------------|----------------------------|---------|--------------------------------------|----------------|----------------------------------------------|------------------|--------------------------------------------------|----------------|----------------------------------------------|--------------------------------------------------------|-------------|-------------|-------------------|--------------|
|                                                                              |                            |         |                                      |                |                                              | Co               | NVE:                                             | RSIO           | N FAC                                        | CTOR.                                                  |             |             |                   |              |
| Name of Unit.                                                                | Sym-<br>bol.*              | 1       | Electi                               | rosta          |                                              | Ele              |                                                  | mag<br>tem.    | netic                                        | emu                                                    | ]           |             | natio<br>stem     |              |
| (Electric and magnetic.)                                                     |                            |         | $m^x$                                | lut²k          | v                                            |                  | $m^{xl}$                                         | νt²μι          |                                              | †                                                      |             | rx          | ivl=to            |              |
|                                                                              |                            | x       | у                                    | z              | v                                            | x                | у                                                | z              | v                                            |                                                        | x           | у           | z                 | ט            |
| Quantity of electricity<br>Electric displacement<br>Electric surface density | Q<br>D<br>D                | 121212  | - 1/2<br>- 1/2<br>- 1/2              | -1<br>-1       | 121212                                       | 121212           | $-\frac{\frac{1}{2}}{\frac{3}{2}}$               | 0 0 0          | $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ | c<br>c<br>c                                            | 0 0 0       | I<br>I<br>I | 0<br>-2<br>-2     | I<br>I<br>I  |
| Electric field intensity  Electric potential  Electromotive force            | E<br>V<br>E                | 121212  | -\frac{1}{2} \frac{1}{2} \frac{1}{2} | -1<br>-1       | -12<br>-12<br>-12                            | 1 2 1 2 1 2      | 1 23 210,2                                       | -2<br>-2<br>-2 | 1<br>2<br>1<br>2<br>1<br>2                   | 1/c<br>1/c<br>1/c                                      | I           | I<br>I<br>I | I<br>0<br>0       | 0 0 0        |
| Electrostatic capacity Dielectric constant Specific inductive capacity       | C<br>K                     | 000     | 0 0                                  | 0 0 0          | I<br>I<br>0                                  | 0 0 0            | -I<br>-2<br>0                                    | 2 0            | -I<br>-I<br>0                                | C <sup>2</sup>                                         | -I<br>-I    | 0 0 0       | 0<br>-1           | 0<br>I<br>0  |
| Current Electric conductivity Resistivity                                    | Ι<br>γ<br>ρ                | 0 0     | 8 2<br>0<br>0                        | -2<br>-1<br>1  | 1<br>I<br>-I                                 | 1/2<br>0<br>0    | $-\frac{1}{2}$ $-2$                              | -1<br>-1       | $-\frac{1}{2}$ $-I$ $I$                      | c<br>c <sup>2</sup><br>1/c <sup>2</sup>                | 0<br>-1     | 0           | 0<br>- I<br>I     | 0 0 0        |
| Conductance                                                                  | g<br>R<br>m                | 0 0 1 2 | 1<br>-1<br>1<br>2                    | -1<br>1<br>0   | I<br>-I<br>-1/2                              | 0 0 1 2          | -1<br>1<br>8<br>2                                | 1<br>-1        | -I I 1 2                                     | c <sup>2</sup><br>1/c <sup>2</sup><br>1/c              | -1<br>1     | 0 0 1       | 0 0 0             | 0<br>0<br>I  |
| Quantity of magnetism  Magnetic flux  Magnetic field intensity               | т<br>Ф<br>Н                | 121212  | 121212                               | 0<br>0<br>-2   | $-\frac{1}{2}$ $-\frac{1}{2}$ $\frac{1}{2}$  | 121212           | 3/2/3/21/2                                       | -1<br>-1       | 1<br>1<br>2<br>1<br>2<br>1<br>2              | 1/c<br>1/c<br>c                                        | 1 0         | I<br>I<br>0 | 0 0               | I<br>I<br>O  |
| Magnetizing force                                                            | $\mathcal{F}^{\mathrm{H}}$ | 121212  | 1 200 210 21                         | -2<br>-2<br>-2 | 121212                                       | 121212           | -\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} | -1<br>-1       | $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ | c<br>c                                                 | 0 0 0       | 0 1         | -1<br>0<br>0      | 0 0 0        |
| Magnetic moment Intensity magnetization Magnetic induction                   | J<br>B                     | 121212  |                                      | 0 0 0          | $-\frac{1}{2}$ $-\frac{1}{2}$ $-\frac{1}{2}$ | 121212           | - 1/2<br>- 1/2<br>- 1/2                          | - 1<br>- 1     | 1 1 2 1 2                                    | 1/c<br>1/c<br>1/c                                      | I<br>I      | I<br>I      | 1<br>-2<br>-2     | I<br>I<br>I  |
| Magnetic susceptibility<br>Magnetic permeability<br>Current density          | κ<br>μ<br>—                | 0 0 1 2 |                                      | 2<br>2<br>-2   | -1<br>-1<br>-1<br>1/2                        | 0<br>0<br>1<br>2 | 0<br>0<br>-\frac{3}{2}                           | 0<br>0<br>-I   | I<br>I<br>-\frac{1}{2}                       | 1/C <sup>2</sup><br>1/C <sup>2</sup><br>C              | I<br>I<br>O | 0 0 1       | - I<br>- I<br>- 2 | I<br>I       |
| Self-inductance                                                              | L<br>I<br>R                | 0 0 0   | -1<br>-1<br>1                        | 2<br>2<br>-2   | -1<br>-1<br>1                                | 0 0 0            | -1<br>1                                          | 0 0 0          | 1<br>-1                                      | 1/C <sup>2</sup><br>1/C <sup>2</sup><br>C <sup>2</sup> | 1<br>-1     | 000         | 0 0 0             | 1<br>1<br>-1 |
| Thermoelectric power‡ Peltier coefficient‡                                   | =                          | 1 2 1 2 | 1212                                 | - I            | $-\frac{1}{2}$ $+$ $-\frac{1}{2}$ $+$ $+$    | 1/2<br>1/2       | 80 (01 80 (01                                    | -2<br>-2       | 1 †<br>2 †<br>1 †<br>2 †                     | 1/c<br>1/c                                             | 1           | I           | 0 0               | o‡<br>o‡     |

<sup>\*</sup> As adopted by American Institute of Electrical Engineers, 1915. † c is the velocity of an electromagnetic wave in the ether =  $3 \times 10^{10}$  approximately. ‡ This conversion factor should include  $[\theta^{-1}]$ .

## TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES.\*

(1) CUSTOMARY TO METRIC.

| _                     | (1) COOTOMANT TO METRIC.                              |                                                          |                                                          |                                                     |                       |                                                             |                                                       |                                                     |                                                            |
|-----------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|-----------------------|-------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|
|                       |                                                       | LINE                                                     | AR.                                                      |                                                     |                       |                                                             | CAPAC                                                 | ITY.                                                |                                                            |
|                       | Inches to millimeters.                                | Feet to meters.                                          | Yards to meters.                                         | Miles<br>to<br>kilometers.                          |                       | Fluid<br>drams to<br>mililiters<br>or cubic<br>centimeters. | Fluid ounces to milliliters.                          | Liquid<br>quarts to<br>liters.                      | Gallons to liters.                                         |
| 1<br>2<br>3<br>4<br>5 | 25.4001<br>50 8001<br>76.2002<br>101.6002<br>127.0003 | 0.304801<br>0.609601<br>0.914402<br>1.219202<br>1.524003 | 0.914402<br>1.828804<br>2.743205<br>3.657607<br>4.572009 | 1.60935<br>3.21869<br>4.82804<br>6.43739<br>8.04674 | 1<br>2<br>3<br>4<br>5 | 3.70<br>7·39<br>11.09<br>14.79<br>18.48                     | 29.57<br>59.15<br>88.72<br>118.29<br>147.87           | 0.94633<br>1.89267<br>2.83900<br>3.78533<br>4.73167 | 3.78533<br>7.57066<br>11.35600<br>15.14133<br>18.92666     |
| 6 7 8 9               | 152.4003<br>177.8004<br>203.2004<br>228.6005          | 1.828804<br>2.133604<br>2.438405<br>2.743205             | 5.486411<br>6.400813<br>7.315215<br>8.229616             | 9.65608<br>11.26543<br>12.87478<br>14.48412         | 6<br>7<br>8<br>9      | 22.18<br>25.88<br>29.57<br>33.27                            | 177.44<br>207.01<br>236.58<br>266.16                  | 5.67800<br>6.62433<br>7.57066<br>8.51700            | 22.71199<br>26.49733<br>30.28266<br>34.06799               |
|                       |                                                       | SQUA                                                     | RE.                                                      |                                                     |                       |                                                             | WEIG                                                  | нт.                                                 |                                                            |
|                       | Square inches to square centimeters.                  | Square feet<br>to square<br>decimeters.                  | Square yards to square meters.                           | Acres to hectares.                                  |                       | Grains to<br>milligrains.                                   | Avoirdu-<br>pois ounces<br>to grams.                  | Avoirdu-<br>pois pounds<br>to kilo-<br>grams.       | Troy ounces to grams.                                      |
| I 2 3 4 5             | 6.452<br>12.903<br>19.355<br>25.807<br>32.258         | 9.290<br>18.581<br>27.871<br>37.161<br>46.452            | 0.836<br>1.672<br>2.508<br>3.345<br>4.181                | 0.4047<br>0.8094<br>1.2141<br>1.6187<br>2.0234      | 1<br>2<br>3<br>4<br>5 | 64.7989<br>129.5978<br>194.3968<br>259.1957<br>323.9946     | 28.3495<br>56.6991<br>85.0486<br>113.3981<br>141.7476 | 0.45359<br>0.90718<br>1.36078<br>1.81437<br>2.26796 | 31.10348<br>62.20696<br>93.31044<br>124.41392<br>155.51740 |
| 6 7 8 9               | 38.710<br>45.161<br>51.613<br>58.065                  | 55.742<br>65.032<br>74.323<br>83.613                     | 5.017<br>5.853<br>6.689<br>7.525                         | 2.4281<br>2.8328<br>3.2375<br>3.6422                | 6 7 8 9               | 388.7935<br>453.5924<br>518.3913<br>583.1903                | 170.0972<br>198.4467<br>226.7962<br>255.1457          | 2.72155<br>3.17515<br>3.62874<br>4.08233            | 186.62088<br>217.72437<br>248.82785<br>279.93133           |
|                       |                                                       | CUBI                                                     | C.                                                       |                                                     |                       |                                                             |                                                       |                                                     |                                                            |
|                       | Cubic inches to cubic centimeters.                    | Cubic feet<br>to cubic<br>meters.                        | Cubic yards to cubic meters.                             | Bushels to<br>hectoliters.                          |                       | I Gunter's I sq. statu I fathom                             | chain = te mile = =                                   | 20.1168<br>259.000<br>1.829                         | meters.                                                    |
| 1<br>2<br>3<br>4<br>5 | 16.387<br>32.774<br>49.161<br>65.549<br>81.936        | 0.02832<br>0.05663<br>0.08495<br>0.11327<br>0.14159      | 0.765<br>1.529<br>2.294<br>3.058<br>3.823                | 0.35239<br>0.70479<br>1.05718<br>1.40957<br>1.76196 |                       | I nautical I foot I avoir. po I 5432.35639                  | und =                                                 | 1853.25<br>0.304801<br>453.592427<br>1.000          | 1.                                                         |
| 6 7 8 9               | 98.323<br>114.710<br>131.097<br>147.484               | 0.16990<br>0.19822<br>0.22654<br>0.25485                 | 4.587<br>5.352<br>6.116<br>6.881                         | 2.11436<br>2.46675<br>2.81914<br>3.17154            |                       |                                                             |                                                       |                                                     |                                                            |

According to an executive order dated April 15, 1893, the United States yard is defined as 3600/3937 meter, and the avoirdupois pound as 1/2.20462 kilogram.

1 meter (international prototype) = 1553164.13 times the wave-length of the red Cd. line. Benoit, Fabry and Perot. C. R. 144, 1007 differs only in the decimal portion from the measure of Michelson and Benoit 14 years earlier.

The length of the nautical mile given above and adopted by the U. S. Coast and Geodetic Survey many years ago, is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spherical of 1964).

\* Quoted from sheets issued by the United States Bureau of Standards.

roid of 1866).

#### TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES.

(2) METRIC TO CUSTOMARY.

| -                                         |                                                                                                        |                                                                                                       |                                                                                                          |                                                                                                 | 11"                                       |                                                                                      |                                                             |                                                                                                          |                                             |                                                                                        |                                                                                                 |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                           |                                                                                                        | LINE                                                                                                  | AR.                                                                                                      |                                                                                                 |                                           |                                                                                      |                                                             | CAPAG                                                                                                    | CITY.                                       |                                                                                        |                                                                                                 |
|                                           | Meters to inches.                                                                                      | Meters to feet.                                                                                       | Meters to yards.                                                                                         | Kilometers<br>to miles.                                                                         |                                           | Millili-<br>ters or<br>cubic cen-<br>timeters<br>to fluid<br>drams.                  | Cer<br>liter<br>flu<br>oun                                  | s to t                                                                                                   | rte                                         | Deca-<br>liters<br>to<br>gallons.                                                      | Hecto-<br>liters<br>to<br>bushels.                                                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 39.3700<br>78.7400<br>118.1100<br>157.4800<br>196.8500<br>236.2200<br>275.5900<br>314.9600<br>354.3300 | 3.28083<br>6.56167<br>9.84250<br>13.12333<br>16.40417<br>19.68500<br>22.96583<br>26.24667<br>29.52750 | 1.093611<br>2.187222<br>3.280833<br>4.374444<br>5.468056<br>6.561667<br>7.655278<br>8.748889<br>9.842500 | 0.62137<br>1.24274<br>1.86411<br>2.48548<br>3.10685<br>3.72822<br>4.34959<br>4.97096<br>5.59233 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8      | 0.27<br>0.54<br>0.81<br>1.08<br>1.35<br>1.62<br>1.89<br>2.16                         | 0.3<br>0.6<br>1.0<br>1.3<br>1.6<br>2.0<br>2.3<br>2.7<br>3.0 | 2.1   3.1   3.1   5.3   4.2   5.2   5.2   6.3   67   7.3   0.5   8.4                                     | 134<br>268<br>1336<br>1403<br>1537<br>2     | 2.6418<br>5.2836<br>7.9253<br>0.5671<br>3.2089<br>5.8507<br>8.4924<br>1.1342<br>3.7760 | 5.6756<br>8.5135<br>11.3513<br>14.1891<br>17.0269<br>19.8647<br>22.7026                         |
| -                                         | -                                                                                                      | SQUAI                                                                                                 | RE.                                                                                                      | ,                                                                                               |                                           |                                                                                      | 9                                                           | WEIG                                                                                                     | НТ.                                         |                                                                                        |                                                                                                 |
|                                           | Square centimeters to square inches.                                                                   | Square<br>meters to<br>square<br>feet.                                                                | Square<br>meters to<br>square<br>yards.                                                                  | Hectares to acres.                                                                              |                                           | Milli-<br>grams to<br>grains.                                                        |                                                             | Kilo-<br>grams to<br>grains.                                                                             | gran                                        | cto-<br>ns to<br>nces<br>dupois.                                                       | Kilo-<br>grams to<br>pounds<br>avoirdupois.                                                     |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.1550<br>0.3100<br>0.4650<br>0.6200<br>0.7750<br>0.9300<br>1.0850<br>1.2400<br>1.3950                 | 10.764<br>21.528<br>32.292<br>43.055<br>53.819<br>64.583<br>75.347<br>86.111<br>96.875                | 1.196<br>2.392<br>3.588<br>4.784<br>5.980<br>7.176<br>8.372<br>9.568<br>10.764                           | 2.471<br>4.942<br>7.413<br>9.884<br>12.355<br>14.826<br>17.297<br>19.768<br>22.239              | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.01543<br>0.03086<br>0.04630<br>0.06173<br>0.07716<br>0.09259<br>0.10803<br>0.12346 |                                                             | 15432.36<br>30864.71<br>46297.07<br>61729.43<br>77161.78<br>92594.14<br>08026.49<br>23458.85<br>38891.21 | 7.0<br>10.5<br>14.1<br>17.6<br>21.1<br>24.6 | 096<br>370<br>644<br>918                                                               | 2.20462<br>4.40924<br>6.61387<br>8.81849<br>11.02311<br>13.22773<br>15.43236<br>17.63698        |
|                                           |                                                                                                        | CUBI                                                                                                  | C.                                                                                                       |                                                                                                 |                                           | 1                                                                                    |                                                             | WEIG                                                                                                     | HT.                                         |                                                                                        |                                                                                                 |
|                                           | Cubic centimeters to cubic inches.                                                                     | Cubic decimeters to cubic inches.                                                                     | Cubic meters to cubic feet.                                                                              | Cubic meters to cubic yards.                                                                    |                                           | Quintals<br>pounds                                                                   |                                                             | Millie<br>tonnes to                                                                                      | pound                                       | K to                                                                                   | ilograms<br>o ounces<br>Troy.                                                                   |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.0610<br>0.1220<br>0.1831<br>0.2441<br>0.3051<br>0.3661<br>0.4272<br>0.4882<br>0.5492                 | 61.023<br>122.047<br>183.070<br>244.094<br>305.117<br>366.140<br>427.164<br>488.187<br>549.210        | 35.314<br>70.269<br>105.943<br>141.258<br>176.572<br>211.887<br>247.201<br>282.516<br>317.830            | 1.308<br>2.616<br>3.924<br>5.232<br>6.540<br>7.848<br>9.156<br>10.464<br>11.771                 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 220<br>440.9<br>661.<br>881.1<br>1102.<br>1322.<br>1543.<br>1763.<br>1984.           | 92<br>39<br>85<br>31<br>77<br>24                            | 440<br>66                                                                                                | 27.7<br>32.4<br>37.0                        | 10 10 22 21                                                                            | 32.1507<br>54.3015<br>96.4522<br>28.6030<br>50.7537<br>92.9045<br>25.0552<br>57.2059<br>89.3567 |

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast of pure platinum-iridium in the proportion of 9 parts of the former to 1 of the latter metal. From one of these a certain number of kilograms were prepared, from the other a definite number of meter bars. These standards of weight and length were intercompared, without preference, and certain ones were selected as International prototype standards. The others were distributed by lot, in September, 1880, to the different governments, and are called National prototype standards. Those apportioned to the United States were received in 1890, and are kept at the Bureau of Standards in Washington, D. C.

The metric system was legalized in the United States in 1866.

The International Standard Meter is derived from the Metre des Archives, and its length is defined by the distance between two lines at 0° Centigrade, on a platinum-iridium bar deposited at the International Bureau of Weights and Measures.

The International Standard Kilogram is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogram des Archives.

The liter is equal to the quantity of pure water at 4° C (760 mm. Hg. pressure) which weighs 1 kilogram and = 1.000027 cu. dm. (Trav. et Mem. Bureau Intern. des P. et M. 14, 1910, Benoit.)

### MISCELLANEOUS EQUIVALENTS OF U. S. AND METRIC WEIGHTS AND MEASURES.\*

(For other equivalents than those below, see Table 3.)

#### LINEAR MEASURES.

 $\mu = 1 \text{ mil } (.001 \text{ in.}) = 25.4001 \,\mu$ 1 in. = .000015783 mile 1 hand (4 in.) = 10.16002 cm 1 link (.66 ft.) = 20.11684 cm 1 span.(9 in.) = 22.86005 cmI fathom (6 ft.) = 1.828804 m 1 rod (25 links) = 5.020210 m 1 chain (4 rods) = 20.11684 m 1 light year  $(9.5 \times 10^{12} \text{ km}) = 5.9 \times 10^{12}$ miles 1 par sec  $(31 \times 10^{12} \text{ km}) = 19 \times 10^{12} \text{ miles}$  $\frac{1}{32}$  in. = .794 mm  $\frac{1}{8}$  in. = 3.175 mm  $\frac{1}{2}$  in. = 12.700 mm  $\frac{1}{64}$  in. = .397 mm  $\frac{1}{6}$  in. = 1.588 mm  $\frac{16}{4}$  in. = 6.350 mm I Ångström unit = .0000000001 m m = 0.00001 m = 0.0003937 in.I millimicron (m $\mu$ ) = .000000001 m 1 m = 4.970960 links = 1.093611 yds. = .198838 rod = .0497096 chain

#### SQUARE MEASURES.

1 sq. link (62.7264 sq. in.) = 404.6873 cm<sup>2</sup>
1 sq. rod (625 sq. links) = 25.29295 m<sup>2</sup>
1 sq. chain (16 sq. rods) = 404.6873 m<sup>2</sup>
1 sq. mile (640 acres) = 4046.873 m<sup>2</sup>
1 sq. mile (640 acres) = 2.589998 km<sup>2</sup>
1 km<sup>2</sup> = .3861006 sq. mile
1 m<sup>2</sup> = 24.7104 sq. links = 10.76387 sq. ft.
= .039537 sq. rod. = .00247104 sq. chain

#### CUBIC MEASURES.

1 board foot (144 cu. in) = 2359.8 cm<sup>3</sup> 1 cord (128 cu. ft.) = 3.625 m<sup>3</sup>

#### CAPACITY MEASURES.

I minim (M) = .0616102 ml

I fl. dram (60M) = 3.69661 ml

I fl. oz. (8 fl. dr.) = 1.80469 cu. in.

= 29.5729 ml

I gill (4 fl. oz.) = 7.21875 cu. in. = 118.292 ml

I liq. pt. (28.875 cu. in.) = .473167 l

I liq. qt. (57.75 cu. in.) = .946333 l

I gallon (4 qt., 231 cu. in.) = 3.785332 l

I dry pt. (33.6003125 cu. in.) = .550599 l

I dry qt. (67.200625 cu. in.) = 1.101198 l

I pk. (8 dry qt., 537.605 cu. in.) = 8.80588 l

I bu. (4 pk., 2150.42 cu. in.) = 35.2383 l

I firkin (9 gallons) = 34.06799 l

I liter = .264178 gal. = 1.05671 liq. qt.

= 33.8147 fl. oz. = 270.518 fl. dr.

I ml = 16.2311 minims.

I dkl = 18.620 dry pt. = 9.08102 dry qt.

= 1.13513 pk. = .28378 bu.

#### MASS MEASURES.

Avoirdupois weights.

I grain = .064798918 g I dram av. (27.34375 gr.) = 1.771845 g I oz. av. (16 dr. av.) = 28.349527 g

1 pd. av. (16 oz. av. or 7000 gr.)

= 14.583333 oz. ap. (3) or oz. t. = 1.2152778 or 7000/5760 pd. ap

= 453.5924277 g

1 kg = 2.204622341 pd. av. 1 g = 15.432356 gr. = .5643833 av. dr.

= .03527396 av. oz.

short hundred weight (100 pds.) = 45.359243 kg

1 long hundred weight (112 pds.)

, = 50.802352 kg

1 short ton (2000 pds.) = 907.18486 kg

= 907.18480 kg 1 long ton (2240 pd.)

= 1016.04704 kg 1 metric ton = 0.98420640 long ton = 1.1023112 short tons

#### Troy weights.

I pennyweight (dwt., 24 gr.) = 1.555174 g; gr., oz., pd. are same as apothecary

#### A pothecaries' weights.

I gr. = 64.798018 mg I scruple (Ð, 20 gr.) = 1.2959784 g I dram (Ђ, 3 ⊕) = 3.8879351 g I oz. (Ђ, 8 Ђ) = 31.103481 g I pd (12Ђ, 5760 gr.) = 373.24177 g I g = 15.432356 gr. = 0.771618 ⊕ = 0.2572059 Ђ = 0.3215074 Ђ I kg = 32.150742 Ђ = 2.6792285 pd.

- 1 metric carat = 200 mg = 3.0864712 gr.
- U. S.  $\frac{1}{2}$  dollar should weigh 12.5 g and the smaller silver coins in proportion.

<sup>\*</sup> Taken from Circular 47 of the U.S. Bureau of Standards, 1915, which see for more complete tables.

#### EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.\*

(1) METRIC TO IMPERIAL.

(For U.S. Weights and Measures, see Table 3.)

#### LINEAR MEASURE.

```
millimeter (mm.)
                             0.03937 in.
   (.oo1 m.)
                                       66
I centimeter (.o. m.)
                             0.39370
I decimeter (.I m)
                             3.93701
                          39.370113 "
3.280843 ft.
I METER (m.)
                             1.09361425 yds.
1 dekameter
                            10.93614
  (10 m.)
1 hectometer
                     .=109.361425
  (100 m.)
ı kilometer
                            0.62137 mile.
  (1,000 m.)
1 myriameter
                            6.21372 miles.
  (10,000 m.) §
1 micron
                            o.ooi mm.
```

### SOUARE MEASURE.

```
I sq. centimeter . .
                           0.1550 sq. in.
                     . ==
1 sq. decimeter
                      } = 15.500 sq. in.
   (100 sq. centm.)
                       = 10.7639 sq. ft.
I sq. meter or centi- )
   are (100 sq. dcm.) (
                           1.1960 sq. yds.
                      = 119.60 sq. yds.
I ARE (100 sq. m.)
I hectare (100 ares
                            2.4711 acres.
  or 10,000 sq. m.)
```

#### CUBIC MEASURE.

```
I cub. centimeter
    (c.c.) (1,000 \text{ cubic}) = 0.0610 \text{ cub. in.}
    millimeters)
I cub. decimeter
    (c.d.) (1,000 \text{ cubic }) = 61.024
    centimeters)
CUB. METER
                           \cdot = \begin{cases} 35.3148 \text{ cub. ft.} \\ 1.307954 \text{ cub. yds.} \end{cases}
     or stere
     (1,000 c.d.)
```

#### MEASURE OF CAPACITY.

```
milliliter (ml.) (.001 )
                          = 0.0610 cub. in.
   liter)
                          = { 0.61024 "
I centiliter (.o. liter)
                              0.070 gill.
I deciliter (.I liter) .
                          _
                              0.176 pint.
I LITER (1,000 cub.
   centimeters or I
                              1.75980 pints.
   cub. decimeter)
1 dekaliter (10 liters)
                       . = 2.200 gallons.
1 hectoliter (100 ")
1 kiloliter (1,000 ")
                       . = 2.75 bushels.
                       \cdot = 3.437 quarters.
```

#### APOTHECARIES' MEASURE.

t cubic centi-meter (t gram w't) = 0.03520 fluid ounce. 0.28157 fluid drachm. 15.43236 grains weight. 1 cub. millimeter = 0.01693 minim.

#### AVOIRDUPOIS WEIGHT.

```
I milligram (mgr.) \cdot \cdot = 0.01543 grain.
1 centigram (.01 gram.) = 0.15432
                     " ) = 1.54324 grains.
I decigram (.I
I GRAM . . .
                         =15.43236
1 \text{ dekagram (10 gram.)} = 5.64383 \text{ drams.}
I hectogram (100 ") = 3.52739 oz.
I KILOGRAM (1,000") = \begin{cases} 2.2046223 \text{ lb.} \\ 15432.3564 \end{cases}
                                      grains.
1 myriagram (10 kilog.) =22.04622 lbs.
I quintal (100 "
                        ) = 1.96841 \text{ cwt.}
i millier or tonne (1,000 kilog.)
                         = 0.9842 \text{ ton.}
```

#### TROY WEIGHT.

#### APOTHECARIES' WEIGHT.

Note.—The Meter is the length, at the temperature of oo C., of the platinum-iridium bar deposited at the International Bureau of Weights and Measures at Sevres, near Paris, France.

The present legal equivalent of the meter is 30.370113 inches, as above stated.
The KILOGRAM is the mass of a platinum-iridium weight deposited at the same place.
The LITER contains one kilogram weight of distilled water at its maximum density (4° C.), the barometer being

\*In accordance with the schedule adopted under the Weights and Measures (metric system) Act, 1897.

## EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES.

(2) METRIC TO IMPERIAL.

(For U.S. Weights and Measures, see Table 3.)

|                       | LI                                                                 | NEAR MEA                                                    | SURE.                                               |                                                     |                       | ME.                                                 | ASURE OF                                                      | CAPACITY                                              |                                                        |
|-----------------------|--------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------|-----------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
|                       | Millimeters<br>to<br>inches.                                       | Meters<br>to<br>feet.                                       | Meters<br>to<br>yards.                              | Kilo-<br>meters to<br>nules.                        |                       | Liters<br>to<br>pints                               | Dekaliters<br>to<br>gallons                                   | Hectoliters<br>to<br>busnels.                         | Kiloliters<br>to<br>quarters.                          |
| 1<br>2<br>3<br>4<br>5 | 0.03937011<br>0.07874023<br>0.11811034<br>0.15748045<br>0.19685056 | 3.28084<br>6.56169<br>9.84253<br>13.12337<br>16.40421       | 1.09361<br>2.18723<br>3.28084<br>4.37446<br>5.46807 | 0.62137<br>1.24274<br>1.86412<br>2.48549<br>3.10686 | 1<br>2<br>3<br>4<br>5 | 1.75980<br>3.51961<br>5.27941<br>7.03921<br>8.79902 | 2.19975<br>4.39951<br>6.59926<br>8.79902<br>10.99877          | 2.74969<br>5.49938<br>8.24908<br>10.99877<br>13.74846 | 3.43712<br>6.87423<br>10.31135<br>13.74846<br>17.18558 |
| 6 7 8 9               | 0.23622068<br>0.27559079<br>0 31496090<br>0.35433102               | 19.68506<br>22.96590<br>26.24674<br>29.52758                | 6.56169<br>7.65530<br>8.74891<br>9.84253            | 3.72823<br>4.34960<br>4.97097<br>5.59235            | 6<br>7<br>8<br>9      | 10.55882<br>12.31862<br>14.07842<br>15.83823        | 13.19852<br>15.39828<br>17.59803<br>19.79778                  | 16.49815<br>19.24785<br>21.99754<br>24.74723          | 20.62269<br>24.05981<br>27.49692<br>30.93404           |
|                       | sqt                                                                | JARE MEA                                                    | SURE.                                               |                                                     |                       | w                                                   | EIGHT (Avo                                                    | DIRDUPOIS).                                           |                                                        |
|                       | Square centimeters to square inches.                               | Square<br>meters to<br>square<br>feet.                      | Square<br>meters to<br>square<br>yards.             | Hectares<br>to acres.                               |                       | Milli-<br>grams<br>to<br>grains.                    | Kilograms<br>to grains.                                       | Kilo-<br>grams<br>to<br>pounds,                       | Quintals<br>to<br>hundred-<br>weights.                 |
| 1<br>2<br>3<br>4<br>5 | 0.15500<br>0.31000<br>0.46500<br>0.62000<br>0.77500                | 10.76393<br>21.52786<br>32.29179<br>43.05572<br>53.81965    | 1.19599<br>2.39198<br>3.58798<br>4.78397<br>5.97996 | 2.4711<br>4 9421<br>7.4132<br>9.8842<br>12.3553     | 1<br>2<br>3<br>4<br>5 | 0.01543<br>0.03086<br>0.04630<br>0.06173<br>0.07716 | 15432.356<br>30864.713<br>46297.069<br>61729.426<br>77161.782 | 2.20462<br>4.40924<br>6.61387<br>8.81849<br>11.02311  | 1.96841<br>3.93683<br>5.90524<br>7.87365<br>9.84206    |
| 6<br>7<br>8<br>9      | 0.93000<br>1.08500<br>1.24000<br>1.39501                           | 64.58357<br>75.34750<br>86.11143<br>96.87536                | 7.17595<br>8.37194<br>9.56794<br>10.76393           | 14.8263<br>17.2974<br>19.7685<br>22.2395            | 6 7 8 9               | 0.09259<br>0.10803<br>0.12346<br>0.13889            | 92594.138<br>108026.495<br>123458.851<br>138891.208           | 13.22773<br>15.43236<br>17.63698<br>19.84160          | 11.81048<br>13.77889<br>15.74730<br>17.71572           |
|                       | CUBIC                                                              | MEASURE                                                     | •                                                   | Apothe-<br>caries'<br>Measure.                      | A                     | oirdupois                                           | Troy W                                                        | EIGHT.                                                | APOTHE-<br>CARIES'<br>WEIGHT.                          |
|                       | Cubic decimeters to cubic inches.                                  | Cubic<br>meters to<br>cubic<br>feet.                        | Cubic<br>meters to<br>cubic<br>yards,               | Cub. centimeters to fluid drachms.                  |                       | Milliers or tonnes to tons.                         | Grams<br>to ounces<br>Troy.                                   | Grams<br>to penny-<br>weights.                        | Grams<br>to<br>scruples.                               |
| 1<br>2<br>3<br>4<br>5 | 61.02390<br>122.04781<br>183.07171<br>244.09561<br>305.11952       | 35.31476<br>70.62952<br>105.94428<br>141.25904<br>176.57379 | 1.30795<br>2.61591<br>3.92386<br>5.23182<br>6.53977 | 0.28157<br>0.56314<br>0.84471<br>1.12627<br>1.40784 | 1<br>2<br>3<br>4<br>5 | 0.98421<br>1.96841<br>2.95262<br>3.93683<br>4.92103 | 0.03215<br>0.06430<br>0.09645<br>0.12860<br>0.16075           | 0.64301<br>1.28603<br>1.92904<br>2.57206<br>3.21507   | 0.77 162<br>1.54324<br>2.31485<br>3.08647<br>3.85809   |
| 6<br>7<br>8<br>9      | 366.14342<br>427.16732<br>488.19123<br>549.21513                   | 211.88855<br>247.20331<br>282.51807<br>317.83283            | 7.84772<br>9.15568<br>10.46363<br>11.77159          | 1.68941<br>1.97098<br>2.25255<br>2.53412            | 6<br>7<br>8<br>9      | 5.90524<br>6.88944<br>7.87365<br>8.85786            | 0.19290<br>0.22506<br>0.25721<br>0.28936                      | 3.85809<br>4.50110<br>5.14412<br>5.78713              | 4.62971<br>5.40132<br>6.17294<br>6.94456               |

## EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES.

(3) IMPERIAL TO METRIC.

(For U.S. Weights and Measures, see Table 3.)

#### LINEAR MEASURE.

|                                       | (25,400 milli-          |
|---------------------------------------|-------------------------|
| 1 inch =                              | meters.                 |
| I foot (12 in.)=                      | 0.30480 meter           |
| I YARD (3 ft.) =                      | 0.914399 "              |
| I pole $(5\frac{1}{2} \text{ yd.})$ = | 5.0292 meters.          |
| 1 chain (22 yd. or } =                | 20.1168 "               |
| 1 furlong (220 yd.) =                 | 201.168 "               |
| 1 mile (1,760 yd.) . =                | 1.6093 kilo-<br>meters. |

### SOUARE MEASURE.

| r square inch =                                                         | 6.4516 sq. centimeters.     |
|-------------------------------------------------------------------------|-----------------------------|
| 1 sq. ft. (144 sq. in.) =                                               | 9.2903 sq. deci-<br>meters. |
| 1 SQ. YARD (9 sq. ft.) = $\begin{cases} 1 & \text{sq. ft.} \end{cases}$ | 0.836126 sq.<br>meters.     |
| $1 \text{ perch } (30\frac{1}{4} \text{ sq. yd.}) = \left\{$            | 25.293 sq. me-<br>ters.     |
| 1 rood (40 perches) =                                                   | 10.117 ares.                |
| I ACRE (4840 sq. yd.) =                                                 | 0.40468 hectare.            |
| 1  sq. mile (640 acres) =                                               | 259.00 hectares.            |

#### CUBIC MEASURE.

```
1 cub. inch = 16.387 cub. centimeters.

1 cub. foot (1728) = 0.028317 cub. meter, or 28.317 cub. decimeters.

1 CUB. YARD (27) = 0.76455 cub. meter. cub. ft.)
```

#### APOTHECARIES' MEASURE.

Note. — The Apothecaries' gallon is of the same capacity as the Imperial gallon.

#### MEASURE OF CAPACITY.

```
I gill . . . . . = 1.42 deciliters.
I pint (4 gills) . . . = 0.568 liter.
I quart (2 pints) . . = 1.136 liters.
I GALLON (4 quarts) = 4.5459631 "
I peck (2 galls.) . . = 9.092 "
I bushel (8 galls.) . = 3.637 dekaliters.
I quarter (8 bushels) = 2.909 hectoliters.
```

#### AVOIRDUPOIS WEIGHT.

| Ī | grain                   | = | {64.8 milli<br>grams. | -               |
|---|-------------------------|---|-----------------------|-----------------|
|   | cram                    | = | 1.772 grams           |                 |
|   | ounce (16 dr.)          | = | 28.350 "              |                 |
| I | 7,000 grains)           | = | 0.45359243 k          | cilog <b>r.</b> |
|   |                         | = | 6.350                 | 44              |
| I | quarter (28 lb.) .      | = | 12.70                 | 66              |
|   |                         |   | (50.80                | 44              |
|   | hundredweight (112 lb.) | = | o.50So quint          | al.             |
|   |                         |   | ( 1.0160 tonne        |                 |
|   | tan (00 and )           |   | or 1016 kilo          |                 |
| 3 | ton (20 cwt.).          |   | grams.                |                 |

#### TROY WEIGHT.

```
1 Troy ounce (480) = 31.1035 grams.
2 grains avoir.) = 31.1035 grams.
3 pennyweight (24) = 1.5552 "
```

Note. — The Troy grain is of the same weight as the Avoirdupois grain.

### APOTHECARIES' WEIGHT.

```
I ounce (8 drachms) = 31.1035 grams.
I drachm, 3i (3 scru- } = 3.888  "
ples)
I scruple, 9i (20 } = 1.296  "
```

Note. — The Apothecaries' ounce is of the same weight as the Troy ounce. The Apothecaries' grain is also of the same weight as the Avoirdupois grain.

Note. — The Yard is the length at 62° Fahr., marked on a bronze bar deposited with the Board of Trade.

The Pound is the weight of a piece of platinum weighed in vacuo at the temperature of o° C., and which is also deposited with the Board of Trade.

The Gallon contains to lb. weight of distilled water at the temperature of 62° Fahr., the barometer being at

## EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES.

(4) IMPERIAL TO METRIC.

(For U.S. Weights and Measures, see Table 3.)

| T-                    |                                                                                      |                                                                           |                                                                           |                                                                            | 10                    |                                                                           |                                                                                |                                                                                |                                                                               |
|-----------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                       | Lī                                                                                   | NEAR ME                                                                   | ASURE.                                                                    |                                                                            |                       | MEA                                                                       | ASURE OF                                                                       | CAPACITY                                                                       |                                                                               |
|                       | Inches to centimeters.                                                               | Feet<br>to<br>meters.                                                     | Yards<br>to<br>meters.                                                    | Miles<br>to kilo-<br>meters.                                               |                       | Quarts<br>to<br>liters.                                                   | Gallons<br>to<br>liters.                                                       | Bushels<br>to<br>dekaliters.                                                   | Quarters<br>to<br>hectoliters.                                                |
| 1 2 3 4 5 6 7 8       | 2.539998<br>5.079996<br>7.619993<br>10.159991<br>12.699989<br>15.239987<br>17.779984 | 0.30480<br>0.60960<br>0.91440<br>1.21920<br>1.52400<br>1.82880<br>2.13360 | 0.91440<br>1.82880<br>2.74320<br>3.65760<br>4.57200<br>5.48640<br>6.40080 | 1.60934<br>3.21869<br>4.82803<br>6.43737<br>8.04671<br>9.65606<br>11.26540 | 1 2 3 4 5 6 7 8       | 1.13649<br>2.27298<br>3.40947<br>4.54596<br>5.68245<br>6.81894<br>7.95544 | 4.54596<br>9.09193<br>13.63789<br>18.18385<br>22.72982<br>27.27578<br>31.82174 | 3.63677<br>7.27354<br>10.91031<br>14.54708<br>18.18385<br>21.82062<br>25.45739 | 2.90942<br>5.81883<br>8.72825<br>11.63767<br>14.54708<br>17.45650<br>20.36591 |
| 8 9                   | 20.319982                                                                            | 2.43840 2.74320                                                           | 7.31 <u>5</u> 19<br>8.22959                                               | 12.87474                                                                   | 8 9                   | 9.09193                                                                   | 36.36770                                                                       | 29.09416<br>32.73093                                                           | 23.27533<br>26.18475                                                          |
| SQUARE MEASURE.       |                                                                                      |                                                                           |                                                                           |                                                                            |                       | W                                                                         | EIGHT (Avo                                                                     | IRDUPOIS).                                                                     |                                                                               |
|                       | Square inches to square centimeters.                                                 | Square<br>feet<br>to square<br>decimeters.                                | Square yards to square meters.                                            | Acres to hectares.                                                         |                       | Grains<br>to nulli-<br>grams.                                             | Ounces to grams.                                                               | Pounds<br>to kito-<br>grams.                                                   | Hundred-<br>weights to<br>quintals.                                           |
| 1<br>2<br>3<br>4<br>5 | 6.45159<br>12.90318<br>19.35477<br>25.80636<br>32.25794                              | 9.29029<br>18.58058<br>27.87086<br>37.16115<br>46.45144                   | 0.83613<br>1.67225<br>2.50838<br>3.34450<br>4.18063                       | 0.40468<br>0.80937<br>1.21405<br>1.61874<br>2.02342.                       | 1<br>2<br>3<br>4<br>5 | 64.79892<br>129.59784<br>194.39675<br>259.19567<br>323.99459              | 28.34953<br>56.69905<br>85.04858<br>113.39811<br>141.74763                     | 0.45359<br>0.90718<br>1.36078<br>1.81437<br>2.26796                            | 0.50802<br>1.01605<br>1.52407<br>2.03209<br>2.54012                           |
| 6 7 8 9               | 38.70953<br>45.16112<br>51.61271<br>58.06430                                         | 55.74 <sup>1</sup> 73<br>65.03201<br>74.32230<br>83.61259                 | 5.01676<br>5.85288<br>6.68901<br>7.52513                                  | 2.42811<br>2.83279<br>3.23748<br>3.64216                                   | 6<br>7<br>8<br>9      | 388.79351<br>453.59243<br>518.39135<br>583.19026                          | 170.09716<br>198.44669<br>226.79621<br>255.14574                               | 2.72155<br>3.17515<br>3.62874<br>4.08233                                       | 3.04814<br>3.55616<br>4.06419<br>4.57221                                      |
|                       | CUBIC                                                                                | MEASURI                                                                   | С.                                                                        | Apothe-<br>caries'<br>Measure.                                             | A                     | voirdupois<br>(cont.).                                                    | Troy W                                                                         | EIGHT .                                                                        | APOTHE-<br>CARIES'<br>WEIGHT                                                  |
|                       | Cubic inches to cubic centimeters.                                                   | Cubic feet to cubic meters.                                               | Cubic yards to cubic meters.                                              | Fluid drachins to cubic centimeters.                                       |                       | Tons to<br>milliers or<br>tonnes.                                         | Ounces to grams.                                                               | Penny-<br>weights to<br>grams.                                                 | Scruples<br>to<br>grams.                                                      |
| 1<br>2<br>3<br>4<br>5 | 16.38702<br>32.77404<br>49.16106<br>65.54808<br>81.93511                             | 0.02832<br>0.05663<br>0.08495<br>0.11327<br>0.14158                       | 0.76455<br>1.52911<br>2.29366<br>3.05821<br>3.82276                       | 3.55153<br>7.10307<br>10.65460<br>14.20613<br>17.75767                     | 1<br>2<br>3<br>4<br>5 | 1.01605<br>2.03209<br>3.04814<br>4.06419<br>5.08024                       | 31.10348<br>62.20696<br>93.31044<br>124.41392<br>155.51740                     | 1.55517<br>3.11035<br>4.66552<br>6.22070<br>7.77587                            | 1.29598<br>2.59196<br>3.88794<br>5.18391<br>6.47989                           |
| 6 7 8 9               | 98.32213<br>114.70915<br>131.09617<br>147.48319                                      | 0.16990<br>0.19822<br>0.22653<br>0.25485                                  | 4.58732<br>5.35187<br>6.11642<br>6.88098                                  | 21.30920<br>24.86074<br>28.41227<br>31.96380                               | 6 7 8 9               | 6.09628<br>7.11233<br>8.12838<br>9.14442                                  | 186.62088<br>217.72437<br>248.82785<br>279.93133                               | 9.33104<br>10.88622<br>12.44139<br>13.99657                                    | 7.775 <sup>8</sup> 7<br>9.07185<br>10.36783<br>11.66381                       |

## DERIVATIVES AND INTEGRALS.\*

| d ax                           | = a dx                                                            | $\int x^n dx$                           | $=\frac{x^{n+1}}{n+1}$ , unless $n=-1$                                                      |
|--------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|
|                                |                                                                   |                                         | 70 1 -                                                                                      |
| d u v                          | $= \left(u  \frac{dv}{dx} + v  \frac{du}{dx}\right) dx$           | $\int \frac{dx}{x}$                     | $=\log x$                                                                                   |
|                                | du dv                                                             |                                         |                                                                                             |
| $d\frac{u}{a}$                 | $= \left( \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{u} \right) dx$ | $\int e^x dx$                           | $=e^x$                                                                                      |
| υ                              | V- /                                                              |                                         |                                                                                             |
| $d x^n$                        | $= nx^{n-1} dx$                                                   | $\int e^{ax}dx$                         | $=\frac{1}{a}e^{ax}$                                                                        |
|                                | f(u) du                                                           |                                         | 207                                                                                         |
| df(u)                          | $= d \frac{f(u)}{du} \cdot \frac{du}{dx} \cdot dx$                | $\int x e^{ax} dx$                      | $=\frac{e^{ax}}{a^2}(ax-1)$                                                                 |
| d ex                           | $=e^x dx$                                                         | $\int \log x  dx$                       | $= x \log x - x$                                                                            |
| $d e^{ax}$                     | $= a e^{ax} dx$                                                   | Su dv                                   | $= u v - \int v du$                                                                         |
| $d \log_e x$                   | $=\frac{1}{x}dx$                                                  | $\int (a+bx)^n dx$                      | $=\frac{(a+bx)^{n+1}}{(n+1)b}$                                                              |
| 300                            | i i                                                               |                                         | (n+1)b                                                                                      |
| $d x^x$                        | $= x^x \left( 1 + \log_e x \right)$                               |                                         |                                                                                             |
| $d \sin x$                     | $=\cos x dx$                                                      | $\int (a^2+x^2)^{-1} dx$                | $=\frac{1}{a}\tan^{-1}\frac{x}{a}=$                                                         |
|                                |                                                                   |                                         | a $a$                                                                                       |
|                                |                                                                   |                                         | $\frac{1}{a} \sin^{-1} \frac{x}{\sqrt{x^2 + a^2}}$                                          |
|                                |                                                                   |                                         | N ( W                                                                                       |
| $d \cos x$                     | $=-\sin xdx$                                                      | $\int (a^2-x^2)^{-1}dx$                 | $= \frac{1}{2a} \log \frac{a+x}{a-x}$                                                       |
| $d \tan x$                     | $= \sec^2 x \ dx$                                                 | $\int (a^2 - x^2)^{-\frac{1}{2}} dx$    | $= \sin^{-1} \left( \frac{x}{a}, \text{ or } -\cos^{-1} \left( \frac{x}{a} \right) \right)$ |
| $d \cot x$                     | $= -\csc^2 x  dx$                                                 | $\int x(a^2 \pm x^2)^{-\frac{1}{2}} dx$ |                                                                                             |
| $d \sec x$                     | $= \tan x \sec x dx$                                              | $\int \sin^2 x  dx$                     | $= -\frac{1}{2}\cos x \sin x + \frac{1}{2}x$                                                |
| $d \csc x$                     | $= -\cot x \cdot \sec x  dx$                                      | $\int \cos^2 x  dx$                     | $= \frac{1}{2} \sin x \cos x + \frac{1}{2} x$                                               |
| $d \sin^{-1} x$                | $= (1-x^2)^{-\frac{1}{2}} dx$                                     | $\int \sin x \cos x  dx$                | $= \frac{1}{2} \sin^2 x$                                                                    |
| $d \cos^{-1} x$                | $=-(1-x^2)^{-\frac{1}{2}} dx$                                     | $\int (\sin x \cos x)^{-1}$             |                                                                                             |
| $d \tan^{-1} x$                | $= (1+x^2)^{-1} dx$                                               | $\int \tan x  dx$                       | $= -\log \cos x$                                                                            |
| $d \cot^{-1} x$                | $= -(1+x^2)^{-1} dx$                                              | $\int \tan^2 x  dx$                     | $= \tan x - x$                                                                              |
| $d \operatorname{sec}^{-1} x$  | $= x^{-1} (x^2 - 1)^{-\frac{1}{2}} dx$                            | $\int \cot x  dx$                       | $= \log \sin x$                                                                             |
| $d \csc^{-1} x$                | $= -x^{-1} (x^2 - 1)^{-\frac{1}{2}} dx$                           | $\int \cot^2 x  dx$                     | $=-\cot x-x$                                                                                |
| $d \sinh x$                    | $=\cosh x dx$                                                     | $\int \csc x  dx$                       | $= \log \tan \frac{1}{2} x$                                                                 |
| $d \cosh x$                    | $= \sinh x  dx$                                                   | $\int x \sin x  dx$                     | $=\sin x - x\cos x$                                                                         |
| $d \tanh x$                    | $= \operatorname{sech}^2 x  dx$                                   | $\int x \cos x  dx$                     | $=\cos x + x \sin x$                                                                        |
| $d \coth x$                    | $= -\operatorname{csch}^2 x  dx$                                  | $\int \tanh x  dx$                      | $= \log \cosh x$                                                                            |
| d sech x                       | $= -\operatorname{sech} x \tanh dx$                               | $\int \coth x  dx$                      | $= \log \sinh x$                                                                            |
| $d \operatorname{csch} x$      | $= -\operatorname{csch} x \cdot \operatorname{coth} x  dx$        | $\int \operatorname{sech} x  dx$        | $= 2 \tan^{-1} e^x = \operatorname{gd} u$                                                   |
| $d \sinh^{-1} x$               | $=(x^2+1)^{-\frac{1}{2}} dx$                                      | $\int \operatorname{csch} x  dx$        | $= \log \tanh \frac{x}{2}$                                                                  |
| $d \cosh^{-1} x$               | $= (x^2 - 1)^{-\frac{1}{2}} dx$                                   | $\int x \sinh x  dx$                    | $= x \cosh x - \sinh x$                                                                     |
| $d \tanh^{-1} x$               | $= (1-x^2)^{-1} dx$                                               | $\int x \cosh x  dx$                    | $= x \sinh x - \cosh x$                                                                     |
| $\int d \coth^{-1} x$          | $= (1-x^2)^{-1} dx$                                               | $\int \sinh^2 x  dx$                    | $= \frac{1}{2} \left( \sinh x \cosh x - x \right)$                                          |
| $d \operatorname{sech}^{-1} x$ | $= -x^{-1} (1-x^2)^{-\frac{1}{2}} dx$                             | $\int \cosh^2 x  dx$                    | $= \frac{1}{2} \left( \sinh x \cosh x + x \right)$                                          |
| $d \operatorname{csch}^{-1} x$ | $= -x^{-1}(x^2+1)^{-\frac{1}{2}}$                                 | $\int \sinh x \cosh x  d$               | $x = \frac{1}{4} \cosh(2x)$                                                                 |
|                                |                                                                   | Fi                                      |                                                                                             |

<sup>\*</sup> See also accompanying table of derivatives. For example:  $\int \cos x \, dx = \sin x + \text{constant}$ .

 $(x^2 < \infty)$ 

$$(x+y)^n = x^n + \frac{n}{1} x^{n-1} y + \frac{n(n-1)}{2!} x^{n-2} y^{\frac{2}{n}} + \dots$$

$$\frac{n(n-1) \dots (n-m+1)}{m!} x^{n-m} y^m + \dots (y^2 < x^2)$$

$$(1 \pm x)^n = 1 \pm nx + \frac{n(n-1)x^2}{2!} \pm \frac{n(n-1)(n-2)x^2}{3!} + \dots + \frac{(\pm 1)^k n! x^k}{(n-k)! k!} + \dots (x^2 < 1)$$

$$(1 \pm x)^{-n} = 1 \mp nx + \frac{n(n+1)}{2!} x^2 \mp \frac{n(n+1)(n+2)x^2}{3!} + \dots + \frac{(\pm 1)^k (n+k-1)x^k}{(n-1)! k!} + \dots (x^2 < 1)$$

$$(1 \pm x)^{-1} = 1 \mp x + x^2 \mp x^3 + x^4 \mp x^5 + \dots + \frac{(x^2 + 1)^n (n+k-1) x^k}{(n-1)! k!} + \dots (x^2 < 1)$$

$$(1 \pm x)^{-2} = 1 \mp 2x + 3x^2 \mp 4x^3 + 5x^4 \mp 6x^5 + \dots + \frac{(x^2 + 1)^n (n+k-1) x^k}{(n-1)! k!} + \dots (x^2 < 1)$$

$$f(x+h) = f(x) + h f'(x) + \frac{h^2}{2!} f''(x) + \dots + \frac{h^n}{n!} f^{(n)}(x) + \dots + \frac{h^n}{n!} f^{($$

#### SERIES.

$$\cosh x = \frac{1}{2} (e^{x} + e^{-x}) = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{x^{6}}{6!} + \dots \qquad (x^{2} < \infty)$$

$$\tanh x = x - \frac{1}{3} x^{3} + \frac{2}{15} x^{5} - \frac{17}{315} x^{7} + \dots \qquad (x^{2} < \frac{1}{4}\pi^{2})$$

$$\sinh^{-1} x = x - \frac{1}{2} \frac{x^{3}}{3} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^{5}}{5} - \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \frac{x^{7}}{7} + \dots \qquad (x^{2} < 1)$$

$$= \log 2x + \frac{1}{2} \frac{1}{2x^{2}} - \frac{1}{2} \frac{3}{4} \frac{1}{4x^{4}} + \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6x^{6}} - \dots \qquad (x^{2} > 1)$$

$$\cosh^{-1} x = \log 2x - \frac{1}{2} \frac{1}{2x^{2}} - \frac{1}{2} \frac{3}{4} \frac{1}{4x^{4}} - \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6x^{6}} - \dots \qquad (x^{2} > 1)$$

$$\tanh^{-1} x = x + \frac{1}{3} x^{3} + \frac{1}{5} x^{5} + \frac{1}{7} x^{7} + \dots \qquad (x^{2} < 1)$$

$$\gcd x = \phi = x - \frac{1}{6} x^{3} + \frac{1}{24} x^{5} - \frac{61}{5040} x^{7} + \dots \qquad (x \text{ small})$$

$$= \frac{\pi}{2} - \operatorname{sech} x - \frac{1}{2} \frac{\operatorname{sech}^{3} x}{3} - \frac{1}{2} \frac{3}{4} \frac{\operatorname{sech}^{5} x}{5} - \dots \qquad (x \text{ large})$$

$$x = \gcd^{-1} \phi = \phi + \frac{1}{6} \phi^{3} + \frac{1}{24} \phi^{5} + \frac{61}{5040} \phi^{7} + \dots \qquad (\phi < \frac{\pi}{2})$$

$$f(x) = \frac{1}{2} b_{0} + b_{1} \cos \frac{\pi x}{c} + b_{2} \cos \frac{2\pi x}{c} + \dots + a_{1} \sin \frac{\pi x}{c} + a_{2} \cos \frac{2\pi x}{c} + \dots (-c < x < c)$$

$$a_{m} = \frac{1}{c} \int_{-c}^{+c} f(x) \sin \frac{m \pi x}{c} dx$$

$$b_{m} = \frac{1}{c} \int_{-c}^{+c} f(x) \cos \frac{m \pi x}{c} dx$$

#### TABLE 8,-MATHEMATICAL CONSTANTS.

|                                           |                                                                         | and the same of th |
|-------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | Numbers.                                                                | Logarithms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| e = 2.71828 18285                         | $\pi = 3.14159 \ 26536$                                                 | 0.49714 98727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $e^{-1} = 0.3678794412$                   | $\pi^2 = 9.86960$ 44011                                                 | 0.99429 97454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $M = \log_{10^{\circ}} = 0.43429 \ 44819$ | $\frac{1}{\pi} = 0.31830 \ 98862$                                       | 9.50285 01273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $(M)^{-1} = \log_e 10 = 2.30258 50930$    | $\sqrt{\pi} = 1.77245 38509$                                            | 0.24857 49363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\log_{10}\log_{10}e = 9.63778 \ 43113$   | $\sqrt{\pi} = 1.77245 \ 38509$ $\frac{\sqrt{\pi}}{2} = 0.88622 \ 69255$ | 9-94754 49407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\log_{10^2} = 0.3010299957$              | $\frac{1}{\sqrt{\pi}} = 0.56418 \ 95835$                                | 9.75142 50637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\log_{e^2} = 0.6931471806$               | $\frac{2}{\sqrt{\pi}} = 1.12837 \ 91671$                                | 0.05245 50593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\log_{10}x = M.\log_e x$                 | $\sqrt{\frac{\pi}{2}} = 1.25331 \ 41373$                                | 0.09805 99385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\log_{B} x = \log_{e} x. \log_{B} e$     | $\sqrt{\frac{2}{\pi}} = 0.79788 \ 45608$                                | 9.90194 00615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $=\log_e x \div \log_e B$                 | $\frac{\pi}{4} = 0.78539 \ 81634$                                       | 9.89508 98814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\log_e \pi = 1.14472 \ 98858$            | $\frac{\sqrt{\pi}}{4} = 0.44311 \ 34627$                                | 9.64651 49450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\rho = 0.47693 \ 62762$                  | $\frac{4}{3}\pi = 4.18879 \ 02048$                                      | 0.62208 86093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\log \rho = 9.67846 \text{ o}3565$       | $\frac{e}{\sqrt{2\pi}} = 1.08443 \ 75514$                               | 0.03520 45477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

TABLE 9.

# VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, OF NATURAL NUMBERS.

|                      |                                                     |                                 |                                      |                                                |                            |                                                     | 0 9                                  |                                                | 1                                              |  |
|----------------------|-----------------------------------------------------|---------------------------------|--------------------------------------|------------------------------------------------|----------------------------|-----------------------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------|--|
| 12                   | 1000.1                                              | $n^2$                           | $n^3$                                | V 12                                           | n                          | 1000.1                                              | $n^2$                                | n <sup>8</sup>                                 | 122                                            |  |
| 10                   | 100.000                                             | 100                             | 1000                                 | 3.1623                                         | 65                         | 15.3846                                             | 4225                                 | 274625                                         | 8.0623                                         |  |
| 11                   | 90.9091                                             | 121                             | 1331                                 | 3.3166                                         | 66                         | 15.1515                                             | 4356                                 | 287496                                         | 8.1240                                         |  |
| 12                   | 83.3333                                             | 144                             | 1728                                 | 3.4641                                         | 67                         | 14.9254                                             | 4489                                 | 300763                                         | 8.1854                                         |  |
| 13                   | 76.9231                                             | 169                             | 2197                                 | 3.6056                                         | 68                         | 14.7059                                             | 4624                                 | 314432                                         | 8.2462                                         |  |
| 14                   | 71.4286                                             | 196                             | 2744                                 | 3.7417                                         | 69                         | 14.4928                                             | 4761                                 | 328509                                         | 8.3066                                         |  |
| 15<br>16<br>17<br>18 | 66.6667<br>62.5000<br>58.8235<br>55.5556<br>52.6316 | 225<br>256<br>289<br>324<br>361 | 3375<br>4096<br>4913<br>5832<br>6859 | 3.8730<br>4.0000<br>4.1231<br>4.2426<br>4.3589 | 70<br>71<br>72<br>73<br>74 | 14.2857<br>14.0845<br>13.8889<br>13.6986<br>13.5135 | 4900<br>5041<br>5184<br>5329<br>5476 | 343000<br>357911<br>373248<br>389017<br>405224 | 8.3666<br>8.4261<br>8.4853<br>8.5440<br>8.6023 |  |
| 20                   | 50.0000                                             | 400                             | 8000                                 | 4.4721                                         | 75                         | 13.3333                                             | 5625                                 | 421875                                         | 8.6603                                         |  |
| 21                   | 47.6190                                             | 441                             | 9261                                 | 4.5826                                         | 76                         | 13.1579                                             | 5776                                 | 438976                                         | 8.7178                                         |  |
| 22                   | 45.4545                                             | 484                             | 10648                                | 4.6904                                         | 77                         | 12.9870                                             | 5929                                 | 456533                                         | 8.7750                                         |  |
| 23                   | 43.4783                                             | 529                             | 12167                                | 4.7958                                         | 78                         | 12.8205                                             | 6084                                 | 474552                                         | 8.8318                                         |  |
| 24                   | 41.6667                                             | 576                             | 13824                                | 4.8990                                         | 79                         | 12.6582                                             | 6241                                 | 493039                                         | 8.8882                                         |  |
| 25                   | 40.0000                                             | 625                             | 15625                                | 5.0000                                         | 80                         | 12.5000                                             | 6400                                 | 512000                                         | 8.9443                                         |  |
| 26                   | 38.4615                                             | 676                             | 17576                                | 5.0990                                         | 81                         | 12.3457                                             | 6561                                 | 531441                                         | 9.0000                                         |  |
| 27                   | 37.0370                                             | 729                             | 19683                                | 5.1962                                         | 82                         | 12.1951                                             | 6724                                 | 551368                                         | 9.0554                                         |  |
| 28                   | 35.7143                                             | 784                             | 21952                                | 5.2915                                         | 83                         | 12.0482                                             | 6889                                 | 571787                                         | 9.1104                                         |  |
| 29                   | 34.4828                                             | 841                             | 24389                                | 5.3852                                         | 84                         | 11.9048                                             | <b>70</b> 56                         | 592704                                         | 9.1652                                         |  |
| 30                   | 33·3333                                             | 900                             | 27000                                | 5.4772                                         | 85                         | 11.7647                                             | 7225                                 | 614125                                         | 9.2195                                         |  |
| 31                   | 32.2581                                             | 961                             | 29791                                | 5.5678                                         | 86                         | 11.6279                                             | 7396                                 | 636056                                         | 9.2736                                         |  |
| 32                   | 31.2500                                             | 1024                            | 32768                                | 5.6569                                         | 87                         | 11.4943                                             | 7569                                 | 658503                                         | 9.3274                                         |  |
| 33                   | 30·3030                                             | 1089                            | 35937                                | 5.7446                                         | 88                         | 11.3636                                             | 7744                                 | 681472                                         | 9.3808                                         |  |
| 34                   | 29.4118                                             | 1156                            | 39304                                | 5.8310                                         | 89                         | 11.2360                                             | 7921                                 | 704969                                         | 9.4340                                         |  |
| 35                   | 28.5714                                             | 1225                            | 42875                                | 5.9161                                         | 90                         | 11.1111                                             | 8100                                 | 729000                                         | 9.4868                                         |  |
| 36                   | 27.7778                                             | 1296                            | 46656                                | 6.0000                                         | 91                         | 10.9890                                             | 8281                                 | 753571                                         | 9.5394                                         |  |
| 37                   | 27.0270                                             | 1369                            | 50653                                | 6.0828                                         | 92                         | 10.8696                                             | 8464                                 | 778688                                         | 9.5917                                         |  |
| 38                   | 26.3158                                             | 1444                            | 54872                                | 6.1644                                         | 93                         | 10.7527                                             | 8649                                 | 804357                                         | 9.6437                                         |  |
| 39                   | 25.6410                                             | 1521                            | 59319                                | 6.2450                                         | 94                         | 10.6383                                             | 8836                                 | 830584                                         | 9.6954                                         |  |
| 40                   | 25,0000                                             | 1600                            | 64000                                | 6.3246                                         | 95                         | 10.5263                                             | 9025                                 | 857375                                         | 9.7468                                         |  |
| 41                   | 24,3902                                             | 1681                            | 68921                                | 6.4031                                         | 96                         | 10.4167                                             | 9216                                 | 884736                                         | 9.7980                                         |  |
| 42                   | 23,8095                                             | 1764                            | 74088                                | 6.4807                                         | 97                         | 10.3093                                             | 9409                                 | 912673                                         | 9.8489                                         |  |
| 43                   | 23,2558                                             | 1849                            | 79507                                | 6.5574                                         | 98                         | 10.2041                                             | 9604                                 | 941192                                         | 9.8995                                         |  |
| 44                   | 22,7273                                             | 1936                            | 85184                                | 6.6332                                         | 99                         | 10.1010                                             | 9801                                 | 970299                                         | 9.9499                                         |  |
| 45                   | 22.2222                                             | 2025                            | 91125                                | 6.7082                                         | 100                        | 10.0000                                             | 10000                                | 1000000                                        | 10.0000                                        |  |
| 46                   | 21.7391                                             | 2116                            | 97336                                | 6.7823                                         | 101                        | 9.90099                                             | 10201                                | 1030301                                        | 10.0499                                        |  |
| 47                   | 21.2766                                             | 2209                            | 103823                               | 6.8557                                         | 102                        | 9.80392                                             | 10404                                | 1061208                                        | 10.0995                                        |  |
| 48                   | 20.8333                                             | 2304                            | 110592                               | 6.9282                                         | 103                        | 9.70874                                             | 10609                                | 1092727                                        | 10.1489                                        |  |
| 49                   | 20.4082                                             | 2401                            | 117649                               | 7.0000                                         | 104                        | 9.61538                                             | 10816                                | 1124864                                        | 10.1980                                        |  |
| 50                   | 20.0000                                             | 2500                            | 125000                               | 7.0711                                         | 105                        | 9.52381                                             | 11025                                | 1157625                                        | 10.2470                                        |  |
| 51                   | 19.6078                                             | 2601                            | 132651                               | 7.1414                                         | 106                        | 9.43396                                             | 11236                                | 1191016                                        | 10.2956                                        |  |
| 52                   | 19.2308                                             | 2704                            | 140608                               | 7.2111                                         | 107                        | 9.34579                                             | 11449                                | 1225043                                        | 10.3441                                        |  |
| 53                   | 18.8679                                             | 2809                            | 148877                               | 7.2801                                         | 108                        | 9.25926                                             | 11664                                | 1259712                                        | 10.3923                                        |  |
| 54                   | 18.5185                                             | 2916                            | 157464                               | 7.3485                                         | 109                        | 9.17431                                             | 11881                                | 1295029                                        | 10.4403                                        |  |
| 55                   | 18.1818                                             | 3025                            | 166375                               | 7.4162                                         | 110                        | 9.09091                                             | 12100                                | 1331000                                        | 10.4881                                        |  |
| 56                   | 17.8571                                             | 3136                            | 175616                               | 7.4833                                         | 111                        | 9.00901                                             | 12321                                | 1367631                                        | 10.5357                                        |  |
| 57                   | 17.5439                                             | 3249                            | 185193                               | 7.5498                                         | 112                        | 8.92857                                             | 12544                                | 1404928                                        | 10.5830                                        |  |
| 58                   | 17.2414                                             | 3364                            | 195112                               | 7.6158                                         | 113                        | 8.84956                                             | 12769                                | 1442897                                        | 10.6301                                        |  |
| 59                   | 16.9492                                             | 3481                            | 205379                               | 7.6811                                         | 114                        | 8.77193                                             | 12996                                | 1481544                                        | 10.6771                                        |  |
| 60                   | 16.6667                                             | 3600                            | 216000                               | 7.7460                                         | 115                        | 8.69565                                             | 13225                                | 1520875                                        | 10.7238                                        |  |
| 61                   | 16.3934                                             | 3721                            | 226981                               | 7.8102                                         | 116                        | 8.62069                                             | 13456                                | 1560896                                        | 10.7703                                        |  |
| 62                   | 16.1290                                             | 3844                            | 238328                               | 7.8740                                         | 117                        | 8.54701                                             | 13689                                | 1601613                                        | 10.8167                                        |  |
| 63                   | 15.8730                                             | 3969                            | 250047                               | 7.9373                                         | 118                        | 8.47458                                             | 13924                                | 1643032                                        | 10.8628                                        |  |
| 64                   | 15.6250                                             | 4096                            | 262144                               | 8.0000                                         | 119                        | 8.40336                                             | 14161                                | 1685159                                        | 10.9087                                        |  |

# VALUES OF RECIPROCALS, SQUARES, CUBES, SQUARE ROOTS, OF NATURAL NUMBERS.

| OF NATURAL NUMBERS.             |                                                     |                                           |                                                                       |                                                     |                                 |                                                     |                                           |                                              |                                                     |  |  |  |
|---------------------------------|-----------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------|---------------------------------|-----------------------------------------------------|-------------------------------------------|----------------------------------------------|-----------------------------------------------------|--|--|--|
| 72                              | 1000.1                                              | $n^2$                                     | 228                                                                   | \n                                                  | n                               | 1000.1                                              | $n^2$                                     | n <sup>3</sup>                               | V22                                                 |  |  |  |
| 120                             | 8.33333                                             | 14400                                     | 1728000                                                               | 10.9545                                             | 175                             | 5.71429                                             | 30625                                     | 5359375                                      | 13.2288                                             |  |  |  |
| 121                             | 8.26446                                             | 14641                                     | 1771561                                                               | 11.0000                                             | 176                             | 5.68182                                             | 30976                                     | 5451776                                      | 13.2665                                             |  |  |  |
| 122                             | 8.19672                                             | 14884                                     | 1815848                                                               | 11.0454                                             | 177                             | 5.64972                                             | 31329                                     | 5545233                                      | 13.3041                                             |  |  |  |
| 123                             | 8.13008                                             | 15129                                     | 1860867                                                               | 11.0905                                             | 178                             | 5.61798                                             | 31684                                     | 5639752                                      | 13.3417                                             |  |  |  |
| 124                             | 8.06452                                             | 15376                                     | 1906624                                                               | 11.1355                                             | 179                             | 5.58659                                             | 32041                                     | 5735339                                      | 13.3791                                             |  |  |  |
| 125                             | 8.00000                                             | 15625                                     | 1953125                                                               | 11.1803                                             | 180                             | 5.55556                                             | 32400                                     | 5832000                                      | 13.4164                                             |  |  |  |
| 126                             | 7.93651                                             | 15876                                     | 2000376                                                               | 11.2250                                             | 181                             | 5.52486                                             | 32761                                     | 5929741                                      | 13.4536                                             |  |  |  |
| 127                             | 7.87402                                             | 16129                                     | 2048383                                                               | 11.2694                                             | 182                             | 5.49451                                             | 33124                                     | 6028568                                      | 13.4907                                             |  |  |  |
| 128                             | 7.81250                                             | 16384                                     | 2097152                                                               | 11.3137                                             | 183                             | 5.46448                                             | 33489                                     | 6128487                                      | 13.5277                                             |  |  |  |
| 129                             | 7.75194                                             | 16641                                     | 2146689                                                               | 11.3578                                             | 184                             | 5.43478                                             | 33856                                     | 6229504                                      | 13.5647                                             |  |  |  |
| 130                             | 7.69231                                             | 16900                                     | 2197000                                                               | 11.4018                                             | 185                             | 5.40541                                             | 34225                                     | 6331625                                      | 13.6015                                             |  |  |  |
| 131                             | 7.63359                                             | 17161                                     | 2248091                                                               | 11.4455                                             | 186                             | 5.37634                                             | 34596                                     | 6434856                                      | 13.6382                                             |  |  |  |
| 132                             | 7.57576                                             | 17424                                     | 2299968                                                               | 11.4891                                             | 187                             | 5.34759                                             | 34969                                     | 6539203                                      | 13.6748                                             |  |  |  |
| 133                             | 7.51880                                             | 17689                                     | 2352637                                                               | 11.5326                                             | 188                             | 5.31915                                             | 35344                                     | 6644672                                      | 13.7113                                             |  |  |  |
| 134                             | 7.46269                                             | 17956                                     | 2406104                                                               | 11.5758                                             | 189                             | 5.29101                                             | 35721                                     | 6751269                                      | 13.7477                                             |  |  |  |
| 135                             | 7.40741                                             | 18225                                     | 2460375                                                               | 11.6190                                             | 190                             | 5.26316                                             | 36100                                     | 6859000                                      | 13.7840                                             |  |  |  |
| 136                             | 7.35294                                             | 18496                                     | 2515456                                                               | 11.6619                                             | 191                             | 5.23560                                             | 36481                                     | 6967871                                      | 13.8203                                             |  |  |  |
| 137                             | 7.29927                                             | 18769                                     | 2571353                                                               | 11.7047                                             | 192                             | 5.20833                                             | 36864                                     | 7077888                                      | 13.8564                                             |  |  |  |
| 138                             | 7.24638                                             | 19044                                     | 2628072                                                               | 11.7473                                             | 193                             | 5.18135                                             | 37249                                     | 7189057                                      | 13.8924                                             |  |  |  |
| 139                             | 7.19424                                             | 19321                                     | 2685619                                                               | 11.7898                                             | 194                             | 5.15464                                             | 37636                                     | 7301384                                      | 13.9284                                             |  |  |  |
| 140                             | 7.14286                                             | 19600                                     | 2744000                                                               | 11.8322                                             | 195                             | 5.12821                                             | 38025                                     | 7414875                                      | 13.9642                                             |  |  |  |
| 141                             | 7.09220                                             | 19881                                     | 2803221                                                               | 11.8743                                             | 196                             | 5.10204                                             | 38416                                     | 7529536                                      | 14.0006                                             |  |  |  |
| 142                             | 7.04225                                             | 20164                                     | 2863288                                                               | 11.9164                                             | 197                             | 5.07614                                             | 38809                                     | 7645373                                      | 14.0357                                             |  |  |  |
| 143                             | 6.99301                                             | 20449                                     | 2924207                                                               | 11.9583                                             | 198                             | 5.05051                                             | 39204                                     | 7762392                                      | 14.0712                                             |  |  |  |
| 144                             | 6.94444                                             | 20736                                     | 2985984                                                               | 12.0000                                             | 199                             | 5.02513                                             | 39601                                     | 7880599                                      | 14.1067                                             |  |  |  |
| 145                             | 6.89655                                             | 21025                                     | 3048625                                                               | 12.0416                                             | 200                             | 5 00000                                             | 40000                                     | 8000000                                      | 14.1421                                             |  |  |  |
| 146                             | 6.84932                                             | 21316                                     | 3112136                                                               | 12.0830                                             | 201                             | 4.97512                                             | 40401                                     | 8120601                                      | 14.1774                                             |  |  |  |
| 147                             | 6.80272                                             | 21609                                     | 3176523                                                               | 12.1244                                             | 202                             | 4.95050                                             | 40804                                     | 8242408                                      | 14.2127                                             |  |  |  |
| 148                             | 6.75676                                             | 21904                                     | 3241792                                                               | 12.1655                                             | 203                             | 4.92611                                             | 41209                                     | 8365427                                      | 14.2478                                             |  |  |  |
| 149                             | 6.71141                                             | 22201                                     | 3307949                                                               | 12.2066                                             | 204                             | 4.90196                                             | 41616                                     | 8489664                                      | 14.2829                                             |  |  |  |
| 150                             | 6.66667                                             | 22500                                     | 337 5000                                                              | 12.2474                                             | 205                             | 4.87805                                             | 42025                                     | 8615125                                      | 14.3178                                             |  |  |  |
| 151                             | 6.62252                                             | 22801                                     | 3442951                                                               | 12.2882                                             | 206                             | 4.85437                                             | 42436                                     | 8741816                                      | 14.3527                                             |  |  |  |
| 152                             | 6.57895                                             | 23104                                     | 3511808                                                               | 12.3288                                             | 207                             | 4.83092                                             | 42849                                     | 8869743                                      | 14.3875                                             |  |  |  |
| 153                             | 6.53595                                             | 23409                                     | 3581 577                                                              | 12.3693                                             | 208                             | 4.80769                                             | 43264                                     | 8998912                                      | 14.4222                                             |  |  |  |
| 154                             | 6.49351                                             | 23716                                     | 3652264                                                               | 12.4097                                             | 209                             | 4.78469                                             | 43681                                     | 9129329                                      | 14.4568                                             |  |  |  |
| 155                             | 6.45161                                             | 24025                                     | 3723875                                                               | 12.4499                                             | 210                             | 4.76190                                             | 44100                                     | 9261000                                      | 14.4914                                             |  |  |  |
| 156                             | 6.41026                                             | 24336                                     | 3796416                                                               | 12.4900                                             | 211                             | 4.73934                                             | 44521                                     | 9393931                                      | 14.5258                                             |  |  |  |
| 157                             | 6.36943                                             | 24649                                     | 3869893                                                               | 12.5300                                             | 212                             | 4.71698                                             | 44944                                     | 9528128                                      | 14.5602                                             |  |  |  |
| 158                             | 6.32911                                             | 24964                                     | 3944312                                                               | 12.5698                                             | 213                             | 4.69484                                             | 45369                                     | 9663597                                      | 14.5945                                             |  |  |  |
| 159                             | 6.28931                                             | 25281                                     | 4019679                                                               | 12.6095                                             | 214                             | 4.67290                                             | 45796                                     | 9800344                                      | 14.6287                                             |  |  |  |
| 160                             | 6.25000                                             | 25600                                     | 4096000                                                               | 12.6491                                             | 215                             | 4.65116                                             | 46225                                     | 9938375                                      | 14.6629                                             |  |  |  |
| 161                             | 6.21118                                             | 25921                                     | 4173281                                                               | 12.6886                                             | 216                             | 4.62963                                             | 46656                                     | 10077696                                     | 14.6969                                             |  |  |  |
| 162                             | 6.17284                                             | 26244                                     | 4251528                                                               | 12.7279                                             | 217                             | 4.60829                                             | 47089                                     | 10218313                                     | 14.7309                                             |  |  |  |
| 163                             | 6.13497                                             | 26569                                     | 4330747                                                               | 12.7671                                             | 218                             | 4.58716                                             | 47524                                     | 10360232                                     | 14.7648                                             |  |  |  |
| 164                             | 6.09756                                             | 26896                                     | 4410944                                                               | 12.8062                                             | 219                             | 4.56621                                             | 47961                                     | 10503459                                     | 14.7986                                             |  |  |  |
| 165<br>166<br>167<br>168<br>169 | 6.06061<br>6.02410<br>5.98802<br>5.95238<br>5.91716 | 27225<br>27556<br>27889<br>28224<br>28561 | 4492125<br>4574296<br>46 <b>57</b> 463<br>4741632<br>48 <b>26</b> 809 | 12.8452<br>12.8841<br>12.9228<br>12.9615<br>13.0000 | 220<br>221<br>222<br>223<br>224 | 4.54545<br>4.52489<br>4.50450<br>4.48430<br>4.46429 | 48400<br>48841<br>49284<br>49729<br>50176 | 10648000<br>10793861<br>10941048<br>11089567 | 14.8324<br>14.8661<br>14.8997<br>14.9332<br>14.9666 |  |  |  |
| 170                             | 5.88235                                             | 28900                                     | 4913000                                                               | 13.0384                                             | 225                             | 4.44444                                             | 50625                                     | 11390625                                     | 15.0000                                             |  |  |  |
| 171                             | 5.84795                                             | 29241                                     | 5000211                                                               | 13.0767                                             | 226                             | 4 42478                                             | 51076                                     | 11543176                                     | 15.0333                                             |  |  |  |
| 172                             | 5.81395                                             | 29584                                     | 5088448                                                               | 13.1149                                             | 227                             | 4.40529                                             | 51529                                     | 11697083                                     | 15.0665                                             |  |  |  |
| 173                             | 5.78035                                             | 29929                                     | 5177717                                                               | 13.1529                                             | 228                             | 4.38596                                             | 51984                                     | 11852352                                     | 15.0997                                             |  |  |  |
| 174                             | 5.74713                                             | 30276                                     | 5268024                                                               | 13.1909                                             | 229                             | 4.36681                                             | 52441                                     | 12008989                                     | 15.1327                                             |  |  |  |

## VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS, OF NATURAL NUMBERS.

| 12  | 1000.1  | 122   | $n^3$     | V 22    | n   | 1000.1  | n <sup>2</sup> | n <sup>3</sup>        | 122     |
|-----|---------|-------|-----------|---------|-----|---------|----------------|-----------------------|---------|
| 230 | 4.34783 | 52900 | 12167000  | 15.1658 | 285 | 3.50877 | 81225          | 23149125              | 16.8819 |
| 231 | 4.32900 | 53361 | 12326391  | 15.1987 | 286 | 3.49650 | 81796          | 23393656              | 16.9115 |
| 232 | 4.31034 | 53824 | 12487168  | 15.2315 | 287 | 3.48432 | 82369          | 23639903              | 16.9411 |
| 233 | 4.29185 | 54289 | 12649337  | 15.2643 | 288 | 3.47222 | 82944          | 23887872              | 16.9706 |
| 234 | 4.27350 | 54756 | 12812904  | 15.2971 | 289 | 3.46021 | 83521          | 24137569              | 17.0000 |
| 235 | 4.25532 | 55225 | 12977875  | 15.3297 | 290 | 3.44828 | 84100          | 24389000              | 17.0294 |
| 236 | 4.23729 | 55696 | 13144256  | 15.3623 | 291 | 3.43643 | 84681          | 24642171              | 17.0587 |
| 237 | 4.21941 | 56169 | 13312053  | 15.3948 | 292 | 3.42466 | 85264          | 24897088              | 17.0880 |
| 238 | 4.20168 | 56644 | 13481272  | 15.4272 | 293 | 3.41297 | 85849          | 25153757              | 17.1172 |
| 239 | 4.18410 | 57121 | 13651919  | 15.4596 | 294 | 3.40136 | 86436          | 25412184              | 17.1464 |
| 240 | 4.16667 | 57600 | 13824000  | 15.4919 | 295 | 3.38983 | 87025          | 25672375              | 17.1756 |
| 241 | 4.14938 | 58081 | 13997521  | 15.5242 | 296 | 3.37838 | 87616          | 25934336              | 17.2047 |
| 242 | 4.13223 | 58564 | 14172488  | 15.5563 | 297 | 3.36700 | 88209          | 26198073              | 17.2337 |
| 243 | 4.11523 | 59049 | 14348907  | 15.5885 | 298 | 3.35570 | 88804          | 26463592              | 17.2627 |
| 244 | 4.09836 | 59536 | 14526784. | 15.6205 | 299 | 3.34448 | 89401          | 26730899              | 17.2916 |
| 245 | 4.08163 | 60025 | 14706125  | 15.6525 | 300 | 3.33333 | 90000          | 27000000              | 17.3205 |
| 246 | 4.06504 | 60516 | 14886936  | 15.6844 | 301 | 3.32226 | 90601          | 27270901              | 17.3494 |
| 247 | 4.04858 | 61009 | 15069223  | 15.7162 | 302 | 3.31126 | 91204          | 27543608              | 17.3781 |
| 248 | 4.03226 | 61504 | 15252992  | 15.7480 | 303 | 3.30033 | 91809          | 27818127              | 17.4069 |
| 249 | 4.01606 | 62001 | 15438249  | 15.7797 | 304 | 3.28947 | 92416          | 28094464              | 17.4356 |
| 250 | 4.00000 | 62500 | 15625000  | 15.8114 | 305 | 3.27869 | 93025          | 28372625              | 17.4642 |
| 251 | 3.98406 | 63001 | 15813251  | 15.8430 | 306 | 3.26797 | 93636          | 28652616              | 17.4929 |
| 252 | 3.96825 | 63504 | 16003008  | 15.8745 | 307 | 3.25733 | 94249          | 28934443              | 17.5214 |
| 253 | 3.95257 | 64009 | 16194277  | 15.9060 | 308 | 3.24675 | 94864          | 29218112              | 17.5499 |
| 254 | 3.93701 | 64516 | 16387064  | 15.9374 | 309 | 3.23625 | 95481          | 29503629              | 17.5784 |
| 255 | 3.92157 | 65025 | 16581375  | 15.9687 | 310 | 3.22581 | 96100          | 29791000              | 17.6068 |
| 256 | 3.90625 | 65536 | 16777216  | 16.0000 | 311 | 3.21543 | 96721          | 30080231              | 17.6352 |
| 257 | 3.89105 | 66049 | 16974593  | 16.0312 | 312 | 3.20513 | 97344          | 3037-1328             | 17.6635 |
| 258 | 3.87597 | 66564 | 17173512  | 16.0624 | 313 | 3.19489 | 97969          | 30664297              | 17.6918 |
| 259 | 3.86100 | 67081 | 17373979  | 16.0935 | 314 | 3.18471 | 98596          | 30959144              | 17.7200 |
| 260 | 3.84615 | 67600 | 17576000  | 16.1245 | 315 | 3.17460 | 99225          | 31255 <sup>8</sup> 75 | 17.7482 |
| 261 | 3.83142 | 68121 | 17779581  | 16.1555 | 316 | 3.16456 | 99856          | 31554496              | 17.7764 |
| 262 | 3.81679 | 68644 | 17984728  | 16.1864 | 317 | 3.15457 | 100489         | 31855013              | 17.8045 |
| 263 | 3.80228 | 69169 | 18191447  | 16.2173 | 318 | 3.14465 | 101124         | 32157432              | 17.8326 |
| 264 | 3.78788 | 69696 | 18399744  | 16.2481 | 319 | 3.13480 | 101761         | 32461759              | 17.8606 |
| 265 | 3.77358 | 70225 | 18609625  | 16.2788 | 320 | 3.12500 | 102400         | 32768000              | 17.8885 |
| 266 | 3.75940 | 70756 | 18821096  | 16.3095 | 321 | 3.115 6 | 103041         | 33076161              | 17.9165 |
| 267 | 3.74532 | 71289 | 19034163  | 16.3401 | 322 | 3.10559 | 103684         | 33386248              | 17.9444 |
| 268 | 3.73134 | 71824 | 19248832  | 16 3707 | 323 | 3.09598 | 104329         | 33698267              | 17.9722 |
| 269 | 3.71747 | 72361 | 19465109  | 16.4012 | 324 | 3.08642 | 104976         | 34012224              | 18.0000 |
| 270 | 3.70370 | 72900 | 19683000  | 16.4317 | 325 | 3.07692 | 105625         | 34328125              | 18.0278 |
| 271 | 3.69004 | 73441 | 19902511  | 16.4621 | 326 | 3.06748 | 106276         | 34645976              | 18.0555 |
| 272 | 3 67647 | 73984 | 20123648  | 16.4924 | 327 | 3.05810 | 106929         | 34965783              | 18.0831 |
| 273 | 3.66300 | 74529 | 20346417  | 16.5227 | 328 | 3.04878 | 107584         | 35287552              | 18.1108 |
| 274 | 3.64964 | 75076 | 20570824  | 16.5529 | 329 | 3.03951 | 108241         | 35611289              | 18.1384 |
| 275 | 3.63636 | 75625 | 20796875  | 16.5831 | 330 | 3.03030 | 108900         | 35937000              | 18.1659 |
| 276 | 3.62319 | 76176 | 21024576  | 16.6132 | 331 | 3.02115 | 109561         | 36264691              | 18.1934 |
| 277 | 3.61011 | 76729 | 21253933  | 16.6433 | 332 | 3.01205 | 110224         | 36594368              | 18.2209 |
| 278 | 3.59712 | 77284 | 21484952  | 16.6733 | 333 | 3.00300 | 110889         | 36926037              | 18.2483 |
| 279 | 3.58423 | 77841 | 21717639  | 16.7033 | 334 | 2.99401 | 111556         | 37259704              | 18.2757 |
| 280 | 3.57143 | 78400 | 21952000  | 16.7332 | 335 | 2.98507 | 112225         | 37595375              | 18.3030 |
| 281 | 3.55872 | 78961 | 22188041  | 16.7631 | 336 | 2.97619 | 112896         | 37933056              | 18.3303 |
| 282 | 3.54610 | 79524 | 22425768  | 16.7929 | 337 | 2.96736 | 113569         | 38272753              | 18.3576 |
| 283 | 3.53357 | 80089 | 22665187  | 16.8226 | 338 | 2.95858 | 114244         | 38614472              | 18.3848 |
| 284 | 3.52113 | 80656 | 22906304  | 16.8523 | 339 | 2.94985 | 114921         | 38958219              | 18.4120 |

# VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

|            | OF NATURAL NUMBERS. |                 |                   |         |                            |         |         |                |         |  |  |  |  |  |
|------------|---------------------|-----------------|-------------------|---------|----------------------------|---------|---------|----------------|---------|--|--|--|--|--|
| n          | 1000.1              | $n^2$           | 218               | Vn2     | 12                         | 1000.1  | $n^2$   | n <sup>3</sup> | V 12    |  |  |  |  |  |
| 340        | 2.94118             | 115600          | 39304000          | 18.4391 | <b>395</b>                 | 2.53165 | 156025. | 61629875       | 19.8746 |  |  |  |  |  |
| 341        | 2.93255             | 116281          | 39651821          | 18.4662 | 396                        | 2.52525 | 156816  | 62099136       | 19.8997 |  |  |  |  |  |
| 342        | 2.92398             | 116964          | 40001688          | 18.4932 | 397                        | 2.51889 | 157609  | 62570773       | 19.9249 |  |  |  |  |  |
| 343        | 2.91545             | 117649          | 40353607          | 18.5203 | 398                        | 2.51256 | 158404  | 63044792       | 19.9499 |  |  |  |  |  |
| 344        | 2.90698             | 118336          | 40707584          | 18.5472 | 399                        | 2.50627 | 159201  | 63521199       | 19.9750 |  |  |  |  |  |
| 345        | 2.89855             | 119025          | 41063625          | 18.5742 | 400                        | 2.50000 | 160000  | 64000000       | 20.0000 |  |  |  |  |  |
| 346        | 2.89017             | 119716          | 41421736          | 18.6011 | 401                        | 2.49377 | 160801  | 64481201       | 20.0250 |  |  |  |  |  |
| 347        | 2.88184             | 120409          | 41781923          | 18.6279 | 402                        | 2.48756 | 161604  | 64964808       | 20.0499 |  |  |  |  |  |
| 348        | 2.87356             | 121104          | 42144192          | 18.6548 | 403                        | 2.48139 | 162409  | 65450827       | 20.0749 |  |  |  |  |  |
| 349        | 2.86533             | 121801          | 42508549          | 18.6815 | 404                        | 2.47525 | 163216  | 65939264       | 20.0998 |  |  |  |  |  |
| 350        | 2.85714             | 122500          | 4287 <b>5</b> 000 | 18.7083 | <b>405</b>                 | 2.46914 | 164025  | 66430125       | 20.1246 |  |  |  |  |  |
| 351        | 2.84900             | 123201          | 43243551          | 18.7350 | 406                        | 2.46305 | 164836  | 66923416       | 20.1494 |  |  |  |  |  |
| 352        | 2.84091             | 123904          | 43614208          | 18.7617 | 407                        | 2.45700 | 165649  | 67419143       | 20.1742 |  |  |  |  |  |
| 353        | 2.83286             | 124609          | 43986977          | 18.7883 | 408                        | 2.45098 | 166464  | 67917312       | 20.1990 |  |  |  |  |  |
| 354        | 2.82486             | 125316          | 44361864          | 18.8149 | 409                        | 2.44499 | 167281  | 68417929       | 20.2237 |  |  |  |  |  |
| 355        | 2.81690             | 126025          | 44738875          | 18.8414 | 410                        | 2.43902 | 168100  | 68921000       | 20.2485 |  |  |  |  |  |
| 356        | 2.80899             | 126736          | 45118016          | 18.8680 | 411                        | 2.43309 | 168921  | 69426531       | 20.2731 |  |  |  |  |  |
| 357        | 2.80112             | 127449          | 45499293          | 18.8944 | 412                        | 2.42718 | 169744  | 69934528       | 20.2978 |  |  |  |  |  |
| 358        | 2.79330             | 128164          | 45882712          | 18.9209 | 413                        | 2.42131 | 170569  | 70444997       | 20.3224 |  |  |  |  |  |
| 359        | 2.78552             | 128881          | 46268279          | 18.9473 | 414                        | 2.41546 | 171396  | 70957944       | 20.3470 |  |  |  |  |  |
| 360        | 2.77778             | 129600          | 46656000          | 18.9737 | 415                        | 2.40964 | 172225  | 71473375       | 20.3715 |  |  |  |  |  |
| 361        | 2.77008             | 130321          | 47045881°         | 19.0000 | 416                        | 2.40385 | 173056  | 71991296       | 20.3961 |  |  |  |  |  |
| 362        | 2.76243             | 131044          | 47437928          | 19.0263 | 417                        | 2.39808 | 173889  | 72511713       | 20.4206 |  |  |  |  |  |
| 363        | 2.75482             | 131769          | 47832147          | 19.0526 | 418                        | 2.39234 | 174724  | 73034632       | 20.4450 |  |  |  |  |  |
| 364        | 2.74725             | 132496          | 48228544          | 19.0788 | 419                        | 2.38663 | 175561  | 73560059       | 20.4695 |  |  |  |  |  |
| <b>365</b> | 2.73973             | 133225          | 48627125          | 19.1050 | 420                        | 2.38095 | 176400  | 74088000       | 20.4939 |  |  |  |  |  |
| 366        | 2.73224             | 133956          | 49027896          | 19.1311 | 421                        | 2.37530 | 177241  | 74618461       | 20.5183 |  |  |  |  |  |
| 367        | 2.72480             | 134689          | 49430863          | 19.1572 | 422                        | 2.36967 | 178084  | 75151448       | 20.5426 |  |  |  |  |  |
| 368        | 2.71739             | 135424          | 49836032          | 19.1833 | 423                        | 2.36407 | 178929  | 75686967       | 20.5670 |  |  |  |  |  |
| 369        | 2.71003             | 136161          | 50243409          | 19.2094 | 424                        | 2.35849 | 179776  | 76225024       | 20.5913 |  |  |  |  |  |
| 370        | 2.70270             | 136900          | 50653000          | 19.2354 | 425                        | 2.35294 | 180625  | 76765625       | 20.6155 |  |  |  |  |  |
| 371        | 2.69542             | 137641          | 51064811          | 19.2614 | 426                        | 2.34742 | 181476  | 77308776       | 20.6398 |  |  |  |  |  |
| 372        | 2.68817             | 138384          | 51478848          | 19.2873 | 427                        | 2.34192 | 182329  | 77854483       | 20.6640 |  |  |  |  |  |
| 373        | 2.68097             | 139129          | 51895117          | 19.3132 | 428                        | 2.33645 | 183184  | 78402752       | 20.6882 |  |  |  |  |  |
| 374        | 2.67380             | 139876          | 52313624          | 19.3391 | 429                        | 2.33100 | 184041  | 78953589       | 20.7123 |  |  |  |  |  |
| 375        | 2.66667             | 140625          | 52734375          | 19.3649 | 430                        | 2.32558 | 184900  | 79507000       | 20.7364 |  |  |  |  |  |
| 376        | 2.65957             | 141376          | 53157376          | 19.3907 | 431                        | 2.32019 | 185761  | 80062991       | 20.7605 |  |  |  |  |  |
| 377        | 2.65252             | 142129          | 53582633          | 19.4165 | 432                        | 2.31481 | 186624  | 80621568       | 20.7846 |  |  |  |  |  |
| 378        | 2.64550             | 142884          | 54010152          | 19.4422 | 433                        | 2.30947 | 187489  | 81182737       | 20.8087 |  |  |  |  |  |
| 379        | 2.63852             | 143641          | 54439939          | 19.4679 | 434                        | 2.30415 | 188356  | 81746504       | 20.8327 |  |  |  |  |  |
| 380        | 2.631 58            | 144400          | 54872000          | 19.4936 | <b>435</b> 436 437 438 439 | 2.29885 | 189225  | 82312875       | 20.8567 |  |  |  |  |  |
| 381        | 2.62467             | 145161          | 55306341          | 19.5192 |                            | 2.29358 | 190096  | 82881856       | 20.8806 |  |  |  |  |  |
| 382        | 2.61780             | 145924          | 55742968          | 19.5448 |                            | 2.28833 | 190969  | 83453453       | 20.9045 |  |  |  |  |  |
| 383        | 2.61097             | 146689          | 56181887          | 19.5704 |                            | 2.28311 | 191844  | 84027672       | 20.9284 |  |  |  |  |  |
| 384        | 2.60417             | 147456          | 56623104          | 19.5959 |                            | 2.27790 | 192721  | 84604519       | 20.9523 |  |  |  |  |  |
| 385        | 2.59740             | 148225          | 57066625          | 19.6214 | 440                        | 2.27273 | 193600  | 85184000       | 20.9762 |  |  |  |  |  |
| 386        | 2.59067             | 1489 <b>9</b> 6 | 57512456          | 19.6469 | 441                        | 2.26757 | 194481  | 85766121       | 21.0000 |  |  |  |  |  |
| 387        | 2.58398             | 149769          | 57960603          | 19.6723 | 442                        | 2.26244 | 195364  | 86350888       | 21.0238 |  |  |  |  |  |
| 388        | 2.57732             | 150544          | 58411072          | 19.6977 | 443                        | 2.25734 | 196249  | 86938307       | 21.0476 |  |  |  |  |  |
| 389        | 2.57069             | 151321          | 58863869          | 19.7231 | 444                        | 2.25225 | 197136  | 87528384       | 21.0713 |  |  |  |  |  |
| 390        | 2.56410             | 152100          | 59319000          | 19.7484 | 445                        | 2.24719 | 198025  | 88121125       | 21.0950 |  |  |  |  |  |
| 391        | 2.55754             | 152881          | 5977647 <b>1</b>  | 19.7737 | 446                        | 2.24215 | 198916  | 88716536       | 21.1187 |  |  |  |  |  |
| 392        | 2.55102             | 153664          | 60236288          | 19.7990 | 447                        | 2.23714 | 199809  | 89314623       | 21.1424 |  |  |  |  |  |
| 393        | 2.54453             | 154449          | 60698457          | 19.8242 | 448                        | 2.23214 | 200704  | 89915392       | 21.1660 |  |  |  |  |  |
| 394        | 2.53807             | 155236          | 61162984          | 19.8494 | 449                        | 2.22717 | 201601  | 90518849       | 21.1896 |  |  |  |  |  |

# VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

| n                          | $1000.\frac{1}{n}$ | $n^2$  | n <sup>8</sup> | √n      | 12                         | 1000.1  | $n^2$          | n8        | √n.     |
|----------------------------|--------------------|--------|----------------|---------|----------------------------|---------|----------------|-----------|---------|
| 450                        | 2.22222            | 202500 | 91125000       | 21.2132 | <b>505</b> 506 507 508 509 | 1.98020 | 255025         | 128787625 | 22.4722 |
| 451                        | 2.21729            | 203401 | 91733851       | 21.2368 |                            | 1.97628 | 256036         | 129554216 | 22.4944 |
| 452                        | 2.21239            | 204304 | 92345408       | 21.2603 |                            | 1.97239 | 257049         | 130323843 | 22.5167 |
| 453                        | 2.20751            | 205209 | 92959677       | 21.2838 |                            | 1.96850 | 258064         | 131096512 | 22.5389 |
| 454                        | 2.20264            | 206116 | 93576664       | 21.3073 |                            | 1.96464 | 259081         | 131872229 | 22.5610 |
| <b>455</b> 456 457 458 459 | 2.19780            | 207025 | 94196375       | 21.3307 | 510                        | 1.96078 | 260100         | 132651000 | 22.5832 |
|                            | 2.19298            | 207936 | 94818816       | 21.3542 | 511                        | 1.95695 | 261121         | 133432831 | 22.6053 |
|                            | 2.18818            | 208849 | 95443993       | 21.3776 | 512                        | 1.95312 | 262144         | 134217728 | 22.6274 |
|                            | 2.18341            | 209764 | 96071912       | 21.4009 | 513                        | 1.94932 | 263169         | 135005697 | 22.6495 |
|                            | 2.17865            | 210681 | 96702579       | 21.4243 | 514                        | 1.94553 | 264196         | 135796744 | 22.6716 |
| 460                        | 2.17391            | 211600 | 97336000       | 21.4476 | 515                        | 1.94175 | 2652 <b>25</b> | 136590875 | 22.6936 |
| 461                        | 2.16920            | 212521 | 97972181       | 21.4709 | 516                        | 1.93798 | 266256         | 137388096 | 22.7156 |
| 462                        | 2.16450            | 213444 | 98611128       | 21.4942 | 517                        | 1.93424 | 267289         | 138188413 | 22.7376 |
| 463                        | 2.15983            | 214369 | 99252847       | 21.5174 | 518                        | 1.93050 | 268324         | 138991832 | 22.7596 |
| 464                        | 2.15517            | 215296 | 99897344       | 21.5407 | 519                        | 1.92678 | 269361         | 139798359 | 22.7816 |
| <b>465</b>                 | 2.15054            | 216225 | 100544625      | 21.5639 | 520                        | 1.92308 | 270400         | 140608000 | 22.8035 |
| 466                        | 2.14592            | 217156 | 101194696      | 21.5870 | 521                        | 1.91939 | 271441         | 141420761 | 22.8254 |
| 467                        | 2.14133            | 218089 | 101847563      | 21.6102 | 522                        | 1.91571 | 272484         | 142236648 | 22.8473 |
| 468                        | 2.13675            | 219024 | 102503232      | 21.6333 | 523                        | 1.91205 | 273529         | 143055667 | 22.8692 |
| 469                        | 2.13220            | 219961 | 103161709      | 21.6564 | 524                        | 1.90840 | 274576         | 143877824 | 22.8910 |
| 470                        | 2.12766            | 220900 | 103823000      | 21.6795 | 525                        | 1.90476 | 275625         | 144703125 | 22.9129 |
| 471                        | 2.12314            | 221841 | 104487111      | 21.7025 | 526                        | 1.90114 | 276676         | 145531576 | 22.9347 |
| 472                        | 2.11864            | 222784 | 105154048      | 21.7256 | 527                        | 1.89753 | 277729         | 146363183 | 22.9565 |
| 473                        | 2.11416            | 223729 | 105823817      | 21.7486 | 528                        | 1.89394 | 278784         | 147197952 | 22.9783 |
| 474                        | 2.10970            | 224676 | 106496424      | 21.7715 | 529                        | 1.89036 | 279841         | 148035889 | 23.0000 |
| 475                        | 2.10526            | 225625 | 107171875      | 21.7945 | 530                        | 1.88679 | 280900         | 148877000 | 23.0217 |
| 476                        | 2.10084            | 226576 | 107850176      | 21.8174 | 531                        | 1.88324 | 281961         | 149721291 | 23.0434 |
| 477                        | 2.09644            | 227529 | 108531333      | 21.8403 | 532                        | 1.87970 | 283024         | 150568768 | 23.0651 |
| 478                        | 2.09205            | 228484 | 109215352      | 21.8632 | 533                        | 1.87617 | 284089         | 151419437 | 23.0868 |
| 479                        | 2.08768            | 229441 | 109902239      | 21.8861 | 534                        | 1.87266 | 285156         | 152273304 | 23.1084 |
| 480                        | 2.08333            | 230400 | 110592000      | 21.9089 | 535                        | 1.86916 | 286225         | 153130375 | 23.1301 |
| 481                        | 2.07900            | 231361 | 111284641      | 21.9317 | 536                        | 1.86567 | 287296         | 153990656 | 23.1517 |
| 482                        | 2.07469            | 232324 | 111980168      | 21.9545 | 537                        | 1.86220 | 288369         | 154854153 | 23.1733 |
| 483                        | 2.07039            | 233289 | 112678587      | 21.9773 | 538                        | 1.85874 | 289444         | 155720872 | 23.1948 |
| 484                        | 2.06612            | 234256 | 113379904      | 22.0000 | 539                        | 1.85529 | 290521         | 156590819 | 23.2164 |
| 485                        | 2.06186            | 235225 | 114084125      | 22.0227 | 540                        | 1.85185 | 291600         | 157464000 | 23.2379 |
| 486                        | 2.05761            | 236196 | 114791256      | 22.0454 | 541                        | 1.84843 | 292681         | 158340421 | 23.2594 |
| 487                        | 2.05339            | 237169 | 115501303      | 22.0681 | 542                        | 1.84502 | 293764         | 159220088 | 23.2809 |
| 488                        | 2.04918            | 238144 | 116214272      | 22.0907 | 543                        | 1.84162 | 294849         | 160103007 | 23.3024 |
| 489                        | 2.04499            | 239121 | 116930169      | 22.1133 | 544                        | 1.83824 | 295936         | 160989184 | 23.3238 |
| 490                        | 2.04082            | 240100 | 117649000      | 22.1359 | 545                        | 1.83486 | 297025         | 161878625 | 23.3452 |
| 491                        | 2.03666            | 241081 | 118370771      | 22.1585 | 546                        | 1.83150 | 298116         | 162771336 | 23.3666 |
| 492                        | 2.03252            | 242064 | 119095488      | 22.1811 | 547                        | 1.82815 | 299209         | 163667323 | 23.3880 |
| 493                        | 2.02840            | 243049 | 119823157      | 22.2036 | 548                        | 1.82482 | 300304         | 164566592 | 23.4094 |
| 494                        | 2.02429            | 244036 | 120553784      | 22.2261 | 549                        | 1.82149 | 301401         | 165469149 | 23.4307 |
| <b>495</b>                 | 2.02020            | 245025 | 121287375      | 22.2486 | 550                        | 1.81818 | 302500         | 166375000 | 23.4521 |
| 496                        | 2.01613            | 246016 | 122023936      | 22.2711 | 551                        | 1.81488 | 303601         | 167284151 | 23.4734 |
| 497                        | 2.01207            | 247009 | 122763473      | 22.2935 | 552                        | 1.81159 | 304704         | 168196608 | 23.4947 |
| 498                        | 2.00803            | 248004 | 123505992      | 22.3159 | 553                        | 1.80832 | 305809         | 169112377 | 23.5160 |
| 499                        | 2.00401            | 249001 | 124251499      | 22.3383 | 554                        | 1.80505 | 306916         | 170031464 | 23.5372 |
| 500                        | 2.00000            | 250000 | 12500000       | 22.3607 | 555                        | 1.80180 | 308025         | 170953875 | 23.5584 |
| 501                        | 1.99601            | 251001 | 125751501      | 22.3830 | 556                        | 1.79856 | 309136         | 171879616 | 23.5797 |
| 502                        | 1.99203            | 252004 | 126506008      | 22.4054 | 557                        | 1.79533 | 310249         | 172808693 | 23.6008 |
| 503                        | 1.98807            | 253009 | 127263527      | 22.4277 | 558                        | 1.79211 | 311364         | 173741112 | 23.6220 |
| 504                        | 1.98413            | 254016 | 128024064      | 22.4499 | 559                        | 1.78891 | 312481         | 174676879 | 23.6432 |

## VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

| 72             | 1000.1  | $n^2$                         | n <sup>8</sup>         | 122                | 12             | 1000.1  | 112                       | 118                             | Vn.                |
|----------------|---------|-------------------------------|------------------------|--------------------|----------------|---------|---------------------------|---------------------------------|--------------------|
| 560            | 1.78571 | 313600                        | 175616000              | 23.6643            | 615            | 1.62602 | 378225                    | 232608375                       | 24.7992            |
| 561            | 1.78253 | 314721                        | 176558481              | 23.6854            | 616            | 1.62338 | 379456<br>38 <b>0</b> 689 | 233744896                       | 24.8193            |
| 563<br>564     | 1.77620 | 316969<br>318096              | 178453547              | 23.7276            | 618            | 1.61812 | 381924<br>383161          | 236029032                       | 24.8596            |
| 565            | 1.77305 |                               |                        |                    | 620            | 1.61290 | 384400                    | 0 52                            |                    |
| 566            | 1.76991 | 319225                        | 180362125              | 23.7697            | 621            | 1.61031 | 385641                    | 238328000                       | 24.8998            |
| 567<br>568     | 1.76367 | 321489                        | 182284263<br>183250432 | 23.8118<br>23.8328 | 622            | 1.60772 | 386884<br>388129          | 240641848<br>241804367          | 24.9399            |
| 569            | 1.75747 | 323761                        | 184220009              | 23.8537            | 624            | 1.60256 | 389376                    | 242970624                       | 24.9800            |
| 570            | 1.75439 | 324900                        | 185193000              | 23.8747            | <b>625</b> 626 | 1.60000 | 390625                    | 244140625                       | 25.0000            |
| 571<br>572     | 1.75131 | 326041<br>327184              | 186169411              | 23.8956            | 627            | 1.59744 | 391876                    | 245314376                       | 25.0200            |
| 573<br>574     | 1.74520 | 328329<br>329476              | 188132517              | 23.9374<br>23.9583 | 628            | 1.59236 | 394384<br>395641          | 247673152<br>248858189          | 25.0599<br>25.0799 |
| 575            | 1.73913 | 330625                        | 190109375              | 23.9792            | 630            | 1.58730 | 396900                    | 250047000                       | 25.0998            |
| 576            | 1.73611 | 331776                        | 191102976              | 24.0000            | 631            | 1.58479 | 398161                    | 251239591                       | 25.1197            |
| 577<br>578     | 1.73310 | 332929<br>334084              | 192100033              | 24.0208            | 632            | 1.58228 | 399424<br>400689          | 252435968                       | 25.1396            |
| 579            | 1.72712 | 335241                        | 194104539              | 24.0624            | 634            | 1.57729 | 401956                    | 254840104                       | 25.1794            |
| 580            | 1.72414 | 336400                        | 195112000              | 24.0832            | <b>635</b> 636 | 1.57480 | 403225                    | 256047875                       | 25.1992            |
| 581<br>582     | 1.72117 | 337561<br>338724              | 197137368              | 24.1039            | 637            | 1.57233 | 404496                    | 257259456<br>258474853          | 25.2190            |
| 583            | 1.71527 | 339889<br>341056              | 198155287              | 24.1454<br>24.1661 | 638<br>639     | 1.56740 | 407044                    | 259694072<br>260917119          | 25.2587<br>25.2784 |
| 585            | 1.70940 | 342225                        | 200201625              | 24.1868            | 640            | 1.56250 | 409600                    | 262144000                       | 25.2982            |
| 586            | 1.70648 | 343396                        | 201230056              | 24.2074            | 641            | 1.56006 | 410881                    | 263374721                       | 25.3180            |
| 587<br>588     | 1.70358 | 3445 <sup>6</sup> 9<br>345744 | 202262003              | 24.2281            | 642            | 1.55763 | 412164                    | 264609288<br>265847 <b>70</b> 7 | 25.3377<br>25.3574 |
| 589            | 1.69779 | 346921                        | 204336469              | 24.2693            | 644            | 1.55280 | 414736                    | 267089984                       | 25.3772            |
| <b>590</b> 591 | 1.69492 | 348100                        | 205379000              | 24.2899            | <b>645</b> 646 | 1.55039 | 416025                    | 268336125<br>269586136          | 25.3969            |
| 592            | 1.68919 | 350464                        | 207474688              | 24.3311            | 647            | 1.54560 | 418609                    | 270840023                       | 25.4362            |
| 593<br>594     | 1.68634 | 351649<br>352836              | 208527857<br>209584584 | 24.3516            | 648            | 1.54321 | 419904                    | 272097792<br>273359449          | 25.4558            |
| 595            | 1.68067 | 354025                        | 210644875              | 24.3926            | 650            | 1.53846 | 422500                    | 274625000                       | 25.4951            |
| 596            | 1.67785 | 355216                        | 211708736              | 24.4131 24.4336    | 651<br>652     | 1.53610 | 423801                    | 275894451<br>277167808          | 25.5147            |
| 597<br>598     | 1.67224 | 356409                        | 212776173              | 24.4540            | 653            | 1.53374 | 426409                    | 278445077                       | 25.5343<br>25.5539 |
| 599            | 1.66945 | 358801                        | 214921799              | 24.4745            | 654            | 1.52905 | 427716                    | 279 <b>7</b> 26264              | 25.5734            |
| 600<br>601     | 1.66667 | 360000<br>361201              | 216000000              | 24.4949<br>24.5153 | <b>655</b> 656 | 1.52672 | 429025                    | 281011375<br>282300416          | 25.5930            |
| 602            | 1.66113 | 362404                        | 218167208              | 24.5357            | 657            | 1.52207 | 431649                    | 283593393                       | 25.6320            |
| 603            | 1.65837 | 363609<br>364816              | 219256227 220348864    | 24.5561            | 658<br>659     | 1.51976 | 432964                    | 28489 <b>0</b> 312<br>286191179 | 25.6515            |
| 605            | 1.65289 | 366025                        | 221445125              | 24.5967            | 660            | 1.51515 | 435600                    | 287496000                       | 25.6905            |
| 606            | 1.65017 | 367236<br>368449              | 222545016              | 24.6171            | 661            | 1.51286 | 436921                    | 288804781                       | 25.7294            |
| 608            | 1.64474 | -369664                       | 224755712              | 24.6577            | 663            | 1.50830 | 439569                    | 291434247                       | 25.7294<br>25.7488 |
| 609            | 1.64204 | 370881                        | 225866529              | 24.6779            | 664            | 1.50602 | 440896                    | 292754944                       | 25.7682            |
| 610            | 1.63934 | 372100                        | 226981000              | 24.6982<br>24.7184 | 666            | 1.50376 | 442225                    | 294079625<br>295408296          | 25.7876            |
| 612            | 1.63399 | 374544<br>375769              | 229220928              | 24.7386<br>24.7588 | 667<br>668     | 1.49925 | 444889                    | 296740963                       | 25.8263<br>25.8457 |
| 614            | 1.62866 | 375709                        | 230346397              | 24.7790            | 669            | 1.49477 | 440224                    | 298077632<br>299418309          | 25.8650            |
|                |         |                               |                        |                    |                |         |                           |                                 |                    |

# VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

|     | OF NATURAL NUMBERS. |        |           |                  |                            |         |        |                |          |  |  |  |  |
|-----|---------------------|--------|-----------|------------------|----------------------------|---------|--------|----------------|----------|--|--|--|--|
| 72  | $1000.\frac{1}{n}$  | $n^2$  | $n^3$     | Vn.              | n                          | 1000.1  | $n^2$  | n <sup>8</sup> | √n       |  |  |  |  |
| 670 | 1.49254             | 448900 | 300763000 | 25.8844          | 725                        | 1.37931 | 525625 | 381078125      | 26.9258  |  |  |  |  |
| 671 | 1.49031             | 450241 | 302111711 | 25.9037          | 726                        | 1.37741 | 527076 | 382657176      | 26.9444  |  |  |  |  |
| 672 | 1.48810             | 451584 | 303464448 | 25.9230          | 727                        | 1.37552 | 528529 | 384240583      | 26.9629  |  |  |  |  |
| 673 | 1.48588             | 452929 | 304821217 | 25.9422          | 728                        | 1.37363 | 529984 | 385828352      | 26.9815  |  |  |  |  |
| 674 | 1.48368             | 454276 | 306182024 | 25.9615          | 729                        | 1.37174 | 531441 | 387420489      | 27.0000  |  |  |  |  |
| 675 | 1.48148             | 455625 | 307546875 | 25.9808          | 730                        | 1.36986 | 532900 | 389017000      | 27.0185  |  |  |  |  |
| 676 | 1.47929             | 456976 | 308915776 | 26.0000          | 731                        | 1.36799 | 534361 | 390617891      | 27.0370  |  |  |  |  |
| 677 | 1.47710             | 458329 | 310288733 | 26.0192          | 732                        | 1.36612 | 535824 | 392223168      | 27.0555  |  |  |  |  |
| 678 | 1.47493             | 459684 | 311665752 | 26.0384          | 733                        | 1.36426 | 537289 | 393832837      | 27.0740  |  |  |  |  |
| 679 | 1.47275             | 461041 | 313046839 | 26.0576          | 734                        | 1.36240 | 538756 | 395446904      | 27.0924  |  |  |  |  |
| 680 | 1.47059             | 462400 | 314432000 | 26.0768          | 735                        | 1.36054 | 540225 | 397065375      | 27.1109  |  |  |  |  |
| 681 | 1.46843             | 463761 | 315821241 | 26.0960          | 736                        | 1.35870 | 541696 | 398688256      | 27.1293  |  |  |  |  |
| 682 | 1.46628             | 465124 | 317214568 | 26.1151          | 737                        | 1.35685 | 543169 | 409315553      | 27.1477  |  |  |  |  |
| 683 | 1.46413             | 466489 | 318611987 | 26.1343          | 738                        | 1.35501 | 544644 | 401947272      | 27.1662  |  |  |  |  |
| 684 | 1.46199             | 467856 | 320013504 | 26.1534          | 739                        | 1.35318 | 546121 | 403583419      | 27.1846  |  |  |  |  |
| 685 | 1.45985             | 469225 | 321419125 | 26.1725          | 740                        | 1.35135 | 547600 | 405224000      | 27.2029  |  |  |  |  |
| 686 | 1.45773             | 470596 | 322828856 | 26.1916          | 741                        | 1.34953 | 549081 | 406869021      | 27.2213  |  |  |  |  |
| 687 | 1.45560             | 471969 | 324242703 | 26.2107          | 742                        | 1.34771 | 550564 | 408518488      | 27.2397  |  |  |  |  |
| 688 | 1.45349             | 473344 | 325660672 | 26.2298          | 743                        | 1.34590 | 552049 | 410172407      | 27.2580  |  |  |  |  |
| 689 | 1.45138             | 474721 | 327082769 | 26.2488          | 744                        | 1.34409 | 553536 | 411830784      | 27.2764  |  |  |  |  |
| 690 | 1.44928             | 476100 | 328509000 | 26.2679          | 745                        | 1.34228 | 555025 | 413493625      | 27.2947  |  |  |  |  |
| 691 | 1.44718             | 477481 | 329939371 | 26.2869          | 746                        | 1.34048 | 556516 | 415160936      | 27.3130  |  |  |  |  |
| 692 | 1.44509             | 478864 | 331373888 | 26.3059          | 747                        | 1.33869 | 558009 | 416832723      | 27.3313  |  |  |  |  |
| 693 | 1.44300             | 480249 | 332812557 | 26.3249          | 748                        | 1.33690 | 559504 | 418508992      | 27.3496  |  |  |  |  |
| 694 | 1.44092             | 481636 | 334255384 | 26.3439          | 749                        | 1.33511 | 561001 | 420189749      | 27.3679  |  |  |  |  |
| 695 | 1.43885             | 483025 | 3357°2375 | 26.3629          | 750                        | 1.33333 | 562500 | 421875000      | 27.3861  |  |  |  |  |
| 696 | 1.43678             | 484416 | 337153536 | 26.3818          | 751                        | 1.33156 | 564001 | 423564751      | 27.4044  |  |  |  |  |
| 697 | 1.43472             | 485809 | 338608873 | 26.4008          | 752                        | 1.32979 | 565504 | 425259008      | 27.4226  |  |  |  |  |
| 698 | 1.43266             | 487204 | 340368392 | 26.4197          | 753                        | 1.32802 | 567009 | 426957777      | 27.4408  |  |  |  |  |
| 699 | 1.43062             | 488601 | 341532099 | 26.4386          | 754                        | 1.32626 | 568516 | 428661064      | 27.4591  |  |  |  |  |
| 700 | 1.42857             | 490000 | 343000000 | 26.45 <b>7</b> 5 | <b>755</b> 756 757 758 759 | 1.32450 | 570025 | 430368875      | 27.4773  |  |  |  |  |
| 701 | 1.42653             | 491401 | 344472101 | 26.4764          |                            | 1.32275 | 571536 | 432081216      | 27.4955  |  |  |  |  |
| 702 | 1.42450             | 492804 | 345948408 | 26.4953          |                            | 1.32100 | 573049 | 433798093      | 27.5136  |  |  |  |  |
| 703 | 1.42248             | 494209 | 347428927 | 26.5141          |                            | 1.31926 | 574564 | 435519512      | 27.5318  |  |  |  |  |
| 704 | 1.42045             | 495616 | 348913664 | 26.5330          |                            | 1.31752 | 576081 | 437245479      | 27.5500  |  |  |  |  |
| 705 | 1.41844             | 497025 | 350402625 | 26.5518          | 760                        | 1.31579 | 577600 | 438976000      | 27.5681  |  |  |  |  |
| 706 | 1.41643             | 498436 | 351895816 | 26.5707          | 761                        | 1.31406 | 579121 | 440711081      | 27.5862  |  |  |  |  |
| 707 | 1.41443             | 499849 | 353393243 | 26.5895          | 762                        | 1.31234 | 580644 | 442450728      | 27.6043  |  |  |  |  |
| 708 | 1.41243             | 501264 | 354894912 | 26.6083          | 763                        | 1.31062 | 582169 | 444194947      | 27.6225  |  |  |  |  |
| 709 | 1.41044             | 502681 | 356400829 | 26.6271          | 764                        | 1.30890 | 583696 | 445943744      | 27.6405. |  |  |  |  |
| 710 | 1.40845             | 504100 | 357911000 | 26.6458          | <b>765</b> 766 767 768 769 | 1.30719 | 585225 | 447697125      | 27.6586  |  |  |  |  |
| 711 | 1.40647             | 505521 | 359425431 | 26.6646          |                            | 1.30548 | 586756 | 449455096      | 27.6767  |  |  |  |  |
| 712 | 1.40449             | 506944 | 360944128 | 26.6833          |                            | 1.30378 | 588289 | 451217663      | 27.6948  |  |  |  |  |
| 713 | 1.40252             | 508369 | 362467097 | 26.7021          |                            | 1.30208 | 589824 | 452984832      | 27.7128  |  |  |  |  |
| 714 | 1.40056             | 509796 | 363994344 | 26.7208          |                            | 1.30039 | 591361 | 454756609      | 27.7308  |  |  |  |  |
| 715 | 1.39860             | 511225 | 365525875 | 26.7395          | 770                        | 1.29870 | 592900 | 456533000      | 27.7489  |  |  |  |  |
| 716 | 1.39665             | 512656 | 367061696 | 26.7582          | 771                        | 1.29702 | 594441 | 458314011      | 27.7669  |  |  |  |  |
| 717 | 1.39470             | 514089 | 368601813 | 26.7769          | 772                        | 1.29534 | 595984 | 460099648      | 27.7849  |  |  |  |  |
| 718 | 1.39276             | 515524 | 370146232 | 26.7955          | 773                        | 1.29366 | 597529 | 461889917      | 27.8029  |  |  |  |  |
| 719 | 1.39082             | 516961 | 371694959 | 26.8142          | 774                        | 1.29199 | 599076 | 463684824      | 27.8209  |  |  |  |  |
| 720 | 1.38889             | 518400 | 373248000 | 26.8328          | 775                        | I.29032 | 600625 | 465484375      | 27.8388  |  |  |  |  |
| 721 | 1.38696             | 519841 | 374805361 | 26.8514          | 776                        | I.28866 | 602176 | 467288576      | 27.8568  |  |  |  |  |
| 722 | 1.38504             | 521284 | 376367048 | 26.8701          | 777                        | I.28700 | 603729 | 469097433      | 27.8747  |  |  |  |  |
| 723 | 1.38313             | 522729 | 377933067 | 26.8887          | 778                        | I.28535 | 605284 | 470910952      | 27.8927  |  |  |  |  |
| 724 | 1.38122             | 524176 | 379503424 | 26.9072          | 779                        | I.28370 | 606841 | 472729139      | 27.9106  |  |  |  |  |

## VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

| n                          | 1000.1  | n <sup>2</sup> | n <sup>3</sup> | V 12    | 12  | 1000.1  | n <sup>2</sup> | 118       | Vn2             |
|----------------------------|---------|----------------|----------------|---------|-----|---------|----------------|-----------|-----------------|
| 780                        | 1.28205 | 608400         | 474552000      | 27.9285 | 835 | 1.19760 | 697225         | 582182875 | 28.8964         |
| 781                        | 1.28041 | 609961         | 476379541      | 27.9464 | 836 | 1.19617 | 698896         | 584277056 | 28.9137         |
| 782                        | 1.27877 | 611524         | 478211768      | 27.9643 | 837 | 1.19474 | 700569         | 586376253 | 28.9310         |
| 783                        | 1.27714 | 613089         | 480048687      | 27.9821 | 838 | 1.19332 | 702244         | 588480472 | 28.9482         |
| 784                        | 1.27551 | 614656         | 481890304      | 28.0000 | 839 | 1.19190 | 703921         | 590589719 | 28.9655         |
| <b>785</b> 786 787 788 789 | 1.27389 | 616225         | 483736625      | 28.0179 | 840 | 1.19048 | 705600         | 592704000 | 28.9828         |
|                            | 1.27226 | 617796         | 485587656      | 28.0357 | 841 | 1.18906 | 707281         | 594823321 | 29.0000         |
|                            | 1.27065 | 619369         | 487443403      | 28.0535 | 842 | 1.18765 | 708964         | 596947688 | 29.0172         |
|                            | 1.26904 | 620944         | 489303872      | 28.0713 | 843 | 1.18624 | 710649         | 599077107 | 29.0345         |
|                            | 1.26743 | 622521         | 491169069      | 28.0891 | 844 | 1.18483 | 712336         | 601211584 | 29.0517         |
| 790                        | 1.26582 | 624100         | 493039000      | 28.1069 | 845 | 1.18343 | 714025         | 603351125 | 29.0689         |
| 791                        | 1.26422 | 625681         | 494913671      | 28.1247 | 846 | 1.18203 | 715716         | 605495736 | 29.0861         |
| 792                        | 1.26263 | 627264         | 496793088      | 28.1425 | 847 | 1.18064 | 717409         | 607645423 | 29.1033         |
| 793                        | 1.26103 | 628849         | 498677257      | 28.1603 | 848 | 1.17925 | 719104         | 609800192 | 29.1204         |
| 794                        | 1.25945 | 630436         | 500566184      | 28.1780 | 849 | 1.17786 | 720801         | 611960049 | 29.1376         |
| 795                        | 1.25786 | 632025         | 502459875      | 28.1957 | 850 | 1.17647 | 722500         | 614125000 | 29.1548         |
| 796                        | 1.25628 | 633616         | 504358336      | 28.2135 | 851 | 1.17509 | 724201         | 616295051 | 29.1719         |
| 797                        | 1.25471 | 635209         | 506261573      | 28.2312 | 852 | 1.17371 | 725904         | 618470208 | 29.1890         |
| 798                        | 1.25313 | 636804         | 508169592      | 28.2489 | 853 | 1.17233 | 727609         | 620650477 | 29.2062         |
| 799                        | 1.25156 | 638401         | 510082399      | 28.2666 | 854 | 1.17096 | 729316         | 622835864 | 29.2233         |
| 800                        | 1.25000 | 640000         | 512000000      | 28.2843 | 855 | 1.16959 | 731025         | 625026375 | 29.2404         |
| 801                        | 1.24844 | 641601         | 513922401      | 28.3019 | 856 | 1.16822 | 732736         | 627222016 | 29.2575         |
| 802                        | 1.24688 | 643204         | 515849608      | 28.3196 | 857 | 1.16686 | 734449         | 629422793 | 29.2746         |
| 803                        | 1.24533 | 644809         | 517781627      | 28.3373 | 858 | 1.16550 | 736164         | 631628712 | 29.2916         |
| 804                        | 1.24378 | 646416         | 519718464      | 28.3549 | 859 | 1.16414 | 737881         | 633839779 | 29.3087         |
| 805                        | 1.24224 | 648025         | 521660125      | 28.3725 | 860 | 1.16279 | 739600         | 636056000 | 29.3258         |
| 806                        | 1.24069 | 649636         | 523606616      | 28.3901 | 861 | 1.16144 | 741321         | 638277381 | 29.3428         |
| 807                        | 1.23916 | 651249         | 525557943      | 28.4077 | 862 | 1.16009 | 743044         | 640503928 | 29.3598         |
| 808                        | 1.23762 | 652864         | 527514112      | 28.4253 | 863 | 1.15875 | 744769         | 642735647 | 29.3769         |
| 809                        | 1.23609 | 654481         | 529475129      | 28.4429 | 864 | 1.15741 | 746496         | 644972544 | 29.3939         |
| 810                        | 1.23457 | 656100         | 531441000      | 28.4605 | 865 | 1.15607 | 748225         | 647214625 | 29.4109         |
| 811                        | 1.23305 | 657721         | 533411731      | 28.4781 | 866 | 1.15473 | 749956         | 649461896 | 29.4279         |
| 812                        | 1.23153 | 659344         | 535387328      | 28.4956 | 867 | 1.15340 | 751689         | 651714363 | 29.4449         |
| 813                        | 1.23001 | 660969         | 537367797      | 28.5132 | 868 | 1.15207 | 753424         | 653972032 | 29.4618         |
| 814                        | 1.22850 | 662596         | 539353144      | 28.5307 | 869 | 1.15075 | 755161         | 656234909 | 29.4788         |
| 815                        | 1.22549 | 664225         | 541343375      | 28.5482 | 870 | 1.14943 | 756900         | 658503000 | 29.4958         |
| 816                        | 1.22549 | 665856         | 543338496      | 28.5657 | 871 | 1.14811 | 758641         | 660776311 | 29.5127         |
| 817                        | 1.22399 | 667489         | 545338513      | 28.5832 | 872 | 1.14679 | 760384         | 663054848 | <b>29</b> .5296 |
| 818                        | 1.22249 | 669124         | 547343432      | 28.6007 | 873 | 1.14548 | 762129         | 665338617 | 29.5466         |
| 819                        | 1.22100 | 670761         | 549353259      | 28.6182 | 874 | 1.14416 | 763876         | 667627624 | 29.5635         |
| 820                        | 1.21951 | 672400         | 551368000      | 28.6356 | 875 | 1.14286 | 765625         | 669921875 | 29.5804         |
| 821                        | 1.21803 | 674041         | 553387661      | 28.6531 | 876 | 1.14155 | 767376         | 672221376 | 29.5973         |
| 822                        | 1.21655 | 675684         | 555412248      | 28.6705 | 877 | 1.14025 | 769129         | 674526133 | 29.6142         |
| 823                        | 1.21507 | 677329         | 557441767      | 28.6880 | 878 | 1.13895 | 770884         | 676836152 | 29.6311         |
| 824                        | 1.21359 | 678976         | 559476224      | 28.7054 | 879 | 1.13766 | 772641         | 679151439 | 29.6479         |
| 825                        | 1.21212 | 680625         | 561 51 562 5   | 28.7228 | 880 | 1.13636 | 774400         | 681472000 | 29.6648         |
| 826                        | 1.21065 | 682276         | 563 559976     | 28.7402 | 881 | 1.13507 | 776161         | 683797841 | 29.6816         |
| 827                        | 1.20919 | 683929         | 565609283      | 28.7576 | 882 | 1.13379 | 777924         | 686128968 | 29.6985         |
| 828                        | 1.20773 | 685584         | 567663552      | 28.7750 | 883 | 1.13250 | 779689         | 688465387 | 29.7153         |
| 829                        | 1.20627 | 687241         | 5697 22789     | 28.7924 | 884 | 1.13122 | 781456         | 690807104 | 29.7321         |
| 830                        | 1.20482 | 688900         | 57 1787000     | 28.8097 | 885 | 1.12994 | 783225         | 693154125 | 29.7489         |
| 831                        | 1.20337 | 690561         | 57 38 56 19 1  | 28.8271 | 886 | 1.12867 | 784996         | 695506456 | 29.7658         |
| 832                        | 1.20192 | 692224         | 57 59 30 368   | 28.8444 | 887 | 1.12740 | 786769         | 697864103 | 29.7825         |
| 833                        | 1.20048 | 693889         | 57 800 95 37   | 28.8617 | 888 | 1.12613 | 788544         | 700227072 | 29.7993         |
| 834                        | 1.19904 | 695556         | 58 00 93 70 4  | 28.8791 | 889 | 1.12486 | 790321         | 702595369 | 29.8161         |

## VALUES OF RECIPROCALS, SQUARES, CUBES, AND SQUARE ROOTS OF NATURAL NUMBERS.

|     |         |                 | · · · · · · · · · · · · · · · · · · · |         |     |         |                 |                |         |
|-----|---------|-----------------|---------------------------------------|---------|-----|---------|-----------------|----------------|---------|
| 22  | 1000.1  | $n^2$           | n <sup>3</sup>                        | √n      | n   | 1000.1  | $n^2$           | n <sup>8</sup> | Vn.     |
| 890 | 1.12360 | 792100          | 704969000                             | 29.8329 | 945 | 1.05820 | 893025          | 843908625      | 30.7409 |
| 891 | 1.12233 | 793881          | 707347971                             | 29.8496 | 946 | 1.05708 | 894916          | 846590536      | 30.7571 |
| 892 | 1.12108 | 79 <b>5</b> 664 | 709732288                             | 29.8664 | 947 | 1.05597 | 896809          | 849278123      | 30.7734 |
| 893 | 1.11982 | 797449          | 712121957                             | 29.8831 | 948 | 1.05485 | 898704          | 851971392      | 30.7896 |
| 894 | 1.11857 | 799236          | 714516984                             | 29.8998 | 949 | 1.05374 | 900601          | 854670349      | 30.8058 |
| 895 | 1.11732 | 801025          | 716917375                             | 29.9166 | 950 | 1.05263 | 902500          | 857375000      | 30.8221 |
| 896 | 1.11607 | 802816          | 719323136                             | 29.9333 | 951 | 1.05152 | 904401          | 860085351      | 30.8383 |
| 897 | 1.11483 | 804609          | 721734273                             | 29.9500 | 952 | 1.05042 | 906304          | 862801408      | 30.8545 |
| 898 | 1.11359 | 806404          | 724150792                             | 29.9666 | 953 | 1.04932 | 908209          | 865523177      | 30.8707 |
| 899 | 1.11235 | 808201          | 726572699                             | 29.9833 | 954 | 1.04822 | 910116          | 868250664      | 30.8869 |
| 900 | 1.11111 | 810000          | 729000000                             | 30.0000 | 955 | 1.04712 | 912025          | 870983875      | 30.9031 |
| 901 | 1.10988 | 811801          | 731432701                             | 30.0167 | 956 | 1.04603 | 913936          | 873722816      | 30.9192 |
| 902 | 1.10865 | 813604          | 733870808                             | 30.0333 | 957 | 1.04493 | 91 <b>5</b> 849 | 876467493      | 30.9354 |
| 903 | 1.10742 | 815409          | 736314327                             | 30.0500 | 958 | 1.04384 | 917764          | 879217912      | 30.9516 |
| 904 | 1.10619 | 817216          | 738763264                             | 30.0666 | 959 | 1.04275 | 919681          | 881974079      | 30.9677 |
| 905 | 1.10497 | 819025          | 741217625                             | 30.0832 | 960 | 1.04167 | 921600          | 884736000      | 30.9839 |
| 906 | 1.10375 | 820836          | 743677416                             | 30.0998 | 961 | 1.04058 | 923521          | 887503681      | 31.0000 |
| 907 | 1.10254 | 822649          | 746142643                             | 30.1164 | 962 | 1.03950 | 925444          | 890277128      | 31.0161 |
| 908 | 1.10132 | 824464          | 748613312                             | 30.1330 | 963 | 1.03842 | 927369          | 893056347      | 31.0322 |
| 909 | 1.10011 | 826281          | 751089429                             | 30.1496 | 964 | 1.03734 | 929296          | 895841344      | 31.0483 |
| 910 | 1.09890 | 828100          | 753571000                             | 30.1662 | 965 | 1.03627 | 931225          | 898632125      | 31.0644 |
| 911 | 1.09769 | 829921          | 756058031                             | 30.1828 | 966 | 1.03520 | 933156          | 901428696      | 31.0805 |
| 912 | 1.09649 | 831744          | 758550528                             | 30.1993 | 967 | 1.03413 | 935089          | 904231063      | 31.0966 |
| 913 | 1.09529 | 833569          | 761048497                             | 30.2159 | 968 | 1.03306 | 937024          | 907039232      | 31.1127 |
| 914 | 1.09409 | 835396          | 763551944                             | 30.2324 | 969 | 1.03199 | 938961          | 909853209      | 31.1288 |
| 915 | 1.09290 | 837225          | 766060875                             | 30.2490 | 970 | 1.03093 | 940900          | 912673000      | 31.1448 |
| 916 | 1.09170 | 839056          | 768575296                             | 30.2655 | 971 | 1.02987 | 942841          | 915498611      | 31.1609 |
| 917 | 1.09051 | 840889          | 771095213                             | 30.2820 | 972 | 1.02881 | 944784          | 918330048      | 31.1769 |
| 918 | 1.08932 | 842724          | 773620632                             | 30.2985 | 973 | 1.02775 | 946729          | 921167317      | 31.1929 |
| 919 | 1.08814 | 84 <b>45</b> 61 | 776151559                             | 30.3150 | 974 | 1.02669 | 948676          | 924010424      | 31.2090 |
| 920 | 1.08696 | 846400          | 778688000                             | 30.3315 | 975 | 1.02564 | 950625          | 926859375      | 31.2250 |
| 921 | 1.08578 | 848241          | 781229961                             | 30.3480 | 976 | 1.02459 | 952576          | 929714176      | 31.2410 |
| 922 | 1.08460 | 850084          | 783777448                             | 30.3645 | 977 | 1.02354 | 954529          | 932574833      | 31.2570 |
| 923 | 1.08342 | 851929          | 786330467                             | 30.3809 | 978 | 1.02249 | 956484          | 935441352      | 31.2730 |
| 924 | 1.08225 | 853776          | 788889024                             | 30.3974 | 979 | 1.02145 | 958441          | 938313739      | 31.2890 |
| 925 | 1.08108 | 855625          | 791453125                             | 30.4138 | 980 | 1.02041 | 960400          | 941192000      | 31.3050 |
| 926 | 1.07991 | 857476          | 794022776                             | 30.4302 | 981 | 1.01937 | 962361          | 944076141      | 31.3209 |
| 927 | 1.07875 | 859329          | 796597983                             | 30.4467 | 982 | 1.01833 | 964324          | 946966168      | 31.3369 |
| 928 | 1.07759 | 861184          | 799178752                             | 30.4631 | 983 | 1.01729 | 966289          | 949862087      | 31.3528 |
| 929 | 1.07643 | 863041          | 801765089                             | 30.4795 | 984 | 1.01626 | 968256          | 952763904      | 31.3688 |
| 930 | 1.07527 | 864900          | 804357000                             | 30.4959 | 985 | I.01523 | 970225          | 955671625      | 31.3847 |
| 931 | 1.07411 | 866761          | 806954491                             | 30.5123 | 986 | I.01420 | 972196          | 958585256      | 31.4006 |
| 932 | 1.07296 | 868624          | 809557568                             | 30.5287 | 987 | I.01317 | 974169          | 961504803      | 31.4166 |
| 933 | 1.07181 | 870489          | 812166237                             | 30.5450 | 988 | I.01215 | 976144          | 964430272      | 31.4325 |
| 934 | 1.07066 | 872356          | 814780504                             | 30.5614 | 989 | I.01112 | 978121          | 967361669      | 31.4484 |
| 935 | 1.06952 | 874225          | 817400375                             | 30.5778 | 990 | 1.01010 | 980100          | 970299000      | 31.4643 |
| 936 | 1.06838 | 876096          | 820025856                             | 30.5941 | 991 | 1.00908 | 982081          | 973242271      | 31.4802 |
| 937 | 1.06724 | 877969          | 822656953                             | 30.6105 | 992 | 1.00806 | 984064          | 976191488      | 31.4960 |
| 938 | 1.06610 | 879844          | 825293672                             | 30.6268 | 993 | 1.00705 | 986049          | 979146657      | 31.5119 |
| 939 | 1.06496 | 881 <b>7</b> 21 | 827936019                             | 30.6431 | 994 | 1.00604 | 988036          | 982107784      | 31.5278 |
| 940 | 1.06383 | 883600          | 830584000                             | 30.6594 | 995 | 1.00503 | 990025          | 985074875      | 31.5436 |
| 941 | 1.06270 | 885481          | 833237621                             | 30.6757 | 996 | 1.00402 | 992016          | 988047936      | 31.5595 |
| 942 | 1.06157 | 887364          | 835896888                             | 30.6920 | 997 | 1.00301 | 994009          | 991026973      | 31.5753 |
| 943 | 1.06045 | 889249          | 838561807                             | 30.7083 | 998 | 1.00200 | 996004          | 994011992      | 31.5911 |
| 944 | 1.05932 | 891136          | 841232384                             | 30.7246 | 999 | 1.00100 | 998001          | 997002999      | 31.6070 |

TABLE 10.

| N.                              | 0                                    | 1                                    | 2                                    | 3                                    | 4                                             | 5                                    | 6                            | 7                                    | 8                                    | 9                                    | 10                                   |
|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------|--------------------------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| 100                             | 0000                                 | 0004                                 | 0009                                 | 0013                                 | 0017                                          | 0022                                 | 0026                         | 0030                                 | 0035                                 | 0039                                 | 0043                                 |
| 101                             | 0043                                 | 0048                                 | 0052                                 | 0056                                 | 0060                                          | 0065                                 | 0069                         | 0073                                 | 0077                                 | 0082                                 | 0086                                 |
| 102                             | 0086                                 | 0090                                 | 0095                                 | 0099                                 | 0103                                          | 0107                                 | 0111                         | 0116                                 | 0120                                 | 0124                                 | 0128                                 |
| 103                             | 0128                                 | 0133                                 | 0137                                 | 0141                                 | 0145                                          | 0149                                 | 0154                         | 0158                                 | 0162                                 | 0166                                 | 0170                                 |
| 104                             | 0170                                 | 0175                                 | 0179                                 | 0183                                 | 0187                                          | 0191                                 | 0195                         | 0199                                 | 0204                                 | 0208                                 | 0212                                 |
| 105                             | 0212                                 | 0216                                 | 0220                                 | 0224                                 | 0228                                          | 0233                                 | 0237                         | 0241                                 | 0245                                 | 0249                                 | 0253                                 |
| 106                             | 0253                                 | 0257                                 | 0261                                 | 0265                                 | 0269                                          | 0273                                 | 0278                         | 0282                                 | 0286                                 | 0290                                 | 0294                                 |
| 107                             | 0294                                 | 0298                                 | 0302                                 | 0306                                 | 0310                                          | 0314                                 | 0318                         | 0322                                 | 0326                                 | 0330                                 | 0334                                 |
| 108                             | 0334                                 | 0338                                 | 0342                                 | 0346                                 | 0350                                          | 0354                                 | 0358                         | 0362                                 | 0366                                 | 0370                                 | 0374                                 |
| 109                             | 0374                                 | 0378                                 | 0382                                 | 0386                                 | 0390                                          | 0394                                 | 0398                         | 0402                                 | 0406                                 | 0410                                 | 0414                                 |
| 110                             | 0414                                 | 0418                                 | 0422                                 | 0426                                 | 0430                                          | 0434                                 | 0438                         | 0441                                 | 0445                                 | 0449                                 | 0453                                 |
| 111                             | 0453                                 | 0457                                 | 0461                                 | 0465                                 | 0469                                          | 0473                                 | 0477                         | 0481                                 | 0484                                 | 0488                                 | 0492                                 |
| 112                             | 0492                                 | 0496                                 | 0500                                 | 0504                                 | 0508                                          | 0512                                 | 0515                         | 0519                                 | 0523                                 | 0527                                 | 0531                                 |
| 113                             | 0531                                 | 0535                                 | 0538                                 | 0542                                 | 0546                                          | 0550                                 | 0554                         | 0558                                 | 0561                                 | 0565                                 | 0569                                 |
| 114                             | 0569                                 | 0573                                 | 0577                                 | 0580                                 | 0584                                          | 0588                                 | 0592                         | 0596                                 | 0599                                 | 0603                                 | 0607                                 |
| 115<br>116<br>117<br>118<br>119 | 0607<br>0645<br>0682<br>0719<br>0755 | 0611<br>0648<br>0686<br>0722<br>0759 | 0615<br>0652<br>0689<br>0726<br>0763 | 0618<br>0656<br>0693<br>0730<br>0766 | 0622<br>0660<br>0697<br>0734<br>0 <b>7</b> 70 | 0626<br>0663<br>0700<br>0737<br>0774 | 0630<br>0667<br>0704<br>0741 | 0633<br>0671<br>0708<br>0745<br>0781 | 0637<br>0674<br>0711<br>0748<br>0785 | 0641<br>0678<br>0715<br>0752<br>0788 | 0645<br>0682<br>0719<br>0755<br>0792 |
| 120                             | 0792                                 | 0795                                 | 0799                                 | 0803                                 | 0806                                          | 0810                                 | 0813                         | 0817                                 | 0821                                 | 0824                                 | 0828                                 |
| 121                             | 0828                                 | 0831                                 | 0835                                 | 0839                                 | 0842                                          | 0846                                 | 0849                         | 0853                                 | 0856                                 | 0860                                 | 0864                                 |
| 122                             | 0864                                 | 0867                                 | 0871                                 | 0874                                 | 0878                                          | 0881                                 | 0885                         | 0888                                 | 0892                                 | 0896                                 | 0899                                 |
| 123                             | 0899                                 | 0903                                 | 0906                                 | 0910                                 | 0913                                          | 0917                                 | 0920                         | 0924                                 | 0927                                 | 0931                                 | 0934                                 |
| 124                             | 0934                                 | 0938                                 | 0941                                 | 0945                                 | 0948                                          | 0952                                 | 0955                         | 0959                                 | 0962                                 | 0966                                 | 0969                                 |
| 125                             | 0969                                 | 0973                                 | 0976                                 | 0980                                 | 0983                                          | 0986                                 | 0990                         | 0993                                 | 0997                                 | 1000                                 | 1004                                 |
| 126                             | 1004                                 | 1007                                 | 1011                                 | 1014                                 | 1017                                          | 1021                                 | 1024                         | 1028                                 | 1031                                 | 1035                                 | 1038                                 |
| 127                             | 1038                                 | 1041                                 | 1045                                 | 1048                                 | 1052                                          | 1055                                 | 1059                         | 1062                                 | 1065                                 | 1069                                 | 1072                                 |
| 128                             | 1072                                 | 1075                                 | 1079                                 | 1082                                 | 1086                                          | 1089                                 | 1092                         | 1096                                 | 1099                                 | 1103                                 | 1106                                 |
| 129                             | 1106                                 | 1109                                 | 1113                                 | 1116                                 | 1119                                          | 1123                                 | 1126                         | 1129                                 | 1133                                 | 1136                                 | 1139                                 |
| 130                             | 1139                                 | 1143                                 | 1146                                 | 1149                                 | 1153                                          | 1156                                 | 1159                         | 1163                                 | 1166                                 | 1169                                 | 1173                                 |
| 131                             | 1173                                 | 1176                                 | 1179                                 | 1183                                 | 1186                                          | 1189                                 | 1193                         | 1196                                 | 1199                                 | 1202                                 | 1206                                 |
| 132                             | 1206                                 | 1209                                 | 1212                                 | 1216                                 | 1219                                          | 1222                                 | 1225                         | 1229                                 | 1232                                 | 1235                                 | 1239                                 |
| 133                             | 1239                                 | 1242                                 | 1245                                 | 1248                                 | 1252                                          | 1255                                 | 1258                         | 1261                                 | 1265                                 | 1268                                 | 1271                                 |
| 134                             | 1271                                 | 1274                                 | 1278                                 | 1281                                 | 1284                                          | 1287                                 | 1290                         | 1294                                 | 1297                                 | 1300                                 | 1303                                 |
| 135<br>136<br>137<br>138<br>139 | 1303<br>1335<br>1367<br>1399<br>1430 | 1307<br>1339<br>1370<br>1402<br>1433 | 1310<br>1342<br>1374<br>1405<br>1436 | 1313<br>1345<br>1377<br>1408<br>1440 | 1316<br>1348<br>1380<br>1411<br>1443          | 1319<br>1351<br>1383<br>1414<br>1446 | 1323<br>1355<br>1386<br>1418 | 1326<br>1358<br>1389<br>1421<br>1452 | 1329<br>1361<br>1392<br>1424<br>1455 | 1332<br>1364<br>1396<br>1427<br>1458 | 1335<br>1367<br>1399<br>1430<br>1461 |
| 140                             | 1461                                 | 1464                                 | 1467                                 | 1471                                 | 1474                                          | 1477                                 | 1480                         | 1483                                 | 1486                                 | 1489                                 | 1492                                 |
| 141                             | 1492                                 | 1495                                 | 1498                                 | 1501                                 | 1504                                          | 1508                                 | 1511                         | 1514                                 | 1517                                 | 1520                                 | 1523                                 |
| 142                             | 1523                                 | 1526                                 | 1529                                 | 1532                                 | 1535                                          | 1538                                 | 1541                         | 1544                                 | 1547                                 | 1550                                 | 1553                                 |
| 143                             | 1553                                 | 1556                                 | 1559                                 | 1562                                 | 1565                                          | 1569                                 | 1572                         | 1575                                 | 1578                                 | 1581                                 | 1584                                 |
| 144                             | 1584                                 | 1587                                 | 1590                                 | 1593                                 | 1596                                          | 1599                                 | 1602                         | 1605                                 | 1608                                 | 1611                                 | 1614                                 |
| 145                             | 1614                                 | 1617                                 | 1620                                 | 1623                                 | 1626                                          | 1629                                 | 1632                         | 1635                                 | 1638                                 | 1641                                 | 1644                                 |
| 146                             | 1644                                 | 1647                                 | 1649                                 | 1652                                 | 1655                                          | 1658                                 | 1661                         | 1664                                 | 1667                                 | 1670                                 | 1673                                 |
| 147                             | 1673                                 | 1676                                 | 1679                                 | 1682                                 | 1685                                          | 1688                                 | 1691                         | 1694                                 | 1697                                 | 1700                                 | 1703                                 |
| 148                             | 1703                                 | 1706                                 | 1708                                 | 1711                                 | 1714                                          | 1717                                 | 1720                         | 1723                                 | 1726                                 | 1729                                 | 1732                                 |
| 149                             | 1732                                 | 1735                                 | 1738                                 | 1741                                 | 1744                                          | 1746                                 | 1749                         | 1752                                 | 1755                                 | 1758                                 | 1761                                 |

| N.  | 0            | 1    | 2    | 3    | 4             | 5    | 6    | 7    | 8    | 9    | 10            |
|-----|--------------|------|------|------|---------------|------|------|------|------|------|---------------|
| 150 | 1761         | 1764 | 1767 | 1770 | 1772          | 1775 | 1778 | 1781 | 1784 | 1787 | 1790          |
| 151 | 1790         | 1793 | 1796 | 1798 | 1801          | 1804 | 1807 | 1810 | 1813 | 1816 | 1818          |
| 152 | 1818         | 1821 | 1824 | 1827 | 1830          | 1833 | 1836 | 1838 | 1841 | 1844 | 1847          |
| 153 | 1847         | 1850 | 1853 | 1855 | 1858          | 1861 | 1864 | 1867 | 1870 | 1872 | 1875          |
| 154 | 1875         | 1878 | 1881 | 1884 | 1886          | 1889 | 1892 | 1895 | 1898 | 1901 | 1903          |
| 155 | 1903         | 1906 | 1909 | 1912 | 1915          | 1917 | 1920 | 1923 | 1926 | 1928 | 1931          |
| 156 | 1931         | 1934 | 1937 | 1940 | 1942          | 1945 | 1948 | 1951 | 1953 | 1956 | 1959          |
| 157 | 1959         | 1962 | 1965 | 1967 | 1970          | 1973 | 1976 | 1978 | 1981 | 1984 | 1987          |
| 158 | 1987         | 1989 | 1992 | 1995 | 1998          | 2000 | 2003 | 2006 | 2009 | 2011 | 2014          |
| 159 | 2014         | 2017 | 2019 | 2022 | 2025          | 2028 | 2030 | 2033 | 2036 | 2038 | 2041          |
| 160 | 2041         | 2944 | 2047 | 2049 | 2052          | 2055 | 2057 | 2060 | 2063 | 2066 | 2068          |
| 161 | 2068         | 2071 | 2074 | 2076 | 2079          | 2082 | 2084 | 2087 | 2090 | 2092 | 2095          |
| 162 | 2095         | 2098 | 2101 | 2103 | 2106          | 2109 | 2111 | 2114 | 2117 | 2119 | 2122          |
| 163 | 2122         | 2125 | 2127 | 2130 | 2133          | 2135 | 2138 | 2140 | 2143 | 2146 | 2148          |
| 164 | 2148         | 2151 | 2154 | 2156 | 2159          | 2162 | 2164 | 2167 | 2170 | 2172 | 2175          |
| 165 | 2175         | 2177 | 2180 | 2183 | 2185          | 2188 | 2191 | 2193 | 2196 | 2198 | 2201          |
| 166 | 2201         | 2204 | 2206 | 2209 | 2212          | 2214 | 2217 | 2219 | 2222 | 2225 | 2227          |
| 167 | 2227         | 2230 | 2232 | 2235 | 2238          | 2240 | 2243 | 2245 | 2248 | 2251 | 2253          |
| 168 | 2253         | 2256 | 2258 | 2261 | 2263          | 2266 | 2269 | 2271 | 2274 | 2276 | 2279          |
| 169 | 2279         | 2281 | 2284 | 2287 | 2289          | 2292 | 2294 | 2297 | 2299 | 2302 | 2304          |
| 170 | 2304         | 2307 | 2310 | 2312 | 2315          | 2317 | 2320 | 2322 | 2325 | 2327 | 2330          |
| 171 | 2330         | 2333 | 2335 | 2338 | 2340          | 2343 | 2345 | 2348 | 2350 | 2353 | 2355          |
| 172 | 2355         | 2358 | 2360 | 2363 | 2365          | 2368 | 2370 | 2373 | 2375 | 2378 | 2380          |
| 173 | 2380         | 2383 | 2385 | 2388 | 2390          | 2393 | 2395 | 2398 | 2400 | 2403 | 2405          |
| 174 | 2405         | 2408 | 2410 | 2413 | 2415          | 2418 | 2420 | 2423 | 2425 | 2428 | 2430          |
| 175 | 2430         | 2433 | 2435 | 2438 | 2449          | 2443 | 2445 | 2448 | 2450 | 2453 | 2455          |
| 176 | 2455         | 2458 | 2460 | 2463 | 2465          | 2467 | 2470 | 2472 | 2475 | 2477 | 2480          |
| 177 | 2480         | 2482 | 2485 | 2487 | 2490          | 2492 | 2494 | 2497 | 2499 | 2502 | 2504          |
| 178 | 2504         | 2507 | 2509 | 2512 | 2514          | 2516 | 2519 | 2521 | 2524 | 2526 | 2529          |
| 179 | 2529         | 2531 | 2533 | 2536 | 2538          | 2541 | 2543 | 2545 | 2548 | 2550 | 2553          |
| 180 | 2553         | 2555 | 2558 | 2560 | 2562          | 2565 | 2567 | 2570 | 2572 | 2574 | 2577          |
| 181 | 2577         | 2579 | 2582 | 2584 | 2586          | 2589 | 2591 | 2594 | 2596 | 2598 | 2601          |
| 182 | 2601         | 2603 | 2605 | 2608 | 2610          | 2613 | 2615 | 2617 | 2620 | 2622 | 2625          |
| 183 | 2625         | 2627 | 2629 | 2632 | 2634          | 2636 | 2639 | 2641 | 2643 | 2646 | 2648          |
| 184 | 2648         | 2651 | 2653 | 2655 | 2658          | 2660 | 2662 | 2665 | 2667 | 2669 | 2672          |
| 185 | 2672         | 2674 | 2676 | 2679 | 2681          | 2683 | 2686 | 2688 | 2690 | 2693 | 2695          |
| 186 | 2695         | 2697 | 2700 | 2702 | 2704          | 2707 | 2709 | 2711 | 2714 | 2716 | 2718          |
| 187 | 2718         | 2721 | 2723 | 2725 | 2728          | 2730 | 2732 | 2735 | 2737 | 2739 | 2742          |
| 188 | 2742         | 2744 | 2746 | 2749 | 2751          | 2753 | 2755 | 2758 | 2760 | 2762 | 2765          |
| 189 | 2765         | 2767 | 2769 | 2772 | 2774          | 2776 | 2778 | 2781 | 2783 | 2785 | 2 <b>7</b> 88 |
| 190 | 2788         | 2790 | 2792 | 2794 | 2797          | 2799 | 2801 | 2804 | 2806 | 2808 | 2810          |
| 191 | 2810         | 2813 | 2815 | 2817 | 2819          | 2822 | 2824 | 2826 | 2828 | 2831 | 2833          |
| 192 | 2833         | 2835 | 2838 | 2840 | 2842          | 2844 | 2847 | 2849 | 2851 | 2853 | 2856          |
| 193 | 2856         | 2858 | 2860 | 2862 | 2865          | 2867 | 2869 | 2871 | 2874 | 2876 | 2878          |
| 194 | 2878         | 2880 | 2882 | 2885 | 2887          | 2889 | 2891 | 2894 | 2896 | 2898 | 2900          |
| 195 | 2900         | 2903 | 2905 | 2907 | 2909          | 2911 | 2914 | 2916 | 2918 | 2920 | 2923          |
| 196 | 2923         | 2925 | 2927 | 2929 | 29 <b>3</b> 1 | 2934 | 2936 | 2938 | 2940 | 2942 | 2945          |
| 197 | 2945         | 2947 | 2949 | 2951 | 2953          | 2956 | 2958 | 2960 | 2962 | 2964 | 2967          |
| 198 | <b>2</b> 967 | 2969 | 2971 | 2973 | 2975          | 2978 | 2980 | 2982 | 2984 | 2986 | 2989          |
| 199 | <b>2</b> 989 | 2991 | 2993 | 2995 | 2977          | 2999 | 3002 | 3004 | 3006 | 3008 | 3010          |

TABLE 11.

| N                           | 0                                    | 1                                    | 2                                    | 2                                            | 4                                     | -                                    | 6                                    | 7                                                | 0                                    | _                                    |                                         |                       | P. F                  | ·.                         |                       |
|-----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|-----------------------|-----------------------|----------------------------|-----------------------|
| 14                          |                                      | 1                                    | 2                                    | 3                                            | 4                                     | 5                                    | 6                                    | 7                                                | 8                                    | 9                                    | 1                                       | 2                     | 3                     | 4                          | 5                     |
| 10<br>11<br>12<br>13<br>14  | 0000<br>0414<br>0792<br>1139<br>1461 | 0043<br>0453<br>0828<br>1173<br>1492 | 0086<br>0492<br>0864<br>1206<br>1523 | 0128<br>0531<br>0899<br>1239<br>1553         | 0170<br>0569<br>0934<br>1271<br>1584  | 0212<br>0607<br>0969<br>1303<br>1614 | 0253<br>0645<br>1004<br>1335<br>1644 | 0294<br>0682<br>1038<br>1367<br>1673             | 0334<br>0719<br>1072<br>1399<br>1703 | 0374<br>0755<br>1106<br>1430<br>1732 | 4 4 3 3 3                               | 8<br>8<br>7<br>6<br>6 | 12<br>11<br>10<br>10  | 17<br>15<br>14<br>13<br>12 | 21<br>19<br>17<br>16  |
| 15<br>16<br>17<br>18<br>19  | 1761<br>2041<br>2304<br>2553<br>2788 | 1790<br>2068<br>2330<br>2577<br>2810 | 1818<br>2095<br>2355<br>2601<br>2833 | 1847<br>2122<br>2380<br>2625<br>2856         | 1875<br>2148<br>2405<br>2648<br>2878  | 1903<br>2175<br>2430<br>2672<br>2900 | 1931<br>2201<br>2455<br>2695<br>2923 | 1959<br>2227<br>2480<br>2718<br>2945             | 1987<br>2253<br>2504<br>2742<br>2967 | 2014<br>2279<br>2529<br>2765<br>2989 | 3 3 2 2 2                               | 6<br>5<br>5<br>4      | 8<br>8<br>7<br>7      | 11<br>10<br>9<br>9         | 14<br>13<br>12<br>12  |
| 20<br>21<br>22<br>23<br>24  | 3010<br>3222<br>3424<br>3617<br>3802 | 3032<br>3243<br>3444<br>3636<br>3820 | 3054<br>3263<br>3464<br>3655<br>3838 | 3075<br>3284<br>3483<br>3674<br>3856         | 3096<br>3304<br>3502<br>3692<br>3874  | 3118<br>3324<br>3522<br>3711<br>3892 | 3139<br>3345<br>3541<br>3729<br>3909 | 3160<br>3365<br>3560<br>3747<br>3927             | 3181<br>3385<br>3579<br>3766<br>3945 | 3201<br>3404<br>3598<br>3784<br>3962 | 2 2 2 2                                 | 4 4 4 4 4             | 6<br>6<br>5<br>5      | 8<br>8<br>7<br>7           | 10 10 9 9             |
| 25<br>26<br>27<br>28<br>29  | 3979<br>4150<br>4314<br>4472<br>4624 | 3997<br>4166<br>4330<br>4487<br>4639 | 4014<br>4183<br>4346<br>4502<br>4654 | 4031<br>4200<br>4362<br>4518<br>4669         | 4048<br>4216<br>4378<br>4533<br>4683. | 4065<br>4232<br>4393<br>4548<br>4698 | 4082<br>4249<br>4409<br>4564<br>4713 | 4099<br>4265<br>4425<br>4579<br>4728             | 4116<br>4281<br>4440<br>4594<br>4742 | 4133<br>4298<br>4456<br>4609<br>4757 | 2<br>2<br>2<br>2<br>1                   | 3 3 3 3 3             | 5<br>5<br>5<br>4      | 7<br>7<br>6<br>6<br>6      | 9<br>8<br>8<br>8<br>7 |
| 30<br>31<br>32<br>33<br>34  | 4771<br>4914<br>5051<br>5185<br>5315 | 4786<br>4928<br>5065<br>5198<br>5328 | 4800<br>4942<br>5079<br>5211<br>5340 | 4814<br>4955<br>5092<br>5224<br>5353         | 4829<br>4969<br>5105<br>5237<br>5366  | 4843<br>4983<br>5119<br>5250<br>5378 | 4857<br>4997<br>5132<br>5263<br>5391 | 4871<br>5011<br>5145<br>5276<br>5403             | 4886<br>5024<br>5159<br>5289<br>5416 | 4900<br>5038<br>5172<br>5302<br>5428 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 3 3 3 3 3             | 4<br>4<br>4<br>4<br>4 | 6<br>5<br>5<br>5           | 7<br>7<br>7<br>6<br>6 |
| 35<br>36<br>37<br>38<br>-39 | 5441<br>5563<br>5682<br>5798<br>5911 | 5453<br>5575<br>5694<br>5809<br>5922 | 5465<br>5587<br>5705<br>5821<br>5933 | 5478<br>5599<br>5717<br>5832<br>5944         | 5490<br>5611<br>5729<br>5843<br>5955  | 5502<br>5623<br>5740<br>5855<br>5966 | 5514<br>5635<br>5752<br>5866<br>5977 | 55 <sup>27</sup><br>5647<br>5763<br>5877<br>5988 | 5539<br>5658<br>5775<br>5888<br>5999 | 5551<br>5670<br>5786<br>5899<br>6010 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2 2 2 2               | 4 4 3 3 3 3           | 5<br>5<br>5<br>5<br>4      | 6 6 6 6               |
| 40<br>41<br>42<br>43<br>44  | 6021<br>6128<br>6232<br>6335<br>6435 | 6031<br>6138<br>6243<br>6345<br>6444 | 6042<br>6149<br>6253<br>6355<br>6454 | 6053<br>6160<br>6263<br>6365<br>6464         | 6064<br>6170<br>6274<br>6375<br>6474  | 6075<br>6180<br>6284<br>6385<br>6484 | 6085<br>6191<br>6294<br>6395<br>6493 | 6096<br>6201<br>6304<br>6405<br>6503             | 6107<br>6212<br>6314<br>6415<br>6513 | 6117<br>6222<br>6325<br>6425<br>6522 | I<br>I<br>I<br>I                        | 2 2 2 2 2             | 33333                 | 4<br>4<br>4<br>4<br>4      | 5<br>5<br>5<br>5      |
| 45<br>46<br>47<br>48<br>49  | 6532<br>6628<br>6721<br>6812<br>6902 | 6542<br>6637<br>6730<br>6821<br>6911 | 6551<br>6646<br>6739<br>6830<br>6920 | 6561<br>6656<br>6749<br>6839<br>6928         | 6571<br>6665<br>6758<br>6848<br>6937  | 6580<br>6675<br>6767<br>6857<br>6946 | 6590<br>6684<br>6776<br>6866<br>6955 | 6599<br>6693<br>6785<br>6875<br>6964             | 6609<br>6702<br>6794<br>6884<br>6972 | 6618<br>6712<br>6803<br>6893<br>6981 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2 2 2 2               | 3 3 3 3 3 3           | 4 4 4 4                    | 5<br>5<br>4<br>4      |
| 50<br>51<br>52<br>53<br>54  | 6990<br>7076<br>7160<br>7243<br>7324 | 6998<br>7084<br>7168<br>7251<br>7332 | 7007<br>7093<br>7177<br>7259<br>7340 | 7016<br>7101<br>7185<br><b>7</b> 267<br>7348 | 7024<br>7110<br>7193<br>7275<br>7356  | 7033<br>7118<br>7202<br>7284<br>7364 | 7042<br>7126<br>7210<br>7292<br>7372 | 7050<br>7135<br>7218<br>7300<br>7380             | 7059<br>7143<br>7226<br>7308<br>7388 | 7067<br>7152<br>7235<br>7316<br>7396 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2 2 2 2               | 3 3 2 2 2 2           | 3 3 3 3                    | 4<br>4<br>4<br>4<br>4 |

### LOGARITHMS.

| N.                         | 0                                                    | 7                                     | 2                                    | 3                                                                                                    | 4                                    | 5                    | 6                                            | 7                                    | 8                                    | 9                                    |                                         | ]                                       | P. P                                    |           |             |
|----------------------------|------------------------------------------------------|---------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------|-------------|
| I.                         | 0                                                    | 1                                     | 4                                    | 3                                                                                                    | *                                    | 3                    | 0                                            |                                      | -                                    |                                      | 1                                       | 2                                       | 3                                       | 4         | 5           |
| 55<br>56<br>57<br>58<br>59 | 7404<br>7482<br>7559<br>7634<br>7709                 | 7412<br>7490<br>7566<br>7642<br>7716  | 7419<br>7497<br>7574<br>7649<br>7723 | 74 <sup>2</sup> 7<br>75 <sup>0</sup> 5<br>75 <sup>8</sup> 2<br>7 <sup>6</sup> 57<br>773 <sup>I</sup> | 7435<br>7513<br>7586<br>7662<br>7738 | 7520<br>7597<br>7672 | 7451<br>7528<br>7604<br>7679<br>7752         | 7459<br>7536<br>7612<br>7686<br>7760 | 7466<br>7543<br>7619<br>7694<br>7767 | 7474<br>7551<br>7627<br>7701<br>7774 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2<br>2<br>2<br>I<br>I                   | 2 2 2 2 2                               | 33333     | 4 4 4 4     |
| 60<br>61<br>62<br>63<br>64 | 7 <b>7</b> 82<br>7853<br>7924<br>7993<br>8062        | 7789<br>7860<br>7931<br>8000<br>8069  | 7796<br>7868<br>7938<br>8007<br>8075 | 7803<br>7875<br>7945<br>8014<br>8082                                                                 | 7810<br>7882<br>7952<br>8021<br>8080 | 7889<br>7959<br>8028 | 7825<br>7896<br>7966<br>8035<br>8102         | 7832<br>7903<br>7973<br>8041<br>8109 | 7839<br>7910<br>7980<br>8048<br>8116 | 7846<br>7917<br>7987<br>8055<br>8122 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2 2 2 2                                 | 3 3 3 3 3 | 4 4 3 3 3 3 |
| 65<br>66<br>67<br>68<br>69 | 8129<br>8195<br>8261<br>8325<br>8388                 | 81 36<br>8202<br>8267<br>8331<br>8395 | 8142<br>8209<br>8274<br>8338<br>8401 | 8149<br>8215<br>8280<br>8344<br>8407                                                                 | 8156<br>8222<br>8287<br>8351<br>8412 | 8228<br>8293<br>8357 | 8169<br>8235<br>8299<br>8363<br>8426         | 8176<br>8241<br>8306<br>8370<br>8432 | 8182<br>8248<br>8312<br>8376<br>8439 | 8189<br>8254<br>8319<br>8382<br>8445 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | I<br>I<br>I<br>I                        | 2 2 2 2                                 | 3 3 3 3   | 3 3 3 3 3   |
| 70<br>71<br>72<br>73<br>74 | 8451<br>8513<br>8573<br>8633<br>8692                 | 8457<br>8519<br>8579<br>8639<br>8698  | 8463<br>8525<br>8585<br>8645<br>8704 | 8470<br>8531<br>8591<br>8651<br>8710                                                                 | 8476<br>8537<br>8597<br>8657<br>8716 | 8543<br>8603<br>8663 | 8488<br>8549<br>8609<br>8669<br>8727         | 8494<br>8555<br>8615<br>8675<br>8733 | 8500<br>8561<br>8621<br>8681<br>8739 | 8506<br>8567<br>8627<br>8686<br>8745 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | I<br>I<br>I<br>I                        | 2 2 2 2                                 | 2 2 2 2   | 3 3 3 3 3   |
| 75<br>76<br>77<br>78<br>79 | 8751<br>8808<br>8865<br>8921<br>8976                 | 8756<br>8814<br>8871<br>8927<br>8982  | 8762<br>8820<br>8876<br>8932<br>8987 | 8768<br>8825<br>8882<br>8938<br>8993                                                                 | 8774<br>8831<br>8887<br>8943<br>8998 | 8837<br>8893<br>8949 | 878 <b>5</b><br>8842<br>8899<br>8954<br>9009 | 8791<br>8848<br>8904<br>8960<br>9015 | 8797<br>8854<br>8910<br>8965<br>9020 | 8802<br>8859<br>8915<br>8971<br>9025 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2 2 2 2                                 | 2 2 2 2   | 3 3 3 3 3   |
| 80<br>81<br>82<br>83<br>84 | 9031<br>9085<br>9138<br>9191<br>9243                 | 9036<br>.9090<br>9143<br>9196<br>9248 | 9042<br>9096<br>9149<br>9201<br>9253 | 9047<br>9101<br>9154<br>9206<br>9258                                                                 | 9053<br>9106<br>9159<br>9212<br>9263 | 9112<br>9165<br>9217 | 9063<br>9117<br>9170<br>9222<br>9274         | 9069<br>9122<br>9175<br>9227<br>9279 | 9074<br>9128<br>9180<br>9232<br>9284 | 9079<br>9133<br>9186<br>9238<br>9289 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2 2 2 2 2                               | 2 2 2 2   | 3 3 3 3 3   |
| 85<br>86<br>87<br>88<br>89 | 9294<br>9345<br>9395<br>9445<br>9494                 | 9299<br>9350<br>9400<br>9450<br>9499  | 9304<br>9355<br>9405<br>9455<br>9504 | 9309<br>9360<br>9410<br>9460<br>9509                                                                 | 9315<br>9365<br>9415<br>9465<br>9513 | 9370<br>9420<br>9469 | 9325<br>9375<br>9425<br>9474<br>9523         | 9330<br>9380<br>9430<br>9479<br>9528 | 9335<br>9385<br>9435<br>9484<br>9533 | 9340<br>9390<br>9440<br>9489<br>9538 | I<br>0<br>0                             | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2<br>2<br>I<br>I<br>I                   | 2 2 2 2   | 3 2 2 2     |
| 90<br>91<br>92<br>93<br>94 | 9542<br>9590<br>,9638<br>9685<br>9731                | 9547<br>9595<br>9643<br>9689<br>9736  | 9552<br>9600<br>9647<br>9694<br>9741 | 9557<br>9605<br>9652<br>9699<br>9745                                                                 | 9562<br>9609<br>9657<br>9703         | 9614<br>9661<br>9708 | 9571<br>9619<br>9666<br>9713<br>9759         | 9576<br>9624<br>9671<br>9717<br>9763 | 9581<br>9628<br>9675<br>9722<br>9768 | 9586<br>9633<br>9680<br>9727<br>9773 | 00000                                   | I<br>I<br>I<br>I                        | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2 2 2 2   | 2 2 2 2     |
| 95<br>96<br>97<br>98<br>99 | 977 <b>7</b><br>98 <b>23</b><br>9868<br>9912<br>9956 | 9782<br>9827<br>9872<br>9917<br>9961  | 9786<br>9832<br>9877<br>9921<br>9965 | 9791<br>9836<br>9881<br>9926<br>9969                                                                 | 9795<br>9841<br>9886<br>9939         | 9845<br>9890<br>9934 | 9805<br>9850<br>9894<br>9939<br>9983         | 9809<br>9854<br>9899<br>9943<br>9987 | 9814<br>9859<br>9903<br>9948<br>9991 | 9818<br>9863<br>9908<br>9952<br>9996 | 00000                                   | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2 2 2 2   | 2 2 2 2 2   |

TABLE 12.
ANTILOGARITHMS.

|                                 |                                      | -                                    | • 2                                  | 2                                    | 4                                    | 5                                     | 6                                    | _ | 7                                    | 8                                    | 9                                    |                                         | ]                                       | P. <b>F</b>                             |                                         |                                         |
|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
|                                 | 0                                    | 1                                    | - 2                                  | 3                                    | *                                    | 5                                     |                                      |   |                                      | 8                                    | 9                                    | 1                                       | 2                                       | 3                                       | 4                                       | 5                                       |
| .00<br>.01<br>.02<br>.03<br>.04 | 1000<br>1023<br>1047<br>1072<br>1096 | 1002<br>1026<br>1050<br>1074<br>1099 | 1005<br>1028<br>1052<br>1076<br>1102 | 1007<br>1030<br>1054<br>1079<br>1104 | 1009<br>1033<br>1057<br>1081<br>1107 | 1012<br>1035<br>1059<br>1084<br>1109  | 1014<br>1038<br>1062<br>1086<br>1112 |   | 1016<br>1040<br>1064<br>1089         | 1019<br>1042<br>1067<br>1091         | 1021<br>1045<br>1069<br>1094<br>1119 | 0 0 0 0 0                               | 0<br>0<br>0<br>0                        | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | IIIIIII                                 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |
| .05<br>.06<br>.07<br>.08<br>.09 | 1122<br>1148<br>1175<br>1202<br>1230 | 1125<br>1151<br>1178<br>1205<br>1233 | 1127<br>1153<br>1180<br>1208<br>1236 | 1130<br>1156<br>1183<br>1211<br>1239 | 1132<br>1159<br>1186<br>1213<br>1242 | 1135<br>1161<br>1189<br>1216<br>1245  | 1138<br>1164<br>1191<br>1219<br>1247 |   | 1140<br>1167<br>1194<br>1222<br>1250 | 1143<br>1169<br>1197<br>1225<br>1253 | 1146<br>1172<br>1199<br>1227<br>1256 | 00000                                   | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |
| .10<br>.11<br>.12<br>.13<br>.14 | 1259<br>1288<br>1318<br>1349<br>1380 | 1262<br>1291<br>1321<br>1352<br>1384 | 1265<br>1294<br>1324<br>1355<br>1387 | 1268<br>1297<br>1327<br>1358<br>1390 | 1271<br>1300<br>1330<br>1361<br>1393 | 1274<br>1303<br>1334<br>1365<br>1396  | 1276<br>1306<br>1337<br>1368<br>1400 |   | 1279<br>1309<br>1340<br>1371<br>1403 | 1282<br>1312<br>1343<br>1374<br>1406 | 1285<br>1315<br>1346<br>1377<br>1409 | 00000                                   | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | I 2 2 2 2 2                             |
| .15<br>.16<br>.17<br>.18        | 1413<br>1445<br>1479<br>1514<br>1549 | 1416<br>1449<br>1483<br>1517<br>1552 | 1419<br>1452<br>1486<br>1521<br>1556 | 1422<br>1455<br>1489<br>1524<br>1560 | 1426<br>1459<br>1493<br>1528<br>1563 | 1429<br>1462<br>1496<br>1531<br>1567  | 1432<br>1466<br>1500<br>1535<br>1570 |   | 1435<br>1469<br>1503<br>1538<br>1574 | 1439<br>1472<br>1507<br>1542<br>1578 | 1442<br>1476<br>1510<br>1545<br>1581 | 00000                                   | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2 2 2 2 2                               |
| .20<br>.21<br>.22<br>.23<br>.24 | 1585<br>1622<br>1660<br>1698<br>1738 | 1589<br>1626<br>1663<br>1702<br>1742 | 1592<br>1629<br>1667<br>1706<br>1746 | 1596<br>1633<br>1671<br>1710<br>1750 | 1600<br>1637<br>1675<br>1714<br>1754 | 1603<br>1641<br>1679<br>1718<br>1758  | 1607<br>1644<br>1683<br>1722<br>1762 |   | 1611<br>1648<br>1687<br>1726<br>1766 | 1614<br>1652<br>1690<br>1730<br>1770 | 1618<br>1656<br>1694<br>1734<br>1774 | 0 0 0 0                                 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | I 2 2 2 2 2                             | 2 2 2 2 2                               |
| .25<br>.26<br>.27<br>.28<br>.29 | 1778<br>1820<br>1862<br>1905<br>1950 | 1782<br>1824<br>1866<br>1910<br>1954 | 1786<br>1828<br>1871<br>1914<br>1959 | 1791<br>1832<br>1875<br>1919<br>1963 | 1795<br>1837<br>1879<br>1923<br>1968 | 1799<br>1841<br>1884<br>1928          | 1803<br>1845<br>1888<br>1932<br>1977 |   | 1807<br>1849<br>1892<br>1936<br>1982 | 1811<br>1854<br>1897<br>1941<br>1986 | 1816<br>1858<br>1901<br>1945         | 0 0 0 0                                 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2 2 2 2 2                               | 2 2 2 2 2                               |
| .30<br>.31<br>.32<br>.33<br>.34 | 1995<br>2042<br>2089<br>2138<br>2188 | 2000<br>2046<br>2094<br>2143<br>2193 | 2004<br>2051<br>2099<br>2148<br>2198 | 2009<br>2056<br>2104<br>2153<br>2203 | 2014<br>2061<br>2109<br>2158<br>2208 | 2018<br>2065<br>2113<br>2163.<br>2213 | 2023<br>2070<br>2118<br>2168<br>2218 |   | 2028<br>2075<br>2123<br>2173<br>2223 | 2032<br>2080<br>2128<br>2178<br>2228 | 2037<br>2084<br>2133<br>2183<br>2234 | 0 0 0 0 I                               | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | I<br>I<br>I<br>I<br>2                   | 2 2 2 2                                 | 2 2 2 3                                 |
| .35<br>.36<br>.37<br>.38<br>.39 | 2239<br>2291<br>2344<br>2399<br>2455 | 2244<br>2296<br>2350<br>2404<br>2460 | 2249<br>2301<br>2355<br>2410<br>2466 | 2254<br>2307<br>2360<br>2415<br>2472 | 2259<br>2312<br>2366<br>2421<br>2477 | 2265<br>2317<br>2371<br>2427<br>2483  | 2270<br>2323<br>2377<br>2432<br>2489 |   | 2275<br>2328<br>2382<br>2438<br>2495 | 2280<br>2333<br>2388<br>2443<br>2500 | 2286<br>2339<br>2393<br>2449<br>2506 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2 2 2 2                                 | 2 2 2 2                                 | 3 3 3 3 3                               |
| .40<br>.41<br>.42<br>.43<br>.44 | 2512<br>2570<br>2630<br>2692<br>2754 | 2518<br>2576<br>2636<br>2698<br>2761 | 2523<br>2582<br>2642<br>2704<br>2767 | 2529<br>2588<br>2649<br>2710<br>2773 | 2535<br>2594<br>2655<br>2716<br>2780 | 2541<br>2600<br>2661<br>2723<br>2786  | 2547<br>2606<br>2667<br>2729<br>2793 |   | 2553<br>2612<br>2673<br>2735<br>2799 | 2559<br>2618<br>2679<br>2742<br>2805 | 2564<br>2624<br>2685<br>2748<br>2812 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2 2 2 2                                 | 2 2 3 3                                 | 3 3 3 3 3                               |
| .45<br>.46<br>.47<br>.48<br>.49 | 2818<br>2884<br>2951<br>3020<br>3090 | 2825<br>2891<br>2958<br>3027<br>3097 | 2831<br>2897<br>2965<br>3034<br>3105 | 2838<br>2904<br>2972<br>3041<br>3112 | 2844<br>2911<br>2979<br>3048<br>3119 | 2851<br>2917<br>2985<br>3055<br>3126  | 2858<br>2924<br>2992<br>3062<br>3133 |   | 2864<br>2931<br>2999<br>3069<br>3141 | 2871<br>2938<br>3006<br>3076<br>3148 | 2877<br>2944<br>3013<br>3083<br>3155 | IIIIIII                                 | I<br>I<br>I<br>I                        | 2 2 2 2 2                               | 3 3 3 3 3                               | 3 3 4 4                                 |

## ANTILOGARITHMS.

|                                         | 0                                    | 1                                    | 2                                    | 3                                    | 4                                     | 5                                    | 6                                    | 7                                    | 8                                    | 9                                    |                                         | P. P.                 |                       |                       |                      |  |
|-----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|-----------------------|-----------------------|-----------------------|----------------------|--|
|                                         |                                      |                                      | 4                                    |                                      | -                                     | ,                                    |                                      |                                      | 3                                    |                                      | 1                                       | 2                     | 3                     | 4                     | 5                    |  |
| .50<br>.51<br>.52<br>.53<br>.54         | 3162<br>3236<br>3311<br>3388<br>3467 | 3170<br>3243<br>3319<br>3396<br>3475 | 3177<br>3251<br>3327<br>3404<br>3483 | 3184<br>3258<br>3334<br>3412<br>3491 | 3192<br>3266<br>3342<br>3420<br>3499  | 3199<br>3273<br>3350<br>3428<br>3508 | 3206<br>3281<br>3357<br>3436<br>3516 | 3214<br>3289<br>3365<br>3443<br>3524 | 3221<br>3296<br>3373<br>3451<br>3532 | 3228<br>3304<br>3381<br>3459<br>3540 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | I 2 2 2 2 2           | 2 2 2 2 2             | 3 3 3 3               | 4 4 4 4              |  |
| .55<br>.56<br>.57<br>.58<br>.59         | 3548<br>3631<br>3715<br>3802<br>3890 | 3556<br>3639<br>3724<br>3811<br>3899 | 3565<br>3648<br>3733<br>3819<br>3908 | 3573<br>3656<br>3741<br>3828<br>3917 | 3581<br>3664<br>3750<br>3837<br>3926  | 3589<br>3673<br>3758<br>3846<br>3936 | 3597<br>3681<br>3767<br>3855<br>3945 | 3606<br>3690<br>3776<br>3864<br>3954 | 3614<br>3698<br>3784<br>3873<br>3963 | 3622<br>3707<br>3793<br>3882<br>3972 | I                                       | 2 2 2 2               | 3 3 3 3               | 3 3 4 4               | 4 4 4 5              |  |
| .60<br>.61<br>.62<br>.63<br>.64         | 3981<br>4074<br>4169<br>4266<br>4365 | 3990<br>4083<br>4178<br>4276<br>4375 | 3999<br>4093<br>4188<br>4285<br>4385 | 4009<br>4102<br>4198<br>4295<br>4395 | 4018<br>4111<br>4207<br>4305<br>4406  | 4027<br>4121<br>4217<br>4315<br>4416 | 4036<br>4130<br>4227<br>4325<br>4426 | 4046<br>4140<br>4236<br>4335<br>4436 | 4055<br>4150<br>4246<br>4345<br>4446 | 4064<br>4159<br>4256<br>4355<br>4457 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2 2 2 2               | 3 3 3 3               | 4 4 4 4 4             | 55555                |  |
| .65<br>.66<br>.67<br>.68<br>.69         | 4467<br>4571<br>4677<br>4786<br>4898 | 4477<br>4581<br>4688<br>4797<br>4909 | 4487<br>4592<br>4699<br>4808<br>4920 | 4498<br>4603<br>4710<br>4819<br>4932 | 4508<br>4613<br>4721<br>4831<br>4943  | 4519<br>4624<br>4732<br>4842<br>4955 | 4529<br>4634<br>4742<br>4853<br>4966 | 4539<br>4645<br>4753<br>4864<br>4977 | 4550<br>4656<br>4764<br>4875<br>4989 | 4560<br>4667<br>4775<br>4887<br>5000 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 2 2 2 2               | 3 3 3 3               | 4 4 4 5               | 5 5 5 6 6            |  |
| .70<br>.71<br>.72<br>.73<br>.74         | 5012<br>5129<br>5248<br>5370<br>5495 | 5023<br>5140<br>5260<br>5383<br>5508 | 5035<br>5152<br>5272<br>5395<br>5521 | 5047<br>5164<br>5284<br>5408<br>5534 | 5058<br>5176<br>5297<br>5420<br>5546  | 5070<br>5188<br>5309<br>5433<br>5559 | 5082<br>5200<br>5321<br>5445<br>5572 | 5093<br>5212<br>5333<br>5458<br>5585 | 5105<br>5224<br>5346<br>5470<br>5598 | 5117<br>5236<br>5358<br>5483<br>5610 | I<br>I<br>I<br>I                        | 2 2 3 3               | 4 4 4 4 4             | 5 5 5 5 5             | 6 6 6 6              |  |
| . <b>75</b><br>.76<br>.77<br>.78<br>.79 | 5623<br>5754<br>5888<br>6026<br>6166 | 5636<br>5768<br>5902<br>6039<br>6180 | 5649<br>5781<br>5916<br>6053<br>6194 | 5662<br>5794<br>5929<br>6067<br>6209 | 567 5<br>5808<br>5943<br>6081<br>6223 | 5689<br>5821<br>5957<br>6095<br>6237 | 5702<br>5834<br>5970<br>6109<br>6252 | 5715<br>5848<br>5984<br>6124<br>6266 | 5728<br>5861<br>5998<br>6138<br>6281 | 5741<br>5875<br>6012<br>6152<br>6295 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 3 3 3 3 3             | 4 4 4 4 4             | 5 5 5 6 6             | 7 7 7 7 7            |  |
| .80<br>.81<br>.82<br>.83<br>.84         | 6310<br>6457<br>6607<br>6761<br>6918 | 6324<br>6471<br>6622<br>6776<br>6934 | 6339<br>6486<br>6637<br>6792<br>6950 | 6353<br>6501<br>6653<br>6808<br>6966 | 6368<br>6516<br>6668<br>6823<br>6982  | 6383<br>6531<br>6683<br>6839<br>6998 | 6397<br>6546<br>6699<br>6855<br>7015 | 6412<br>6561<br>6714<br>6871<br>7031 | 6427<br>6577<br>6730<br>6887<br>7947 | 6442<br>6592<br>6745<br>6902<br>7063 | I 2 2 2 2 2                             | 3 3 3 3               | 4<br>5<br>5<br>5<br>5 | 6 6 6 6               | 7<br>8<br>8<br>8     |  |
| .85<br>.86<br>.87<br>.88<br>.89         | 7079<br>7244<br>7413<br>7586<br>7762 | 7096<br>7261<br>7430<br>7603<br>7780 | 7112<br>7278<br>7447<br>7621<br>7798 | 7129<br>7295<br>7464<br>7638<br>7816 | 7145<br>7311<br>7482<br>7656<br>7834  | 716 <b>1</b> 7328 7499 7674 7852     | 7178<br>7345<br>7516<br>7691<br>7870 | 7194<br>7362<br>7534<br>7709<br>7889 | 7211<br>7379<br>7551<br>7727<br>7907 | 7228<br>7396<br>7568<br>7745<br>7925 | 2 2 2 2 2                               | 3 3 4 4               | 5 5 5 5               | 7 7 7 7 7             | 8<br>8<br>9<br>9     |  |
| .90<br>.91<br>.92<br>.93<br>.94         | 7943<br>8128<br>8318<br>8511<br>8710 | 7962<br>8147<br>8337<br>8531<br>8730 | 7980<br>8166<br>8356<br>8551<br>8750 | 7998<br>8185<br>8375<br>8570<br>8770 | 8017<br>8204<br>8395<br>8590<br>8790  | 8035<br>8222<br>8414<br>8610<br>8810 | 8054<br>8241<br>8433<br>8630<br>8831 | 8072<br>8260<br>8453<br>8650<br>8851 | 8091<br>8279<br>8472<br>8670<br>8872 | 8110<br>8299<br>8492<br>8690<br>8892 | 2 2 2 2                                 | 4<br>4<br>4<br>4<br>4 | 6 6 6 6               | 7<br>8<br>8<br>8      | 9<br>9<br>10<br>10   |  |
| .95<br>.96<br>.97<br>.98<br>.99         | 8913<br>9120<br>9333<br>9550<br>9772 | 8933<br>9141<br>9354<br>9572<br>9795 | 8954<br>9162<br>9376<br>9594<br>9817 | 8974<br>9183<br>9397<br>9616<br>9840 | 8995<br>9204<br>9419<br>9638<br>9863  | 9016<br>9226<br>9441<br>9661<br>9886 | 9036<br>9247<br>9462<br>9683<br>9908 | 9057<br>9268<br>9484<br>9705<br>9931 | 9078<br>9290<br>9506<br>9727<br>9954 | 9099<br>9311<br>9528<br>9750<br>9977 | 2 2 2 2                                 | 4 4 4 5               | 6 7 7 7               | 8<br>8<br>9<br>9<br>9 | 10<br>11<br>11<br>11 |  |

TABLE 13.
ANTILOGARITHMS.

|                              | 0                                    | 1                                    | 2                                    | 3                                    | 4                                     | 5                                    | 6                                    | 7                                    | 8                                    | 9                                    | 10                                   |
|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
|                              |                                      |                                      |                                      |                                      | -                                     |                                      |                                      |                                      |                                      |                                      |                                      |
| .900                         | 7943                                 | 7945                                 | 7947                                 | 7949                                 | 7951                                  | 7952                                 | 7954                                 | 7956                                 | 7958                                 | 7960                                 | 7962                                 |
| .901                         | 7962                                 | 7963                                 | 7965                                 | 7967                                 | 7969                                  | 7971                                 | 7973                                 | 7974                                 | 7976                                 | 7978                                 | 7980                                 |
| .902                         | 7980                                 | 7982                                 | 7984                                 | 7985                                 | 7987                                  | 7989                                 | 7991                                 | 7993                                 | 7995                                 | 7997                                 | 7998                                 |
| .903                         | 7998                                 | 8000                                 | 8002                                 | 8004                                 | 8006                                  | 8008                                 | 8009                                 | 8011                                 | 8013                                 | 8015                                 | 8017                                 |
| .904                         | 8017                                 | 8019                                 | 8020                                 | 8022                                 | 8024                                  | 8026                                 | 8028                                 | 8030                                 | 8032                                 | 8033                                 | 8035                                 |
| .905<br>.906<br>.907<br>.908 | 8035<br>8054<br>8072<br>8091<br>8110 | 8037<br>8056<br>8074<br>8093<br>8111 | 8039<br>8057<br>8076<br>8095<br>8113 | 8041<br>8059<br>8078<br>8097<br>8115 | 8043<br>8061<br>8080<br>8098<br>8117  | 8045<br>8063<br>8082<br>8100<br>8119 | 8046<br>8065<br>8084<br>8102<br>8121 | 8048<br>8067<br>8085<br>8104<br>8123 | 8050<br>8069<br>8087<br>8106<br>8125 | 8052<br>8070<br>8089<br>8108<br>8126 | 8054<br>8072<br>8091<br>8110<br>8128 |
| .910<br>.911<br>.912<br>.913 | 8128<br>8147<br>8166<br>8185<br>8204 | 8130<br>8149<br>8168<br>8187<br>8205 | 8132<br>8151<br>8170<br>8188<br>8207 | 8134<br>8153<br>8171<br>8190<br>8209 | 8136<br>8155<br>.8173<br>8192<br>8211 | 8138<br>8156<br>8175<br>8194<br>8213 | 8140<br>8158<br>8177<br>8196<br>8215 | 8141<br>8160<br>8179<br>8198<br>8217 | 8143<br>8162<br>8181<br>8200<br>8219 | 8145<br>8164<br>8183<br>8202<br>8221 | 8147<br>8166<br>8185<br>8204<br>8222 |
| .915<br>.916<br>.917<br>.918 | 8222<br>8241<br>8260<br>8279<br>8299 | 8224<br>8243<br>8262<br>8281<br>8300 | 8226<br>8245<br>8264<br>8283<br>8302 | 8228<br>8247<br>8266<br>8285<br>8304 | 8230<br>8249<br>8268<br>8287<br>8306  | 8232<br>8251<br>8270<br>8289<br>8308 | 8234<br>8253<br>8272<br>8291<br>8310 | 8236<br>8255<br>8274<br>8293<br>8312 | 8238<br>8257<br>8276<br>8295<br>8314 | 8239<br>8258<br>8278<br>8297<br>8316 | 8241<br>8260<br>8279<br>8299<br>8318 |
| .920                         | 8318                                 | 8320                                 | 8321                                 | 8323                                 | 8325                                  | 8327                                 | 8329                                 | 8331                                 | 8333                                 | 8335                                 | 8337                                 |
| .921                         | 8337                                 | 8339                                 | 8341                                 | 8343                                 | 8344                                  | 8346                                 | 8348                                 | 8350                                 | 8352                                 | 8354                                 | 8356                                 |
| .922                         | 8356                                 | 8358                                 | 8360                                 | 8362                                 | 8364                                  | 8366                                 | 8368                                 | 8370                                 | 8371                                 | 8373                                 | 8375                                 |
| .923                         | 8375                                 | 8377                                 | 8379                                 | 8381                                 | 8383                                  | 8385                                 | 8387                                 | 8389                                 | 8391                                 | 8393                                 | 8395                                 |
| .924                         | 8395                                 | 8397                                 | 8398                                 | 8400                                 | 8402                                  | 8404                                 | 8406                                 | 8408                                 | 8410                                 | 8412                                 | 8414                                 |
| .925                         | 8414                                 | 8416                                 | 8418                                 | 8420                                 | 8422                                  | 8424                                 | 8426                                 | 8428                                 | 8429                                 | 8431                                 | 8433                                 |
| .926                         | 8433                                 | 8435                                 | 8437                                 | 8439                                 | 8441                                  | 8443                                 | 8445                                 | 8447                                 | 8449                                 | 8451                                 | 8453                                 |
| .927                         | 8453                                 | 8455                                 | 8457                                 | 8459                                 | 8461                                  | 8463                                 | 8464                                 | 8466                                 | 8468                                 | 8470                                 | 8472                                 |
| .928                         | 8472                                 | 8474                                 | 8476                                 | 8478                                 | 8480                                  | 8482                                 | 8484                                 | 8486                                 | 8488                                 | 8490                                 | 8492                                 |
| .929                         | 8492                                 | 8494                                 | 8496                                 | 8498                                 | 8500                                  | 8502                                 | 8504                                 | 8506                                 | 8507                                 | 8509                                 | 8511                                 |
| .930                         | 8511                                 | 8513                                 | 8515                                 | 8517                                 | 8519                                  | 8521                                 | 8523                                 | 8525                                 | 8527                                 | 8529                                 | 8531                                 |
| .931                         | 8531                                 | 8533                                 | 8535                                 | 8537                                 | 8539                                  | 8541                                 | 8543                                 | 8545                                 | 8547                                 | 8549                                 | 8551                                 |
| .932                         | 8551                                 | 8553                                 | 8555                                 | 8557                                 | 8559                                  | 8561                                 | 8562                                 | 8564                                 | 8566                                 | 8568                                 | 8570                                 |
| .933                         | 8570                                 | 8572                                 | 8574                                 | 8576                                 | 8578                                  | 8580                                 | 8582                                 | 8584                                 | 8586                                 | 8588                                 | 8590                                 |
| .934                         | 8590                                 | 8592                                 | 8594                                 | 8596                                 | 8598                                  | 8600                                 | 8602                                 | 8604                                 | 8606                                 | 8608                                 | 8610                                 |
| .935                         | 8610                                 | 8612                                 | 8614                                 | 8616                                 | 8618                                  | 8620                                 | 8622                                 | 8624                                 | 8626                                 | 8628                                 | 8630                                 |
| .936                         | 8630                                 | 8632                                 | 8634                                 | 8636                                 | 8638                                  | 8640                                 | 8642                                 | 8644                                 | 8646                                 | 8648                                 | 8650                                 |
| .937                         | 8650                                 | 8652                                 | 8654                                 | 8656                                 | 8658                                  | 8660                                 | 8662                                 | 8664                                 | 8666                                 | 8668                                 | 8670                                 |
| .938                         | 8670                                 | 8672                                 | 8674                                 | 8676                                 | 8678                                  | 8680                                 | 8682                                 | 8684                                 | 8686                                 | 8688                                 | 8690                                 |
| .939                         | 8690                                 | 8692                                 | 8694                                 | 8696                                 | 8698                                  | 8700                                 | 8702                                 | 8704                                 | 8706                                 | 8708                                 | 8710                                 |
| .940                         | 8710                                 | 8712                                 | 8714                                 | 8716                                 | 8718                                  | 8720                                 | 8722                                 | 8724                                 | 8726                                 | 8728                                 | 8730                                 |
| .941                         | 8730                                 | 8732                                 | 8734                                 | 8736                                 | 8738                                  | 8740                                 | 8742                                 | 8744                                 | 8746                                 | 8748                                 | 8750                                 |
| .942                         | 8750                                 | 8752                                 | 8754                                 | 8756                                 | 8758                                  | 8760                                 | 8762                                 | 8764                                 | 8766                                 | 8768                                 | 8770                                 |
| .943                         | 8770                                 | 8772                                 | 8774                                 | 8776                                 | 8778                                  | 8780                                 | 8782                                 | 8784                                 | 8786                                 | 8788                                 | 8790                                 |
| .944                         | 8790                                 | 8792                                 | 8794                                 | 8796                                 | 8798                                  | 8800                                 | 8802                                 | 8804                                 | 8806                                 | 8808                                 | 8810                                 |
| .945                         | 8810                                 | 8813                                 | 8815                                 | 8817                                 | 8819                                  | 8821                                 | 8823                                 | 8825                                 | 8827                                 | 8829                                 | 8831                                 |
| .946                         | 8831                                 | 8833                                 | 8835                                 | 8837                                 | 8839                                  | 8841                                 | 8843                                 | 8845                                 | 8847                                 | 8849                                 | 8851                                 |
| .947                         | 8851                                 | 8853                                 | 8855                                 | 8857                                 | 8859                                  | 8861                                 | 8863                                 | 8865                                 | 8867                                 | 8870                                 | 8872                                 |
| .948                         | 8872                                 | 8874                                 | 8876                                 | 8878                                 | 8880                                  | 8882                                 | 8884                                 | 8886                                 | 8888                                 | 8890                                 | 8892                                 |
| .949                         | 8892                                 | 8894                                 | 8896                                 | 8898                                 | 8900                                  | 8902                                 | 8904                                 | 8906                                 | 8908                                 | 8910                                 | 8913                                 |

### ANTILOGARITHMS.

|              | 0    | 1    | 2    | 3    | 4    | 5    | 6      | 7    | 8    | 9    | 10   |
|--------------|------|------|------|------|------|------|--------|------|------|------|------|
| .950         | 8913 | 8915 | 8917 | 8919 | 8921 | 8923 | 8925   | 8927 | 8929 | 8931 | 8933 |
| .951         | 8933 | 8935 | 8937 | 8939 | 8941 | 8943 | 8945   | 8947 | 8950 | 8952 | 8954 |
| .952         | 8954 | 8956 | 8958 | 8960 | 8962 | 8964 | 8966   | 8968 | 8970 | 8972 | 8974 |
| .953         | 8974 | 8976 | 8978 | 8980 | 8983 | 8985 | 8987   | 8989 | 8991 | 8993 | 8995 |
| .954         | 8995 | 8997 | 8999 | 9001 | 9003 | 9005 | 9007   | 9009 | 9012 | 9014 | 9016 |
| .955         | 9016 | 9018 | 9020 | 9022 | 9024 | 9026 | 9028   | 9030 | 9032 | 9034 | 9036 |
| .956         | 9036 | 9039 | 9041 | 9043 | 9045 | 9047 | 9049   | 9051 | 9053 | 9055 | 9057 |
| .957         | 9057 | 9059 | 9061 | 9064 | 9066 | 9068 | 9070   | 9072 | 9074 | 9076 | 9078 |
| .958         | 9078 | 9080 | 9082 | 9084 | 9087 | 9089 | 9091   | 9093 | 9095 | 9097 | 9099 |
| .959         | 9099 | 9101 | 9103 | 9105 | 9108 | 9110 | 9112   | 9114 | 9116 | 9118 | 9120 |
| .960         | 9120 | 9122 | 9124 | 9126 | 9129 | 9131 | 9133   | 9135 | 9137 | 9139 | 9141 |
| .961         | 9141 | 9143 | 9145 | 9147 | 9150 | 9152 | 9154   | 9156 | 9158 | 9160 | 9162 |
| .962         | 9162 | 9164 | 9166 | 9169 | 9171 | 9173 | 9175   | 9177 | 9179 | 9181 | 9183 |
| .963         | 9183 | 9185 | 9188 | 9190 | 9192 | 9194 | 9196   | 9198 | 9200 | 9202 | 9204 |
| .964         | 9204 | 9207 | 9209 | 9211 | 9213 | 9215 | 9217   | 9219 | 9221 | 9224 | 9226 |
| . <b>965</b> | 9226 | 9228 | 9230 | 9232 | 9234 | 9236 | 9238   | 9241 | 9243 | 9245 | 9247 |
| .966         | 9247 | 9249 | 9251 | 9253 | 9256 | 9258 | 9260   | 9262 | 9264 | 9266 | 9268 |
| .967         | 9268 | 9270 | 9273 | 9275 | 9277 | 9279 | 9281   | 9283 | 9285 | 9288 | 9290 |
| .968         | 9290 | 9292 | 9294 | 9296 | 9298 | 9300 | 9303   | 9305 | 9307 | 9309 | 9311 |
| .969         | 9311 | 9313 | 9315 | 9318 | 9320 | 9322 | 9324   | 9326 | 9328 | 9330 | 9333 |
| .970         | 9333 | 9335 | 9337 | 9339 | 9341 | 9343 | 9345 . | 9348 | 9350 | 9352 | 9354 |
| .971         | 9354 | 9356 | 9358 | 9361 | 9363 | 9365 | 9367   | 9369 | 9371 | 9373 | 9376 |
| .972         | 9376 | 9378 | 9380 | 9382 | 9384 | 9386 | 9389   | 9391 | 9393 | 9395 | 9397 |
| .973         | 9397 | 9399 | 9402 | 9404 | 9406 | 9408 | 9410   | 9412 | 9415 | 9417 | 9419 |
| .974         | 9419 | 9421 | 9423 | 9425 | 9428 | 9430 | 9432   | 9434 | 9436 | 9438 | 9441 |
| . <b>975</b> | 9441 | 9443 | 9445 | 9447 | 9449 | 9451 | 9454   | 9456 | 9458 | 9460 | 9462 |
| .976         | 9462 | 9465 | 9467 | 9469 | 9471 | 9473 | 9475   | 9478 | 9480 | 9482 | 9484 |
| .977         | 9484 | 9486 | 9489 | 9491 | 9493 | 9495 | 9497   | 9499 | 9502 | 9504 | 9506 |
| .978         | 9506 | 9508 | 9510 | 9513 | 9515 | 9517 | 9519   | 9521 | 9524 | 9526 | 9528 |
| .979         | 9528 | 9530 | 9532 | 9535 | 9537 | 9539 | 9541   | 9543 | 9546 | 9548 | 9550 |
| 980          | 9550 | 9552 | 9554 | 9557 | 9559 | 9561 | 9563   | 9565 | 9568 | 9570 | 9572 |
| .981         | 9572 | 9574 | 9576 | 9579 | 9581 | 9583 | 9585   | 9587 | 9590 | 9592 | 9594 |
| .982         | 9594 | 9596 | 9598 | 9601 | 9603 | 9605 | 9607   | 9609 | 9612 | 9614 | 9616 |
| .983         | 9616 | 9618 | 9621 | 9623 | 9625 | 9627 | 9629   | 9632 | 9634 | 9636 | 9638 |
| .984         | 9638 | 9641 | 9643 | 9645 | 9647 | 9649 | 9652   | 9654 | 9656 | 9658 | 9661 |
| .985         | 9661 | 9663 | 9665 | 9667 | 9669 | 9672 | 9674   | 9676 | 9678 | 9681 | 9683 |
| .986         | 9683 | 9685 | 9687 | 9689 | 9692 | 9694 | 9696   | 9698 | 9701 | 9703 | 9705 |
| .987         | 9705 | 9707 | 9710 | 9712 | 9714 | 9716 | 9719   | 9721 | 9723 | 9725 | 9727 |
| .988         | 9727 | 9730 | 9732 | 9734 | 9736 | 9739 | 9741   | 9743 | 9745 | 9748 | 9750 |
| .989         | 9750 | 9752 | 9754 | 9757 | 9759 | 9761 | 9763   | 9766 | 9768 | 9770 | 9772 |
| .990         | 9772 | 9775 | 9777 | 9779 | 9781 | 9784 | 9786   | 9788 | 9790 | 9793 | 9795 |
| .991         | 9795 | 9797 | 9799 | 9802 | 9804 | 9806 | 9808   | 9811 | 9813 | 9815 | 9817 |
| .992         | 9817 | 9820 | 9822 | 9824 | 9827 | 9829 | 9831   | 9833 | 9836 | 9838 | 9840 |
| .993         | 9840 | 9842 | 9845 | 9847 | 9849 | 9851 | 9854   | 9856 | 9858 | 9861 | 9863 |
| .994         | 9863 | 9865 | 9867 | 9870 | 9872 | 9874 | 9876   | 9879 | 9881 | 9883 | 9886 |
| .995         | 9886 | 9888 | 9890 | 9892 | 9895 | 9897 | 9899   | 9901 | 9904 | 9906 | 9908 |
| .996         | 9908 | 9911 | 9913 | 9915 | 9917 | 9920 | 9922   | 9924 | 9927 | 9929 | 9931 |
| .997         | 9931 | 9933 | 9936 | 9938 | 9940 | 9943 | 9945   | 9947 | 9949 | 9952 | 9954 |
| .998         | 9954 | 9956 | 9959 | 9961 | 9963 | 9966 | 9968   | 9970 | 9972 | 9975 | 9977 |
| .999         | 9977 | 9979 | 9982 | 9984 | 9986 | 9988 | 9991   | 9993 | 9995 | 9998 | 0000 |

#### TABLE 14.

#### CIRCULAR (TRIGONOMETRIC) FUNCTIONS.

(Taken from B. O. Peirce's "Short Table of Integrals," Ginn & Co.)

| -                                                        |                                     |                                                      |                                                      |                                                    |                                                     |                                                    |                                                      |                                                          |                                                      |                                                |                                                          |
|----------------------------------------------------------|-------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|
| RADI-<br>ANS.                                            | DE-<br>GREES.                       | SIN                                                  | ES.                                                  | COSI                                               | INES.                                               | TANG                                               | GENTS.                                               | COTANG                                                   | ENTS.                                                |                                                |                                                          |
| R                                                        | GR                                  | Nat.                                                 | Log.                                                 | Nat.                                               | Log.                                                | Nat.                                               | Log.                                                 | Nat.                                                     | Log.                                                 |                                                |                                                          |
| 0.0000<br>0.0029<br>0.0058<br>0.0087<br>0.0116<br>0.0145 | 0°00′<br>10<br>20<br>30<br>40<br>50 | .0058                                                | ∞<br>7.4637<br>.7648<br>.9408<br>8.0658<br>.1627     | I.0000<br>I.0000<br>I.0000<br>I.0000<br>•9999      | 0.0000                                              | .0000<br>.0029<br>.0058<br>.0087<br>.0116          | _                                                    | ∞ 343.77 171.89 114.59 85.940 68.750                     | 2.5363<br>.2352<br>.0591<br>1.9342<br>.8373          | 90°00′<br>50<br>40<br>30<br>20                 | 1.5708<br>1.5679<br>1.5650<br>1.5621<br>1.5592<br>1.5563 |
| 0.0175<br>0.0204<br>0.0233<br>0.0262<br>0.0291<br>0.0320 | 1°00′<br>10<br>20<br>30<br>40<br>50 | .0204<br>.0233<br>.0262<br>.0291<br>.0320            | 8.2419<br>.3088<br>.3668<br>.4179<br>.4637<br>.5050  | .9998<br>.9998<br>.9997<br>.9997<br>.9996          | 9.9999<br>.9999<br>.9999<br>.9998<br>.9998          | .0175<br>.0204<br>.0233<br>.0262<br>.0291<br>.0320 | 8.2419<br>.3089<br>.3669<br>.4181<br>.4638           | 57.290<br>49.104<br>42.964<br>38.188<br>34.368<br>31.242 | .6911<br>.6911<br>.6331<br>.5819<br>.5362<br>.4947   | 50<br>40<br>30<br>20<br>10                     | 1.5533<br>1.5504<br>1.5475<br>1.5446<br>1.5417<br>1.5388 |
| 0.0349<br>0.0378<br>0.0407<br>0.0436<br>0.0465<br>0.0495 | 2°00′<br>10<br>20<br>30<br>40<br>50 | .0378<br>.0407<br>.0436<br>.0465                     | 8.5428<br>.5776<br>.6097<br>.6397<br>.6677<br>.6940  | .9994<br>.9993<br>.9992<br>.9990<br>.9989          | 9.9997<br>.9997<br>.9996<br>.9996<br>.9995          | .0349<br>.0378<br>.0407<br>.0437<br>.0466          | 8.5431<br>.5779<br>.6101<br>.6401<br>.6682<br>.6945  | 28.636<br>26.432<br>24.542<br>22.904<br>21.470<br>20.206 | 1.4569<br>.4221<br>.3899<br>.3599<br>.3318<br>.3055  | 88°00′<br>50<br>40<br>30<br>20                 | 1.5359<br>1.5330<br>1.5301<br>1.5272<br>1.5243<br>1.5213 |
| 0.0524<br>0.0553<br>0.0582<br>0.0611<br>0.0640<br>0.0669 | 3°00′<br>10<br>20<br>30<br>40<br>50 | .0523 8<br>.0552<br>.0581<br>.0610<br>.0640<br>.0669 | .7423<br>.7645<br>.7857<br>.8059<br>.8251            | .9985<br>.9983<br>.9981<br>.9980                   | 9.9994<br>.9993<br>.9993<br>.9992<br>.9991          | .0553<br>.0582<br>.0612<br>.0641<br>.0670          | 8.7194<br>.7429<br>.7652<br>.7865<br>.8067<br>.8261  | 19.081<br>18.075<br>17.169<br>16.350<br>15.605<br>14.924 | 1.2806<br>.2571<br>.2348<br>.2135<br>.1933<br>.1739  | 87°00′<br>50<br>40<br>30<br>20                 | 1.5184<br>1.5155<br>1.5126<br>1.5097<br>1.5068<br>1.5039 |
| 0.0698<br>0.0727<br>0.0756<br>0.0785<br>0.0814<br>0.0844 | 4°00′<br>10<br>20<br>30<br>40<br>50 | .0698 8<br>.0727<br>.0756<br>.0785<br>.0814<br>.0843 | 8.8436<br>.8613<br>.8783<br>.8946<br>.9104<br>.9256  | .9976<br>.9974<br>.9971<br>.9969<br>.9967          | 9.9989<br>.9989<br>.9988<br>.9987<br>.9986          | .0699<br>.0729<br>.0758<br>.0787<br>.0816<br>.0846 | 8.8446<br>.8624<br>.8795<br>.8960<br>.9118<br>.9272  | 14.301<br>13.727<br>13.197<br>12.706<br>12.251<br>11.826 | 1.1554<br>.1376<br>.1205<br>.1040<br>.0882<br>.0728  | 86°00′<br>50<br>40<br>30<br>20                 | 1.5010<br>1.4981<br>1.4952<br>1.4923<br>1.4893<br>1.4864 |
| 0.0873<br>0.0902<br>0.0931<br>0.0960<br>0.0989<br>0.1018 | 5°00′<br>10<br>20<br>30<br>40<br>50 | ·0901<br>·0929<br>·0958<br>·0987                     | 8.9403<br>·9545<br>·9682<br>·9816<br>·9945<br>9.0070 | .9962<br>·9959<br>·9957<br>·9954<br>·9951          | 9.9983<br>.9982<br>.9981<br>.9980<br>.9979          | .0875<br>.0904<br>.0934<br>.0963<br>.0992          | 8.9420<br>.9563<br>.9701<br>.9836<br>.9966<br>9.0093 | 11.430<br>11.059<br>10.712<br>10.385<br>10.078<br>9.7882 | 1.0580<br>.0437<br>.0299<br>.0164<br>.0034<br>0.9907 | 85°00′<br>50<br>40<br>30<br>20                 | 1.4835<br>1.4806<br>1.4777<br>1.4748<br>1.4719<br>1.4690 |
| 0.1047<br>0.1076<br>0.1105<br>0.1134<br>0.1164<br>0.1193 | 6°00<br>10<br>20<br>30<br>40<br>50  | .1074<br>.1103<br>.1132<br>.1161                     | 9.0192<br>.0311<br>.0426<br>.0539<br>.0648           | .9945<br>.9942<br>.9939<br>.9936<br>.9932<br>.9929 | 9.9976<br>•9975<br>•9973<br>•9972<br>•9971<br>•9969 | .1051<br>.1080<br>.1110<br>.1139<br>.1169          | 9.0216<br>.0336<br>.0453<br>.0567<br>.0678<br>.0786  | 9.5144<br>9.2553<br>9.0098<br>8.7769<br>8.5555<br>8.3450 | 0.9784<br>.9664<br>.9547<br>.9433<br>.9322<br>.9214  | 84°00′<br>50<br>40<br>30<br>20                 | 1.4661<br>1.4632<br>1.4603<br>1.4574<br>1.4544<br>1.4515 |
| 0.1222<br>0.1251<br>0.1280<br>0.1309<br>0.1338<br>0.1367 | 7°00′<br>10<br>20<br>30<br>40<br>50 | .1248<br>.1276<br>.1305<br>.1334<br>.1363            | 9.0859<br>.0961<br>.1060<br>.1157<br>.1252<br>.1345  | .9922<br>.9918<br>.9914<br>.9911                   | 9.9968<br>.9966<br>.9964<br>.9963<br>.9961          | .1228<br>.1257<br>.1287<br>.1317<br>.1346<br>.1376 | 9.0891<br>.0995<br>.1096<br>.1194<br>.1291           | 8.1443<br>7-9530<br>7.7704<br>7.5958<br>7.4287<br>7.2687 | 0.9109<br>.9005<br>.8904<br>.8806<br>.8709<br>.8615  | 83°00′<br>50<br>40<br>30<br>20<br>10           | 1.4486<br>1.4457<br>1.4428<br>1.4399<br>1.4370<br>1.4341 |
| 0.1396<br>0.1425<br>0.1454<br>0.1484<br>0.1513<br>0.1542 | 8°00′<br>10<br>20<br>30<br>40<br>50 | .1421<br>.1449<br>.1478<br>.1507<br>.1536            | 9.1436<br>.1525<br>.1612<br>.1697<br>.1781<br>.1863  | .9899<br>.9894<br>.9890<br>.9886<br>.9881          | 9.9958<br>.9956<br>.9954<br>.9952<br>.9950<br>.9948 | .1435<br>.1465<br>.1495<br>.1524<br>.1554          | 9.1478<br>.1569<br>.1658<br>.1745<br>.1831<br>.1915  | 6.9682<br>6.8269<br>6.6912<br>6.5606<br>6.4348           | 0.8522<br>.8431<br>.8342<br>.8255<br>.8169<br>.8085  | 82°00′<br>50<br>40<br>30<br>20<br>10<br>81°00′ | 1.4312<br>1.4283<br>1.4254<br>1.4224<br>1.4195<br>1.4166 |
| 0.1571                                                   | 9°00′                               | .1564 9                                              |                                                      |                                                    |                                                     |                                                    | 9.1997                                               | 6.3138                                                   |                                                      |                                                | 1.4137                                                   |
|                                                          |                                     | Nat.                                                 | NES.                                                 | Nat.                                               | Log.                                                | Nat. COT GE1                                       | Log.<br>FAN-<br>NTS.                                 | Nat. TANGE                                               | Log.                                                 | DE-<br>GREES.                                  | RADI-<br>ANS.                                            |

| RADI-<br>ANS.                                            | DE-<br>GREES.                        | SINES.                                                                                  | COSINES.                                                                                | TANGENTS.                                                                               | COTANGENTS.                                                                                   |                                      |                                                          |
|----------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|
| RA<br>AJ                                                 | GR                                   | Nat. Log.                                                                               | Nat. Log.                                                                               | Nat. Log.                                                                               | Nat. Log.                                                                                     |                                      |                                                          |
| 0.1571<br>0.1600<br>0.1629<br>0.1658<br>0.1687<br>0.1716 | 9°00′<br>10<br>20<br>30<br>40<br>50  | .1564 9.1943<br>.1593 .2022<br>.1622 .2100<br>.1650 .2176<br>.1679 .2251<br>.1708 .2324 | .9877 9.9946<br>.9872 .9944<br>.9868 .9942<br>.9863 .9940<br>.9858 .9938<br>.9853 .9936 | .1584 9.1997<br>.1614 .2078<br>.1644 .2158<br>.1673 .2236<br>.1703 .2313<br>.1733 .2389 | 6.3138 0.8003<br>6.1970 .7922<br>6.0844 .7842<br>5.9758 .7764<br>5.8708 .7687<br>5.7694 .7611 | 81°00′<br>50<br>40<br>30<br>20       | 1.4137<br>1.4108<br>1.4079<br>1.4050<br>1.4021<br>1.3992 |
| 0.1745<br>0.1774<br>0.1804<br>0.1833<br>0.1862<br>0.1891 | 10°00′<br>10<br>20<br>30<br>40<br>50 | .1736 9.2397<br>.1765 .2468<br>.1794 .2538<br>.1822 .2606<br>.1851 .2674<br>.1880 .2740 | .9848 9.9934<br>.9843 .9931<br>.9838 .9929<br>.9833 .9927<br>.9827 .9924<br>.9822 .9922 | .1763 9.2463<br>.1793 .2536<br>.1823 .2609<br>.1853 .2680<br>.1883 .2750<br>.1914 .2819 | 5.6713 0.7537<br>5.5764 .7464<br>5.4845 .7391<br>5.3955 .7320<br>5.3093 .7250<br>5.2257 .7181 | 80°00′<br>50<br>40<br>30<br>20<br>10 | 1.3963<br>1.3934<br>1.3904<br>1.3875<br>1.3846<br>1.3817 |
| 0.1920<br>0.1949<br>0.1978<br>0.2007<br>0.2036<br>0.2065 | 11°00′<br>10<br>20<br>30<br>40<br>50 | .1908 9.2806<br>.1937 .2870<br>.1965 .2934<br>.1994 .2997<br>.2022 .3058<br>.2051 .3119 | .9816 9.9919<br>.9811 .9917<br>.9805 .9914<br>.9799 .9912<br>.9793 .9909<br>.9787 .9907 | .1944 9.2887<br>.1974 .2953<br>.2004 .3020<br>.2035 .3085<br>.2065 .3149<br>.2095 .3212 | 5.1446 0.7113<br>5.0658 .7047<br>4.9894 .6980<br>4.9152 .6915<br>4.8430 .6851<br>4.7729 .6788 | 79°00′<br>50<br>40<br>30<br>20       | 1.3788<br>1.3759<br>1.3730<br>1.3701<br>1.3672<br>1.3643 |
| 0.2094<br>0.2123<br>0.2153<br>0.2182<br>0.2211<br>0.2240 | 12°00′<br>10<br>20<br>30<br>40<br>50 | .2079 9.3179<br>.2108 .3238<br>.2136 .3296<br>.2164 .3353<br>.2193 .3410<br>.2221 .3466 | .9781 9.9904<br>.9775 .9901<br>.9769 .9899<br>.9763 .9896<br>.9757 .9893<br>.9750 .9890 | .2126 9.3275<br>.2156 .3336<br>.2186 .3397<br>.2217 .3458<br>.2247 .3517<br>.2278 .3576 | 4.7046 0.6725<br>4.6382 .6664<br>4.5736 .6603<br>4.5107 .6542<br>4.4494 .6483<br>4.3897 .6424 | 78°00′<br>50<br>40<br>30<br>20       | 1.3614<br>1.3584<br>1.3555<br>1.3526<br>1.3497<br>1.3468 |
| 0.2269<br>0.2298<br>0.2327<br>0.2356<br>0.2385<br>0.2414 | 13°00′<br>10<br>20<br>30<br>40<br>50 | .2250 9.3521<br>.2278 .3575<br>.2306 .3629<br>.2334 .3682<br>.2363 .3734<br>.2391 .3786 | .9744 9.9887<br>.9737 .9884<br>.9730 .9881<br>.9724 .9878<br>.9717 .9875<br>.9710 .9872 | .2309 9.3634<br>.2339 .3691<br>.2370 .3748<br>.2401 .3804<br>.2432 .3859<br>.2462 .3914 | 4.3315 0.6366<br>4.2747 .6309<br>4.2193 .6252<br>4.1653 .6196<br>4.1126 .6141<br>4.0611 .6086 | 77°00′<br>50<br>40<br>30<br>20       | 1.3439<br>1.3410<br>1.3381<br>1.3352<br>1.3323<br>1.3294 |
| 0.2443<br>0.2473<br>0.2502<br>0.2531<br>0.2560<br>0.2589 | 14°00′<br>10<br>20<br>30<br>40<br>50 | .2419 9.3837<br>.2447 .3887<br>.2476 .3937<br>.2504 .3986<br>.2532 .4035<br>.2560 .4083 | .9703 9.9869<br>.9696 .9866<br>.9689 .9863<br>.9681 .9859<br>.9674 .9856<br>.9667 .9853 | .2493 9.3968<br>.2524 .4021<br>.2555 .4074<br>.2586 .4127<br>.2617 .4178<br>.2648 .4230 | 4.0108 0.6032<br>3.9617 .5979<br>3.9136 .5926<br>3.8667 .5873<br>3.8208 .5822<br>3.7760 .5770 | 76°00′<br>50<br>40<br>30<br>20       | 1.3265<br>1.3235<br>1.3206<br>1.3177<br>1.3148<br>1.3119 |
| 0.2618<br>0.2647<br>0.2676<br>0.2705<br>0.2734<br>0.2763 | 15°00′<br>10<br>20<br>30<br>40<br>50 | .2588 9.4130<br>.2616 .4177<br>.2644 .4223<br>.2672 .4269<br>.2700 .4314<br>.2728 .4359 | .9659 9.9849<br>.9652 .9846<br>.9644 .9843<br>.9636 .9839<br>.9628 .9836<br>.9621 .9832 | .2679 9.4281<br>.2711 .4331<br>.2742 .4381<br>.2773 .4430<br>.2805 .4479<br>.2836 .4527 | 3.7321 0.5719<br>3.6891 .5669<br>3.6470 .5619<br>3.6059 .5570<br>3.5656 .5521<br>3.5261 .5473 | 75°00′<br>50<br>40<br>30<br>20<br>10 | 1.3090<br>1.3061<br>1.3032<br>1.3003<br>1.2974<br>1.2945 |
| 0.2793<br>0.2822<br>0.2851<br>0.2880<br>0.2909<br>0.2938 | 16°00′<br>10<br>20<br>30<br>40<br>50 | .2756 9.4403<br>.2784 .4447<br>.2812 .4491<br>.2840 .4533<br>.2868 .4576<br>.2896 .4618 | .9613 9.9828<br>.9605 .9825<br>.9596 .9821<br>.9588 .9817<br>.9580 .9814<br>.9572 .9810 | .2867 9.4575<br>.2899 .4622<br>.2931 .4669<br>.2962 .4716<br>.2994 .4762<br>.3026 .4808 | 3.4874 0.5425<br>3.4495 .5378<br>3.4124 .5331<br>3.3759 .5284<br>3.3402 .5238<br>3.3052 .5192 | 74°00′<br>50<br>40<br>30<br>20       | 1.2915<br>1.2886<br>1.2857<br>1.2828<br>1.2799<br>1.2770 |
| 0.2967<br>0.2996<br>0.3025<br>0.3054<br>0.3083<br>0.3113 | 17°00′<br>10<br>20<br>30<br>40<br>50 | .2924 9.4659<br>.2952 .4700<br>.2979 .4741<br>.3007 .4781<br>.3035 .4821<br>.3062 .4861 | .9563 9.9806<br>.9555 .9802<br>.9546 .9798<br>.9537 .9794<br>.9528 .9790<br>.9520 .9786 | .3057 9.4853<br>.3089 .4898<br>.3121 .4943<br>.3153 .4987<br>.3185 .5031<br>.3217 .5075 | 3.2709 0.5147<br>3.2371 .5102<br>3.2041 .5057<br>3.1716 .5013<br>3.1397 .4969<br>3.1084 .4925 | 73°00/<br>50<br>40<br>30<br>20<br>10 | 1.2741<br>1.2712<br>1.2683<br>1.2654<br>1.2625<br>1.2595 |
| 0.3142                                                   | 18°00′                               | .3090 9.4900<br>Nat. Log.                                                               | .9511 9.9782<br>Nat. Log.                                                               | .3249 9.5118<br>Nat. Log.                                                               | 3.0777 0.4882<br>Nat. Log.                                                                    | 72°00′                               | 1.2566                                                   |
|                                                          |                                      | Nat. Log.  COSINES                                                                      | Nat. Log. SINES.                                                                        | COTAN-<br>GENTS.                                                                        | TANGENTS                                                                                      | DE-<br>GREES.                        | RADI-<br>ANS.                                            |

| 1.6                                                      | SS.                                  | SINES.                                                                            | COSINES.                                                                          | TANGENTS.                                                                               | COTANGENTS                                                                                    |                                                                                |
|----------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| RADI-<br>ANS.                                            | DE-GREES.                            | Nat. Log                                                                          |                                                                                   | Nat. Log.                                                                               |                                                                                               |                                                                                |
|                                                          | 18000'                               |                                                                                   |                                                                                   |                                                                                         | -                                                                                             | 2000/ 2006                                                                     |
| 0.3142<br>0.3171<br>0.3200<br>0.3229<br>0.3258<br>0.3287 | 10<br>20<br>30<br>40<br>50           | .3090 9.490<br>.3118 .490<br>.3145 .490<br>.3173 .50<br>.3201 .50<br>.3228 .500   | 9 .9502 .9778<br>7 .9492 .9774<br>5 .9483 .9770<br>2 .9474 .9765                  | .3281 .5161<br>.3314 .5203<br>.3346 .5245<br>.3378 .5287                                | 3.0777 0.4882<br>3.0475 .4839<br>3.0178 .4797<br>2.9887 .4755<br>2.9600 .4713<br>2.9319 .4671 | 72°00′ 1.2566<br>50 1.2537<br>40 1.2508<br>30 1.2479<br>20 1.2450<br>10 1.2421 |
| 0.3316<br>0.3345<br>0.3374<br>0.3403<br>0.3432<br>0.3462 | 19°00′<br>10<br>20<br>30<br>40<br>50 | .3256 9.51:<br>.3283 .510<br>.3311 .519<br>.3338 .525<br>.3365 .525<br>.3393 .539 | 3 .9446 .9752<br>9 .9436 .9748<br>5 .9426 .9743<br>0 .9417 .9739                  | .3443 9.5370<br>.3476 .5411<br>.3508 .5451<br>.3541 .5491<br>.3574 .5531<br>.3607 .5571 | 2.9042 0.4630<br>2.8770 .4589<br>2.8502 .4549<br>2.8239 .4509<br>2.7980 .4469<br>2.7725 .4429 | 71°00′ 1.2392<br>50 1.2363<br>40 1.2334<br>30 1.2305<br>20 1.2275<br>10 1.2246 |
| 0.3491<br>0.3520<br>0.3549<br>0.3578<br>0.3607<br>0.3636 | 20°00′<br>10<br>20<br>30<br>40<br>50 | .3420 9.532<br>.3448 .537<br>.3475 .549<br>.3502 .544<br>.3529 .547<br>.3557 .551 | 5 .9387 .9725<br>9 .9377 .9721<br>3 .9367 .9716<br>7 .9356 .9711                  | .3640 9.5611<br>.3673 .5650<br>.3706 .5689<br>.3739 .5727<br>.3772 .5766<br>.3805 .5804 | 2.7475 0.4389<br>2.7228 .4350<br>2.6985 .4311<br>2.6746 .4273<br>2.6511 .4234<br>2.6279 .4196 | 70°00′ 1.2217<br>50 1.2188<br>40 1.2159<br>30 1.2130<br>20 1.2101<br>10 1.2072 |
| 0.3665<br>0.3694<br>0.3723<br>0.3752<br>0.3782<br>0.3811 | 21°00′<br>10<br>20<br>30<br>40<br>50 | .3584 9.554<br>.3611 .557<br>.3638 .566<br>.3665 .564<br>.3692 .567               | 6 .9325 .9697<br>9 .9315 .9692<br>1 .9304 .9687<br>3 .9293 .9682                  | .3839 9.5842<br>.3872 .5879<br>.3906 .5917<br>.3939 .5954<br>.3973 .5991<br>.4006 .6028 | 2.6051 0.4158<br>2.5826 .4121<br>2.5605 .4083<br>2.5386 .4046<br>2.5172 .4009<br>2.4960 .3972 | 69°00′ 1.2043<br>50 1.2014<br>40 1.1985<br>30 1.1956<br>20 1.1926<br>10 1.1897 |
| 0.3840<br>0.3869<br>0.3898<br>0.3927<br>0.3956<br>0.3985 | 22°00′<br>10<br>20<br>30<br>40<br>50 | .3746 9.573<br>.3773 .576<br>.3800 .579<br>.3827 .582<br>.3854 .585<br>.3881 .588 | 7 .9261 .9667<br>8 .9250 .9661<br>8 .9239 .9656<br>9 .9228 .9651                  | .4040 9.6064<br>.4074 .6100<br>.4108 .6136<br>.4142 .6172<br>.4176 .6208<br>.4210 .6243 | 2.4751 0.3936<br>2.4545 .3900<br>2.4342 .3864<br>2.4142 .3828<br>2.3945 .3792<br>2.3750 .3757 | 68°00′ 1.1868<br>50 1.1839<br>40 1.1810<br>30 1.1781<br>20 1.1752<br>10 1.1723 |
| 0.4014<br>0.4043<br>0.4072<br>0.4102<br>0.4131<br>0.4160 | 23°00′<br>10<br>20<br>30<br>40<br>50 | .3907 9.591<br>.3934 .594<br>.3961 .597<br>.3987 .600<br>.4014 .603               | 3 .9194 .9635<br>3 .9182 .9629<br>7 .9171 .9624<br>5 .9159 .9618                  | .4245 9.6279<br>.4279 .6314<br>.4314 .6348<br>.4348 .6383<br>.4383 .6417<br>.4417 .6452 | 2.3559 0.3721<br>2.3369 .3686<br>2.3183 .3652<br>2.2998 .3617<br>2.2817 .3583<br>2.2637 .3548 | 67°00′ 1.1694<br>50 1.1665<br>40 1.1636<br>30 1.1606<br>20 1.1577<br>10 1.1548 |
| 0.4189<br>0.4218<br>0.4247<br>0.4276<br>0.4305<br>0.4334 | 24°00′<br>10<br>20<br>30<br>40<br>50 | .4067 9.609<br>.4094 .612<br>.4120 .614<br>.4147 .617<br>.4173 .620<br>.4200 .623 | .9124 .9602<br>.9112 .9596<br>7 .9100 .9590<br>5 .9088 .9584                      | .4452 9.6486<br>.4487 .6520<br>.4522 .6553<br>.4557 .6587<br>.4592 .6620<br>.4628 .6654 | 2.2460 0.3514<br>2.2286 .3480<br>2.2113 .3447<br>2.1943 .3413<br>2.1775 .3380<br>2.1609 .3346 | 66°00′ 1.1519<br>50 1.1490<br>40 1.1461<br>30 1.1432<br>20 1.1403<br>10 1.1374 |
| 0.4363<br>0.4392<br>0.4422<br>0.4451<br>0.4480<br>0.4509 | 25°00′<br>10<br>20<br>30<br>40<br>50 | .4226 9.625<br>.4253 .628<br>.4279 .631<br>.4305 .634<br>.4331 .636<br>.4358 .639 | 6 .9051 .9567<br>3 .9038 .9561<br>0 .9026 .9555<br>6 .9013 .9549                  | .4663 9.6687<br>.4699 .6720<br>.4734 .6752<br>.4770 .6785<br>.4806 .6817<br>.4841 .6850 | 2.1445 0.3313<br>2.1283 .3280<br>2.1123 .3248<br>2.0965 .3215<br>2.0809 .3183<br>2.0655 .3150 | 65°00′ 1.1345<br>50 1.1316<br>40 1.1286<br>30 1.1257<br>20 1.1228<br>10 1.1199 |
| 0.4538<br>0.4567<br>0.4596<br>0.4625<br>0.4654<br>0.4683 | 26°00′<br>10<br>20<br>30<br>40<br>50 | .4384 9.641<br>.4410 .644<br>.4436 .649<br>.4462 .649<br>.4488 .652               | 4 .8975 .9530<br>5 .8962 .9524<br>5 .8949 .9518<br>1 .8936 .9512<br>6 .8923 .9505 | .4877 9.6882<br>.4913 .6914<br>.4950 .6946<br>.4986 .6977<br>.5022 .7009<br>.5059 .7040 | 2.0204 .3054<br>2.0057 .3023<br>1.9912 .2991<br>1.9768 .2960                                  | 64°00′ 1.1170<br>50 1.1141<br>40 1.1112<br>30 1.1083<br>20 1.1054<br>10 1.1025 |
| 0.4712                                                   | 27°00′                               | .4540 9.657                                                                       |                                                                                   | .5095 9.7072                                                                            | 1.9626 0.2928                                                                                 | 63°00′ 1.0996                                                                  |
|                                                          |                                      | COSINES.                                                                          | SINES.                                                                            | Nat. Log.  COTAN- GENTS.                                                                | Nat. Log.  TANGENTS.                                                                          | GREES.<br>RADI-ANS.                                                            |

| 1                                                        |                                        |                                                                                         |                                                                                          |                                                                                         |                                                                                                                                      |                                                                                |
|----------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| RADI-<br>ANS.                                            | DE-<br>GREES.                          | SINES.                                                                                  | COSINES.                                                                                 | TANGENTS.                                                                               | COTANGENTS.                                                                                                                          |                                                                                |
| NA A                                                     | GR                                     | Nat. Log.                                                                               | Nat. Log.                                                                                | Nat. Log.                                                                               | Nat. Log.                                                                                                                            |                                                                                |
| 0.4712<br>0.4741<br>0.4771<br>0.4800<br>0.4829<br>0.4858 | 27°00′<br>10<br>20<br>30<br>40<br>50   | .4540 9.6570<br>.4566 .6595<br>.4592 .6620<br>.4617 .6644<br>.4643 .6668<br>.4669 .6692 | .8897 .9492<br>.8884 .9486<br>.8870 .9479<br>.8857 .9473                                 | .5095 9.7072<br>.5132 .7103<br>.5169 .7134<br>.5206 .7165<br>.5243 .7196<br>.5280 .7226 | 1.9626 0.2928<br>1.9486 .2897<br>1.9347 -2866<br>1.9210 .2835<br>1.9074 .2804<br>1.8940 .2774                                        | 63°00′ I.0996<br>50 I.0966<br>40 I.093<br>30 I.0966<br>20 I.0876<br>10 I.0856  |
| 0.4887<br>0.4916<br>0.4945<br>0.4974<br>0.5003<br>0.5032 | 28°00′<br>10<br>20<br>30<br>40<br>50   | .4695 9.6716<br>.4720 .6740<br>.4746 .6763<br>.4772 .6787<br>.4797 .6810<br>.4823 .6833 | .8816 .9453<br>.8802 .9446<br>.8788 .9439                                                | .5317 9.7257<br>.5354 .7287<br>.5392 .7317<br>.5430 .7348<br>.5467 .7378<br>.5505 .7408 | 1.8807     0.2743       1.8676     .2713       1.8546     .2683       1.8418     .2652       1.8291     .2622       1.8165     .2592 | 62°00′ 1.082<br>50 1.079;<br>40 1.076;<br>30 1.073;<br>20 1.070;<br>10 1.0676  |
| 0.5061<br>0.5091<br>0.5120<br>0.5149<br>0.5178<br>0.5207 | 29°00′<br>10<br>20<br>30<br>40<br>50   | .4848 9.6856<br>.4874 .6878<br>.4899 .6901<br>.4924 .6923<br>.4950 .6946<br>.4975 .6968 | .8746 .9.9418<br>.8732 .9411<br>.8718 .9404<br>.8704 .9397<br>.8689 .9390<br>.8675 .9383 | .5543 9.7438<br>.5581 .7467<br>.5619 .7497<br>.5658 .7526<br>.5696 .7556<br>.5735 .7585 | I.8040 0.2562<br>I.7917 .2533<br>I.7796 .2503<br>I.7675 .2474<br>I.7556 .2444<br>I.7437 .2415                                        | 50 1.064;<br>50 1.061;<br>40 1.0588<br>30 1.0559<br>20 1.0530<br>10 1.0501     |
| 0.5236<br>0.5265<br>0.5294<br>0.5323<br>0.5352<br>0.5381 | 30°00′<br>10<br>20<br>30<br>40<br>50   | .5000 9.6990<br>.5025 .7012<br>.5050 .7033<br>.5075 .7055<br>.5100 .7076<br>.5125 .7097 | .8660 9.9375<br>.8646 .9368<br>.8631 .9361<br>.8616 .9353<br>.8601 .9346<br>.8587 .9338  | .5774 9.7614<br>.5812 .7644<br>.5851 .7673<br>.5890 .7701<br>.5930 .7730<br>.5969 .7759 | 1.7321     0.2386       1.7205     .2356       1.7090     .2327       1.6977     .2299       1.6864     .2270       1.6753     .2241 | 50°00′ 1.0472<br>50 1.0443<br>40 1.0414<br>30 1.0385<br>20 1.0356<br>10 1.0327 |
| 0.5411<br>0.5440<br>0.5469<br>0.5498<br>0.5527<br>0.5556 | 31°00′<br>10<br>20<br>30<br>40<br>50   | .5150 9.7118<br>.5175 .7139<br>.5200 .7160<br>.5225 .7181<br>.5250 .7201<br>.5275 .7222 | .8572 9.9331<br>.8557 .9323<br>.8542 .9315<br>.8526 .9308<br>.8511 .9300<br>.8496 .9292  | .6009 9.7788<br>.6048 .7816<br>.6088 .7845<br>.6128 .7873<br>.6168 .7902<br>.6208 .7930 | 1.6643 0.2212<br>1.6534 .2184<br>1.6426 .2155<br>1.6319 .2127<br>1.6212 .2098<br>1.6107 .2070                                        | 59°00′ 1.0297<br>50 1.0268<br>40 1.0239<br>30 1.0210<br>20 1.0181<br>10 1.0152 |
| 0.5585<br>0.5614<br>0.5643<br>0.5672<br>0.5701<br>0.5730 | 32°00′<br>10<br>20<br>30<br>40<br>50   | .5299 9.7242<br>.5324 .7262<br>.5348 .7282<br>.5373 .7302<br>.5398 .7322<br>.5422 .7342 | .8480 9.9284<br>.8465 .9276<br>.8450 .9268<br>.8434 .9260<br>.8418 .9252<br>.8403 .9244  | .6249 9.7958<br>.6289 .7986<br>.6330 .8014<br>.6371 .8042<br>.6412 .8070<br>.6453 .8097 | 1.6003 0.2042<br>1.5900 .2014<br>1.5798 .1986<br>1.5697 .1958<br>1.5597 .1930<br>1.5497 .1903                                        | 58°00′ 1.0123<br>50 1.0094<br>40 1.0065<br>30 1.0036<br>20 1.0007<br>10 0.9977 |
| 0.5760<br>0.5789<br>0.5818<br>0.5847<br>0.5876<br>0.5905 | 33°00′<br>. 10<br>20<br>30<br>40<br>50 | .5446 9.7361<br>.5471 .7380<br>.5495 .7400<br>.5519 .7419<br>.5544 .7438<br>.5568 .7457 | .8387 9.9236<br>.8371 .9228<br>.8355 .9219<br>.8339 .9211<br>.8323 .9203<br>.8307 .9194  | .6494 9.8125<br>.6536 .8153<br>.6577 .8180<br>.6619 .8208<br>.6661 .8235<br>.6703 .8263 | 1.5399     0.1875       1.5301     .1847       1.5204     .1820       1.5108     .1792       1.5013     .1765       1.4919     .1737 | 57°00′ 0.9948<br>50 0.9919<br>40 0.9890<br>30 0.9861<br>20 0.9832<br>10 0.9803 |
| 0.5934<br>0.5963<br>0.5992<br>0.6021<br>0.6050<br>0.6080 | 34°00′<br>10<br>20<br>30<br>40<br>50   | .5592 9.7476<br>.5616 .7494<br>.5640 .7513<br>.5664 .7531<br>.5688 .7550<br>.5712 .7568 | .8290 9.9186<br>.8274 .9177<br>.8258 .9169<br>.8241 .9160<br>.8225 .9151<br>.8208 .9142  | .6745 9.8290<br>.6787 .8317<br>.6830 .8344<br>.6873 .8371<br>.6916 .8398<br>.6959 .8425 | 1.4826 0.1710<br>1.4733 .1683<br>1.4641 .1656<br>1.4550 .1629<br>1.4460 .1602<br>1.4370 .1575                                        | 56°00′ 0.9774<br>50 0.9745<br>40 0.9716<br>30 0.9687<br>20 0.9657<br>10 0.9628 |
| 0.6109<br>0.6138<br>0.6167<br>0.6196<br>0.6225<br>0.6254 | 35°00′<br>10<br>20<br>30<br>40<br>50   | .5736 9.7586<br>.5760 .7604<br>.5783 .7622<br>.5807 .7640<br>.5831 .7657<br>.5854 .7675 | .8192 9.9134<br>.8175 .9125<br>.8158 .9116<br>.8141 .9107<br>.8124 .9098<br>8107 .9089   | .7089 .8506<br>.7133 .8533<br>.7177 .8559<br>.7221 .8586                                | 1.4281 0.1548<br>1.4193 .1521<br>1.4106 .1494<br>1.4019 .1467<br>1.3934 .1441<br>1.3848 .1414                                        | 55°00′ 0.9599<br>50 0.9570<br>40 0.9541<br>30 0.9512<br>20 0.9482<br>10 0.9452 |
| 0.6283                                                   | 36°00′                                 | .5878 9.7692                                                                            | 8090 9.9080                                                                              | .7265 9.8613                                                                            | 1.3764 0.1387                                                                                                                        | 54°00′ 0.9425                                                                  |
| = 1                                                      |                                        | Nat. Log.                                                                               | Nat. Log. SINES.                                                                         | Nat. Log.  COTAN- GENTS.                                                                | TANGENTS.                                                                                                                            | GREES.<br>GREES.<br>RADI-<br>ANS.                                              |

|                                                          | y s                                  | CINTO                                                                                   | COCYVING                                                                | TANGENE                                                                                 | COMANGRA                                                                                      |                                                                                |
|----------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| RADI-<br>ANS.                                            | DE-<br>GREES.                        | - SINES.                                                                                | COSINES.                                                                | TANGENTS.                                                                               | COTANGENTS.                                                                                   |                                                                                |
| ×                                                        |                                      | Nat. Log.                                                                               | Nat. Log.                                                               | Nat. Log.                                                                               | Nat. Log.                                                                                     |                                                                                |
| 0.6283<br>0.6312<br>0.6341<br>0.6370<br>0.6400<br>0.6429 | 36°00′<br>10<br>20<br>30<br>40<br>50 | .5878 9.7692<br>.5901 .7710<br>.5925 .7722<br>.5948 .7744<br>.5972 .776<br>.5995 .7778  | 8073 .9070<br>.8056 .9061<br>.8039 .9052<br>.8021 .9042<br>.8004 .9033  | .7265 9.8613<br>.7310 .8639<br>.7355 .8666<br>.7400 .8692<br>.7445 .8718<br>.7490 .8745 | 1.3764 0.1387<br>1.3680 .1361<br>1.3597 .1334<br>1.3514 .1308<br>1.3432 .1282<br>1.3351 .1255 | 54°00′ 0.9425<br>50 0.9396<br>40 0.9367<br>30 0.9338<br>20 0.9308<br>10 0.9279 |
| 0.6458<br>0.6487<br>0.6516<br>0.6545<br>0.6574<br>0.6603 | 37°00′<br>10<br>20<br>30<br>40<br>50 | .6018 9.779<br>.6041 .781<br>.6065 .7825<br>.6088 .784<br>.6111 .786<br>.6134 .787      | 7969 .9014<br>.7951 .9004<br>.7934 .8995<br>.7916 .8985<br>.7898 .8975  | .7536 9.8771<br>.7581 .8797<br>.7627 .8824<br>.7673 .8850<br>.7720 .8876<br>.7766 .8902 | 1.3270 0.1229<br>1.3190 .1203<br>1.3111 .1176<br>1.3032 .1150<br>1.2954 .1124<br>1.2876 .1098 | 53°00′ 0.9250<br>50 0.9221<br>40 0.9192<br>30 0.9163<br>20 0.9134<br>10 0.9105 |
| 0.6632<br>0.6661<br>0.6690<br>0.6720<br>0.6749<br>0.6778 | 38°00′<br>10<br>20<br>30<br>40<br>50 | .6157 9.789;<br>.6180 .7910<br>.6202 .7926<br>.6225 .7941<br>.6248 .795;<br>.6271 .797; | 7862 .8955<br>.7844 .8945<br>.7826 .8935<br>.7808 .8925<br>.7790 .8915  | .7813 9.8928<br>.7860 .8954<br>.7907 .8980<br>.7954 .9006<br>.8002 .9032<br>.8050 .9058 | 1.2799 0.1072<br>1.2723 .1046<br>1.2647 .1020<br>1.2572 .0994<br>1.2497 .0968<br>1.2423 .0942 | 52°00′ 0.9076<br>50 0.9047<br>40 0.9018<br>30 0.8988<br>20 0.8959<br>10 0.8930 |
| 0.6807<br>0.6836<br>0.6865<br>0.6894<br>0.6923<br>0.6952 | 39°00′<br>10<br>20<br>30<br>40<br>50 | .6293 9.7989<br>.6316 .8002<br>.6338 .8020<br>.6361 .8031<br>.6383 .8050<br>.6406 .8060 | .7753 .8895<br>.7735 .8884<br>.7716 .8874<br>.7698 .8864                | .8098 9.9084<br>.8146 .9110<br>.8195 .9135<br>.8243 .9161<br>.8292 .9187<br>.8342 .9212 | 1.2349 0.0916<br>1.2276 .0890<br>1.2203 .0865<br>1.2131 .0839<br>1.2059 .0813<br>1.1988 .0788 | 51°00′ 0.8901<br>50 0.8872<br>40 0.8843<br>30 0.8814<br>20 0.8785<br>10 0.8756 |
| 0.6981<br>0.7010<br>0.7039<br>0.7069<br>0.7098<br>0.7127 | 40°00′<br>10<br>20<br>30<br>40<br>50 | .6428 9.8081<br>.6450 .8096<br>.6472 .8111<br>.6494 .8123<br>.6517 .8140                | .7642 .8832<br>.7623 .8821<br>.7604 .8810<br>.7585 .8800                | .8391 9.9238<br>.8441 .9264<br>.8491 .9289<br>.8541 .9315<br>.8591 .9341<br>.8642 .9366 | 1.1918 0.0762<br>1.1847 .0736<br>1.1778 .0711<br>1.1708 .0685<br>1.1640 .0659<br>1.1571 .0634 | 50°00′ 0.8727<br>50 0.8698<br>40 0.8668<br>30 0.8639<br>20 0.8610<br>10 0.8581 |
| 0.7156<br>0.7185<br>0.7214<br>0.7243<br>0.7272<br>0.7301 | 41°00′<br>10<br>20<br>30<br>40<br>50 | .6561 9.8169<br>.6583 .8182<br>.6604 .8198<br>.6626 .8213<br>.6648 .8227                | .7528 .8767<br>.7509 .8756<br>.7490 .8745<br>.7470 .8733                | .8693 9.9392<br>.8744 .9417<br>.8796 .9443<br>.8847 .9468<br>.8899 .9494<br>.8952 .9519 | 1.1504 0.0608<br>1.1436 .0583<br>1.1369 .0557<br>1.1303 .0532<br>1.1237 .0506<br>1.1171 .0481 | 49°00′ 0.8552<br>50 0.8523<br>40 0.8494<br>30 0.8465<br>20 0.8436<br>10 0.8407 |
| 0.7330<br>0.7359<br>0.7389<br>0.7418<br>0.7447<br>0.7476 | 42°00′<br>10<br>20<br>30<br>40<br>50 | .6691 9.8251<br>.6713 .8265<br>.6734 .8283<br>.6756 .8297<br>.6777 .8311<br>.6799 .8322 | .7412 .8699<br>.7392 .8688<br>.7373 .8676<br>.7353 .8665                | .9004 9.9544<br>.9057 .9570<br>.9110 .9595<br>.9163 .9621<br>.9217 .9646<br>.9271 .9671 | 1.1106 0.0456<br>1.1041 .0430<br>1.0977 .0405<br>1.0913 .0379<br>1.0850 .0354<br>1.0786 .0329 | 48°00′ 0.8378<br>50 0.8348<br>40 0.8319<br>30 0.8290<br>20 0.8261<br>10 0.8232 |
| 0.7505<br>0.7534<br>0.7563<br>0.7592<br>0.7621<br>0.7650 | 43°00′<br>10<br>20<br>30<br>40<br>50 | .6820 9.8338<br>.6841 .8351<br>.6862 .8369<br>.6884 .8378<br>.6905 .8391<br>.6926 .8409 | .7294 .8629<br>.7274 .8618<br>.7254 .8606<br>.7234 .8594<br>.7214 .8582 | .9325 9.9697<br>.9380 .9722<br>.9435 .9747<br>.9490 .9772<br>.9545 .9798<br>.9601 .9823 | I.0724 0.0303<br>I.066I .0278<br>I.0599 .0253<br>I.0538 .0228<br>I.0477 .0202<br>I.0416 .0177 | 47°00′ 0.8203<br>50 0.8174<br>40 0.8145<br>30 0.8116<br>20 0.8087<br>10 0.8058 |
| 0.7679<br>0.7709<br>0.7738<br>0.7767<br>0.7796<br>0.7825 | 44°00′<br>10<br>20<br>30<br>40<br>50 | .6947 9.8418<br>.6967 .8431<br>.6988 .8444<br>.7009 .8457<br>.7030 .8469<br>.7050 .8482 | .7173 .8557<br>.7153 .8545<br>.7133 .8532<br>.7112 .8520<br>.7092 .8507 | .9657 9.9848<br>.9713 .9874<br>.9770 .9899<br>.9827 .9924<br>.9884 .9949<br>.9942 .9975 | 1.0355 0.0152<br>1.0295 .0126<br>1.0235 .0101<br>1.0176 .0076<br>1.0117 .0051<br>1.0058 .0025 | 46°00′ 0.8029<br>50 0.7999<br>40 0.7970<br>30 0.7941<br>20 0.7912<br>10 0.7883 |
| 0.7854                                                   | 45°00′                               | .7071 9.8495                                                                            |                                                                         | 1.0000 0.0000                                                                           | 1.0000 0.0000                                                                                 | 45°00′ 0.7854                                                                  |
|                                                          |                                      | Nat. Log.                                                                               | Nat Log.                                                                | Nat. Log.  COTAN- GENTS.                                                                | Nat. Log. TANGENTS.                                                                           | DE-<br>GREES.<br>RADI-<br>ANS.                                                 |

| ANS.                      | SIN                                             | IES.                                            | COSI                                             | NES.                                            | TANG                                            | ENTS                                            | COTAN                                          | GENTS.                                          | EES.                                       |
|---------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|--------------------------------------------|
| RADIANS                   | Nat.                                            | Log.                                            | Nat.                                             | Log.                                            | Nat.                                            | Log.                                            | Nat.                                           | Log.                                            | DEGREES                                    |
| 0.00<br>.01<br>.02<br>.03 | 0.00000<br>.01000<br>.02000<br>.03000           | — ∞<br>7.99999<br>8.30100<br>.47706<br>.60194   | 1.00000<br>0.99995<br>.99980<br>.99955<br>.99920 | 0.00000<br>9.99998<br>.99991<br>.99980          | — ∞<br>0.01000<br>.02000<br>.03001<br>.04002    | — ∞<br>8.00001<br>.30109<br>.47725<br>.60229    | 99.997<br>49.993<br>33.323<br>24.987           | ∞<br>1.99999<br>.69891<br>.52275<br>.39771      | 00°00′<br>00 34<br>01 09<br>01 43<br>02 18 |
| 0.05<br>.06<br>.07<br>.08 | 0.04998<br>.05996<br>.06994<br>.07991<br>.08988 | 8.69879<br>.77789<br>.84474<br>.90263<br>.95366 | 0.99875<br>.99820<br>.99755<br>.99680<br>.99595  | 9.99946<br>.99922<br>.99894<br>.99861<br>.99824 | 0.05004<br>.06007<br>.07011<br>.08017<br>.09024 | 8.69933<br>.77867<br>.84581<br>.90402<br>.95542 | 19.983<br>16.647<br>14.262<br>12.473<br>11.081 | 1.30067<br>.22133<br>.15419<br>.09598<br>.04458 | 02°52′<br>03 26<br>04 01<br>04 35<br>05 09 |
| 0.10                      | 0.09983                                         | 8.99928                                         | 0.99500                                          | 9.99782                                         | 0.10033                                         | 9.00145                                         | 9.9666                                         | 0.99855                                         | 05°44′                                     |
| .11                       | .10978                                          | 9.04052                                         | .99396                                           | ·99737                                          | 1.11045                                         | .04315                                          | 9.0542                                         | .95685                                          | 06 18                                      |
| .12                       | .11971                                          | .07814                                          | .99281                                           | ·99687                                          | 1.12058                                         | .08127                                          | 8.2933                                         | .91873                                          | 06 53                                      |
| .13                       | .12963                                          | .11272                                          | .99156                                           | ·99632                                          | 1.13074                                         | .11640                                          | 7.6489                                         | .88360                                          | 07 27                                      |
| .14                       | .13954                                          | .14471                                          | .99022                                           | ·99573                                          | 1.14092                                         | .14898                                          | 7.0961                                         | .85102                                          | 08 01                                      |
| 0.15<br>.16<br>.17<br>.18 | 0.14944<br>.15932<br>.16918<br>.17903<br>.18886 | 9.17446<br>.20227<br>.22836<br>.25292<br>.27614 | 0.98877<br>.98723<br>.98558<br>.98384<br>.98200  | 9.99510<br>.99442<br>.99369<br>.99293<br>.99211 | 0.15114<br>.16138<br>.17166<br>.18197<br>.19232 | 9.17937<br>.20785<br>.23466<br>.26000<br>.28402 | 6.6166<br>6.1966<br>5.8256<br>5.4954<br>5.1997 | 0.82063<br>.79215<br>.76534<br>.74000<br>.71598 | 08°36′<br>09 10<br>09 44<br>10 19<br>10 53 |
| 0.20                      | 0.19867                                         | 9.29813                                         | 0.98007                                          | 9.99126                                         | 0.20271                                         | 9.30688                                         | 4.9332                                         | 0.69312                                         | 11°28′                                     |
| .21                       | .20846                                          | .31902                                          | .97803                                           | .99035                                          | .21314                                          | .32867                                          | 4.6917                                         | .67133                                          | 12 02                                      |
| .22                       | .21823                                          | .33891                                          | .97590                                           | .98940                                          | .22362                                          | .34951                                          | 4.4719                                         | .65049                                          | 12 36                                      |
| .23                       | .22798                                          | .35789                                          | .97367                                           | .98841                                          | .23414                                          | .36948                                          | 4.2709                                         | .63052                                          | 13 11                                      |
| .24                       | .23770                                          | .37603                                          | .97134                                           | .98737                                          | .24472                                          | .38866                                          | 4.0864                                         | .61134                                          | 13 45                                      |
| 0.25                      | 0.24740                                         | 9.39341                                         | 0.96891                                          | 9.98628                                         | 0.25534                                         | 9.40712                                         | 3.9163                                         | 0.59288                                         | 14°19′                                     |
| .26                       | .25708                                          | .41007                                          | .96639                                           | .98515                                          | .26602                                          | .42491                                          | 3.7592                                         | •57509                                          | 14 54                                      |
| .27                       | .26673                                          | .42607                                          | .96377                                           | .98397                                          | .27676                                          | .44210                                          | 3.6133                                         | •55790                                          | 15 28                                      |
| .28                       | .27636                                          | .44147                                          | .96106                                           | .98275                                          | .28755                                          | .45872                                          | 3.4776                                         | •54128                                          | 16 03                                      |
| .29                       | .28595                                          | .45629                                          | .95824                                           | .98148                                          | .29841                                          | .47482                                          | 3.3511                                         | •52518                                          | 16 37                                      |
| 0.30                      | 0.29552                                         | 9.47059                                         | 0.95534                                          | 9.98016                                         | 0.30934                                         | 9.49°43                                         | 3.2327                                         | 0.50957                                         | 17°11'                                     |
| .31                       | .30506                                          | .48438                                          | ·95233                                           | •97879                                          | .32033                                          | .5°559                                          | 3.1218                                         | •49441                                          | 17 46                                      |
| .32                       | .31457                                          | .49771                                          | ·94924                                           | •97737                                          | .33139                                          | .52°34                                          | 3.0176                                         | •47966                                          | 18 20                                      |
| .33                       | .32404                                          | .51060                                          | ·94604                                           | •97591                                          | .34252                                          | .53469                                          | 2.9195                                         | •46531                                          | 18 54                                      |
| .34                       | -33349                                          | .52308                                          | ·94275                                           | •97440                                          | .35374                                          | .54868                                          | 2.8270                                         | •45132                                          | 19 29                                      |
| 0.35                      | 0.34290                                         | 9.53516                                         | 0.93937                                          | 9.97284                                         | 0.36503                                         | 9.56233                                         | 2.7395                                         | 0.43767                                         | 20°03′                                     |
| .36                       | ·35227                                          | .54688                                          | .93590                                           | .97123                                          | .37640                                          | .57565                                          | 2.6567                                         | ·42435                                          | 20 38                                      |
| .37                       | ·36162                                          | .55825                                          | .93233                                           | .96957                                          | .38786                                          | .58868                                          | 2.5782                                         | ·41132                                          | 21 12                                      |
| .38                       | ·37092                                          | .56928                                          | .92866                                           | .96786                                          | .39941                                          | .60142                                          | 2.5037                                         | ·39858                                          | 21 46                                      |
| .39                       | ·38019                                          | .58000                                          | .92491                                           | .96610                                          | .41105                                          | .61390                                          | 2.4328                                         | ·38610                                          | 22 21                                      |
| 0.40                      | 0.38942                                         | 9.59042                                         | 0.92106                                          | 9.96429                                         | 0.42279                                         | 9.62613                                         | 2.3652                                         | 0.37387                                         | 22°55′                                     |
| .41                       | .39861                                          | .60055                                          | .91712                                           | .96243                                          | .43463                                          | .63812                                          | 2.3008                                         | .36188                                          | 23 29                                      |
| .42                       | .40776                                          | .61041                                          | .91309                                           | .96051                                          | .44657                                          | .64989                                          | 2.2393                                         | .35011                                          | 24 04                                      |
| .43                       | .41687                                          | .62000                                          | .90897                                           | .95855                                          | .45862                                          | .66145                                          | 2.1804                                         | .33855                                          | 24 38                                      |
| .44                       | .42594                                          | .62935                                          | .90475                                           | .95653                                          | .47078                                          | .67282                                          | 2.1241                                         | .32718                                          | 25 13                                      |
| 0.45                      | 0.43497                                         | 9.63845                                         | 0.90045                                          | 9.95446                                         | 0.48306                                         | 9.68400                                         | 2.0702                                         | 0.31600                                         | 25°47′                                     |
| .46                       | .44395                                          | .64733                                          | .89605                                           | ·95233                                          | ·49545                                          | .69500                                          | 2.0184                                         | .30500                                          | 26 21                                      |
| .47                       | .45289                                          | .65599                                          | .89157                                           | .95015                                          | ·50797                                          | .70583                                          | 1.9686                                         | .29417                                          | 26 56                                      |
| .48                       | .46178                                          | .66443                                          | .88699                                           | ·94792                                          | ·52061                                          | .71651                                          | 1.9208                                         | .28349                                          | 27 30                                      |
| .49                       | .47063                                          | .67268                                          | .88233                                           | .94563                                          | ·53339                                          | .72704                                          | 1.8748                                         | .27296                                          | 28 04                                      |
| 0 50                      | 0.47943                                         | 9.68072                                         | 0.87758                                          | 9.94329                                         | 0.54630                                         | 9.73743                                         | 1.8305                                         | 0.26257                                         | 28°39′                                     |

| Ţį.     | SIN     | NES.             | COSI             | INES.             | TANG               | ENTS              | COTAN                    | GENTS.            | SS.                    |
|---------|---------|------------------|------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|------------------------|
| RADIANS |         |                  |                  | TRES.             |                    | ENIS              | COTAN                    | OENTS.            | REI                    |
| RAI     | Nat.    | Log.             | Nat.             | Log.              | Nat.               | Log.              | Nat.                     | Log.              | DEGREES                |
| 0.50    | 0.47943 | 9.68072          | 0.87758          | 9.94329           | 0.54630            | 9.73743           | 1.8305                   | 0.26257           | 28°39′                 |
| .51     | .48818  | .68858           | .87274           | .94089            | .55936             | .74769            | .7878                    | .25231            | 29 13<br>29 48         |
| .52     | .50553  | .70375           | .86281           | .93843            | .57256             | .75782<br>.76784  | .7465                    | .23216            | 30 22                  |
| •54     | .51414  | .71108           | .85771           | •93334            | •59943             | .77774            | .6683                    | .22226            | 30 56                  |
| 0.55    | 0.52269 | 9.71824          | 0.85252          | 9.93071           | 0.61311            | 9.78754           | 1.6310                   | 0.21246           | 31°31′                 |
| .56     | .53119  | .72525           | .84726           | .92801            | .62695             | .79723<br>.80684  | .5950                    | .20277            | 32 0 <b>5</b><br>32 40 |
| .58     | .54802  | .73880           | .83646           | .92245            | .65517             | .81635            | .5263                    | .18365            | 33 14                  |
| .59     | .55636  | .74536           | .83094           | .91957            | .66956             | .82579            | -4935                    | .17421            | 33 48                  |
| 0.60    | 0.56464 | 9.75177          | 0.82534          | 9.91663           | 0.68414            | 9.83514           | 1.4617                   | 0.16486           | 34°23′                 |
| .62     | .57287  | .75805           | .81965<br>.81388 | .91363            | .69892             | .84443<br>.85364  | .4308                    | .15557            | 34 57                  |
| .63     | .58914  | .77022           | .80803           | .90743            | .72911             | .86280            | .3715                    | .13720            | 35 31<br>36 06         |
| .64     | .59720  | .77612           | .80210           | .90423            | .74454             | .87189            | .3431                    | .12811            | 36 40                  |
| 0.65    | 0.60519 | 9.78189          | 0.79608          | 9.90096           | 0.76020            | 9.88093           | 1.3154                   | 0.11907           | 37°15′                 |
| .66     | .61312  | .78754           | .78999<br>.78382 | .89762<br>.89422  | .77610             | .88992<br>.89886  | .2885                    | .11008            | 37 49<br>38 23         |
| .68     | .62879  | .79851           | .777.57          | .89074            | .79225<br>.80866   | .90777            | .2366                    | .09223            | 38 58                  |
| .69     | .63654  | .80382           | .77125           | .88719            | .82534             | .91663            | .2116                    | .08337            | 39 32                  |
| 0.70    | 0.64422 | 9.80903          | 0.76484          | 9.88357           | 0.84229            | 9.92546           | 1.1872                   | 0.07454           | 40°06′                 |
| .71     | .65183  | .81414           | .75836           | .87988            | .85953             | .93426            | .1634                    | .06574            | 40 41                  |
| .73     | .66687  | .82404           | .74517           | .87226            | .89492             | .95178            | .1174                    | .04822            | 41 50                  |
| .74     | .67429  | .82885           | .73847           | .86833            | .91 309            | .96051            | .0952                    | .03949            | 42 24                  |
| 0.75    | 0.68164 | 9.83355          | 0.73169          | 9.86433           | 0.93160            | 9.96923           | 1.0734                   | 0.03077           | 42°58′                 |
| .76     | .68892  | .83817           | .72484           | .86024<br>.85607  | .95045             | ·97793<br>·.98662 | .0521                    | .02207            | 43 33 44 07            |
| .77     | .70328  | .84713           | .71091           | .85182            | .98926             | 9.99531           | 1.0109                   | .00469            | 44 41                  |
| .79     | .71035  | .85147           | .70385           | .84748            | 1.0092             | 0.00400           | 0.99084                  | 9.99600           | 45 16                  |
| 0.80    | 0.71736 | 9.85573          | 0.69671          | 9.84305<br>.83853 | 1.0296             | 0.01268           | 0.97121                  | 9.98732<br>.97862 | 45°50′<br>46 25        |
| .82     | .72429  | .85991<br>.86400 | .68222           | .83393            | .0505              | .02138            | .95197                   | .96992            | 46 59                  |
| .83     | .73793  | .86802           | .67488           | .82922            | .0934              | .03879            | .91455                   | .96121            | 47 33                  |
| .84     | .74464  | .87195           | .66746           | .82443            | .1156              | .04752            | .89635                   | .95248            | 47 33<br>48 <b>o</b> 8 |
| 0.85    | 0.75128 | 9.87580          | 0.65998          | 9.81953           | 1.1383             | 0.05627           | 0.87848                  | 9-94373           | 48°42′                 |
| .86     | .75784  | .87958<br>.88328 | .65244           | .81454            | .1616              | .06504            | .86091<br>.8436 <b>5</b> | .93496<br>.92616  | 49 16                  |
| .88     | .77074  | .88691           | .63715           | .80424            | .2097              | .08266            | .82668                   | .91734            | 50 25                  |
| .89     | .77707  | .89046           | .62941           | .79894            | .2346              | .09153            | .80998                   | .90847            | 51 00                  |
| 0.90    | 0.78333 | 9.89394          | 0.62161          | 9.79352           | 1.2602             | 0.10043           | 0.79355                  | 9.89957           | 51°34′                 |
| .91     | .78950  | .89735           | .60582           | .78799<br>.78234  | .2864              | .10937            | .77738<br>.76146         | .89063<br>.88165  | 52 08<br>52 43         |
| .93     | .80162  | .90397           | .59783           | .77658            | .3409              | .12739            | .74578                   | .87261            | 53 17                  |
| .94     | .80756  | .90717           | .58979           | .77070            | .3692              | .13648            | .73034                   | .86352            | 53 51                  |
| 0.95    | 0.81342 | 9.91031          | 0.58168          | 9.76469           | 1.3984             | 0.14563           | 0.71511                  | 9.85437           | 54°26′                 |
| .96     | .81919  | .91339           | ·57352<br>·56530 | ·75855<br>·75228  | .4284<br>•4592     | .15484            | .70010                   | .84516<br>.83588  | 55 00<br>55 35         |
| .98     | .83050  | .91934           | .55702           | .74587            | .4910              | .17347            | .67071                   | .82653            | 56 09                  |
| .99     | .83603  | .92222           | .54869           | •73933            | ·5 <sup>2</sup> 37 | .18289            | .65631                   | .81711            | 56 43                  |
| 1.00    | 0.84147 | 9.92504          | 0.54030          | 9.73264           | 1.5574             | 0.19240           | 0.64209                  | 9.80760           | 57°18′                 |
|         |         |                  |                  |                   |                    |                   |                          |                   |                        |

| ANS.                             | SII                                             | NES.                                            | cos                                               | INES.                                            | TANG                                           | ENTS.                                            | COTAN                                           | GENTS.                                           | EES.                                       |
|----------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------|
| RADIANS.                         | Nat.                                            | Log.                                            | Nat.                                              | Log.                                             | Nat.                                           | Log.                                             | Nat.                                            | Log.                                             | DEGREES                                    |
| 1.00<br>.01<br>.02<br>.03        | 0.84147<br>.84683<br>.85211<br>.85730<br>.86240 | 9.92504<br>.92780<br>.93049<br>.93313<br>.93571 | 0.54030<br>.53186<br>.52337<br>.51482<br>.50622   | 9.73264<br>.72580<br>.71881<br>.71165<br>.70434  | 1.5574<br>.5922<br>.6281<br>.6652<br>.7036     | 0.19240<br>.20200<br>.21169<br>.22148<br>.23137  | 0.64209<br>.62806<br>.61420<br>.60051<br>.58699 | 9.80760<br>•79800<br>•78831<br>•77852<br>•76863  | 57°18′<br>57 52<br>58 27<br>59 01<br>59 35 |
| 1.05<br>.06<br>.07<br>.08        | 0.86742<br>.87236<br>.87720<br>.88196<br>.88663 | 9.93823<br>.94069<br>.94310<br>.94545<br>.94774 | 0.497 57<br>.48887<br>.48012<br>.471 33<br>.46249 | 9.69686<br>.68920<br>.68135<br>.67332<br>.66510  | 1.7433<br>.7844<br>.8270<br>.8712<br>.9171     | 0.24138<br>.25150<br>.26175<br>.27212<br>.28264  | 0.57362<br>.56040<br>.54734<br>.53441<br>.52162 | 9.75862<br>.74850<br>.73825<br>.72788<br>.71736  | 60°10′<br>60 44<br>61 18<br>61 53<br>62 27 |
| 1.10<br>.11<br>.12<br>.13        | 0.89121<br>.89570<br>.90010<br>.90441<br>.90863 | 9.94998<br>.95216<br>.95429<br>.95637<br>.95839 | 0.45360<br>.44466<br>.43568<br>.42666<br>.41759   | 9.65667<br>.64803<br>.63917<br>.63008<br>.62075  | 1.9648<br>2.0143<br>.0660<br>.1198             | 0.29331<br>•30413<br>•31512<br>•32628<br>•33763  | 0.50897<br>•49644<br>•48404<br>•47175<br>•45959 | 9.70669<br>.69587<br>.68488<br>.67372<br>.66237  | 63°02′<br>63 36<br>64 10<br>64 45<br>65 19 |
| 1.15<br>.16<br>.17<br>.18        | 0.91276<br>.91680<br>.92075<br>.92461<br>.92837 | 9.96036<br>.96228<br>.96414<br>.96596           | 0.40849<br>·39934<br>·39015<br>·38092<br>·37166   | 9.61118<br>.60134<br>.59123<br>.58084<br>.57015  | 2.2345<br>.2958<br>.3600<br>.4273<br>.4979     | 0.34918<br>.36093<br>.37291<br>.38512<br>.39757  | 0.44753<br>-43558<br>-42373<br>-41199<br>-40034 | 9.65082<br>.63907<br>.62709<br>.61488            | 65°53′<br>66 28<br>67 02<br>67 37<br>68 11 |
| 1.20<br>.21<br>.22<br>.23<br>.24 | 0.93204<br>.93562<br>.93910<br>.94249<br>.94578 | 9.96943<br>.97110<br>.97271<br>.97428<br>.97579 | 0.36236<br>.35302<br>.34365<br>.33424<br>.32480   | 9.55914<br>.54780<br>.53611<br>.52406<br>.51161  | 2.5722<br>.6503<br>.7328<br>.8198<br>.9119     | 0.41030<br>.42330<br>.43660<br>.45022<br>.46418  | 0.38878<br>·37731<br>·36593<br>·35463<br>·34341 | 9.58970<br>•57670<br>•56340<br>•54978<br>•53582  | 68°45′<br>69 20<br>69 54<br>70 28<br>71 03 |
| 1.25<br>.26<br>.27<br>.28<br>.29 | 0.94898<br>.95209<br>.95510<br>.95802<br>.96084 | 9.97726<br>.97868<br>.98005<br>.98137<br>.98265 | 0.31532<br>.30582<br>.29628<br>.28672<br>.27712   | 9.49875<br>.48546<br>.47170<br>.45745<br>.44267  | 3.0096<br>.1133<br>.2236<br>.3413<br>.4672     | 0.47850<br>·49322<br>·50835<br>·52392<br>·53998  | 0.33227<br>.32121<br>.31021<br>.29928<br>.28842 | 9.52150<br>.50678<br>.49165<br>.47608            | 71°37′<br>72 12<br>72 46<br>73 20<br>73 55 |
| 1.30<br>.31<br>.32<br>.33<br>.34 | 0.96356<br>.96618<br>.96872<br>.97115<br>.97348 | 9.98388<br>.98506<br>.98620<br>.98729<br>.98833 | 0.26750<br>.25785<br>.24818<br>.23848<br>.22875   | 9.42732<br>.41137<br>.39476<br>.37744<br>.35937  | 3.6021<br>.7471<br>.9033<br>4.0723<br>.2556    | 0.55656<br>·57369<br>·59144<br>.60984<br>.62896  | 0.27762<br>.26687<br>.25619<br>.24556<br>.23498 | 9.44344<br>.42631<br>.40856<br>.39016<br>.37104  | 74°29′<br>75°03<br>75°38<br>76°12<br>76°47 |
| 1.35<br>.36<br>.37<br>.38<br>.39 | 0.97572<br>.97786<br>.97991<br>.98185<br>.98370 | 9.98933<br>.99028<br>.99119<br>.99205<br>.99286 | 0,21901<br>.20924<br>.19945<br>.18964<br>.17981   | 9.34046<br>.32064<br>.29983<br>.27793<br>.25482  | 4.4552<br>.6734<br>.9131<br>5.1774<br>.4707    | 0.64887<br>.66964<br>.69135<br>.71411<br>.73804  | 0.22446<br>.21398<br>.20354<br>.19315<br>.18279 | 9.35113<br>.33036<br>.30865<br>.28589<br>.26196  | 77°21′<br>77 55<br>78 30<br>79 04<br>79 38 |
| 1.40<br>.41<br>.42<br>.43<br>.44 | 0.98545<br>.98710<br>.98865<br>.99010<br>.99146 | 9.99363<br>.99436<br>.99504<br>.99568<br>.99627 | 0.16997<br>.16010<br>.15023<br>.14033<br>.13042   | 9.23036<br>.20440<br>.17674<br>.14716<br>.11536  | 5.7979<br>6.1654<br>6.5811<br>7.0555<br>7.6018 | 0.76327<br>.78996<br>.81830<br>.84853<br>.88092  | 0.17248<br>.16220<br>.15195<br>.14173<br>.13155 | 9.23673<br>.21004<br>.18170<br>.15147<br>.11908  | 80°13′<br>80 47<br>81 22<br>81 56<br>82 30 |
| 1.45<br>.46<br>.47<br>.48<br>.49 | 0.99271<br>.99387<br>.99492<br>.99588<br>.99674 | 9.99682<br>•99733<br>•99779<br>.99821<br>•99858 | 0.12050<br>.11057<br>.10063<br>.09067<br>.08071   | 9.08100<br>.04364<br>.00271<br>8.95747<br>.90692 | 8.2381<br>8.9886<br>9.8874<br>10.983<br>12.350 | 0.91583<br>.95369<br>.99508<br>1.04074<br>.09166 | 0.12139<br>.11125<br>.10114<br>.09105<br>.08097 | 9.08417<br>.04631<br>.00492<br>8.95926<br>.90834 | 83°05′<br>83 39<br>84 13<br>84 48<br>85 22 |
| 1.50                             | 0.99749                                         | 9.99891                                         | 0.07074                                           | 8.84965                                          | 14.101                                         | 1.14926                                          | 0.07091                                         | 8.85074                                          | 85°57′                                     |

#### CIRCULAR FUNCTIONS AND FACTORIALS.

TABLE 15 (continued). - Circular (Trigonometric) Functions.

| [ANS.                            | <                                                   |                                                     | COSI                                          | INES.                                                 | TANGENTS. COTANGENTS.                          |                                                     |                                                 | EES.                                                  |                                            |
|----------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|--------------------------------------------|
| RADI                             | Nat.                                                | Log                                                 | Nat.                                          | Log                                                   | Nat.                                           | Log.                                                | Nat.                                            | Log.                                                  | DEGREES                                    |
| 1.50<br>.51<br>.52<br>.53<br>.54 | 0.99749<br>.99815<br>.99871<br>.99917<br>.99953     | 9.99891<br>•99920<br>•99944<br>•99964<br>•99979     | 0.07074<br>.06076<br>.05077<br>.04079         | 8.84965<br>.78361<br>.70565<br>.61050<br>.48843       | 14.101<br>16.428<br>19.670<br>24.498<br>32.461 | 1.14926<br>.21559<br>.29379<br>.38914<br>.51136     | 0.07091<br>.06087<br>.05084<br>.04082<br>.03081 | 8.85074<br>.78441<br>.70621<br>.61086<br>.48864       | 85°57′<br>86 31<br>87 05<br>87 40<br>88 14 |
| 1.55<br>.56<br>.57<br>.58<br>.59 | 0.99978<br>0.99994<br>1.00000<br>0.99996<br>0.99982 | 9.99991<br>9.99997<br>0.00000<br>9.99998<br>9.99992 | 0.02079<br>.01080<br>.00080<br>00920<br>01920 | 8.31796<br>8.03327<br>6.90109<br>7.96396n<br>8.28336n | 48.078<br>92.621<br>1255.8<br>108.65<br>52.067 | 1.68195<br>1.96671<br>3.09891<br>2.03603<br>1.71656 | 0.02080<br>.01080<br>.00080<br>00920<br>01921   | 8.31805<br>8.03329<br>6.90109<br>7.96397n<br>8.28344n | 88°49′<br>89 23<br>89 57<br>90 32<br>91 06 |
| 1.60                             | 0.99957                                             | 9.99981                                             | -0.02920                                      | 8.46538n                                              | 34.233                                         | 1.53444                                             | -0.02921                                        | 8.46556n                                              | 91°40′                                     |

90°=1.570 7963 radians.

#### TABLE 16 .- Logarithmic Factorials.

Logarithms of the products 1.2.3. .....n, n from 1 to 100.

See Table 18 for Factorials 1 to 20.

See Table 32 for log.  $\Gamma$  (n+1), values of n between 1 and 2.

| n. | $\log (n!)$ | n. | log (n!)  | 21. | log (n!)   | n.  | log (n!)   |
|----|-------------|----|-----------|-----|------------|-----|------------|
| 1  | 0.000000    | 26 | 26.605619 | 51  | 66.190645  | 76  | 111.275425 |
| 2  | 0.301030    | 27 | 28.036983 | 52  | 67.906648  | 77  | 113.161916 |
| 3  | 0.778151    | 28 | 29.484141 | 53  | 69.630924  | 78  | 115.054011 |
| 4  | 1.380211    | 29 | 30.946539 | 54  | 71.363318  | 79  | 116.951638 |
| 5  | 2.079181    | 30 | 32.423660 | 55  | 73.103681  | 80  | 118.854728 |
| 6  | 2.857332    | 31 | 33.915022 | 56  | 74.851869  | 81  | 120.763213 |
| 7  | 3.702431    | 32 | 35.420172 | 57  | 76.607744  | 82  | 122.677027 |
| 8  | 4.605521    | 33 | 36.938686 | 58  | 78.371172  | 83  | 124.596105 |
| 9  | 5.559763    | 34 | 38.470165 | 59  | 80.142024  | 84  | 126.520384 |
| 10 | 6.559763    | 35 | 40.014233 | 60  | 81.920175  | 85  | 128.449803 |
| 11 | 7.601156    | 36 | 41.570535 | 61  | 83.705505  | 86  | 130.384301 |
| 12 | 8.680337    | 37 | 43.138737 | 62  | 85.497896  | 87  | 132.323821 |
| 13 | 9.794280    | 38 | 44.718520 | 63  | 87.297237  | 88  | 134.268303 |
| 14 | 10.940408   | 39 | 46.309585 | 64  | 89.103417  | 89  | 136.217693 |
| 15 | 12.116500   | 40 | 47.911645 | 65  | 90.916330  | 90  | 138.171936 |
| 16 | 13.320620   | 41 | 49.524429 | 66  | 92.735874  | 91  | 140.130977 |
| 17 | 14.551069   | 42 | 51.147678 | 67  | 94.561949  | 92  | 142.094765 |
| 18 | 15.806341   | 43 | 52.781147 | 68  | 96.394458  | 93  | 144.063248 |
| 19 | 17.085095   | 44 | 54.424599 | 69  | 98.233307  | 94  | 146.036376 |
| 20 | 18.386125   | 45 | 56.077812 | 70  | 100.078405 | 95  | 148.014099 |
| 21 | 19.708344   | 46 | 57.740570 | 71  | 101.929663 | 96  | 149.996371 |
| 22 | 21.050767   | 47 | 59.412668 | 72  | 103.786996 | 97  | 151.983142 |
| 23 | 22.412494   | 48 | 61.093909 | 73  | 105.650319 | 98  | 153.974368 |
| 24 | 23.792706   | 49 | 62.784105 | 74  | 107.519550 | 99  | 155.970004 |
| 25 | 25.190646   | 50 | 64.483075 | 75  | 109.394612 | 100 | 157.970004 |

TABLE 17.
HYPERBOLIC FUNCTIONS.

|                                      | sin                                             | h, u                                            | cosl                                             | h. u                                            | tan                                             | ıh. u                                            | cot                                                                                                        | h. u                                             |                                           |
|--------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|
| u                                    | Nat.                                            | Log.                                            | Nat.                                             | Log.                                            | Nat.                                            | Log.                                             | Nat.                                                                                                       | Log.                                             | gd u                                      |
| 0.00<br>.01<br>.02<br>.03            | 0.00000<br>.01000<br>.02000<br>.03000<br>.04001 | -∞<br>8.00001<br>.30106<br>.47719<br>.60218     | 1.00000<br>.0005<br>.00020<br>.00045<br>.00080   | 0.00000<br>.00002<br>.00009<br>.00020           | 0.00000<br>.01000<br>.02000<br>.02999<br>.03998 | ∞<br>7.99999<br>8.30097<br>.47699<br>.60183      | 00.003<br>50.007<br>33.343<br>25.013                                                                       | 2.00001<br>1.69903<br>1.52301<br>1.39817         | 00°00′<br>0 34<br>1 09<br>1 43<br>2 17    |
| 0.05<br>.06<br>.07<br>.08            | 0.05002<br>.06004<br>.07006<br>.08009<br>.09012 | 8.69915<br>.77841<br>.84545<br>.90355<br>.95483 | 1.00125<br>.00180<br>.00245<br>.00320<br>.00405  | 0.00054<br>.00078<br>.00106<br>.00139<br>.00176 | 0.04996<br>.05993<br>.06989<br>.07983<br>.08976 | 8.69861<br>•77763<br>•84439<br>•90216<br>•95307  | 20.017<br>16.687<br>14.309<br>12.527<br>11.141                                                             | 1.30139<br>.22237<br>.15561<br>.09784<br>.04693  | 2 52<br>3 26<br>4 00<br>4 35<br>5 09      |
| 0.10<br>.11<br>.12<br>.13            | 0.10017<br>.11022<br>.12029<br>.13037<br>.14046 | 9.00072<br>.04227<br>.08022<br>.11517<br>.14755 | 1.00500<br>.00606<br>.00721<br>.00846<br>.00982  | 0.00217<br>.00262<br>.00312<br>.00366<br>.00424 | 0.09967<br>.10956<br>.11943<br>.12927<br>.13909 | 8.99856<br>9.03965<br>.07710<br>.11151<br>.14330 | 10.0333<br>9.1275<br>8.3733<br>7.7356<br>7.1895                                                            | 1.00144<br>0.96035<br>.92290<br>.88849<br>.85670 | 5 43<br>6 17<br>6 52<br>7 26<br>8 00      |
| 0.15<br>.16<br>.17<br>.18            | 0.15056<br>.16068<br>.17082<br>.18097<br>.19115 | 9.17772<br>.20597<br>.23254<br>.25762<br>.28136 | 1.01127<br>.01283<br>.01448<br>.01624<br>.01810  | 0.00487<br>.00554<br>.00625<br>.00700           | 0.14889<br>.15865<br>.16838<br>.17808<br>.18775 | 9.17285<br>.20044<br>.22629<br>.25062<br>.27357  | 6.7166<br>6.3032<br>5.9389<br>5.6154<br>5.3263                                                             | 0.82715<br>.79956<br>.77371<br>.74938<br>.72643  | 8 34<br>9 08<br>9 42<br>10 15<br>10 49    |
| 0.20<br>.21<br>.22<br>.23<br>.24     | 0.20134<br>.21155<br>.22178<br>.23203<br>.24231 | 9.30392<br>.32541<br>.34592<br>.36555<br>.38437 | 1.02007<br>.02213<br>.02430<br>.02657<br>.02894  | 0.00863<br>.00951<br>.01043<br>.01139<br>.01239 | 0.19738<br>.20697<br>.21652<br>.22603<br>.23550 | 9.29529<br>.31590<br>.33549<br>.35416<br>.37198  | 5.0665<br>4.8317<br>4.6186<br>4.4242<br>4.2464                                                             | 0.70471<br>.68410<br>.66451<br>.64584<br>.62802  | 11 23<br>11 57<br>12 30<br>13 04<br>13 37 |
| 0.25<br>.26<br>.27<br>.28<br>.29     | 0.25261<br>.26294<br>.27329<br>.28367<br>.29408 | 9.40245<br>.41986<br>.43663<br>.45282<br>.46847 | 1.03141<br>.03399<br>.03667<br>.03946<br>.04235  | 0.01343<br>.01452<br>.01564<br>.01681<br>.01801 | 0.24492<br>.25430<br>.26362<br>.27291<br>.28213 | 9.38902<br>.40534<br>.42099<br>.43601<br>.45046  | 4.0830<br>3.9324<br>3.7933<br>3.6643<br>3.5444                                                             | o.61098<br>.59466<br>.57901<br>.56399<br>.54954  | 14 11<br>14 44<br>15 17<br>15 50<br>16 23 |
| 0.30<br>.31<br>.32<br>.33            | 0.30452<br>.31499<br>.32549<br>.33602<br>.34659 | 9.48362<br>.49830<br>.51254<br>.52637<br>.53981 | 1.04534<br>.04844<br>.05164<br>.05495<br>.05836  | 0.01926<br>.02054<br>.02187<br>.02323<br>.02463 | 0.29131<br>.30044<br>.30951<br>.31852<br>.32748 | 9.46436<br>·47775<br>·49067<br>·50314<br>·51518  | 3.43 <sup>27</sup><br>.3 <sup>28</sup> 5<br>.2 <sup>3</sup> 09<br>.1 <sup>3</sup> 95<br>.0 <sup>5</sup> 36 | 0.53564<br>.52225<br>.50933<br>.49686<br>.48482  | 16 56<br>17 29<br>18 02<br>18 34<br>19 07 |
| •.35<br>•.36<br>•.37<br>•.38<br>•.39 | 0.35719<br>.36783<br>.37850<br>.38921<br>.39996 | 9.55290<br>.56564<br>.57807<br>.59019<br>.60202 | 1.06188<br>.06550<br>.06923<br>.07307<br>.07702  | 0.02607<br>.02755<br>.02907<br>.03063<br>.03222 | 0.33638<br>.34521<br>.35399<br>.36271<br>.37136 | 9.52682<br>.53809<br>.54899<br>.55956<br>.56980  | 2.9729<br>.8968<br>.8249<br>.7570<br>.6928                                                                 | 0.47318<br>.46191<br>.45101<br>.44044<br>.43020  | 19 39<br>20 12<br>20 44<br>21 16<br>21 48 |
| 0.40<br>•41<br>•42<br>•43<br>•44     | 0.41075<br>.42158<br>.43246<br>.44337<br>.45434 | 9.61358<br>.62488<br>.63594<br>.64677<br>.65738 | 1.08107<br>.08523<br>.08950<br>.09388<br>.09837  | 0.03385<br>.03552<br>.03723<br>.03897<br>.04075 | 0.37995<br>.38847<br>.39693<br>.40532<br>.41364 | 9·57973<br>.58936<br>.59871<br>.60780<br>.61663  | 2.6319<br>·5742<br>·5193<br>·4672<br>·4175                                                                 | 0.42027<br>.41064<br>.40129<br>.39220<br>.38337  | 22 20<br>22 52<br>23 23<br>23 55<br>24 26 |
| 0.45<br>.46<br>.47<br>.48<br>.49     | 0.46534<br>.47640<br>.48750<br>.49865<br>.50984 | 9.66777<br>.67797<br>.68797<br>.69779<br>.70744 | 1.102970<br>.10768<br>.11250<br>.11743<br>.12247 | .04256<br>.04441<br>.04630<br>.04822<br>.05018  | 0.42190<br>.43008<br>.43820<br>.44624<br>.45422 | 9.62521<br>.63355<br>.64167<br>.64957<br>.65726  | 2.3702<br>.3251<br>.2821<br>.2409<br>.2016                                                                 | 0.37479<br>.36645<br>.35833<br>.35043<br>.34274  | 24 57<br>25 28<br>25 59<br>26 30<br>27 01 |
| 0.50                                 | 0.52110                                         | 9.71692                                         | 1.12763                                          | 0.05217                                         | 0.46212                                         | 9.66475                                          | 2.1640                                                                                                     | 0.33525                                          | 27 31                                     |

## HYBERBOLIC FUNCTIONS.

|                                   |                                                 |                                                 |                                                 |                                                 | 1                                               |                                                 | 1                                          |                                                          |                                           |
|-----------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------|----------------------------------------------------------|-------------------------------------------|
| u                                 | sinl                                            | h. u                                            | cos                                             | h. u                                            | tan                                             | h. u                                            | cot                                        | h. u                                                     | gd u                                      |
| -                                 | Nat.                                            | Log.                                            | Nat.                                            | Log.                                            | Nat.                                            | Log.                                            | Nat.                                       | Log.                                                     |                                           |
| 0.50                              | 0.52110                                         | 9.71692                                         | 1.12763                                         | 0.05217                                         | 0.46212                                         | 9.66475                                         | 2.1640                                     | 0.33525                                                  | 27°31′                                    |
| .51                               | .53240                                          | •72624                                          | .13289                                          | .05419                                          | .46995                                          | .67205                                          | .1279                                      | ·32795                                                   | 28 02                                     |
| .52                               | .54375                                          | •73540                                          | .13827                                          | .05625                                          | .47770                                          | .67916                                          | .0934                                      | ·32084                                                   | 28 32                                     |
| .53                               | .55516                                          | •74442                                          | .14377                                          | .05834                                          | .48538                                          | .68608                                          | .0602                                      | ·31392                                                   | 29 02                                     |
| .54                               | .56663                                          | •75330                                          | .14938                                          | .06046                                          | .49299                                          | .69284                                          | .0284                                      | ·30716                                                   | 29 32                                     |
| • .55<br>.56<br>.57<br>.58<br>.59 | 0.57815<br>.58973<br>.60137<br>.61307<br>.62483 | 9.76204<br>.77065<br>.77914<br>.78751<br>.79576 | 1.15510<br>.16094<br>.16690<br>.17297<br>.17916 | 0.06262<br>.06481<br>.06703<br>.06929           | 0.50052<br>.50798<br>.51536<br>.52267<br>.52990 | 9.69942<br>.70584<br>.71211<br>.71822<br>.72419 | 1.9979<br>.9686<br>.9404<br>.9133<br>.8872 | 0.30058<br>.29416<br>.28789<br>.28178<br>.27581          | 30 02<br>30 32<br>31 01<br>31 31<br>32 00 |
| 0.60                              | 0.63665                                         | 9.80390                                         | 1.18547                                         | 0.07389                                         | 0.53705                                         | 9.73001                                         | 1.8620                                     | 0.26999                                                  | 32 29                                     |
| .61                               | .64854                                          | .81194                                          | .19189                                          | .07624                                          | .54413                                          | .73570                                          | .8378                                      | .26430                                                   | 32 58                                     |
| .62                               | .66049                                          | .81987                                          | .19844                                          | .07861                                          | .55113                                          | .74125                                          | .8145                                      | .25875                                                   | 33 27                                     |
| 63                                | .67251                                          | .82770                                          | .20510                                          | .08102                                          | .55805                                          | .74667                                          | .7919                                      | .25333                                                   | 33 55                                     |
| .64                               | .68459                                          | .83543                                          | .21189                                          | .08346                                          | .56490                                          | .75197                                          | .7702                                      | .24803                                                   | 34 24                                     |
| 0.65<br>.66<br>.67<br>.68         | 0.69675<br>.70897<br>.72126<br>.73363<br>.74607 | 9.84308<br>.85063<br>.85809<br>.86548<br>.87278 | 1.21879<br>.22582<br>.23297<br>.24025<br>.24765 | 0.08593<br>.08843<br>.09095<br>.09351<br>.09609 | 0.57167<br>.57836<br>.58498<br>.59152<br>.59798 | 9.75715<br>.76220<br>.76714<br>.77197<br>.77669 | 1.7493<br>.7290<br>.7095<br>.6906<br>.6723 | 0.24285<br>.23780<br>.23286<br>.22803<br>.22331          | 34 52<br>35 20<br>35 48<br>36 16<br>36 44 |
| 0.70                              | 0.75858                                         | 9.88000                                         | 1.25517                                         | 0.09870                                         | 0.60437                                         | 9.78130                                         | 1.6546                                     | 0.21870                                                  | 37 11                                     |
| .71                               | .77117                                          | .88715                                          | .26282                                          | .10134                                          | .61068                                          | .78581                                          | .6375                                      | .21419                                                   | 37 38                                     |
| .72                               | .78384                                          | .89423                                          | .27059                                          | .10401                                          | .61691                                          | .79022                                          | .6210                                      | .20978                                                   | 38 05                                     |
| .73                               | .79659                                          | .90123                                          | .27849                                          | .10670                                          | .62307                                          | .79453                                          | .6050                                      | .20547                                                   | 38 32                                     |
| .74                               | .80941                                          | .90817                                          | .28652                                          | .10942                                          | .62915                                          | .79875                                          | .5895                                      | .20125                                                   | 38 59                                     |
| 0.75                              | 0.82232                                         | 9.91504                                         | 1.29468                                         | 0.11216                                         | 0.63515                                         | 9.80288                                         | 1.5744                                     | 0.19712                                                  | 39 26                                     |
| .76                               | .83530                                          | .92185                                          | .30297                                          | .11493                                          | .64108                                          | .80691                                          | .5599                                      | .19309                                                   | 39 52                                     |
| .77                               | .84838                                          | .92859                                          | .31139                                          | .11773                                          | .64693                                          | .81086                                          | .5458                                      | .18914                                                   | 40 19                                     |
| .78                               | .86153                                          | .93527                                          | .31994                                          | .12055                                          | .65271                                          | .81472                                          | .5321                                      | .18528                                                   | 40 45                                     |
| .79                               | .87478                                          | .94190                                          | .32862                                          | .12340                                          | .65841                                          | .81850                                          | .5188                                      | .18150                                                   | 41 11                                     |
| 0.80<br>.81<br>.82<br>.83         | 0.88811<br>.90152<br>.91503<br>.92863<br>.94233 | 9.94846<br>.95498<br>.96144<br>.96784<br>.97420 | 1.33743<br>.34638<br>.35547<br>.36468<br>.37404 | 0.12627<br>.12917<br>.13209<br>.13503<br>.13800 | 0.66404<br>.66959<br>.67507<br>.68048<br>.68581 | 9.82219<br>.82581<br>.82935<br>.83281<br>.83620 | 1.5059<br>.4935<br>.4813<br>.4696<br>.4581 | 0.17781<br>.17419<br>.1 <b>7</b> 065<br>.16719<br>.16380 | 41 37<br>42 02<br>42 28<br>42 53<br>43 18 |
| 0.85                              | 0.95612                                         | 9.98051                                         | 1.38353                                         | 0.14099                                         | 0.69107                                         | 9.83952                                         | 1.4470                                     | 0.16048                                                  | 43 43                                     |
| .86                               | .97000                                          | .98677                                          | .39316                                          | .14400                                          | .69626                                          | .84277                                          | .4362                                      | .15723                                                   | 44 08                                     |
| .87                               | .98398                                          | .99299                                          | .40293                                          | .14704                                          | .70137                                          | .84595                                          | .4258                                      | .15405                                                   | 44 32                                     |
| .88                               | .99806                                          | .99916                                          | .41284                                          | .15009                                          | .70642                                          | .84906                                          | .4156                                      | .15094                                                   | 44 57                                     |
| .89                               | 1.01224                                         | 0.00528                                         | .42289                                          | .15317                                          | .71139                                          | .85211                                          | .4057                                      | .14789                                                   | 45 21                                     |
| 0.90                              | 1.02652                                         | 0.01137                                         | 1.43309                                         | 0.15627                                         | 0.71630                                         | 9.85509                                         | 1.3961                                     | 0.14491                                                  | 45 45                                     |
| .91                               | .04090                                          | .01741                                          | .44342                                          | .15939                                          | .72113                                          | .85801                                          | .3867                                      | .14199                                                   | 46 09                                     |
| .92                               | .05539                                          | .02341                                          | .45390                                          | .16254                                          | .72590                                          | .86088                                          | .3776                                      | .13912                                                   | 46 33                                     |
| .93                               | .06998                                          | .02937                                          | .46453                                          | .16570                                          | .73059                                          | .86368                                          | .3687                                      | .13632                                                   | 46 56                                     |
| .94                               | .08468                                          | .03530                                          | .47530                                          | .16888                                          | .73522                                          | .86642                                          | .3601                                      | .13358                                                   | 47 20                                     |
| 0.95                              | 1.09948                                         | 0.04119                                         | 1.48623                                         | 0.17208                                         | 0.73978                                         | 9.86910                                         | 1.3517                                     | 0.13090                                                  | 47 43                                     |
| .96                               | .11440                                          | .04704                                          | .49729                                          | .17531                                          | .74428                                          | .87173                                          | .3436                                      | .12827                                                   | 48 06                                     |
| .97                               | .12943                                          | .05286                                          | .50851                                          | .17855                                          | .74870                                          | .87431                                          | .3356                                      | .12569                                                   | 48 29                                     |
| .98                               | .14457                                          | .05864                                          | .51988                                          | .18181                                          | .75307                                          | .87683                                          | .3279                                      | .12317                                                   | 48 51                                     |
| .99                               | .15983                                          | .06439                                          | .53141                                          | .18509                                          | .75736                                          | .87930                                          | .3204                                      | .12070                                                   | 49 14                                     |
| 1.00                              | 1.17520                                         | 0.07011                                         | 1.54308                                         | 0.18839                                         | 0.76159                                         | 9.88172                                         | 1.3130                                     | 0.11828                                                  | 49 36                                     |

## HYPERBOLIC FUNCTIONS.

| u          | sin                              | h. u               | cos               | h. u                | tan              | h. u             | co              | th u    | gd u           |
|------------|----------------------------------|--------------------|-------------------|---------------------|------------------|------------------|-----------------|---------|----------------|
|            | Nat.                             | Log.               | Nat.              | Log.                | Nat.             | Log.             | Nat.            | Log.    | gu u           |
| 1.00       | 1.17520                          | 0.07011            | 1.54308           | 0.18839             | 0.76159          | 9.88172          | 1.3130          | 0.11828 | 49°36′         |
| .01        | .19069                           | .07 580<br>.08 146 | .55491            | .19171              | .76576           | .88409           | .3059           | .11591  | 49 58 50 21    |
| .03        | .22203                           | .08708             | .57904            | .19839              | .77391           | .88869           | .2921           | .11131  | 50 42          |
| .04        | .23788                           | .09268             | .59134            | .20176              | .77789           | .89092           | .2855           | .10908  | 51 04          |
| 1.05       | 1.25386                          | 0.09825            | 1.60379           | 0.20515             | 0.78181          | 9.89310          | 1.2791          | 0.10690 | 51 26          |
| .07        | .26996                           | .10379             | .61641            | .20855              | .78946           | .89524           | .2667           | .104/0  | 51 47<br>52 08 |
| .08        | .30254                           | .11479             | .64214            | .21541              | .79320           | .89938           | .2607           | .10062  | 52 29          |
| .09        | .31903                           | .12025             | .65525            | .21886              | .79688           | .90139           | .2549           | .09861  | 52 50          |
| 1.10       | 1.33565                          | 0.12569            | 1.66852           | 0.22233             | 0.80050          | 9.90336          | 1.2492          | 0.09664 | 53 11          |
| .11        | .35240                           | .13111             | .68196            | .22582              | .80406           | .90529           | .2437           | 09471   | 53 31          |
| .13        | .38631                           | .13649             | .70934            | .22931              | .80757           | .90718           | .2383           | .09282  | 53 52<br>54 12 |
| .14        | .40347                           | .14720             | .72329            | .23636              | .81441           | .91085           | .2279           | .08915  | 54 32          |
| 1.15       | 1.42078                          | 0.15253            | 1.73741           | 0.23990             | 0.81775          | 9.91262          | 1.2229          | 0.08738 | 54 52          |
| .16        | .43822                           | .15783             | .75171            | .24346              | .82104           | .91436           | .2180           | .08564  | 55 11          |
| .17        | .45581<br>.47355                 | .16311             | .76618<br>.78083  | .24703              | .82427           | .91607           | .2132           | .08393  | 55 31<br>55 50 |
| .19        | .49143                           | .17360             | .79565            | .25422              | .83058           | .91774           | .2040           | .08062  | 56 09          |
| 1.20       | 1.50946                          | 0.17882            | 1.81066           | 0.25784             | 0.83365          | 9.92099          | 1.1995          | 0.07901 | 56 29          |
| .21        | .52764                           | .18402             | .82584            | .26146              | .83668           | .92256           | .1952           | .07744  | 56 47          |
| .22        | .54598                           | .18920             | .84121            | .26510<br>.26876    | .83965           | .92410           | .1910           | .07590  | 57 06          |
| .24        | .56447                           | .19437             | .85676<br>.87250  | .27242              | .84258<br>.84546 | .92561           | .1828           | .07439  | 57 25<br>57 43 |
| 1.25       | 1.60192                          | 0.20464            | 1.88842           | 0.27610             | 0.84828          | 9.92854          | 1.1789          | 0.07146 | 58 02          |
| .26        | .62088                           | .20975             | .90454            | .27979              | .85106           | .92996           | .1750           | .07004  | 58 20          |
| .27        | .64001<br>.65930                 | .21485             | .92084            | .28349              | .85380<br>.85648 | .93135           | .1712           | .06865  | 58 38<br>58 55 |
| .29        | .67876                           | .22499             | .95403            | .29093              | .85913           | .93406           | .1640           | .06594  | 59 13          |
| 1.30       | 1.69838                          | 0.23004            | 1.97091           | 0.29467             | 0.86172          | 9.93537          | 1.1605          | 0.06463 | 59 31          |
| .31        | .71818                           | .23507             | .98800            | .29842              | .86428           | .93665           | .1570           | .06335  | 59 48          |
| ·32<br>·33 | .73814<br>.75828                 | .24009             | 2.00528<br>.02276 | .30217              | .86678           | .93791           | .1537           | .06209  | 60 05<br>60 22 |
| •34        | .77860                           | .25008             | .04044            | .30972              | .87167           | .93914           | .1 504<br>.1472 | .05965  | 60 39          |
| 1.35       | 1.79909                          | 0.25505            | 2.05833           | 0.31352             | 0.87405          | 9.94154          | 1.1441          | 0.05846 | 60 56          |
| .36        | .81977                           | .26002             | .07643            | .31732              | .87639           | .94270           | .1410           | .05730  | 61 13          |
| ·37<br>.38 | .84062<br>.86166                 | .26496<br>.26990   | .09473            | .32113              | .87869<br>.88095 | .94384           | .1381           | .05616  | 61 29<br>61 45 |
| .39        | .88289                           | .27482             | .13196            | .32495<br>.32878    | .88317           | .94495<br>.94604 | .1351           | .05505  | 62 02          |
| 1.40       | 1.90430                          | 0.27974            | 2.15090           | 0.33262             | 0.88535          | 9.94712          | 1.1295          | 0.05288 | 62 18          |
| .4I        | .92591                           | .28464             | .17005            | .33647              | .88749           | .94817           | .1268           | .05183  | 62 34          |
| .42        | .9477 <b>0</b><br>.9697 <b>0</b> | .28952             | .18942            | .34033              | .88960           | .94919           | .1241           | .05081  | 62 49          |
| •44        | .99188                           | .29926             | .22881            | .34420              | .89370           | .95020           | .1189           | .04980  | 63 05          |
| 1.45       | 2.01427                          | 0.30412            | 2.24884           | 0.35196             | 0.89569          | 9.95216          | 1.1165          | 0.04784 | 63 36          |
| .46        | .03686                           | .30896             | .26910            | ·355 <sup>8</sup> 5 | .89765           | .95311           | .1140           | .04689  | 63 51          |
| .47<br>.48 | .05965                           | .31379             | .28958            | .35976              | .89958           | .95404           | .1116           | .04596  | 64 06<br>64 21 |
| •49        | .10586                           | .32343             | .33123            | .36759              | .90332           | ·95495<br>·95584 | .1093           | .04416  | 64 36          |
| 1.50       | 2.12928                          | 0.32823            | 2.35241           | 0.37151             | 0.90515          | 9.95672          | 1.1048          | 0.04328 | 64 51          |
|            |                                  |                    |                   |                     |                  |                  |                 |         |                |

TABLE 17 (continued).
HYPERBOLIC FUNCTIONS.

|                                  |                                                  |                                                 |                                                  | LINDOLI                                         | O TOIL                                           | TIONS.                                          |                                            |                                                  |                                  |                             |
|----------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------------------------|----------------------------------|-----------------------------|
| u                                | sin                                              | h. u .                                          | cos                                              | h. u                                            | tan                                              | h. u                                            | col                                        | th. u                                            | gd.                              | u                           |
|                                  | Nat.                                             | Log.                                            | Nat.                                             | Log.                                            | Nat.                                             | Log.                                            | Nat.                                       | Log.                                             |                                  |                             |
| 1.50<br>.51<br>.52<br>.53<br>.54 | 2.12928<br>.15291<br>.17676<br>.20082<br>.22510  | 0.32823<br>·33303<br>·33781<br>·34258<br>·34735 | 2.35241<br>.37382<br>.39547<br>.41736<br>.43949  | 0.37151<br>·37545<br>·37939<br>·38334<br>·38730 | 0.90515<br>.90694<br>.90870<br>.91042<br>.91212  | 9.95672<br>.95758<br>.95842<br>.95924<br>.96005 | 1.1048<br>.1026<br>.1005<br>.0984<br>.0963 | 0.04328<br>.04242<br>.04158<br>.04076<br>.03995  | 64°<br>65<br>65<br>65<br>65      | 51'<br>05<br>20<br>34<br>48 |
| 1.55<br>.56<br>.57<br>.58<br>.59 | 2.24961<br>.27434<br>.29930<br>.32449<br>.34991  | 0.35211<br>·35686<br>·36160<br>·36633<br>·37105 | 2.46186<br>.48448<br>.50735<br>.53047<br>.55384  | 0.39126<br>·39524<br>·39921<br>·40320<br>·40719 | 0.91379<br>.91542<br>.91703<br>.91860<br>.92015  | 9.96084<br>.96162<br>.96238<br>.96313<br>.96386 | 1.0943<br>.0924<br>.0905<br>.0886<br>.0868 | 0.03916<br>.03838<br>.03762<br>.03687<br>.03614  | 66<br>66<br>66<br>66<br>66       | 02<br>16<br>30<br>43<br>57  |
| 1.60<br>.61<br>.62<br>.63        | 2.37557<br>40146<br>.42760<br>.45397<br>.48059   | 0.37577<br>.38048<br>.38518<br>.38987<br>.39456 | 2.57746<br>.60135<br>.62549<br>.64990<br>.67457  | 0.41119<br>.41520<br>.41921<br>.42323<br>.42725 | 0.92167<br>.92316<br>.92462<br>.92606<br>.92747  | 9.96457<br>.96528<br>.96597<br>.96664<br>.96730 | 1.0850<br>.0832<br>.0815<br>.0798<br>.0782 | 0.03543<br>.03472<br>.03403<br>.03336<br>.03270  | 67<br>67<br>67<br>67<br>68       | 10<br>24<br>37<br>50<br>03  |
| 1.65<br>.66<br>.67<br>.68        | 2.50746<br>·53459<br>·56196<br>·58959<br>·61748  | 0.39923<br>.40391<br>.40857<br>.41323<br>.41788 | 2.69951<br>•72472<br>•75021<br>•77596<br>•80200  | 0.43129<br>·43532<br>·43937<br>·44341<br>·44747 | 0.92886<br>.93022<br>.93155<br>.93286<br>.93415  | 9.96795<br>.96858<br>.96921<br>.96982<br>.97042 | 1.0766<br>.0750<br>.0735<br>.0720          | 0.03205<br>.03142<br>.03079<br>.03018<br>.02958  | 68<br>68<br>68<br>68<br>69       | 15<br>28<br>41<br>53<br>05  |
| 1.70<br>.71<br>.72<br>.73<br>.74 | 2.64563<br>.67405<br>.70273<br>.73168<br>.76091  | 0.42253<br>.42717<br>.43180<br>.43643<br>.44105 | 2.82832<br>.85491<br>.88180<br>.90897<br>.93643  | 0.45153<br>•45559<br>•45966<br>•46374<br>•46782 | 0.93541<br>.93665<br>.93786<br>.93906<br>.94023  | 9.97100<br>.97158<br>.97214<br>.97269<br>.97323 | 1.0691<br>.0676<br>.0663<br>.0649          | 0.02900<br>.02842<br>.02786<br>.02731<br>.02677  | 69<br>69<br>69<br>69<br>70       | 18<br>30<br>42<br>54<br>05  |
| 1.75<br>.76<br>.77<br>.78<br>.79 | 2.79041<br>.82020<br>.85026<br>.88061<br>.91125  | 0.44567<br>.45028<br>.45488<br>.45948<br>.46408 | 2.96419<br>.99224<br>3.02059<br>.04925<br>.07821 | 0.47191<br>.47600<br>.48009<br>.48419<br>.48830 | 0.94138<br>•94250<br>•94361<br>•94470<br>•94576  | 9.97376<br>•97428<br>•97479<br>•97529<br>•97578 | 1.0623<br>.0610<br>.0598<br>.0585<br>.0574 | 0.02624<br>.02572<br>.02521<br>.02471<br>.02422  | 70<br>70<br>70<br>70<br>71       | 17<br>29<br>40<br>51<br>03  |
| 1.80<br>.81<br>.82<br>.83<br>.84 | 2.94217<br>.97340<br>3.00492<br>.03674<br>.06886 | 0.46867<br>.47325<br>.47783<br>.48241<br>.48698 | 3.10747<br>.13705<br>.16694<br>.19715<br>.22768  | 0.49241<br>.49652<br>.50064<br>.50476<br>.50889 | 0.94681<br>.94783<br>.94884<br>.94983<br>.95080  | 9.97626<br>.97673<br>.97719<br>.97764<br>.97809 | 1.0562<br>.0550<br>.0539<br>.0528<br>.0518 | 0.02374<br>.02327<br>.02281<br>.02236<br>.02191  | 71<br>71<br>71<br>71<br>71       | 14<br>25<br>36<br>46<br>57  |
| 1.85<br>.86<br>.87<br>.88<br>.89 | 3.10129<br>.13403<br>.16709<br>.20046<br>.23415  | 0.49154<br>.49610<br>.50066<br>.50521<br>.50976 | 3.25853<br>.28970<br>.32121<br>.35305<br>.38522  | 0.51302<br>.51716<br>.52130<br>.52544<br>.52959 | 0.9517 5<br>.95268<br>.95359<br>.95449<br>.95537 | 9.97852<br>.97895<br>.97936<br>.97977<br>.98017 | 1.0507<br>.0497<br>.0487<br>.0477<br>.0467 | 0.02148<br>.02105<br>.02064<br>.02023<br>.01983  | 72<br>72<br>72<br>72<br>72<br>72 | 08<br>18<br>29<br>39<br>49  |
| 1.90<br>.91<br>.92<br>.93<br>.94 | 3.26816<br>.30250<br>.33718<br>.37218<br>.40752  | 0.51430<br>.51884<br>.52338<br>.52791<br>.53244 | 3.41773<br>.45058<br>.48378<br>.51733<br>.55123  | 0.53374<br>·53789<br>·54205<br>·54621<br>·55038 | 0.95624<br>·95709<br>·95792<br>·95873<br>·95953  | 9.98057<br>.98095<br>.98133<br>.98170<br>.98206 | 1.0458<br>.0448<br>.0439<br>.0430<br>.0422 | 0.01943<br>.01905*<br>.01867<br>.01830<br>.01794 | 72<br>73<br>73<br>73<br>73       | 59<br>09<br>19<br>29<br>39  |
| 1.95<br>.96<br>.97<br>.98<br>.99 | 3.44321<br>.47923<br>.51561<br>.55234<br>.58942  | 0.53696<br>.54148<br>.54600<br>.55051<br>.55502 | 3.58548<br>.62009<br>.65507<br>.69041<br>.72611  | 0.55455<br>.55872<br>.56290<br>.56707<br>.57126 | 0.96032<br>.96109<br>.96185<br>.96259<br>.96331  | 9.98242<br>.98276<br>.98311<br>.98344<br>.98377 | .0413<br>.0405<br>.0397<br>.0389<br>.0381  | 0.01758<br>.01724<br>.01689<br>.01656<br>.01623  | 73<br>73<br>74<br>74<br>74       | 48<br>58<br>07<br>17<br>26  |
| 2.00                             | 3.62686                                          | 0.55953                                         | 3.762 <b>2</b> 0                                 | 0.57544                                         | 0.96403                                          | 9.98409                                         | 1.0373                                     | 0.01591                                          | 74                               | 35                          |

|             | sin                 | ih, u             | cos              | h. u             | tan               | h. u    | cot    | h. u.   |                |
|-------------|---------------------|-------------------|------------------|------------------|-------------------|---------|--------|---------|----------------|
| u           |                     |                   |                  |                  |                   |         |        |         | gd. u          |
|             | Nat.                | Log.              | Nat.             | Log.             | Nat.              | Log.    | Nat.   | Log.    |                |
| 2.00        | 3.62686             | 0.55953           | 3.76220          | 0.57544          | 0.96403           | 9.98409 | 1.0373 | 0.01591 | 74°35′         |
| .01         | .66466              | .56403<br>.56853  | .79865           | .58382           | .96473            | .98440  | .0366  | .01560  | 74 44 74 53    |
| .03         | .74138              | .57303            | .87271           | .58802           | .96609            | .98502  | .0351  | .01498  | 75 02          |
| .04         | .78029              | -57753            | .91032           | .59221           | .96675            | .98531  | .0344  | .01469  | 75 11          |
| 2.05        | 3.81958             | 0.58202<br>.58650 | 3.94832          | 0.59641          | 0.96740           | 9.98560 | 1.0337 | 0.01440 | 75 20<br>75 28 |
| .07         | .89932              | .59099            | 4.02550          | .60482           | .96865            | .98617  | .0324  | .01383  | 75 37          |
| .08         | .93977              | .59547            | .06470           | .60903           | .96926            | .98644  | .0317  | .01356  | 75 45          |
| .09         | .98061              | •59995            | .10430           | .61324           | .96986            | .98671  | .0311  | .01329  | 75 54          |
| 2.10        | 4.02186             | 0.60443           | 4.14431          | 0.61745          | 0.97045           | 9.98697 | .0298  | .01277  | 76 02<br>76 10 |
| .12         | .10555              | .61337            | .22558           | .62589           | .97159            | .98748  | .0292  | .01252  | 76 19          |
| .13         | .14801              | .61784            | .26685           | .63011           | .97215            | .98773  | .0286  | .01227  | 76 27          |
| .14         | .19089              | .62231            | .30855           | .63433           | .97269            | .98798  | .0281  | .01202  | 76 35          |
| 2.15        | 4.23419             | 0.62677           | 4.35067          | 0.63856          | 0.97323           | 9.98821 | 1.0275 | 0.01179 | 76 43          |
| .ı6         | .32205              | .63123<br>.63569  | .39323<br>.43623 | .64278<br>.64701 | .97375            | .98845  | .0270  | .01155  | 76 51<br>76 58 |
| .18         | .36663              | .64015            | .47967           | .65125           | .97477            | .98890  | .0259  | .01110  | 77 06          |
| .19         | .41165              | .64460            | .52356           | .65548           | .97526            | .98912  | .0254  | .01088  | 77 14          |
| 2.20        | 4.45711             | 0.64905           | 4.56791          | 0.65972          | 0.97574           | 9.98934 | 1.0249 | 0.01066 | 77 21          |
| .21         | .50301              | .65350<br>.65795  | .61271           | .66396           | .97622            | .98955  | .0244  | .01045  | 77 29<br>77 36 |
| .23         | .54936              | .66240            | .70370           | .67244           | .97714            | .98996  | .0234  | .01004  | 77 44          |
| .24         | .6 <sub>4</sub> 344 | .66684            | .74989           | .67668           | -97759            | .99016  | .0229  | .00984  | 77 51          |
| 2.25        | 4.69117             | 0.67128           | 4.79657          | 0.68093          | 0.97803           | 9.99035 | 1.0225 | 0.00965 | 77 58<br>78 05 |
| .26         | ·73937<br>.78804    | .67572<br>.68016  | .84372<br>.89136 | .68518<br>.68943 | .97846            | .99054  | .0220  | .00946  | 78 05<br>78 12 |
| .28         | .83720              | .68459            | .93948           | .69368           | .97929            | .9909I  | .0211  | .00909  | 78 19          |
| .29         | .88684              | .68903            | .98810           | .69794           | -97970            | .99109  | .0207  | .00891  | 78 26          |
| 2.30        | 4.93696             | 0.69346           | 5.03722          | 0.70219          | 0.98010           | 9.99127 | .0199  | 0.00873 | 78 33<br>78 40 |
| .31         | .987 58<br>5.03870  | .70232            | .13697           | .71071           | .98087            | .99144  | .0195  | .00839  | 78 46          |
| -33         | .09032              | .70675            | .18762           | .71497           | .98124            | .99178  | .0191  | .00822  | 78 53          |
| -34         | .14245              | .71117            | .23878           | .71923           | .98161            | .99194  | .0187  | .00806  | 79 00          |
| 2.35        | 5.19510             | 0.71559           | 5.29047          | 0.72349          | 0.98197           | 9.99210 | 1.0184 | 0.00790 | 79 06          |
| .36         | .30196              | .72444            | .34269           | .72776           | .98267            | .99220  | .0176  | .00774  | 79 I3<br>79 I9 |
| ·37<br>·38  | .35618              | .72885            | ·39544<br>·44873 | .73630           | .98301            | .99256  | .0173  | .00744  | 79 25          |
| -39         | .41093              | .73327            | .50256           | .74056           | .98335            | .99271  | .0169  | .00729  | 79 32          |
| 2.40        | 5.46623             | 0.73769           | 5.55695          | 0.74484          | 0.98367<br>.98400 | 9.99285 | .0166  | 0.00715 | 79 38          |
| .4I<br>.42  | .57847              | .74652            | .66739           | .75338           | .98431            | .99299  | .0159  | .00701  | 79 44 79 50    |
| •43         | .63542              | .75093            | .72346           | .75766           | .98462            | -99327  | .0156  | .00673  | 79 56<br>80 02 |
| •44         | .69294              | .75534            | .78010           | .76194           | .98492            | .99340  | .0153  | .00660  |                |
| 2.45<br>.46 | 5.75103             | 0.75975           | 5.83732          | 0.76621          | 0.98522           | 9.99353 | 1.0150 | 0.00647 | 80 08<br>80 14 |
| .47         | .86893              | .76415<br>.76856  | .89512           | ·77049<br>·77477 | .98579            | .99366  | .0147  | .00621  | 80 20          |
| .48         | .92876              | .77296            | 6.01250          | .77906           | .98607            | .99391  | .0141  | .00609  | 80 26          |
| •49         | .98918              | -77737            | .07209           | .78334           | .98635            | .99403  | .0138  | .00597  | 80 31          |
| 2.50        | 6.05020             | 0.78177           | 6.13229          | 0.78762          | 0.98661           | 9.99415 | 1.0136 | 0.00585 | 80 37          |
|             |                     |                   |                  |                  |                   |         |        |         |                |

## HYPERBOLIC FUNCTIONS.

| .51       .11183       .78617       .19310       .79191       .98688       .99426       .0133       .00574       80         .52       .17407       .79057       .25453       .79619       .98714       .99438       .0130       .00562       80         .53       .23692       .79497       .31658       .80048       .98739       .99449       .0128       .00551       80         .54       .30040       .79937       .37927       .80477       .98764       .99460       .0125       .00540       80         2.55       6.36451       0.80377       6.44259       0.80906       0.98788       9.99470       1.0123       0.00530       81         .56       .42926       .80816       .50656       .81335       .98812       .99491       .0112       .00519       81         .57       .49464       .81256       .57118       .81764       .98835       .99491       .0118       .00509       81         .59       .62738       .82134       .70240       .82623       .98881       .99511       .0113       .00489       81         2.60       6.69473       0.82573       6.76901       0.83052       0.98903       9.99521 | 37' 42 48 53 59 04 10 15 20 25               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Nat.   Log.   Nat.   Log.   Nat.   Log.   Nat.   Log.   Nat.   Log.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37' 42 48 53 59 04 10 15 20                  |
| .51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42<br>48<br>53<br>59<br>04<br>10<br>15<br>20 |
| .56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>15<br>20                               |
| .61 .76276 .83c12 .83629 .83482 .98924 .99530 .0109 .00470 81 .62 .83146 .83451 .90426 .83912 .98946 .99540 .0107 .00460 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45                                           |
| 63   .90085 .83890   .97292 .84341   .98966 .99549   .0104 .00451   81 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30<br>35<br>40<br>45<br>50                   |
| .66     .11317     .85206     .18312     .85631     .99026     .99575     .0098     .00425     82       .67     .18536     .85645     .25461     .86061     .99045     .99583     .0096     .00417     82       .68     .25827     .86083     .32683     .86492     .99064     .99592     .0094     .00408     82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55<br>00<br>05<br>09<br>14                   |
| .71     .48137     .87398     .54791     .87783     .99118     .99615     .0089     .00385     82       .72     .55722     .87836     .62310     .88213     .99136     .99623     .0087     .00377     82       .73     .63383     .88274     .69905     .88644     .99153     .99631     .0085     .00369     82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19<br>23<br>28<br>32<br>37                   |
| .76   .86828   .89588   .93157   .89936   .99202   .99652   .0080   .00348   82   .77   .94799   .90026   8.01065   .90367   .99218   .99659   .0079   .00341   82   .78   8.02849   .90463   .09053   .90798   .99233   .99666   .0077   .00334   82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41<br>45<br>50<br>54<br>58                   |
| .81     .27486     .91776     .33506     .92091     .99278     .99685     .0073     .00315     83       .82     .35862     .92213     .41823     .92522     .99292     .99691     .0071     .00309     83       .83     .44322     .92651     .50224     .92953     .99306     .99698     .0070     .00302     83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02<br>07<br>11<br>15                         |
| .86     .70213     .93963     .75940     .94247     .99346     .99715     .0066     .00285     83       .87     .79016     .94400     .84686     .94679     .99359     .99721     .0065     .00279     83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23<br>27<br>31<br>34<br>38                   |
| .91     .15116     .96148     .20564     .96405     .99408     .99742     .0060     .00258     83       .92     .24368     .96584     .29761     .96837     .99420     .99747     .0058     .00253     83       .93     .33712     .97021     .39051     .97269     .99531     .99752     .0057     .00248     83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42<br>46<br>50<br>53<br>57                   |
| .96 .62308 .98331 .67490 .98565 .99464 .99767 .0054 .00233 84 0<br>.97 .72031 .98768 .77161 .98997 .99475 .99771 .0053 .00229 84 0<br>.98 .81851 .99205 .86930 .99429 .99485 .99776 .0052 .00224 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00<br>04<br>08<br>11                         |
| .99 .91770 .99641 .96798 .99861 .99496 .99780 .0051 .00220 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18                                           |

## HYPERBOLIC FUNCTIONS.

|                             | sin                                                            | h. u                                            | cos                                                 | h. u ·                                          | tan                                             | h. u                                            | cotl                                       | h.' u                                           |                                            |
|-----------------------------|----------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------|-------------------------------------------------|--------------------------------------------|
| u                           | Nat.                                                           | Log.                                            | Nat.                                                | Log.                                            | Nat.                                            | Log.                                            | Nat.                                       | Log.                                            | gd. u                                      |
| 3.0<br>.1<br>.2<br>.3<br>.4 | 10.0179<br>11.0765<br>12.2459<br>13.5379<br>14.9654            | 1.00078<br>.04440<br>.08799<br>.13155<br>.17509 | 10.0677<br>11.1215<br>12.2866<br>13.5748<br>14.9987 | 1.00293<br>.04616<br>.08943<br>.13273<br>.17605 | 0.99505<br>•99595<br>•99668<br>•99728<br>•99777 | 9.99785<br>.99824<br>.99856<br>.99882           | 1.0050<br>.0041<br>.0033<br>.0027<br>.0022 | 0.00215<br>.00176<br>.00144<br>.00118           | 84°18′<br>84 50<br>85 20<br>85 47<br>86 11 |
| 3.5<br>.6<br>.7<br>.8       | 16.5426<br>18.2855<br>20.2113<br>22.3394<br>24.6911            | 1.21860<br>.26211<br>.30559<br>.34907<br>.39254 | 16.5728<br>18.3128<br>20.2360<br>22.3618<br>24.7113 | 1.21940<br>.26275<br>.30612<br>.34951<br>.39290 | 0.99818<br>.99851<br>.99878<br>.99900<br>.99918 | 9.99921<br>•99935<br>•99947<br>•99957<br>•99964 | 1.0018<br>.0015<br>.0012<br>.0010          | 0.00079<br>.00065<br>.00053<br>.00043<br>.00036 | 86 32<br>86 52<br>87 10<br>87 26<br>87 41  |
| 4.0<br>.1<br>.2<br>.3<br>.4 | 27.2899<br>30.1619<br>33·3357<br>36.8431<br>40.7193            | 1.43600<br>.47946<br>.52291<br>.56636<br>.60980 | 27.3082<br>30.1784<br>33.3507<br>36.8567<br>40.7316 | 1.43629<br>.47970<br>.52310<br>.56652<br>.60993 | o.99933<br>·99945<br>·99955<br>·99963<br>·99970 | 9.99971<br>.99976<br>.99980<br>.99984<br>.99987 | 1.0007<br>.0005<br>.0004<br>.0004<br>.0003 | 0.00029<br>.00024<br>.00020<br>.00016           | 87 54<br>88 06<br>88 17<br>88 27<br>88 36  |
| 4.5<br>.6<br>.7<br>.8<br>.9 | 45.0030<br>49.7371<br>54.9690<br>60.7511<br>67.1412<br>74.2032 | 1.65324<br>.69668<br>.74012<br>.78355<br>.82699 | 45.0141<br>49.7472<br>54.9781<br>60.7593<br>67.1486 | 1.65335<br>.69677<br>.74019<br>.78361<br>.82704 | 0.99975<br>.99980<br>.99983<br>.99986<br>.99989 | 9.99989<br>.99991<br>.99993<br>.99994<br>.99995 | 1.0002<br>.0002<br>.0002<br>.0001<br>.0001 | 0.00011<br>.00009<br>.00007<br>.00006<br>.00005 | 88 44<br>88 51<br>88 57<br>89 03<br>89 09  |

#### TABLE 18 .- Factorials.

See Table 16 for logarithms of the products 1.2.3.... n from 1 to 100. See Table 32 for log.  $\Gamma$  (n+1) for values of n between 1.000 and 2.000.

| n                          | $\frac{I}{n}$ :                                                                                                                                                    | n:=1.2.3.4n                                                                           |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| I<br>2                     | I.<br>0.5                                                                                                                                                          | I 2                                                                                   |
| 3 4 5                      | .16666 66666 66666 66666 6666<br>.04166 66666 66666 66666 6666<br>.00833 33333 33333 33333 3333                                                                    | 7 24 2                                                                                |
| 6 7 8 9 10                 | 0.00138 88888 88888 88888 8888<br>.00019 84126 98412 69841 2698<br>.00002 48015 87301 58730 1587<br>.00000 27557 31922 39858 9065<br>.00000 02755 73192 23985 8906 | 5040   7<br>3   40320   8<br>3   3 62880   9                                          |
| 11<br>12<br>13<br>14<br>15 | 0.00000 00250 52108 38544 1718<br>.00000 00020 87675 69878 6809<br>.00000 00001 60590 43836 8216<br>.00000 00000 11470 74559 7729<br>.00000 00000 00764 71637 3182 | 399 16800 11<br>399 16800 11<br>4790 01600 12<br>62270 20800 13<br>7 8 71782 91200 14 |
| 16<br>17<br>18<br>19       | 0.00000 00000 00047 79477 3323<br>.00000 00000 00002 81145 7254<br>.00000 00000 00000 15619 2069<br>.00000 00000 00000 00822 0635                                  | 35568 74280 96000 17<br>6 40237 37057 28000 18<br>2 121 64510 04088 32000 19          |

TABLE 19. EXPONENTIAL FUNCTION.

| Desister   Extra   Desister   Extra   Desister   Extra   Desister   Extra   Desister   Extra   Desister   De |      |                 |        | PONENTIA    | TE TONG | 11014.          |        |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|--------|-------------|---------|-----------------|--------|-----------|
| 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | x    | $\log_{10}(ex)$ | ex     | <i>e</i> -x | x       | $\log_{10}(ex)$ | ex     | e-x       |
| 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00 | 0.00000         | T 0000 | T 000000    | 0.50    | 021715          | 1 6487 | 0.606521  |
| .02 .00869 .0202 .080199 .52 .22583 .6820 .594521 .03 .01303 .0305 .970446 .53 .23452 .7160 .58848605 .04 .01737 .0408 .960789 .54 .23452 .7160 .582748 .005 .0.2171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                 |        |             |         |                 |        |           |
| .03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | .00434          |        |             |         | .22149          | .0053  |           |
| .04 .01737 .0408 .900789 .54 .23452 .7160 .582748 .05 .002171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 |        |             |         | .22503          |        | .594521   |
| 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                 | .0305  |             |         | .23018          |        | .588605   |
| .06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .04  | .01737          | .0408  | .960789     | ∙54     | .23452          | .7160  | .582748   |
| .07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                 | 1.0513 |             | 0.55    |                 |        |           |
| .07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                 |        |             | .50     |                 | .7507  | .571209   |
| .08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .07  | .03040          | .0725  |             | •57     | .24755          |        | .565525   |
| 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .08  | .03474          | .0833  | .923116     | .58     | .25189          |        | .559898   |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .09  | .03909          | .0942  | .913931     |         | .25623          | .8040  | .554327   |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10 | 0.04343         | 1.1052 | 0.904837    |         | 0.26058         | 1.8221 | 0.548812  |
| .12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .II. |                 |        | .895834     |         | .26492          | .8404  | ·543351   |
| .13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .12  |                 |        | .886920     | .62     | .26926          | .8589  |           |
| 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .13  |                 | .1388  | .878095     | .63     | .27361          | .8776  | .532592   |
| .16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                 |        | .869358     |         |                 |        | .527292   |
| .16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.15 | 0.06514         | 1.1618 | 0.860708    | 0.65    | 0.28220         | 1.9155 | 0.522046  |
| .17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .16  |                 | .1735  |             | .66     |                 | .0348  |           |
| .18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                 | .1853  |             |         | .20008          | .0542  | .511700   |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .18  | 07817           |        | 835270      | .68     |                 |        | .506617   |
| 0.20         0.08686         1.2214         0.818731         0.70         0.30401         2.0138         0.496585           .21         .09120         .2337         .810584         .71         .30835         .0340         .491044           .22         .09554         .2461         .802519         .72         .31269         .0544         .486752           .23         .09989         .2586         .704534         .73         .31703         .0751         .481909           .24         .10423         .2712         .786628         .74         .32138         .0959         .477114           0.25         0.10857         1.2840         0.778801         0.75         0.32572         2.1170         0.472367           .26         .11292         .2969         .771052         .76         .33006         .1383         .467666           .27         .11726         .3100         .763379         .77         .33441         .1598         .463013           .28         .12160         .3231         .755784         .78         .33875         .1815         .458406           .29         .12595         .3364         .733447         .81         .35178         .2479         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13   | 08252           |        | 826050      |         |                 |        | 501576    |
| .21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .19  |                 | .2092  |             | .09     | .29900          |        |           |
| .21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.20 | 0.08686         |        | 0.818731    | 0.70    | 0.30401         | 2.0138 | 0.496585  |
| .22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .21  | .09120          | .2337  | .810584     | .71     | .30835          | .0340  | .491644   |
| .23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .22  | .09554          | .2461  | .802519     |         | .31260          |        | .486752   |
| .24         .10423         .2712         .786628         .74         .32138         .0959         .477114           0.25         0.10857         1.2840         0.778801         0.75         0.32572         2.1170         0.472367           .26         .11292         .2969         .771052         .76         .33006         .1383         .467666           .27         .11726         .3100         .763379         .77         .33441         .1598         .463013           .28         .12160         .3231         .755784         .78         .33875         .1815         .458406           .29         .12595         .3364         .748264         .79         .34309         .2034         .453845           0.30         0.13029         1.3499         0.740818         0.80         0.34744         .22255         0.449329           .31         .13463         .3634         .733447         .81         .35178         .2479         .444858           .32         .13897         .3771         .726149         .82         .35612         .2705         .440432           .33         .14323         .3910         .718924         .83         .36048         .3143         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .23  | .09080          | .2586  | .794534     |         | .31703          | .0751  | .481909   |
| .26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                 | .2712  | .786628     |         | .32138          |        |           |
| .26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.25 | 0.10857         | 1.2840 | 0.778801    | 0.75    | 0.32572         | 2.1170 | 0.472367  |
| .27       .11726       .3100       .763379       .77       .33441       .1598       .463013         .28       .12160       .3231       .755784       .78       .33875       .1815       .458406         .29       .12595       .3364       .748264       .79       .34309       .2034       .453845         0.30       0.13029       1.3499       0.740818       0.80       0.34744       2.2255       0.449329         .31       .13463       .3634       .733447       .81       .35178       .2479       .444858         .32       .13897       .3771       .726149       .82       .35612       .2705       .440432         .33       .14332       .3910       .718924       .83       .36046       .2933       .436049         .34       .14766       .4049       .711770       .84       .36481       .3164       .431711         0.35       0.15200       1.4191       0.704688       0.85       0.36915       2.3396       0.427415         .36       .15635       .4333       .697676       .86       .37349       .3632       .423162         .37       .16069       .4477       .690734       .87       .3784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | .11292          | .2969  | .771052     | .76     | .33006          | .1383  | .467666   |
| .28       .12160       .3231       .755784       .78       .33875       .1815       .458406         .29       .12595       .3364       .748264       .79       .34309       .2034       .453845         0.30       0.13029       1.3499       0.740818       0.80       0.34744       2.2255       0.449329         .31       .13463       .3634       .733447       .81       .35178       .2479       .44458         .32       .13897       .3771       .726149       .82       .35612       .2705       .440432         .33       .14332       .3910       .718924       .83       .36046       .2933       .436049         .34       .14766       .4049       .711770       .84       .36481       .3164       .431711         0.35       0.15200       1.4191       0.704688       0.85       0.36915       2.3396       0.427415         .36       .15635       .4333       .697676       .86       .37349       .3632       .423162         .37       .16669       .4477       .690734       .87       .37784       .3869       .418952         .38       .16503       .4623       .68361       .88       .38218<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .27  |                 |        | .763379     | .77     |                 | .1598  |           |
| .29         .12595         .3364         .748264         .79         .34309         .2034         .453845           0.30         0.13029         1.3499         0.740818         0.80         0.34744         2.2255         0.449329           .31         .13463         .3634         .733447         .81         .35178         .2479         .444858           .32         .13897         .3771         .726149         .82         .35612         .2705         .440432           .33         .14332         .3910         .718924         .83         .36046         .2933         .436049           .34         .14766         .4049         .711770         .84         .36481         .3164         .431711           0.35         0.15200         1.4191         0.704688         0.85         0.36915         2.3396         0.427415           .36         .15635         .4333         .697676         .86         .37349         .3632         .423162           .37         .16069         .4477         .690734         .87         .37784         .3869         .414763           .39         .16937         .4770         .677057         .89         .38652         .4351         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .28  |                 |        | 755784      | .78     |                 | .1815  |           |
| 0.30         0.13029         1.3499         0.740818         0.80         0.34744         2.2255         0.449329           .31         .13463         .3634         .733447         .81         .35178         .2479         .444858           .32         .13897         .3771         .726149         .82         .35612         .2705         .440432           .33         .14332         .3910         .718924         .83         .36046         .2933         .436049           .34         .14766         .4049         .711770         .84         .36481         .3164         .431711           0.35         0.15200         1.4191         0.704688         0.85         0.36915         2.3396         0.427415           .36         .15635         .4333         .697676         .86         .37349         .3632         .423162           .37         .16069         .4477         .690734         .87         .37784         .3869         .418952           .38         .16503         .4623         .683861         .88         .38218         .4109         .414783           .39         .16937         .4770         .677057         .89         .38652         .4351         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 1               | .3264  | 748264      |         |                 |        |           |
| .31         .13463         .3634         .773447         .81         .35178         .2479         .444858           .32         .13897         .3771         .726149         .82         .35612         .2705         .440432           .33         .14332         .3910         .718924         .83         .36046         .2933         .436049           .34         .14766         .4049         .711770         .84         .36481         .3164         .431711           0.35         0.15200         1.4191         0.704688         .85         0.36915         2.3396         0.427415           .36         .15635         .4333         .697676         .86         .37349         .3632         .423162           .37         .16069         .4477         .690734         .87         .37784         .3869         .418952           .38         .16503         .4623         .683861         .88         .38218         .4109         .414783           .39         .16937         .4770         .677057         .89         .38652         .4351         .410656           0.40         0.17372         1.4918         0.670320         0.90         0.39087         2.4596         0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                 |        |             |         |                 |        |           |
| .32         .13897         .3771         .726149         .82         .35612         .2705         .440432           .33         .14332         .3910         .718924         .83         .36046         .2933         .436049           .34         .14766         .4049         .711770         .84         .36481         .3164         .431711           0.35         0.15200         1.4191         0.704688         0.85         0.36915         2.3396         0.427415           .36         .15635         .4333         .697676         .86         .37349         .3632         .423162           .37         .16069         .4477         .690734         .87         .37784         .3869         .418952           .38         .16503         .4623         .683861         .88         .38218         .4109         .414783           .39         .16937         .4770         .677057         .89         .38652         .4351         .410656           0.40         0.17372         1.4918         0.670320         0.90         0.39087         2.4596         0.406570           .41         .17806         .5068         .663550         .91         .39521         .4843         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                 |        | 0.740818    |         |                 |        | 0.449329  |
| .32         .13807         .3771         .726149         .82         .35612         .2705         .440432           .33         .14332         .3910         .718924         .83         .36046         .2933         .436049           .34         .14766         .4049         .711770         .84         .36481         .3164         .431711           0.35         0.15200         1.4191         0.704688         .85         0.36915         2.3396         0.427415           .36         .15635         .4333         .697676         .86         .37349         .3632         .423162           .37         .16069         .4477         .690734         .87         .37784         .3869         .418952           .38         .16503         .4623         .683861         .88         .38218         .4109         .414783           .39         .16937         .4770         .677057         .89         .38652         .4351         .410656           0.40         0.17372         1.4918         0.670320         0.90         0.39087         2.4596         0.406570           .41         .17866         .5068         .663650         .91         .39521         .4843         .4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .31  |                 | .3634  | ·733447     |         | .35178          |        |           |
| .34         .14766         .4049         .711770         .84         .36481         .3164         .431711           0.35         0.15200         1.4191         0.704688         0.85         0.36915         2.3396         0.427415           .36         .15635         .4333         .697676         .86         .37349         .3632         .423162           .37         .16069         .4477         .690734         .87         .37784         .3869         .418952           .38         .16503         .4623         .683861         .88         .38218         .4109         .414783           .39         .16937         .4770         .677057         .89         .38652         .4351         .410656           0.40         0.17372         1.4918         0.670320         0.90         0.39087         2.4596         0.406570           .41         .17806         .5068         .663650         .91         .39521         .4843         .402524           .42         .18240         .5220         .657047         .92         .39955         .5993         .398519           .43         .18675         .5373         .650590         .93         .40389         .5345         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .32  | .13897          | .3771  | .726149     |         | .35612          | .2705  | .440432   |
| .34         .14766         .4049         .711770         .84         .36481         .3164         .431711           0.35         0.15200         1.4191         0.704688         0.85         0.36915         2.3396         0.427415           .36         .15635         .4333         .697676         .86         .37349         .3632         .423162           .37         .16069         .4477         .690734         .87         .37784         .3869         .418952           .38         .16503         .4623         .683861         .88         .38218         .4109         .414783           .39         .16937         .4770         .677057         .89         .38652         .4351         .410656           0.40         0.17372         1.4918         0.670320         0.90         0.39087         2.4596         0.406570           .41         .17806         .5068         .663650         .91         .39521         .4843         .402524           .42         .18240         .5220         .657047         .92         .39955         .5993         .398519           .43         .18675         .5373         .650590         .93         .40389         .5345         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                 |        | .718924     | .83     | .36046          | .2933  | .436049   |
| .36         .15635         .4333         .697676         .86         .37349         .3632         .423162           .37         .16069         .4477         .690734         .87         .37784         .3869         .418952           .38         .16503         .4623         .683861         .88         .38218         .4109         .414783           .39         .16937         .4770         .677057         .89         .38652         .4351         .410656           0.40         0.17372         1.4918         0.670320         0.90         0.39087         2.4596         0.406570           .41         .17806         .5068         .663650         .91         .39521         .4843         .402524           .42         .18240         .5220         .657047         .92         .39955         .5993         .398519           .43         .18675         .5373         .650509         .93         .40389         .5345         .394554           .44         .19109         .5527         .644036         .94         .40824         .5600         .390628           0.45         0.19543         1.5683         0.637628         0.95         0.41258         2.5857         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | .14766          |        |             | .84     | .36481          |        |           |
| .36         .15635         .4333         .697676         .86         .37349         .3632         .423162           .37         .16069         .4477         .690734         .87         .37784         .3869         .418952           .38         .16503         .4623         .683861         .88         .38218         .4109         .414783           .39         .16937         .4770         .677057         .89         .38652         .4351         .410656           0.40         0.17372         1.4918         0.670320         0.90         0.39087         2.4596         0.406570           .41         .17806         .5068         .663650         .91         .39521         .4843         .402524           .42         .18240         .5220         .657047         .92         .39955         .5993         .398519           .43         .18675         .5373         .650509         .93         .40389         .5345         .394554           .44         .19109         .5527         .644036         .94         .40824         .5600         .390628           0.45         0.19543         1.5683         0.637628         0.95         0.41258         2.5857         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.35 | 0.15200         | 1.4191 | 0.704688    | 0.85    | 0.36915         | 2.3396 | 0.427415  |
| .37         .16669         .4477         .690734         .87         .37784         .3869         .418952           .38         .16503         .4623         .683861         .88         .38218         .4109         .414783           .39         .16937         .4770         .677057         .89         .38652         .4351         .410656           0.40         0.17372         1.4918         0.670320         0.90         0.39087         2.4596         0.406570           .41         .17866         .5068         .663650         .91         .39521         .4843         .402524           .42         .18240         .5220         .657047         .92         .39955         .5933         .398519           .43         .18675         .5373         .650509         .93         .40389         .5345         .394554           .44         .19109         .5527         .644036         .94         .40824         .5600         .390628           0.45         0.19543         1.5683         0.637628         0.95         0.41258         2.5857         0.386741           .46         .19978         .5841         .631284         .96         .41692         .6117         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .36  |                 |        |             | .86     | .37340          | .3632  | .423162   |
| .39         .16937         .4770         .677057         .89         .38652         .4351         .410050           0.40         0.17372         1.4918         0.670320         0.90         0.39087         2.4596         0.406570           .41         .17806         .5068         .663650         .91         .39521         .4843         .402524           .42         .18240         .5220         .657047         .92         .39955         .5093         .398519           .43         .18675         .5373         .650509         .93         .40389         .5345         .394554           .44         .19109         .5527         .644036         .94         .40824         .5600         .390628           0.45         0.19543         1.5683         0.637628         0.95         0.41258         2.5857         0.386741           .46         .19978         .5841         .631284         .96         .41692         .6117         .382893           .47         .20412         .6000         .625002         .97         .42127         .6379         .379083           .48         .20846         .6161         .618783         .98         .42561         .6645         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .37  |                 |        |             |         | -37784          | .3869  | .418952   |
| .39         .16937         .4770         .677057         .89         .38652         .4351         .410050           0.40         0.17372         1.4918         0.670320         0.90         0.39087         2.4596         0.406570           .41         .17806         .5068         .663650         .91         .39521         .4843         .402524           .42         .18240         .5220         .657047         .92         .39955         .5093         .398519           .43         .18675         .5373         .650509         .93         .40389         .5345         .394554           .44         .19109         .5527         .644036         .94         .40824         .5600         .390628           0.45         0.19543         1.5683         0.637628         0.95         0.41258         2.5857         0.386741           .46         .19978         .5841         .631284         .96         .41692         .6117         .382893           .47         .20412         .6000         .625002         .97         .42127         .6379         .379083           .48         .20846         .6161         .618783         .98         .42561         .6645         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -38  | 16503           |        | .682861     | .88     | .38218          |        | 414783    |
| .41     .17866     .5068     .663650     .91     .39521     .4843     .402524       .42     .18240     .5220     .657047     .92     .39955     .5993     .398519       .43     .18675     .5373     .659599     .93     .40389     .5345     .394554       .44     .19109     .5527     .644036     .94     .40824     .5600     .390628       0.45     0.19543     1.5683     0.637628     0.95     0.41258     2.5857     0.386741       .46     .19978     .5841     .631284     .96     .41692     .6117     .382893       .47     .20412     .6000     .625002     .97     .42127     .6379     .379083       .48     .20846     .6161     .618783     .98     .42561     .6645     .375311       .49     .21280     .6323     .612626     .99     .42995     .6912     .371577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •39  | .16937          |        | .677057     |         | .38652          |        | .410656   |
| .41     .17866     .5068     .663650     .91     .39521     .4843     .402524       .42     .18240     .5220     .657047     .92     .39955     .5993     .398519       .43     .18675     .5373     .659599     .93     .40389     .5345     .394554       .44     .19109     .5527     .644036     .94     .40824     .5600     .390628       0.45     0.19543     1.5683     0.637628     0.95     0.41258     2.5857     0.386741       .46     .19978     .5841     .631284     .96     .41692     .6117     .382893       .47     .20412     .6000     .625002     .97     .42127     .6379     .379083       .48     .20846     .6161     .618783     .98     .42561     .6645     .375311       .49     .21280     .6323     .612626     .99     .42995     .6912     .371577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.40 | 0.17372         | 1.4018 |             | 0.00    | 0,30087         | 2,4506 | 0.406570  |
| .42       .18240       .5220       .657047       .92       .39955       .593       .398519         .43       .18675       .5373       .650509       .93       .40389       .5345       .394554         .44       .19109       .5527       .644036       .94       .40824       .5600       .390628         0.45       0.19543       1.5683       0.637628       0.95       0.41258       2.5857       0.386741         .46       .19978       .5841       .631284       .96       .41692       .6117       .382893         .47       .20412       .6000       .625002       .97       .42127       .6379       .379083         .48       .20846       .6161       .618783       .98       .42561       .6645       .375311         .49       .21280       .6323       .612626       .99       .42995       .6912       .371577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 17806           | 1.4910 | 662650      |         |                 | .4842  |           |
| .43       .18675       .5373       .650509       .93       .40389       .5345       .394554         .44       .19109       .5527       .644036       .94       .40824       .5600       .390628         0.45       0.19543       1.5683       0.637628       0.95       0.41258       2.5857       0.386741         .46       .19978       .5841       .631284       .96       .41692       .6117       .382893         .47       .20412       .6000       .625002       .97       .42127       .6379       .379083         .48       .20846       .6161       .618783       .98       .42561       .6645       .375311         .49       .21280       .6323       .612626       .99       .42995       .6912       .371577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 18240           | .5000  |             |         | 39324           | .5002  | 308510    |
| .44       .19109       .5527       .644036       .94       .40824       .5600       .390628         0.45       0.19543       1.5683       0.637628       0.95       0.41258       2.5857       0.386741         .46       .19978       .5841       .631284       .96       .41692       .6117       .382893         .47       .20412       .6000       .625002       .97       .42127       .6379       .379083         .48       .20846       .6161       .618783       .98       .42561       .6645       .375311         .49       .21280       .6323       .612626       .99       .42995       .6912       .371577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                 |        |             |         | 40280           | 5245   | 20454     |
| 0.45       0.19543       1.5683       0.637628       0.95       0.41258       2.5857       0.386741         .46       .19978       .5841       .631284       .96       .41692       .6117       .382893         .47       .20412       .6000       .625002       .97       .42127       .6379       .379083         .48       .20846       .6161       .618783       .98       .42561       .6645       .375311         .49       .21280       .6323       .612626       .99       .42995       .6912       .371577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                 |        |             |         |                 | *5345  | 300628    |
| .46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •44  | .19109          | .5527  | .044030     | •94     | .40024          |        | .390028   |
| .46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.45 | 0.19543         | 1.5683 |             |         |                 | 2.5857 | 0.386741  |
| .47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .46  |                 | .5841  |             |         |                 |        | .382893   |
| .48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -47  | .20412          | .6000  | .625002     | -97     |                 | .6379  |           |
| .49 .21280 .6323 .612626 .99 .42995 .6912 .371577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .48  | .20846          | .6161  | .618783     | .98     | .42561          | .6645  | -37 5311  |
| 0.50 0.21715 1.6487 0.606531 1.00 0.43429 2.7183 0.367879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •49  | .21280          | .6323  | .612626     | •99     | .42995          |        | -37 1 577 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.50 | 0.21715         | 1.6487 | 0.606531    | 1.00    | 0.43429         | 2.7183 | 0.367879  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                 |        |             |         |                 |        |           |

| x                                | $\log_{10}\left(e^{x}\right)$                   | ex                                          | e-x                                                  | x                                         | $\log_{10}\left(e^{x}\right)$                       | ex                                          | e-x                                                    |
|----------------------------------|-------------------------------------------------|---------------------------------------------|------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|---------------------------------------------|--------------------------------------------------------|
| 1,00<br>.01<br>.02<br>.03        | 0.43429<br>.43864<br>.44298<br>.44732<br>.45167 | 2.7183<br>.7456<br>.7732<br>.8011<br>.8292  | o.367879<br>.364219<br>.360595<br>.357007<br>.353455 | 1.50<br>•51<br>•52<br>•53<br>•54          | 0.65144<br>.65578<br>.66013<br>.66447<br>.66881     | 4.4817<br>-5267<br>-5722<br>-6182<br>-6646  | 0.223130<br>.220910<br>.218712<br>.216536<br>.214381   |
| 1.05<br>.06<br>.07<br>.08        | 0.45601<br>.46035<br>.46470<br>.46904<br>.47338 | 2.8577<br>.8864<br>.9154<br>.9447<br>.9743  | o.349938<br>.346456<br>.343009<br>.339596<br>.336216 | 1.55<br>.56<br>.57<br>.58<br>.59          | 0.67316<br>0.67750<br>0.68184<br>0.68619<br>0.69053 | 4.7115<br>.7588<br>.8066<br>.8550           | 0.212248<br>.210136<br>.208045<br>.205975<br>.203926   |
| 1.10<br>.11<br>.12<br>.13        | 0.47772<br>.48207<br>.48641<br>.49075<br>.49510 | 3.0042<br>.0344<br>.0649<br>.0957<br>.1268  | 0.332871<br>•329559<br>.326280<br>•323033<br>•319819 | 1.60<br>.61<br>.62<br>.63                 | 0.69487<br>.69921<br>.70356<br>.70790<br>.71224     | 4.9530<br>5.0028<br>.0531<br>.1039<br>.1552 | 0.201897<br>.199888<br>.197899 ·<br>.193980            |
| 1.15<br>.16<br>.17<br>.18        | 0.49944<br>.50378<br>.50812<br>.51247<br>.51681 | 3.1582<br>.1899<br>.2220<br>.2544<br>.2871  | 0.316637<br>.313486<br>.310367<br>.307279<br>.304221 | 1.65<br>.66<br>.67<br>.68<br>.69          | 0.71659<br>•72093<br>•72527<br>•72961<br>•73396     | 5.2070<br>.2593<br>.3122<br>.3656<br>.4195  | 0.192050<br>.190139<br>.188247<br>.186374<br>.184520   |
| 1.20<br>.21<br>.22<br>.23<br>.24 | 0.52115<br>.52550<br>.52984<br>.53418<br>.53853 | 3.3201<br>·3535<br>·3872<br>·4212<br>·4556  | 0.301194<br>.298197<br>.295230<br>.292293<br>.289384 | 1.70<br>.71<br>.72<br>.73<br>.74          | 0.73830<br>.74264<br>.74699<br>.75133<br>.75567     | 5.4739<br>.5290<br>.5845<br>.6407<br>.6973  | 0.182684<br>.180866<br>.179066<br>.177284<br>.175520   |
| 1.25<br>.26<br>.27<br>.28<br>.29 | 0.54287<br>.54721<br>.55155<br>.55590<br>.56024 | 3.4903<br>.5254<br>.5609<br>.5966<br>.6328  | 0.286505<br>.283654<br>.280832<br>.278037<br>.275271 | 1.75<br>.76<br>.77<br>. <b>7</b> 8<br>.79 | o.76002<br>.76436<br>.76870<br>.77304<br>.77739     | 5.7546<br>.8124<br>.8709<br>.9299<br>.9895  | 0.173774<br>.172045<br>.170333<br>.168638<br>.166960   |
| 1.30<br>.31<br>.32<br>.33<br>.34 | 0.56458<br>.56893<br>.57327<br>.57761<br>.58195 | 3.6693<br>.7062<br>.7434<br>.7810<br>.8190  | 0.272532<br>.269820<br>.267135<br>.264477<br>.261846 | 1.80<br>.81<br>.82<br>.83<br>.84          | 0.78173<br>.78607<br>.79042<br>.79476<br>.79910     | 6.0496<br>.1104<br>.1719<br>.2339<br>.2965  | 0.165299<br>.163654<br>.162026<br>.160414<br>.158817   |
| 1.35<br>⋅36<br>⋅37<br>⋅38<br>⋅39 | o.58630<br>.59064<br>.59498<br>.59933<br>.60367 | 3.8574<br>.8962<br>.9354<br>.9749<br>4.0149 | 0.259240<br>.256661<br>.254107<br>.251579<br>.249075 | 1.85<br>.86<br>.87<br>.88<br>.89          | 0.80344<br>.80779<br>.81213<br>.81647<br>.82082     | 6.3598<br>·4237<br>·4883<br>·5535<br>.6194  | * 0.157237<br>.155673<br>.154124<br>.152590<br>.151072 |
| 1.40<br>.41<br>.42<br>.43<br>.44 | 0.60801<br>.61236<br>.61670<br>.62104<br>.62538 | 4.0552<br>.0960<br>.1371<br>.1787<br>.2207  | 0.246597<br>.244143<br>.241714<br>.239309<br>.236928 | 1.90<br>.91<br>.92<br>.93<br>.94          | 0.82516<br>.82950<br>.83385<br>.83819<br>.84253     | 6.6859<br>.7531<br>.8210<br>.8895<br>.9588  | 0.149569<br>.148080<br>.146607<br>.145148<br>.143704   |
| .46<br>.46<br>.47<br>.48<br>.49  | 0.62973<br>.63407<br>.63841<br>.64276<br>.64710 | 4.2631<br>.3060<br>.3492<br>.3929<br>.4371  | 0.234570<br>.232236<br>.229925<br>.227638<br>.225373 | 1.95<br>.96<br>.97<br>.98                 | 0.84687<br>.85122<br>.85556<br>.85990<br>.86425     | 7.0287<br>.0993<br>.1707<br>.2427<br>.3155  | 0.142274<br>.140858<br>.139457<br>.138069<br>.136695   |
| 1.50                             | 0.65144                                         | 4.4817                                      | 0.223130                                             | 2.00                                      | 0.86859                                             | 7.3891                                      | 0.135335                                               |

TABLE 19 (continued).

## EXPONENTIAL FUNCTION.

| x                                | $\log_{10}\left(e^{x}\right)$                     | ex                                          | e-x                                                  | x                                | $\log_{10}(e^x)$                                        | ex                                       | <i>←x</i>                                                     |
|----------------------------------|---------------------------------------------------|---------------------------------------------|------------------------------------------------------|----------------------------------|---------------------------------------------------------|------------------------------------------|---------------------------------------------------------------|
| 2.00<br>.01<br>.02<br>.03        | 0.86859<br>.87293<br>.87727<br>.88162<br>.88596   | 7.3891<br>.4633<br>.5383<br>.6141<br>.6906  | 0.135335<br>.133989<br>.132655<br>.131336<br>.130029 | 2.50<br>.51<br>.52<br>.53<br>.54 | 1.08574<br>.09008<br>.09442<br>.09877<br>.10311         | 12.182<br>.305<br>.429<br>.554<br>.680   | 0.082085<br>.081268<br>.080460<br>.079659<br>.078866          |
| 2.05<br>.06<br>.07<br>.08        | 0.89030<br>.89465<br>.89899<br>.90333<br>.90768   | 7.7679<br>.8460<br>.9248<br>8.0045<br>.0849 | 0.128735<br>.127454<br>.126186<br>.124930<br>.123687 | 2.55<br>.56<br>.57<br>.58<br>.59 | 1.10745<br>.11179<br>.11614<br>.12048                   | 12.807<br>.936<br>13.066<br>.197<br>.330 | 0.078082<br>.077305<br>.076536<br>.075774<br>.075020          |
| 2.10<br>.11<br>.12<br>.13<br>.14 | 0.91202<br>.91636<br>.92070<br>.92505             | 8.1662<br>.2482<br>.3311<br>.4149<br>.4994  | 0.122456<br>.121238<br>.120032<br>.118837<br>.117655 | 2.60<br>.61<br>.62<br>.63<br>.64 | 1.12917<br>.1335 <b>1</b><br>.13785<br>.14219<br>.14654 | 13.464<br>.599<br>.736<br>.874<br>14.013 | 0.074274<br>.073535<br>.072803<br>.072078<br>.071361          |
| 2.15<br>.16<br>.17<br>.18        | 0.93373<br>.93808<br>.94242<br>.94676<br>.95110   | 8.5849<br>.6711<br>.7583<br>.8463<br>.9352  | 0.116484<br>.115325<br>.114178<br>.113042<br>.111917 | 2.65<br>.66<br>.67<br>.68<br>.69 | 1.15088<br>.15522<br>.15957<br>.16391<br>.16825         | 14.154<br>.296<br>.440<br>.585<br>.732   | 0.070651<br>.069948<br>.069252<br>.068563<br>.067881          |
| 2.20<br>.21<br>.22<br>.23<br>.24 | 0.95545<br>.95979<br>.96413<br>.96848<br>.97282   | 9.0250<br>.1157<br>.2073<br>.2999<br>·3933  | 0.110803<br>.109701<br>.108609<br>.107528<br>.106459 | 2.70<br>.71<br>.72<br>.73<br>.74 | 1.17260<br>.17694<br>.18128<br>.18562<br>.18997         | 14.880<br>15.029<br>.180<br>•333<br>•487 | 0.067206<br>.066537<br>.065875<br>.065219                     |
| 2.25<br>.26<br>.27<br>.28<br>.29 | 0.97716<br>.98151<br>.98585<br>.99019<br>.99453   | 9.4877<br>•5831<br>•6794<br>•7767<br>•8749  | 0.105399<br>.104350<br>.103312<br>.102284<br>.101266 | 2.75<br>.76<br>.77<br>.78<br>.79 | 1.19431<br>.19865<br>.20300<br>.20734<br>.21168         | 15.643<br>.800<br>.959<br>16.119<br>.281 | 0.063928<br>.063292<br>.062662<br>.062039<br>.061421          |
| 2.30<br>.31<br>.32<br>.33<br>.34 | 0.99888<br>1.00322<br>.00756<br>.01191<br>.01625  | 9.9742<br>10.074<br>.176<br>.278<br>.381    | 0.100259<br>.099261<br>.098274<br>.097296<br>.096328 | 2.80<br>.81<br>.82<br>.83<br>.84 | 1.21602<br>.22037<br>.22471<br>.22905<br>.23340         | 16.445<br>.610<br>.777<br>.945<br>17.116 | 0.060810<br>.060205<br>.059606<br>.059013<br>.058426          |
| 2.35<br>.36<br>.37<br>.38<br>.39 | ° 1.02059<br>.02493<br>.02928<br>.03362<br>.03796 | 10.486<br>.591<br>.697<br>.805<br>.913      | 0.095369<br>.094420<br>.093481<br>.092551<br>.091630 | 2.85<br>.86<br>.87<br>.88<br>.89 | 1.23774<br>.24208<br>.24643<br>.25077<br>.25511         | .462<br>.637<br>.814<br>.993             | 0.057844<br>.057269<br>.056699<br>.056135<br>.055576          |
| 2.40<br>.41<br>.42<br>.43<br>.44 | 1.04231<br>.04665<br>.05099<br>.05534<br>.05968   | 11.023<br>.134<br>.246<br>·359<br>·473      | 0.090718<br>.089815<br>.088922<br>.088037<br>.087161 | 2.90<br>.91<br>.92<br>.93<br>.94 | 1.25945<br>.26380<br>.26814<br>.27248<br>.27683         | 18.174<br>•357<br>•541<br>•728<br>•916   | 0.0550 <b>2</b> 3<br>.054476<br>.053934<br>.053397<br>.052866 |
| 2.45<br>.46<br>.47<br>.48<br>.49 | 1.06402<br>.06836<br>.07271<br>.07705<br>.08139   | 11.588<br>.705<br>.822<br>.941<br>12.061    | 0.086294<br>.085435<br>.084585<br>.083743<br>.082910 | 2.95<br>.96<br>.97<br>.98        | 1.28117<br>.28551<br>.28985<br>.29420<br>.29854         | 19.106<br>.298<br>.492<br>.688<br>.886   | 0.052340<br>.051819<br>.051303<br>.050793<br>.050287          |
| 2.50                             | 1.08574                                           | 12.182                                      | 0.082085                                             | 3.00                             | 1.30288                                                 | 20.086                                   | 0.049787                                                      |

| x                                | log <sub>10</sub> (ex)                          | ex                                         | e-x                                                  | x                                                 | $\log_{10}(ex)$                                         | ex                                           | e-x                                                  |
|----------------------------------|-------------------------------------------------|--------------------------------------------|------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|----------------------------------------------|------------------------------------------------------|
| 3.00<br>.01<br>.02<br>.03        | 1.30288<br>.30723<br>.31157<br>.31591<br>.32026 | 20.086<br>.287<br>.491<br>.697<br>.905     | 0.049787<br>.049292<br>.048801<br>.048316<br>.047835 | 3.50<br>.51<br>.52<br>.53                         | 1.52003<br>·52437<br>·52872<br>·53306<br>·53740         | 33.115<br>.448<br>.784<br>34.124<br>.467     | 0.030197<br>.029897<br>.029599<br>.029305<br>.029013 |
| 3.05<br>.06<br>.07<br>.08        | 1.32460<br>.32894<br>.33328<br>.33763<br>.34197 | 21.115<br>.328<br>.542<br>.758<br>.977     | 0.047359<br>.046888<br>.046421<br>.045959<br>.045502 | 3·55<br>.56<br>.57<br>.58<br>.59                  | 1.54175<br>•54609<br>•55043<br>•55477<br>•55912         | 34.813<br>35.163<br>.517<br>.874<br>36.234   | 0.028725<br>.028439<br>.028156<br>.027876<br>.027598 |
| 3.10<br>.11<br>.12<br>.13        | 1.34631<br>.35066<br>.35500<br>.35934<br>.36368 | 22.198<br>.421<br>.646<br>.874<br>23.104   | 0.045049<br>.044601<br>.044157<br>.043718<br>.043283 | 3.60<br>.61<br>.62<br>.63<br>.64                  | 1.56346<br>.56780<br>.57215<br>.57649<br>.58083         | 36.598<br>.966<br>37.338<br>.713<br>38.092   | 0.027324<br>.027052<br>.026783<br>.026516<br>.026252 |
| 3.15<br>.16<br>.17<br>.18        | 1.36803<br>·37237<br>·37671<br>·38106<br>·38540 | 23.336<br>.571<br>.807<br>24.047<br>.288   | 0.042852<br>.042426<br>.042004<br>.041586<br>.041172 | 3.65<br>.66<br>.67<br>.68<br>.69                  | 1.5851 <b>7</b><br>.58952<br>.59386<br>.59820<br>.60255 | 38.475<br>.861<br>39.252<br>.646<br>40.045   | 0.025991<br>.025733<br>.025476<br>.025223<br>.024972 |
| 3.20<br>.21<br>.22<br>.23<br>.24 | 1.38974<br>.39409<br>.39843<br>.40277<br>.40711 | 24.533<br>.779<br>25.028<br>.280<br>.534   | 0.040762<br>.040357<br>.039955<br>.039557<br>.039164 | 3.70<br>.71<br>.72<br>.73<br>.74                  | 1.60689<br>.61123<br>.61558<br>.61992<br>.62426         | 40.447<br>.854<br>41.264<br>.679<br>42.098   | 0.024724<br>.024478<br>.024234<br>.023993<br>.023754 |
| 3.25<br>.26<br>.27<br>.28<br>.29 | 1.41146<br>.41580<br>.42014<br>.42449<br>.42883 | 25.790<br>26.050<br>.311<br>.576<br>.843   | 0.038774<br>.038388<br>.038006<br>.037628<br>.037254 | 3.7 <b>5</b><br>. <b>7</b> 6<br>.77<br>.78<br>.79 | 1.62860<br>.63295<br>.63729<br>.64163<br>.64598         | 42.521<br>.948<br>43.380<br>.816<br>44.256   | 0.023518<br>.023284<br>.023052<br>.022823<br>.022596 |
| 3.30<br>.31<br>.32<br>.33<br>.34 | 1.43317<br>.43751<br>.44186<br>.44620<br>.45054 | 27.113<br>•385<br>.660<br>•938<br>28.219   | o.o36883<br>.o36516<br>.o36153<br>.o35793<br>.o35437 | 3.80<br>.81<br>.82<br>.83<br>.84                  | 1.65032<br>.65466<br>.65900<br>.66335<br>.66769         | 44.701<br>45.150<br>.604<br>46.063<br>•525   | 0.022371<br>.022148<br>.021928<br>.021710<br>.021494 |
| 3·35<br>•36<br>•37<br>•38<br>•39 | 1.45489<br>.45923<br>.46357<br>.46792<br>.47226 | 28.503<br>.789<br>29.079<br>.371<br>.666   | 0.035084<br>.034735<br>.034390<br>.034047<br>.033709 | 3.85<br>.86<br>.87<br>.88<br>.89                  | 1.67203<br>.67638<br>.68072<br>.68506<br>.68941         | 46.993<br>47.465<br>.942<br>48.424<br>.911   | 0.021280<br>.021068<br>.020858<br>.020651            |
| 3.40<br>.41<br>.42<br>.43<br>.44 | 1.47660<br>.48094<br>.48529<br>.48963<br>.49397 | 29.964<br>30.265<br>.569<br>.877<br>31.187 | 0.033373<br>.033041<br>.032712<br>.032387<br>.032065 | 3.90<br>.91<br>.92<br>.93<br>.94                  | 1.69375<br>.69809<br>.70243<br>.70678<br>.71112         | 49.402<br>.899<br>50.400<br>.907<br>51.419   | 0.020242<br>.020041<br>.019841<br>.019644<br>.019448 |
| 3.45<br>.46<br>.47<br>.48<br>.49 | 1.49832<br>.50266<br>.50700<br>.51134<br>.51569 | 31.500<br>.817<br>32.137<br>.460<br>.786   | 0.031746<br>.031430<br>.031117<br>.030807<br>.030501 | 3.95<br>.96<br>.97<br>.98                         | 1.71546<br>.71981<br>.72415<br>.72849<br>.73283         | 51.935<br>52.457<br>.985<br>53.517<br>54.055 | 0.019255<br>.019063<br>.018873<br>.018686<br>.018500 |
| 3.50                             | 1.52003                                         | 33.115                                     | 0.030197                                             | 4.00                                              | 1.73718                                                 | 54.598                                       | 0.018316                                             |

TABLE 19 (continued).

EXPONENTIAL FUNCTION.

|                                  |                                  |                                                |                                                      |                                  | TON.                                             |                                                |                                                      |
|----------------------------------|----------------------------------|------------------------------------------------|------------------------------------------------------|----------------------------------|--------------------------------------------------|------------------------------------------------|------------------------------------------------------|
| x                                | log <sub>10</sub> (ex)           | ex                                             | e-x                                                  | x                                | $\log_{10}(e^x)$                                 | ez                                             | e-x                                                  |
| 4.00<br>.01<br>.02<br>.03        | .74152<br>.74586                 | 54.598<br>55.147<br>.701<br>56.261<br>.826     | 0.018316<br>.018133<br>.017953<br>.017774<br>.017597 | 4.50<br>.51<br>.52<br>.53<br>.54 | 1.95433<br>.95867<br>.96301<br>.96735            | 90.017<br>.922<br>91.836<br>92.759<br>93.691   | 0.011109<br>.010998<br>.010889<br>.010781            |
| 4.05<br>.06<br>.07<br>.08<br>.09 | .76324<br>.76758                 | 57·397<br>·974<br>58·557<br>59·145<br>·740     | 0.017422<br>.017249<br>.017077<br>.016907<br>.016739 | 4.55<br>.56<br>.57<br>.58<br>.59 | 1.97604<br>.98038<br>.98473<br>.98907<br>.99341  | 94.632<br>95.583<br>96.544<br>97.514<br>98.494 | 0.010567<br>.010462<br>.010358<br>.010255            |
| 4.10<br>.11<br>.12<br>.13        | .78495<br>.78929 6               | 60.340<br>.947<br>61.559<br>62.178<br>.803     | 0.016573<br>.016408<br>.016245<br>.016083<br>.015923 | 4.60<br>.61<br>.62<br>.63<br>.64 | 1.99775<br>2.00210<br>.00644<br>.01078<br>.01513 | 99.484<br>100.48<br>101.49<br>102.51<br>103.54 | 0.010052<br>.009952<br>.009853<br>.009755<br>.009658 |
| 4.15<br>.16<br>.17<br>.18        | .80667 6<br>.81101<br>.81535 6   | 63.434<br>64.072<br>.715<br>65.366<br>66.023   | 0.015764<br>.015608<br>.015452<br>.015299<br>.015146 | 4.65<br>.66<br>.67<br>.68<br>.69 | 2.01947<br>.02381<br>.02816<br>.03250<br>.03684  | 104.58<br>105.64<br>106.70<br>107.77<br>108.85 | 0.009562<br>.009466<br>.009372<br>.009279<br>.009187 |
| 4.20<br>.21<br>.22<br>.23<br>.24 | .82838 6<br>.83272 6<br>.83707   | 66.686<br>67.357<br>68.033<br>.717<br>69.408   | 0.014996<br>.014846<br>.014699<br>.014552<br>.014408 | 4.70<br>.71<br>.72<br>.73<br>.74 | 2.04118<br>.04553<br>.04987<br>.05421<br>.05856  | 109.95<br>111.05<br>112.17<br>113.30<br>114.43 | 0.009095<br>.009005<br>.008915<br>.008826<br>.008739 |
| 4.25<br>.26<br>.27<br>.28<br>.29 | .85009<br>.85444 7               | 70.105<br>.810<br>71.522<br>72.240<br>.966     | 0.014264<br>.014122<br>.013982<br>.013843<br>.013705 | 4·75<br>·76<br>·77<br>·78<br>•79 | 2.06290<br>.06724<br>.07158<br>.07593<br>.08027  | 115.58<br>116.75<br>117.92<br>119.10<br>120.30 | 0.008652<br>.008566<br>.008480<br>.008396<br>.008312 |
| 4.30<br>•31<br>•32<br>•33<br>•34 | .87181 7<br>.87615 7<br>.88050   | 73.700<br>74.440<br>75.189<br>.944<br>76.708   | o.013569<br>.013434<br>.013300<br>.013168<br>.013037 | 4.80<br>.81<br>.82<br>.83<br>.84 | 2.08461<br>.08896<br>.09330<br>.09764<br>.10199  | 121.51<br>122.73<br>123.97<br>125.21<br>126.47 | 0.008230<br>.008148<br>.008067<br>.007987<br>.007907 |
| 4·35<br>·36<br>·37<br>·38<br>·39 | .89352 7<br>.89787 7             | 77.478<br>78.257<br>79.044<br>79.838<br>30.640 | 0.012907<br>.012778<br>.012651<br>.012525<br>.012401 | 4.85<br>.86<br>.87<br>.88<br>.89 | 2.10633<br>.11067<br>.11501<br>.11936<br>.12370  | 127.74<br>129.02<br>130.32<br>131.63<br>132.95 | o.oo7828<br>.oo7750<br>.oo7673<br>.oo7597<br>.oo7521 |
| 4.40<br>.41<br>.42<br>.43<br>.44 | .91524 8<br>.91958 8<br>.92392   | 81.451<br>82.269<br>83.096<br>.931<br>84.775   | 0.012277<br>.012155<br>.012034<br>.011914<br>.011796 | 4.90<br>.91<br>.92<br>.93<br>.94 | 2.12804<br>.13239<br>.13673<br>.14107<br>.14541  | 134.29<br>135.64<br>137.00<br>138.38<br>139.77 | 0.007447<br>.007372<br>.007299<br>.007227<br>.007155 |
| 4·45<br>.46<br>·47<br>.48<br>·49 | .93695 8<br>.94130 8<br>.94564 8 | 85.627<br>86.488<br>87.357<br>88.235<br>89.121 | 0.011679<br>.011562<br>.011447<br>.011333            | 4.95<br>.96<br>.97<br>.98        | 2.14976<br>.15410<br>.15844<br>.16279<br>.16713  | 141.17<br>142.59<br>144.03<br>145.47<br>146.94 | 0.007083<br>.007013<br>.006943<br>.006874<br>.006806 |
| 4.50                             | 1.95433                          | 90.017                                         | 0.011109                                             | 5.00                             | 2.17147                                          | 148.41                                         | 0.006738                                             |

| <i>x</i>   | $\log_{10}(e^x)$           | ex               | e-x                | x         | $\log_{10}(e^x)$ | ex               | e-x       |
|------------|----------------------------|------------------|--------------------|-----------|------------------|------------------|-----------|
| 5.00       | 2.17147                    | 148.41           | 0.006738           | 5.0       | 2.17147          | 148.41           | 0.006738  |
| .01        | .17582<br>.18016           | 149.90           | .006671            | 1.        | .21490           | 164.02           | .006097   |
| .02        | .18016                     | 151.41           | .006605            | .2        | .25833           | 181.27           | .005517   |
| .03        | .18450                     | 1 52.93          | .006539            | •3        | .30176           | 200.34           | .004992   |
| .04        | .18884                     | I 54-47          | .006474            | •4        | -34519           | 221.41           | .004517   |
| 5.05       | 2.19319                    | 156.02           | 0.006409           | 5.5<br>.6 | 2.38862          | 244.69           | 0.004087  |
| .06        | .19753                     | 157.59           | .006346<br>.006282 | .0        | .43205           | 270.43<br>298.87 | .003698   |
| .07        | .20187                     | 159.17           | .000282            | ·7<br>.8  | .47548           |                  | .003346   |
| .09        | .21056                     | 160.77<br>162.39 | .006158            | .9        | .51891           | 330.30<br>365.04 | .003020   |
|            | .21050                     |                  |                    |           |                  |                  | .002/39   |
| 5.10       | 2.21490                    | 164.02           | 0.006097           | 6.0       | 2.60577          | 403.43<br>445.86 | 0.002479  |
| .II        | .21924                     | 165.67           | .006036            | .I        | .64920           |                  | .002243   |
| .12        | .22359                     | 167.34           | .005976            | .2        | .69263           | 492.75           | .002029   |
| .13        | .22793                     | 169.02           | .005917            | -3        | .73606           | 544.57           | .001836   |
| .14        | .23227                     | 170.72           | .005858            | •4        | .77948           | 601.85           | .001662   |
| 5.15       | 2.23662                    | 172.43           | 0.005799           | 6.5       | 2.82291          | 665.14           | 0.001 503 |
|            | .24096                     | 174.16           | .005742            | .6        | .86634           | 735.10<br>812.41 | .001360   |
| .17        | .24530                     | 175.91           | .005685            | .7<br>.8  | .90977           |                  | .001231   |
| 81.        | .24965                     | 177.68           | .005628            | 411       | .95320           | 897.85           | .001114   |
| .19        | .25399                     | 179.47           | .005572            | .9        | .99663           | 992.27           | .001008   |
| 5.20       | 2.25833                    | 181127           | 0.005517           | 7.0       | 3.04006          | 1096.6           | 0.000912  |
| .21        | .26267                     | 183.09           | .005462            | ·I        | .08349           | 1212.0           | .000825   |
| .22        | .26702                     | 184.93           | .005407            | .2        | .12692           | 1339.4           | .000747   |
| .23        | .27136                     | 186.79           | .005354            | .3        | .17035           | 1480.3           | .000676   |
| .24        | .27570                     | 188.67           | .005300            | •4        | .21378           | 1636.0           | .000611   |
| 5.25       | 2.28005                    | 190.57           | 0.005248           | 7·5<br>.6 | 3.25721          | 1808.0           | 0.000553  |
| .26        | .28439                     | 192.48           | .005195            |           | .30064           | 1998.2           | .000500   |
| .27        | .28873                     | 194.42           | .005144            | ·7<br>.8  | ·34407<br>·38750 | 2208.3           | .000453   |
| .28        | .29307                     | 196.37           | .005092            |           |                  | 2440.6           | .000410   |
| .29        | .29742                     | 198.34           | .005042            | .9        | .43093           | 2697.3           | .000371   |
| 5.30       | 2.30176                    | 200.34           | 0.004992           | 8.0       | 3.47436          | 2981.0           | 0.000335  |
| .31        | .30610                     | 202.35<br>204.38 | .004942            | .I        | .51779           | 3294.5           | .000304   |
| .32        | .31045                     | 204.38           | .004893            | .2        | .56121           | 3641.0           | .000275   |
| .33        | -31479                     | 206.44           | .004844            | .3        | .60464           | 4023.9           | .000249   |
| •34        | .31913                     | 208.51           | .004796            | •4        | .64807           | 4447.1           | .000225   |
| 5.35       | 2.32348                    | 210.61           | 0.004748           | 8.5       | 3.69150          | 4914.8           | 0.000203  |
| .36        | .32782                     | 212.72           | .004701            | .6        | .73493           | 5431.7           | .000184   |
| ·37<br>·38 | .33216                     | 214.86           | .004654            | ·7<br>.8  | .77836           | 6002.9           | .000167   |
| .38        | .33650                     | 217.02           | .004608            |           | .82179           | 6634.2           | .000151   |
| •39        | .34085                     | 219.20           | .004562            | .9        | .86522           | 7332.0           | .000136   |
| 5.40       | 2.34519                    | 221.41           | 0.004517           | 9.0       | 3.90865          | 8103.1           | 0.000123  |
| .41        | •34953<br>•35388<br>•35822 | 223.63           | .004472            | ·I        | .95208           | 8955.3           | .000112   |
| .42        | .35388                     | 225.88<br>228.15 | .004427            | .2        | .99551           | 9897.1           | .000101   |
| •43        | .35822                     |                  | .004383            | -3        | 4.03894          | 10938.           | .000091   |
| •44        | .36256                     | 230.44           | .004339            | •4        | .08237           | 12088.           | .000083   |
| 5.45       | 2.36690                    | 232.76           | 0.004296           | 9.5<br>.6 | 4.12580          | 13360.           | 0.000075  |
| .46        | .37125                     | 235.10           | .004254            |           | .16923           | 14765.           |           |
| •47        | •37 559                    | 237.46           | .004211            | .7        | .21266           | 16318.           | .000061   |
| .48        | .37993                     | 239.85           | .004169            |           | .25609           | 18034.           | .000055   |
| •49        | .38428                     | 242.26           | .004128            | .9        | .29952           | 19930.           | .000050   |
| 5.50       | 2.38862                    | 244.69           | 0.004087           | 10.0      | 4.34294          | 22026.           | 0.000045  |
| 1          |                            |                  |                    |           |                  |                  |           |

#### TABLE 20.

#### EXPONENTIAL FUNCTIONS.

Value of  $e^{x^2}$  and  $e^{-x^2}$  and their logarithms.

|                           | Valuo                                                                           | of ex and e-x                                          | and their logarithms.                                                            |                                                 |
|---------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------|
| х                         | ex <sup>2</sup>                                                                 | log e <sup>x²</sup>                                    | e-x2                                                                             | log e-x2                                        |
| 0.1                       | 1.0101                                                                          | 0.00434                                                | 0.99005                                                                          | 7.99566                                         |
| 2                         | 1.0408                                                                          | 01737                                                  | 96079                                                                            | 98263                                           |
| 3                         | 1.0942                                                                          | 03909                                                  | 91393                                                                            | 96091                                           |
| 4                         | 1.1735                                                                          | 06949                                                  | 85214                                                                            | 93051                                           |
| 5                         | 1.2840                                                                          | 10857                                                  | 77880                                                                            | 89143                                           |
| 0.6<br>7<br>8<br>9        | 1.4333<br>1.6323<br>1.8965<br>2.2479<br>2.7183                                  | 0.15635<br>21280<br>27795<br>35178<br>43429            | 0.69768<br>61263<br>52729<br>44486<br>36788                                      | ī.84365<br>78720<br>72205<br>64822<br>56571     |
| 1.1                       | 3·3535                                                                          | 0.52550                                                | 0.29820                                                                          | 7.47450                                         |
| 2                         | 4·2207                                                                          | 62538                                                  | 23693                                                                            | 37462                                           |
| 3                         | 5·4195                                                                          | 73396                                                  | 18452                                                                            | 26604                                           |
| 4                         | 7·0993                                                                          | 85122                                                  | 14086                                                                            | 14878                                           |
| 5                         | 9·4877                                                                          | 97716                                                  | 10540                                                                            | 02284                                           |
| 1.6                       | 1.2936 × 10                                                                     | 1.11179                                                | 0.77305 × 10 <sup>-1</sup> 55576 " 39164 " 27052 " 18316 "                       | 7.88821                                         |
| 7                         | 1.7993 "                                                                        | 25511                                                  |                                                                                  | 74489                                           |
| 8                         | 2.5534 "                                                                        | 40711                                                  |                                                                                  | 59289                                           |
| 9                         | 3.6966 "                                                                        | 56780                                                  |                                                                                  | 43220                                           |
| 2.0                       | 5.4598 "                                                                        | 73718                                                  |                                                                                  | 26282                                           |
| 2.1                       | 8.2269 " 1.2647 × 10 <sup>2</sup> 1.9834 " 3.1735 " 5.1801 "                    | 1.91524                                                | 0.12155 "                                                                        | 2.08476                                         |
| 2                         |                                                                                 | 2.10199                                                | 79071 × 10-2                                                                     | 3.89801                                         |
| 3                         |                                                                                 | 29742                                                  | 50418 "                                                                          | 70258                                           |
| 4                         |                                                                                 | 50154                                                  | 31511 "                                                                          | 49846                                           |
| 5                         |                                                                                 | 71434                                                  | 19305 "                                                                          | 28566                                           |
| 2.6                       | 8.6264 " 1.4656 × 108 2.5402 " 4.4918 " 8.1031 "                                | 2.93583                                                | 0.11592 "                                                                        | 3.06417                                         |
| 7                         |                                                                                 | 3.16601                                                | 68233 × 10 <sup>-8</sup>                                                         | 4.83399                                         |
| 8                         |                                                                                 | 40487                                                  | 39367 "                                                                          | 59513                                           |
| 9                         |                                                                                 | 65242                                                  | 22263 "                                                                          | 34758                                           |
| 3.0                       |                                                                                 | 90865                                                  | 12341 "                                                                          | 09135                                           |
| 3.1                       | 1.4913 × 10 <sup>4</sup>                                                        | 4.17357                                                | $0.67055 \times 10^{-4}$ $357^{1}3$ " $18644$ " $95402 \times 10^{-5}$ $47851$ " | . 5.82643                                       |
| 2                         | 2.8001 "                                                                        | 44718                                                  |                                                                                  | 55282                                           |
| 3                         | 5.3637 "                                                                        | 72947                                                  |                                                                                  | 27053                                           |
| 4                         | 1.0482 × 10 <sup>5</sup>                                                        | 5.02044                                                |                                                                                  | 6.97956                                         |
| 5                         | 2.0898 "                                                                        | 32011                                                  |                                                                                  | 67989                                           |
| 3.6                       | 4.2507 "                                                                        | 5.62846                                                | 0.23526 "                                                                        | 6.37154                                         |
| 7                         | 8.8205 "                                                                        | 94549                                                  | 11337 "                                                                          | 05451                                           |
| 8                         | 1.8673 × 10 <sup>6</sup>                                                        | 6.27121                                                | 53553 × 10 <sup>-6</sup>                                                         | 7.72879                                         |
| 9                         | 4.0329 "                                                                        | 60562                                                  | 24796 "                                                                          | 39438                                           |
| 4.0                       | 8.8861 "                                                                        | 94871                                                  | 11254 "                                                                          | 05129                                           |
| 4.1<br>2<br>3<br>4<br>5   | $1.9975 \times 10^{7}$ $4.5809$ " $1.0718 \times 10^{8}$ $2.5582$ " $6.2296$ "  | 7.30049<br>66095<br>8.03010<br>40794<br>79446          | $0.50062 \times 10^{-7}$ $21830$ " $93303 \times 10^{-8}$ $39089$ " $16052$ "    | 8.69951<br>33905<br>9.96990<br>59206<br>20554   |
| 4.6<br>7<br>8<br>9<br>5.0 | $1.5476 \times 10^{9}$ $3.9225$ " $1.0142 \times 10^{10}$ $2.6755$ " $7.2005$ " | 9.189 <b>67</b><br>59357<br>10.00614<br>42741<br>85736 | $0.64614 \times 10^{-9}$ $25494$ " $98595 \times 10^{-10}$ $37376$ " $13888$ "   | 10.81033<br>40643<br>11.99386<br>57259<br>14264 |

TABLE 21.

## EXPONENTIAL FUNCTIONS.

Values of  $e^{\frac{\pi}{4}x}$  and  $e^{-\frac{\pi}{4}x}$  and their logarithms.

| æ                          | $e^{\frac{\pi}{4}x}$                                                           | $\log e^{\frac{\pi}{4}x}$                                 | $e^{-\frac{\pi}{4}x}$                                                             | $\log e^{-\frac{\pi}{4}x}$                        |
|----------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------|
| 1<br>2<br>3<br>4<br>5      | 2.1933<br>4.8105<br>1.0551 × 10<br>2.3141 "<br>5.0754 "                        | 0.34109<br>.68219<br>1.02328<br>.36438<br>.70547          | 0.45594<br>.20788<br>.94780 × 10 <sup>-1</sup><br>.43214 "<br>.19703 "            | 7.65891<br>-31781<br>2.97672<br>-63562<br>-29453  |
| 6<br>7<br>8<br>9           | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                          | 2.04656<br>.38766<br>.72875<br>3.06985<br>.41094          | $0.89833 \times 10^{-2}$ $.40958$ " $.18674$ " $.85144 \times 10^{-8}$ $.38820$ " | 3.95344<br>.61234<br>.27125<br>4.93015<br>.58906  |
| 11<br>12<br>13<br>14<br>15 | $5.6498$ " $1.2392 \times 10^{4}$ $2.7178$ " $5.9610$ " $1.3074 \times 10^{5}$ | 3.752 <b>03</b><br>4.09313<br>.43422<br>.77532<br>5.11641 | 0.17700 " .80700 × 10 <sup>-4</sup> .36794 " .16776 " .76487 × 10 <sup>-5</sup>   | 4.24797<br>5.90687<br>.56578<br>.22468<br>6.88359 |
| 16<br>17<br>18<br>19<br>20 | 2.8675 " 6.2893 " 1.3794 × 10 <sup>6</sup> 3.0254 " 6.6356 "                   | 5.45751<br>.79860<br>6.13969<br>.48079<br>.82188          | 0.34873 "<br>.15900 "<br>.72495 × 10 <sup>-6</sup><br>.33053 "<br>.15070 "        | 6.54249<br>.20140<br>7.86031<br>.51921<br>.17812  |

TABLE 22.
EXPONENTIAL FUNCTIONS.

Values of  $\ell^{\frac{\sqrt{\pi}}{4}x}$  and  $\ell^{-\frac{\sqrt{\pi}}{4}x}$  and their logarithms.

| æ                | $e^{rac{\sqrt{\pi}}{4}x}$                     | $\log e^{\frac{\sqrt{\pi}}{4}x}$                | $e^{-\frac{\sqrt{\pi}}{4}z}$                         | $\log e^{-\frac{\sqrt{\pi}}{x}}$                |
|------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------------|-------------------------------------------------|
| 1                | 1.5576                                         | 0.19244                                         | 0.64203                                              | T.807 56                                        |
| 2                | 2.4260                                         | .38488                                          | -41221                                               | .61 512                                         |
| 3                | 3.7786                                         | .57733                                          | -26465                                               | .42267                                          |
| 4                | 5.8853                                         | .76977                                          | -16992                                               | .23023                                          |
| 5                | 9.1666                                         | .96221                                          | -10909                                               | .03779                                          |
| 6<br>7<br>8<br>9 | 14.277<br>22.238<br>34.636<br>53.948<br>84.027 | 1.15465<br>.34709<br>.53953<br>.73198<br>.92442 | 0.070041<br>.044968<br>.028871<br>.018536<br>.011901 | 2.84535<br>.65291<br>.46047<br>.26802<br>.07558 |
| 11               | 130.88                                         | 2.11686                                         | 0.0076408                                            | 3.88314                                         |
| 12               | 203.85                                         | .30930                                          | .0049057                                             | .69070                                          |
| 13               | 317.50                                         | .50174                                          | .0031496                                             | .49826                                          |
| 14               | 494.52                                         | .69418                                          | .0020222                                             | .30582                                          |
| 15               | 770.24                                         | .88663                                          | .0012983                                             | .11337                                          |
| 16               | 1199.7                                         | 3.07907                                         | 0.00083355                                           | 4.92093                                         |
| 17               | 1868.6                                         | .27151                                          | .00053517                                            | -72849                                          |
| 18               | 2910.4                                         | .46395                                          | .00034360                                            | -53605                                          |
| 19               | 4533.1                                         | .65639                                          | .00022060                                            | -34361                                          |
| 20               | 7060.5                                         | .84883                                          | .00014163                                            | -15117                                          |

#### TABLES 23 AND 24.

#### EXPONENTIAL FUNCTIONS AND LEAST SQUARES.

#### TABLE 23 .- Exponential Functions.

Value of  $e^x$  and  $e^{-x}$  and their logarithms.

| x                                   | e <sup>z</sup>                             | log e*                                          | e-z                                             | x                             | ez                                           | log ex                                          | e-z                                             |
|-------------------------------------|--------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------|----------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| 1/64<br>1/32<br>1/16<br>1/10<br>1/9 | 1.0157<br>.0317<br>.0645<br>.1052<br>.1175 | 0.00679<br>.01357<br>.02714<br>.04343<br>.04825 | 0.98450<br>.96923<br>.93941<br>.90484<br>.89484 | 1/3<br>1/2<br>3/4<br>1<br>5/4 | 1.3956<br>.6487<br>2.1170<br>.7183<br>3.4903 | 0.14476<br>.21715<br>.32572<br>.43429<br>.54287 | 0.71653<br>.60653<br>.47237<br>.36788<br>.28650 |
| 1/7<br>1/6<br>1/5<br>1/4            | .1536<br>.1814<br>.2214<br>.2840           | .06204<br>.07238<br>.08686<br>.10857            | .86688<br>.84648<br>.81873<br>.77880            | 7/4<br>2<br>9/4<br>5/2        | 5.7 546<br>7.3891<br>9.4877<br>12.1825       | .76002<br>.86859<br>.97716                      | .17377<br>.13534<br>.10540<br>.08208            |

#### TABLE 24 .- Least Squares.

Values of 
$$P = \frac{2}{\sqrt{\pi}} \int_0^h hx e^{-(hx)^2} d(hx)$$
.

This table gives the value of P, the probability of an observational error having a value positive or negative equal to or less than x when h is the measure of precision,  $P = \frac{2}{\sqrt{\pi}} \int_{0}^{hx} e^{-(hx)^2} d(hx)$ . For values of the inverse function see the table on Diffusion.

| hx       | 0      | 1                | 2                | 3                | 4      | 5                | 6                | 7                | 8                | 9       |
|----------|--------|------------------|------------------|------------------|--------|------------------|------------------|------------------|------------------|---------|
| 0.0      |        | .01128           | .02256           | .03384           | .04511 | .05637           | .06762           | .07886           | .09008           | .10128  |
| ı.       | .11246 | .12362           | .13476           | .14587           | .15695 | .16800           | .17901           | .18999           | .20094           | .21184  |
| .2       | .22270 | .23352           | .24430           | .25502           | .26570 | .27633           | .28690           | .29742           | .30788           | .31828  |
| •3       | .42839 | .33891           | .34913           | .35928           | .36936 | 37938            | .38933           | .39921           | -40901<br>-50275 | .41874  |
| 0.5      | .52050 | .52924           | -53790           | .54646           | -55494 | .56332           | .57162           | .57982           | .58792           | .59594  |
| .6       | .60386 | .61168           | .61941           | .62705           | .63459 | .64203           | .64938           | .65663           | .66378           | .67084  |
| ·7<br>.8 | .67780 | .68467           | .69143           | .69810           | .70468 | .71116           | .71754           | .72382           | .73001           | .73610  |
|          | .74210 | .74800           | .75381           | ·75952           | .76514 | .77067           | .77610           | .78144           | .78669           | .79184  |
| .9       | .79691 |                  | .80677           | .81156           | .81627 | .82089           | .82542           | .82987           | .83423           | .83851  |
| 1.0      | .84270 | .84681           | .85084           | .85478           | .85865 | .86244           | .86614           | .86977           | .87333           | .87680  |
| .I<br>.2 | .88021 | .88353           | .88679           | .88997           | .89308 | .92290           | .89910           | .90200           | .90484           | .90761  |
| .3       | .93401 | .93606           | .91553           | .94002           | .94191 | .94376           | .94556           | .94731           | .92973           | .93190  |
| •4       | .95229 | .95385           | .95538           | .95686           | .95830 | .95970           | .96105           | .96237           | .96365           | .96490  |
| 1.5      | .96611 | .96728           | .96841           | .96952           | .97059 | .97162           | .97263           | -97360           | .97455           | .97 546 |
| .6       | .97635 | .97721           | .97804           | .97884           | .97962 | .98038           | .98110           | .98181           | .98249           | .98315  |
| .7       | .98379 | .98441           | .98500           | .98558           | .98613 | .98667           | .98719           | .98769           | .98817           | .98864  |
| .0       | .98909 | .98952           | .98994           | .99 <b>0</b> 35  | .99074 | .99111           | .99147           | .99182           | .99216           | .99248  |
| 2.0      |        |                  |                  |                  |        |                  |                  |                  |                  |         |
| .I       | .99532 | .99552           | ·99572<br>·99728 | .99591           | .99609 | .99626<br>.99764 | .99642           | .99658           | .99673           | .99688  |
| .2       | .99814 | .99822           | .99831           | .99839           | .99846 | .99854           | .99861           | .99867           | .99874           | .99880  |
| .3       | .99886 | .99891           | .99897           | .99902           | .99906 | .99911           | .99915           | .99920           | .99924           | .99928  |
| •4       | .99931 | -99935           | .99938           | -99941           | .99944 | •99947           | .99950           | .99952           | -99955           | -99957  |
| 2.5      | -99959 | .99961           | .99963           | .99965           | .99967 | .99969           | .99971           | .99972           | .99974           | -99975  |
| .6       | .99976 | -99978           | .99979           | .99980           | ·99981 | .99982           | .99983           | .99984           | .99985           | .99986  |
| ·7<br>.8 | .99987 | .99987           | .99988           | .99989           | .99989 | .99990           | .99991           | .99991           | .99992           | .99992  |
| .0       | .99992 | ·99993<br>·99996 | .99993           | ·99994<br>·99997 | .99994 | ·99994<br>·99997 | ·99995<br>·99997 | ·99995<br>·99997 | ·99995<br>·99997 | .99996  |
|          |        |                  |                  |                  | 16666  | 19999/           | 17777/           | ופפפפי           | 199997           | .99990  |
| 3.0      | .99998 | .99999           | -99999           | 1.00000          |        |                  |                  |                  |                  |         |

Taken from a paper by Dr. James Burgess 'on the Definite Integral  $\frac{2}{\sqrt{\pi}} \int_{0}^{t} e^{-t^2} dt$ , with Extended Tables of Values.' Trans. Roy. Soc. of Edinburgh, vol. xxxix, 1900, p. 257.

SMITHSONIAN TARIFS

#### TABLE 25.

### LEAST SQUARES.

This table gives the values of the probability P, as defined in last table, corresponding to different values of x/r where r is the "probable error." The probable error r is equal to 0.47694/ $\hbar$ .

| -          | 1      | 1      |                  |        |                  |                  |         |        |        |                  |
|------------|--------|--------|------------------|--------|------------------|------------------|---------|--------|--------|------------------|
| æ          | 0      | 1      | 2                | 3      | 4                | 5                | 6       | 7      | 8      | 9                |
| r          |        |        |                  |        |                  |                  | -       |        |        |                  |
|            |        |        |                  |        |                  |                  | 0       |        |        |                  |
| 0.0        | .00000 | .00538 | .01076           | .01614 | .02152           | .02690           | .03228  | .03766 | .04303 | .04840           |
| 0.1        | .05378 | .05914 | .11796           | .12328 | .07523           | 13391            | .13921  | .14451 | .14980 | .10197           |
| 0.3        | .16035 | .16562 | .17088           | .17614 | .18138           | .18662           | .19185  | .19707 | .20229 | .20749           |
| 0.4        | .21268 | .21787 | .22304           | .22821 | .23336           | .23851           | .24364  | .24876 | .25388 | .25898           |
| 0.5        | .26407 | .26915 | .27421           | .27927 | .28431           | .28934           | .29436  | .29936 | .30435 | .30933           |
| 0.6        | .31430 | .31925 | .32419           | .32911 | -33402           | .33892           | .34380  | .34866 | ·35352 | .35835           |
| 0.7<br>0.S | .36317 | .36798 | .37277           | •37755 | .38231           | .38705           | .39178  | .39649 | .40118 | .40586           |
| 0.9        | .45618 | .41517 | .41979<br>.46509 | .42440 | ·47393           | ·43357<br>·47832 | .48270  | .48705 | .44719 | .45169<br>.49570 |
| 1.0        | .50000 | .50428 | .50853           | .51277 | .51699           | .52119           | .52537  | .52952 | .53366 | .53778           |
| 1.1        | .54188 | .54595 | .55001           | .55404 | .55806           | .56205           | .56602  | .56998 | .57391 | .57782           |
| 1.2        | .58171 | .58558 | .58942           | .59325 | .59705           | .60083           | .60460  | .60833 | .61205 | .61575           |
| 1.3        | .61942 | .62308 | .62671           | .63032 | .63391           | .63747           | .64102  | .64454 | .64804 | .65152           |
| 1.4        | .65498 | .65841 | .66182           | .66521 | .66858           | .67193           | .67 526 | .67856 | .68184 | .68510           |
| 1.5        | .68833 | .69155 | .69474           | .69791 | .70106           | .70419           | .70729  | .71038 | .71344 | .71648           |
| 1.6        | .71949 | .72249 | .72546           | .72841 | ·73134<br>·75945 | .73425<br>.76214 | .73714  | .74000 | .74285 | .74567           |
| 1.8        | .77528 | .77785 | .78039           | .78291 | .78542           | .78790           | .79036  | .79280 | .79522 | .79761           |
| 1.9        | .79999 | .80235 | .80469           | .80700 | .80930           | .81158           | .81383  | .81607 | .81828 | .82048           |
| 2.0        | .82266 | .82481 | .82695           | .82907 | .83117           | .83324           | .83530  | .83734 | .83936 | .84137           |
| 2.1        | .84335 | .84531 | .84726           | .84919 | .85109           | .85298           | .85486  | .85671 | .85854 | .86036           |
| 2.2        | .86216 | .86394 | .86570           | .86745 | .86917           | .87088           | .87258  | .87425 | .87591 | .87755           |
| 2.3        | .87918 | .88078 | .88237           | .88395 | .90019           | .88705           | .88857  | .89008 | .90562 | .89304           |
| 2.5        | .90825 | .90954 | .91082           | .91208 | .91332           | .91456           | .91578  | .91698 | .91817 | .91935           |
| 2.6        | .92051 | .90954 | .92280           | .92392 | .92503           | .92613           | .92721  | .92828 | .92934 | .93038           |
| 2.7        | .93141 | .93243 | .93344           | .93443 | .93541           | .93638           | .93734  | .93828 | .93922 | .94014           |
| 2.8        | .94105 | .94195 | .94284           | ·94371 | .94458           | •94543           | .94627  | .94711 | .94793 | .94874           |
| 2.9        | .94954 | .95033 | .95111           | .95187 | .95263           | .95338           | .95412  | .95484 | .95557 | .95628           |
|            | 0      | 1      | 2                | 3      | 4                | 5                | 6       | 7.     | 8      | 9                |
| 3          | .95698 | .96346 | .96910           | -97397 | .97817           | .98176           | .98482  | .98743 | .98962 | .99147           |
| 4          | .99302 | .99431 | .99539           | 99627  | .99700           | .99760           | .99808  | .99848 | .99879 | .99905           |
| 5          | .99926 | .99943 | .99956           | .99966 | .99974           | .99980           | .99985  | .99988 | .99991 | -99993           |
|            |        |        |                  |        |                  |                  |         |        |        |                  |

# TABLE 26. LEAST SQUARES.

Values of the factor  $0.6745\sqrt{\frac{1}{n-1}}$ 

This factor occurs in the equation  $r_a = 0.6745 \sqrt{\frac{\Sigma v^2}{n-1}}$  for the probable error of a single observation, and other similar equations.

| n                          | 0                                          | 1                                          | 2                                                  | 3                                          | 4                                          | 5                                          | 6                                          | 7                                          | 8                                          | 9                                          |
|----------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|
| 00<br>10<br>20<br>30<br>40 | 0.2248<br>.1547<br>.1252<br>.1080          | 0.2133<br>.1508<br>.1231<br>.1066          | 0.6745<br>.20 <b>34</b><br>.1472<br>.1211<br>.1053 | 0.4769<br>.1947<br>.1438<br>.1192          | 0.3894<br>.1871<br>.1406<br>.1174<br>.1029 | 0.3372<br>.1803<br>.1377<br>.1157          | 0.3016<br>.1742<br>.1349<br>.1140          | 0.2754<br>.1686<br>.1323<br>.1124<br>.0994 | 0.2549<br>.1636<br>.1298<br>.1109<br>.0984 | 0.2385<br>.1590<br>.1275<br>.1094          |
| 50<br>60<br>70<br>80<br>90 | 0.0964<br>.0878<br>.0812<br>.0759<br>.0715 | 0.0954<br>.0871<br>.0806<br>.0754<br>.0711 | 0.0944<br>.0864<br>.0800<br>.0749<br>.0707         | 0.0935<br>.0857<br>.0795<br>.0745<br>.0703 | 0.0926<br>.0850<br>.0789<br>.0740<br>.0699 | 0.0918<br>.0843<br>.0784<br>.0736<br>.0696 | 0.0909<br>.0837<br>.0779<br>.0732<br>.0692 | 0.0901<br>.0830<br>.0774<br>.0727<br>.0688 | 0.0893<br>.0824<br>.0769<br>.0723<br>.0685 | 0.0886<br>.0818<br>.0764<br>.0719<br>.0681 |

### TABLE 27.- LEAST SQUARES.

## Values of the factor 0.6745 $\sqrt{\frac{1}{n(n-1)}}$

This factor occurs in the equation  $r_0 = 0.6745 \sqrt{\frac{\sum v^2}{n(n-t)}}$  for the probable error of the arithmetic mean.

| n                            | =                                 | 1                                          | 2                                          | 3                                          | 4                                          | 5                                 | 6                                          | 7                                 | 8                                          | 9                                          |
|------------------------------|-----------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|-----------------------------------|--------------------------------------------|-----------------------------------|--------------------------------------------|--------------------------------------------|
| 00<br>10<br>20<br>30<br>· 40 | 0.0711<br>.0346<br>.0229          | 0.0643<br>.0329<br>.0221                   | 0.4769<br>.0587<br>.0314<br>.0214<br>.0163 | 0.2754<br>.0540<br>.0300<br>.0208<br>.0159 | 0.1947<br>.0500<br>.0287<br>.0201          | 0.1508<br>.0465<br>.0275<br>.0196 | 0.1231<br>.0435<br>.0265<br>.0190<br>.0148 | 0.1041<br>.0409<br>.0255<br>.0185 | 0.0901<br>.0386<br>.0245<br>.0180          | 0.0795<br>.0365<br>.0237<br>.0175<br>.0139 |
| 50<br>60<br>70<br>80<br>90   | 0.0136<br>.0113<br>.0097<br>.0085 | 0.0134<br>.0111<br>.0096<br>.0084<br>.0075 | 0.0131<br>.0110<br>.0094<br>.0083<br>.0074 | 0.0128<br>.0108<br>.0093<br>.0082<br>.0073 | 0.0126<br>.0106<br>.0092<br>.0081<br>.0072 | 0.0124<br>.0105<br>.0091<br>.0080 | 0.0122<br>.0103<br>.0089<br>.0079          | 0.0119<br>.0101<br>.0088<br>.0078 | 0.0117<br>.0100<br>.0087<br>.0077<br>.0069 | 0.0115<br>.0098<br>.0086<br>.0076<br>.0068 |

### TABLE 28. - LEAST SQUARES.

Values of the factor 0.8463  $\sqrt{\frac{1}{n(n-1)}}$ .

This factor occurs in the approximate equation  $r = 0.8453 \sqrt{\frac{\sum v^2}{n(n-1)}}$  for the probable error of a single observation.

| n                          | =                                          | 1                                          | 2                                           | 3                                          | 4                                          | 5                                          | 6                                           | 7                                          | 8                                          | 9                                          |
|----------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|
| 00<br>10<br>20<br>30<br>40 | 0.0891<br>.0434<br>.0287                   | 0.0806<br>.0412<br>.0277<br>.0209          | 0.5978<br>.0736<br>.0393<br>.0268<br>.0204  | 0.3451<br>.0677<br>.0376<br>.0260<br>.0199 | 0.2440<br>.0627<br>.0360<br>.0252<br>.0194 | 0.1890<br>.0583<br>.0345<br>.0245          | 0.1 543<br>.0546<br>.0332<br>.0238<br>.0186 | 0.1304<br>.0513<br>.0319<br>.0232<br>.0182 | 0.1130<br>.0483<br>.0307<br>.0225<br>.0178 | 0.0996<br>.0457<br>.0297<br>.0220          |
| 50<br>60<br>70<br>80<br>90 | 0.0171<br>.0142<br>.0122<br>.0106<br>.0094 | 0.0167<br>.0140<br>.0120<br>.0105<br>.0093 | .0.0164<br>.0137<br>.0118<br>.0104<br>.0092 | 0.0161<br>.0135<br>.0117<br>.0102<br>.0091 | 0.0158<br>.0133<br>.0115<br>.0101<br>.0090 | 0.0155<br>.0131<br>.0113<br>.0100<br>.0089 | 0.0152<br>.0129<br>.0112<br>.0099<br>.0089  | 0.0150<br>.0127<br>.0111<br>.0098<br>.0088 | 0.0147<br>.0125<br>.0109<br>.0097<br>.0087 | 0.0145<br>.0123<br>.0108<br>.0096<br>.0086 |

## TABLE 29. - LEAST SQUARES.

Values of 0.8453  $\frac{1}{n\sqrt{n-1}}$ .

This factor occurs in the approximate equation  $r_0 = 0.8453 \frac{\Sigma \nu}{n \sqrt{n-1}}$  for the probable error of the arithmetical mean.

| n                          | =                                          | 1                                 | 2                                          | 3                                          | 4                                          | 5                                          | 6                                          | 7                                          | 8                                          | 9                                          |
|----------------------------|--------------------------------------------|-----------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|
| 00<br>10<br>20<br>30<br>40 | 0.0282<br>.0097<br>.0052<br>.0034          | 0.0243<br>.0090<br>.0050<br>.0033 | 0.4227<br>.0212<br>.0084<br>.0047<br>.0031 | 0.1993<br>.0188<br>.0078<br>.0045<br>.0030 | 0.1220<br>.0167<br>.0073<br>.0043<br>.0029 | 0.0845<br>.0151<br>.0069<br>.0041<br>.0028 | 0.0630<br>.0136<br>.0065<br>.0040<br>.0027 | 0.0493<br>.0124<br>.0061<br>.0038<br>.0027 | 0.0399<br>.0114<br>.0058<br>.0037<br>.0026 | 0.0332<br>.0105<br>.0055<br>.0035          |
| 50<br>60<br>70<br>80<br>90 | 0.0024<br>.0018<br>.0015<br>.0012<br>.0010 | 0.0023<br>.0018<br>.0014<br>.0012 | 0.0023<br>.0017<br>.0014<br>.0011          | 0.0022<br>.0017<br>.0014<br>.0011          | 0.0022<br>.0017<br>.0013<br>.0011<br>.0009 | 0.0021<br>.0016<br>.0013<br>.0011          | 0.0020<br>.0016<br>.0013<br>.0011          | 0.0020<br>.0016<br>.0013<br>.0010          | 0.0019<br>.0015<br>.0012<br>.0010          | 0.0019<br>.0015<br>.0012<br>.0010<br>.0009 |

Observation equations:

$$\begin{array}{l} a_1z_1 + b_1z_2 + \dots & l_1z_q = M_1, \text{ weight } p_1 \\ a_2z_1 + b_2z_2 + \dots & l_2z_q = M_2, \text{ weight } p_2 \\ \dots & \dots & \dots \\ a_nz_1 + b_nz_2 + \dots & l_nz_q = M_n, \text{ weight } p_n. \end{array}$$

Auxiliary equations:

Normal equations:

Solution of normal equations in the form,

$$\begin{aligned} &z_1 = A_1[paM] + B_1[pbM] + \dots L_1[plM] \\ &z_2 = A_2[paM] + B_2[pbM] + \dots L_2[plM] \\ &z_q = A_n[paM] + B_n[pbM] + \dots L_n[plM], \end{aligned}$$

gives:

wherein

r = probable error of observation of weight unity  
= 0.6745 
$$\sqrt{\frac{2 pv^2}{n-q}}$$
. (q unknowns.)

Arithmetical mean, n observations:

$$r = 0.6745 \sqrt{\frac{\sum v^2}{n-1}} = \frac{0.8453 \sum v}{\sqrt{n(n-1)}}.$$
 (approx.) = probable error of observation of weight unity.

$$r_{0} = \text{o.6745} \sqrt{\frac{\sum v^{2}}{n \, (n-1)}} = \frac{\text{o.8453} \, \Sigma \, v}{n \sqrt{n-1}} \cdot \quad \text{(approx.)} = \underset{\text{of mean.}}{\text{probable error}}$$

Weighted mean, n observations:

$$r = 0.6745\,\sqrt{\frac{\Sigma\,p\,v^2}{n-1}};\; r_0 = \stackrel{r}{\sqrt{\Sigma p}} = 0.6745\,\sqrt{\frac{\Sigma\,p\,v^2}{(n-1)\,\Sigma\,p}}$$

Probable error (R) of a function (Z) of several observed quantities  $z_1, z_2, \ldots$  whose probable errors are respectively,  $r_1, r_2, \ldots$   $Z = f(z_1, z_2, \ldots)$ 

$$Z = f(z_1, z_2, \dots)$$

$$R^2 = \begin{pmatrix} \frac{\partial Z}{\partial z_1} \end{pmatrix}^2 r_1^2 + \begin{pmatrix} \frac{\partial Z}{\partial z_2} \end{pmatrix}^2 r_2^2 + \dots$$

Examples:

$$Z = z_1 \pm z_2 + \dots \qquad \qquad R^2 = r_1^2 + r_2^2 + \dots$$

$$Z = A z_1 \pm B z_2 \pm \dots \qquad \qquad R^2 = A^2 r_1^2 + B^2 r_2^2 + \dots$$

$$Z = z_1 z_2 \qquad \qquad R^2 = z_1^2 r_2^2 + z_2^2 r_1^2.$$

# Inverse \* values of $v/c = I - \frac{2}{\sqrt{\pi}} \int_0^q e^{-q^2} dq$

 $\log x = \log (2q) + \log \sqrt{kt}. \quad t \text{ expressed in seconds.}$ 

=  $\log \delta + \log \sqrt{kt}$ . t expressed in days.

 $= \log \gamma + \log \sqrt{kt}.$  " years.

 $k = \text{coefficient of diffusion.} \dagger$ 

c = initial concentration.

v = concentration at distance x, time t.

| v/c                       | log 2 <i>q</i>                         | 29                                    | log δ                                           | δ.                                   | log y                                  | γ                                              |
|---------------------------|----------------------------------------|---------------------------------------|-------------------------------------------------|--------------------------------------|----------------------------------------|------------------------------------------------|
| 0.00<br>.01               | +∞<br>0.56143                          | +∞<br>3.6428                          | +∞<br>3.02970                                   | +∞<br>1070.78                        | ∞<br>4.31098                           | ∞<br>20463.                                    |
| .02                       | .51719<br>.48699<br>.46366             | 3.2900<br>3.0690<br>2.9044            | 2.98545<br>.95525<br>.93132                     | 967.04<br>902.90<br>853.73           | .26674<br>.23654<br>.21261             | 18481.<br>17240.<br>16316.                     |
| 0.05                      | 0.44276                                | 2.7718                                | 2.91102                                         | 814.74 781.83                        | 4.19231                                | 15571.                                         |
| .07                       | .40865                                 | 2.5624<br>2.4758                      | .87691<br>.86198<br>.84804                      | 753.20<br>727.75                     | .15820                                 | 14395.                                         |
| 0.10                      | ·37979<br>o.36664<br>.35414            | 2.3977<br>2.3262<br>2.2602            | 2.83490                                         | 704.76<br>683.75<br>664.36           | .12933<br>4.11619<br>.10369            | 13469.<br>13067.                               |
| .12                       | .34218                                 | 2.1988                                | .81044                                          | 646.31                               | .09173                                 | 12352.                                         |
| 0.15<br>.16               | .31954<br>0.30874<br>.29821            | 2.0871<br>2.0358<br>1.9871            | .78780<br>2.77699                               | 598.40<br>584.08                     | 4.05828                                | 11724.                                         |
| .17                       | .28793<br>.27786<br>.26798             | 1.9406<br>1.8961<br>1.8534            | .76647<br>.75619<br>.74612<br>.73624            | 570.41<br>557·34<br>544.80           | .04776<br>.03748<br>.02741             | 11162.<br>10901.<br>10652.<br>10412.           |
| 0.20                      | 0.25825                                | 1.8124                                | 2.72651                                         | 532.73<br>521.10                     | 4.00780                                | 10181.                                         |
| .22                       | .23919<br>.22983<br>.22055             | 1.7346<br>1.6976<br>1.6617            | .70745<br>.69808<br>.68880                      | 509.86<br>498.98<br>488.43           | .98874<br>.97937<br>.97010             | 9744.1<br>9536.2<br>9334.6                     |
| 0.25<br>.26<br>.27        | 0.21134<br>.20220<br>.19312            | 1.6268<br>1.5930<br>1.5600            | 2.67960<br>.67046<br>.66137                     | 478.19<br>468.23<br>458.53           | 3.96089<br>.95175<br>.94266            | 9138.9<br>8948.5<br>8763.2                     |
| .28                       | .18407                                 | 1.5278                                | .65232                                          | 449.08                               | .93361                                 | 8582.5<br>8406.2                               |
| 0.30<br>.31<br>.32<br>.33 | 0.16606<br>.15708<br>.14810<br>.13912  | 1.4657<br>1.4357<br>1.4064<br>1.3776  | 2.63431<br>.62533<br>.61636<br>.60738           | 430.84<br>422.02<br>413.39<br>404.93 | 3.91 560<br>.90662<br>.89765<br>.88867 | 8233.9<br>8065.4<br>7900.4<br>7738.8<br>7580.3 |
| ·34<br><b>0.35</b>        | 0.12114                                | 1.3494                                | .59840<br>2.58939                               | 396.64<br>388.50                     | 3.87068                                | 7424.8                                         |
| .36                       | .11211                                 | 1.2945<br>1.2678<br>1.2415            | .58037<br>.57131<br>.56222                      | 380.51<br>372.66<br>364.93           | .86166<br>.85260<br>.84351             | 7272.0<br>7122.0<br>6974.4<br>6829.2           |
| -39<br><b>0.40</b><br>-41 | 0.07563<br>0.06639                     | 1.2157<br>1.1902<br>1.1652            | .55308<br>2.54389<br>.53464                     | 357·34  <br>349.86<br>342·49         | .83437<br>3.82518<br>.81593<br>.80662  | 6686.2<br>6545.4                               |
| .42<br>.43<br>.44         | .05708<br>.04770<br>.03824             | 1.1405<br>1.1161<br>1.0920            | ·52533<br>·51595<br>·50650                      | 335.22<br>328.06<br>320.99           | .79724<br>.78779                       | 6406.6<br>6269.7<br>6134.6                     |
| 0.45<br>.46<br>.47<br>.48 | 0.02870<br>.01907<br>.00934<br>9.99951 | 1.0683<br>1.0449<br>1.0217<br>0.99886 | 2.49696<br>.48733<br>.47760<br>.46776<br>.45782 | 314.02<br>307.13<br>300.33<br>293.60 | 3.77825<br>.76862<br>.75889<br>.74905  | 6001.3<br>5869.7<br>5739.7<br>5611.2           |
| 0.50                      | .98956<br>9·97949                      | 0.97624                               | .45782<br>2.44775                               | 286.96<br>280.38                     | 3.72904                                | 5484.1                                         |

<sup>†</sup> Kelvin, Mathematical and Physical Papers, vol. III. p. 428; Becker, Am. Jour. of Sci. vol. III. 1897, p. 280. \*For direct values see table 24.

## DIFFUSION.

| v/c                                            | log 2q                                          | 29                                                        | log δ                                                     | δ                                                        | log y                                           | γ                                                        |
|------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|
| 0.50                                           | 9.97949                                         | 0.95387                                                   | 2.44775                                                   | 280.38                                                   | 3.72904                                         | 5358.4                                                   |
| .51                                            | .96929                                          | .93174                                                    | •43755                                                    | 273.87                                                   | .71884                                          | 5234.1                                                   |
| .52                                            | .95896                                          | .90983                                                    | •42722                                                    | 267.43                                                   | .70851                                          | 5111.0                                                   |
| .53                                            | .94848                                          | .88813                                                    | •41674                                                    | 261.06                                                   | .69803                                          | 4989.1                                                   |
| •54<br><b>0.55</b><br>•56<br>•57<br>•58<br>•59 | 9.92704<br>.91607<br>.90490<br>.89354<br>.88197 | .86665<br>0.84536<br>.82426<br>.80335<br>.78260<br>.76203 | .40610<br>2.39530<br>.38432<br>.37316<br>.36180<br>.35023 | 254.74<br>248.48<br>242.28<br>236.13<br>230.04<br>223.99 | 3.67659<br>.66561<br>.65445<br>.64309<br>.63152 | 4868.4<br>4748.9<br>4630.3<br>4512.8<br>4396.3<br>4280.7 |
| 0.60                                           | 9.87018                                         | 0.74161                                                   | 2.33 <sup>8</sup> 43                                      | 217.99                                                   | 3.61973                                         | 4166.1                                                   |
| .61                                            | .85815                                          | .72135                                                    | .32640                                                    | 212.03                                                   | .60770                                          | 4052.2                                                   |
| .62                                            | .84587                                          | .70124                                                    | .31412                                                    | 206.12                                                   | .59541                                          | 3939.2                                                   |
| .63                                            | .83332                                          | .68126                                                    | .30157                                                    | 200.25                                                   | .58286                                          | 3827.0                                                   |
| .64                                            | .82048                                          | .66143                                                    | .28874                                                    | 194.42                                                   | .57003                                          | 3715.6                                                   |
| 0.65                                           | 9.80734                                         | 0.64172                                                   | 2.27560                                                   | 188.63                                                   | 3.55689                                         | 3604.9                                                   |
| .66                                            | .79388                                          | .62213                                                    | .26214                                                    | 182.87                                                   | ·54343                                          | 3494.9                                                   |
| .67                                            | .78008                                          | .60266                                                    | .24833                                                    | 177.15                                                   | ·52962                                          | 3385.4                                                   |
| .68                                            | .76590                                          | .58331                                                    | .23416                                                    | 171.46                                                   | ·51545                                          | 3276.8                                                   |
| .69                                            | .75133                                          | .56407                                                    | .21959                                                    | 165.80                                                   | ·50088                                          | 3168.7                                                   |
| 0.70                                           | 9.73634                                         | 0.54493                                                   | 2.20459                                                   | 160.17                                                   | 3.48588                                         | 3061.1                                                   |
| .71                                            | .72089                                          | .52588                                                    | .18915                                                    | 154.58                                                   | .47044                                          | 2954.2                                                   |
| .72                                            | .70495                                          | .50694                                                    | .17321                                                    | 149.01                                                   | .45450                                          | 2847.7                                                   |
| .73                                            | .68849                                          | .48808                                                    | .15675                                                    | 143.47                                                   | .43804                                          | 2741.8                                                   |
| .74                                            | .67146                                          | .46931                                                    | .13972                                                    | 137.95                                                   | .42101                                          | 2636.4                                                   |
| 0.75                                           | 9.65381                                         | 0.45062                                                   | 2.12207                                                   | 132.46                                                   | 3.40336                                         | 2531.4                                                   |
| .76                                            | .63550                                          | .43202                                                    | .10376                                                    | 126.99                                                   | .38505                                          | 2426.9                                                   |
| .77                                            | .61646                                          | .41348                                                    | .08471                                                    | 121.54                                                   | .36600                                          | 2322.7                                                   |
| .78                                            | .59662                                          | .39502                                                    | .06487                                                    | 116.11                                                   | .34616                                          | 2219.0                                                   |
| .79                                            | .57590                                          | .37662                                                    | .04416                                                    | 110.70                                                   | .32545                                          | 2115.7                                                   |
| 0.80                                           | 9.55423                                         | 0.35829                                                   | 2.02249                                                   | 105.31                                                   | 3.30378                                         | 2012.7                                                   |
| .81                                            | .53150                                          | .34001                                                    | 1.99975                                                   | 99.943                                                   | .28104                                          | 1910.0                                                   |
| .82                                            | .50758                                          | .32180                                                    | .97584                                                    | 94.589                                                   | .25713                                          | 1807.7                                                   |
| .83                                            | .48235                                          | .30363                                                    | .95061                                                    | 89.250                                                   | .23190                                          | 1705.7                                                   |
| .84                                            | .45564                                          | .28552                                                    | .92389                                                    | 83.926                                                   | .20518                                          | 1603.9                                                   |
| 0.85                                           | 9.42725                                         | 0.26745                                                   | 1.89551                                                   | 78.615                                                   | 3.17680                                         | 1 502.4                                                  |
| .86                                            | .39695                                          | .24943                                                    | .86521                                                    | 73.317                                                   | .14650                                          | 1401.2                                                   |
| .87                                            | .36445                                          | .23145                                                    | .83271                                                    | 68.032                                                   | .11400                                          | 1 300.2                                                  |
| .88                                            | .32940                                          | .21350                                                    | .79766                                                    | 62.757                                                   | .07895                                          | 1 199.4                                                  |
| .89                                            | .29135                                          | .19559                                                    | .75961                                                    | 57.492                                                   | 3.04090                                         | 1 098.7                                                  |
| 0.90                                           | 9.24972                                         | 0.17771                                                   | 1.71797                                                   | 52.236                                                   | 2.99926                                         | 998.31                                                   |
| .91                                            | .20374                                          | .15986                                                    | .67200                                                    | 46.989                                                   | .95329                                          | 898.03                                                   |
| .92                                            | .15239                                          | .14203                                                    | .62065                                                    | 41.750                                                   | .90194                                          | 797.89                                                   |
| .93                                            | .09423                                          | .12423                                                    | .56249                                                    | 36.516                                                   | .84378                                          | 697.88                                                   |
| .94                                            | 9.02714                                         | .10645                                                    | .49539                                                    | 31.289                                                   | .77668                                          | 597.98                                                   |
| 0.95                                           | 8.94783                                         | 0.08868                                                   | 1.41609                                                   | 26.067                                                   | 2.69738                                         | 498.17                                                   |
| .96                                            | .85082                                          | .07093                                                    | .31907                                                    | 20.848                                                   | .60036                                          | 398.44                                                   |
| .97                                            | .72580                                          | .05319                                                    | .19406                                                    | 15.633                                                   | .47535                                          | 298.78                                                   |
| .98                                            | .54965                                          | .03545                                                    | .01791                                                    | 10.421                                                   | .29920                                          | 199.16                                                   |
| .99                                            | .24859                                          | .01773                                                    | 0.71684                                                   | 5.21007                                                  | 1.99813                                         | 99.571                                                   |
| 1.00                                           | -∞                                              | 0.00000                                                   |                                                           | 0.00000                                                  |                                                 | 0.000                                                    |

#### TABLE 32.

#### **CAMMA FUNCTION.\***

Value of 
$$\log \int_0^\infty e^{-x} x^{n-1} dx + 10$$
.

Values of the logarithms + 10 of the "Second Eulerian Integral" (Gamma function)  $\int_{0}^{\infty} e^{-x} x^{n-1} dx \Leftrightarrow \log \Gamma(n) + 10$  for values of n between 1 and 2. When n has values not lying between 1 and 2 the value of the function can be readily calculated from the equation  $\Gamma(n+1) = n\Gamma(n) = n(n-1) \dots (n-r)\Gamma(n-r)$ .

| n                                    |     | 0                                                    | 1                                          | 2                                         | 3                                         | 4                                         | 5                                          | 6                                         | 7                                         | 8                                         | 9                                                      |
|--------------------------------------|-----|------------------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------------------|
| 1.00<br>1.01<br>1.02<br>1.03<br>1.04 | 9.  | 75287<br>51279<br>27964<br>05334                     | 97497<br>72855<br>48916<br>25671<br>03108  | 95001<br>70430<br>46561<br>23384<br>00889 | 92512<br>68011<br>44212<br>21104<br>98677 | 90030<br>65600<br>41870<br>18831<br>96471 | 87 555<br>63196<br>39535<br>16564<br>94273 | 85087<br>60798<br>37207<br>14305<br>92080 | 82627<br>58408<br>34886<br>12052<br>89895 | 80173<br>56025<br>32572<br>09806<br>87716 | 777 <sup>2</sup> 7<br>53648<br>30265<br>07567<br>85544 |
| 1.05<br>1.06<br>1.07<br>1.08<br>1.09 | 9.  | 9883379<br>62089<br>41455<br>21469<br>02123          | 81220<br>59996<br>39428<br>19506<br>00223  | 79068<br>57910<br>37407<br>17549<br>98329 | 76922<br>55830<br>35392<br>15599<br>96442 | 74783<br>53757<br>33384<br>13655<br>94561 | 72651<br>51690<br>31382<br>11717<br>92686  | 70525<br>49630<br>29387<br>09785<br>90818 | 68406<br>47577<br>27398<br>07860<br>88956 | 66294<br>45530<br>25415<br>05941<br>87100 | 64188<br>43489<br>23439<br>04029<br>85250              |
| 1.10<br>1.11<br>1.12<br>1.13<br>1.14 | 9.  | 9783407<br>65313<br>47834<br>30962<br>14689          | 81570<br>63538<br>46120<br>29308<br>13094  | 79738<br>61768<br>44411<br>27659<br>11505 | 77914<br>60005<br>42709<br>26017<br>09922 | 76095<br>58248<br>41013<br>24381<br>08345 | 74283<br>56497<br>39323<br>22751<br>06774  | 72476<br>54753<br>37638<br>21126<br>05209 | 70676<br>53014<br>35960<br>19508<br>03650 | 68882<br>51281<br>34288<br>17896<br>02096 | 67095<br>49555<br>32622<br>16289<br>00549              |
| 1.15<br>1.16<br>1.17<br>1.18<br>1.19 | 9.9 | 9699007<br>83910<br>.69390<br>55440<br>42054         | 9747 I<br>82432<br>67969<br>54076<br>40746 | 95941<br>80960<br>66554<br>52718<br>39444 | 94417<br>79493<br>65145<br>51366<br>38147 | 92898<br>78033<br>63742<br>50019<br>36856 | 91386<br>76578<br>62344<br>48677<br>35570  | 89879<br>75129<br>60952<br>47341<br>34290 | 88378<br>73686<br>59566<br>46011<br>33016 | 86883<br>72248<br>58185<br>44687<br>31747 | 85393<br>70816<br>56810<br>43368<br>30483              |
| 1.20<br>1.21<br>1.22<br>1.23<br>1.24 | 9.9 | 96292 <b>25</b><br>16946<br>05212<br>594015<br>83350 | 27973<br>15748<br>04068<br>92925<br>82313  | 26725<br>14556<br>02930<br>91840<br>81280 | 25484<br>13369<br>01796<br>90760<br>80253 | 24248<br>12188<br>00669<br>89685<br>79232 | 23017<br>11011<br>99546<br>88616<br>78215  | 21792<br>09841<br>98430<br>87553<br>77204 | 20573<br>08675<br>97318<br>86494<br>76198 | 19358<br>07515<br>96212<br>85441<br>75197 | 18150<br>06361<br>95111<br>84393<br>74201              |
| 1.25<br>1.26<br>1.27<br>1.28<br>1.29 | 9.9 | 63592<br>54487<br>45891<br>37798                     | 72226<br>62658<br>53604<br>45059<br>37016  | 71246<br>61730<br>52727<br>44232<br>36239 | 70271<br>60806<br>51855<br>43410<br>35467 | 69301<br>59888<br>50988<br>42593<br>34700 | 68337<br>58975<br>50126<br>41782<br>33938  | 67377<br>58067<br>49268<br>40975<br>33181 | 66423<br>57165<br>48416<br>40173<br>32429 | 65474<br>56267<br>47570<br>39376<br>31682 | 64530<br>55374<br>46728<br>38585<br>30940              |
| 1.30<br>1.31<br>1.32<br>1.33<br>1.34 | 9.9 | 23100<br>16485<br>10353<br>04698                     | 29470<br>22417<br>15850<br>09766<br>04158  | 28743<br>21739<br>15220<br>09184<br>03624 | 28021<br>21065<br>14595<br>08606<br>03094 | 27303<br>20396<br>13975<br>08034<br>02568 | 26590<br>19732<br>13359<br>07466<br>02048  | 25883<br>19073<br>12748<br>06903<br>01532 | 25180<br>18419<br>12142<br>06344<br>01021 | 24482<br>17770<br>11541<br>05791<br>00514 | 23789<br>17125<br>10944<br>05242<br>00012              |
| 1.35<br>1.36<br>1.37<br>1.38<br>1.39 | 9.9 | 9499515<br>94800<br>90549<br>86756<br>83417          | 99023<br>94355<br>90149<br>86402<br>83108  | 98535<br>93913<br>89754<br>86052<br>82803 | 98052<br>93477<br>89363<br>85707<br>82503 | 97573<br>93044<br>88977<br>85366<br>82208 | 97100<br>92617<br>88595<br>85030<br>81916  | 96630<br>92194<br>88218<br>84698<br>81630 | 96166<br>91776<br>87846<br>84371<br>81348 | 95706<br>91362<br>87478<br>84049<br>81070 | 95251<br>90953<br>87115<br>83731<br>80797              |
| 1.40<br>I.41<br>I.42<br>I.43<br>I.44 | 9.9 | 78084<br>76081<br>74515<br>73382                     | 80263<br>77864<br>75905<br>74382<br>73292  | 80003<br>77648<br>75733<br>74254<br>73207 | 79748<br>77437<br>75565<br>74130<br>73125 | 79497<br>77230<br>75402<br>74010<br>73049 | 79250<br>77027<br>75243<br>73894<br>72976  | 79008<br>76829<br>75089<br>73783<br>72908 | 78770<br>76636<br>74939<br>73676<br>72844 | 78537<br>76446<br>74793<br>73574<br>72784 | 78308<br>76261<br>74652<br>73476<br>72728              |

<sup>\*</sup> Legendre's "Exercises de Calcul Intégral," tome ii.

TABLE 32 (continued).

## GAMMA FUNCTION.

| n    | 0         | 1                 | 2     | 3     | 4     | 5                  | 6     | 7     | 8                 | 9     |
|------|-----------|-------------------|-------|-------|-------|--------------------|-------|-------|-------------------|-------|
| 1.45 | 9.9472677 | 72630             | 72587 | 72549 | 72514 | 72484              | 72459 | 72437 | 72419             | 72406 |
| 1.46 | 72397     | 72393             | 72392 | 72396 | 72404 | 72416              | 72432 | 72452 | 72477             | 72506 |
| 1.47 | 72539     | 72576             | 72617 | 72662 | 72712 | 72766              | 72824 | 72886 | 72952             | 73022 |
| 1.48 | 73097     | 73175             | 73258 | 73345 | 73436 | 73531              | 73630 | 73734 | 73841             | 73953 |
| 1.49 | 74068     | 74188             | 74312 | 74440 | 74572 | 74708              | 74848 | 74992 | 75141             | 75293 |
| 1.50 | 9·9475449 | 75610             | 75774 | 75943 | 76116 | 76292              | 76473 | 76658 | 76847             | 77040 |
| 1.51 | 77237     | 7743 <sup>-</sup> | 77642 | 77851 | 78064 | 78281              | 78502 | 78727 | 78956             | 79189 |
| 1.52 | 79426     | 79667             | 79912 | 80161 | 80414 | 80671              | 80932 | 81196 | 81465             | 81738 |
| 1.53 | 82015     | 82295             | 82580 | 82868 | 83161 | 83457              | 83758 | 84062 | 84370             | 84682 |
| 1.54 | 84998     | 85318             | 85642 | 85970 | 86302 | 86638              | 86977 | 87321 | 87668             | 88019 |
| 1.55 | 9.9488374 | 88733             | 89096 | 89463 | 89834 | 90208              | 90587 | 90969 | 91355             | 91745 |
| 1.56 | 92139     | 92537             | 92938 | 93344 | 93753 | 94166              | 94583 | 95004 | 95429             | 95857 |
| 1.57 | 96289     | 96725             | 97165 | 97609 | 98056 | 98508              | 98963 | 99422 | 99885             | 00351 |
| 1.58 | 500822    | 01296             | 01774 | 02255 | 02741 | 03230              | 03723 | 04220 | 04720             | 05225 |
| 1.59 | 05733     | 06245             | 06760 | 07280 | 07803 | 08330              | 08860 | 09395 | 09933             | 10475 |
| 1.60 | 9.9511020 | 11569             | 12122 | 12679 | 13240 | 13804              | 14372 | 14943 | 15519             | 16098 |
| 1.61 | 16680     | 17267             | 17857 | 18451 | 19048 | 19649              | 20254 | 20862 | 21475             | 22091 |
| 1.62 | 22710     | 23333             | 23960 | 24591 | 25225 | 25863              | 26504 | 27149 | 27798             | 28451 |
| 1.63 | 29107     | 29766             | 30430 | 31097 | 31767 | 32442              | 33120 | 33801 | 34486             | 35175 |
| 1.64 | 35867     | 36563             | 37263 | 37966 | 38673 | 39383              | 40097 | 40815 | 41536             | 42260 |
| 1.65 | 9.9542989 | 43721             | 44456 | 45195 | 45938 | 46684              | 47434 | 48187 | 48944             | 49704 |
| 1.66 | 50468     | 51236             | 52007 | 52782 | 53560 | 54342              | 55127 | 55916 | 56708             | 57504 |
| 1.67 | 58303     | 59106             | 59913 | 60723 | 61536 | 62353              | 63174 | 63998 | 64825             | 65656 |
| 1.68 | 66491     | 67329             | 68170 | 69015 | 69864 | 70716              | 71571 | 72430 | 73293             | 74159 |
| 1.69 | 75028     | 75901             | 76777 | 77657 | 78540 | 79427              | 80317 | 81211 | 82108             | 83008 |
| 1.70 | 9.9583912 | 84820             | 85731 | 86645 | 87563 | 88484              | 89409 | 90337 | 91268             | 92203 |
| 1.71 | 93141     | 94083             | 95028 | 95977 | 96929 | 97884              | 98843 | 99805 | 00771             | 01740 |
| 1.72 | 602712    | 03688             | 04667 | 05650 | 06636 | 07625              | 08618 | 09614 | 10613             | 11616 |
| 1.73 | 12622     | 13632             | 14645 | 15661 | 16681 | 17704              | 18730 | 19760 | 20793             | 21830 |
| 1.74 | 22869     | 23912             | 24959 | 26009 | 27062 | 28118              | 29178 | 30241 | 31308             | 32377 |
| 1.75 | 9.9633451 | 34527             | 35607 | 36690 | 37776 | 38866              | 39959 | 41055 | 42155             | 43258 |
| 1.76 | 44364     | 45473             | 46586 | 47702 | 48821 | 49944              | 51070 | 52199 | 53331             | 54467 |
| 1.77 | 55606     | 56749             | 57894 | 59043 | 60195 | 61350              | 62509 | 63671 | 64836             | 66004 |
| 1.78 | 67176     | 68351             | 69529 | 70710 | 71895 | 73082              | 74274 | 75468 | 76665             | 77866 |
| 1.79 | 79070     | 80277             | 81488 | 82701 | 83918 | 85138              | 86361 | 87588 | 88818             | 90051 |
| 1.80 | 9.9691287 | 92526             | 93768 | 95014 | 96263 | 97515              | 98770 | 00029 | 01291             | 02555 |
| 1.81 | 703823    | 05095             | 06369 | 07646 | 08927 | 10211              | 11498 | 12788 | 14082             | 15378 |
| 1.82 | 16678     | 17981             | 19287 | 20596 | 21908 | 23224              | 24542 | 25864 | 27189             | 28517 |
| 1.83 | 29848     | 31182             | 32520 | 33860 | 35204 | 36551              | 37900 | 39254 | 40610             | 41969 |
| 1.84 | 43331     | 44697             | 46065 | 47437 | 48812 | 50190              | 51571 | 52955 | 54342             | 55733 |
| 1.85 | 9.9757126 | 58522             | 59922 | 61325 | 62730 | 64139              | 65551 | 66966 | 68384             | 69805 |
| 1.86 | 71230     | 72657             | 74087 | 75521 | 76957 | 78397              | 79839 | 81285 | 82734             | 84186 |
| 1.87 | 85640     | 87098             | 88559 | 90023 | 91490 | 92960              | 94433 | 95909 | 97389             | 98871 |
| 1.88 | 800356    | 01844             | 93335 | 04830 | 06327 | 07827              | 09331 | 10837 | 12346             | 13859 |
| 1.89 | 15374     | 16893             | 18414 | 19939 | 21466 | 22996              | 24530 | 26066 | 27606             | 29148 |
| 1.90 | 9.9830693 | 32242             | 33793 | 35348 | 36905 | 38465              | 40028 | 41595 | 43164             | 44736 |
| 1.91 | 46311     | 47890             | 49471 | 51055 | 52642 | 54232              | 55825 | 57421 | 59020             | 60621 |
| 1.92 | 62226     | 63834             | 65445 | 67058 | 68675 | 70294              | 71917 | 73542 | 75170             | 76802 |
| 1.93 | 78436     | 80073             | 81713 | 83356 | 85002 | 86651              | 88302 | 89957 | 91614             | 93275 |
| 1.94 | 94938     | 96605             | 98274 | 99946 | 01621 | 03299              | 04980 | 06663 | 08350             | 10039 |
| 1.95 | 9.9911732 | 13427             | 15125 | 16826 | 18530 | 20237              | 21947 | 23659 | <sup>2</sup> 5375 | 27093 |
| 1.96 | 28815     | 30539             | 32266 | 33995 | 35728 | 374 <sup>6</sup> 4 | 39202 | 40943 | 42688             | 44435 |
| 1.97 | 46185     | 47937             | 49693 | 51451 | 53213 | 54977              | 56744 | 58513 | 60286             | 62062 |
| 1.98 | 63840     | 65621             | 67405 | 69192 | 70982 | 7 <sup>2</sup> 774 | 74576 | 76368 | 78169             | 79972 |
| 1.99 | 81779     | 83 <b>5</b> 88    | 85401 | 87216 | 89034 | 90854              | 92678 | 94504 | 96333             | 98165 |

Table 33.
ZONAL SPHERICAL HARMONICS.\*

| Degrees                    | P <sub>1</sub>                               | P <sub>2</sub>                               | P <sub>3</sub>                               | P <sub>4</sub>                               | P <sub>5</sub>                                 | P <sub>6</sub>                               | P <sub>7</sub>                                    |
|----------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------|----------------------------------------------|---------------------------------------------------|
| 0<br>I<br>2<br>3<br>4      | + 1.0000<br>.9998<br>.9994<br>.9986<br>.9976 | + 1.0000<br>.9995<br>.9982<br>.9959<br>.9927 | + 1.0000<br>.9991<br>.9963<br>.9918<br>.9854 | + 1.0000<br>.9985<br>.9939<br>.9863<br>.9758 | + 1.0000<br>•9977<br>•9909<br>•9795<br>•9638   | + 1.0000<br>.9968<br>.9872<br>.9714<br>.9495 | + 1.0000<br>.9957<br>.9830<br>.9620<br>.9329      |
| 56<br>78<br>9              | + 0.9962<br>·9945<br>·9925<br>·9903<br>·9877 | + 0.9886<br>.9836<br>.9777<br>.9709<br>.9633 | + 0.9773<br>.9674<br>.9557<br>.9423<br>.9273 | + 0.9623<br>.9459<br>.9267<br>.9048<br>.8803 | + 0.9437<br>.9194<br>.8911<br>.8589<br>.8232   | + 0.9216<br>.8881<br>.8492<br>.8054<br>.7570 | + 0.8962<br>.8522<br>.8016<br>.7449<br>.6830      |
| 10<br>11<br>12<br>13       | + 0.9848<br>.9816<br>.9781<br>.9744<br>.9703 | + 0.9548<br>·9454<br>·9352<br>·9241<br>·9122 | + 0.9106<br>.8923<br>.8724<br>.8511<br>.8283 | + 0.8532<br>.8238<br>.7920<br>.7582<br>.7224 | + 0.7840<br>.7417<br>.6966<br>.6489<br>.5990   | + 0.7045<br>.6483<br>.5891<br>.5273<br>.4635 | + 0.6164<br>.5462<br>.4731<br>.3980<br>.3218      |
| 15<br>16<br>17<br>18       | + 0.9659<br>.9613<br>.9563<br>.9511<br>.9455 | + 0.8995<br>.8860<br>.8718<br>.8568<br>.8410 | + 0.8042<br>.7787<br>.7519<br>.7240<br>.6950 | + 0.6847<br>.6454<br>.6046<br>.5624<br>.5192 | + 0.547 I<br>·4937<br>·439 I<br>·3836<br>·3276 | + 0.3983<br>.3323<br>.2661<br>.2002<br>.1353 | + 0.2455<br>+ .1700<br>+ .0961<br>+ .0248<br>0433 |
| 20<br>21<br>22<br>23<br>24 | + 0.9397<br>.9336<br>.9272<br>.9205<br>.9135 | + 0.8245<br>.8074<br>.7895<br>.7710<br>.7518 | + 0.6649<br>.6338<br>.6019<br>.5692<br>.5357 | + 0.4750<br>.4300<br>.3845<br>.3386<br>.2926 | + 0.2715<br>.2156<br>.1602<br>.1057<br>.0525   | + 0.0719<br>+ .0106<br>0481<br>1038<br>1558  | 0.1072<br>.1664<br>.2202<br>.2680<br>.3094        |
| 25<br>26<br>27<br>28<br>29 | + 0.9063<br>.8988<br>.8910<br>.8829<br>.8746 | + 0.7321<br>.7117<br>.6908<br>.6694<br>.6474 | + 0.5016<br>.4670<br>.4319<br>.3964<br>.3607 | + 0.2465<br>.2007<br>.1553<br>.1105<br>.0665 | + 0.0009<br>0489<br>0964<br>1415<br>1839       | 0.2040<br>.2478<br>.2869<br>.3212<br>.3502   | 0.3441<br>.3717<br>.3922<br>.4053<br>.4113        |
| 30<br>31<br>32<br>33<br>34 | + 0.8660<br>.8572<br>.8480<br>.8387<br>.8290 | + 0.6250<br>.6021<br>.5788<br>.5551<br>.5310 | + 0.3248<br>.2887<br>.2527<br>.2167<br>.1809 | + 0.0234<br>0185<br>0591<br>0982<br>1357     | 0.2233<br>.2595<br>.2923<br>.3216<br>.3473     | -0.3740<br>.3924<br>.4053<br>.4127<br>.4147  | 0.4102<br>.4022<br>.3877<br>.3671<br>.3409        |
| 35<br>36<br>37<br>38<br>39 | + 0.8192<br>.8090<br>.7986<br>.7880<br>.7771 | + 0.5065<br>.4818<br>.4567<br>.4314<br>.4059 | + 0.1454<br>.1102<br>.0755<br>.0413          | 0.1714<br>.2052<br>.2370<br>.2666<br>.2940   | 0.3691<br>.3871<br>.4011<br>.4112<br>.4174     | - 0.4114<br>.4031<br>.3898<br>.3719<br>.3497 | - 0.3096<br>.2738<br>.2343<br>.1918<br>.1470      |
| 40<br>41<br>42<br>43<br>44 | + 0.7660<br>•7547<br>•7431<br>•7314<br>•7193 | + 0.3802<br>·3544<br>·3284<br>·3023<br>·2762 | - 0.0252<br>.0574<br>.0887<br>.1191<br>.1485 | - 0.3190<br>.3416<br>.3616<br>.3791          | - 0.4197<br>.4181<br>.4128<br>.4038<br>.3914   | - 0.3236<br>.2939<br>.2610<br>.2255<br>.1878 | - 0.1006<br>0535<br>0064<br>+ .0398<br>+ .0846    |
| 45<br>46<br>47<br>48<br>49 | + 0.7071<br>.6947<br>.6820<br>.6691<br>.6561 | + 0.2500<br>.2238<br>.1977<br>.1716<br>.1456 | 0.1768<br>.2040<br>.2300<br>.2547<br>.2781   | - 0.4063<br>.4158<br>.4227<br>.4270<br>.4286 | - 0.3757<br>.3568<br>.3350<br>.3105<br>.2836   | - 0.1484<br>1078<br>0665<br>0251<br>+ .0161  | + 0.1271<br>.1667<br>.2028<br>.2350<br>.2626      |
| 50                         | + 0.6428                                     | + 0.1198                                     | - 0.3002                                     | -0.4275                                      | - 0.2545                                       | + 0.0564                                     | + 0.2854                                          |

<sup>\*</sup> Calculated by Mr. C. E. Van Orstrand for this publication.

TABLE 33 (continued). ZONAL SPHERICAL HARMONICS.

| Degrees  | P <sub>1</sub>    | P <sub>2</sub>    | P <sub>3</sub>  | P <sub>4</sub>      | P <sub>5</sub>   | P <sub>6</sub> | P <sub>7</sub>    |
|----------|-------------------|-------------------|-----------------|---------------------|------------------|----------------|-------------------|
| 50<br>51 | + 0.6428<br>.6293 | + 0.1198          | 0.3002<br>.3209 | - 0.4275<br>.4239   | -0.2545<br>.2235 | + 0.0564       | + 0.2854          |
| 52       | .6157             | .0686             | .3401           | .4178               | .1910            | .1326          | .3154             |
| 53       | .6018             | .0433             | .3578           | .4093               | .1571            | .1677          | .3221             |
| 54       | .5878             | .0182             | •3740           | .3984               | .1223            | .2002          | -3234             |
| 55       | + 0.5736          | - 0.0065          | - o.3886        | - 0.3852            | <b></b> 0.0868   | + 0.2297       | +0.3191           |
| 55<br>56 | •5592             | .0310             | .4016           | .3698               | 0509             | .2560          | .3095             |
| 57<br>58 | •5446             | .0551             | .4131           | .3524               | 0150             | .2787          | .2947             |
| 58       | •5299             | .1021             | .4229           | .3331               | + .0206          | .2976          | .2752             |
| 59       | -5150             |                   | .4310           | .3119               | + .0557          | .3125          | .2512             |
| 60       | + 0.5000          | -0.1250           | -0.4375         | - 0.2891            | + 0.0898         | + 0.3232       | +0.2231           |
| 61<br>62 | .4848             | .1474             | .4423           | .2647               | .1229            | .3298          | .1916             |
| 63       | .4540             | .1908             | ·4455<br>·4471  | .2390               | .1545            | .3321          | .1572             |
| 64       | .4384             | .2117             | •4470           | .1841               | .2123            | .3302          | .0818             |
| 1        |                   |                   |                 |                     |                  |                |                   |
| 65       | + 0.4226          | -0.2321           | -0.4452         | -0.1552             | + 0.2381         | + 0.3138       | + 0.0422          |
| 67       | .3907             | .2518             | .4419           | .1256               | .2824            | .2997          | + .0022<br>0375   |
| 68       | .3746             | .2895             | .4370<br>.4305  | .0955               | .3005            | .2606          | 0763              |
| 69       | .3584             | .3074             | .4225           | .0344               | .3158            | .2362          | 1135              |
|          |                   |                   |                 |                     |                  |                |                   |
| 70<br>71 | + 0.3420          | - 0.3245<br>.3410 | 0.4130<br>.4021 | - 0.0038<br>+ .0267 | + 0.3281         | + 0.2089       | -0.1485<br>.1808  |
| 72       | .3090             | .3568             | .3898           | .0568               | ·3373<br>·3434   | .1472          | .2099             |
| 73       | .2924             | .3718             | .3761           | .0864               | .3463            | .1136          | .2352             |
| 74       | .2756             | .3860             | .3611           | .1153               | .3461            | .0788          | .2563             |
| 75<br>76 | + 0.2588          | - o.3995          | - 0.3449        | + 0.1434            | + 0.3427         | + 0.0431       | - 0.2730          |
|          | .2419             | .4122             | •3275           | .1705               | .3362            | + .0070        | .2850             |
| 77 78    | .2250             | .4241             | .3090           | .1964               | .3267            | 0290           | .2921             |
|          | .1908             | .4352             | .2894           | .2211               | .3143            | 0644           | .2942             |
| 79       |                   | •4454             |                 | .2443               | .2990            | 0990           | .2913             |
| 80       | +0.1736           | - 0.4548          | - 0.2474        | + 0.2659            | + 0.2810         | -0.1321        | - 0.2835<br>.2708 |
| 81<br>82 | .1564             | .4633             | .2251           | .2859               | .2606            | .1635          |                   |
| 83       | .1392             | .4709             | .1783           | .3040               | .2378            | .1927          | .2536             |
| 84       | .1045             | ·4777<br>.4836    | .1539           | •3345               | .1861            | .2431          | .2067             |
| 85<br>86 | + 0.0872          | <b>-</b> 0.4886   | - 0.1291        | + 0.3468            | + 0.1577         | -0.2638        | -0.1778           |
|          | .0698             | .4927             | .1038           | .3569               | + 0.1577         | .2810          | .1460             |
| 87       | .0523             | .4959<br>.4982    | .0781           | .3648               | .0969            | -2947          | .1117             |
| 88       | .0349             |                   | .0522           | .3704               | .0651            | .3045          | .0755             |
| 89       | .0175             | •4995             | .0262           | •3739               | .0327            | .3105          | .0381             |
| 90       | + 0.0000          | - 0.5000          | - 0.0000        | + 0.3750            | + 0.0000         | - 0.3125       | - 0.0000          |
| SMITHSON | IIAN TABLES.      |                   |                 |                     |                  |                |                   |
|          |                   |                   |                 |                     |                  |                |                   |
|          |                   |                   |                 |                     |                  |                |                   |
|          |                   |                   |                 |                     |                  |                |                   |
|          |                   |                   |                 |                     |                  | •              |                   |

TABLE 34.

CYLINDRICAL HARMONICS OF THE 0TH AND 1ST ORDERS

Values when n = 0 and 1 of the Bessel function  $J_n(x)$   $= \frac{x^n}{2^n \Gamma(n+1)} \left\{ 1 - \frac{x^2}{2^2(n+1)} + \frac{x^4}{2^4 2!(n+1)(n+2)} \dots \right\}. \quad J_1(x) = -J_0'(x) = \frac{dJ_0(x)}{dx}.$ 

|   | $2^{n}\Gamma(n+1)$ ( $2^{3}(n+1)$ $2^{4}2!(n+1)(n+2)$ ) $dx$ |                    |          |      |                 |          |       |          |                    |       |            |                    |
|---|--------------------------------------------------------------|--------------------|----------|------|-----------------|----------|-------|----------|--------------------|-------|------------|--------------------|
| 1 | x                                                            | $J_0(x)$           | $J_1(x)$ | x    | $J_{\sigma}(x)$ | $J_1(x)$ | x     | $J_0(x)$ | $J_1(x)$           | x     | $J_{0}(x)$ | $J_1(x)$           |
| ı | .00                                                          | unity              | zero     | .50  | .038470         | .242268  | 1 00  | .765198  | .440051            | 1 .50 | .511828    | 557027             |
| 1 | .01                                                          | ·999975            |          | ]    | .936024         |          | .01   | .760781  |                    | .51   | .506241    | ·557937<br>·559315 |
| 1 | .02                                                          | .999900            |          | .52  |                 | .251310  | .02   |          |                    | .52   |            |                    |
| 1 | .03                                                          | .999775            | .014998  | .53  |                 |          | .03   |          |                    | -53   |            |                    |
| 1 | .04                                                          | .999600            | .019996  | -54  | .928418         | .260277  | .04   | •747339  | .452794            | •54   | .489403    | .563208            |
| 1 | .05                                                          | -999375            | .024992  | .55  | .925793         | .264732  | 1 .05 | .742796  | .455897            | 1 .55 | .483764    | .564424            |
| 1 | .06                                                          | .990100            |          | .56  | ,               | .269166  | .06   |          | .458966            | .56   |            | .565600            |
| 4 | .07                                                          | .998775            |          | .57  |                 | .273581  | .07   | .733616  | .462001            | -57   | .472453    | .566735            |
| 1 | .08                                                          | .998401            | .039968  | .58  |                 |          | .08   |          | .465003            | .58   | .466780    | .567830            |
| П | .09                                                          | .997976            | .044954  | .59  | .914850         | .282349  | .09   | .724316  | .467970            | •59   | .461096    | .568883            |
| ı | .10                                                          | .997502            | .049938  | .60  | .912005         | .286701  | 1 .10 |          | .470902            | 1 .60 | .455402    | .569896            |
| 1 | .II                                                          | .996977            | .054917  | .61  | .909116         | .291032  | .II   | .714898  | .473800            | .61   | .449698    | .570868            |
| 1 | .12                                                          | .996403            | .059892  | .62  | .903209         | .295341  | .12   | .710146  | .476663            | .62   | .438262    | .571798            |
| 1 | .14                                                          | .995179            | .069829  | .64  | .900192         | .303893  | .14   | .700556  | .482284            | .64   | .432531    | .573537            |
| 1 |                                                              |                    | 1        |      |                 |          |       |          |                    |       |            | 3,000,             |
| 1 | .15                                                          | .994383            | .074789  | .65  | .897132         |          | 1 .15 | .695720  | .485041            | 1 .65 | .426792    | .574344            |
| 1 | .16                                                          | .993610            | .079744  | .66  | .894029         | .312355  | .16   | .690856  | .487763            | .66   | .421045    | .575111            |
| 1 | .18                                                          | .991916            | .089636  | .68  | .887698         | .320723  | .18   |          | .493098            | .68   | .409528    | .576520            |
| ı | .19                                                          | .990995            | .094572  | .69  | .884470         | .324871  | .19   |          | .495712            | .69   | .403760    | .577163            |
| 1 | .20                                                          | .990025            | .099501  | .70  | .881201         | .328996  | 1 .20 | .671133  | .498289            | 1 .70 | .397985    | -7776r             |
| 1 | .21                                                          | .989005            | .104422  | .71  | .877890         | .333096  | .21   | .666137  | .500830            | .71   | .397905    | .577765            |
| 1 | .22                                                          | .987937            |          | .72  | .874539         | .337170  | .22   | .661116  | .503334            | .72   | .386418    | .578845            |
| 1 | .23                                                          | .986819            | .114241  | .73  | .871147         | .341220  | .23   | .656071  | .505801            | .73   | .380628    | .579323            |
| 1 | .24                                                          | .985652            | .119138  | .74  | .867715         | .345245  | .24   | .651000  | .508231            | .74   | .374832    | .579760            |
| 1 | .25                                                          | .984436            | .124026  | .75  | .864242         | .349244  | 1 .25 | .645906  | .510623            | 1 .75 | .369033    | .580156            |
| 1 | .26                                                          | .983171            | .128905  | .76  | .860730         | .353216  | .26   |          | .512979            | .76   | .363229    | .580511            |
| 1 | .27                                                          | .981858            | .133774  | .77  | .857178         | .357163  | .27   | .635647  | .515296            | .77   | .357422    | .580824            |
| 1 | .28                                                          | .980496            | .138632  | .78  | .853587         | .361083  | .28   | .630482  | .517577            | .78   | .351613    | .581096            |
| ı |                                                              | .979003            |          |      |                 |          |       | 10-3-93  | .329029            |       | .545001    | .302327            |
| ı | .30                                                          | .977626            |          | .80  | .846287         |          | 1 .30 | .620086  | .522023            | 1 .80 | .339986    | .581517            |
| 1 | .31                                                          | 1                  | .153146  | .81  | .842580         | .372681  | .31   | .614855  | .524189            | .81   | .334170    | .581666            |
| 1 | .33                                                          | .974303            |          | .83  | .835050         | .380275  | .33   | .604329  | .528407            | .83   | .322535    | .581840            |
| 1 | .34                                                          | .971308            |          | .84  | .831228         | .384029  | •34   | .599034  | .530458            | .84   | .316717    | .581865            |
| 1 | .35                                                          | .969609            | T70224   | .85  | .827369         | .387755  | 1 .35 | .593720  | .532470            | 1 .85 | .310898    | .581849            |
| ł | .36                                                          | .967861            | .172334  | .86  | .823473         | .391453  | .36   |          | .534444            | .86   | .305080    | .581793            |
| 1 | .37                                                          | .966067            |          | .87  | .819541         | .395121  | .37   | .583031  | .536379            | .87   | .299262    | .581695            |
| 1 | .38                                                          | .964224            | .186591  | .88  | .815571         | .398760  | .38   | .577658  | .538274            | .88   | .293446    | .581557            |
| ı | -39                                                          | .962335            | .191316  | .89  | .811565         | .402370  | •39   | .572266  | .540131            | .89   | .286631    | .581377            |
|   | .40                                                          | .960398            | .196027  | .90  | .807524         | .405950  | 1 .40 | .566855  | .541948            | 1.90  | .281819    | .581157            |
| ı | .41                                                          | .958414            | .200723  | .91  | .803447         | .409499  | .41   | .561427  | .543726            | .91   | .276008    | .580896            |
| 1 | .42                                                          |                    | .205403  | .92  | •799334         | .413018  | .42   | .555981  | .545464            | .92   | .270201    | .580595            |
| ı | .43                                                          | .954300            | .210069  |      | .795186         | .416507  | •43   | .550518  | .547162            | .93   | .264397    | .580252            |
| 1 |                                                              |                    |          |      |                 |          |       | 343-30   |                    |       |            |                    |
| 1 | .45                                                          | .950012            |          |      | .786787         | .423392  | 1 .45 | ·539541  |                    | 1.95  | .252799    | .579446            |
| 1 | .46                                                          |                    |          | 1 1  | .782536         | .426787  |       | .534029  | .552020            | .96   | .247007    | .578983            |
| 1 | .48                                                          | ·945533<br>·943224 |          | .98  |                 | .430151  | .48   |          | ·553559<br>·555059 | ·97   | .235438    | .577934            |
| 1 | .49                                                          | .940870            |          | .99  | .769582         | .436783  | .49   | .517400  | .556518            | .99   | .229661    | .577349            |
|   | .50                                                          | .938470            | 242268   | 1 00 | 765108          | .440051  | 1 50  | .511828  | .557937            | 2 00  | .223891    | .576725            |
|   | .50                                                          | .930470            | .242200  | 1.00 | .705190         | .440051  | 1.00  | .511020  | .33/93/            | 2 .00 | .223091    | .5/0/25            |
| L |                                                              |                    |          |      |                 |          |       |          |                    |       |            |                    |

## TABLE 34 (continued). CYLINDRICAL HARMONICS OF THE 0TH AND 1ST ORDERS.

 $J_1(x)=-J_0'(x).$  Other orders may be obtained from the relation,  $J_{n+1}(x)=\frac{2n}{x}J_n(x)-J_{n-1}(x).$   $J_{-n}(x)=(-1)^nJ_n(x).$ 

| _    | $J_{-n}(x) = (-1)^n J_n(x).$ |                    |      |                  |          |      |                  |          |      |                  |          |  |
|------|------------------------------|--------------------|------|------------------|----------|------|------------------|----------|------|------------------|----------|--|
| x    | $J_0(x)$                     | $J_1(x)$           | x    | $J_0(x)$         | $J_1(x)$ | x    | $J_0(x)$         | $J_1(x)$ | x    | $J_0(x)$         | $J_1(x)$ |  |
| 2.00 | .223891                      | .576725            | 2.50 | 048384           | .497094  | 3.00 | 260052           | .339050  | 3.50 | 380128           | .137378  |  |
| .01  | .218127                      | .576060            | .51  | 053342           | .494606  | .01  | 263424           | -335319  |      | 381481           |          |  |
| .02  |                              | -575355            |      | 058276           |          | .02  | 266758           | .331563  |      | 382791           |          |  |
| .03  |                              | .574611            |      | 063184           |          |      | 270055           |          |      | 384060           |          |  |
| .04  | .200878                      | .573827            | •54  | 068066           | .480953  | .04  | 273314           | .323998  | .54  | 385287           | .120601  |  |
| 2.05 | .105143                      | .573003            | 2.55 | 072923           | .181210  | 3.05 | 276535           | 220101   | 3.55 | 386472           | .116408  |  |
| .06  | .180418                      | 572139             | .56  | 077753           | .481606  | .06  | 279718           | .316368  |      | 387615           |          |  |
| .07  | .183701                      | .571236            | .57  | 082557           | .479021  | .07  | 282862           | .312520  | .57  | 388717           |          |  |
| .08  |                              | .570294            | .58  | 087333           | .476317  | .08  | 285968           | .308675  |      | 389776           |          |  |
| .00  | .172295                      | .569313            | .59  | 092083           | .473582  | .09  | 289036           | .304805  | .59  | 390793           | .099650  |  |
| 2.10 | 166607                       | .568292            | 2 60 | 096805           | 470878   | 2 10 | 202064           | 200007   | 2 60 | 207760           | 227166   |  |
| .II  |                              | .567233            |      | 101499           |          |      | 292064<br>295054 |          |      | 391709           |          |  |
| .12  |                              | .566134            |      | 106165           |          |      | 298005           |          |      | 393595           |          |  |
| .13  | .149607                      | .564997            |      | 110803           |          |      | 300916           |          |      | 394445           | .082931  |  |
| .14  |                              | .563821            | .64  | 115412           | .459470  |      | 303788           |          |      | 395253           |          |  |
| 2.15 | T29225                       | =606-              | 2 65 | ******           | 106-16-  | 2 15 | 2066             | .0.      | 2 05 | 206-             |          |  |
| .16  |                              | .562607            |      | 119992           |          |      | 306621           |          |      | 396020           |          |  |
| .17  |                              | .561354            |      | 124543<br>129065 |          |      | 309414<br>312168 |          |      | 396745<br>397429 |          |  |
| .18  |                              | .558735            |      | 133557           |          |      | 314881           |          | .68  | 398071           | .062122  |  |
| .19  |                              | .557368            |      | 138018           |          |      | 317555           |          | .69  | 398671           | .057975  |  |
| 0.00 |                              |                    | 0.70 |                  |          | 0 00 |                  |          |      |                  |          |  |
| 2.20 |                              | .555963            |      | 142449           |          |      | 320188           |          |      |                  | .053834  |  |
| .21  |                              | .554521            |      | 146850           |          |      | 322781           |          |      | 399748           |          |  |
| .23  |                              | .551524            |      | 151220<br>155559 |          |      | 325335 $327847$  |          |      | 400224<br>400659 | .045571  |  |
| .24  |                              | .549970            |      | 159866           |          |      | 330319           |          |      | 401053           | .037336  |  |
|      |                              |                    |      |                  |          |      |                  |          |      |                  | 0700     |  |
| 2.25 |                              | .548378            | 2.75 | 164141           | .425972  |      | 332751           |          |      | 401406           | .033229  |  |
| .26  |                              | .546750            | 1.70 | 168385           | .422709  |      | 335142           |          |      | 401718           | , ,      |  |
| .28  |                              | ·545085<br>·543384 |      | 172597<br>176776 |          |      | 337492<br>339801 |          |      | 401989<br>402219 | .025040  |  |
| .20  | .060047                      | .541646            |      | 180922           |          |      | 342069           |          |      | 402408           | .016885  |  |
|      | 1 / 11                       |                    |      |                  |          |      |                  |          | .19  | .400400          | 1010003  |  |
| 2.30 |                              | .539873            |      |                  |          |      | 344296           |          |      | 402556           | .012821  |  |
| .31  |                              | .538063            |      | 189117           |          |      | 346482           |          |      | 402664           |          |  |
| .32  |                              | .536217<br>.534336 |      | 193164<br>197177 |          |      | 348627           |          |      | 402732           |          |  |
| •34  |                              | .532419            |      | 201157           |          |      | 350731<br>352793 |          |      | 402759<br>402746 |          |  |
|      | 34-9-                        | 30-4-9             |      |                  | .390207  | 134  | 133-193          | .204100  | 104  | 1402/40          | .003337  |  |
| 2.35 |                              |                    | 2.85 | 205102           | .392849  |      | 354814           | .200018  | 3.85 | 402692           | 007350   |  |
| .36  |                              | .528480            |      | 209014           |          |      | 356793           | .195870  | .86  | 402599           | 011352   |  |
| 37   |                              | .526458            | .87  | 212890<br>216733 | .385945  | .37  | 358731           | .191716  |      | 402465           |          |  |
| .38  |                              | .524402            |      | 220540           |          |      | 360628<br>362482 |          |      | 402292<br>402079 |          |  |
|      |                              |                    |      |                  |          | -39  | .502402          | 3394     | .59  | .4020/9          | .023209  |  |
| 2.40 |                              |                    | 2.90 | 224312           | -375427  |      | 364296           |          | 3.90 | 401826           | 027244   |  |
| -41  | 002683                       | .518026            | .91  | 228048           | .371879  |      | 366067           |          |      | 401534           |          |  |
| .42  | 007853                       | .515833            |      | 231749           |          |      | 367797           |          |      | 401202           |          |  |
|      | 013000<br>018125             |                    | .93  | 235414<br>239043 | .361112  | •43  | 369485<br>371131 | .162516  |      | 400832<br>400422 |          |  |
|      |                              |                    |      |                  |          |      |                  |          |      |                  |          |  |
| 2.45 | 023227                       | .509052            | 2.95 | 242636           | .357485  | 3.45 | 372735           | .158331  | 3.95 | 399973           | 046821   |  |
| .40  | 028300                       | .500720            | .90  | 240193           | ·353837  | .46  | 374297           | .154144  | .96  | 399485           | 050695   |  |
|      | 033361                       |                    |      | 249713           |          |      | 375818           |          |      | 398959           |          |  |
| .40  | 038393<br>043401             | 400550             |      | 253196<br>256643 |          |      | 377296<br>378733 |          |      | 398394<br>397791 |          |  |
|      |                              |                    |      |                  | - 1      |      |                  |          |      |                  | .002229  |  |
| 2.50 | 048384                       | .497094            | 3.00 | 260052           | .339059  | 3.50 | 380128           | .137378  | 4.00 | 397150           | .066043  |  |
|      |                              |                    |      |                  |          |      |                  |          |      |                  |          |  |
|      |                              |                    |      |                  |          | -    |                  |          |      |                  |          |  |

TABLE 35. — 4-place Values for x = 4.0 to 15.0.

| to 15.0. |              |              |      |              |                |  |  |  |  |  |  |  |
|----------|--------------|--------------|------|--------------|----------------|--|--|--|--|--|--|--|
| x        | $J_0(x)$     | $J_1(x)$     | x    | $J_0(x)$     | J'(x)          |  |  |  |  |  |  |  |
|          |              |              |      |              |                |  |  |  |  |  |  |  |
| 4.0      | 3972         | 0660<br>1033 | 9.5  | 1939         | +.1613         |  |  |  |  |  |  |  |
| I.       | 3887         | 1033         | 1.6  | 2090         | 1395           |  |  |  |  |  |  |  |
| . 2      | 3766         | 1386         | .8   | 2218         |                |  |  |  |  |  |  |  |
| .4       | 3423         | 1719<br>2028 | .9   | 2323<br>2403 | .0928          |  |  |  |  |  |  |  |
|          |              | 2311         | 10.0 | 2459         | .0435          |  |  |  |  |  |  |  |
| 4.5      | 2961         | 2566         | .1   | 2490         | +.0184         |  |  |  |  |  |  |  |
| 1 .7     | 2693         |              | . 2  | 2496         | 0066           |  |  |  |  |  |  |  |
| .8       | 2404         | 2985         | .3   | 2477         | 0313           |  |  |  |  |  |  |  |
| .9       | 2097         | 3147         | •4   | 2434         | 0555           |  |  |  |  |  |  |  |
|          | 1776<br>1443 | 3276         | .6   | 2366<br>2276 | 0789<br>1012   |  |  |  |  |  |  |  |
| .2       | 1103         | 3371<br>3432 | .7   | 2164         | 1224           |  |  |  |  |  |  |  |
|          | 0758         | 3460         | .8   | 2032         | 1422           |  |  |  |  |  |  |  |
| -4       | 0412         | 3453         | .9   | 1881         | 1603           |  |  |  |  |  |  |  |
|          | 0068         | 3414         | 11.0 | 1712         | 1768           |  |  |  |  |  |  |  |
|          | +.0270       | 3343         | .1   | 1528         | 1913           |  |  |  |  |  |  |  |
| .7       | .0599        | 3241<br>3110 | .2   | 1330<br>1121 | 2039<br>2143   |  |  |  |  |  |  |  |
| .9       |              |              | .4   | 0902         | 2225           |  |  |  |  |  |  |  |
| 6.0      | .1506        | 2767         | 11.5 | 0677         | 2284           |  |  |  |  |  |  |  |
| .1       | -            | 2559         | .6   | 0446         | 2320           |  |  |  |  |  |  |  |
| . 2      | .2017        | 2329         | .7   | 0213         | 2333           |  |  |  |  |  |  |  |
| .3       | . 2238       | 2081         | .8   | +.0020       | 2323           |  |  |  |  |  |  |  |
| .4       | -2433        | 1816         | .9   | .0250        | 2290           |  |  |  |  |  |  |  |
| 6.5      | . 2601       | 1538<br>1250 | 12.0 | .0477        | 2234<br>2157   |  |  |  |  |  |  |  |
| .7       | .2851        | 0953         | . 2  | .0097        | 2060           |  |  |  |  |  |  |  |
| .8       | .2931        | 0652         | .3   | .1108        | 1943           |  |  |  |  |  |  |  |
| .9       | . 2981       | 0349         | .4   | .1296        | 1807           |  |  |  |  |  |  |  |
| 7.0      | .3001        | 0047         | 12.5 | . 1469       | 1655           |  |  |  |  |  |  |  |
| . I      | .2991        | +.0252       | .6   | .1626        | 1487           |  |  |  |  |  |  |  |
| .2       | .2951        | .0543        | .7   | . 1766       | 1307<br>1114   |  |  |  |  |  |  |  |
| .4       | . 2786       | .1096        | .9   | .1988        | 0012           |  |  |  |  |  |  |  |
| 7-5      | . 2663       | .1352        | 13.0 | . 2069       | 0703           |  |  |  |  |  |  |  |
| .6       | .2516        | .1592        | . I  | .2129        | 0489           |  |  |  |  |  |  |  |
| .7       | . 2346       | .1813        | . 2  | .2167        | 0271           |  |  |  |  |  |  |  |
| .8       | .2154        | .2014        | .4   | .2183        | 0052<br>+.0166 |  |  |  |  |  |  |  |
| 8.0      | .1717        | . 2346       |      | .2177        | .0380          |  |  |  |  |  |  |  |
| .1       | .1475        | . 2340       | 13.5 | .2101        | .0590          |  |  |  |  |  |  |  |
| .2       | .1222        | .2580        | - 7  | . 2032       | .0791          |  |  |  |  |  |  |  |
| -3       | .0960        | . 2657       | .8   | .1943        | .0984          |  |  |  |  |  |  |  |
| .4       | .0692        | . 2708       | .9   | .1836        | .1165          |  |  |  |  |  |  |  |
| 8.5      | .0419        | .2731        | 14.0 | .1711        | .1334          |  |  |  |  |  |  |  |
| .6       | .0146        | . 2728       | . I  | .1570        | .1488          |  |  |  |  |  |  |  |
| .8       | 0392         | . 2641       | .3   | .1245        | .1747          |  |  |  |  |  |  |  |
| .9       | 0653         | . 2559       | .4   | . 1065       | . 1850         |  |  |  |  |  |  |  |
| 9.0      | 0903         | . 2453       | 14.5 | .0875        | . 1934         |  |  |  |  |  |  |  |
| I.       | 1142         | .2324        | .6   | .0679        | .1999          |  |  |  |  |  |  |  |
| .2       | 1367         | . 2174       | .7   | .0476        | . 2043         |  |  |  |  |  |  |  |
| .4       | 1577<br>1768 | .1816        | .9   | .0064        | . 2069         |  |  |  |  |  |  |  |
| 9.5      |              | .1613        | 15.0 |              | . 2051         |  |  |  |  |  |  |  |
| 1        | 909          | 3            | 1    |              | 3-             |  |  |  |  |  |  |  |

TABLE 36. - Roots.

(a) 1st 10 roots of  $J_0(x) = 0$ 

Higher roots may be calculated to better than 1 part in 10,000 by the approximate formula

$$\begin{array}{lll} R_m = R_{m-1} + \pi \\ R_1 = 2.404826 \\ R_2 = 5.520078 \\ R_3 = 8.653728 \\ R_4 = 11.791534 \\ R_5 = 14.930918 \\ R_6 = 18.071064 \\ R_7 = 21.211637 \\ R_8 = 24.352472 \\ R_9 = 27.493479 \\ R_{10} = 30.634606 \end{array}$$

(b) 1st 15 roots of  $J_1(x) = \frac{dJ_0(x)}{dx} = 0$ 

with corresponding values of maximum or or minimum values of  $J_0(x)$ .

| No. of root (n) | Root = $x_n$ .                      | $J_0(x_n)$ .                   |
|-----------------|-------------------------------------|--------------------------------|
| 1 2             | 3.831706<br>7.015587                | 402759<br>+.300116             |
| 3               | 10.173468                           | 249705<br>+. 218359            |
| 5 6             | 13.323692                           | 196465                         |
| 7               | 19.615859<br>22.760084              | +.180063                       |
| 8 9             | 25.903672<br>29.046829              | +.156725<br>148011             |
| 10              | 32.189680<br>35.332308              | +.140606<br>134211             |
| 12              | 38.474766<br>41.617094              | +.128617<br>123668             |
| 14              | 44.759319<br>47.901461              | +.119250<br>115274             |
| 12<br>13<br>14  | 38.474766<br>41.617094<br>44.759319 | +.128617<br>123668<br>+.119250 |

Higher roots may be obtained as under (a). Notes.  $y = J_n(x)$  is a particular solution of Bessel's equation,

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (x^{2} - n^{2})y = 0.$$

The general formula for  $J_n(x)$  is

or 
$$J_n(x) = \sum_{0}^{\infty} \frac{(-1)^s x^{n+2s}}{2^{n+2s} \pi s} \frac{\pi (n+s)}{\pi (n+s)},$$
$$= \sum_{0}^{\infty} \frac{(-1)^s x^{n+2s}}{2^{n+2s} s! (n+s)!}$$

when n is an integer and

and 
$$J_{n+1}(x) = \frac{2n}{x} J_n(x) - J_{n-1}(x),$$
$$J_1(x) = \frac{dJ_0(x)}{dx},$$
$$J_{-n}(x) = (-1)^n J_n(x).$$

Tables 35 to 36 are based upon Gray and Matthews' reprints from Dr. Meissel's tables. See also Reports of British Association, 1907–1916.

#### TABLE 37.

## ELLIPTIC INTEGRALS.

Values of  $\int_0^{\frac{\pi}{2}} (1-\sin^2\theta\sin^2\phi)^{\frac{1}{2}\frac{1}{2}} d\phi.$ 

This table gives the values of the integrals between 0 and  $\pi/2$  of the function  $(1-\sin^2\theta\sin^2\phi)^{\frac{1}{2}}d\phi$  for different values of the modulus corresponding to each degree of  $\theta$  between 0 and 90.

|    | θ           | $\int_0^{\frac{\pi}{2}} \frac{1}{(1-s)^{\frac{1}{2}}}$ | $\frac{\mathrm{d}\phi}{\sin^2\theta\sin^2\phi^{)\frac{1}{2}}}$ | $\int_0^{\frac{\pi}{2}} (1-s)^{\frac{\pi}{2}}$ | $(n^2\theta \sin^2\phi)^{\frac{1}{2}}d\phi$ | θ   | $\int_0^{\frac{\pi}{2}} \frac{1}{(1-s)^{\frac{1}{2}}}$ | $\frac{d\phi}{\sin^2\theta\sin^2\phi)^{\frac{1}{2}}}$ | $\int_0^{\frac{\pi}{2}} (1-s)^{\frac{\pi}{2}}$ | $\sin^2\theta\sin^2\phi)^{\frac{1}{2}}d\phi$ |  |
|----|-------------|--------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|---------------------------------------------|-----|--------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|----------------------------------------------|--|
|    |             | Number.                                                | Log.                                                           | Number.                                        | Log.                                        |     | Number.                                                | Log.                                                  | Number.                                        | Log.                                         |  |
| ı  | 0°          | 1.5708                                                 | 0.196120                                                       | 1.5708                                         | 0.196120                                    | 45° | 1.8541                                                 | 0.268127                                              | 1.3506                                         | 0.130541                                     |  |
| Ш  | I           | 5709                                                   | 196153                                                         | 5707                                           | 196087                                      | 6   | 8691                                                   | 271644                                                | 3418                                           | 127690                                       |  |
|    | 2           | 5713                                                   | 196252                                                         | 5703                                           | 195988                                      | 7 8 | 8848                                                   | 275267                                                | 3329                                           | 124788                                       |  |
| ш  | 3           | 5719                                                   | 196418<br>196649                                               | 5697<br>5689                                   | 195822                                      |     | 9011                                                   | 279001<br>282848                                      | 3238                                           | 121836                                       |  |
|    | 4           | 5727                                                   | 190049                                                         | ,                                              | 195591                                      | 9   | 9180                                                   | 202040                                                | 3147                                           | 110030                                       |  |
| Ш  | 5°          | 1.5738                                                 | 0.196947                                                       | 1.5678                                         | 0.195293                                    | 50° | 1.9356                                                 | 0.286811                                              | 1.3055                                         | 0.115790                                     |  |
| ш  | 6           | 5751                                                   | 197312                                                         | 5665                                           | 194930                                      | I   | 9539                                                   | 290895                                                | 2963                                           | 112698                                       |  |
| ı  | 7 8         | 5767                                                   | 197743<br>198241                                               | 5649                                           | 194500                                      | 2   | 9729                                                   | 295101                                                | 2870                                           | 109563                                       |  |
| П  |             | 5785<br>5805                                           | 198806                                                         | 5632<br>5611                                   |                                             | 3   | 9927                                                   | 299435                                                | 2776<br>2681                                   | 106386                                       |  |
| ı  | 9           |                                                        |                                                                | 5011                                           | 193442                                      | 4   | 2.0133                                                 | 303901                                                | 2001                                           | 103169                                       |  |
|    | 10°         | 1.5828                                                 | 0.199438                                                       | 1.5589                                         | 0.192815                                    | 55° | 2.0347                                                 | 0.308504                                              | 1.2587                                         | 0.099915                                     |  |
|    | I           | 5854                                                   | 200137                                                         | 5564                                           | 192121                                      | 6   | 0571                                                   | 313247<br>318138                                      | 2492                                           | 096626                                       |  |
| н  | 2           | 5882                                                   | 200904                                                         | 5537                                           | 191362                                      | 7 8 | 0804                                                   | 318138                                                | 2397                                           | 093303                                       |  |
|    | 3           | 5913                                                   | 201740                                                         | 5507                                           | 190537                                      |     | 1047                                                   | 323182                                                | 2301<br>2206                                   | 089950                                       |  |
|    | 4           | 5946                                                   |                                                                | 5476                                           | 189646                                      | 9   | 1300                                                   | 328384                                                | 2200                                           | 086569                                       |  |
| ı  | 15°         | 1.5981                                                 | 0.203615                                                       | 1.5442                                         | 0.188690                                    | 60° | 2.1 565                                                | 0.333753                                              | 1.2111                                         | 0.083164                                     |  |
| Ш  | 6           | 6020                                                   | 204657                                                         | 5405                                           | 187668                                      | I   | 1842                                                   | 339295                                                | 2015                                           | 079738                                       |  |
| Ш  | 7           | 6061                                                   | 205768                                                         | 5367                                           | 186581                                      | 2   | 2132                                                   | 345020                                                | 1920                                           | 076293                                       |  |
| Н  |             | 6105                                                   | 206948                                                         | 5326                                           | 185428                                      | 3   | 2435                                                   | 350936                                                | 1826                                           | 072834                                       |  |
| I  | 9           | 6151                                                   | 208200                                                         | 5283                                           | 184210                                      | 4   | 2754                                                   | 357053                                                | 1732                                           | 069364                                       |  |
| Ш  | <b>20</b> ° | 1.6200                                                 | 0.209522                                                       | 1.5238                                         | 0.182928                                    | 65° | 2.3088                                                 | 0.363384                                              | 1.1638                                         | 0.065889                                     |  |
| Ш  | I           | 6252                                                   | 210916                                                         | 5191                                           | 181580                                      | 6   | 3439<br>3809                                           | 369940                                                | 1545                                           | 062412                                       |  |
| ш  | 2           | 6307                                                   | 212382                                                         | 5141                                           | 180168                                      | 7 8 | 3809                                                   | 376736                                                | 1453                                           | 058937                                       |  |
| н  | 3           | 6365                                                   | 213921                                                         | 5090                                           | 178691                                      |     | 4198                                                   | 383787                                                | 1362                                           | 055472                                       |  |
| Ш  | 4           | 0420                                                   | 21 5533                                                        | 5037                                           | 1//150                                      | 9   | 4010                                                   | 391112                                                | 12/2                                           | 052020                                       |  |
| H  | 25°         | 1.6490                                                 | 0.217219                                                       | 1.4981                                         | 0.175545                                    | 70° | 2.5046                                                 | 0.398730                                              | 1.1184                                         | 0.048589                                     |  |
| н  | 6           | 6557                                                   | 218981                                                         | 4924                                           | 173876                                      | I   | 5507                                                   | 406665                                                | 1096                                           | 045183                                       |  |
| Н  | 7<br>8      | 6627                                                   | 220818                                                         | 4864                                           | 172144                                      | 2   | 5998                                                   | 414943                                                | IOII                                           | 041812                                       |  |
| ш  |             | 6701                                                   | 222732                                                         | 4803                                           | 170348                                      | 3   | 6521<br>7081                                           | 423596                                                | 0927                                           | 038481                                       |  |
| II | 9           | 6777                                                   | 224723                                                         | 4740                                           | 100409                                      | 4   | 7001                                                   | 432660                                                | 0844                                           | 035200                                       |  |
| Ш  | <b>30</b> ° | 1.6858                                                 | 0.226793                                                       | 1.4675                                         | 0.166567                                    | 75° | 2.7681                                                 | 0.442176                                              | 1.0764                                         | 0.031976                                     |  |
|    | I           | 6941                                                   | 228943                                                         | 4608                                           | 164583                                      | 6   | 8327                                                   | 452196                                                | 0686                                           | 028819                                       |  |
|    | 2           | 7028                                                   | 231173                                                         | 4539                                           | 162537                                      | 7 8 | 9026                                                   | 462782                                                | 0611                                           | 025740                                       |  |
|    | 3           | 7119                                                   | 233485                                                         | 4469                                           | 160429                                      |     | .9786                                                  | 474008                                                | 0538                                           | 022749                                       |  |
|    | 4           | 7214                                                   | 235880                                                         | 4397                                           | 158261                                      | 9   | 3.0617                                                 | 485967                                                | 0468                                           | 019858                                       |  |
|    | 35°         | 1.7312                                                 | 0.238359                                                       | 1.4323                                         | 0.156031                                    | 80° | 3.1534                                                 | 0.498777                                              | 1.0401                                         | 0.017081                                     |  |
|    | 6           | 7415                                                   | 240923                                                         | 4248                                           | 153742                                      | I   | 2553                                                   | 512591                                                | 0338                                           | 014432                                       |  |
|    | 7<br>8      | 7522                                                   | 243575                                                         | 4171                                           | 151393                                      | 2   | 3699                                                   | 527613                                                | 0278                                           | 011927                                       |  |
| 1  |             | 7633<br>7748                                           | 246315                                                         | 4092                                           | 148985                                      | 3   | 5004                                                   | 544120                                                | 0223                                           | 009584                                       |  |
|    | 9           |                                                        | 249146                                                         | 4013                                           | 146519                                      | 4   | 6519                                                   | 562514                                                | 0172                                           | 007422                                       |  |
|    | <b>40</b> ° | 1.7868                                                 | 0.252068                                                       | 1.3931                                         | 0.143995                                    | 85° | 3.8317                                                 | 0.583396                                              | 1.0127                                         | 0.005465                                     |  |
|    | I           | 7992<br>8122                                           | 255085<br>258197                                               | 3849                                           | 141414                                      | 6   | 4.0528                                                 | 607751                                                | 0086                                           | 003740                                       |  |
| 1  | 2           |                                                        | 258197                                                         | 3765                                           | 138778                                      | 7 8 | 3387                                                   | 637355                                                | 0053                                           | 002278                                       |  |
|    | 3           | 8256                                                   | 261406                                                         | 3680                                           | 136086                                      | 1.4 | 7427                                                   | 676027                                                | 0026                                           | 001121                                       |  |
|    | 4           | 8396                                                   | 264716                                                         | 3594                                           | 133340                                      | 9   | 5.4349                                                 | 735192                                                | 0008                                           | 000326                                       |  |
|    | 45°         | 1.8541                                                 | 0.268127                                                       | 1.3506                                         | 0.130541                                    | 90° | 00                                                     | 8                                                     | 1.0000                                         |                                              |  |
|    |             |                                                        |                                                                |                                                |                                             |     |                                                        |                                                       |                                                |                                              |  |

## MOMENTS OF INERTIA, RADII OF GYRATION, AND WEIGHTS.

In each case the axis is supposed to traverse the centre of gravity of the body. The axis is one of symmetry. The mass of a unit of volume is w.

| Body.                                                               | Axis.                  | Weight.                                | Moment of Inertia Io.                                                                               | Square of Radius of Gyration $\rho_0^2$ . |
|---------------------------------------------------------------------|------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------|
| Sphere of radius r                                                  | Diameter               | $\frac{4\pi wr^8}{3}$                  | 8#70r <sup>5</sup>                                                                                  | $\frac{2r^2}{5}$                          |
| Spheroid of revolution, polar axis 2a, equatorial diameter 2r       | Polar axis             | $\frac{4\pi war^2}{3}$                 | 8πwar4<br>15                                                                                        | 2r <sup>2</sup> 5                         |
| Ellipsoid, axes 2a, 2b, 2c                                          | Axis 2a                | <u>4πwabc</u><br>3                     | $\frac{4\pi wabc(b^2+c^2)}{15}$                                                                     | $\frac{b^2+c^2}{5}$                       |
| Spherical shell, external radius r, internal r'                     | Diameter               | $\frac{4\pi\pi v(r^3-r'^3)}{3}$        | $\frac{8\pi v(r^5-r^{5})}{15}$                                                                      | $\frac{2(r^5-r'^5)}{5(r^3-r'^3)}$         |
| Ditto, insensibly thin, radius r, thickness dr                      | Diameter               | $4\pi w r^2 dr$                        | $\frac{8\pi w r^4 dr}{3}$                                                                           | $\frac{2r^2}{3}$                          |
| Circular cylinder, length 2a, radius r                              | Longitudinal axis 2a   | $2\pi war^2$                           | πιυαν <sup>4</sup>                                                                                  | $\frac{r^2}{2}$                           |
| Elliptic cylinder, length 2a, transverse axes 2b, 2c                | Longitudinal axis 2a   | 2πwabc                                 | $\frac{\pi wabc(b^2+c^2)}{2}$                                                                       | $\frac{b^2+c^2}{4}$                       |
| Hollow circular cylinder, length 2a, external radius r, internal r' | Longitudinal axis 2a   | 2πwa(r <sup>2</sup> —r' <sup>2</sup> ) | $\pi wa(r^4-r'^4)$                                                                                  | $\frac{r^2+r'^2}{2}$                      |
| Ditto, insensibly thin, thickness dr                                | Longitudinal axis 2a   | 4 mwardr                               | $4\pi war^{8}dr$                                                                                    | $r^2$                                     |
| Circular cylinder, length 2a, radius r                              | Transverse<br>diameter | 2πwar²                                 | $\frac{\pi \pi var^2(3r^2+4a^2)}{6}$                                                                | $\frac{r^2}{4} + \frac{a^2}{3}$           |
| Elliptic cylinder, length 2a, transverse axes 2a, 2b                | Transverse axis 2b     | 2#wabc                                 | $\frac{\pi wabc(3c^2+4a^2)}{6}$                                                                     | $\frac{c^2}{4} + \frac{a^2}{3}$           |
| Hollow circular cylinder, length 2a, external radius r, internal r' | Transverse<br>diameter | $2\pi wa(r^2-r'^2)$                    | $\frac{\pi wa}{6} \left\{ \begin{array}{l} 3(r^4 - r'^4) \\ +4a^2(r^2 - r'^2) \end{array} \right\}$ | $\frac{r^2+r'^2}{4}+\frac{a^2}{3}$        |
| Ditto, insensibly thin, thickness dr                                | Transverse<br>diameter | 4πwardr                                | $\pi wa(2r^3 + \frac{4}{3}a^2r)dr$                                                                  | $\frac{r^2}{2} + \frac{a^2}{3}$           |
| Rectangular prism, dimensions 2a, 2b, 2c                            | Axis 2a                | Swabc                                  | $\frac{8wabc(b^2+c^2)}{3}$                                                                          | $\frac{b^2+c^2}{3}$                       |
| Rhombic prism, length 2a, diagonals 2b, 2c                          | Axis 2a                | 4wabc                                  | $\frac{2\pi vabc(b^2+c^2)}{3}$                                                                      | $\frac{b^2+\epsilon^2}{6}$                |
| Ditto ·                                                             | Diagonal 2b            | 4wabc                                  | $\frac{2wabc(c^2+2a^2)}{3}$                                                                         | $\frac{c^2}{6} + \frac{a^2}{3}$           |

(Taken from Rankine.)

For further mathematical data see Smithsonian Mathematical Tables, Becker and Van Orstrand (Hyperbolic, Circular and Exponential Functions); Functionentafeln, Jahnke und Emde (xtgx, x-1tgx, Roots of Transcendental Equations, a + bi and  $re^{\vartheta i}$ , Exponentials, Hyperbolic Functions,  $\int_{0}^{x} \frac{\sin u}{u} du, \int_{x}^{\infty} \frac{\cos u}{u} du, \int_{\infty}^{x-x} \frac{e^{-u}}{u} du, \text{ Fresnel Integral, Gamma Function, Gauss Integral}$   $\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-x^{2}} dx, \text{ Pearson Function } e^{-\frac{1}{2}\pi\nu} \int_{0}^{\pi} \sin r e^{\nu x} dx, \text{ Elliptic Integrals and Functions, Spherical and Cylindrical Functions, etc.). For further references see under Tables, Mathematical, in the 11th ed. Encyclopædia Britannica. See also Carr's Synopsis of Pure Mathematics and Mellor's Higher Mathematics for Students of Chemistry and Physics.$ 

## INTERNATIONAL ATOMIC WEIGHTS. VALENCIES.

The International Atomic Weights are quoted from the report of the International Committee on Atomic Weights (Journal American Chemical Society, 39, 42, p. 9, 1920).

| Softmittee on Atomic Weights Gournal Principlan Chemical Society, 39, 42, p. 9, 1920). |          |                                |          |                |          |                                  |                |  |  |  |  |
|----------------------------------------------------------------------------------------|----------|--------------------------------|----------|----------------|----------|----------------------------------|----------------|--|--|--|--|
| Substance.                                                                             | Symbol.  | Relative atomic wt. Oxygen=16. | Valency. | Substance.     | Symbol.  | Relative atomic wt. Oxygen = 16. | Valency.       |  |  |  |  |
|                                                                                        |          |                                |          |                |          |                                  |                |  |  |  |  |
| Aluminum                                                                               | Al       | 27.I                           | 3.       | Mercury        | Hg       | 200.6                            | I, 2.          |  |  |  |  |
| Antimony                                                                               | Sb       | 120.2                          | 3, 5.    | Molybdenum     | Mo       | 96.0                             | 4, 6.          |  |  |  |  |
| Argon                                                                                  | A        | 39.9                           | 0.       | Neodymium      | Nd<br>Ne | 144.3                            | 3.             |  |  |  |  |
| Arsenic<br>Barium                                                                      | As<br>Ba | 74.96                          | 3, 5.    | Neon<br>Nickel | Ne<br>Ni | 20.2<br>58.68                    | 0.             |  |  |  |  |
| Darium                                                                                 | Da       | 137.37                         | 2.       | [ation]        | _        | 50.00                            | 2, 3.          |  |  |  |  |
| Bismuth                                                                                | Bi       | 208.0                          | 3, 5.    | Niton (Raeman- | Nt.      | 222,4                            |                |  |  |  |  |
| Boron                                                                                  | B        | 10.9                           | 3.       | Nitrogen       | N        | 14.008                           | 3, 5,          |  |  |  |  |
| Bromine                                                                                | Br       | 79.92                          | J.       | Osmium         | Os       | 190.9                            | 3, 5.<br>6, 8. |  |  |  |  |
| Cadmium                                                                                | Cd       | 112.40                         | 2.       | Oxygen         | 0        | 16.00                            | 2.             |  |  |  |  |
| Cæsium                                                                                 | Cs       | 132.81                         | I.       | Palladium      | Pd       | 106.7                            | 2, 4.          |  |  |  |  |
|                                                                                        | -        |                                |          |                |          | The same of                      |                |  |  |  |  |
| Calcium                                                                                | Ca       | 40.07                          | 2.       | Phosphorus     | P        | 31.04                            | 3, 5.          |  |  |  |  |
| Carbon                                                                                 | C        | 12.005                         | 4.       | Platinum       | Pt       | 195.2                            | 2, 4.          |  |  |  |  |
| Cerium                                                                                 | Ce       | 140.25                         | 3, 4.    | Potassium      | K        | 39.10                            | I.             |  |  |  |  |
| Chlorine<br>Chromium                                                                   | Cl       | 35.46                          | I.       | Praseodymium   | Pr<br>Ra | 140.9                            | 3.             |  |  |  |  |
| Chromani                                                                               | Cr       | 52.0                           | 2, 3, 6. | Radium         | Ka       | 226.0                            | 2.             |  |  |  |  |
| Cobalt                                                                                 | Co       | 58.97                          | 2, 3.    | Rhodium        | Rh       | 102.9                            | 3.             |  |  |  |  |
| Columbium                                                                              | Cb       | 93.1                           | 5.       | Rubidium       | Rb       | 85.45                            | J. I.          |  |  |  |  |
| Copper                                                                                 | Cu       | 63.57                          | I, 2.    | Ruthenium      | Ru       | 101.7                            | 6, 8.          |  |  |  |  |
| Dysprosium                                                                             | Dy       | 162.5                          | 3.       | Samarium       | Sa       | 150.4                            | 3.             |  |  |  |  |
| Erbium                                                                                 | Er       | 167.7                          | 3.       | Scandium       | Sc       | 45.1                             | 3.             |  |  |  |  |
|                                                                                        |          | -                              |          |                |          |                                  |                |  |  |  |  |
| Europium                                                                               | Eu .     | 152.0                          | 3.       | Selenium       | Se       | 79.2                             | 2, 4, 6.       |  |  |  |  |
| Fluorine<br>Gadolinium                                                                 | F        | 19.0                           | I.       | Silicon        | Si       | 28.3                             | 4.             |  |  |  |  |
| Gallium                                                                                | Gd<br>Ga | 1 57.3                         | 3.       | Silver         | Ag       | 107.88                           | Ι.             |  |  |  |  |
| Germanium                                                                              | Ge       | 70.1                           | 3.       | Sodium         | Na<br>Sr | 23.00                            | I.             |  |  |  |  |
| Germanium                                                                              | Ge       | 72.5                           | 4.       | Strontium      | 31       | 87.63                            | 2.             |  |  |  |  |
| Glucinum                                                                               | Gl       | 9.1                            | 2. 0     | Sulphur        | S        | 32.06                            | 2, 4, 6.       |  |  |  |  |
| Gold                                                                                   | Au       | 197.2                          | I, 3.    | Tantalum       | Ta       | 181.5                            | 5.             |  |  |  |  |
| Helium √                                                                               | He       | 4.00                           | 0.       | Tellurium      | Te       | 127.5                            | 2, 4, 6.       |  |  |  |  |
| Holmium                                                                                | Ho       | 163.5                          | 3.       | Terbium        | Tb       | 159.2                            | 3.             |  |  |  |  |
| Hydrogen                                                                               | H        | 1.008                          | ī.       | Thallium       | Tl       | 204.0                            | 1, 3.          |  |  |  |  |
| To diam                                                                                |          | 0                              |          | Thorium        | Th       | 232.15                           | 4.             |  |  |  |  |
| Indium<br>Iodine                                                                       | In       | 114.8                          | 3.       | (D1 1)         | T        | -60 -                            |                |  |  |  |  |
| Iridium                                                                                | I<br>Ir  | 126.92                         | I.       | Thulium<br>Tin | Tm<br>Sn | 168.5                            | 3.             |  |  |  |  |
| Iron                                                                                   | Fe       | 193.1                          | 4.       | Titanium       | Sn<br>Ti | 118.7<br>48.1                    | 2, 4.          |  |  |  |  |
| Krypton                                                                                | Kr       | 55.84<br>82.92                 | 2, 3.    | Tungsten       | W        | 184.0                            | 4·<br>6.       |  |  |  |  |
| ) [                                                                                    | 111      | 02.92                          | 0.       | Uranium        | Ü        | 238.2                            | 4, 6.          |  |  |  |  |
| Lanthanum                                                                              | La       | 139.0                          | 3.       | 0.4            |          | 230.2                            | 1,             |  |  |  |  |
| Lead                                                                                   | Pb       | 207.20                         | 2, 4.    | Vanadium       | V        | 51.0                             | 3, 5.          |  |  |  |  |
| Lithium                                                                                | Li       | 6.94                           | I.       | Xenon          | Xe       | 130.2                            | 0.             |  |  |  |  |
| Lutecium                                                                               | Lu "     | 175.0                          | 3.       | Ytterbium      | Yb       | 173.5                            | 3.             |  |  |  |  |
| Magnesium                                                                              | Mg       | 24.32                          | 2.       | Yttrium        | Yt       | 89.33                            | 3.             |  |  |  |  |
| Manganese                                                                              | Mn       | 54.93                          | 2, 3, 7. | Zinc           | Zn       | 65.37                            | 2.             |  |  |  |  |
|                                                                                        |          |                                |          | Zirconium      | Zr       | 90.6                             | 4.             |  |  |  |  |

# VOLUME OF A CLASS VESSEL FROM THE WEIGHT OF ITS EQUIVALENT VOLUME OF MERCURY OR WATER.

If a glass vessel contains at to C, P grammes of mercury, weighed with brass weights in air at 760 mm. pressure, then its volume in c. cm.

at the same temperature, 
$$t_1: V = PR = P\frac{p}{d}$$
, at another temperature,  $t_1, : V = PR_1 = P p/d \{ 1 + \gamma (t_1 - t) \}$ 

p = the weight, reduced to vacuum, of the mass of mercury or water which, weighed with brass weights, equals 1 gram;

d = the density of mercury or water at  $t^{\circ}C$ ,

and  $\gamma = 0.000$  025, is the cubical expansion coefficient of glass.

|                  |          |                        |                          | 10           |                            |                          |
|------------------|----------|------------------------|--------------------------|--------------|----------------------------|--------------------------|
| Temper-<br>ature |          | WATER.                 |                          |              | MERCURY.                   |                          |
| ŧ                | R.       | $R_1, t_1 = 10^\circ.$ | $R_1, t_1 = 20^{\circ}.$ | R.           | $R_1$ , $t_1 = 10^\circ$ . | $R_1, t_1 = 20^{\circ}.$ |
| 00               | 1.001192 | 1.001443               | 1.001693                 | 0.0735499    | 0.0735683                  | 0.0735867                |
| I                | 1133     | 1358                   | 1609                     | 5633         | 5798                       | 5982                     |
| 2                | 1092     | 1292                   | 1542                     | 5766         | 5914                       | 6098                     |
| 3                | 1068     | 1243                   | 1493                     | 5900         | 6029                       | 6213                     |
| 4                | 1060     | 1210                   | 1460                     | 6033         | 6144                       | 6328                     |
| 5                | 1068     | 1193                   | 1443                     | 6167         | 6259                       | 6443                     |
| 6                | 1.001092 | 1.001192               | 1.001442                 | 0.0736301    | 0.0736374                  | 0.0736558                |
| 7 8              | 1131     | 1206                   | 1456                     | 6434         | 6490                       | 6674                     |
|                  | 1184     | 1234                   | 1485                     | 6568         | 6605                       | 6789                     |
| 9                | 1252     | 1277                   | 1 527                    | 6702<br>6835 | 6720                       | 6904                     |
|                  | 1 333    | 1333                   | 1 584                    | 0035         | 6835                       | 7020                     |
| II               | 1.001428 | 1.001.403              | 1.001653                 | 0.0736969    | 0.0736951                  | 0.0737135                |
| 12               | 1 5 3 6  | 1486                   | 1736                     | 7103         | 7066                       | 7250                     |
| 13               | 1657     | 1 582                  | 1832                     | 7236         | 7181                       | 7365                     |
| 14               | 1790     | 1690                   | 1940                     | 7370         | 7297                       | 7481                     |
| 15               | 1935     | 1810                   | 2060                     | 7504         | 7412                       | 7 5 9 6                  |
| 16               | 1.002092 | 1.001942               | 1.002193                 | 0.0737637    | 0.0737527                  | 0.0737711                |
| 17               | 2261     | 2086                   | 2337                     | • 777I       | 7642                       | 7826                     |
| 18               | 2441     | 2241                   | 2491                     | 7905         | 77.57                      | 7941                     |
| 19               | 2633     | 2407                   | 2658                     | 8039         | 7872                       | 8057                     |
| 20               | 2835     | 2584                   | 2835                     | 8172         | 7988                       | 8172                     |
| 21               | 1.003048 | 1.002772               | 1.003023                 | 0.0738306    | 0.0738103                  | 0.0738288                |
| 22               | 3271     | 2970                   | 3220                     | 8440         | 8218                       | 8403                     |
| 23               | 3504     | 3178                   | 3429                     | 8573         | 8333                       | 8518                     |
| 24               | 3748     | 3396                   | 3647                     | 8707         | 8449                       | 8633                     |
| 25               | 4001     | 3624                   | 3875                     | 8841         | 8564                       | 8748                     |
| 26               | 1.004264 | 1.003862               | 1.004113                 | 0.0738974    | 0.0738679                  | 0.0738864                |
| 27 28            | 4537     | 4110                   | 4361                     | 9108         | 8794                       | 8979                     |
|                  | 4818     | 4366                   | 4616                     | 9242         | 8910                       | 9094                     |
| 29               | 5110     | 4632                   | 4884                     | 9376         | 9025                       | 9210                     |
| 30               | 5410     | 4908                   | 51 59                    | 9510         | 9140                       | 9325                     |
|                  |          |                        |                          |              |                            |                          |

Taken from Landolt, Börnstein, and Meyerhoffer's Physikalisch-Chemische Tabellen.

#### TABLES 41-42.

## REDUCTIONS OF WEIGHINGS IN AIR TO VACUO.

When the weight M in grams of a body is determined in air, a correction is necessary for the buoyancy of the air equal to M  $\delta$  ( $1/d-1/d_1$ ) where  $\delta$  = the density (wt. of 1 ccm in grams = 0.0012) of the air during the weighing, d the density of the body, d<sub>1</sub> that of the weights.  $\delta$  for various barometric values and humidities may be determined from Tables 153 to 155. The following table is computed for  $\delta$  = 0.0012. The corrected weight = M + kM/1000.

| Density                                                                               | Co                                                                                                                           | orrection factor                                                                                                                     | r, k.                                                                                                                   | Density                                                                                    | Со                                                                                                         | rrection factor                                                                                                  | , k.                                                                                                |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| of body<br>weighed<br>d.                                                              | Pt. Ir. weights d <sub>1</sub> =21.5.                                                                                        | Brass<br>weights<br>8.4.                                                                                                             | Quartz or<br>Al. weights<br>2.65.                                                                                       | of body<br>weighed<br>d.                                                                   | Pt. Ir. weights d <sub>1</sub> =21.5.                                                                      | Brass<br>weights<br>8.4.                                                                                         | Quartz or<br>Al. weights<br>2.65.                                                                   |
| .5<br>.6<br>.7<br>.75<br>.80<br>.85<br>.90<br>.95<br>I.00<br>I.1<br>I.2<br>I.3<br>I.4 | + 2.34<br>+ 1.91<br>+ 1.66<br>+ 1.55<br>+ 1.44<br>+ 1.36<br>+ 1.28<br>+ 1.21<br>+ 1.14<br>+ 1.04<br>+ 0.94<br>+ .87<br>+ .80 | + 2.26<br>+ 1.86<br>+ 1.57<br>+ 1.46<br>+ 1.36<br>+ 1.27<br>+ 1.19<br>+ 1.12<br>+ 1.06<br>+ 0.95<br>+ .86<br>+ .78<br>+ .71<br>+ .66 | + 1.95<br>+ 1.55<br>+ 1.26<br>+ 1.15<br>+ 1.05<br>+ 0.96<br>+ .88<br>+ .81<br>+ .75<br>+ .64<br>+ .55<br>+ .47<br>+ .40 | 1.6<br>1.7<br>1.8<br>1.9<br>2.0<br>2.5<br>3.0<br>4.0<br>6.0<br>8.0<br>10.0<br>15.0<br>20.0 | + 0.69<br>+ .65<br>+ .62<br>+ .58<br>+ .54<br>+ .34<br>+ .24<br>+ .14<br>+ .09<br>+ .06<br>+ .03<br>+ .001 | + 0.61<br>+ .56,<br>+ .52<br>+ .49<br>+ .46<br>+ .34<br>+ .26<br>+ .16<br>+ .06<br>+ .01<br>02<br>06<br>08<br>09 | + 0.30<br>+ .25<br>+ .21<br>+ .18<br>+ .15<br>+ .03<br>05<br>15<br>25<br>30<br>33<br>37<br>39<br>40 |

TABLE 42.— Reductions of Densities in Air to Vacuo.

(This correction may be accomplished through the use of the above table for each separate

If s is the density of the substance as calculated from the uncorrected weights, S its true density, and L the true density of the liquid used, then the vacuum correction to be applied to the uncorrected density, s, is 0.0012 (I - s/L).

Let  $W_s$  = uncorrected weight of substance,  $W_l$  = uncorrected weight of the liquid displaced by the substance, then by definition,  $s = LW_s/W_l$ . Assuming D to be the density of the balance of weights,  $W_s \{i + 0.0012 (i/S - i/D)\}$  and  $W_l \{i + 0.0012 (i/L - i/D)\}$  are the true weights of the substance and liquid respectively (assuming that the weighings are made under normal atmospheric corrections, so that the weight of i cc. of air is 0.0012 gram).

Then the true density 
$$S\!=\!\frac{W_{s}\!\left\{i+o.0012\;(i/S-i/D)\right\}}{W_{l}\!\left\{i+o.0012\;(i/L-i/D)\right\}}I.$$

But from above  $W_s/W_l = s/L$ , and since L is always large compared with 0.0012, S-s = 0.0012 (1-s/L).

The values of 0.0012 (I - s/L) for densities up to 20 and for liquids of density I (water), 0.852 (xylene) and 13.55 (mercury) follow:

(See reference below for discussion of density determinations).

| Density of                       |                                                      | Corrections.                                         |                                                                | Density of                      | Corre                                        | ctions.                                      |
|----------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|---------------------------------|----------------------------------------------|----------------------------------------------|
| substance<br>s.                  | L=1<br>Water.                                        | L=0.852<br>Xylene.                                   | L=13.55<br>Mercury.                                            | substance<br>s                  | L= 1<br>Water.                               | L=13.55<br>Mercury.                          |
| 0.8<br>0.9<br>I.<br>2.           | + 0.00024<br>+ .00012<br>0.0000<br>0012              | - 0.0002<br>0016                                     | + 0.0010                                                       | 11.<br>12.<br>13.               | - 0.0120<br>0132<br>0144<br>0156             | + 0.0002<br>+ .0001<br>0.0000<br>0.0000      |
| 3.<br>4.<br>5.<br>6.<br>7.<br>8. | 0024<br>0036<br>0048<br>0060<br>0072<br>0084<br>0096 | 0030<br>0044<br>0058<br>0073<br>0087<br>0101<br>0115 | + .0009<br>+ .0008<br>+ .0008<br>+ .0007<br>+ .0006<br>+ .0005 | 15.<br>16.<br>17.<br>18.<br>19. | 0168<br>0180<br>0192<br>0204<br>0216<br>0228 | 0001<br>0002<br>0003<br>0004<br>0005<br>0006 |
| 10.                              | 8010.                                                | 0129                                                 | + .0003                                                        |                                 | . 1                                          |                                              |

## MECHANICAL PROPERTIES.\*

\* Compiled from various sources by Harvey A. Anderson, C.E., Assistant Engineer Physicist, U. S. Bureau of Standards.

The mechanical properties of most materials vary between wide limits; the following figures are given as being representative rather than what may be expected from an individual sample. Figures denoting such properties are commonly given either as specification or experimental values. Unless otherwise shown, the values below are experimental. Credit for information included is due the U. S. Bureau of Standards; the Am. Soc. for Testing Materials; the Soc. of Automotive Eng.; the Motor Transport Corps, U. S. War Dept.; the Inst. of Mech. Eng.; the Inst. of Metals; Forest Products Lab.; Dept. of Agriculture (Bull. 556); Moore's Materials of Engineering; Hatfield's Cast Iron; and various other American, English and French authorities.

The specified properties shown are indicated minimums as prescribed by the Am. Soc. for Testing Materials, U. S. Navy Dept., Panama Canal, Soc. of Automotive Eng., or Intern. Aircraft Standards Board. In the majority of cases, specifications show a range for chemical constituents and the average value only of this range is quoted. Corresponding average values are in general given for mechanical properties. In general, tensile test specimens were 12.8 mm (0.505 in.) diameter and 50.8 mm (2 in.) gage length. Sizes of compressive and transverse specimens are generally shown accompanying the data.

All data shown in these tables are as determined at ordinary room temperature, averaging 20° C (68° F.). The properties of most metals and alloys vary considerably from the values shown when the tests are conducted at higher or lower temperatures.

The following definitions govern the more commonly confused terms shown in the tables. In all cases the stress referred to in the definitions is equal to the total load at that stage of the test divided by the original cross-sectional area of the specimen (or the corresponding stress in the extreme fiber as computed from the flexure formula for transverse tests).

Proportional Limit (abbreviated P-limit). — Stress at which the deformation (or deflection) ceases to be proportional to the load (determined with extensometer for tension, compressometer for compression and deflectometer for transverse tests).

Elastic Limit. — Stress which produces a permanent elongation (or shortening) of o.oor per cent of the gage length, as shown by an instrument capable of this degree of precision (determined from set readings with extensometer or compressometer). In transverse tests the extreme fiber stress at an appreciable permanent deflection.

Yield Point. — Stress at which marked increase in deformation (or deflection) of specimen occurs without increase in load (determined usually by drop of beam or with dividers for tension, compression or transverse tests).

Ultimate Strength in Tension or Compression. — Maximum stress developed in the material during test.

Modulus of Rupture. — Maximum stress in the extreme fiber of a beam tested to rupture, as computed by the empirical application of the flexure formula to stresses above the transverse proportional limit.

Modulus of Elasticity (Young's Modulus). — Ratio of stress within the proportional limit to the corresponding strain, — as determined with an extensometer. Note: All moduli shown are obtained from tensile tests of materials, unless otherwise stated.

Brinell Hardness Numeral (abbreviated B. h. n.). — Ratio of pressure on a sphere used to indent the material to be tested to the area of the spherical indentation produced. The standard sphere used is a romm diameter hardened steel ball. The pressures used are 3000 kg for steel and 500 kg for softer metals, and the time of application of pressure is 30 seconds. Values shown in the tables are based on spherical areas computed in the main from measurements of the diameters of the spherical indentations, by the following formula:

B. h. n. = 
$$P \div \pi t D = P \div \pi D (D/2 - \sqrt{D^2/4 - d^2/4})$$
.

P = pressure in kg, t = depth of indentation, D = diameter of ball, and d = diameter of indentation, --- all lengths being expressed in mm. Brinell hardness values have a direct relation to tensile strength, and hardness determinations may be used to define tensile strengths by employing the proper conversion factor for the material under consideration.

Shore Scleroscope Hardness. — Height of rebound of diamond pointed hammer falling by its own weight on the object. The hardness is measured on an empirical scale on which the average hardness of martensitic high carbon steel equals 100. On very soft metals a "magnifier" hammer is used in place of the commonly used "universal" hammer and values may be converted to the corresponding "universal" value by multiplying the reading by \$. The scleroscope hardness, when accurately determined, is an index of the tensile elastic limit of the metal tested.

Erichsen Value. — Index of forming quality of sheet metal. The test is conducted by supporting the sheet on a circular ring and deforming it at the center of the ring by a spherical pointed tool. The depth of impression (or cup) in mm required to obtain fracture is the Erichsen value for the metal. Erichsen standard values for trade qualities of soft metal sheets are furnished by the manufacturer of the machine corresponding to various sheet thicknesses. (See Proc. A. S. T. M. 17, part 2, p. 200, 1917.)

Alloy steels are commonly used in the heat treated condition, as strength increases are not commensurate with increases in production costs for annealed alloy steels. Corresponding strength values are accordingly shown for annealed alloy steels and for such steels after having been given certain recommended heat treatments of the Society of Automotive Engineers. The heat treatments followed in obtaining the properties shown are outlined on the pages immediately following the tables on steel. It will be noted that considerable latitude is allowed in the indicated drawing temperatures and corresponding wide variations in physical properties may be obtained with each heat treatment. The properties vary also with the size of the specimens heat treated. The drawing temperature is shown with the letter denoting the heat treatment, wherever the information is available.

#### TABLE 44. MECHANICAL PROPERTIES.

TABLE 44. - Ferrous Metals and Alloys - Iron and Iron Alloys.

|                                     |                 |                       |                 |                       | _                          |                     |               |         |
|-------------------------------------|-----------------|-----------------------|-----------------|-----------------------|----------------------------|---------------------|---------------|---------|
|                                     | Yield<br>point. | Ultimate<br>strength. | Yield<br>point. | Ultimate<br>strength. | Elong. in 50.8 mm (2 in.). | Reduct.<br>in area. | Hardi         | ness.   |
| Metal. Grade.                       |                 | St                    |                 | 52                    | 田克                         | 14                  | Brinell       | Sclero- |
|                                     |                 | sion.<br>mm²          | Ten<br>lb/      | in <sup>2</sup>       | Per cent.                  |                     | at 3000<br>kg | scope.  |
| Iron:                               |                 |                       |                 |                       |                            |                     |               |         |
| Electrolytic* (remelt): as forged   | 34.0            | 38.5                  | 48,500          | 55,000                | 33.0                       | 83.0                | 95 t          | 18      |
| annealed 900° C.                    |                 |                       |                 |                       | 52.0                       | 87.0                | 75 †          | -       |
| Gray cast‡(19 mm diam. bars)        |                 | 117.5                 | indet.          | \$ 25,000             | negli                      | gible               | 100           | 524     |
|                                     | -               | 26.5                  |                 | 138,000               |                            | -                   | 150           | 140     |
| Malleable cast, American (after     | 114.0           | 124.5                 | \$ 20,000       |                       | \$ 15.0                    | \$ 15.0             | _             | -       |
| Hatfield)                           | 31.5            | 140.0                 | 145,000         | 157,000               | 1 4.5                      | 1 4.5               | -             | _       |
| European (after Am. Malleable       | (19:0           | (29.5                 | (27,000         |                       | 6.0                        |                     |               | -       |
| Castings Ass.)                      | 28.0            | 45.5                  | {40,000         |                       |                            |                     | _             | -       |
| (run of 24 successive heats, 1919)§ | -               | 40.8                  |                 | 58,000                | 21.6                       |                     | _             | -       |
| Commercial wrought                  | \$19.5          | 134.0                 | § 28,000        |                       |                            | 1 7 .0              | _             | {25     |
|                                     | 122.5           | 137.0                 |                 | 153,000               |                            |                     |               | 130     |
| Silicon alloys   Si 0.01: as forged | 29.5            | 31.5                  | 41,800          |                       | 35.0                       |                     | _             | -       |
| (Melted in vacuo) ann. 970° C       | 11.0            | 24.5                  | 16,000          | 34,900                | 53.0                       | 81.5                |               | -       |
| (Note: C max. o.o1 per cent)        |                 |                       |                 |                       |                            |                     |               |         |
| Si 1.71: as forged                  | 48.0            |                       | 68,100          | 1 /0                  |                            | 1                   | _             |         |
| annealed 970° C                     | - 25.0          | 38.0                  | 35,800          |                       |                            |                     |               | -       |
| Si 4.40: as forged                  | 66.0            | 74.0                  | 94,000          | 0,                    | 6.0                        | , , ,               | _             | -       |
| annealed 970° C                     | 51.0            | 64.5                  | 72,900          |                       | 24.0                       |                     |               | _       |
| Aluminum alloys Al 0.00: as forged  | 35.5            | 38.5                  | 50,700          |                       | 26.0                       |                     | _             | _       |
| (Melted in vacuo) ann. 1000° C      | 12.5            | 24.5                  | 17,600          | 34,900                | 60.0                       | 93.5                |               |         |
| (Note: C max. o.or per cent)        | .0 -            |                       | 60              |                       |                            | m6 .                |               |         |
| Al 3.08: as forged                  | 48.0            | 54.5                  | 68,200          |                       | 21.0                       |                     | _             |         |
| annealed 1000° C Al 6.24: as forged | 22.5            | 37.5                  | 31,800          |                       | 51.0<br>28.0               | 0 0                 |               |         |
| annealed 1000° C                    | 54.5            | 60.5                  | 77,700          |                       |                            | 74.7                |               |         |
| annealed 1000 C                     | 37.5            | 49.0                  | 53,400          | 09,800                | 27.0                       | 55.5                |               |         |
|                                     |                 |                       |                 |                       |                            |                     |               |         |

Composition, approximate:
Electrolytic, C 0.0125 per cent; other impurities less than 0.05 per cent.
Cast, gray: Graphitic, C 3.0, Si r.3 to 2.0, Mn 0.6 to 0.9, S max. 0.1, P max. 1.2.
A. S. T. M. Spec. A48 to 18 allows S max. 0.10, except S max. 0.12 for heavy castings.
Malleable: American "Black Heart," C 2.8 to 3.5, Si 0.6 to 0.8, Mn max. 0.4, S max. 0.07, P max. 0.2.
European "Steely Fracture," C 2.8 to 3.5, Si 0.6 to 0.8, Mn 0.15, S max. 0.35, P max. 0.2.
Compressive Strengths [Specimens tested: 25.4 mm (r in.) diam. cylinders 76.2 mm (3 in.) long].
Electrolytic iron 50.5 kg/mm³ or 80,000 lb/in².
Gray and malleable cast iron 56.5 to 84.5 kg/mm² or 80,000 to 120,000 lb/in².
Wrought iron, approximately equal to tensile yield point (slightly above P-limit).

Thickness, soft annealed. mm Sheet metal hoop iron, polished 9.5 Charcoal iron tinned sheet 7.5 Second quality tinned sheet 6.7 0.374 . . 9 . 5 0.205 0.264

Modulus of elasticity in tension and compression:

Electrolytic iron... 17,500 kg/mm² or 25,000,000 lb/in²

Cast iron..... 10,500 kg/mm² or 15,000,000 lb/in²

Wrought iron... 17,500 kg/mm² or 25,000,000 lb/in²

Wrought iron... 17,500 kg/mm² or 25,000,000 lb/in² Cast iron...... 10,500 Modulus of elasticity in shear:

Electrolytic (remelt) P-limit....

Gray cast iron

Modulus of rupture, 33.0 kg/mm² or 47,000 lb/in²

"Arbitration Bar," 31.8 mm (1½ in.) diameter, or 304.8 mm (12 in.) span; minimum central load at rupture 1130 to 1500 kg (2500 to 3300 lb.); minimum central deflection at rupture 2.5 mm (0.1 in.), (A. S. T.

\* Properties of Swedish iron (impurities less than r per cent) approximate those of electrolytic iron.

\* Properties of Swedish iron (impurities less than r per cent) approximate those of electrolytic iron.

† These two values of B. h. n. only are as determined at 500 kg pressure.

† U. S. Navy specifies minimum tensile strength of r4.r kg/mm² or 20,000 lb/in².

§ Averages for a U. S. foundry.

|| From T. D. Yensen, University of Illinois, Engr. Exp. Station, Bulletin No. 83, 1915 (shows Si 4.40 as alloy of maximum strength).
¶ From T. D. Yensen, University of Illinois, Engr. Exp. Station, Bulletin No. 95, 1917.

## MECHANICAL PROPERTIES OF MATERIALS.

TABLE 45. — Carbon Steels — Commercial Experimental Values.

S. A. E. (Soc. of Automotive Eng., U. S. A.) classification scheme used as basis for steel groupings. First two digits S. A. E. Spec. No. show steel group number, and last two (or three in case of five figures) show carbon content in hundredths of one per cent.

carbon content in hundredths of one per cent.

The first lines of properties for each steel show values for the rolled or forged metal in the annealed or normalized condition. Comparative heat-treated values show properties after receiving modified S. A. E. heat treatment as shown below (Table 46). The P-limit and ductility of cast steel average slightly lower and the ultimate strength 10 to 15 per cent higher than the values shown for the same composition steel in the annealed condition. The properties of rolled steel (raw) are approximately equal to those shown for the annealed condition, which represents the normalized condition of the metal rather than the soft annealed state.

The data for heat-treated strengths are average values for specimens for heat treatment ranging in size from \(\frac{1}{2}\) to 1\(\frac{1}{2}\) in diameter. The final drawing or quenching temperature for the properties shown is indicated in degrees C with the heat treatment letter, wherever the information is available. In general, specimens were drawn near the lower limit of the indicated temperature range.

were drawn near the lower limit of the indicated temperature range.

| Metal.        | S.A.E. spec. | Nominal contents per cent.                              | S.A.E.<br>heat<br>treat- | P-limit.                                                     | Ultimate<br>strength.                                         | P-limit.                                                           | Ultimate<br>strength.                                                          | Elong. in 50.8 mm (2 in.).                                  | Reduct.                                                      | Hard<br>No kg.                                | 1                                            |
|---------------|--------------|---------------------------------------------------------|--------------------------|--------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|
| -             |              |                                                         | ment.                    | Ten<br>kg/r                                                  | sion<br>mm²                                                   | Ter<br>lb/                                                         | sion<br>'in²                                                                   | Per                                                         | cent                                                         | Brinell<br>@ 3000 k                           | Sclero-<br>scope.                            |
| Steel, carbon |              | See Spec.<br>No.<br>(Mn 0.45)<br>(Mn 0.65)<br>(Mn 0.35) |                          | 24.0<br>27.0<br>28.0<br>35.0<br>40.0<br>62.0<br>42.0<br>84.0 | 32.0<br>42.0<br>38.0<br>56.0<br>50.0<br>86.0<br>56.0<br>123.0 | 34,500<br>39,000<br>39,500<br>49,500<br>57,500<br>88,000<br>59,500 | 46,000<br>60,000<br>54,400<br>79,500<br>71,300<br>123,000<br>79,000<br>175,000 | 37.0<br>30.0<br>32.0<br>20.0<br>23.0<br>13.5<br>21.0<br>6.0 | 72.0<br>62.0<br>68.0<br>59.0<br>54.0<br>36.0<br>51.0<br>18.0 | 120<br>100<br>176<br>168<br>290<br>187<br>551 | 18<br>24<br>17<br>35<br>27<br>45<br>29<br>75 |

Specification values: Steel, castings, Ann. A.S.T.M. A27-16, Class B; \* P max. 0.06; S max. 0.05.

| C. I.                  | 371-1.1 1-4                       | Ultimate te          | nsile strength             | Per cent            | Per cent         |
|------------------------|-----------------------------------|----------------------|----------------------------|---------------------|------------------|
| Grade.                 | Yield point.                      | kg/mm <sub>2</sub>   | lb/in2                     | 50.8 mm<br>or 2 in. | reduct.<br>area. |
| Hard<br>Mcdium<br>Soft | 0.45 ultimate<br>0.45 "<br>0.45 " | 56.2<br>49.2<br>42.2 | 80,000<br>70,000<br>60,000 | 15<br>18<br>22      | 20<br>25<br>30   |

Structural Steel: Rolled: S max. 0.05; P-Bess. max. 0.10; -O-H. max. 0.06.

Tension: Yield Point min. = 0.5 ultimate; ultimate = 38.7 to 45.7 kg/mm² or 55,000 to 65,000 lb/in² with 22% min. elongation in 50.8 mm (2 in.).

\* Average carbon contents: steel castings, C o.30 to o.40; structural steel, C o.15 to o.30 (mild carbon or medium hard steel).

#### TABLE 46. - Explanation of Heat Treatment Letters used in Table of Steel Data.

Motor Transport Corps Modified S. A. E. Heat Treatments for Steels. (S. A. E. Handbook, Vol. 1, pp. 9d and 9e, 1915, q. v. for alternative treatments.)

Heat Treatment A. — After forging or machining (1) carbonize at a temperature between 870 and 930° C. (1600 and 1700° F.); (2) cool slowly; (3) reheat to 760 to 820° C. (1400 to 1500° F.) and quench in oil. Heat Treatment D. — After forging or machining: (1) heat to 820 to 840° C. (1500 to 1550° F.); (2) quench; (3) reheat to 790 to 820° C. (1450 to 1500° F.); (4) quench; (5) reheat to 320 to 650° C. (600 to 1200° F.)

cool slowly.

(3) reheat to 790 to 820° C. (1450 to 1500° F.); (4) quench; (5) reheat to 320 to 650° C. (600 to 1200° F.) and cool slowly.

Heat Treatment F. — After shaping or coiling: (1) heat to 775 to 800° C. (1425 to 1475° F.); (2) quench; (3) reheat to 200 to 480° C. (400 to 900° F.) in accordance with degree of temper required and cool slowly.

Heat Treatment H. — After forging or machining: (1) heat to 820 to 840° C. (1500 to 1550° F.); (2) quench; (3) reheat to 230 to 650° C. (450 to 1200° F.) and cool slowly.

Heat Treatment L. — After forging or machining: (1) carbonize at a temperature between 870 and 950° C. (1600 and 1750° F.), preferably between 900 and 930° C. (1650 and 1700 F.); (2) cool slowly in carbonizing material; (3) reheat to 790 to 820° C. (1450 to 1500° F.); (4) quench; (3) reheat to 700 to 820° C. (1450 to 1500° F.); (4) quench; (5) reheat to 700 to 760° C. (250 to 1400° F.); (6) quench; (7) reheat to 120 to 260° C. (250 to 500° F.) and cool slowly.

Heat Treatment M. — After forging or machining: (1) heat to 790 to 820° C. (1450 to 1500° F.); (2) quench; (3) reheat to 750 to 770° C. (1375 to 1425° F.); (4) quench; (5) reheat to 250 to 650° C. (550 to 1750° F.); (2) quench; (3) reheat to 750 to 770° C. (1375 to 1425° F.); (4) quench; (5) reheat to 250 to 650° C. (550 to 13500° F.) and cool slowly.

Heat Treatment T. — After forging or machining: (1) heat to 900 to 950° C. (1450 to 1750° F.); (2) quench; (3) reheat to 250 to 750° C. (1550 to 1750° F.); (2) quench; (3) reheat to 900 to 930° C. (1500 to 1700° F.); (4) quench; (5) reheat to 180 to 290° C. (350 to 1500° F.) and cool slowly.

Heat Treatment V. — After forging or machining. (1) heat to 900 to 950° C. (1550 to 1750° F.); (2) quench; (3) reheat to 900 to 930° C. (1500 to 1700° F.); (4) quench; (5) reheat to 180 to 290° C. (1550° F.) and cool slowly.

EDITOR'S NOTE: Oil quenching is recommended wherever the instructions specify "quench," inasmuch as the data in the table are taken from tests of automobile parts which must resist considerable

#### MECHANICAL PROPERTIES.

## TABLE 47. - Alloy Steels - Commercial Experimental Values.

| Metal.        | S. A. E. spec.  | Nominal contents, | S. A. E.<br>heat<br>treat- | P-limit. | Ultimate<br>strength. | P-limit.          | Ultimate strength. | Elong. in 50.8 mm (2 in.). | Reduct. | ne   | Sclero-<br>scope. |
|---------------|-----------------|-------------------|----------------------------|----------|-----------------------|-------------------|--------------------|----------------------------|---------|------|-------------------|
|               | no.             | per cent.         | ment.                      | Ten      |                       | Ten               |                    |                            |         | rine | cope              |
| _             |                 |                   |                            | kg/1     |                       |                   | 'in²               | Per c                      | ent.    | (@3  | N N               |
| Ct 1          |                 |                   | Δ                          |          | -0 -                  |                   |                    |                            | 6       | . 0  |                   |
| Steel, nickel | 2315            |                   | Ann.<br>H                  | 30.0     |                       |                   |                    |                            | 60.0    |      |                   |
|               | 2315 {          | . —               | Ann.                       | 53.0     |                       |                   | 107,500            |                            | 55.0    |      |                   |
|               | 2335            | Ni 3.50           | H                          | 39.0     |                       |                   |                    |                            | 53.0    |      |                   |
| ~             | 2335 {          |                   | Ann.                       |          |                       | 151,000<br>62,500 |                    |                            | 51.0    |      |                   |
|               | 2345            | (Mn 0.65)         | H                          | 44.0     | 55.0                  | 193,000           |                    | į.                         | 45.0    |      |                   |
|               | 2345 J<br>Invar | Ni 36.0           | 11                         | 130.0    | 149.0                 | 193,000           | 212,000            | 12.0                       | 45.0    | 570  | 10                |
|               | mvar            | TV1 30.0          | Ann.                       | 50.0     | ~~ ~                  | 77 000            | 110,000            | 20.0                       |         |      |                   |
| nickel        |                 | C 0.40            | Ziiii.                     | 50.0     | 77.5                  | 71,000            | 110,000            | 30.0                       | 50.0    |      |                   |
| chrome        | 3120            | ∫ Ni 1.25         | Ann.                       | 34.0     | 44.0                  | 10 000            | 62,000             | 23.0                       | 53.0    | TEE  | 22                |
| Cittome       | 3120            | Cr 0.60           |                            | 60.0     |                       |                   | 116,000            |                            |         |      |                   |
|               | 3135            | ( CI 0.00         | Ann.                       | 40.0     |                       |                   |                    |                            | 46.0    |      |                   |
|               | 3135            | (Mn 0.65)         | H or D                     |          |                       | 125,000           |                    |                            |         |      |                   |
|               | 3220            | (14111 0.03)      | Ann.                       | 39.0     |                       |                   |                    |                            | 50.0    |      |                   |
|               | 3220            | ∫ Ni 1.75         | H or D                     |          |                       | 110,000           |                    |                            |         |      |                   |
|               | 3250            | Cr 1.10           | Ann.                       | 44.0     |                       |                   | 78,000             |                            |         |      |                   |
|               | 3250            | (Mn 0.45)         | M                          |          |                       | 190,000           |                    |                            | 32.0    | -    |                   |
|               | 3320            | (1111 0.43)       | Ann.                       |          |                       | 46,000            |                    |                            |         |      | _                 |
|               | 3320            | ∫ Ni 3.50         | L                          |          |                       | 110,000           |                    |                            | 48.0    |      | 50                |
|               | 3340            | Cr 1.50           | Ann.                       | 39.0     |                       |                   |                    | 18.0                       | 45.0    | 373  | 3-                |
|               | 3340            | (Mn 0.45)         | P                          |          |                       | 170,000           |                    |                            | 42.0    |      | 64                |
| chromium.     | 51120           | Cr 1.00           | Ann.                       | 44.0     | 0                     |                   |                    |                            | 31.0    | -    |                   |
|               | 51120           | (Mn 0.35)         | M or P                     |          |                       | 205,000           |                    |                            | 26.0    | 500  | 66                |
|               | 52120           | Cr 1.20           | Ann.                       | 44.0     | - 0                   |                   |                    |                            | 24.0    | _    | _                 |
|               | 52120           | (Mn 0.35)         | M or P                     |          |                       | 200,000           |                    | 7.0                        | 25.0    | 524  | 70                |
| chrome        |                 | \ 00/             |                            |          | •                     |                   | 007                |                            |         | × '  |                   |
| vanadium      | 6130            | (Mn 0.65)         | Ann.                       | 43.0     | 59.0                  | 61,500            | 84,500             | 23.0                       | 51.0    | 152  | - 1               |
|               | 6130 }          | Cr 0.95           | T                          | 84.0     | 115.0                 | 120,000           | 163,000            | 16.0                       | 43.0    | 432  | 59                |
|               |                 | V 0.18            |                            | i i      |                       |                   |                    |                            |         |      |                   |
|               | 6195            | (Mr. car)         | Ann.                       | 48.0     | 63.0                  | 68,200            | 90,000             | 16.0                       | 38.0    | _    | -                 |
|               | 6195            | (Mn 0.35)         | U                          | 176.0    | 232.0                 | 250,000           | 330,000            | 8.c                        | 24.0    | 562  | 75                |
| silico-       | -               |                   |                            |          |                       |                   |                    |                            |         |      |                   |
| manganese     | 9250            | ∫ Si 1.95         | Ann.                       | 42.0     | 54.0                  | 60,000            | 77,000             | 16.0                       | 28.0    | -    | - 1               |
|               | 9250            | Mn 0.70           | V                          | 91.0     | 122.0                 | 130,000           | 174,000            | 14.0                       | 24.0    | 441  | 59                |
|               | 9×30            | ∫ Si 0.85         | Ann.                       | 48.0     | 61.0                  | 68,000            | 87,000             | 13.0                       | 22.0    | _    | -                 |
|               | 9×30 }          | Mn 1.75           | V                          | 113.0    |                       | 160,000           |                    |                            | 21.0    | 470  | 63                |
| tungsten      | (C-73)          | W 2.4             | Ann.                       | 34.0     |                       |                   |                    |                            | 31.5    | _    | - 1               |
|               | (C-70)          | W 9.7             | Ann.                       | 63.0     | 89.0                  | 90,000            | 126,000            | 14.0                       | 22.I    | _    | - 1               |
|               | (C-47)          | W 15.6            | Quench                     |          |                       |                   |                    |                            |         |      |                   |
| 127           |                 |                   | 1065°                      | 158.5    | 175.0                 | 225,000           | 248,000            | 6.0                        | 43.0    | 520  | 64                |
|               |                 |                   | Draw                       |          |                       |                   |                    |                            |         |      |                   |
| -             |                 |                   | 205° C                     |          |                       |                   |                    |                            |         |      |                   |
|               |                 |                   |                            | l        |                       |                   |                    | 1                          | 1       | 1    |                   |

GENERAL NOTE. - Table on steels after Motor Transport Corps, Metallurgical Branch of Engineering Division, Table No. 88.

Maximum allowable P 0.045 or less, maximum allowable S 0.05 or less.
Silicon contents were not determined by Motor Transport Corps in preparing table, except for silico-manganese steels. Compressive strengths:

For all steels approx. equal to yield point in tension (slightly above P-limit).

Density:

Density:

Steel weighs about 7.85 g/cm³ or 490 lb/ft³

Ductility, Erichsen values:

o.75 mm (0.029 in.) thick, low carbon soft annealed sheet (B. S.), depth of indentation 12.0 mm or 0.472 in.

1.30 mm (0.050 in.) thick, low carbon soft annealed sheet (B. S.), depth of indentation 12.5 mm or 0.492 in.

Modulus of elasticity in tension and compression:

For all steels approx. 21,000 kg/mm² = 30,000,000 lb/in².

Modulus of elasticity in shear:

For all steels approx. 8400 kg/mm² = 12,000,000 lb/in².

Steronch in shear:

Strength in shear:

Strength in shear

P-limit and ultimate strength each about 70 per cent corresponding tensile values.

#### TABLES 48-50.

#### MECHANICAL PROPERTIES.

## TABLE 48. - Steel Wire - Specification Values.

(After I. A. S. B. Specification 3S12, Sept., 1917, for High-strength Steel Wire.)
S. A. E. Carbon Steel, No. 1050 or higher number specified (see Carbon steels above). Steel used to be manulactured by acid open-hearth process, to be rolled, drawn, and then uniformly coated with pure tin to solder readily.

| American             | Diar  | neter. | Req'd<br>twists in   | Wei      | ght.          | Req'd    | Spec.        | minimur | n tensile s | strength. |
|----------------------|-------|--------|----------------------|----------|---------------|----------|--------------|---------|-------------|-----------|
| B. and S. wire gage. | mm    | in.    | 203.2 mm<br>or 8 in. | kg/100 m | lb/100<br>ft. | thru 90° | kg           | lb.     | kg/mm²      | lb/in²    |
| 6                    | 4.115 | 0.162  | 16                   | 10.44    | 7.01          | 5        | 2040         | 4500    | 154         | 219,000   |
| 7 8                  | 3.264 | .144   | 19<br>21             | 6.55     | 5.56          | 8        | 1680<br>1360 | 3700    | 161         | 229,000   |
| 9                    | 2.906 | .114   | 23                   | 5.21     | 3.50          | 9        | 1135         | 2500    | 172         | 244,000   |
| 10                   | 2.588 | .102   | 26                   | 4.12     | 2.77          | II       | 910          | 2000    | 172         | 244,000   |
| II                   | 2.305 | .091   | 30                   | 3.28     | 2.20          | 14       | 735          | 1620    | 179         | 254,000   |
| 12                   | 2.053 | .081   | 33                   | 2.60     | 1.74          | 17       | 590          | 1300    | 177         | 252,000   |
| 13                   | 1.828 | .072   | 37                   | 2.06     | 1.38          | 21       | 470          | 1040    | 179         | 255,000   |
| 14                   | 1.628 | .064   | 42                   | 1.64     | 1.10          | 25       | 375          | 830     | 181         | 258,000   |
| 15                   | 1.450 | .057   | 47                   | 1.30     | 0.87          | 29       | 300          | 660     | 182         | 259,000   |
| 16-                  | 1.291 | .051   | 53                   | 1.03     | 0.69          | 34       | 245          | 540     | 186         | 264,000   |
| 17                   | 1.150 | .045   | 60                   | 0.81     | 0.55          | 42       | 195          | 425     | 188         | 267,000   |
| - 18                 | 1.024 | .040   | 67                   | 0.65     | 0.43          | 52       | 155          | 340     | 190         | 270,000   |
| 19                   | 0.912 | .036   | 75                   | 0.51     | 0.34          | 70       | 125          | 280     | 193         | 275,000   |
| 20                   | 0.812 | .032   | 85                   | 0.41     | 0.27          | 85       | 100          | 225     | 197         | 280,000   |
| 21                   | 0.723 | .028   | 96                   | 0.32     | 0.22          | 105      | 80           | 175     | 200         | 284,000   |

Note. — Number of 90° bends specified above to be obtained by bending sample about 4.76 mm (0.188 in.) radius, alternately, in opposite directions.

(Above specification corresponds to U. S. Navy Department Specification 22W6, Nov. 1, 1916, for tinned, galvan-

ized or bright aeroplane wire.)

#### TABLE 49. - Steel Wire - Experimental Values.

(Data from tests at General Electric Company laboratories.) "Commercial Steel Music Wire (Hardened)."

| Diame   | ter.  | Ultimate              | strength. |  |  |  |
|---------|-------|-----------------------|-----------|--|--|--|
| mm      | in.   | kg/mm² tension lb/in² |           |  |  |  |
| 12.05   | 0.051 | 226.0                 | 321,500   |  |  |  |
| 11.70   | .046  | 249.0                 | 354,000   |  |  |  |
| 0.15    | .036  | 253.0                 | 360,000   |  |  |  |
| 7.60    | .030  | 260.0                 | 370,000   |  |  |  |
| 6.35    | .025  | 262.0                 | 372,500   |  |  |  |
| 4.55    | .018  | 265.5                 | 378,000   |  |  |  |
| 2.55*   | .010  | 386.5                 | 550,000   |  |  |  |
| 1.65*   | .0065 | 527.0                 | 750,000   |  |  |  |
| 4 - 55† | .018  | 49.2                  | 70,000    |  |  |  |

\* For 4.55 mm wire drawn cold to indicated sizes. † For 4.55 mm (0.018 in.) wire annealed in H2 at 850° C.

#### TABLE 50. - Semi-steel.

Test results at Bureau of Standards on 155-mm shell, Jan. 1919.

Microstructure — matrix resembling pearlitic steel, embedded in which are flakes of graphite.

Composition-Comb. C 0.60 to 0.76, Mn 0.88, P 0.42 to 0.43, S 0.077 to 0.088, Si 1.22 to 1.23, graphitic C 2.84 to 2.94.

| Metal.                                                        | P-limit.                      | Ultimate<br>strength. | P-limit. | Ultimate<br>strength. | P-limit. | Ultimate<br>strength. | P-limit.        | Ultimate strength. | Hard   | lness. |
|---------------------------------------------------------------|-------------------------------|-----------------------|----------|-----------------------|----------|-----------------------|-----------------|--------------------|--------|--------|
|                                                               | Tension Tension kg/mm² lb/in² |                       |          | Compression kg/mm²    |          |                       | ression<br>/in² | @3000<br>kg        | scope. |        |
| Semi-steel:     Graph. C 2.85     Comb. C 0.76  Graph. C 2.92 | 7.9                           | 19.8                  | 11,200   | 28,200                | 24.3     | 72.6                  | 34,500          | 103,000            | 176    | _      |
| Comb. C 0.60                                                  | 4.2                           | 14.9                  | 6,000    | 21,200                | 18.3     | 61.4                  | 26,000          | 87,300             | 170    |        |

Tension specimens 12.7 mm (0.5 in.) diameter, 50.8 mm (2 in.) gage length; elongation and reduction of area negligible.

Compression specimens 20.3 mm (0.8 in.) diameter, 61.0 mm (2.4 in.) long; failure occurring in shear.

Tension set readings with extensometer showed elastic limit of 2.1 kg/mm² or 3000 lb/in².

Modulus of elasticity in tension — 9560 kg/mm² or 13,600,000 lb/in².

Cast steel wire to be of hard crucible steel with minimum tensile strength of 155 kg/mm2 or 220,000 lb/in2

Cast steel wire to be of hard crucible steel with minimum tensile strength of 155 kg/mm² or 220,000 lb/in² and minimum elongation of 2 per cent in 254 mm (10 in.).

Plow steel wire to be of hard crucible steel with minimum tensile strength of 183 kg/mm² or 260,000 lb/in² and minimum elongation of 2 per cent in 254 mm (10 in.).

Annealed steel wire to be of crucible cast steel, annealed, with minimum tensile strength of 77 kg/mm² or 110,000 lb/in² and minimum elongation of 7 per cent in 254 mm (10 in.).

Type A: 6 strands with hemp core and 19 wires to a strand (= 6 × 19), or 6 strands with hemp core and 18 wires to a strand with hemp center.

Type B: 6 strands with hemp core, and 12 wires to a strand with hemp center.

Type C: 6 strands with hemp core, and 12 wires to a strand with hemp or jute center.

Type AA: 6 strands with hemp core, and 37 wires to a strand (= 6 × 37) or 6 strands with hemp core and 36 wires to a strand with jute, cotton or hemp center.

| Description                                                                                        | Diam                                                                                      | eter.                                 | Approx.                                                                                                      | weight.                                                                                                      | Minimum strength.                                                                                                                  |                                                                                                                                             |  |  |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Description.                                                                                       | mm                                                                                        | in.                                   | kg/m                                                                                                         | lb/ft                                                                                                        | kg                                                                                                                                 | lb.                                                                                                                                         |  |  |
| Galv. cast steel, Type A " " " " " " Galv. cast steel, Type AA " " " " " " " " " " " " " " " " " " | 9.5<br>12.7<br>25.4<br>38.1<br>9.5<br>12.7<br>25.4<br>38.1                                | 3/30 - 1(24<br>1                      | 0.31<br>0.55<br>2.23<br>5.06<br>0.35<br>0.58<br>2.23<br>5.28                                                 | 0.21<br>0.37<br>1.50<br>3.40<br>0.22<br>0.39<br>1.50<br>3.55                                                 | 3,965<br>6,910<br>27,650<br>63,485<br>3,840<br>7,410<br>27,650<br>59,735                                                           | 8,740<br>15,230<br>60,960<br>139,960<br>8,460<br>16,330<br>60,960<br>131,690                                                                |  |  |
| Galv. cast steel, Type B  """""""""""""""""""""""""""""""                                          | 9.5<br>12.7<br>25.4<br>38.1<br>25.4<br>41.3<br>9.5<br>12.7<br>25.4<br>36.5<br>9.5<br>12.7 | I I I I I I I I I I I I I I I I I I I | 0.25<br>0.42<br>1.68<br>3.94<br>1.59<br>4.35<br>0.31<br>0.55<br>2.23<br>4.66<br>0.33<br>0.58<br>2.35<br>6.18 | 0.17<br>0.28<br>1.13<br>2.65<br>1.07<br>2.92<br>0.21<br>0.37<br>1.50<br>3.13<br>0.22<br>0.39<br>1.58<br>4.15 | 2,995<br>5,210<br>20,890<br>47,965<br>18,825<br>51,575<br>4,690<br>8,165<br>32,675<br>69,140<br>4,540<br>8,750<br>32,250<br>83,010 | 6,600<br>11,500<br>46,060<br>105,740<br>41,500<br>113,700<br>10,340<br>18,000<br>72,040<br>152,430<br>10,000<br>19,300<br>71,100<br>183,000 |  |  |

#### TABLE 52. - Plow Steel Hoisting Rope (Bright).

(After Panama Canal Specification No. 302, 1912.)

Wire rope to be of best plow steel grade, and to be composed of 6 strands, 10 wires to the strand, with hemp center.

Wires entering into construction of rope to have an elongation in 203.2 mm or 8 in. of about 2½ per cent.

| Diame                       | ter.                            | Spec. minimum strength.            |                                      | Diamet                       | ter.                                           | Spec. minimum strength.                 |                                          |  |
|-----------------------------|---------------------------------|------------------------------------|--------------------------------------|------------------------------|------------------------------------------------|-----------------------------------------|------------------------------------------|--|
| mm                          | in.                             | kg                                 | lb.                                  | mm                           | in.                                            | kg                                      | lb.                                      |  |
| 9.5<br>12.7<br>19.0<br>25.4 | 3<br>8<br>1<br>2<br>3<br>4<br>1 | 5,215<br>9,070<br>20,860<br>34,470 | 11,500<br>20,000<br>46,000<br>76,000 | 38.1<br>50.8<br>63.5<br>69.9 | $1\frac{1}{2}$ 2 $2\frac{1}{2}$ $2\frac{3}{4}$ | 74,390<br>127,000<br>207,740<br>249,350 | 164,000<br>280,000<br>458,000<br>550,000 |  |

## TABLE 53. - Steel-wire Rope - Experimental Values.

(Wire rope purchased under Panama Canal Spec. 302 and tested by U. S. Bureau of Standards, Washington, D. C.)

| Description and analysis.                                                                                                                  | Diam | eter.                         | Ultimate | strength. | Ultimate strength (net area). |         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------|----------|-----------|-------------------------------|---------|--|
|                                                                                                                                            | mm   | in.                           | kg       | lb.       | kg/mm²                        | lb/in²  |  |
| Plow Steel, 6 strands × 19 wires C 0.90, S 0.034, P 0.024, Mn 0.48, Si 0.172 Plow Steel, 6 strands × 25 wires C 0.77, S 0.036, P 0.027, Mn | 50.8 | 2                             | 137,900  | 304,000   | 129.5                         | 184,200 |  |
| o.46, Si o.152                                                                                                                             | 69.9 | 2 <sup>3</sup> / <sub>4</sub> | 314,800  | 694,000   | 151.2                         | 214,900 |  |
| Monitor Plow Steel, 6 × 61 plus                                                                                                            | 82.6 | 31/4                          | 392,800  | 866,000   | 132.2                         | 187,900 |  |
| 6 × 19, C o.82, S o.025, P o.019,<br>Mn o.23, Si o.169                                                                                     | 82.6 | 31/4                          | 425,000  | 937,000   | 142.5                         | 202,400 |  |

TABLE 54. - Aluminum.

| Metal, approx.                              | Condition.           |                              | ensity<br>veight.                    | P-limit.                       | Ultimate<br>strength.                                                | P-limit. | Ultimate<br>strength.                                                              | Elong. in 50.8 mm (2 in.). | Reduct.<br>of area. | @ bo            | dness.            |
|---------------------------------------------|----------------------|------------------------------|--------------------------------------|--------------------------------|----------------------------------------------------------------------|----------|------------------------------------------------------------------------------------|----------------------------|---------------------|-----------------|-------------------|
| per cent.                                   | per cent.            |                              | lb.per<br>ft³                        |                                | sion,<br>mm²                                                         |          | sion,<br>/in²                                                                      | Per                        | cent.               | Brinell (Soo kg | Sclero-<br>scope. |
| ALUMINUM:<br>Av. Al 99.3<br>Imp., Fe and Si | Cast, sand at 700° C | 2.57<br>2.69<br>2.70<br>2.70 | <br>160.5<br>168.0<br>168.5<br>168.5 | 7.0<br>-<br>6.0<br>6.0<br>14.0 | 8.0 to<br>9.8<br>8.9 to<br>9.6<br>9.0<br>9.0<br>21.0<br>23.0<br>28.0 | 10,000   | 12,000 to<br>14,000<br>12,600 to<br>13,600<br>13,500<br>30,000<br>33,000<br>40,000 | 15                         | 22                  | 26              | 5                 |

Compressive strength: cast, yield point 13.0 kg/mm<sup>2</sup> or 18,000 lb/in<sup>2</sup>; ultimate strength 47.0 kg/mm<sup>2</sup> or 67,000 lb/in<sup>2</sup>.

Modulus of elasticity: cast, 6900 kg/mm2 or 9,810,000 lb/in2 at 17° C.

#### TABLE 55 .- Aluminum Sheet.

(a) Grade A (Al min. 99.0) Experimental Erichsen and Scleroscope Hardness Values. [From tests on No. 18 B. & S. Gage sheet rolled from 6.3 mm (0.25 in.) slab. Iron Age v. 101, page 950].

| Heat treatment annealed.          | Thickness,<br>mm | Indentation, | Scleroscope<br>hardness. |
|-----------------------------------|------------------|--------------|--------------------------|
| None (as rolled)@ 200° C, 2 hours | 1.08             | 6.83         | 14.0                     |
| @ 300° C, 2 hours                 | 1.09             | 10.17        | 4.5                      |
| @ 400° C, 2 hours                 | 1.08             | 9.40         | 4.5                      |
| @ 200° C, 30 min                  | 1.07             | 7.97         | 4.5                      |

(b) Specification Values. — (1) Cast: U. S. Navy 49 Al, July 1, 1915; Al min. 94, Cu max. 6, Fe max. 0.5, Si max. 0.5, Mn max. 3.

Minimum tensile strength 12.5 kg/mm<sup>2</sup> or 18,000 lb/in<sup>2</sup> with minimum elongation of 8 per cent in 50.8 mm (2 in.).

(2) Sheet, Grade A: A. S. T. M. 25 to 18T; Al min. 99.0; minimum strengths and elongations.

| Gage, sheet thicknesses.                                                                                | Temper, No.                                                                                                             | Tensile                                                           | strength.                                                                              | Elong. in 50.8<br>mm or 2 in.           |                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (B. & S.) mm in.                                                                                        | nardiress.                                                                                                              | kg/mm²                                                            | lb/in²                                                                                 | per cent.                               |                                                                                                                                                                       |
| 12 to 16 incl. 2.052 to 0.0808 to 0.0509  17 to 1.152 to 0.0453 to 0.253  23 to 0.574 to 0.226 to 0.404 | I Soft, Ann.<br>2 Half-hard<br>3 Hard<br>I Soft, Ann.<br>2 Half-hard<br>3 Hard<br>I Soft, Ann.<br>2 Half-hard<br>3 Hard | 8.8<br>12.5<br>15.5<br>8.8<br>12.5<br>17.5<br>8.8<br>12.5<br>21.0 | 12,500<br>18,000<br>22,000<br>12,500<br>18,000<br>25,000<br>12,500<br>18,000<br>30,000 | 30<br>7<br>4<br>20<br>5<br>2<br>10<br>5 | Sheets of temper No. 1 to withstand being bent double in any direction and hammered flat; temper No. 2 to bend 180° about radius equal to thickness without cracking. |

NOTE. — Tension test specimen to be taken parallel to the direction of cold rolling of the sheet.

SMITHSONIAN TABLES.

#### ALUMINUM ALLOY.

|                                            |                                 |                |                 | ئہ        | b'te                  | نه        | ite .                 | .E E .                     | نے نہ               | II              |                   |
|--------------------------------------------|---------------------------------|----------------|-----------------|-----------|-----------------------|-----------|-----------------------|----------------------------|---------------------|-----------------|-------------------|
| Alloy, approx.                             | Condition.                      |                | isity<br>eight. | P-limit.  | Ultimate<br>strength. | P-limit.  | Ultimate<br>strength. | Elong. in 50.8 mm (2 in.). | Reduct.<br>of area. | Hard            | ness.             |
| composition<br>per cent.                   | per cent<br>reduction.          |                |                 |           | 2 12                  |           |                       | 田克                         | 10                  | @ 8             | 0 00              |
| per cent.                                  | reduction.                      | gm/<br>cm³     | lb/<br>ft³      |           | sion,<br>mm²          |           | sion,<br>in²          | per o                      | cent.               | Brinell (500 kg | Sclero-<br>scope. |
| Aluminum — Copper                          | Cast, chill                     | _              | _               | 5.3       | 10.5                  | 7,500     | 15,000                | 24.0                       | 34.0                |                 |                   |
| Al 98 Cu 1 Imp. max. 1                     | Rolled, 70%                     | =              | =               | 10.0      | 21.0                  | 27,000    | 30,000                | 4.0                        | 21.0                | _               | _                 |
| Al 96 Cu 3 Imp. max. 1                     | Rolled, 70%                     |                | _               | 25.0      | 28.8                  | 35,000    | 41,000                | 5.5                        | _                   | -               | - 1               |
| Al 94 Cu 5 Imp. max. 1                     | { Cast, chill<br>Rolled, 70%    |                | _               | 10.0      | 15.0<br>27.0          | 33,000    | 21,500<br>38,000      | 7.0<br>6.0                 | 14.0                | _               |                   |
| Al 92 Cu 8: Alloy No.                      | Cast, sand                      | 2.88           | 180             |           | 10.5 to               | 11,000 to | 15,000 to             | 4.0 to<br>None             |                     | 50 to           | 13 to             |
| Al 90-92 Cu 7-8.5                          |                                 |                | 0               | 10.5      |                       | 13,000    |                       |                            | 210110              | 03              |                   |
| Imp. max. 1.7<br>Copper, Magnesium         | Cast*<br>Cast at 700° C.        | 2.9            | 181             |           | 12.7<br>9.6 to        | 4,500 to  | 18,000<br>13,600 to   | 1.0<br>2.0 to              | 0.5 to              | 74 to           |                   |
| Al 9.52 Cu 4.2 Mg 0.6                      | Ann. 500° C                     | _              |                 | 4.6       | 13.3                  | 6,500     | 18,900                | 3.0                        | 0                   | 74<br>80        | 18                |
| Duralumin or 17S                           | (Ann                            | 2.8            | 174             | 25.0      | 42.0                  | 35,100    | 59,500                | 21.1                       | 29.5                | _               | -                 |
| Alloy Al 94 Cu 4 Mg                        | Rolled heat                     |                |                 | 53.0      | 56.0                  | 75,400    | 79,600                | 4.0                        | 13.2                | _               |                   |
| Copper, Manganese                          | tr'd † Cast, chill              | =              | _               | 23.4      | 39.0<br>14.0          | 33,400    | 55,300                | 25.5<br>5.0                | 26.0                | =               |                   |
| Al 96 Cu 2 Mn 2<br>Al 96 Cu 3 Mn 1         | Rolled, 20 mm<br>Cast, chill    | =              | _               | 19.0      | 27.0                  | 27,100    | 38,200                | 16.0                       | 28.0                |                 |                   |
| Naval Gun Factory                          | Cast, sand                      | 2.8            | 175             | 11.3<br>— | 19.0<br>14.0          | 16,200    | 27,000                | 12.0                       | _                   | =               |                   |
| Al 97 Cu 1.5 Mn 1<br>Al 94 Cu max. 6 Mn    | (Forged                         |                |                 | 14.0      | 19.0                  | 19,500    | 27,800                | 12.0                       | 47.0                | _               | _                 |
| max. 3<br>Copper, Nickel, Mg               | Minimum ‡                       | _              | -               | _         | 12.7                  | _         | 18,000                | 8.0                        | -                   | _               | -                 |
| Mn                                         | Cast at 700° C.                 | _              | _               | 3.5 to    | 17.9 to               | 5,000 to  | 25,500 to             | 6.0 to                     | 8.5 to              | 54 to           | 9 to              |
| Al 93.5 Cu 3.5 Ni 1.5<br>Mg 1 Mn 0.5       |                                 | _              |                 | 9.8       | 23.2                  | 14,000    | 33,000                | 1.5                        | 1.0                 | 86              | 25                |
| Copper, Nickel Mn<br>Al 94.2 Cu 3 Ni 2 Mn  | Cast at 700° C.                 | _              | -               | _         | 14.5 to               |           | 20,600 to             | 6.0 to                     | 11.0 to             | 50 to           | 9 to              |
| o.8                                        |                                 |                |                 |           | 21.4                  |           | 30,500                | 1.0                        | 2.0                 | 91              | 27                |
| Magnalium Al 95 Mg 5                       | Cast, sand                      |                | 156             | 5.6       | 15.5                  | 8,000     | 22,000                | 7.0                        | 8.5                 | -               |                   |
| Al 77-98, Mg 23-2                          | Cast, chill                     | 2.4 to<br>2.57 | 150 to          |           | 29.5 to<br>45.0       |           | 42,000 to             | _                          |                     |                 |                   |
| Nickel Al 97 Ni 2                          | Cast, chill                     | _              | _               | 4.0       | 11.0                  | 5,800     | 14,900                | 21.0                       | 36.0<br>37.0        | _               |                   |
|                                            | Rolled, hot                     | =              | _               | 8.0       | 13.0                  | 11,900    | 18,200                | 28.0                       | 52.0<br>II.0        | _               |                   |
| Al 95 Ni 5                                 | Drawn, cold                     | -              | _               | 16.0      | 15.0                  | 9,000     | 21,700                | 9.0<br>8.0                 | 24.0                | _               |                   |
| Nickel Copper:                             | ( Rolled, hot                   | _              | _               | 9.0       | 16.0                  | 13,500    | 22,300                | 22.0                       | 36.0                | -               |                   |
| Al 93.5 Ni 5.5 Cu 1<br>Al 91.5 Ni 4.5 Cu 4 | Cast, chill                     | =              | =               | 7.0       | 17.0                  | 10,700    | 24,800                | 6.0                        | 8.0                 | =               | =                 |
| Al 92 Ni 5.5 Cu 2                          | Drawn, cold                     | -              | -               | 22.0      | 27.0                  | 31,700    | 37,800                | 8.0                        | 15.0                | -               | -                 |
| Zinc, Copper:                              | \ Rolled, hot                   | _              |                 | 13.0      | 22.0                  | 18,200    | 31,500                | 16.0                       | 24.0                |                 |                   |
| Al 88.6 Cu 3 Zn 8.4                        | Cast at 700° C.<br>Ann. 500° C. | =              |                 | 4.7       | 18.5                  | 6,700     | 26,300                | 8.0                        | 7-5<br>7-5          | 50              | 10                |
| Al 81.1 Cu 3 Zn 15.9.                      | Cast at 700° C.<br>Ann. 500° C  | 3.1            | 193             | 9.8       | 24.7                  | 14,000    | 35,100                | 2.0                        | 2.0                 | 74              | 15                |
|                                            | 7xIII. 500 C                    | !              |                 | 9.8       | 29.0                  | 14,000    | 41,200                | 4.0                        | 4.0                 | 70              | 15                |

<sup>\*</sup> Specification Values: Alloy "No. 12": A. S. T. M. B26-18T, tentative specified minimums for aluminum, copper.
† Quenched in water from 475° C. after heating in a salt bath. Modulus of elasticity for Duralumin averages
7000 kg/mm² or 10,000,000 lb/in².
‡ Specification values: Aluminum castings; U. S. Navy 49 Al, July 1, 1915 (Impurities: Fe max. 0.5, Si max. 0.5).

#### TABLES 57-59 MECHANICAL PROPERTIES. TABLE 57. - Copper.

| Metal and<br>approx.<br>composition.<br>Per cent.          | Condition.       | Density<br>or weight.        |                               |                                      |                                                      | P-limit.                                      | Ultimate<br>strength.                                                        | Elong. in 50.8 mm (2 in.)                                | Reduct.                                          | Brinell @ |                         |
|------------------------------------------------------------|------------------|------------------------------|-------------------------------|--------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|-----------|-------------------------|
| Fer cent.                                                  |                  | gm/<br>cm³                   | lb/<br>ft³                    |                                      | sion,<br>mm²                                         | Tension                                       | Tension, lb/in2                                                              |                                                          | Per cent.                                        |           | Sclero-<br>scope.       |
| Copper: 99.9: electrolytic Cu 99.6 Rolled Cu 99.6 Cu 99.9* | Ann. 200° C Cast | 8.89<br>8.85<br>8.89<br>8.90 | 555<br>552<br>555<br>556<br>— | 6.0<br>7.0<br>14.0<br>indet.<br>26.0 | 27.0<br>18.0<br>35.0<br>25.0<br>35.0<br>47.3<br>21.9 | 8,500<br>10,000<br>20,000<br>indet.<br>37,000 | 38,000<br>25,000<br>50,000<br>35,000<br>50,000<br>67,400<br>31,200<br>46,800 | 50.0<br>20.0<br>5.0<br>50.0<br>9.0<br>0.8<br>24.5<br>4.3 | 50.0<br>60.0<br>8.0<br>60.0<br>-<br>64.5<br>76.0 | 80<br>94  | 7<br>8<br>-6<br>18<br>- |

\*Wire drawn cold from 3.18 mm (0.125 in.) to 0.64 mm (0.025 in.) Bull. Am. Inst. Min. Eng., Feb., 1919.
†Wire drawn at 150° C from 0.79 mm (0.031 in.) to 0.64 mm (0.025 in.) (Jeffries, loc. cit.).
Compression, cast copper, Ann. 15.9 mm (0.625 in.) diam. by 50.8 mm (2 in.) long cylinders.
Shortnend 5 per cent at 22.0 kg/mm² or 31,300 b/jn² load.

"10" "29.0 kg/mm² or 31,300 b/jn² "30.00 b/jn² "41,200 b/jn² "65,400 b/jn² "7,400,000 b/jn² "67,400,000 b/jn² "67,700,000 b/jn² "67,700,000 b/jn² "67,700,000 b/jn² "67,700,000 b/jn² "67,700,000 b/jn² "7,700,000 b/jn² "7,700,00

TABLE 58. - Rolled Copper - Specification Value.

Specification values: U. S. Navy Dept., 47C2, minimums for rolled copper, - Cu min. 99.5

| Desiration Assessment Allichard                                                                                                                                                | Tensi        | le strength.     | Elong. in 50.8       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|----------------------|
| Description, temper and thickness.                                                                                                                                             | kg/mm²       | lb/in²           | or 2 in. — per cent. |
| Rods, bars, and shapes: Soft  Hard: to 9.5 mm (\{\frac{1}{2}}\) incl.  Hard: 9.5 mm to 25.4 mm (\(\tau\) in.).  Hard: 25.4 mm to 50.8 mm (2 in.).  Hard: over 50.8 mm (2 in.). | 21.0         | 30,000           | 25                   |
|                                                                                                                                                                                | 35.0         | 50,000           | 10                   |
|                                                                                                                                                                                | 31.5         | 45,000           | 12                   |
|                                                                                                                                                                                | 28.0         | 40,000           | 15                   |
|                                                                                                                                                                                | 24.5         | 35,000           | 20                   |
| Soft.                                                                                                                                                                          | 21.0 to 28.0 | 30,000 to 40,000 | 25 to 25             |
| Hard.                                                                                                                                                                          | 24.5         | 35,000           | 18                   |

#### TABLE 59. - Copper Wire - Specification Values.

Specific Gravity 8.89 at 20° C (68° F).

Copper wire: Hard Drawn (and Hard-rolled flat copper of thicknesses corresponding to diameters of wire)

Specification values. (A. S. T. M. B1-15, and U. S. Navy Dept., 22W3, Mar. 1, 1915.)

| Diame                                                                                       | ter.                                                                                                         | Minimum te                                                                                                           | nsile strength.                                                                                                                                    | Maximum elongation,<br>per cent in                                                                                                            |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| mm                                                                                          | in.                                                                                                          | kg/mm²                                                                                                               | lb/in²                                                                                                                                             | 254 mm (10 in.).                                                                                                                              |
| 11.68 10.41 9.27 8.25 7.34 6.55 5.82 5.18 4.62 4.12 3.66 3.25 2.90 2.50 2.31 2.06 1.83 1.63 | .460<br>.410<br>.365<br>.325<br>.280<br>.258<br>.229<br>.182<br>.162<br>.144<br>.128<br>.114<br>.102<br>.081 | 34-5<br>35-9<br>37.1<br>38-3<br>39-4<br>40-5<br>41-5<br>42-2<br>43-7<br>44-3<br>44-8<br>45-7<br>46-2<br>46-2<br>46-3 | 49,000<br>51,000<br>52,800<br>54,500<br>56,100<br>57,600<br>60,100<br>61,200<br>62,100<br>63,700<br>64,300<br>64,900<br>65,400<br>65,700<br>65,900 | 2.75<br>3.25<br>2.80<br>2.40<br>2.17<br>1.98<br>1.79 (60 in.)<br>1.24<br>1.18<br>1.14<br>1.09<br>1.06<br>1.02<br>1.00<br>0.97<br>0.95<br>0.92 |
| 1.45                                                                                        |                                                                                                              |                                                                                                                      | 66,400<br>66,600<br>66,800                                                                                                                         | 0.89<br>0.87<br>0.86                                                                                                                          |
| 1.02                                                                                        | .040                                                                                                         | 47.0<br>47.1                                                                                                         | 67,000                                                                                                                                             | 0.85                                                                                                                                          |

P-limit of hard-drawn copper wire must average 55 per cent of ultimate tensile strength for four largest sized wires in table, and 60 per cent of tensile strength for smaller sizes.

#### TABLES 60-63. MECHANICAL PROPERTIES.

## TABLE 60. - Copper Wire - Medium Hard-drawn.

(A. S. T. M. B2-15) Minimum and Maximum Strengths.

| Diag                 | neter.               |                                           | Tensile s        | trength.             |                            | Til di                              |
|----------------------|----------------------|-------------------------------------------|------------------|----------------------|----------------------------|-------------------------------------|
| Dian                 | neter.               | Min                                       | imum.            | Max                  | rimum.                     | Elongation,<br>minimum per cent     |
| mm                   | in.                  | kg/mm²                                    | lb/in²           | in 254 mm (10 in.).  |                            |                                     |
| 11.70                | 0.460                | 29.5<br>33.0                              | 42,000<br>47,000 | 34·5<br>38.0         | 49,000<br>54,000           | 3.75<br>2.50<br>in 1524 mm (60 in.) |
| 4.12<br>2.59<br>1.02 | .162<br>.102<br>.040 | 34.5 49,000<br>35.5 50,330<br>37.0 53,000 |                  | 39·5<br>40·5<br>42·0 | 56,000<br>57,330<br>60,000 | 1.15<br>1.04<br>0.88                |

Representative values only from table in specifications are shown above. P-limit of medium hard-drawn copper averages 50 per cent of ultimate strength.

#### TABLE 61. - Copper Wire - Soft or Annealed. (A. S. T. M. B3-15) Minimum Values.

| Diar          | neter.         |        | num tensile<br>rength. | Elongation<br>in 254 mm |
|---------------|----------------|--------|------------------------|-------------------------|
| mm            | in.            | kg/mm² | lb/in²                 | (10 in.),<br>per cent.  |
| 11.70 to 7.37 | 0.460 to 0.290 | 25.5   | 36,000                 | 35                      |
| 7.34 to 2.62  | 0.289 to 0.103 | 26.0   | 37,000                 | 30                      |
| 2.59 to 0.53  | 0.102 to 0.021 | 27.0   | 38,500                 | 25                      |
| 0.51 to 0.08  | 0.020 to 0.003 | 28.0   | 40,000                 | 20                      |

Note. — Experimental results show tensile strength of concentric-lay copper cable to approximate 90 per cent of combined strengths of wires forming the cable.

## TABLE 62. — Copper Plates.

(A. S. T. M. BII-18) for Locomotive Fire Boxes. Specification Values.

| Minimum requirements.           | Tensile | strength. | Elong. in<br>203.2 mm |
|---------------------------------|---------|-----------|-----------------------|
|                                 | kg/mm²  | lb/in²    | (8 in.),<br>per cent. |
| Copper, Arsenical, As 0.25-0.50 |         |           |                       |
| Impurities, max. 0.12           | 22.0    | 31,000    | 35                    |
| Impurities, max. 0.12           | 21.0    | 30,000    | 30                    |

Note. - Copper to be fire-refined or electrolytic, hot-rolled from suitable cakes.

## TABLE 63. - Copper Alloys.

The general system of nomenclature employed has been to denominate all simple copper-The general system of nomenclature employed has been to denominate all simple copperzinc alloys as **brasses**, copper-tin alloys as **bronzes**, and three or more metals alloys composed primarily of either of these two combinations as alloy brasses or bronzes, e.g., "Zinc bronze" for U. S. Government composition "G" Cu 88 per cent, Sn 10 per cent, Zn 2 per cent. Alloys of the third type noted above, together with other alloys composed mainly of copper, have been called **copper alloys**, with the alloying elements other than minor impurities listed as modifying copper in the order of their relative percentages.

In some instances, the scientific name used to denote an alloy is based upon the deoxidizer used in its preparation, which may appear either as a minor element of its composition or not at all, e.g., phosphor bronze.

Commercial names are shown below the scientific names. Care should be taken to specify the chemical composition of a commercial alloy, as the same name frequently applies to

the chemical composition of a commercial alloy, as the same name frequently applies to widely varying compositions.

#### MECHANICAL PROPERTIES OF MATERIALS.

## TABLE 64. - Copper-zinc Alloys or Brasses; Tin Alloys or Bronzes.

| Metal and approx. composition, per cent.                                             | Condition.                 | Den<br>or we             |            | P-limit.           | Ultimate<br>strength.                                                | P-limit.        | Ultimate<br>strength.                                                                  | Elong. in 59.8 mm (2 in.).                            | Reduct.                    |                     | iness.            |
|--------------------------------------------------------------------------------------|----------------------------|--------------------------|------------|--------------------|----------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------|---------------------|-------------------|
| per cent.                                                                            |                            | gm<br>cm³                | lb<br>ft³  |                    | sion,<br>mm²                                                         |                 | nsion,<br>/in²                                                                         | Per c                                                 | ent.                       | Brinell<br>@ 500 kg | Sclero-<br>scope. |
| Brass: Cu 90 Zn 10† Cu 80, Zn 20 ‡. Cu 70, Zn 30 Cu 66 Zn 34 Std. sheet Cu 60, Zn 40 | Cold rolled, soft.         | 8.6<br>8.4<br>8.5<br>8.4 | 543<br>    |                    | 20.0<br>39.0<br>26.0<br>25.0<br>53.0<br>29.0<br>28.0<br>42.0<br>34.0 |                 | 20,000<br>55,000 *<br>37,000 *<br>35,000 *<br>42,000 *<br>40,000<br>60,000 *<br>45,800 | 22<br>5*<br>40*<br>31<br>5*<br>50*<br>35<br>5*<br>50* | 70<br>32<br>85<br>85<br>85 |                     | 20<br>10<br>      |
| Muntz metal  Bronze: Cu 97.7, Sn 2.3. Cu 90, Sn 10                                   | Cast or gun bronze or bell | =                        | 522        | 31.5<br>6.0<br>7.6 | 19.5<br>34.0                                                         | 8,500<br>10,800 | 28,000<br>48,000                                                                       | 20<br>55                                              | 75                         | _                   |                   |
| Cu 80, Sn 20<br>Cu 70, Sn 30                                                         | Cast                       | 8.81<br>8.84             | 550<br>552 | 7.I<br>I.4         | 22.5<br>5.0                                                          | 10,100          | 32,000                                                                                 | 1.5                                                   | =                          | =                   | =                 |

#### Compressive Strengths, Brasses:

Cu 90, Zn 10, cast 21.0 kg/mm² or 30,000 lb/in² Cu 80, Zn 20, cast 27.4 kg/mm² or 39,000 lb/in² Cu 70, Zn 30, cast 42.0 kg/mm² or 60,000 lb/in² Cu 60, Zn 40, cast 52.5 kg/mm² or 75,000 lb/in² Cu 50, Zn 50, cast 77.0 kg/mm² or 110,000 lb/in²

Modulus of elasticity, — cast brass, — average 9100 kg/mm² or 13,000,000 lb/in²
Erichsen values: Soft slab, 1.3 mm (0.05 in.) thick, no rolling, depth of impression 13.8 mm (0.55 in.).
Hard sheet, 1.3 mm, rolled 38% reduction, depth of impression 7.3 mm (0.29 in.).
Hard sheet, 0.5 mm, rolled 66% reduction, depth of impression 3.7 mm (0.15 in.).

Compressive Ultimate Strengths, Cast Bronzes:

Cu 97.7, Sn 2.3 to 24.0 kg/mm² or 34,000 lb/in² Cu 90, Sn 10 to 39.0 kg/mm² or 56.000 lb/in² Cu 80, Sn 20 to 83.0 kg/mm² or 118,000 lb/in² Cu 70, Sn 30 to 105.0 kg/mm² or 125,000 lb/in²

Specification value, A. S. T. M., B 22-18 T, for specimen = cylinder 645 sq. mm (1 sq. in.) area, 25.4 mm (1 in.)

long.

Cu 80, Sn 20: minimum compressive elastic limit = 17.0 kg/mm² or 24,000 lb/in²

Modulus of elasticity for bronzes varies from 7000 kg/mm² or 10,000,000 lb/in² to 10,000 kg/mm² or 15,500,000

\* Values marked thus are S. A. E. Spec. values. (See S. A. E. Handbook, Vol. I, p. 13a, rev. December, 1913. † Red metal. † Low brass or bell metal. § A. S. T. M. Spec. B19–18T requires B.h.n. of 51–65 kg/mm² @ 5000 kg pressure for 70: 30 annealed sheet brass.

### FOOT NOTES TO TABLE 65, PAGE 85.

\*Tensilite, Cu 67, Zn 24, Al 4.4, Mn 3.8, P o.or compressive P-limit: 42.2 kg/mm² or 60,000 lb/in² and 1.33 per cent set for 70.3 kg/mm² or 100,000 lb/in² load.
† Compressive P-limit 20.0 to 28.2 kg/mm² or 77,500 lb/in²
‡ Compressive P-limit 4.2 kg/mm² or 77,500 lb/in²
§ Compressive P-limit 4.2 kg/mm² or 6000 lb/in² and 40 per cent set for 70.3 kg/mm² or 100,000 lb/in²
¶ Modulus of elasticity 9840 kg/mm² or 14,000,000 lb/in²
¶ Values are for yield point.
† Rolled manganese bronze (U. S. N.) Cu 57 to 60, Zn 40 to 37, Fe max. 2.0, Sn 0.5 to 1.5; 2.9 per cent increase for thickness 25.4 mm (r in.) and under.
† Ni 0 per cent, B.h.n. = 30 as rolled; B.h.n. = 50 as annealed at 930° C.
U. S. Navy Dept. Spec. 465 3a, June 1, 1917: German silver Cu 60 to 67, Zn 18 to 22, Ni min. 15, no mechanical requirements.

requirements

For list of 30 German silver alloys, see Braunt, "Metallic Alloys," p. 314, — "best" (Hiorns), "hard Sheffield," Cu 46, Zn 20, Ni 34.

§ Platinoid Cu 60, Zn 24, Ni 14, W 1 to 2; high electric resistance alloy with mechanical properties as nickel brass. ||| Specification Values, Naval Brass Castings, U. S. Navy, 46B rob, Dec. 1, 1917 for normal proportions Cu 62, Zn 37, Sn 1, min. tensile strength 17.5 kg/mm² or 25,000 lb/in² with 15 per cent elongation in 50.8 mm (2 in.).

# TABLE 65. MECHANICAL PROPERTIES. TABLE 65. — Copper Alloys — Three (or more) Components.

| TABLE 60. — Copper Anoys — Timee (or more) Components.                                                           |                                  |                              |                 |                           |                                 |                                    |                                         |                            |                     |           |                   |  |
|------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|-----------------|---------------------------|---------------------------------|------------------------------------|-----------------------------------------|----------------------------|---------------------|-----------|-------------------|--|
| Alloy and approx.                                                                                                | Condition.                       | Density                      | or weight.      | P-limit.                  | Ultimate<br>strength.           | P-limit.                           | Ultimate<br>strength.                   | Elong. in 50.8 mm (2 in.). | Reduct.<br>of area. | Hard      | ness.             |  |
| per cent.                                                                                                        | Condition.                       | gm<br>per<br>cm <sup>3</sup> | lb.             | 16                        | nsion,                          |                                    | sion,<br>/in²                           |                            | cent.               | Brinell @ | Sclero-<br>scope. |  |
| Brass, Aluminum Cu 57, Zn 42, Al 1 Cu 55, Zn 41, Al 4 Cu 62,9, Zn 33.3, Al Cu 70.5, Zn 26.4, Al Alum., Manganese | Cast  3.8. 3.1. Cast, tensilite* | _<br>_<br>_                  | =               | _<br>_<br>I3.4            | 40.0<br>60.0<br>56.2<br>33.0    | 19,000                             | 57,000<br>85,400<br>80,000<br>47,000    | 50.0<br>16.5<br>—<br>50.0  | 1111                |           |                   |  |
| Mn 2.5, Fe 1.2<br>Alum., Vanadium                                                                                |                                  | -                            | -               | 21.1                      | 68.8                            | 30,000                             | 98,000                                  | 16.0                       | 17.0                | 130       | -                 |  |
| Cu 58.5, Zn 38.5, Al<br>1.5, V 0.03<br>Iron:                                                                     |                                  |                              | -               | 35.6                      | 57.0                            | 50,600                             | 81,400                                  | 12.0                       | 14.0                | -         | -                 |  |
| Cu 56, Zn 41.5, Fe 1. Aich's Metal                                                                               | Cast                             | -                            | -               | _                         | 50.7 to<br>59.2                 | _                                  | 72,000 to<br>84,000                     | 35.0 to                    | 35.0 to             | 109 to    | -                 |  |
| Cu6o,Zn38.2,Fe1.8<br>Delta Metal<br>Cu 57, Zn 42, Fe 1                                                           | ∫ Cast, sand                     | 8.42                         | 520             | _                         | 31.7                            | , _                                | 57,300<br>45,000                        | 10.0                       | _                   | _         |                   |  |
| Cu 65, Zn 30, Fe 5<br>Iron, Tin:                                                                                 | Rolled, hard                     | -                            | -               | =                         | 42.2<br>45.5                    | =                                  | 65,000                                  | 17.0                       | =                   | _         | =                 |  |
| Cu 56.5, Zn 40, Fe 1.5,<br>Sn 1.0 †<br>Sterro metal:                                                             | Cast                             | _                            | _               | 23.2 to<br>26.0           | 52.8                            | 33,000 to<br>37,000                | 70,000 to<br>75,000                     | 35.0 to                    | 35.0 to             | 104 to    | =                 |  |
| Cu 55, Zn 42.4 Fe<br>1.8, Sn 0.8<br>Lead or Yellow brass                                                         | Cast                             | 8.4                          | 525<br>—<br>531 |                           | 42.5<br>53.6<br>58.5<br>23.2 to | Ξ                                  | 60,500<br>76,200<br>83,100<br>33,000 to |                            |                     |           |                   |  |
| Cu 60 to 63.5, Zn 35<br>to 33.5, Pb 5 to 3.<br>Lead, Tin or                                                      | Sheet ann                        | -                            |                 | _                         | 27.5<br>25.5<br>42.9            | _                                  | 39,000<br>42,000<br>61,000              | 26.0<br>50.0<br>30.0       | 30.0                | _         | _                 |  |
| Red brass                                                                                                        |                                  | 8.6                          | 535             | 11.0                      | 21.0                            | 16,000                             | 30,000                                  | 17.0                       | 19.0                | -         | 7.0               |  |
| Yellow brass:                                                                                                    | Cast                             | 8.87                         | 554             | 8.4                       | 18.6                            | 12,000                             | 26,500                                  | 22.0                       | 24.9                | -         | -                 |  |
| Cu 70, Zn 27, Pb 2,<br>Sn 1                                                                                      | Cast §                           | 8.4                          | 524             | 7-4                       | 20.7                            | 10,500                             | 29,500                                  | 25.0                       | 28.5                | 53.0      | -                 |  |
| ganese bronze<br>Cu 58, Zn 39, Mn<br>o.o5<br>(Sn, Fe, Al, Pb.)                                                   | Cast, sand ¶                     | 8.3                          | 520             | 21.1 to<br>24.6           | 52.7                            | 30,000 to<br>35,000  <br>32,000 to | 70,000 to<br>75,000<br>75,000 to        | 22.0                       | 25.0                | IIQ       | 19                |  |
| Cu 60, Zn 39 Mn,                                                                                                 |                                  | 8.3                          | 520             | 22.5 to<br>26.0  <br>31.5 | 56 3<br>52.5                    | 37,000 [<br>37,000]<br>45,000      | 80,000                                  | 25.0<br>25.0               | 28.0                | 130       | 22                |  |
| Specification values:<br>U. S. Navy, 46 B                                                                        |                                  | _                            |                 |                           | 49.2                            | _                                  | 70,000                                  | 20.0                       | _                   | _         | _                 |  |
| U. S. N., 46 B 15a<br>Manganese Vana-<br>dium:                                                                   | Rolled††                         | -                            |                 | 24.6                      | 49.2                            | 35,000                             |                                         | 30.0                       | _                   | -         | -                 |  |
| Cu 58.6, Zn 38.5, Al<br>1.5 Mn 0.5, V 0.03.<br>Nickel: Nickel sil-                                               | Cold drawn                       | -                            |                 | 35.6                      | 57.0                            | 50,600                             | 81,400                                  | 12.0                       | 14.0                | _         | -                 |  |
| ver, Cu 60.4, Zn<br>31.8, Ni 7.7<br>German silver,                                                               | Cast                             | 8.5                          | 530             | 10.8                      | 25.3                            | 15,400                             | 36,000                                  | 40.5                       | 42.0                | 46        | -                 |  |
| Cu 61.6, Zn 17.2,<br>Ni 21.1 Cu 60.6, Zn 11.8,                                                                   |                                  |                              |                 | 13.2                      | 28.8                            | 18,800                             | 40,900                                  | 28.5                       | 25.I<br>31.4        | 80        |                   |  |
| Ni 27.3 Fine wire: Cu 58,Zn 24, Ni 18 Nickel silver ‡‡ Nickel Tungsten: §§                                       |                                  |                              | 530             | 16. <sub>7</sub>          | 37.6<br>105.5                   | 23,700                             | 53,500                                  | 32.0                       | _                   | 67        | -                 |  |
| Tin:<br>Cu 61, Zn 38, Sn 1<br>Naval brass, as above                                                              |                                  |                              |                 | 11.0                      | 30.0                            | 15,700                             | 42,600                                  | 29.6                       | 32.0                | -         | -                 |  |
| Tobin bronze: as be-                                                                                             |                                  | . 8.3                        | 518             | 26.0<br>17.6              | 43.5                            | 37,000<br>25,000                   | 62,000                                  | 25.0                       | 37.0                | _         | -                 |  |
| Cu 58.2, Zn 39.5,<br>Sn 2.3<br>Cu 55, Zn 43, Sn 2.                                                               | Rolled                           | 8.4                          | 524             | 38.0                      | 56.0<br>48.4                    | 54,000                             | 79,000<br>68,900                        | 35.0<br>48.0               | 40.0<br>70.0        | =         |                   |  |

#### TABLE 65 (continued). MECHANICAL PROPERTIES.

## TABLE 65. - Copper Alloys - Three (or more) Components.

| Alloy and approx.                                                                                                      | Conditio           | on.     | Density<br>or weight.        |                  | P-limit.                       | Ultimate<br>strength.              | P-limit.                             | Ultimate<br>strength.                      | Elong. in 50.8 mm (2 in.).   | Reduct.                 | Han nes                               | s.     |
|------------------------------------------------------------------------------------------------------------------------|--------------------|---------|------------------------------|------------------|--------------------------------|------------------------------------|--------------------------------------|--------------------------------------------|------------------------------|-------------------------|---------------------------------------|--------|
| per cent.                                                                                                              |                    | 1       | gm   I<br>per   I<br>cm³   I | lb.<br>per<br>t³ | Tens                           | sion,<br>nm²                       |                                      | sion,<br>/in²                              | Per                          | cent.                   | Brinell (@<br>500 kg.                 | Sciero |
| Brass, Tin — (continued):<br>Rods:* o to 12.7 mm (½ in.)<br>12.7 to 25.4 mm (1 in.)                                    |                    |         | =                            |                  | 19.0<br>18.3                   | 42.2<br>40.8                       | 27,000<br>26,000                     | 60,000<br>58,000                           | 35.0<br>40.0                 |                         | nd 120<br>abou                        | it     |
| over 25.4 mm (in.) diam<br>Shapes, all                                                                                 |                    |         |                              | _                | 17.6<br>15.7<br>19.3<br>17.6   | 38.0<br>39.4<br>38.7<br>39.4       | 25,000<br>22,400<br>27,500<br>25,000 | 54,000<br>56,000<br>55,000<br>56,000       | 40.0<br>30.0<br>32.0<br>35.0 |                         | iamete                                |        |
| Tubing (wall thickness) o to 3.2 mm (\frac{1}{6} in.) 3.2 to 6.4 mm (\frac{1}{4} in.) over 6.4 mm (\frac{1}{4} in.)    |                    |         |                              | _                | 21.1<br>19.7<br>18.3           | 42.2<br>38.7<br>35.1               | 30,000<br>28,000<br>26,000           | 60,000                                     | 28.0<br>32.0<br>35.0         | =                       | -                                     |        |
| Vanadium:<br>Victor bronze,<br>Vo.03, Cu 58.6, Zn 38.5,                                                                | Cold di            | rawn    | -                            |                  | 56.5                           | 64.5                               | 80,000                               | 92,000                                     | 11.5                         | 29.0                    | _                                     |        |
| Al 1.5, Fe 1.0 U. S. Navy † 49 B 1b Bronze, Aluminum. Lead:                                                            | See Cu.            |         |                              | _                | 15.8                           | 38.7                               | 22,500                               | 55,000                                     | 25.0                         |                         |                                       |        |
| Cu 89, Sn 10, Pb 1                                                                                                     | Cast ‡.<br>Cast §. | ind.    | 3.8                          | 549              | 16.2                           | 24.6<br>22.1                       | 19,000 to<br>23,000<br>15,500        | 35,000<br>31,400                           | 13.5                         | 26.0 to<br>18.0<br>12.0 | 70<br>63                              |        |
| Lead, Phosphor:<br>Cu 80, Sn 10, Pb 10, P trace<br>Lead Zinc, Red brass:                                               | Cast, cl           |         | - 1                          | 570              | 12.8<br>11.0<br>13.8           | 24.7<br>21.0<br>18.8               | 18,200<br>16,000<br>19,600           | 35,200<br>30,000<br>26,800                 | 4.5<br>6.0                   | 3.5<br>3.5<br>11.5      | 8 <sub>5</sub><br>6 <sub>5</sub>      | 12     |
| Cu 81, Sn 7, Pb 9, Zn 3 Cu 88, Sn 8, Pb 2, Zn 2                                                                        | Cast ¶.            | ٤ ا     | 3.9                          |                  | 13.4 to<br>14.1                | 21.1 to<br>24.6<br>21.8 to<br>26.0 | 19,000 to                            | 30,000 to<br>35,000<br>31,000 to<br>37,000 | 15.0                         | 24.0 to<br>22.0         | 50 to<br>55<br>57 to<br>59            | 1111   |
| Lead, Zinc Phosphor: Cu 73.2, Sn 11.3, Pb 12.0, Zn 2.5, P 1 Manganese:                                                 | Cast ***           |         | _                            | _                | 10.5                           | 21.4                               | 15,000                               | 30,400                                     | 4.0                          | 3.3                     |                                       | 11     |
| Cu 88, Sn 10, Mn 2                                                                                                     | Cast               | • • • • | _                            | _                | 9.0                            | 19.1<br>28.6                       | 12,800                               | 27,200                                     | 25.0<br>32.0                 | 28.0                    | _                                     |        |
| Cu 89, Sn 4, Ni 4, Zn 3 (2)<br>Phosphor:<br>Cu 95, Sn 4.9, P 0.1                                                       | Rolled.<br>Cast    | 8       | 3.6                          |                  | 8.1<br>28.0<br>11.2 <b>t</b> o | 27.9<br>46.0<br>21.8 <b>t</b> o    | 11,500<br>40,000<br>16,000 to        | 39,700<br>65,000<br>31,000 to              | 31.0<br>30.0<br>6.0 to       | 31.0                    |                                       | 37     |
| Cu 80, Sn 10.5, P 0.5<br>Cu 80, Sn 20, P max. 1<br>Rods and bars §§ up to 12.7<br>mm (§ in.)<br>(minimum) over 12.7 mm | Cast ‡‡            |         | _                            |                  | 14.1<br>42.2                   | 24.6<br>56.2                       | 20,000                               | 80,000                                     | 12.0                         | Requir                  | cole                                  | to     |
| to 25.4 mm (1 in.)<br>over 25.4 mm (1 in.)<br>Sheets and plates §§ spring                                              |                    |         | _ :                          | _                | 28.1                           | 38.7                               | 40,000   <br>30,000                  |                                            | 20.0<br>25.0                 | abou<br>us e            | ugh 12<br>it radi<br>qual t<br>eness. | 0°     |
| Medium temper                                                                                                          | hard-dr            | awn c   | or he                        | - 1              | 17.6                           |                                    | 25,000   <br>Vavy Spe                | 50,000                                     | 25.0<br>Dec. 1               |                         | 46                                    | 04.    |
| Bronze, Phosphor: spring wir<br>Sn min. 4.5, Zn max 0.3, Fe m                                                          |                    |         | Min.                         | ten              | sile                           | .50; m                             | Diameter (group limits).             |                                            | 1                            | Min. te                 | tensile                               |        |
| Diameter (group limits)                                                                                                | kg/mm²   1         |         |                              | lb/in²           |                                | nm ·                               | in.                                  |                                            | nm²                          | lb/in                   | 2                                     |        |
| Up to 1.59 mm or 0.0625 in<br>Over 1.59 mm to 3.17 mm (o.                                                              |                    | . 95.0  |                              |                  | 135,000                        |                                    | 6.35 to 0.250<br>9.52 to 0.375       |                                            | 77.5                         |                         | 110,00                                |        |

\*Specification Values, Rolled Brass, Cu 62, Zn 37, Sn 1, min. properties after U. S. Navy Spec., 1918.
† Specification Values: Jan. 3, 1916, Vanadium Bronze Castings, Cu 61, Zn 38, Sn max. 1 (incl. V). Mimima.
† Compressive P-limit 10,5 kg/mm² or 12,000 lb/in²
6 Compressive P-limit 10,5 kg/mm² or 15,000 lb/in² and 28 per cent set for 70 kg/mm² or 100,000 lb/in²
1 Ultimate compressive strength, 54.2 kg/mm² or 77,100 lb/in² (Cu 76, Sn 7, Pb 13, Zn 4).

\* Compressive P-limit 8.8 to 9.1 kg/mm² or 12,500 to 13,000 lb/in², and 34 to 35 per cent set for 70 kg/mm²
\*\* Compressive P-limit 17.6 to 28.1 kg/mm² or 17,300,000 lb/in², and 34 to 35 per cent set for 70 kg/mm²
†† Modulus of Elasticity: (1) 12,200 kg/mm² or 17,300,000 lb/in²; (2) 10,500 kg/mm² or 14,900,000 lb/in²
†† Compressive P-limit 17.6 to 28.1 kg/mm² or 25,000 to 40,000 lb/in² and 6 to 10 per cent set for 70 kg/mm²
or 100,000 lb/in² load.
Specification Values: U. S. Navy 46 B 5c, Mar. 1, 1917, Cu 85 to 90, Sn 6 to 11, Zn max. 4: Cast, Grade 1.— Impurities max. 0.8; min. tensile strength 31.6 kg/mm² or 45,000 lb/in² with 20 per cent elong. in 50.8 mm (2 in.).

\* Grade 2.— Impurities max. 1.6; min. tensile strength 21.1 kg/mm³ or 30,000 lb/in² with 15 per cent elong. in 50.8 mm (2 in.).

50.8 mm (2 in.).

§§ Specification Values: U. S. Navy 46B 14b, Mar. 1, 1016, Cu min. 04, Sn min. 3.5, P 0.50, rolled or drawn.

||| Minimum yield points specified: for P-limits assume 66 per cent of values shown.

## MECHANICAL PROPERTIES.

#### TABLE 65. - Copper Alloys - Three (or more) Components.

| Alloy and approx.                                                                                                         | Condition.             | Density          | or weight.        | P-limit.                     | Ultimate<br>strength.                                           | P-limit.                                    | Ultimate<br>strength.                                                            | Elong. in<br>50.8 mm<br>(2 in.)                | Reduct.                                | Hard                          | ness.                  |
|---------------------------------------------------------------------------------------------------------------------------|------------------------|------------------|-------------------|------------------------------|-----------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------|-------------------------------|------------------------|
| per cent.                                                                                                                 |                        | gm<br>per<br>cm³ | lb.<br>per<br>in³ |                              | sion,<br>mm²                                                    |                                             | nsion,<br>/in²                                                                   | Per                                            | cent.                                  | Brinell @ 500 kg.             | Sclero-<br>scope.      |
| Cu 88, Sn 8, Zn 4<br>Cu 85, Sn 13, Zn 2                                                                                   | Cast (mins.)<br>Cast ‡ |                  | 535               | 8.6<br>5.6 to<br>8.4<br>7.7  | 46.0<br>74.0<br>27.4<br>22.5 to<br>26.7<br>21.1<br>27.5<br>26.7 | 12,200<br>8,000 to<br>12,000<br>—<br>11,000 | 65,000<br>105,000<br>38,900<br>32,000 to<br>38,000<br>30,000<br>30,200<br>38,000 | 25.0<br>25.0 to<br>10.0<br>14.0<br>30.5<br>2.5 | 21.0<br>25.0 to<br>12.0<br>24.0<br>2.5 | 75<br>58                      |                        |
| Zinc, Lead                                                                                                                | Cast §                 |                  | -                 | 11.2<br>28.1<br>26.4         | 28.I<br>56.2<br>52.7                                            | 12,000 to<br>16,000<br>40,000               | 40,000<br>80,000<br>75,000                                                       | 25.0<br>30.0<br>30.0                           | 26.0<br>Requir<br>cold<br>120°         | 60  <br>ed to<br>thi<br>about | bend<br>rough<br>t ra- |
| over 25.4 mm (1 in.) Shapes,   all thicknesses Sheets and plates,  o to 12.7 mm (½ in.) over 12.7 mm (½ in.) AluminumTin: |                        |                  |                   | 24.6<br>26.4<br>27.4<br>26.4 | 50.7<br>52.7<br>54.8<br>52.7                                    | 35,000<br>37,500<br>39,000¶<br>37,500       | 78,000<br>75,000                                                                 | 30.0<br>30.0<br>30.0                           |                                        | equa                          | il to                  |
| Cu 88.5, Al 10.4, Sn 1.2 Aluminum Titanium: Cu 90, Al 10                                                                  | Cast **                | _                | _                 | 26.0<br>13.9                 | 48.0<br>52.0                                                    | 36,700<br>19,800                            | 68,000<br>74,000                                                                 | 4.5                                            | 5·5<br>23·7                            | 189                           | 32<br>25               |
| Cu 89, Al 10, Fe 1                                                                                                        | Cast ††                | 7.58             | 473               | 29.0<br>14.1 to<br>17.6      | 74.0<br>45.7 to<br>56.2                                         | 40,500<br>20,000 to<br>25,000               | 80,000                                                                           | 1.0<br>30.0 to<br>20.0                         | 20.0                                   | 262<br>93 to<br>100           | 25 to                  |
| Cu 71.9, Pb 27.5, Sn 0.5<br>Nickel, Aluminum:<br>Cu 82.1, Ni 14.6, Al 2.5,                                                |                        |                  | _                 | _                            | 4.2 to<br>4.6                                                   | -                                           | 6,000 to<br>6,600                                                                | 3.0 to<br>3.2                                  | 4.2 to<br>6.7                          |                               |                        |
| Zn 0.7 ‡‡                                                                                                                 |                        | -                |                   | 13.4<br>10.5 to              | 23.2<br>16.2 to                                                 | 63,300<br>15,000 to<br>19,000<br>15,000 to  | 27,000 to<br>33,000<br>23,000 to                                                 | 16.0<br>4.0 to                                 | 15.0<br>4.0 to                         | 62                            | 20                     |
| Zinc, Phosphor ("Non Gran") Cu 86, Sn 11, Zn 3, Ptr. Vanadium, See Brass,                                                 | Cast                   | _                | _                 | 13.4                         | 25.0                                                            | 19,000                                      | • 35,000                                                                         | 9.0                                            | 0.5                                    | _                             | 24                     |
| Vanadium. Copper, Aluminum or Aluminum Bronze: Cu 90, Al 10                                                               |                        |                  | .60               | 71 0 to                      | FT T *0                                                         | To Soo to                                   | 72,700 to                                                                        | aQ Q 4a                                        | an a ta                                | raa to                        | or to                  |
| Cu 92.5, Al 7.2                                                                                                           | Rolled, and            | 7.45             | 465               | 23.3<br>7.0                  | 60.0<br>37.5                                                    | 33,200<br>9,600                             | 85,500                                                                           | 21.7<br>91.0                                   |                                        | 106                           | 25 to<br>26<br>19      |
| man bronze<br>Cu 86.4, Al 9.7, Fe 3.9                                                                                     | Cast                   | =                | =                 | 9.8<br>8.1<br>14.0           | 59-3<br>55-5<br>54-0                                            | 14,000<br>11,500<br>20,000                  | 78,850                                                                           | 11.5<br>14.5<br>24.5                           | 25.0                                   | 100                           |                        |
| Cu 88.5, Al 10.5, Fe 1.0.                                                                                                 | drawn<br>700° C        | -                |                   | 28.0                         | 65.0                                                            | 40,000                                      | 92,000                                                                           | 14.0                                           | 18.5                                   | 140                           | -                      |

<sup>\*</sup> Gov't. Bronze: Cu 88, Sn 10, Zn 2 (values shown are averages for 30 specimens from five foundries tested at the Bureau of Standards).

† Compressive P-limit 10.5 kg/mm² or 15,000 lb/in² with 20 per cent set for 70 kg/mm² or 100,000 lb/in² load.

† Values from same series of tests as first values for "88-10-2," averages for 26 specimens from five foundries tested at Bureau of Standards.

at Bureau, of Standards.

Scompressive P-limit 9.1 kg/mm² or 13,000 lb/in² with 34 per cent set for 70 kg/mm² or 100,000 lb/in² load.

Specification minimums: U. S. Navy 46B17, Dec. 2, 1918, for hot-rolled aluminum bronze, Cu 85 to 87, Al 7 to 9, Fe 2.5 to 4.5. Specification values under P-limit are for yield point.

Two and six tenths per cent increase in strength up to 762 mm (30 in.) width.

Compressive P-limit: cast, 14.1 kg/mm² or 20,000 lb/in² with 11.4 per cent set at 70 kg/mm² or 100,000 lb/in²

load.

toad.

† Compressive P-limit: cast, 12.7 to 14.1 kg/mm² or 18,000 to 20,000 lb/in² with 13 to 15 per cent set at 700 kg/mm² or 100,000 lb/in² load.

† Modulus of elasticity 14,800 kg/mm² or 21,150,000 lb/in² with 36 per cent set for 70.3 kg/mm², or 100,000 lb/in² load.

| | High values are after Jean Escard "L'Aluminum dans L'Industrie," Paris, 1918. Compressive P-limit 13.5 kg/mm² or 19,200 lb/in² with 13.5 per cent set for 70.3 kg/mm² or 100,000 lb/in² load.

#### MECHANICAL PROPERTIES.

## TABLE 66. - Miscellaneous Metals and Alloys.

|                                                                                                                                                    |                                                                       |                      |                                |                            |                                            |                                                 |                                                          |                   |                    | _                |                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------|--------------------------------|----------------------------|--------------------------------------------|-------------------------------------------------|----------------------------------------------------------|-------------------|--------------------|------------------|-------------------|
| Metal or alloy. Approx. composition,                                                                                                               | Condition.                                                            | Density              | or weight.                     | P-limit.                   | Ultimate<br>strength.                      | P-limit.                                        | Ultimate<br>strength.                                    | Elong. in 50.8 mm | Reduct.            | Hanne            | ard-<br>ess.      |
| per cent.                                                                                                                                          |                                                                       | gm<br>per<br>cm³     | lb.<br>per<br>ft.3             | Tensi<br>kg/n              | ion,<br>nm²                                | Tens                                            | sion,<br>in <sup>2</sup>                                 | Per               | ent.               | Brinell (500 kg. | Sclero-<br>scope. |
| * Cobalt, Co 99.7 } Gold, Au 100                                                                                                                   | Cast                                                                  |                      | 550<br>556<br>1203<br>—        |                            | 23.1<br>26.0<br>18.0<br>26.0<br>45.8       | =                                               | 33,000<br>37,000<br>25,000<br>37,000<br>65,100           | 25.0              |                    | 121<br>48<br>—   | 20                |
| 30 Ag 12. Lead, Pb†                                                                                                                                | Drawn hard Cast Rolled hard Drawn soft Drawn hard Cast                | 11.40                | 710<br>711<br>—<br>655         |                            | 102.0<br>1.3<br>2.3<br>1.7<br>2.2<br>4.5   | =                                               | 145,000<br>1,780<br>3,300<br>2,420<br>3,130<br>6,400     | =                 | 111111             | 8 -              | 3 -               |
| Magnesium, Mg. Nickel, Ni 98.5 Ni 99.95 Ni 98.5 Ni 1                                                                                               | Cast                                                                  | 1.7<br>1.74<br>8.3   | 100                            | 16.7 **<br>12.6            | 21.0<br>23.2<br>26.7                       | 23,800 **<br>17,900                             | 30,000                                                   | 5.7<br>11.0<br>—  | 6.r                | 76<br>83         | 35                |
| Ni                                                                                                                                                 | Drawn hard, D = 1.65 mm or 0.065 in                                   | 8.9                  | -                              |                            | 109.0                                      | 30,100 78,400                                   | 70,000                                                   | 18.0              | 20.0               | _                |                   |
| Ni 66, Cu 28, Fe 3.5, Mn 2.5 Ni 71, Cu 27, Fe 2 \$ 46 M 12    46 M 7b                                                                              | Rolled                                                                | 11 11                | 11 11                          | 28.3<br>22.8 **<br>28.1 ** | 64.8<br>112.5<br>45.7                      | 78,400<br>40,300<br>—<br>32,500 **<br>40,000 ** | 104,900<br>92,200<br>160,000<br>65,000<br>80,000         | 46.3<br>—<br>25.0 | 61.7               | _                | 27<br>—           |
| Palladium, PdPlatinum, Pt                                                                                                                          | Rolled, mini-<br>mum, sheets<br>and plates<br>Drawn hard<br>Drawn ann | 12.1                 | 755<br>1342                    | 21.1                       |                                            | 30,000                                          | 65,000<br>39,000<br>53,000<br>35,000                     | 15.0              |                    |                  |                   |
| Silver, Ag 100                                                                                                                                     | Cast Drawn hard Drawn hard Drawn hard Cast Rolled                     | 10.57<br>16.6<br>7.3 | 655<br>660<br>—<br>1035<br>456 |                            | 28.1<br>36.0<br>77.0<br>91.0<br>2.8<br>3.7 |                                                 | 40,000<br>51,200<br>109,500<br>130,000<br>4,000<br>5,300 | =                 |                    | 59<br>—<br>14    | 32 - 8 -          |
| Antimony, Copper, Zinc<br>(Britannia Metal);<br>Sn 81, Sb 16, Cu 2, Zn 1.<br>Zinc, Aluminum, etc.<br>(aluminum solder);<br>Sn 63, Zn 18, Al 13, Cu | Drawn hard                                                            |                      |                                |                            | 7.0                                        |                                                 | 10,000                                                   |                   |                    |                  |                   |
| 3, Sb 2, Pb 1                                                                                                                                      | Cast                                                                  |                      | -                              |                            | 9.1<br>8.6                                 |                                                 | 14,500<br>13,000<br>12,200                               | 1.6               | 1.5<br>1.3<br>81.0 | -                | 1 1 1             |
| mium:<br>Sn 78, Al 9, Zn 8, Cd 5.                                                                                                                  | Cast, chill                                                           | -                    | -                              | -                          | 10.1                                       | -                                               | 14,300                                                   | 18.0              | 41.0               | -                | -                 |

Antimony: Modulus of Elasticity 7960 kg/mm² or 11,320,000 lb/in² (Bridgman).

\* Compressive strength: cast and annealed, 86.0 kg/mm² or 122,000 lb/in².

Comm² cl. comp., C 0.06, cast, tensile, ultimate, 42.8 kg/mm² or 61,000 lb/in², with 20 per cent elongation in 50.8 or 2 in. Compression, ultimate 123.0 kg/mm² or 175,000 lb/in²

Stellite, Co 50.5, Mo 22.5, C 10.8, Fe 3.1, Mn 2.0, C 0.0, Si 0.8. Brinell hardness 512 at 3000 kg.

† Modulus of elasticity, cast or rolled, 492 kg/mm² or 700,000 lb/in²; drawn hard 703 kg/mm² or 1,000,000 lb/in²

For compressive test data on lead-base babbit metal, see table following zinc.

§ Modulus of elasticity 15,800 kg/mm² or 22,500,000 lb/in².

|| Specification values, U. S. Navy, Monel metal, Ni min. 60, Cu min. 23, Fe max. 3.5, Mn max. 3.5, C + Si max.

0.8, Al max. 0.5.

¶ Values shown are subject to slight modifications dependent on shapes and thicknesses.

\*\* Values are for yield point.

†† Compressive strength: cast, 4.5 kg/mm² or 6,400 lb/in²

Modulus of elasticity: cast av. 2,810 kg/mm² or 4,000,000 lb/in²; rolled av. 401.0 kg/mm² or 5,700,000 lb/in²

SMITHSONIAN TABLES.

#### TABLE 67. MECHANICAL PROPERTIES.

#### TABLE 67. - Miscellaneous Metals and Alloys.

(a) TUNGSTEN AND ZINC.

| Metal or<br>alloy<br>approx.<br>comp.<br>per cent. | Condition.                                                                                                             | or w                      | nsity<br>eight.           | P-limit. | Ultimate strength.                 | P-limit. | Ultimate strength.                      | Elong. in 50.8 mm (2 in.) | Reduct.                     | Brinell @ Soo kg.          | scope.    |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|----------|------------------------------------|----------|-----------------------------------------|---------------------------|-----------------------------|----------------------------|-----------|
|                                                    |                                                                                                                        | per<br>cm³                | per<br>ft³                |          | g/mm²                              | 1        | b/in²                                   | Per                       | ent                         | Brir                       | SS        |
| Tungsten,<br>W 99.2*                               | Ingot sintered,   D = 5.7 mm or 0.22 in. Swaged rod,   D = 0.7 mm or 0.03 in. Drawn hard,   D = 0.000 mm or 0.00114 in | 18.0                      | 1124<br>—                 |          | 12.7<br>151.0<br>415.0<br>164.0    |          | 18,000<br>215,000<br>590,000<br>233,500 | 0.0<br>4.0<br>—<br>3.2    | 0.0<br>28.0<br>65.0<br>14.0 | 11.11                      |           |
| Zinc, §Zn:                                         | Cast                                                                                                                   | 7.0<br>—<br>—<br>—<br>7.1 | 437<br>—<br>—<br>—<br>443 | (I<br>   | mpurities 2.8 to 8.4 19.0 25.3 7.0 |          |                                         | = - =                     | = -                         | -<br>42 to<br>48<br>-<br>- | 8 to 10 — |

\*Commercial composition for incandescent electric lamp filaments containing thoria (ThO2) approx. 0.75 per cent after Z. Jeffries Am. Inst. Min. Eng. Bulletin 138, June, 1918.

† After Z. Jeffries Am. Inst. Min. Eng. Bulletin 149, May, 1910.

† Ordinary annealing treatment makes W brittle, and severe working, below recrystallization or equiaxing temperature, produces ductility W rods which have been worked and recrystallized are stronger than sintered rods. The equiaxing temperature of worked tungsten, with a 5-min. exposure, varies from 2200° C for a work rod with 24 per cent reduction, to 1350° C for a fine wire with 100 per cent reduction. Tungsten wire, D = 0.635 mm or 0.025 in.

§ Compression on cylinder 25.4 mm (1 in.) by 65.1 mm (2.6 in.), at 20 per cent deformation:

For spelter (cast zinc) free from Cd, av. 17.2 kg/mm² or 24,500 lb/in².

For spelter with Cd 0.26, av. 27.4 kg/mm² or 30,000 lb/in². (See Proc. A. S. T. M., Vol. 13, pl. 19.)

Modulus of rupture averages twice the corresponding tensile strength.

Shearing strength: rolled, averages 13.6 kg/mm² or 104,000 lb/in².

Shearing strength: rolled, averages 13.6 kg/mm² or 194,000 lb/in².

Modulus of elasticity: cast, 7,750 kg/mm² or 11,025,000 lb/in².

Modulus of elasticity. rolled, 8450 kg/mm² or 12,000 000 lb/in². (Moore, Bulletin 52, Eng. Exp. Sta. Univ. of Ill.)

(b) WHITE METAL BEARING ALLOYS (BABBITT METAL).
A. S. T. M. vol. xviii, I, p. 491.

Experimental permanent deformation values from compression tests on cylinders 31.8 mm (1\frac{1}{4}\text{ in.}) diam. by 63.5 mm (2\frac{1}{4}\text{ in.}) long, tested at 21° C (70° F.) (Set readings after removing loads.)

|   |                  |      | Form                       | nıla              |              | Pou        | ring       |              |      |              | Permane        | nt defo  | rmation            | @ 21°          | C                | Hard           | iness.           |
|---|------------------|------|----------------------------|-------------------|--------------|------------|------------|--------------|------|--------------|----------------|----------|--------------------|----------------|------------------|----------------|------------------|
| ı | Al-<br>loy<br>No |      | per c                      |                   |              |            | np.        | Wei          | ght. | @ 45<br>= 10 | 4 kg<br>00 lb. |          | 268 kg<br>2000 lb. | @ 453<br>= 10, | 36 kg<br>000 lb. | rinell<br>21°C | 500 kg<br>100° C |
| ı |                  | Sn   | Sn   Sb   Cu   Pb   C   F. |                   | F.           | g/cm³      | lb./ft³    | mm           | in.  | mm           | in.            | mm       | mm in.             |                | 88               |                |                  |
| I |                  | 7    | l'in                       | Base              |              |            |            |              |      |              |                |          |                    |                |                  |                |                  |
| I | I 2 *            | 91.0 | 4·5<br>7·5                 |                   | _            | 440<br>432 | 824        | 7.34<br>7.39 |      | 0.000        | 0,0000         | .038     | 0.0010             | 0.380<br>.305  |                  | 28.6           | 12.8             |
| П | 3                | 83.3 | 8.3                        | 3 5<br>8.3<br>3.0 | 10.0         | 491<br>360 | 916<br>680 | 7.46         | 465  | .025         |                |          | .0045              | .180           |                  | 34.4           | 15.7             |
| П | 5                | 65.0 |                            |                   | 18.0         | 350        | 661        | 7.75         |      | .025         | .0010          | .076     | .0030              | .230           | .0090            | 29.6           | 11.8             |
| Н |                  |      | Lead 1                     | Base.             |              |            | - 1        |              |      |              |                |          |                    |                | 1111             |                |                  |
| Ш | 6                | 20.0 |                            |                   | 63.5         | 337        | 638        | 9.33         |      | .038         | .0015          | .127     | .0050              | -457           | .0180            | 24.3           | II.I             |
| Н | 7                | 10.0 | 15.0                       |                   | 75.0<br>80.0 | 329<br>320 | 625        | 9.73         |      | .025         | .0010          | .127     | .0050              | .583           | .0230            | 24.1           | 11.7             |
|   | 0                | 5.0  | 10.0                       |                   | 85.0         | 310        | 616        | 10.04        | 640  | .102         | .0040          | .305     | .0120              | 2.130          | .0840            | 19.5           | 8.6              |
| Ш | 10               | 2.0  | 15.0                       |                   | 83.0         |            | 625        | 10.07        | 629  | .025         | .0010          | -254     | .0100              | 3.910          | .1540            | 17.0           | 8.9              |
| Ш | II               |      | 15.0                       |                   | 85.0         | 325        | 625        | 10.28        |      | .025         | .0010          | .254     | .0100              | 3.020          | .1190            | 17.0           | 9.9              |
| 1 | 13               | -    | 10.0                       | _                 | 90.0         | 334        | 634        | 10.67        | 666  | 0.064        | 0.0025         | 0.432    | 0.0170             | 7.240          | 0.2850           | 14.3           | 6.4              |
| 1 |                  |      |                            |                   |              |            |            |              |      |              |                | <u> </u> |                    |                |                  |                |                  |

<sup>\*</sup> U.S. Navy Spec. 46M2b (Cu 3 to 4.5, Sn 88 to 89.5, Sb 7.0 to 8.0) covers manufacture of anti-friction-metal castings.

Composition W.)

Note. — See also Brass, Lead (yellow brass), Brass, Lead-Tin (Red Brass); Bronze, Phosphor, etc., under Copper allovs

#### MECHANICAL PROPERTIES.

#### TABLE 68. - Cement and Concrete.

#### (a) CEMENT.

CEMENT: Specification Values (A. S. T. M. C9 to 17, C10 to 09, and C9 to 16T). Minimum strengths based on tests of 645 mm<sup>2</sup> (1 in<sup>2</sup>) cross section briquettes for tension, and cylinders 50.8 mm (2 in.) diameter by 101.6 mm (4 in.) length for compression. Mortar, composed of 1 part cement to 3 parts Ottawa sand by volume; specimens kept in damp closet for first 24 hours and in water from then on until tested.

| Cement                | Specific | Age,    | Tens   | sion.     | Compression. |        |  |
|-----------------------|----------|---------|--------|-----------|--------------|--------|--|
| (1: 3 mortar tested). | gravity. | days.   | kg/mm² | lb/in²    | kg/mm²       | lb/in² |  |
| Std. Portland         | 3.10     | 7       | 0.16   | 200       | 0.85         | 1,200  |  |
| White Portland        | 3.07     | 28      | . 24   | 300       | 1.60         | 2,000  |  |
| Natural Av<br>Natural | 2.85     | 7<br>28 | .03    | 50<br>125 | _            | _      |  |

## (b) CEMENT AND CEMENT MORTARS.

CEMENT AND CEMENT MORTARS. — Bureau of Standards Experimental Values. Compressive Strengths of Portland cement mortars of uniform plastic consistency. Data from tests on 50.8 mm (2 in.) cubes stored in water. Sand: Potomac River, representative concrete sand.

| Cement      | Sand.      | Water,    | Age,    | Compressiv   | e strength.    |
|-------------|------------|-----------|---------|--------------|----------------|
| Proportions | by volume. | per cent. | days.   | kg/mm²       | lb/in²         |
|             |            |           |         |              |                |
| I           | 0          | 30.0      | 7<br>28 | 4.20<br>6.40 | 5,970<br>9,120 |
| I           | I          | 16.0      | 7 .     | 3.10<br>4.75 | 4,440<br>6,750 |
| 1 '         | 2          | 13.6      | 7<br>28 | 2.05         | 2,900<br>4,440 |
| _I          | 3          | 13.9      | 7<br>28 | 2.05         | 1,780<br>2,890 |
| I           | 9          | 15.1      | 7<br>28 | 0.10         | 120<br>200     |
|             |            |           | l       |              |                |

Note. — (From Bureau of Standards Tech. Paper 58.) Neat cement briquettes mixed at plastic consistency (water 21 per cent) show 0.52 kg/mm<sup>2</sup> or 740 lb/in<sup>2</sup> tensile strength at 28 days' age;

r Cement: 3 Ottawa sand-mortar briquettes, mixed at plastic consistency (water 9 per cent) show 0.28 kg/mm² or 400 lb/in² tensile strength at 28 days' age.

#### TABLE 68 (continued). MECHANICAL PROPERTIES.

(c) CONCRETE.

CONCRETE: Compressive strengths. Experimental values for various mixtures. Results compiled by Joint Committee on Concrete and Reinforced Concrete. Final Report adopted by the Committee July 1, 1916. Data are based on tests of cylinders 203.2 mm (8 in.) diameter and 406.4 mm (16 in.) long at 28 days age.

American Standard Concrete Compressive Strengths.

| Units              | Mix.                               |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|--------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| O III CO.          | 1:3                                | 1:41                                                                                                                                                                                  | 1:6                                                                                                                                                                                                                                                                                        | 1:73                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1:9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| kg/mm²<br>lb/in²   | 2 · 3<br>3300                      | 2.0                                                                                                                                                                                   | 1.5                                                                                                                                                                                                                                                                                        | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| kg/mm²<br>lb/in²   | 2.I<br>3000                        | 1.8                                                                                                                                                                                   | I.4<br>2000                                                                                                                                                                                                                                                                                | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| kg/mm²             | 1.5                                | 1.3                                                                                                                                                                                   | 1.1                                                                                                                                                                                                                                                                                        | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| kg/mm <sup>2</sup> | 0.6                                | 0.5                                                                                                                                                                                   | 0.4                                                                                                                                                                                                                                                                                        | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                    | lb/in² kg/mm² lb/in² kg/mm² lb/in² | kg/mm <sup>2</sup> 2.3<br>lb/in <sup>2</sup> 3300<br>kg/mm <sup>2</sup> 2.1<br>lb/in <sup>2</sup> 3000<br>kg/mm <sup>2</sup> 1.5<br>lb/in <sup>2</sup> 2200<br>kg/mm <sup>2</sup> 0.6 | kg/mm²         2.3         2.0           lb/in²         3300         2800           kg/mm²         2.1         1.8           lb/in²         3000         2500           kg/mm²         1.5         1.3           lb/in²         2200         1800           kg/mm²         0.6         0.5 | Weight         1:3         1:4½         1:6           kg/mm²         2.3         2.0         1.5           lb/in²         3300         2800         2200           kg/mm²         2.1         1.8         1.4           lb/in²         3000         2500         2000           kg/mm²         1.5         1.3         1.1           lb/in²         2200         1800         1500           kg/mm²         0.6         0.5         0.4 | Weeken         1:3         1:4½         1:6         1:7½           kg/mm²         2.3         2.0         1.5         1.3           lb/in²         3300         2800         2200         1800           kg/mm²         2.1         1.8         1.4         1.1           lb/in²         3000         2500         2000         1600           kg/mm²         1.5         1.3         1.1         0.8           lb/in²         2200         1800         1500         1200           kg/mm²         0.6         0.5         0.4         0.4 |  |  |

Note. - Mix shows ratio of cement (Portland) to combined volume of fine and coarse aggregate (latter as shown).

Committee recommends certain fractions of tabular values as safe working stresses in reinforced concrete

design, which may be summarized as follows:

Bearing, 35 per cent of compressive strength;

Compression, extreme fiber, 3.5 per cent of compressive strength;

Vertical shearing stress 2 to 6 per cent of compressive strength, depending on reinforcing;

Bond stress, 4 and 5 per cent of compressive strength, for plain and deformed bars, respectively.

Modulus of Elasticity to be assumed as follows:

| For concrete v | with strength. | Assume modulus of elasticity. |             |  |                |  |
|----------------|----------------|-------------------------------|-------------|--|----------------|--|
| kg/mm²         | kg/mm² lb/in²  |                               | /mm² lb/in² |  | lb/in² 750,000 |  |
| up to 0.6      | up to 800      | 530                           |             |  |                |  |
| 0.6 to 1.5     | 800 to 2200    | 1400                          | 2,000,000   |  |                |  |
| 1.5 to 2.0     | 2200 to 2900   | 1750                          | 2,500,000   |  |                |  |
| over 2.0       | over 2900      | 2100                          | 3,000,000   |  |                |  |

(See Joint Committee Report, Proc. A. S. T. M. v. XVII, 1917, p. 201.)

EDITOR'S NOTE. — The values shown in the table above are probably fair values for the compressive strengths of concretes made with average commercial material, although higher results are usually obtained in laboratory tests of specimens with high grade aggregates. Observed values on 1:2:4 gravel concrete show moduli of elasticity up to 3 too kg/mm² or 4,500,000 lb/in² and compressive strengths to 4.2 kg/mm² or 6000 lb/in² Tensile strengths average to per cent of values shown from compressive strengths. Shearing strengths average from 75 to 125 per cent of the compressive strengths; the larger percentage representing the shear of the leaner mixtures (for direct shear, Hatt gives 60 to 80 per cent of crushing strength).

Compressive strengths of natural cement concrete average from 30 to 40 per cent of that of Portland

cement concrete of the same proportioned mix.

Transverse strength: modulus of rupture of 1:21:5 concrete at 1 and 2 months equal to one sixth crushing strength at same age (Hatt).

Weight of granite, gravel and limestone, 1:2:4 concretes averages about 2.33 g/cm³ or 145 lb/ft³; that of cinder concrete of same mix is about 1.85 g/cm³ or 115 lb/ft³

Concrete, 1:2:4 Mix, Compressive Strengths at Various Ages.

Experimental Values: one part cement, two parts Ohio River sand and four parts of coarse aggregate as shown. Compressive tests made on 203.2 mm (8 in.) diameter cylinders, 406.4 mm (16 in.) long. (After Pittsburgh Testing Laboratory Results. See Rwy Age, vol. 64, Jan. 18, 1918, pp. 165–166.)

| Coarse aggregate. | Unit.              |          | Ag       | ge.      |           |
|-------------------|--------------------|----------|----------|----------|-----------|
| Coarse aggregate. | Onic.              | 14 days. | 30 days. | 60 days. | 180 days. |
| Gravel            | kg/mm²             | 1.35     | 1.61     | 2.06     | 2.67      |
|                   | lb/in²             | 1921     | 2294     | 2925     | 3798      |
| Limestone         | kg/mm <sup>2</sup> | 1.24     | 1.53     | 2.35     | 3.11      |
|                   | lb/in²             | 1758     | 2174     | 3343     | 4426      |
| Trap rock         | kg/mm²             | 1.45     | 1.67     | 2.36     | 3.39      |
|                   | lb/in²             | 2063     | 2386     | 3360     | 4819      |
| Granite           | kg/mm²             | 1.49     | 1.61     | 2.14     | 2.92      |
|                   | lb/in²             | 2122     | 2292     | 3043     | 4151      |
| Slag No. 1        | kg/mm <sup>2</sup> | 1.75     | 2.16     | 2.37     | 3.38      |
|                   | lb/in²             | 2484     | 3075     | 3365     | 4803      |
| Slag No. 2        | kg/mm <sup>2</sup> | 1.37     | 1.78     | 2.06     | 2.64      |
|                   | lb/in²             | 1941     | 2525     | 2930     | 3753      |

Note. - Maximum and minimum test results varied about 5 per cent above or below average values shown above. SMITHSONIAN TABLES.

#### TABLE 69.

#### MECHANICAL PROPERTIES.

#### TABLE 69. - Stone and Clay Products.

## (a) STRENGTH AND STIFFNESS OF AMERICAN BUILDING STONES.\*

| Weight,                             |                          | Compression. Ultimate strength. |                                      | Flexure. Modulus of rupture.        |                    | Shear.<br>Ultimate<br>strength. |                              |                    | Flexure,<br>modulus of elasticity. |                              |                    |              |                                                  |                       |
|-------------------------------------|--------------------------|---------------------------------|--------------------------------------|-------------------------------------|--------------------|---------------------------------|------------------------------|--------------------|------------------------------------|------------------------------|--------------------|--------------|--------------------------------------------------|-----------------------|
| Stone.                              |                          |                                 | Ave                                  | Average.                            |                    | Average.                        |                              | Average.           |                                    | e it.                        | Average.           |              | it to                                            |                       |
|                                     | g/cm³                    | lb/ft³                          | kg/mm²                               | lb/in²                              | Range<br>per cent. | kg/mm²                          | lb/in²                       | Range<br>per cent. | kg/mm²                             | lb./in²                      | Range<br>per cent. | kg/mm²       | lb/in²                                           | Range<br>per cent.    |
| Granite Marble Limestone Sandstone. | 2.6<br>2.7<br>2.6<br>2.2 | 165<br>170<br>160<br>135        | 8.8 <sub>5</sub><br>6.3 <sub>0</sub> | 20,200<br>12,600<br>9,000<br>12,500 | 25<br>95           | 0.85                            | 1600<br>1500<br>1200<br>1500 | 50                 | 0.90                               | 2300<br>1300<br>1400<br>1700 | 25<br>45           | 5750<br>5900 | 7,500,000<br>8,200,000<br>8,400,000<br>3,300,000 | 25<br>50<br>65<br>100 |

<sup>\*</sup>Values based on tests of American building stones from upwards of twenty-five localities, made at Watertown (Mass.) Arsenal (Moore, p. 184). Each value shown under "Range" is one half the difference between maximum and minimum locality averages expressed as a percentage of the average for the stone.

## (b) STRENGTH AND STIFFNESS OF BAVARIAN BUILDING STONE.\*

|                                                | Weight, average. |                          | mpressio<br>ate stre | n. Flexure. Modulus of rupture. |                    |                              | Shear.<br>Ultimate<br>Strength.† |                    |                              | Flexure.<br>Modulus of<br>elasticity. |                     |              |                                                  |                     |
|------------------------------------------------|------------------|--------------------------|----------------------|---------------------------------|--------------------|------------------------------|----------------------------------|--------------------|------------------------------|---------------------------------------|---------------------|--------------|--------------------------------------------------|---------------------|
| Stone.                                         | avers            | -                        |                      | rage.                           |                    |                              | Average.                         |                    | Average.                     |                                       | e it.               | Average.     |                                                  | it e                |
|                                                | g/cm³            | lb/ft³                   | kg/mm²               | lb/in²                          | Range<br>per cent. | kg/mm <sup>2</sup>           | lb/in²                           | Range<br>per cent. | kg/mm²                       | lb/in²                                | Range<br>per cent.  | kg/mm²       | lb/in²                                           | Range<br>per cent.  |
| Granite<br>Marble ‡.<br>Limestone<br>Sandstone |                  | 165<br>135<br>155<br>145 | 5.60                 | 19,500<br>8,000<br>11,500       | 15                 | 0.90<br>0.30<br>1.10<br>0.45 | 450                              | 5<br>45<br>55      | 1.00<br>0.45<br>0.60<br>0.50 | 620                                   | 0<br>50<br>20<br>35 | 3450<br>2350 | 2,300,000<br>4,900,000<br>3,350,000<br>3,550,000 | 30<br>—<br>90<br>35 |

<sup>\*</sup> Values based on careful tests by Bauschinger, "Communications," Vol. 10.

General Notes.— 1. Later transverse strength (flexure) tests on Wisconsin building stones (Johnson's "Materials of Construction," 1918 ed., p. 255) show moduli of rupture as follows: Granite, 1.90 to 2.75 kg/mm² or 2710 to 3910 lb/in²; limestone, 0.80 to 3.30 kg/mm² or 1160 to 4660 lb/in²; sandstone, 0.25 to 0.95 kg/mm² or 360 to 1320 lb/in².

2. Good slate has a modulus of rupture of 4.90 kg/mm² or 7000 lb/in² (loc. cit., p. 257).

<sup>†</sup> Shearing strength determined perpendicular to bed of stone.

Values are for Jurassic limestone.

# TABLE 69 (continued). MECHANICAL PROPERTIES. TABLE 69. — Stone and Clay Products.

| (c) Strengths of American Building Bricks.* |                    |                 |                           |                                |        |  |  |  |  |  |  |
|---------------------------------------------|--------------------|-----------------|---------------------------|--------------------------------|--------|--|--|--|--|--|--|
| Brick — description.                        | Absorption average | Comp<br>Min. ul | pression.<br>t. strength. | Flexure. Min. modulus rupture. |        |  |  |  |  |  |  |
|                                             | per cent.          | kg/mm²          | lb/in²                    | kg/mm²                         | lb/in² |  |  |  |  |  |  |
|                                             |                    |                 |                           |                                |        |  |  |  |  |  |  |
| Class A (Vitrified)                         |                    | 3.50            | 5000                      | 0.65                           | 900    |  |  |  |  |  |  |
| Class B (Hard burned)                       | 12                 | 2.45            | 3500                      | 0.40                           | 600    |  |  |  |  |  |  |
| Class C (Common firsts)                     | 18                 | 1.40            | 2000                      | 0.30                           | 400    |  |  |  |  |  |  |
| Class D (Common)                            |                    | 1.05            | 1500                      | 0.20                           | 300    |  |  |  |  |  |  |

<sup>\*</sup> After A. S. T. M. Committee C-3, Report 1913, and University laboratories' tests for Committee C-3 (Johnson, p. 281).

(d) Strength in Compression of Brick Piers and of Terra-cotta Block Piers.

Tabular values are based on test data from Watertown Arsenal, Cornell University,
U. S. Bureau of Standards, and University of Ill. (Moore, p. 185).

| Brick or block used. | Mortar.                          | Compression.* Av. ult. strength. |        |  |
|----------------------|----------------------------------|----------------------------------|--------|--|
|                      |                                  | kg/mm²                           | lb/in² |  |
| Vitrified brick      | 1 part P.† cement : 3 parts sand | 1.95                             | 2800   |  |
| Pressed (face) brick | 1 part P. cement: 3 parts sand   | 1.40                             | 2000   |  |
| Pressed (face) brick | 1 part lime: 3 parts sand        | 1.00                             | 1400   |  |
| Common brick         | 1 part P. cement: 3 parts sand   | 0.70                             | 1000   |  |
| Common brick         | 1 part lime: 3 parts sand        | 0.50                             | 700    |  |
| Terra-cotta brick    | 1 part P. cement: 3 parts sand   | 2.10                             | 3000   |  |

<sup>\*</sup>Building ordinances of American cities specify allowable working stresses in compression over bearing area of 12.5 per cent (vitrified brick) to 17.5 per cent (common brick) of corresponding ultimate compressive strength shown in table.

† P. denotes Portland.

## (e) STRENGTH OF COMPRESSION OF VARIOUS BRICKS.

Reasonable minimum average compressive strengths for other types of brick than building brick are noted by Johnson, "Materials of Construction," pp. 289 ff., as follows:

| Brick.             | kg/mm² | lb/in²               |  |
|--------------------|--------|----------------------|--|
| sand-lime          | 2.10   | 3000                 |  |
| sand-lime (German) | 1.53   | 2180 (av. 255 tests) |  |
| paving             | 5.60   | 8000                 |  |
| acid-refractory    | 0.70   | 1000                 |  |
| silica-refractory  | 1.40   | 2000                 |  |

The specific gravity of brick ranges from 1.9 to 2.6 (corresponding to 120 to 160 lb/ft³). Building tile: hollow clay blocks of good quality, — minimum compressive strength: 0.70 kg/mm² or 1000 lb/in². Tests made for A. S. T. M. Committee C-10 (A. S. T. M. Proc. XVII, I, p. 334) show compressive strengths ranging from 0.45 to 8.70 kg/mm² or 640 to 12,360 lb/in² of net section, corresponding to 0.05 to 4.20 kg/mm² or 95 to 6000 lb/in² of gross section. Recommended safe loads (Marks, "Mechanical Engineers' Handbook," p. 625) for effective bearing parts of hollow tile: hard fire-clay tiles 0.06 kg/mm² or 80 lb./in²; ordinary clay tiles 0.04 kg/mm² or 60 lb/in²; porous terracotta tiles 0.03 kg/mm² or 40 lb/in.² The specific gravity of tile ranges from 1.9 to 2.5 corresponding to a weight of 120 to 155 lb/ft³.

#### MECHANICAL PROPERTIES.

#### TABLE 70. - Rubber and Leather.

## (a) RUBBER, - SHEET.\*

|        |         | Ultimate strength. |        |        |           |         | Set.‡        |      |
|--------|---------|--------------------|--------|--------|-----------|---------|--------------|------|
| Grade. | Longitu | Longitudinal.†     |        | verse. | Longit.   | Transv. | Longit. Tran |      |
|        | kg/mm²  | lb/in²             | kg/mm² | lb/in² | per cent. |         | per cent.    |      |
| I      | 1.92    | 2730               | 1.81   | 2575   | 630       | 640     | 11.2         | 7.3  |
| 2      | 1.45    | 2070               | 1.43   | 2030   | 640       | 670     | 6.0          | 5.0  |
| 3      | 0.84    | 1200               | 0.89   | 1260   | 480       | 555     | 22.I         | 16.3 |
| 4      | 1.30    | 1850               | 1.20   | 1700   | 410       | 460     | 34.0         | 24.0 |
| 5      | 0.48    | 690                | 0.36   | 510    | 320       | 280     | 27.5         | 25.0 |
| 6      | 0.62    | 880                | 0.48   | 690    | 315       | 315     | 34.3         | 25.9 |

<sup>\*</sup> Data from Bureau of Standards Circular 38.

The specific gravity of rubber averages from 0.95 to 1.25, corresponding to an average weight of 60 to 80 lb/ft<sup>3</sup>.

Four-ply rubber belts show an average ultimate tensile strength of 0.63 to 0.65 kg/mm<sup>2</sup> or 890 to 930 lb./in<sup>2</sup> (Benjamin), and a working tensile stress of 0.07 to 0.11 kg/mm<sup>2</sup> or 100 to 150 lb./in<sup>2</sup> is recommended (Bach).

#### (b) LEATHER, - BELTING.

Oak tanned leather from the center or back of the hide:

Minimum tensile strengths of belts single 2.8 kg/mm<sup>2</sup> or 4000 lb./in<sup>2</sup> double 2.5 kg/mm<sup>2</sup> or 3600 lb./in<sup>2</sup>

Maximum elongation for one hour application of single 13.5 per cent 1.6 kg/mm<sup>2</sup> or 2250 lb./in<sup>2</sup> stress double 12.5 per cent.

Modulus of elasticity of leather varies from an average value of 12.5 kg/mm<sup>2</sup> or 17,800 lb/in<sup>2</sup> (new) to 22.5 kg/mm<sup>2</sup> or 32,000 lb/in<sup>2</sup> (old).

Chrome leather has a tensile strength of 6.0 to 9.1 kg/mm<sup>2</sup> or 8500 to 12,900 lb/in<sup>2</sup>.

The specific gravity of leather varies from 0.86 to 1.02, corresponding to a weight of 53.6 to 63.6 lb./ft<sup>3</sup>.

<sup>†</sup> Longitudinal indicates direction of rolling through the calendar.

<sup>‡</sup> Set measured after 300 per cent elongation for 1 minute with 1 minute rest.

## MECHANICAL PROPERTIES.

#### TABLE 71. - Manila Rope.

Manila Rope, Weight and Strength — Specification Values. From U. S. Government Standard Specifications adopted April 4, 1918.

Rope to be made of manila or Abaca fiber with no fiber of grade lower than U. S. Government Grade I, to be three-strand,\* medium-laid, with maximum weights and minimum strengths shown in the table below, lubricant content to be not less than 8 nor more than 12 per cent of the weight of the rope as sold.

| Approxi<br>diamet | mate<br>ter.   | Circum       | ference.   | Maximum | net weight. |            | n breaking |
|-------------------|----------------|--------------|------------|---------|-------------|------------|------------|
| mm                | in.            | mm           | in.        | kg/m    | lb/ft.      | kg         | lb.        |
| 6.3               | 14             | 19.1         | 34         | 0.020   | 0.0196      | 220        | 700        |
| 7.9               | 5<br>16        | 25.4         | I I        | 0.029   | 0.0190      | 320        | 700        |
| 9.5               | 1 6<br>3<br>8  | 28.6         | 1 1 1 8    | 0.044   | 0.0280      | 540<br>660 | 1,200      |
| 9.5               | 8<br>7<br>16   | 31.8         | 18<br>114  | 0.001   |             |            | 1,450      |
| 11.0              | 16<br>15<br>32 | _            | 13/8       |         | 0.0539      | 790        | 1,750      |
| -                 | 32             | 34·9<br>38.1 | 18<br>11/2 | 0.095   |             | 950        | 2,100      |
| 12.7              | 9<br>16        |              | 1 3<br>1 3 | 0.109   | 0.0735      | 1,110      | 2,450      |
| 14.3              | 16<br>5<br>8   | 44.5         | _          | 0.153   | 0.1029      | 1,430      | 3,150      |
| 15.9              | 8<br>3<br>4    | 50.8         | 2          | 0.195   | 0.1307      | 1,810      | 4,000      |
| 19.1              | 13<br>16       | 57.2         | 21/4       | 0.241   | 0.1617      | 2,220      | 4,900      |
| 20.6              |                | 63.5         | 21/3       | 0.284   | 0.1911      | 2,680      | 5,900      |
| 22.2              | 78             | 69.9         | 23/4       | 0.328   | 0.2205      | 3,170      | 7,000      |
| 25.4              | I              | 76.2         | 3          | 0.394   | 0.2645      | 3,720      | 8,200      |
| 27.0              | 116            | 82.6         | 31/4       | 0.459   | 0.3087      | 4,310      | 9,500      |
| 28.6              | I 1/8          | 88.9         | 31/2       | 0.525   | 0.3528      | 4,990      | 11,000     |
| 31.8              | 114            | 95.2         | 34         | 0.612   | 0.4115      | 5,670      | 12,500     |
| 33.3              | 1 5            | 101.6        | 4          | 0.700   | 0.4703      | 6,440      | 14,200     |
| 34.9              | I 3/8          | 108.0        | 41/4       | 0.787   | 0.5290      | 7,260      | 16,000     |
| 38.1              | 11/2 .         | 114.3        | 41/2       | 0.875   | 0.5879      | 7,940      | 17,500     |
| 39.4              | 1 1 6          | 120.7        | 434        | 0.984   | 0.6615      | 8,840      | 19,500     |
| 41.2              | I 5/8          | 127.0        | 5          | 1.004   | 0.7348      | 9,750      | 21,500     |
| 44.5              | 13/4           | 140.0        | 5 ½        | 1.312   | 0.8818      | 11,550     | 25,500     |
| 50.8              | 2              | 152.4        | 6          | 1.576   | 1.059       | 13,610     | 30,000     |
| 52.4              | 216            | 165.1        | 61/2       | 1.823   | 1.225       | 15,420     | 34,000     |
| 57.2              | 21/4           | 177.8        | 7          | 2.144   | 1.441       | 17,460     | 38,500     |
| 63.5              | 21/2           | 190.5        | 71/2       | 2.450   | 1.646       | 19,730     | 43,500     |
| 66.7              | 25/8           | 203.2        | 8          | 2.799   | 1.881       | 22,220     | 49,000     |
| 73.0              | 27/8           | 215.9        | 81/2       | 3.136   | 2.107       | 24,940     | 55,000     |
| 76.2              | 3              | 228.6        | 9          | 3 · 543 | 2.381       | 27,670     | 61,000     |
| 79.4              | 31/8           | 241.3        | 91         | 3.936   | 2.645       | 30,390     | 67,000     |
| 82.5              | 31/4           | 254.0        | 10         | 4.375   | 2.940       | 33,110     | 73,000     |
|                   |                |              |            |         |             |            |            |

<sup>\*</sup> Four-strand, medium-laid rope when ordered may run up to 7% heavier than three-strand rope of the same size, and must show 95% of the strength required for three-strand rope of the same size.

| 96 MECHANICAL                                         | PRO  | PERT                              | ES.             | TABLE                                     | E 72                             | - Hard          | dwoods                                | Grov        | wn in                   | U. S.                                        | (Metri                               | ic Uni                                 | ts).                    |                             |
|-------------------------------------------------------|------|-----------------------------------|-----------------|-------------------------------------------|----------------------------------|-----------------|---------------------------------------|-------------|-------------------------|----------------------------------------------|--------------------------------------|----------------------------------------|-------------------------|-----------------------------|
|                                                       | Spe  | cific                             | Sta             | tic bend                                  |                                  |                 | t bend-                               | Co          | ompressi                | ion.                                         | Shear.                               | Ten-<br>sion.                          | Hard                    | dness.                      |
| Common and botanical name.                            | oven | vity, -dry, d on  vol. oven- dry. | P-limit, kg/mm2 | Modulus of<br>rupture, kg/mm <sup>2</sup> | Modulus of<br>elasticity, kg/mm² | P-limit, kg/mm2 | 22.7 kg hammer<br>fall for failure—m. | P-<br>limit | rallel rain.  Ultimate. | Perpendicular to<br>grain P-limit,<br>kg/mm² | Parallel to grain<br>ult. st. kg/mm² | Perpendicular to grain ult. st. kg/mm² | Load in it. 3 d. end kg | ad to<br>mbed<br>mm<br>ball |
| 1                                                     | 4    | 5                                 | 6               | 7                                         | 8                                | 9               | 10                                    | 11          | 12                      | 13                                           | 14                                   | 15                                     | 16                      | 17                          |
|                                                       |      |                                   |                 |                                           |                                  |                 |                                       |             |                         | -                                            |                                      |                                        |                         | _                           |
| Alder, red(Alnus oregona) Ash, black                  | 0.37 | 0.43                              | 1.85            | 4.55                                      | 830                              | 5.60            | 0.56                                  | 1.85        | 1.60                    | 0.22                                         | 0.54                                 | 0.27                                   | 250                     | 250                         |
| (Fraxinus nigra) Ash, white (forest grown)            | 0.52 | 0.60                              | 3.45            | 6.40                                      | 950                              | 8.25            | 0.91                                  | 2.30        | 2.70                    | 0.57                                         | 0.89                                 | 0.44                                   | 455                     | 401                         |
| (Fraxinus americana) Ash, white (second growth)       | 0.58 | 0.71                              | 4.30            | 7.60                                      | 1150                             | 9.70            | 1.19                                  | 2.70        | 2.90                    | 0.56                                         | 1.13                                 | 0.56                                   | 515                     | 490                         |
| (Fraxinus americana)<br>Aspen                         | 0.36 | 0.42                              | 2.05            | 3.75                                      | 590                              | 4.85            | 0.71                                  | 1.10        | 1.50                    | 0.14                                         | 0.44                                 | 0.13                                   | 120                     | 145                         |
| Basswood                                              | 0.33 | 0.40                              | 1.90            | 3.50                                      | 725                              | 4.35            | 0.43                                  | 1.20        | 1.55                    | 0.15                                         | 0.43                                 | 0.20                                   | 125                     | 115                         |
| (Tilia americana) Beech(Fagus atropunicea)            | 0.54 | 0.66                              | 3.15            | 5.80                                      | 875                              | 7.30            | 1.02                                  | 1.80        | 2.30                    | 0.43                                         | 0.85                                 | 0.56                                   | 430                     | 370                         |
| Birch, paper                                          | 0.47 | 0.60                              | 2.05            | 4.10                                      | 710                              | 5.50            | 1.14                                  | 1.20        | 1.55                    | 0.21                                         | 0.56                                 | 0.27                                   | 180                     | 220                         |
| Birch, yellow                                         | 0.54 | 0.66                              | 3.25            | 6.05                                      | 1080                             | 8.25            | 1.02                                  | 1.90        | 2.40                    | 0.32                                         | 0.78                                 | 0.34                                   | 370                     | 340                         |
| Butternut(Juglans cinerea)                            | 0.36 | 0.40                              | 2.05            | 3.80                                      | 680                              | 5.15            | 0.61                                  | 1.40        | 1.70                    | 0.19                                         | 0.53                                 | 0.30                                   | 185                     | 175                         |
| Cherry, black(Prunus serolina)                        | 0.47 | 0.53                              | 2.95            | 5.65                                      | 920                              | 7.20            | 0.84                                  | 2.10        | 2.50                    | 0.31                                         | 0.80                                 | 0.40                                   | 340                     | 300                         |
| Chestnut                                              | 0.40 | 0.46                              | 2.20            | 3.95                                      | 655                              | 5-55            | 0.61                                  | 1.45        | 1.75                    | 0.27                                         | 0.56                                 | 0.30                                   | 240                     | 190                         |
| (Populus delloides)                                   | 0.37 | 0.43                              | 2.05            | 3.75                                      | 710                              | 5.05            | 0.53                                  | 1.25        | 1.60                    | 0.17                                         | 0.48                                 | 0.29                                   | 175                     | 155                         |
| Cucumber tree(Magnolia acuminata) Dogwood (flowering) | 0.44 | 0.52                              | 2.95            | 5.20                                      | 1100                             | 6.55            | 0.76                                  | 1.95        | 2.20                    | 0.29                                         | 1.07                                 | 0.31                                   | 640                     | 640                         |
| (Cornus florida)                                      | 0.58 | 0.66                              | 3.40            | 6.70                                      | 830                              | 7.75            | 1.47                                  | 2.00        | 2.55                    | 0.73                                         | 0.80                                 | 0.47                                   | 445                     | 450                         |
| (Ulmus racemosa) Elm, white.                          | 0.44 | 0.54                              | 2.55            | 4.85                                      | 725                              | 5.70            | 0.86                                  | 1.60        | 2.00                    | 0.28                                         | 0.65                                 | 0.39                                   | 275                     | 250                         |
| (Ulmus americana) Gum, blue                           | 0.62 | ი.80                              | 5.35            | 7.85                                      | 1430                             | 10.00           | 1.02                                  | 3.40        | 3.70                    | 0.72                                         | 1.00                                 | 0.45                                   | 595                     | 610                         |
| (Eucalyptus globulus) Gum, cotton                     | 0.46 | 0.52                              | 2.95            | 5.15                                      | 740                              | 6.30            | 0.76                                  | 1.95        | 2.40                    | 0.42                                         | 0.84                                 | 0.42                                   | 365                     | 320                         |
| (Nyssa aquatica) Gum, red                             | 0.44 | 0.53                              | 2.60            | 4.80                                      | 810                              | 7.05            | 0.84                                  | 1.70        | 1.95                    | 0.32                                         | 0.75                                 | 0.36                                   | 285                     | 235                         |
| (Liquidambar styraciflua) Hickory pecan               | 0.60 | 0.69                              | 3.65            | 6.90                                      | 960                              | 8.65            | 1.35                                  | 2.15        | 2.80                    | 0.63                                         | 1.04                                 | 0.48                                   | 575                     | 595                         |
| (Hickory, shagbark<br>(Hickoria ovata)                | 0.64 | _                                 | 4.15            | 7-75                                      | 1105                             | 10.10           | 1.88                                  | 2.40        | 3.20                    | 0.70                                         | 0.93                                 | -                                      | -                       | -                           |
| Holly, American                                       | 0.50 | 0.61                              | 2.40            | 4.55                                      | 630                              | 6.25            | 1.30                                  | 1.40        | 1.85                    | 0.43                                         | 0.80                                 | 0.43                                   | 390                     | 360                         |
| Laurel, mountain                                      | 0.62 | 0.74                              | 4.10            | 5.90                                      | 650                              | 7.20            | 0.81                                  | _           | 3.00                    | 0.78                                         | 1.18                                 | -                                      | 635                     | 590                         |
| Locust, black(Robinia pseudacacia)                    | 0.66 | 0.71                              | 6.20            | 9.70                                      | 1300                             | 12.90           | 1.12                                  | 4.40        | 4.85                    | 1.01                                         | 1.24                                 | 0.54                                   | 740                     | 715                         |
| (Gleditsia triacanthos)                               | 0.65 | 0.67                              | 3.95            | 7.20                                      | 910                              | 8.30            | 1.20                                  | 2.35        | 3.10                    | 1.00                                         | 1.17                                 | 0.66                                   | 655                     | 630                         |
| Magnolia (evergreen) (Magnolia foetida)               | 0.46 | 0.53                              | 2.55            | 4.80                                      | 780                              | 6.20            | 1.37                                  | 1.55        | 1.90                    | 0.40                                         | 0.73                                 | 0.43                                   | 355                     | 335                         |
| Maple, silver                                         | 0.44 | 0.51                              | 2.20            | 4.10                                      | 660                              | 4.80            | 0.74                                  | 1.35        | 2.80                    | 0.32                                         | 0.74                                 | 0.39                                   | 305                     | 270                         |
| Maple, sugar(Acer saccharum) Oak, canyon live         | 0.70 | 0.84                              | 3.50            | 6.40<br>7.45                              | 1040                             | 8.50            | 0.91                                  | 2.20        |                         | 0.53                                         | 0.97                                 | 0.63                                   | 455<br>720              | 715                         |
| (Quercus chrysolepsis) Oak, red                       | 0.56 | 0.65                              | 2.60            | 5.40                                      | 945                              | 7.90            | 1.04                                  | 1.65        | 2.25                    | 0.51                                         | 0.79                                 | 0.52                                   | 465                     | 430                         |
| (Quercus rubra) Oak, white                            | 0.60 | 0.71                              | 3.30            | 5.85                                      | 880                              | 7.55            | 1.07                                  | 2.10        | 2.50                    | 0.59                                         | 0.88                                 | 0.54                                   | 510                     | 480                         |
| (Quercus alba) Persimmon                              | 0.64 | 0.78                              | 3.95            | 7.05                                      | 965                              | 8.50            | 1.04                                  | 2.15        | 2.95                    | 0.78                                         | 1.03                                 | 0.54                                   | 565                     | 580                         |
| (Diospyros virginiana) Poplar, yellow                 | 0.37 | 0.42                              | 2.25            | 3.95                                      | 850                              | 5.65            | 0.43                                  | 1.40        | 1.80                    | 0.22                                         | 0.56                                 | 0.32                                   | 190                     | 155                         |
| (Liriodendron tulipifera)<br>Sycamore                 | 0.46 | 0.54                              | 2.30            | 4.60                                      | 745                              | 6.20            | 0.84                                  | 1.70        | 2.00                    | 0.32                                         | 0.71                                 | 0.44                                   | 320                     | 275                         |
| (Platanus occidentalis) Walnut, black                 | 0.51 | 0.56                              | 3.80            | 6.70                                      | 1000                             | 8.40            | 0.94                                  | 2.55        | 3.05                    | 0.42                                         | 0.86                                 | 0.43                                   | 435                     | 410                         |
| (Juglans nigra) Willow, black                         | 0.34 | 0.41                              | 1.25            | 2.75                                      | 395                              | 3.60            | 0.91                                  | 0.70        | 1.05                    | 0.15                                         | 0.44                                 | 0.30                                   | 160                     | 165                         |
| (Salix nigra)                                         |      |                                   |                 |                                           |                                  |                 |                                       |             |                         |                                              |                                      | 1                                      |                         |                             |

Note. — Results of tests on sixty-eight species; test specimens, small clear pieces, 50.8 by 50.8 mm in section, 762 mm long for bending; others, shorter. Data taken from Bulletin 556, Forest Service, U. S. Dept. of Agriculture, containing data on 130,000 tests. See pages 87 and 99 for explanation of columns.

|                                                                     |                        | cific                    | Sta       | tic ben                     | ding.                       |          | bend-                     | Со     | mpressi | ón.                                          | Shear                   | Ten-<br>sion.                                | Hard      | dness.                      |
|---------------------------------------------------------------------|------------------------|--------------------------|-----------|-----------------------------|-----------------------------|----------|---------------------------|--------|---------|----------------------------------------------|-------------------------|----------------------------------------------|-----------|-----------------------------|
| Common and botanical name.                                          | base                   | vity,<br>n-dry,<br>ed on | t, kg/mm² | Modulus of<br>oture, kg/mm2 | fulus of<br>y, kg/mm²       | , kg/mm² | kg hammer<br>failure — m. |        | rain.   | Perpendicular to<br>grain P-limit,<br>kg/mm² | el to grain<br>, kg/mm² | Perpendicular to<br>grain ult. st.<br>kg/mm² | ½ ir      | nd to<br>nbed<br>mm<br>ball |
|                                                                     | vol.<br>when<br>green. | vol.<br>oven-<br>dry.    | P-limit,  | Modu<br>rupture,            | Modulus of elasticity, kg/n | P-limit, | 22.7 kg                   | limit. | mate.   | Perpend<br>grain I<br>kg/                    | Parallel<br>ult. st,    | Perper<br>grain<br>kg                        | end<br>kg | side<br>kg                  |
| 1                                                                   | 4                      | 5                        | 6         | 7                           | 8                           | 9        | 10                        | 11     | 12      | 13                                           | 14                      | 15                                           | 16        | 17                          |
| Cedar, incense(Libocedrus decurrens)                                | 0.35                   | 0.36                     | 2.75      | 4.35                        | 590                         | 5.15     | 0.43                      | 2.00   | 2.20    | 0.32                                         | 0.58                    | 0.20                                         | 260       | 175                         |
| Cedar, Port Orford                                                  | 0.41                   | 0.47                     | 2.75      | 4.80                        | 1055                        | 6.55     | 0.64                      | 2.10   | 2.30    | 0.27                                         | 0.62                    | 0.17                                         | 255       | 220                         |
| (Chamaecyparis lawsoniana)<br>Cedar, western red<br>(Thuja plicata) | 0.31                   | 0.34                     | 2.30      | 3.65                        | 670                         | 5.05     | 0.43                      | 1.75   | 2.00    | 0.22                                         | 0.51                    | 0.15                                         | 195       | 118                         |
| Cedar, white (Thuja occidentalis)                                   | 0.29                   | 0.32                     | 1.85      | 2.95                        | 450                         | 3.75     | 0.38                      | 1.00   | 1.40    | 0.20                                         | 0.44                    | 0.17                                         | 145       | 104                         |
| Cypress, bald(Taxodium distichum)                                   | 0.41                   | 0.47                     | 2.80      | 4.80                        | 835                         | 5.60     | 0.61                      | 2.20   | 2.45    | 0.33                                         | 0.58                    | 0.20                                         | 215       | 175                         |
| Fir, amabilis(Abies amabilis)                                       | 0.37                   | 0.42                     | 2.75      | 4.45                        | 915                         | 5.50     | 0.53                      | 1.70   | 2.00    | 0.22                                         | 0.47                    | 0.17                                         | 165       | 140                         |
| Fir, balsam(Abies balsamea)                                         | 0.34                   | 0.41                     | 2.10      | 3.45                        | 675                         | 4.85     | 0.41                      | _1.55  | 1.70    | 0.15                                         | 0.43                    | 0.23                                         | 135       | 135                         |
| Fir, Douglas (1)(Pseudotsuga taxifolia)                             | 0.45                   | 0.52                     | 3.50      | 5.50                        | 1110                        | 6.60     | 0.63                      | 2.40   | 2.80    | 0.37                                         | 0.64                    | 0.14                                         | 230       | 215                         |
| Fir, Douglas (2)(Pseudotsuga taxifolia)                             | 0.40                   | 0.44                     | 2.55      | 4.50                        | 830                         | 6.40     | 0.51                      | 1.80   | 2.10    | 0.32                                         | 0.62                    | 0.25                                         | 205       | 180                         |
| Fir, grand. (Abies grandis)                                         | 0.37                   | 0.42                     | 2.55      | 4.30                        | 915                         | 5.70     | 0.56                      | 1.90   | 2.10    | 0.24                                         | 0.53                    | 0.16                                         | 190       | 165                         |
| Fir, noble                                                          | 0.35                   | 0.41                     | 2.40      | 4.00                        | 900                         | 5.55     | 0.51                      | 1.70   | 1.90    | 0,22                                         | 0.49                    | 0.13                                         | 135       | 115                         |
| Fir, white                                                          | 0.35                   | 0.44                     | 2.75      | 4.20                        | 795                         | 5.05     | 0.46                      | 1.85   | 1.95    | 0.31                                         | 0.51                    | 0.18                                         | 175       | 150                         |
| Hemlock, eastern (Tsuga canadensis)                                 | 0.38                   | 0.44                     | 2.95      | 4.70                        | 790                         | 5.55     | 0.51                      | 1.90   | 2.30    | 0.35                                         | 0.62                    | 0.18                                         | 230       | 185                         |
| Hemlock, western                                                    | 0.38                   | 0.43                     | 2.40      | 4.30                        | 835                         | 5.50     | 0.51                      | 1.60   | 2.05    | 0.25                                         | 0.57                    | 0.18                                         | 245       | 195                         |
| Larch, western                                                      | 0.48                   | 0.59                     | 3.25      | 5.25                        | 950                         | 6.60     | 0.61                      | 2.30   | 2.70    | 0.39                                         | 0.65                    | 0.16                                         | 215       | 205                         |
| Pine, Cuban(Pinus heterophylla)                                     | 0.58                   | 0.68                     | 3.95      | °6.20                       | 1150                        | 7.95     | 0.94                      | 2.80   | 3.15    | 0.41                                         | 0.72                    | 0.20                                         | 260       | 285                         |
| Pine, loblolly                                                      | 0.50                   | 0.59                     | 3.10      | 5.30                        | 970                         | 6.70     | 0.81                      | 2.00   | 2.50    | 0.39                                         | 0.63                    | 0.20                                         | 185       | 205                         |
| (Pinus taeda) Pine, lodgepole (Pinus contorta)                      | 0.38                   | 0.44                     | 2.10      | 3.85                        | 760                         | 5.05     | 0.51                      | 1.50   | 1.85    | 0.22                                         | 0.49                    | 0.15                                         | 145       | 150                         |
| Pine, longleaf                                                      | 0.55                   | 0.64                     | 3.80      | 6.10                        | 1150                        | 7.60     | 0.86                      | 2.70   | 3.10    | 0.42                                         | 0.75                    | 0.20                                         | 250       | 270                         |
| (Pinus palustris) Pine, Norway                                      | 0.44                   | 0.51                     | 2.60      | 4.50                        | 970                         | 5-35     | 0.71                      | 1.75   | 2.20    | 0.25                                         | 0.55                    | 0.13                                         | 165       | 155                         |
| (Pinus resinosa) Pine, pitch                                        | 0.47                   | 0.54                     | 2.60      | 4.70                        | 790                         | 6.40     | 0.74                      | 1.50   | 2.15    | 0.36                                         | 0.67                    | 0.25                                         | 210       | 220                         |
| (Pinus rigida) Pine, shortleaf                                      | 0.50                   | 0.58                     | 3.15      | 5.65                        | 1020                        | 7.90     | 0.99                      | 2.50   | 2.70    | 0.34                                         | 0.63                    | 0.23                                         | 220       | 255                         |
| (Pinus echinata) Pine, sugar                                        | 0.36                   | 0.39                     | 2.30      | 3.75                        | 685                         | 4.70     | 0.43                      | 1.65   | 1.85    | 0.25                                         | 0.50                    | 0.19                                         | 150       | 145                         |
| (Pinus lambertiana) Pine, western white                             | 0.39                   | 0.45                     | 2.45      | 4.00                        | 935                         | 5-35     | 0.58                      | 1.95   | 2.15    | 0.21                                         | 0.50                    | 0.18                                         | 150       | 150                         |
| (Pinus monticola) Pine, western yellow                              | 0.38                   | 0.42                     | 3.20      | 3.65                        | 710                         | 4.70     | 0.48                      | 1.45   | 1.75    | 0.24                                         | 0.48                    | 0.20                                         | 140       | 145                         |
| (Pinus ponderosa)                                                   |                        |                          |           |                             |                             |          | 1                         |        |         |                                              |                         |                                              |           |                             |
| Pine, white(Pinus strobus)                                          | 0.36                   | 0.39                     | 2.40      | 3.75                        | 750                         | 4.55     | 0.46                      | 1.65   | 1.90    | 0.22                                         | 0.45                    | 0.18                                         | 135       | 135                         |
| Spruce, red(Picea rubens)                                           | 0.48                   | 0.41                     | 2.40      | 4.00                        | 830                         | 5.05     | 0.46                      | 1.65   | 1.95    | 0.25                                         | 0.54                    | 0.15                                         | 190       | 160                         |
| Spruce, Sitka                                                       | 0.34                   | 0.37                     | 2.10      | 3.85                        | 830                         | 5.05     | 0.74                      | 1.60   | 1.85    | 0.23                                         | 0.55                    | 0.16                                         | 195       | 170                         |
| Tamarack                                                            | 0.49                   | 0.56                     | 2.95      | 5.05                        | 875                         | 5.50     | 0.71                      | 2.20   | 2.45    | 0.34                                         | 0.65                    | 0.18                                         | 185       | 170                         |
| Yew, western                                                        | 0.60                   | 0.67                     | 4.55      | 7. 10                       | 695                         | 9.20     | 0.97                      | 2.40   | 3.25    | 0.73                                         | 1.14                    | 0.32                                         | 610       | 520                         |
|                                                                     |                        |                          |           |                             |                             |          |                           |        |         |                                              |                         |                                              |           |                             |

NOTE. — The data above are extracted from tests on one hundred and twenty-six species of wood made at the Forest Products Laboratory, Madison, Wisconsin. Bulletin 556 records results of tests on air-dry timber also, but only duta on green timber are shown, as the latter are based on a larger number of tests and on tests which are not influenced by variations in moisture conteat. The strength of dry material usually exceeds that of green material, but allowable working stresses in design should be bas.d on strengths of green timber, inasmuch as the increase of strength due to drying is a variable, uncertain factor and likely to be offset by defects. All test specimens were two inches square, by lengths as shown.

Column Notes.—2, Locality where grown,—see Tables 74 and 75; 3, Moisture includes all matter volatile at 100° C expressed as per cent of ordinary weight; 5, Weight, air dry is for wood with 12 per cent moisture; for density, see metric unit tables 72 and 73; 6-10, 762 mm (30 in.) long specimen on 711.2 mm (28 in.) span, with load at center.

| Tenn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                | 45                                 | We     | ight     | Sta             | atic bend                     | ing.                                    | Impact<br>bending. | Compr        | ession.                                      | Shear. | Ten-<br>sion.                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|------------------------------------|--------|----------|-----------------|-------------------------------|-----------------------------------------|--------------------|--------------|----------------------------------------------|--------|-----------------------------------------|
| Alder, red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                | Moisture content, green, per cent. | Green. | Air-dry. | P-limit, lb/in² | Modulus of<br>rupture, lb/in² | Modulus of elas-<br>ticity 1000 Xlb/in² | P-limit, lb/in²    | P-<br>limit. | Perpendicular to<br>grain, P-limit<br>lb/in³ | 29     | Perpendicular to grain, ult. st. lb/in² |
| (Als. balack, Mich. and Mi | 1                               | 2              | 3                                  | 4      | 5        | 6               | 7                             | 8                                       | 9                  | 11           | 13                                           | 14     | 15                                      |
| Ash, black   Mich and   Ash, white (forest grown)   Ash,   |                                 | Wash.          | 98                                 | 46     | 28       | 3800            | 6500                          | 1170                                    | 8000               | 2650         | 310                                          | 770    | 390                                     |
| Ash, white (forest grown). Ark. and W. 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ash, black                      |                | 83                                 | 53     | 34       | 2600            | 6000                          | 1020                                    | 7200               | 1620         | 430                                          | 870    | 490                                     |
| Ash, white (cd growth). N. Y.   40   51   46   6100   10800   1640   13800   3820   790   1600   790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ash, white (forest grown).      | Ark. and W.    | 43                                 | 46     | 40       | 4900            | 9100                          | 1350                                    | 11700              | 3230         | 800                                          | 1260   | 620                                     |
| Aspen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ash, white (2d growth)          |                | 40                                 | 51     | 46       | 6100            | 10800                         | 1640                                    | 13800              | 3820         | 790                                          | 1600   | 790                                     |
| Basswood   Wis. and Pa.   103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aspen                           | Wis.           | 107                                | 47     | 27       | 2900            | 5300                          | 840                                     | 6900               | 1620         | 200                                          | 620    | 180                                     |
| Beech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Basswood                        | Wis. and Pa.   | 103                                | 41     | 26       | 2700            | 5000                          | 1030                                    | 6200               | 1710         | 210                                          | 610    | 280                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Beech                           | Ind. and Pa.   | 62                                 | 55     | 44       | 4500            | 8200                          | 1240                                    | 10400              | 2550         | 610                                          | 1210   | 760                                     |
| Gebula papyriera   Birch, yellow   Wis.   68   58   45   4600   8600   1540   11700   2760   430   1110   480   (Bebula butea)   Wis.   Celula butea)   Tenn. and   104   46   27   2900   5400   970   7300   1960   270   760   430   430   760   760   430   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   760   76       | Birch, paper                    | Wis. and Pa.   | 72                                 | 51     | 38       | 2900            | 5800                          | 1010                                    | 7800               |              | 300                                          | 790    | 380                                     |
| Betulernut.   Tenn. and   104   46   27   2900   5400   970   7300   1960   270   760   430   430   (Juglans cinerea)   Ra.   55   46   36   4200   8000   1310   10200   2940   440   1130   570   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670   670      | Birch, yellow                   | Wis.           | 68                                 | 58     | 45       | 4600            | 8600                          | 1540                                    | 11700              | 2760         | 450                                          | 1110   | 480                                     |
| Outglans cinerea   Cherry, black   Pa.   55   46   36   4200   8000   1310   10200   2940   440   1130   570   1130   10200   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360      | Butternut                       |                | 104                                | 46     | 27       | 2900            | 5400                          |                                         |                    | 1960         |                                              | 760    |                                         |
| Crumus serolina   Chestnut.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cherry, black                   |                | 55                                 | 46     | 36       | 4200            | 8000                          | 1310                                    |                    | 2040         |                                              | 1130   |                                         |
| Cottonwood   Mo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Prunus serotina)<br>Chestnut   | Md. and Tenn.  | 122                                | 55     | 30       | 3100            | 5600                          |                                         | 7000               |              |                                              |        |                                         |
| Coucumber tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Castanea dentata)              | Mo.            | 111                                | 49     | 29       | 2000            | 5300                          |                                         |                    |              |                                              |        |                                         |
| Magnolia acuminala    Dogwood (flowering)   Cornus florida    Tenn.   62   65   54   4800   8800   1180   7100   — 1030   1520   — (Cornus florida)   Cornus florida    Corn   | (Populus deltoides)             |                | 80                                 |        |          |                 |                               |                                         | L i                |              |                                              |        |                                         |
| Cornus florida    Elm, cork.   Wis.   50   54   45   4600   9500   1190   11000   2870   750   1270   660   1210   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   11000   110000   110000   110000   110000   110000   110000   110000   110000   110000   1100000   110000   | (Magnolia acuminata)            | 200            |                                    |        |          |                 |                               |                                         |                    | 2700         |                                              | -      |                                         |
| Climus racemasa  Elm, white                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Cornus florida)                |                |                                    |        |          |                 |                               |                                         |                    | -0           |                                              |        | 66-                                     |
| Climus americana   Cal.   79   70   54   7600   11200   2010   14200   4870   1020   1550   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   640   64   | (Ulmus racemosa)                |                | -                                  |        |          |                 |                               |                                         |                    |              |                                              |        |                                         |
| Charapptus globulus   Cam, cotton   Cam, c   | (Ulmus americana)               |                |                                    |        |          |                 |                               |                                         | 8100               |              | 390                                          | 920    |                                         |
| (Nyssa aquatica)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Eucalyptus globulus)           |                | 79                                 |        | 54       | 7000            | 11200                         | 2010                                    | 14200              | 4870         | 1020                                         | 1550   | 6.40                                    |
| Gum, red   Mo.   81   50   36   3700   6800   1150   10000   2360   460   1070   510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | La.            | 97                                 | 56     | 34       | 4200            | 7300                          | 1050                                    | 9000               | 2760         | 590                                          | 1190   | 600                                     |
| Hickory, pecan.   Mo.   63   61   46   5200   9800   1370   12300   3040   960   1480   680   Hickory, shagbark   O., Miss., Pa.   and W. Va.   Holly, American.   Tenn.   82   57   40   3400   6500   900   8900   1970   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   610   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130   1130     | Gum, red                        | Mo.            | 81                                 | 50     | 36       | 3700            | 6800                          | 1150                                    | 10000              | 2360         | 460                                          | 1070   | 510                                     |
| Hickory, shagbark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hickory, pecan                  | Mo.            | 63                                 | 61     | 46       | 5200            | 9800                          | 1370                                    | 12300              | 3040         | 960                                          | 1480   | 680                                     |
| Holly, American                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hickory, shagbark               | O., Miss., Pa. | 60                                 | 64     | 51       | 5900            | 11000                         | 1570                                    | 14400              | 3430         | 1000                                         | 1320   |                                         |
| Laurel, mountain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Holly, American                 |                | 82                                 | 57     | 40       | 3400            | 6500                          | 900                                     | 8900               | 1970         | 610                                          | 1130   | 610                                     |
| Locust, black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Laurel, mountain                | Tenn.          | 62                                 | 62     | 49       | 5800            | 8400                          | 920                                     | 10200              | _            | 1110                                         | 1670   |                                         |
| Locust, honey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Locust, black                   | Tenn.          | 40                                 | 58     | 49       | 8800            | 13800                         | 1850                                    | 18300              | 6280         | 1430                                         | 1760   | 770                                     |
| Magnolia (evergreen).   La.   117   62   35   3600   6800   1110   8800   2200   570   1040   610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Locust, honey                   | Mo. and Ind.   | 63                                 | οı     | 47       | 5600            | 10200                         | 1290                                    | 11800              | 3320         | 1420                                         | 1660   | 930                                     |
| Magnolia foetida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Magnolia (evergreen)            | La.            | 117                                | 62     | 35       | 3600            | 6800                          |                                         | 8800               |              |                                              | 1010   | 610                                     |
| (Acer saccharinum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Magnolia foetida)              | Wis.           |                                    | 46     |          |                 |                               |                                         |                    |              |                                              |        | 560                                     |
| Wis.   Cal.      | (Acer saccharinum)              |                |                                    |        |          |                 |                               |                                         |                    |              |                                              |        |                                         |
| Quercus chrysolepsis   Oak, red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Acer saccharum)                | Wis.           |                                    |        |          |                 |                               |                                         |                    |              |                                              |        |                                         |
| Quercus rubra   And Tenn.   Ark., La. and   68   62   47   4700   8300   1250   10700   2990   830   1250   770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Quercus chrysolepsis)          |                | 1                                  |        |          |                 |                               |                                         |                    |              |                                              |        |                                         |
| Quercus alba   Ind.   Fersimmon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Quercus rubra)                 | and Tenn.      |                                    |        |          |                 |                               |                                         |                    |              |                                              |        |                                         |
| (Diospyros virginiana) Poplar, yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Quercus alba)                  | Ind.           |                                    |        |          |                 |                               |                                         |                    |              |                                              |        |                                         |
| (Liriodendr on tulipifera) Sycamore  Ind. and Tenn. 83 52 35 3300 6500 1060 8800 2390 450 1000 630 (Platanus occidentalis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Diospyros virginiana)          |                |                                    |        |          |                 |                               |                                         |                    |              |                                              |        | 770                                     |
| (Platanus occidentalis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Liriodendron tulipifera)       |                |                                    | 38     | 28       | 3200            |                               |                                         |                    | 2000         | 310                                          | 790    | 460                                     |
| Williams block   Ver   ST   #8   40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sycamore(Platanus occidentalis) | Ind.and Tenn.  |                                    |        | 35       | 3300            | 6500                          | 1060                                    | 8800               | 2390         | 450                                          | 1000   | 630                                     |
| Walnut, black   Ky.   81   58   39   5400   9500   1420   11900   3600   600   1220   570   (Juglans nigra)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Walnut, black                   | Ky.            | 81                                 | 58     | 39       | 5400            | 9500                          | 1420                                    | 11900              | 3600         | 600                                          | 1220   | 570                                     |

Note. — Results of tests on sixty-eight species; test specimens, small clear pieces, 2 by 2 inches in section, 30 inches long tor bending; others, shorter. Tested in a green condition. Data taken from Bulletin 556, Forest Service, U. S. Dept. of Agriculture, containing data on 130,000 tests. See pages 97 and 99 for explanation of columns.

|                                                               |                                        |                                       |        |              | Sta             | tic bend                     | ing.            | Impact bending. | Compr    | ession.                                      | Shear.                    | Ten-                |
|---------------------------------------------------------------|----------------------------------------|---------------------------------------|--------|--------------|-----------------|------------------------------|-----------------|-----------------|----------|----------------------------------------------|---------------------------|---------------------|
| -                                                             | -                                      | ontent,<br>cent.                      | We     | ight.        |                 | n <sup>2</sup>               | elas-<br>lb/in² |                 | Parallel | t to                                         | in,                       | sion.               |
| Common and botanical name.                                    | Locality<br>where grown.               | Moisture content,<br>green, per cent. | Green. | Air-<br>dry. | P-limit, lb/in² | Modulus of<br>upture, lb/in² | ~X              | limit, lb/in²   | to grain | Perpendicular to<br>grain, P-limit<br>lb/in² | l to grain,<br>st. lb/in² | erpendicular t      |
|                                                               |                                        | Moi                                   | lb/    | ′ft³         | P-lim           | Modult<br>rupture,           | Modulus c       | P- lim          | limit.   | Perpen<br>grain                              | Parallel to<br>ult. st. l | Perpen<br>grain, ul |
| 1                                                             | 2                                      | 3                                     | 4      | 5            | 6               | 7                            | 8               | 9               | 11       | 13                                           | 14                        | 15                  |
| Cedar, incense                                                | Cal. and Ore.                          | 108                                   | 45     | 24           | 3900            | 6200                         | 840             | 7300            | 2870     | 460                                          | 830                       | 280                 |
| (Libocedrus decurrens) Cedar, Port Orford (Chamaecyparis law- | Ore.                                   | 52                                    | 39     | 31           | 3900            | 6800                         | 1500            | 9300            | 3970     | 380                                          | 880                       | 240                 |
| soniana)<br>Cedar, western red                                | Wash. and<br>Mont.                     | 39                                    | 27     | 23           | 3300            | 5200                         | 950             | 7100            | 2500     | 310                                          | 720                       | 210                 |
| (Thuja plicata) Cedar, white (Thuja occidentalis)             | Wis.                                   | 55                                    | 28     | 21           | 2600            | 4200                         | 640             | 5300            | 1420     | 290                                          | 620                       | 240                 |
| Cypress, bald(Taxodium distichum)                             | La. and Mo.                            | 87                                    | 48     | 30           | 4000            | 6800                         | 1190            | 8000            | 3100     | 470                                          | 820                       | 280                 |
| Fir, amabilis                                                 | Ore. and<br>Wash.                      | 102                                   | 47     | 27           | 3900            | 6300                         | 1300            | 7800            | 2380     | 320                                          | 670                       | 240                 |
| Fir, balsam (Abies balsamea)                                  | Wis.                                   | 117                                   | 45     | 25           | 3000            | 4900                         | 960             | 6900            | 2220     | 210                                          | 610                       | 180                 |
| Fir, Douglas (1)<br>(Pseudotsuga taxifolia)                   | Wash. and<br>Ore.                      | 36                                    | 38     | 34           | 5000            | 7800                         | 1580            | 9400            | 3400     | 530                                          | 910                       | 200                 |
| Fir, Douglas (2)<br>(Pseudotsuga taxifolia)                   | Mont. and<br>Wyo.                      | 38                                    | 34     | 32           | 3600            | 6400                         | 1180            | 9100            | 2520     | 450                                          | 880                       | 350                 |
| Fir, grand(Abies grandis)                                     | Mont. and<br>Ore.                      | 94                                    | 44     | 27           | 3600            | 6100                         | 1300            | 8100            | 2680     | 340                                          | 700                       | 230                 |
| Fir, noble                                                    | Ore.                                   | 41                                    | 31     | 26           | 3400            | 5700                         | 1280            | 7900            | 2370     | 310                                          | 700                       | 180                 |
| Fir, white                                                    | Cal.                                   | 156                                   | 56     | 26           | 3900            | 6000                         | 1130            | 7200            | 2610     | 440                                          | 730                       | 260                 |
| (Abies concolor)<br>Hemlock (eastern)                         | Tenn. and                              | 105                                   | 48     | 29           | 4200            | 6700                         | 1120            | 7900            | 2710     | 500                                          | 880                       | 265                 |
| (Tsuga canadensia)<br>Hemlock (western)                       | Wis.<br>Wash.                          | 71                                    | 41     | 29           | 3400            | 6100                         | 1190            | 7800            | 2290     | 350                                          | 810                       | 265                 |
| (Tsuga heterophylla)<br>Larch, western                        | Mont. and                              | 58                                    | 48     | 37           | 4600            | 7500                         | 1350            | 9400            | 3250     | 560                                          | 920                       | 230                 |
| (Larix occidentalis) Pine, Cuban                              | Wash.<br>Fla.                          | 47                                    | 53     | 45           | 5600            | 8800                         | 1630            | 11300           | 3950     | 590                                          | 1030                      | 290                 |
| (Pinus heterophylla) Pine, loblolly                           | Fla., N. and                           | 70                                    | 54     | 39           | 4400            | 7500                         | 1380            | 9500            | 2870     | 550                                          | 900                       | 285                 |
| (Pinus taeda) Pine, lodgepole                                 | Fla., N. and<br>S. Car.<br>Col., Mont. | 65                                    | 39     | 28           | 3000            | 5500                         | 1080            | 7200            | 2100     | 310                                          | 600                       | 220                 |
| (Pinus contorta) Pine, longleaf                               | and Wyo.<br>Fla., La. and              | 47                                    | 50     | 43           | 5400            | 8700                         | 1630            | 10800           | 3840     | 600                                          | 1070                      | 290                 |
| (Pinus palustris) Pine, Norway                                | Miss.<br>Wis.                          | 54                                    | 42     | 34           | 3700            | 6400                         | 1380            | 7500            | 2470     | 360                                          | 780                       | 100                 |
| (Pinus resinosa) Pine, pitch                                  | Tenn.                                  | 85                                    | 54     | 35           | 3700            | 6700                         | 1120            | 0100            | 2100     | 510                                          | 950                       | 350                 |
| (Pinus rigida) Pine, shortleaf                                | Ark, and La.                           | 64                                    | 50     | 37           | 4500            | 8000                         | 1450            | 11200           | 3650     | 480                                          | 800                       | 330                 |
| (Pinus echinata)                                              |                                        |                                       | 1      |              |                 |                              |                 |                 |          |                                              |                           | 270                 |
| Pine, sugar(Pinus lambertiana)                                | Cal.<br>Mont.                          | 123                                   | 50     | 26           | 3300            | 5300                         | 970             | 7600            | 2340     | 350                                          | 710                       | 250                 |
| Pine, western white (Pinus monticola)                         |                                        | 58                                    | 39     | 30           | 3500            | 5700                         | 1330            | 1               | 2770     | "                                            | 1                         |                     |
| Pine, western yellow (Pinus ponderosa)                        | Col., Mont.,<br>Ariz., Wash.           | 95                                    | 46     | 28           | 3100            | 5200                         | 1010            | 6700            | 2080     | 340                                          | 680                       | 280                 |
| Pine, white                                                   | Wis.                                   | 74                                    | 39     | 27           | 3400            | 5300                         | 1070            | 6500            | 2370     | 310                                          | 640                       | 260                 |
| Spruce, red                                                   | N. H. and<br>Tenn.                     | 43                                    | 34     | 28           | 3400            | 5700                         | 1180            | 7200            | 2360     | 350                                          | 770                       | 220                 |
| Spruce, Sitka                                                 | Wash.                                  | 53                                    | 33     | 26           | 3000            | 5500                         | 1180            | 7900            | 2280     | 330                                          | 780                       | 230                 |
| Tamarack                                                      | Wis.                                   | 52                                    | 47     | 38           | 4200            | 7200                         | 1240            | 7800            | 3010     | 485                                          | 860                       | 260                 |
| Yew, western                                                  | Wash.                                  | 44                                    | 54     | 45           | 6500            | 10100                        | 990             | 13100           | 3400     | 1040                                         | 1620                      | 450                 |
| (Taxus orconjuna)                                             |                                        |                                       |        |              |                 |                              |                 |                 |          |                                              |                           |                     |

Column Notes (continued).—(7) recommended allowable working stress (interior construction): \(\frac{1}{2}\) tabular value; experimental results on tests of air-dry timber in small clear pieces average 50 per cent higher; kin-dry, double tab.dar values; (10) repeated falls of 50-lb. hammer from increasing heights; 11-12, 203.2-mm (8 in.) long specimen loaded on ends with deformations measured in a 152.4-mm (6 in.) gage length; (12) allowable working stress habular crushing strength; (13) 152.4-mm (6 in.) long block loaded on its side with a central bearing area of 2580.6-mm<sup>2</sup> (4 in<sup>2</sup>) allowable working stress, \(\frac{1}{2}\) tabular value. (14) 50.8-mm by 50.8-mm (2 in.) projecting lip sheared from block; allowable working stress, \(\frac{1}{2}\) tabular value; (15) 63.5-mm (2\frac{1}{2}\) in.) specimen with 25.4-mm (from the continuation of the contin

## TABLES 76-77. ELASTIC MODULI.

#### TABLE 76 .- Rigidity Modulus.

If to the four consecutive faces of a cube a tangential stress is applied, opposite in direction on adjacent sides, the modulus of rigidity is obtained by dividing the numerical value of the tangential stress per unit area (kg. per sq. mm.) by the number representing the change of angles on the non-stressed faces, measured in radians.

| Substance.                                                                                                                                                                                                                         | Rigidity<br>Modulus.                                                                                                                                                                 | Refer-<br>ence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Substance.   | Rigidity<br>Modulus.                                                                                                                                                         | Reference.                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Aluminum .  " cast .  Brass .  " cast, 60 Cu + 12 Sn .  Bismuth, slowly cooled .  Bronze, cast, 88 Cu + 12 Sn .  Cadmium, cast .  Copper, cast .  " " .  Gold .  Iron, cast .  " " .  Magnesium, cast .  Nickel .  Phosphor bronze | 3350<br>2580<br>3550<br>3715<br>3700<br>1240<br>4060<br>2450<br>4780<br>4213<br>4450<br>4664<br>2850<br>3950<br>5210<br>6706<br>7975<br>6940<br>8108<br>7505<br>1710<br>7820<br>4359 | 14<br>5<br>10<br>11<br>5<br>5<br>5<br>5<br>5<br>18<br>10<br>19<br>5<br>14<br>5<br>15<br>10<br>17<br>16<br>14<br>5<br>16<br>11<br>11<br>16<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>16<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | Quartz fibre | 2888<br>2380<br>2960<br>2650<br>2566<br>2816<br>8290<br>7458<br>8070<br>7872<br>1730<br>1543<br>3880<br>3620<br>6630<br>6220<br>2350<br>2730<br>1770<br>1280<br>1190<br>2290 | 20<br>21<br>5<br>10<br>16<br>11<br>16<br>15<br>5<br>11<br>5<br>19<br>16<br>22<br><br>23<br>23<br>23<br>23 |

References 1-16, see Table 48.

- 17 Gratz, Wied. Ann. 28, 1886.
- 18 Savart, Pogg. Ann. 16, 1829. 19 Kiewiet, Diss. Göttingen, 1886.
- 20 Threlfall, Philos. Mag. (5) 30, 1800.
- 21 Boys, Philos. Mag. (5) 30, 1890.
- 22 Thomson, Lord Kelvin.
- 23 Gray and Milne. 24 Adams-Coker, Carnegie Publ. No. 46, 1906.

TABLE 77. - Variation of the Rigidity Modulus with the Temperature.  $n_t = n_o$  (1 – at –  $\beta t^2 - \gamma t^3$ ), where t = temperature Centigrade.

Substance. B108 Authority. Y1010 Brass 2652 2158 48 Pisati, Nuovo Cimento, 5, 34, 1879. Kohlrausch-Loomis, Pogg. Ann. 141. 32 3200 455 2716 36 Copper. 3972 Pisati, loc. cit. -23 47 3900 28 572 K and L. loc. cit. 8108 Iron . 206 19 -11 Pisati, loc. cit. 6940 483 K and L, loc. cit. 12 Platinum 6632 50 38 III -8 Pisati, loc. cit. Silver . 2566 387 11 6.6 Steel 8290 187 59

|                                                     | n:*=                          | $= n_{15} \mid I - \alpha \mid$ | (-15)]; Ho                             | rton, F | hilos. Trans | . 204 A, 190                     | 5-                            |                                         |
|-----------------------------------------------------|-------------------------------|---------------------------------|----------------------------------------|---------|--------------|----------------------------------|-------------------------------|-----------------------------------------|
| Copper<br>Copper (com-<br>mercial)<br>Iron<br>Steel | 4.37*<br>3.80<br>8.26<br>8.45 |                                 | Platinum<br>Gold<br>Silver<br>Aluminum | 2.45    | .00048       | Tin<br>Lead<br>Cadmium<br>Quartz | 1.50*<br>0.80<br>2.31<br>3.00 | α = .00416<br>.00164<br>.0058<br>.00012 |

<sup>\*</sup> Modulus of rigidity in 1011 dynes per sq. cm.

#### TABLE 78 .- Interior Friction at Low Temperatures.

C is the damping coefficient for infinitely small oscillations; T, the period of oscillation in seconds; N, the second modulus of elasticity. Guye and Schapper, C. R. 150, p. 963, 1910.

| Substance                                                                                                                                                                                                                                                                                     | Cu                                                                         | Ni           | Au                                     | Pd                                                                        | Pt                                            | Ag                                                                         | Quartz                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------|----------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------|--------------------------------|
| Length of wire in cm.                                                                                                                                                                                                                                                                         | 22.5                                                                       | 22.2         | 22.3                                   | 22.2                                                                      | 23.0                                          | 17.2                                                                       | 17.3                           |
| Diameter in mm                                                                                                                                                                                                                                                                                | .643                                                                       | .411         | .609                                   | .553                                                                      | .812                                          | .601                                                                       | .612                           |
| $\begin{array}{c} \text{100° C } & \text{C} & \dots \\ & \text{T} & \dots \\ & \text{0° C } & \text{C} & \dots \\ & \text{T} & \dots \\ & \text{-195° C } & \text{C} & \dots \\ & & \text{T} & \dots \\ & & \text{N\times10^{-11}} & \dots \\ & & \text{N\times10^{-11}} & \dots \end{array}$ | 24.1<br>2.381s<br>3.32<br>5.88<br>2.336s<br>3.45<br>3.64<br>2.274s<br>3.64 | 7·54<br>·417 | 2.55<br>4.82<br>2.969s<br>2.62<br>6.36 | 1.67<br>2.579<br>5.08<br>1.25<br>2.571s<br>5.12<br>.744<br>2.552s<br>5.19 | 2.98 1.143s 5.77 4.60 1.133s 3.02 1.111s 6.10 | 55.8<br>1.808s<br>2.71<br>7.19<br>1.759s<br>2.87<br>1.64<br>1.694s<br>3.18 | 4.69<br>1.408s<br>2.26<br>1.02 |

#### TABLE 79 .- Hardness.

| Agate 7. Alabaster 1.7 Alum 2-2.5 Aluminum 2. Amber 2-2.5 Andalusite 7.5 Anthracite 2.2 Antimony 3.3 Apatite 3.5 Arsenic 3.5 Asphalt 1-2. Augite 6. Barite 3.3 Beryl 7.8 Bell-metal 4. Bismuth 2.5 Boric acid 3. | Brass 3-4- Calamine 5. Calcite 3. Copper 2.5-3. Corundum 9. Diamond 10. Dolomite 3.5-4. Feldspar 6. Flint 7. Fluorite 4. Galena 2.5-3. Granet 7. Glass 4.5-6.5 Gold 2.5-3. Graphite 0.5-1. Gypsum 1.6-2. Hematite 6. Hornblende 5.5 | Iridosmium   7.   Iron   4-5.   Kaolin   1.   Loess (o°)   0.3   Magnetite   6.   Marble   3-4.   Meerschaum   2-3.   Mica   2.8   Opal   4-6.   Orthoclase   6.   Palladium   4.8   Phosphorbronze   4.   Platin-iridium   6.5   Pyrite   6.3   Quartz   7.   Rock-salt   2.5-3.0   Silver chloride   1.3 | Sulphur       1.5-2.5         Stibnite       2.         Serpentine       3-4.         Silver       2.5-3.         Steel       5-8.5         Talc       1.         Tin       1.5         Topaz       8.         Tourmaline       7.3         Wax (0°)       0.2         Wood's metal       3. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

From Landolt-Bornstein-Meyerhoffer Tables: Auerbachs, Winklemann, Handb. der Phys. 1891.

#### TABLE 80 .- Relative Hardness of the Elements.

| C 10.0 Ru 6.5 Cu 3.0<br>B 9.5 Mn 5.0 Sb 3.0<br>Cr 9.0 Pd 4.8 Al 2.9<br>Os 7.0 Fe 4.5 Ag 2.7<br>Si 7.0 Pt 4.3 Bi 2.5<br>Ir 6.5 As 3.5 Zn 2.5 | Au 2.5 Sn<br>Te 2.3 Sr<br>Cd 2.0 Ca<br>S 2.0 Ga<br>Se 2.0 Pb<br>Mg 2.0 In | 1.8 P 0.5<br>1.5 K 0.5<br>1.5 Na 0.4 |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------|

Rydberg, Zeitschr. Phys Chem 33, 1900

TABLE 81.—Ratio, ρ, of Transverse Contraction to Longitudinal Extension under Tensile Stress.

(Poisson's Ratio.) \*

| Metal | Pb   | Au   | Pd   | Pt   | Ag   | Cu   | Al   | Bi   | Sn   | Ni   | Cd   | Fe   |
|-------|------|------|------|------|------|------|------|------|------|------|------|------|
| ρ     | 0.45 | 0.42 | 0.39 | 0.39 | 0.38 | 0.35 | 0.34 | 0.33 | 0.33 | 0.31 | 0.30 | 0.28 |

From data from Physikalisch-Technischen Reichsanstalt, 1907.  $\rho$  for: marbles, 0.27; granites, 0.24; basic-intrusives, 0.26; glass, 0.23. Adams-Coker, 1906.

## **ELASTICITY OF CRYSTALS.\***

The formulæ were deduced from experiments made on rectangular prismatic bars cut from the crystal. These bars were subjected to cross bending and twisting and the corresponding Elastic Moduli deduced. The symbols  $\alpha \beta \gamma$ ,  $\alpha_1 \beta_1 \gamma_1$  and  $\alpha_2 \beta_2 \gamma_2$  represent the direction cosines of the length, the greater and the less transverse dimensions of the prism with reference to the principal axis of the crystal. E is the modulus for extension or compression, and T is the modulus for torsional rigidity. The moduli are in grams per square centimeter.

Barite. 
$$\frac{10^{10}}{E} = 16.13\alpha^4 + 18.51\beta^4 + 10.42\gamma^4 + 2(38.79\beta^4\gamma^2 + 15.21\gamma^2\alpha^2 + 8.88\alpha^2\beta^2)$$

$$\frac{10^{10}}{T} = 69.52\alpha^4 + 117.66\beta^4 + 116.46\gamma^4 + 2(20.16\beta^2\gamma^2 + 85.20\gamma^2\alpha^2 + 127.35\alpha^2\beta^2)$$
Beryl (Emerald). 
$$\frac{10^{10}}{E} = 4.325 \sin^4\phi + 4.619 \cos^4\phi + 13.328 \sin^2\phi \cos^2\phi$$

$$\frac{10^{10}}{T} = 15.00 - 3.675 \cos^4\phi - 17.536 \cos^2\phi \cos^2\phi$$
Fluorite. 
$$\frac{10^{10}}{E} = 13.05 - 6.26 (\alpha^4 + \beta^4 + \gamma^4)$$

$$\frac{10^{10}}{T} = 58.04 - 50.08 (\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Pyrite. 
$$\frac{10^{10}}{E} = 33.48 - 9.66 (\alpha^4 + \beta^4 + \gamma^4)$$

$$\frac{10^{10}}{T} = 15.65 - 77.28 (\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Sylvite. 
$$\frac{10^{10}}{T} = 306.0 - 192.8 (\beta^2\gamma^2 + \gamma^2\alpha^2 + \alpha^2\beta^2)$$
Topaz. 
$$\frac{10^{10}}{E} = 4.341\alpha^4 + 3.460\beta^4 + 3.771\gamma^4 + 2 (3.879\beta^2\gamma^2 + 2.856\gamma^2\alpha^2 + 2.39\alpha^2\beta^2)$$

$$\frac{10^{10}}{T} = 14.88\alpha^4 + 16.54\beta^4 + 16.45\gamma^4 + 30.89\beta^2\gamma^2 + 40.89\gamma^2\alpha^2 + 43.51\alpha^2\beta^2$$
Quartz. 
$$\frac{10^{10}}{E} = 12.734 (1 - \gamma^2)^2 + 16.693 (1 - \gamma^2)\gamma^2 + 9.705\gamma^4 - 8.460\beta\gamma (3\alpha^2 - \beta^2)$$

$$\frac{10^{10}}{T} = 19.665 + 9.060\gamma^2 + 22.984\gamma^2\gamma^2 - 16.920 [(\gamma \beta_1 + \beta \gamma_1) (3\alpha\alpha_1 - \beta\beta_1) - \beta_2\gamma_2)]$$

<sup>\*</sup> These formulæ are taken from Voigt's papers (Wied. Ann. vols. 31, 34, and 35).

## ELASTICITY OF CRYSTALS.

Some particular values of the Elastic Moduli are here given. Under E are given moduli for extension or compression in the directions indicated by the subscripts and explained in the notes, and under T the moduli for torsional rigidities round the axes similarly indicated. Moduli in grams per sq. cm.

|                                                                                          | (a)                                                                                                                                                                                                     | ISOMETRIC                                                                                                                                                                                               | System.*                                                           |                                                                                          |                                             |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------|
| Substance.                                                                               | E <sub>a</sub>                                                                                                                                                                                          | $\mathbf{E}_{b}$                                                                                                                                                                                        | $\mathbf{E}_{\sigma}$                                              | Ta                                                                                       | Authority.                                  |
| Fluorite Pyrite Rock salt Sylvite Sodium chlorate Potassium alum Chromium alum Iron alum | 1473 × 10 <sup>6</sup> 3530 × 10 <sup>6</sup> 419 × 10 <sup>6</sup> 403 × 10 <sup>6</sup> 401 × 10 <sup>6</sup> 372 × 10 <sup>6</sup> 405 × 10 <sup>6</sup> 181 × 10 <sup>6</sup> 186 × 10 <sup>6</sup> | 1008 × 10 <sup>6</sup> 2530 × 10 <sup>6</sup> 349 × 10 <sup>6</sup> 339 × 10 <sup>6</sup> 209 × 10 <sup>6</sup> 196 × 10 <sup>6</sup> 319 × 10 <sup>6</sup> 199 × 10 <sup>6</sup> 177 × 10 <sup>6</sup> | 910 × 10 <sup>6</sup> 2310 × 10 <sup>6</sup> 303 × 10 <sup>6</sup> | 345 × 10 <sup>6</sup> 1075 × 10 <sup>6</sup> 129 × 10 <sup>6</sup> 655 × 10 <sup>5</sup> | Voigt.†  "Koch.‡  Voigt. Koch. Beckenkamp.§ |

#### (b) ORTHORHOMBIC SYSTEM.

| Substance.          | $E_1$                                                  | $\mathbf{E}_2$                                  | E <sub>3</sub>                           | E <sub>4</sub>                           | $\mathbf{E}_{5}$                         | $E_6$                                           | Authority. |
|---------------------|--------------------------------------------------------|-------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------------|------------|
| Barite .<br>Topaz . | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 540 × 10 <sup>6</sup><br>2890 × 10 <sup>6</sup> | $959 \times 10^{6}$ $2652 \times 10^{6}$ | $376 \times 10^{6}$ $2670 \times 10^{6}$ | $702 \times 10^{6}$ $2893 \times 10^{6}$ | 740 × 10 <sup>6</sup><br>3180 × 10 <sup>6</sup> | Voigt.     |

| Substance. | $T_{12} = T_{21}$                               | $T_{13} = T_{31}$                        | T <sub>23</sub> = T <sub>32</sub>               | Authority. |
|------------|-------------------------------------------------|------------------------------------------|-------------------------------------------------|------------|
| Barite     | 283 × 10 <sup>6</sup><br>1336 × 10 <sup>6</sup> | $293 \times 10^{6}$ $1353 \times 10^{6}$ | 121 × 10 <sup>6</sup><br>1104 × 10 <sup>6</sup> | Voigt.     |

In the Monoclinic System, Coromilas (Zeit. für Kryst. vol. 1) gives

$$\begin{aligned} & \text{Gypsum} \left\{ \begin{aligned} & E_{\text{max}} = 887 \times \text{10}^6 \text{ at 21.9}^\circ \text{ to the principal axis.} \\ & E_{\text{min}} = 313 \times \text{10}^6 \text{ at 75.4}^\circ & \text{``} & \text{``} \end{aligned} \right. \\ & \text{Mica} \quad \left\{ \begin{aligned} & E_{\text{max}} = 2213 \times \text{10}^6 \text{ in the principal axis.} \\ & E_{\text{min}} = 1554 \times \text{10}^6 \text{ at 45}^\circ \text{ to the principal axis.} \end{aligned} \right. \end{aligned}$$

In the HEXAGONAL SYSTEM, Voigt gives measurements on a beryl crystal (emerald). The subscripts indicate inclination in degrees of the axis of stress to the principal axis of the crystal.

$$E_0 = 2165 \times 10^6$$
,  $E_{45} = 1796 \times 10^6$ ,  $E_{90} = 2312 \times 10^6$ ,

prism experimented on (see Table 82), was in the principal axis for this last case.

In the RHOMBOHEDRAL SYSTEM, Voigt has measured quartz. The subscripts have the same meaning as in the hexagonal system.

$$E_0 = 1030 \times 10^6$$
,  $E_{-45} = 1305 \times 10^6$ ,  $E_{+45} = 850 \times 10^6$ ,  $E_{90} = 785 \times 10^6$ ,

 $T_0 = 508 \times 10^6$ ,  $T_{90} = 348 \times 10^6$ .

Baumgarten ¶ gives for calcite 
$$E_0 = 501 \times 10^9$$
,  $E_{-45} = 441 \times 10^9$ ,  $E_{+45} = 772 \times 10^6$ ,  $E_{90} = 790 \times 10^6$ .

\* In this system the subscript a indicates that compression or extension takes place along the crystalline axis, and distortion round the axis. The subscripts b and c correspond to directions equally inclined to two and normal to the third and equally inclined to all three axes respectively.

[ Voigt, "Wied. Ann." 31, p. 474, p. 701, 1887; 34, p. 981, 1888; 36, p. 642, 1888.

[ Koch, "Wied. Ann." 18, p. 325, 1882.

[ Beckenkamp, "Zeit. für Kryst." vol. 10.

[ The subscripts 1, 2, 3 indicate that the three principal axes are the axes of stress; 4, 5, 6 that the axes of stress in the three principal planes at angles of 45° to the corresponding axes.

[ Baumgarten, "Pogg. Ann." 152, p. 369, 1879.

# COMPRESSIBILITY OF GASES.

TABLE 84.—Relative Volumes at Various Pressures and Temperatures, the volumes at 0°C and at 1 atmosphere being taken as 1 000 000.

|                                                                     |                                                                              | Oxygen.                                                              |                                                              | Air.                                                                         |                                                                      |                                                                      | Nitrogen.                                                                    |                                                              |                                                              | Hydrogen.                                                            |                                                                      |                                                              |
|---------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|
| Atm.                                                                | 00                                                                           | 99 <sup>0</sup> ·5                                                   | 1990.5                                                       | 00                                                                           | 990.4                                                                | 2000.4                                                               | 00                                                                           | 99 <sup>0</sup> -5                                           | 1990.6                                                       | 00                                                                   | 99 <sup>0</sup> •3                                                   | 2000.5                                                       |
| 100<br>200<br>300<br>400<br>500<br>600<br>700<br>800<br>900<br>1000 | 9265<br>4570<br>3208<br>2629<br>2312<br>2115<br>1979<br>1879<br>1800<br>1735 | 7000<br>4843<br>3830<br>3244<br>2867<br>2610<br>2417<br>2268<br>2151 | 9095<br>6283<br>4900<br>4100<br>3570<br>3202<br>2929<br>2718 | 9730<br>5050<br>3658<br>3036<br>2680<br>2450<br>2288<br>2168<br>2070<br>1992 | 7360<br>5170<br>4170<br>3565<br>3180<br>2904<br>2699<br>2544<br>2415 | 9430<br>6622<br>5240<br>4422<br>3883<br>3502<br>3219<br>3000<br>2828 | 9910<br>5195<br>3786<br>3142<br>2780<br>2543<br>2374<br>2240<br>2149<br>2068 | 7445<br>5301<br>4265<br>3655<br>3258<br>2980<br>2775<br>2616 | 9532<br>6715<br>5331<br>4515<br>3973<br>3589<br>3300<br>3085 | 5690<br>4030<br>3207<br>2713<br>2387<br>2149<br>1972<br>1832<br>1720 | 7567<br>5286<br>4147<br>3462<br>3006<br>2680<br>2444<br>2244<br>2093 | 9420<br>6520<br>5075<br>4210<br>3627<br>3212<br>2900<br>2657 |

Amagat: C. R. 111, p. 871, 1890; Ann. chim. phys. (6) 29, pp. 68 and 505, 1893.

#### TABLE 85 .- Ethylene.

pv at oo C and I atm. = I.

| Atm.                             | 00                                        | 100                                                         | 200                                                    | 30°                                       | 40 <sup>0</sup>                           | 60°                                       | 800                                       | 1000                                      | 137°-5                                    | 1980.5                           |
|----------------------------------|-------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|
| 46<br>48<br>50<br>52<br>54<br>56 | o.176                                     | 0.562<br>0.508<br>0.420<br>0.240<br>0.229<br>0.227<br>0.331 | 0.684<br><br>0.629<br>0.598<br>0.561<br>0.524<br>0.360 | 0.731                                     | 0.814                                     | 0.954                                     | 1.077                                     | 1.192                                     | 1.374                                     | 1.652                            |
| 150<br>200<br>300<br>500<br>1000 | 0.441<br>0.565<br>0.806<br>1.256<br>2.289 | 0.459<br>0.585<br>0.827<br>1.280<br>2.321                   | 0.485<br>0.610<br>0.852<br>1.308<br>2.354              | 0.515<br>0.638<br>0.878<br>1.337<br>2.387 | 0.551<br>0.669<br>0.908<br>1.367<br>2.422 | 0.649<br>0.744<br>0.972<br>1.431<br>2.493 | 0.776<br>0.838<br>1.048<br>1.500<br>2.566 | 0.924<br>0.946<br>1.133<br>1.578<br>2.643 | 1.178<br>1.174<br>1.310<br>1.721<br>2.798 | 1.540<br>1.537<br>1.628<br>1.985 |

Amagat, C. R. 111, p. 871, 1890; 116, p. 946, 1893.

#### TABLE 86 .- Relative Gas Volumes at Various Pressures.

The following table, deduced by Mr. C. Cochrane, from the PV curves of Amagat and other observers, gives the relative volumes occupied by various gases when the pressure is reduced from the value given at the head of the column to 1 atmosphere:

| Gas.<br>(Temp. = 16°C.). | Relative volume which the gas will occupy when the pressure is reduced to atmospheric from |      |       |       |       |       |  |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------|------|-------|-------|-------|-------|--|--|--|--|--|
|                          | 1 atm.   50 atm.   100 atm.   120 atm.   150 atm.   200 at                                 |      |       |       |       |       |  |  |  |  |  |
| "Perfect" gas            | I                                                                                          | 50   | 100   | 120   | 150   | 200   |  |  |  |  |  |
| Hydrogen                 | I                                                                                          | 48.5 | 93.6  | 111.3 | 136.3 | 176.4 |  |  |  |  |  |
| Nitrogen                 |                                                                                            | 50.5 | 100.6 | 120.0 | 147.6 | 190.8 |  |  |  |  |  |
| Air                      |                                                                                            | 50.9 | 8.101 | 121.9 | 150.3 | 194.8 |  |  |  |  |  |
| Oxygen                   | I                                                                                          |      | 105.2 |       | _     | 212.6 |  |  |  |  |  |
| Oxygen (at o° C.)        |                                                                                            | 52.3 | 107.9 | 128.6 | 161.9 | 218.8 |  |  |  |  |  |
| Carbon dioxide           | 1                                                                                          | 69.0 | 477*  | 485*  | 498*  | 515*  |  |  |  |  |  |

<sup>\*</sup> Carbon dioxide is liquid at pressures greater than 90 atmospheres.

# TABLES 87-89. COMPRESSIBILITY OF GASES.

TABLE 87 .- Carbon Dioxide.

| Pressure in                                                            |                                                    |                                                           |                                                          |                                                                           | Relativ                                                                              | e values o                                                                           | of pv at —                                                                      |                                                            |                                                     |                                                                                        |                                                                                      |
|------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| meters of mercury.                                                     |                                                    | 35°                                                       | .1 4                                                     | 00.2                                                                      | 500.0                                                                                | 60°.0                                                                                | 700.0                                                                           | 809                                                        | 2.0                                                 | 900.0                                                                                  | 0,0001                                                                               |
| 30<br>50<br>80<br>110<br>140<br>170<br>200<br>230<br>260<br>290<br>320 | liqui 625 825 1020 1210 1405 1590 1770 1950 2135   | 17:<br>7:<br>9:<br>11:<br>13:<br>15:<br>16:<br>18:<br>20: | 25 1<br>50<br>30<br>20 1<br>10 1<br>00 1<br>90 1<br>50 1 | 460<br>900<br>825<br>980<br>175<br>360<br>550<br>730<br>920<br>100<br>280 | 2590<br>2145<br>1200<br>1090<br>1250<br>1430<br>1615<br>1800<br>1985<br>2170<br>2360 | 2730<br>2330<br>1650<br>1275<br>1360<br>1520<br>1705<br>1890<br>2070<br>2260<br>2440 | 2870<br>252<br>197<br>1550<br>152<br>164<br>1810<br>1990<br>2160<br>2340<br>252 | 5 26<br>5 22<br>6 18<br>7 17<br>6 17<br>19<br>0 20<br>6 22 | 85<br>225<br>45<br>15<br>80<br>30<br>90<br>65<br>40 | 31 20<br>2845<br>2440<br>2105<br>1950<br>1975<br>2075<br>22210<br>2375<br>2550<br>2725 | 3225<br>2980<br>2635<br>2325<br>2160<br>2135<br>2215<br>2340<br>2490<br>2655<br>2830 |
|                                                                        |                                                    |                                                           | R                                                        | elative va                                                                | lues of pz                                                                           | , pv at o                                                                            | °C. and                                                                         | ı atm. =                                                   | r.                                                  |                                                                                        | ,                                                                                    |
| Atm                                                                    | 00                                                 | 100                                                       | 200                                                      | 300                                                                       | 40°                                                                                  | 60°                                                                                  | 80°                                                                             | 1000                                                       | 1370                                                | 1980                                                                                   | 2580                                                                                 |
| 50<br>100<br>150<br>300<br>500<br>1000                                 | 0.105<br>0.202<br>0.295<br>0.559<br>0.891<br>1.656 | 0.114<br>0.213<br>0.309<br>0.578<br>0.913<br>1.685        | 0.680<br>0.229<br>0.326<br>0.599<br>0.938<br>1.716       | 0.775<br>0.255<br>0.346<br>0.623<br>0.963<br>1.748                        | 0.750<br>0.309<br>0.377<br>0.649<br>0.990<br>1.780                                   | 0.984<br>0.661<br>0.485<br>0.710<br>1.054<br>1.848                                   | 1.096<br>0.873<br>0.681<br>0.790<br>1.124<br>1.921                              | 1.206<br>1.030<br>0.878<br>0.890<br>1.201<br>1.999         | 1.380<br>1.259<br>1.159<br>1.108<br>1.362           | 1.582<br>1.530<br>1.493<br>1.678                                                       | 1.847<br>1.818<br>1.820                                                              |

Amagat, C. R. 111, p. 871, 1890; Ann. chim. phys. (5) 22, p. 353, 1881; (6) 29, pp. 68 and 405, 1893.

TABLE 88. - Compressibility of Gases.

| Gas.                                                                           | p.v. (½ atm.) povo (1 atm.).                                                         | $ \frac{1}{p.v.} \frac{d(p.v.)}{dp} = a. $                     | t                                             | t = 0                                                 | Density.<br>O = 32, 0°C<br>P = 76°m                        | Density.<br>Very small<br>pressure.                   |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|
| $\begin{array}{c} O_2\\ H_2\\ N_2\\ CO\\ CO_2\\ N_2O\\ Air\\ NH_3 \end{array}$ | 1.00038<br>0.99974<br>1.00015<br>1.00026<br>1.00279<br>1.00327<br>1.00026<br>1.00632 | 00076<br>+ .00052<br>00030<br>00052<br>00558<br>00654<br>00046 | 11.2°<br>10.7<br>14.9<br>13.8<br>15.0<br>11.0 | 00094<br>+ .00053<br>00056<br>00081<br>00668<br>00747 | 32.<br>2.015 (16°)<br>28.005<br>28.000<br>44.268<br>44.285 | 32.<br>2.0173<br>28 016<br>28.003<br>44.014<br>43.996 |

Rayleigh, Zeitschr. Phys. Chem. 52, p. 705, 1905.

TABLE 89. — Compressibility of Air and Oxygen between 18° and 22° C.

Pressures in meters of mercury, pv, relative.

| Air   | p  | 24.07<br>26968 | 34.90<br>26908 | 45.24<br>26791 | 55.30<br>26789 | 64.00<br>26778 | 72.16<br>26792 | 84.22<br>26840 | 101.47          | 214.54          | 304.04<br>32488 |
|-------|----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|
| $O_2$ | pp | 24.07<br>26843 | 34.89<br>26614 | -              | 55.50<br>26185 | 64.07<br>26050 | 72.15<br>25858 | 84.19<br>25745 | 101.06<br>25639 | 214.52<br>26536 | 303.03<br>28756 |

Amagat, C. R. 1879.

# RELATION BETWEEN PRESSURE, TEMPERATURE AND VOLUME OF SULPHUR DIOXIDE AND AMMONIA.\*

#### TABLE 90 .- Sulphur Dioxide.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

| ure in nos.                                                                                                |                                                                             | nding Volum<br>ts at Tempe                                                           |            | Volume.                                                                                       |                                                            | e in Atmosphents at Temp                                                                                |                                                                         |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Pressure i                                                                                                 | 580.0                                                                       | 99°.6                                                                                | 183°.2     | v orume.                                                                                      | 580.0                                                      | 99°.6                                                                                                   | 183°.2                                                                  |
| 10<br>12<br>14<br>16<br>18<br>20<br>24<br>28<br>32<br>36<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>120 | 8560<br>6360<br>4040<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 9440<br>7800<br>6420<br>5310<br>4405<br>4030<br>3345<br>2780<br>2305<br>1935<br>1450 |            | 10000<br>9000<br>8000<br>7000<br>6000<br>5000<br>4000<br>3500<br>3000<br>2500<br>2000<br>1500 | 9.60<br>10.40<br>11.55<br>12.30<br>13.15<br>14.00<br>14.40 | 9.60<br>10.35<br>11.85<br>13.05<br>14.70<br>16.70<br>20.15<br>23.00<br>26.40<br>30.15<br>35.20<br>39.60 | -<br>-<br>-<br>-<br>-<br>-<br>29.10<br>33.25<br>40.95<br>55.20<br>76.00 |
| 160                                                                                                        | -                                                                           | -                                                                                    | 430<br>325 | 500                                                                                           | -                                                          | -                                                                                                       | 117.20                                                                  |

#### TABLE 91. - Ammonia.

Original volume 100000 under one atmosphere of pressure and the temperature of the experiments as indicated at the top of the different columns.

| nos.                                                                                     |                                                         | ding Volunts at Tempe                                                               |                                                                                      | Volume.                                                                               | Pressure                                         | in Atmosph<br>at Temp                                               | eres for Experature —                                                                           | periments                                                                      |
|------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Pressure i                                                                               | 46°.6                                                   | 99°.6                                                                               | 183°.6                                                                               | votume.                                                                               | 30°.2                                            | 46°.6                                                               | 99°.6                                                                                           | 183°.0                                                                         |
| 10<br>12.5<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>70<br>80<br>90 | 9500<br>7245<br>5880<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 7635<br>6305<br>4645<br>3560<br>2875<br>2440<br>2080<br>1795<br>1490<br>1250<br>975 | 4875<br>3835<br>3185<br>2680<br>2345<br>2035<br>1775<br>1590<br>1450<br>1245<br>1125 | 10000<br>9000<br>8000<br>7000<br>6000<br>5000<br>4000<br>3500<br>3000<br>2500<br>2500 | 8.85<br>9.60<br>10.40<br>11.05<br>11.80<br>12.00 | 9.50<br>10.45<br>11.50<br>13.00<br>14.75<br>16.60<br>18.35<br>18.30 | 12.00<br>13.60<br>15.55<br>18.60<br>22.70<br>25.40<br>29.20<br>34.25<br>41.45<br>49.70<br>59.65 | -<br>-<br>19.50<br>24.00<br>27.20<br>31.50<br>37.35<br>45.50<br>58.00<br>93.60 |

<sup>\*</sup> From the experiments of Roth, "Wied. Ann." vol. 11, 1880.

#### COMPRESSIBILITY OF LIQUIDS.

At the constant temperature t, the compressibility  $\beta=(\text{r}/V_0)(dV/dP)$ . In general as P increases,  $\beta$  decreases rapidly at first and then slowly; the change of  $\beta$  with t is large at low pressures but very small at pressures above 1000 to 2000 megabars. I megabar = 0.987 atmosphere = 10<sup>4</sup> dyne/cm<sup>2</sup>.

| Substance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Temp. ° C | Compressibility per megabars. | Reference.                              | Substance.                                                                                                                                                                                                                                                                          | Temp. °C                                 | Pressure,<br>megabars.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Compressibility per megabars. $\beta \times 10^{\circ}$ .        | Reference.                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------|
| Acetone  ""  Amyl alcohol  ""  ""  ""  Benzene  ""  Bromine  ""  "iso  "italian  "i | 14        | 23                            | 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Ethyl ether, ct'd  Ethyl iodide  """  """  Gallium. Glycerine. Hexane  Kerosene  """  Mercury  """  """  Nitric acid. Oils: Almond Castor Linseed. Oive Rape-seed. Phosph. trichloride  """  """  Propyl alcohol, n  """  """  Propyl alcohol, n  """  """  """  """  """  """  """ | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 1,000 12,000 200 400 500 1,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 12,000 | 61<br>10<br>81<br>69<br>64<br>50<br>8<br>3.57<br>22<br>117<br>91 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |

For references, see page 108.

#### COMPRESSIBILITY OF SOLIDS.

If V is the volume of the material under a pressure P megabars and Vo is the volume at atmospheric pressure, then the compressibility  $\beta = -(1/V_0)$  (dV/dP). Its unit is cm<sup>2</sup>/megadynes (reciprocal megabars). 10<sup>6</sup>/ $\beta$  is the bulk modutus in absolute units (dynes/cm²). The following values of  $\beta$ , arranged in order of increasing compressibility, are for P = 0 and room temperature. It megabar = 1.05 dynes = 1.013 kg/cm² = 0.087 atmosphere.

| Substance.                                                                                                                                                                                 | Compression per unit vol. per megabar × 106                                                                       | Bulk<br>modulus.<br>dynes/cm²<br>× 10 <sup>13</sup>                                                                          | Reference.                                                                                                 | Substance.                                                                                                                                                                                                                                   | Compression per unit vol. per megabar × 108                                                                      | Bulk<br>modulus.<br>dynes/cm²<br>× 1012                                                                                   | Reference.                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Tungsten Boron Silicon Platinum Nickel Molybdenum Tantalum Palladium Iron Gold Pyrite Copper Manganese Brass Chromium Silver Mg. silicate, crys. Aluminum Calcite Zinc Tin Gallium Cadmium | 0.3<br>0.32<br>0.38<br>0.43<br>0.46<br>0.53<br>0.54<br>0.60<br>0.7<br>0.89<br>0.9<br>0.99<br>1.03<br>1.33<br>1.39 | 3.7<br>3.0<br>3.1<br>2.6<br>2.3<br>2.2<br>1.9<br>1.67<br>1.4<br>1.33<br>1.19<br>1.12<br>1.01<br>0.97<br>0.75<br>0.72<br>0.57 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>1,2<br>4<br>1<br>2<br>1<br>1,2<br>4<br>1<br>1,2<br>1,2<br>1,2 | Plate glass Lead Thallium Antimony Quartz Magnesium Bismuth Graphite. Silica glass Sodium chloride. Arsenic Calcium Potassium chloride Lithium Phosphorus (red) Selenium Sulphur Iodine Sodium Phosphorus (white) Potassium Rubidium Calcium | 2.27<br>2.3<br>2.4<br>2.7<br>2.9<br>3.0<br>3.0<br>3.1<br>4.5<br>5.7<br>7.4<br>9.0<br>9.2<br>12.0<br>15.6<br>20.5 | 0.45 0.44 0.43 0.42 0.37 0.34 0.33 0.32 0.24 0.22 0.175 0.135 0.111 0.109 0.083 0.078 0.077 0.064 0.049 0.032 0.025 0.016 | 4<br>1,2<br>2<br>2<br>1<br>2<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |

Note. — Winklemann, Schott, and Straulel (Wied Ann. 61, 63, 1897, 68, 1899) give the following coefficients (among others) for various Jena glasses in terms of the volume decrease divided by the increase of pressure expressed in kilograms per square millimeter:

| l | No.                      | Glass.                                    | Compressibility.             | No.                           | Glass.                                                                                               | Compressibility. |
|---|--------------------------|-------------------------------------------|------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------|------------------|
|   | 665<br>1299<br>16<br>278 | Barytborosilicat<br>Natronkalkzinksilicat | 7520<br>5800<br>4530<br>3790 | 2154<br>S 208<br>500<br>S 196 | Kalibleisilicat<br>Heaviest Bleisilicat<br>Very Heavy Bleisilicat<br>Tonerdborat with sodium, baryte | 3510             |

The following values in cm<sup>3</sup>/kg of 10<sup>6</sup> × Compressibility are given for the corresponding temperatures by Grüneisen, Ann. der Phys. 33, p. 65, 1910.

Al — 191°, 1.32; 17°, 1.46; 125°, 1.70. Cu — 191°, 0.72; 17°, 0.77; 165°, 0.83. Pt — 189°, 0.37; 17°, 0.39; 164°, 0.40.

Fe — 190°, 0.61; 18°, 0.63; 165°, 0.67. Ag — 191°, 0.71; 16°, 0.76; 166°, 0.86. Pb — 191°, (2.5); 14°, (3.2).

#### References to Table 92, p. 107:

- (1) Bridgman, Pr. Am. Acad. 49, 1, 1913; (2) Roentgen, Ann. Phys. 44, 1, 1891; (3) Pagliani-Palazzo, Mem. Acad. Lin. 3, 18, 1883; (4) Bridgman, Pr. Am. Acad. 48, 341, 1912; (5) Adams, Williamson, J. Wash. Acad. Sc. 9, Jan. 19,
- (8) Bridgman, Pr. Am. Acad. Sc. 4, 389, 1918; (8) Bridgman, Pr. Am. Acad. 47, 381, 1911;

- (9) Amagat, C. R. 73, 143, 1872; (10) Amagat, C. R. 68, 1170, 1869; (11) Amagat, Ann. chim. phys. 29, 68, 505, 1893; (12) de Metz, Ann. Phys. 41, 663, 1890; (13) Adams, Williamson, Johnston, J. Am. Chem. Soc.
- (14) 41, 27, 1919; (14) Colladon, Sturm, Ann. Phys. 12, 39, 1828; (15) Quincke, Ann. Phys. 19, 401, 1883; (16) Richards et al. J. Am. Ch. Soc. 34, 988, 1912.

- References to Table 93, p. 108:
- (1) Adams, Williamson, Johnston, J. Am. Ch. Soc. 41, 39,
- 1910; (2) Richards, *ibid*. 37, 1646, 1915; (3) Bridgman, Pr. Am. Acad. 44, 279, 1900; 47, 366, 1911;
- (4) Adams, Williamson, unpublished;
  (5) Richards, Boyer, Pr. Nat. Acad. Sc. 4, 388, 1918;
  (6) Voigt, Ann. Phys. 31, 1887; 36, 1888.

# SPECIFIC GRAVITIES CORRESPONDING TO THE BAUMÉ SCALE.

The specific gravities are for 15.56°C (60°F) referred to water at the same temperature as unity For specific gravities less than unity the values are calculated from the formula:

Degrees Baumé = 
$$\frac{140}{\text{Specific Gravity}} - 130$$
.

For specific gravities greater than unity from:

Degrees Baumé = 
$$145 - \frac{145}{\text{Specific Gravity}}$$

|                                                                      | Specific Gravities less than 1.                                              |                                                                              |                                                                              |                                                                              |                                                                              |                                                                              |                                                                     |                                                                     |                                                                      |                                                                      |  |
|----------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--|
| Specific                                                             | 0.00                                                                         | 0.01                                                                         | 0.02                                                                         | 0.03                                                                         | 0.04                                                                         | 0.05                                                                         | 0.06                                                                | 0.07                                                                | 0.08                                                                 | 0.09                                                                 |  |
| Gravity.                                                             |                                                                              |                                                                              |                                                                              |                                                                              | Degrees                                                                      | Baumé.                                                                       |                                                                     |                                                                     |                                                                      |                                                                      |  |
| 0.60<br>.70<br>.80<br>.90                                            | 103.33<br>70.00<br>45.00<br>25.56<br>10.00                                   | 99.51<br>67.18<br>42.84<br>23.85                                             | 95.81<br>64.44<br>40.73<br>22.17                                             | 92.22<br>61.78<br>38.68<br>20.54                                             | 88.75<br>59.19<br>36.67<br>18.94                                             | 85.38<br>56.67<br>34.71<br>17.37                                             | 82.12<br>54.21<br>32.79<br>15.83                                    | 78.95<br>51.82<br>30.92<br>14.33                                    | 75.88<br>49.49<br>29.09<br>12.86                                     | 72.90<br>47.22<br>27.30<br>11.41                                     |  |
|                                                                      | Specific Gravities greater than 1.                                           |                                                                              |                                                                              |                                                                              |                                                                              |                                                                              |                                                                     |                                                                     |                                                                      |                                                                      |  |
| Specific                                                             | 0.00                                                                         | 10.0                                                                         | 0.02                                                                         | 0.03                                                                         | 0.04                                                                         | 0.05                                                                         | 0.06                                                                | 0.07                                                                | 0.08                                                                 | 0.09                                                                 |  |
| Gravity.                                                             |                                                                              |                                                                              |                                                                              |                                                                              | Degrees                                                                      | Baumé.                                                                       |                                                                     |                                                                     |                                                                      |                                                                      |  |
| 1.00<br>1.10<br>1.20<br>1.30<br>1.40<br>1.50<br>1.60<br>1.70<br>1.80 | 0.00<br>13.18<br>24.17<br>33.46<br>41.43<br>48.33<br>54.38<br>59.71<br>64.44 | 1.44<br>14.37<br>25.16<br>34.31<br>42.16<br>48.97<br>54.94<br>60.20<br>64.89 | 2.84<br>15.54<br>26.15<br>35.15<br>42.89<br>49.60<br>55.49<br>60.70<br>65.33 | 4.22<br>16.68<br>27.11<br>35.98<br>43.60<br>50.23<br>56.04<br>61.18<br>65.76 | 5.58<br>17.81<br>28.06<br>36.79<br>44.31<br>50.84<br>56.58<br>61.67<br>66.20 | 6.91<br>18.91<br>29.00<br>37.59<br>45.00<br>51.45<br>57.12<br>62.14<br>66.62 | 8.21<br>20.00<br>29.92<br>38.38<br>45.68<br>52.05<br>57.65<br>62.61 | 9.49<br>21.07<br>30.83<br>39.16<br>46.36<br>52.64<br>58.17<br>63.08 | 10.74<br>22.12<br>31.72<br>39.93<br>47.03<br>53.23<br>58.69<br>63.54 | 11.97<br>23.15<br>32.60<br>40.68<br>47.68<br>53.80<br>59.20<br>63.99 |  |

## DENSITY IN GRAMS PER CUBIC CENTIMETER OF THE ELEMENTS, LIQUID OR SOLID.

N. B. The density of a specimen may depend considerably on its state and previous treatment.

| Element.            | Physical State.                 | Grams per cu. cm.* | Tempera-<br>ture °C.† | Authority.                        |
|---------------------|---------------------------------|--------------------|-----------------------|-----------------------------------|
| Aluminum            | commercial h'd d'n<br>wrought   | 2.70<br>2.65–2.80  | 20°                   | Wolf, Dellinger, 1910             |
| Antimony            | vacuo-distilled                 | 6.618              | 20                    | Kahlbaum, 1902.                   |
| 66                  | ditto-compressed                | 6.691              | 20                    | "                                 |
| 66                  | amorphous                       | 6.22               | -0-                   | Hérard.                           |
| Argon               | liquid                          | 1.3845             | - 183<br>- 189        | Baly-Donnan.                      |
| Arsenic             | crystallized                    | 1.4233<br>5.73     | 14                    |                                   |
| 46                  | amorph. brblack                 | 3.70               |                       | Geuther.                          |
| 66                  | yellow                          | 3.88               |                       | Linck.                            |
| Barium              |                                 | 3.78               |                       | Guntz.                            |
| Bismuth             | solid                           | 9.70-9.90          |                       | Classen, 1890.                    |
| 66                  | electrolytic<br>vacuo-distilled | 9.747<br>9.781     | 20                    | Kahlbaum, 1902.                   |
|                     | liquid                          | 10.00              | 27 I                  | Vincentini-Omodei.                |
| 66                  | solid                           | 9.67               | 27 I                  | 46 46                             |
| Boron               | crystal                         | 2.535              |                       | Wigand.                           |
| 46                  | amorph. pure                    | 2.45               |                       | Moissan.                          |
| Bromine<br>Cadmium  | liquid<br>cast                  | 3.12<br>8.54-8.57  |                       | Richards-Stull.                   |
| Cadmium             | wrought                         | 8.67               |                       |                                   |
| 66                  | vacuo-distilled                 | 8.648              | 20                    | Kahlbaum, 1902.                   |
| 46                  | solid                           | 8.37               | 318                   | Vincentini-Omodei.                |
| 46                  | liquid                          | 7.99               | 318                   | " "                               |
| Cæsium              |                                 | 1.873              | 20                    | Richards-Brink.                   |
| Calcium<br>Carbon   | diamond                         | 1.54               |                       | Brink.<br>Wigand.                 |
| Carbon              | graphite                        | 3.52               |                       | Wigand.                           |
| Cerium              | electrolytic                    | 6.79               |                       | Muthmann-Weiss.                   |
| "                   | pure                            | 7.02               |                       | 46 46                             |
| Chlorine            | liquid                          | 1.507              | - 33.6                | Drugman-Ramsay.                   |
| Chromium            | 24440                           | 6.52-6.73          |                       | Moissan.                          |
| Cobalt              | pure                            | 6.92<br>8.71       | 20                    | Tilden, Ch. C. 1898.              |
| Columbium           |                                 | 8.4                | 15                    | Muthmann-Weiss.                   |
| Copper              | cast                            | 8.30-8.95          |                       |                                   |
| 33"                 | annealed                        | 8.89               | 20                    | Dellinger, 1911                   |
| 4                   | wrought<br>hard drawn           | 8.85-8.95          |                       | 46 46                             |
| "                   | vacuo-distilled                 | 8.89<br>8.9326     | 20                    | Kahlbaum, 1902.                   |
| 66                  | ditto-compressed                | 8.9376             | 20                    | ., .,                             |
| "                   | liquid                          | 8.217              |                       | Roberts-Wrightson.                |
| Erbium              | 2 1                             | 4.77               |                       | St. Meyer, Z. Ph. Ch. 37.         |
| Fluorine<br>Gallium | , liquid                        | 1.14               | - 200                 | Moissan-Dewar.<br>de Boisbaudran. |
| Gamum               |                                 | 5.93<br>5.46       | 23                    | Winkler,                          |
| Glucinum            |                                 | 1.85               | 20                    | Humpidge.                         |
| Gold                | cast                            | 19.3               |                       |                                   |
| 66                  | wrought                         | 19.33              |                       | 77 1 11                           |
| 46                  | vacuo-distilled                 |                    | 20                    | Kahlbaum, 1902.                   |
| Helium              | ditto-compressed<br>liquid      | 0.15               | 20<br>— 269           | Onnes, 1908.                      |
| Hydrogen            | liquid                          | 0.070              | - 252                 | Dewar, Ch. News, 1904.            |
| Indium              |                                 | 7.28               | - 33                  | Richards.                         |
|                     |                                 |                    |                       |                                   |

Compiled from Clarke's Constants of Nature, Landolt-Börnstein-Meyerhoffer's Tables, and other sources. Where no authority is stated, the values are mostly means from various sources.

<sup>\*</sup>To reduce to pounds per cu. ft. multiply by 62.4. † Where the temperature is not given, ordinary atmospheric temperature is understood.

## DENSITY IN GRAMS PER CUBIC CENTIMETER OF THE ELEMENTS, LIQUID OR SOLID.

| Element.              | Physical State             | Grams per<br>cu. cm.* | Tempera-<br>ture °C.† | Authority.                      |
|-----------------------|----------------------------|-----------------------|-----------------------|---------------------------------|
| Iridium               |                            | 22.42                 | 17                    | Deville-Debray                  |
| Iodine                |                            | 4.940                 | 20                    | Richards-Stull                  |
| Iron                  | pure                       | 7.85-7.88             |                       |                                 |
| 44                    | gray cast<br>white cast    | 7.03-7.13             |                       |                                 |
| 66                    | wrought                    | 7.80-7.90             |                       |                                 |
| 61                    | liquid                     | 6 88                  |                       | Roberts-Austen                  |
| 46                    | steel                      | 7.60-7.80             |                       |                                 |
| Krypton               | liquid                     | 2.16                  | -146                  | Ramsay-Travers                  |
| Lanthanum             |                            | 6.15                  |                       | Muthmann-Weiss                  |
| Lead                  | vacuo-distilled            | 11.342                | 20                    | Kahlbaum, 1902                  |
| 66                    | ditto-compressed<br>solid  | 11.347                | 20<br>325             | Vincentini-Omodei               |
| 46                    | liquid                     | 10.645                | 325                   | " "                             |
| 66                    | "                          | 10.597                | 400°                  | Day, Sosman, Hostetter,         |
| 40                    | 44                         | 10.078                | 8500                  | 1914                            |
| Lithium               |                            | 0.534                 | 20                    | Richards-Brink, '07             |
| Magnesium             |                            | 1.741                 |                       | Voigt                           |
| Manganese<br>Mercury  | liquid                     | 7.42                  | 0                     | Prelinger<br>Regnault, Volkmann |
| arereury              | "                          | 13.596<br>13.546      | 20.                   | regulatit, voikinailli          |
| 66                    | "                          | 13.690                | -38.8                 | Vincentini-Omodei               |
| 66                    | solid                      | 14.193                | -38.8<br>-188         | Mallet                          |
| "                     | 44                         | 14.383                | <b>—</b> 188          | Dewar, 1902                     |
| Molybdenum            |                            | 10.0                  |                       | Moissan                         |
| Neodymium<br>Nickel   |                            | 6.96<br>8.60-8.90     |                       | Muthmann-Weiss                  |
| Nitrogen              | liquid                     | 0.810                 | -195                  | Baly-Donnan, 1902               |
| "                     |                            | 0.854                 | -205                  | " " "                           |
| Osmium                |                            | 22.5                  |                       | Deville-Debray                  |
| Oxygen                | liquid                     | 1.14                  | -184                  | D: 1 1 C: 11                    |
| Palladium Phosphorus‡ | white                      | 12.16                 |                       | Richards-Stull                  |
| 1 nosphorus t         | red                        | 2.20                  |                       |                                 |
| 46                    | metallic                   | 2.34                  | 15                    | Hittorf                         |
| Platinum              |                            | 21.37                 | 20                    | Richards-Stull                  |
| Potassium             |                            | 0.870                 | 20                    | Richards-Brink, '07             |
| 1 "                   | solid                      | 0.851                 | 62.1                  | Vincentini-Omodei               |
| Præsodymium           | liquid                     | 0.830<br>6.475        | 62.1                  | Muthmann-Weiss                  |
| Rhodium               |                            | 12.44                 |                       | Holborn Henning                 |
| Rubidium              |                            | 1.532                 | 20                    | Richards-Brink, '07             |
| Ruthenium             |                            | 12.06                 | 0                     | Toby                            |
| Samarium              |                            | 7.7-7.8               |                       | Muthmann-Weiss                  |
| Selenium<br>Silicon   | cruet                      | 4.3-48                | 20                    | Richards-Stull-Brink            |
| Silicon               | cryst.<br>amorph.          | 2.42 2.35             | 20                    | Vigoroux                        |
| Silver                | cast                       | 10.42-10.53           | 15                    | 1,60,044                        |
| 46                    | wrought                    | 10.6                  |                       |                                 |
| 46                    | vacuo-distilled            | 10.492                | 20                    | Kahlbaum, 1902                  |
| "                     | ditto-compressed<br>liquid | 10.503                | 20                    | Wrightson                       |
| Sodium                | nquiu                      | 0.9712                | 20                    | Richards-Brink, '07             |
| 46                    | solid                      | 0.9519                | 97.6                  | Vincentini-Omodei               |
| 66                    | liquid                     | 0.9287                | 97.6<br>—188          | 46 66                           |
| "                     |                            | 1.0066                | -188                  | Dewar                           |
| Strontium             |                            | 2.50-2.58             |                       | Matthiessen                     |
| Sulphur               | liquid                     | 2.0-2.1<br>1.811      | 113                   | Vincentini-Omodei               |
|                       | quin                       |                       | 3                     |                                 |
|                       | <del></del>                |                       |                       |                                 |

<sup>\*</sup>To reduce to pounds per cubic ft. multiply by 62.4.
† Where the temperature is not given, ordinary atmosphere temperature is understood.
‡ Black phosphorus, 2.69, Bridgman, 1918.

# 112 TABLES 95 (continued) AND 96. DENSITY OF VARIOUS SUBSTANCES.

TABLE 95 (continued). — Density in grams per cubic centimeter and pounds per cubic foot of the elements, liquid or solid.

| Element.                                                                                                                       | Physical State.                     | Grams per                                                                                                                          | Tempera-<br>ture °C.                      | Authority.                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tantalum Tellurium  " Thallium Thorium Tin  " " " " Titanium Tungsten Uranium Vanadium Xenon Yttrium Zinc  " " " " " Zirconium | crystallized amorphous  white, cast | 16.6 6.25 6.02 11.86 12.16 7.29 7.30 6.97-7.18 7.184 6.99 5.8 4.5 18.6-19.1 18.7 5.69 3.52 3.80 7.04-7.16 7.19 6.92 7.13 6.48 6.44 | 20<br>17<br>226<br>226<br>18<br>13<br>109 | Beljankin. Richards-Stull. Bolton. Matthiessen.  Vincentini-Omodei "See Table 65  Mixter.  Zimmermann. Ruff-Martin. Ramsay-Travers. St. Meyer.  Kahlbaum, 1902. "Roberts-Wrightson. |

TABLE 96. — Density in grams per cubic centimeter and in pounds per cubic foot of different kinds of wood.

The wood is supposed to be seasoned and of average dryness.

| Wood.                                                                                                                                                                                                             | Grams<br>per cubic<br>centimeter.                                                                                                                                                                        | Pounds<br>per cubic<br>foot.                                                                                                                                                                             | Wood.                                                                                                                                                                                                                                      | Grams<br>per cubic<br>centimeter.                                                                                                                                                                                                            | Pounds<br>per cubic<br>foot.                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alder Apple Ash Bamboo Basswood. See Linden. Beech Blue gum Birch Box Bullet-tree Butternut Cedar Cherry Cork Dogwood Ebony Elm Fir or Pine, American White "Larch "Pitch "Red "Scotch "Spruce "Yellow Greenheart | 0.42-0.68 0.66-0.84 0.65-0.85 0.31-0.40  0.70-0.90 1.00 0.51-0.77 0.95-1.16 1.05 0.38 0.49-0.57 0.70-0.90 0.22-0.26 0.76 1.11-1.33 0.54-0.60 0.35-0.50 0.50-0.56 0.83-0.85 0.48-0.70 0.37-0.60 0.93-1.04 | 26-42<br>41-52<br>40-53<br>19-25<br>43-56<br>62<br>32-48<br>59-72<br>65<br>24<br>30-35<br>43-56<br>14-16<br>47<br>69-83<br>34-37<br>22-31<br>31-35<br>52-53<br>30-44<br>27-33<br>30-44<br>23-37<br>58-65 | Hazel Hickory Holly Iron-bark Juniper Laburnum Lancewood Lignum vitæ Linden or Lime-tree Locust Logwood Mahogany, Honduras "Spanish Maple Oak Pear-tree Plum-tree Ploplar Satinwood Sycamore Teak, Indian "African Walnut Water gum Willow | 0.60-0.80<br>0.60-0.93<br>0.76<br>1.03<br>0.56<br>0.92<br>0.68-1.00<br>1.17-1.33<br>0.32-0.59<br>0.67-0.71<br>0.91<br>0.66<br>0.85<br>0.62-0.75<br>0.60-0.90<br>0.61-0.73<br>0.35-0.5<br>0.95<br>0.40-0.60<br>0.64-0.70<br>1.00<br>0.40-0.60 | 37-49<br>37-58<br>47<br>64<br>35<br>57<br>42-62<br>73-83<br>20-37<br>42-44<br>57<br>41<br>53<br>39-47<br>37-56<br>38-45<br>41-49<br>22-31<br>59<br>24-37<br>41-55<br>61<br>40-43<br>62<br>24-37 |

<sup>\*</sup> Where the temperature is not given, ordinary atmospheric temperature is understood.

# DENSITY IN GRAMS PER CUBIC CENTIMETER AND POUNDS PER CUBIC FOOT OF VARIOUS SOLIDS.

N. B. The density of a specimen depends considerably on its state and previous treatment; especially is this the case with porous materials.

| Material.                                                                                                                                                                                                                                                                                                                                                    | Grams per<br>cu. cm.                                                                                                                                                                                                                                                                                                        | Pounds per cu. foot.                                                                                                                                                                                                                        | Material.                                                                                                                                                                                                                                                                                                                                                  | Grams per cu. cm.                                                                                                                                                                                                                                                                           | Pounds per cu. foot.                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Agate Alabaster: Carbonate Sulphate Albite Amber Amphiboles Anorthite Anthracite Asbestos Asphalt Basalt Beeswax Beryl Biotite Bone Brick Butter Calamine Caoutchouc Celluloid Cement, set Chalk Charcoal: oak pine Chrome yellow Chromite Cinnabar Clay Coal, soft Cocoa butter Coke Copal Corundum Diamond: Anthracitic Carbonado Diorite Dolomite Ebonite | cu. cm.  2.5-2.7  2.69-2.78 2.26-2.32 2.62-2.65 1.06-1.11 2.9-3.2 2.74-2.76 1.4-1.8 2.0-2.8 1.1-1.5 2.4-3.1 0.96-0.97 2.69-2.7 2.7-3.1 1.7-2.0 1.4-2.2 0.86-0.87 4.1-4.5 0.92-0.99 1.4 2.7-3.0 1.9-2.8 0.57 0.28-0.44 6.00 4.32-4.57 8.12 1.8-2.6 1.2-1.5 0.89-0.91 1.0-1.7 1.04-1.14 3.9-4.0 1.66 3.01-3.25 2.52 2.84 1.15 | cu. foot.  156–168  168–173 141–145 163–165 66–69 180–200 171–172 87–112 125–175 69–94 150–190 106–125 87–137 53–54 255–280 57–62 87 170–190 118–175 35 18–28 374 270–285 597 122–162 75–94 56–57 62–105 65–71 245–250  104 188–203 157 177 | Gum arabic Gypsum Hematite Hornblende Ice Ilmenite Ivory Labradorite Lava: basaltic trachytic Leather: dry greased Lime: niortar slaked Limestone Litharge: Artificial Natural Magnetite Malachite Marble Meerschaum Mica Muscovite Ochre Oligoclase Olivine Opal Orthoclase Paper Paraffin Peat Pitch Porcelain Porphyry Pyrite Quartzite Resin Rock salt | 1.3-1.4 2.31-2.33 4.9-5.3 3.0 0.917 4.5-5. 1.83-1.92 2.7-2.72 2.8-3.0 2.0-2.7 0.86 1.3-1.4 2.68-2.76  9.3-9.4 7.8-8.0 4.9-5.2 3.7-4.1 2.6-2.84 0.99-1.28 2.6-3.2 2.76-3.00 3.5 2.65-2.67 3.27-3.37 2.2 2.58-2.61 0.7-1.15 0.87-0.91 0.84 1.07 2.3-2.5 2.65-2.9 4.95-5.1 2.65 2.73 1.07 2.18 | 80- 85 144-145 306-330 187 57-2 280-310 114-120 168-170 175-185 125-168 54 64 103-111 81- 87 167-171  580-585 490-500 306-324 231-256 160-177 62- 80 165-200 172-225 218 165-167 204-210 137 161-163 44- 72 54- 57 52 67 143-156 162-181 309-318 165 |
| Dolomite                                                                                                                                                                                                                                                                                                                                                     | 2.52<br>2.84<br>1.15<br>4.0<br>3.25-3.5<br>2.55-2.75<br>2.63                                                                                                                                                                                                                                                                | 177<br>72<br>250<br>203–218<br>159–172<br>164                                                                                                                                                                                               | Resin                                                                                                                                                                                                                                                                                                                                                      | 2.73<br>1.07<br>2.18<br>6.00–6.5<br>2.14–2.36<br>2.50–2.65<br>2.0–3.9                                                                                                                                                                                                                       | 170<br>67<br>136<br>374-406<br>134-147<br>156-165                                                                                                                                                                                                    |
| Fluorite Gamboge Garnet Gas carbon Gelatine Glass: common flint Glue                                                                                                                                                                                                                                                                                         | 3.18<br>1.2<br>3.15-4.3<br>1.88<br>1.27<br>2.4-2.8<br>2.9-5.9<br>1.27                                                                                                                                                                                                                                                       | 198<br>75<br>197-268<br>117<br>180<br>150-175<br>180-370<br>80                                                                                                                                                                              | Slate<br>Soapstone<br>Starch<br>Sugar<br>Talc<br>Tallow<br>Topaz<br>Tourmaline                                                                                                                                                                                                                                                                             | 2.6-3.3<br>2.6-2.8<br>1.53<br>1.61<br>2.7-2.8<br>0.91-0.97<br>3.5-3.6<br>3.0-3.2                                                                                                                                                                                                            | 162-205<br>162-175<br>95<br>100<br>168-174<br>57- 60<br>219-223<br>190-200                                                                                                                                                                           |
| Granite<br>Graphite                                                                                                                                                                                                                                                                                                                                          | 2.64-2.76<br>2.30-2.72                                                                                                                                                                                                                                                                                                      | 165-172<br>144-170                                                                                                                                                                                                                          | Zircon                                                                                                                                                                                                                                                                                                                                                     | 4.68-4.70                                                                                                                                                                                                                                                                                   | 292-293                                                                                                                                                                                                                                              |

# DENSITY IN GRAMS PER CUBIC CENTIMETER AND POUNDS PER CUBIC FOOT OF VARIOUS ALLOYS.

| Alloy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Grams<br>per cubic<br>centimeter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pounds<br>per cubic<br>foot.                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brasses: Yellow, 70Cu + 30Zn, cast.  " " " " rolled  " " drawn  " Red, 90Cu + 10Zn  " White, 50Cu + 50Zn  Bronzes: 90Cu + 10Sn  " 85Cu + 15Sn  " 80Cu + 25Sn  " 80Cu + 25Sn  " 75Cu + 25Sn  German Silver: Chinese, 26.3Cu + 36.6Zn + 36.8Ni  " " Berlin (1) 52Cu + 26Zn + 22Ni  " " (2) 59Cu + 30Zn + 11Ni  " " " (3) 63Cu + 30Zn + 6Ni  " " Nickelin  Lead and Tin: 87.5Pb + 12.5Sn  " " 84Pb + 16Sn  " " " 77.8Pb + 22.2Sn  " " " 63.7Pb + 36.3Sn  " " " 40.7Pb + 36.3Sn  " " " 40.7Pb + 53.3Sn  " " 30.5Pb + 69.5Sn  Bismuth, Lead, and Tin: 53Bi + 40Pb + 7Cd  Wood's Metal: 50Bi + 25Pb + 12.5Cd + 12.5Sn  Cadmium and Tin: 32Cd + 68Sn  Gold and Copper: 98Au + 2Cu  " " " 96Au + 4Cu  " " 94Au + 6Cu  " " 94Au + 6Cu  " " 88Au + 12Cu  " " 86Au + 14Cu  Aluminum and Copper: 10Al + 90Cu  " " " 88Au + 12Cu  " " " 86Au + 14Cu  Aluminum and Iridium: 90Pt + 10Ir  " " 85Pt + 15Ir  " " 66.67Pt + 33.33Ir  " " 66.67Pt + 33.33Ir  " " " 5Pt + 95Ir  Constantan: 60Cu + 40Ni  Magnalium: 70Al + 30Mg  Manganin: 84Cu + 12Mn + 4Ni  Platinoid: German silver + little Tungsten | 8.44<br>8.56<br>8.70<br>8.60<br>8.20<br>8.78<br>8.89<br>8.74<br>8.83<br>8.30<br>8.45<br>8.30<br>8.77<br>10.60<br>10.33<br>10.05<br>9.43<br>8.73<br>8.73<br>8.74<br>10.56<br>10.70<br>10.60<br>10.81<br>11.95<br>17.52<br>17.52<br>17.52<br>17.52<br>17.52<br>17.52<br>17.52<br>17.69<br>8.83<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81<br>16.81 | 527<br>534<br>542<br>536<br>511<br>548<br>555<br>545<br>551<br>518<br>527<br>520<br>518<br>547<br>661<br>644<br>627<br>588<br>545<br>514<br>662<br>605<br>480<br>1176<br>1145<br>1120<br>1093<br>1071<br>1049<br>1027<br>480<br>522<br>542<br>175<br>1348<br>1364<br>1396<br>1396<br>554 |

# TABLE 99. - DENSITIES OF VARIOUS NATURAL AND ARTIFICIAL MINERALS.

(See also Table 97.)

| Pure compounds, all at 25°C   Magnesia, MgO   Lime, CaO   Forms of SiO <sub>2</sub> ; Quartz, natural   2.642   3.785   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305   3.305 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 s o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

References: 1, Larsen 1909; 2, Day and Shepherd; 3, Shepherd and Rankin, 1909; 4, Allen and White, 1909; 5, Allen, Wright and Clement, 1906; 6, Day and Allen, 1905; 7, Washington and Wright, 1910; 8, Merwin, 1911; 9, Johnston and Adams, 1911; 10, Allen and Crenshaw, 1912; 11, Wright, 1908.

All the data of this table are from the Geophysical Laboratory, Washington.

## TABLE 100. - DENSITIES OF MOLTEN TIN AND TIN-LEAD EUTECTIC.

| Temperature Molten tin 37 pts. Pb, 63, Sn.*  250°C. 300° 400° 500° 600° 900° 1200° 6.399 7.879 7.800 7.731 - 6.399 |
|--------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------|

\* Melts at 181. Day and Sosman, Geophysical Laboratory, unpublished.

For further densities inorganic substances see table 219.

# TABLES 101-102. WEIGHT OF SHEET METAL.

### TABLE 101.- Weight of Sheet Metal. (Metric Measure.)

This table gives the weight in grams of a plate one meter square and of the thickness stated in the first column.

| Thickness<br>in thou-<br>sandths of<br>a cm. | Iron.                                     | Copper.                                   | Brass.                                    | Aluminum.                                 | Platinum.                                      | Gold.                                          | Silver.                                    |
|----------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------|
| 1<br>2<br>3<br>4<br>5                        | 78.0<br>156.0<br>234.0<br>312.0<br>390.0  | 89.0<br>178.0<br>267.0<br>356.0<br>445.0  | 85.6<br>171.2<br>256.8<br>342.4<br>428.0  | 26.7<br>53.4<br>80.1<br>106.8<br>133.5    | 215.0<br>430.0<br>645.0<br>860.0               | 193.0<br>386.0<br>579.0<br>772.0<br>965.0      | 105.0<br>210.0<br>315.0<br>420.0<br>525.0  |
| 6<br>7<br>8<br>9                             | 468.0<br>546.0<br>624.0<br>702.0<br>780.0 | 534.0<br>623.0<br>712.0<br>801.0<br>890.0 | 513.6<br>599.2<br>684.8<br>770.4<br>856.0 | 160.2<br>186.9<br>213.6<br>240.3<br>267.0 | 1290.0<br>1505.0<br>1720.0<br>1935.0<br>2150.0 | 1158.0<br>1351.0<br>1544.0<br>1737.0<br>1930.0 | 630.0<br>735.0<br>840.0<br>945.0<br>1050.0 |

TABLE 102. - Weight of Sheet Metal. (British Measure.)

| Thickness             | Iron.                                          | Copper.                                        | Brass.                                         | Alum                                           | inum.                            | Plati                                     | num.                                      |
|-----------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------|
| in Mils.              | Pounds per                                     | Pounds per                                     | Pounds per                                     | Pounds per                                     | Ounces per                       | Pounds per                                | Ounces per                                |
|                       | Sq. Foot.                                      | Sq. Foot.                                      | Sq. Foot.                                      | Sq. Foot.                                      | Sq. Foot.                        | Sq. Foot.                                 | Sq. Foot.                                 |
| 1<br>2<br>3<br>4<br>5 | .04058<br>.08116<br>.12173<br>.16231<br>.20289 | .04630<br>.09260<br>.13890<br>.18520<br>.23150 | .04454<br>.08908<br>.13363<br>.17817<br>.22271 | .01389<br>.02778<br>.04167<br>.05556<br>.06945 | .2222<br>.4445<br>.6667<br>.8890 | .1119<br>.2237<br>.3356<br>.4474<br>.5593 | 1.790<br>3.579<br>5.369<br>7.158<br>8.948 |
| 6                     | .24347                                         | .27780                                         | .26725                                         | .08334                                         | 1.3335                           | .6711                                     | 10.738                                    |
| 7                     | .28405                                         | .32411                                         | .31179                                         | .09723                                         | 1.5557                           | .7830                                     | 12.527                                    |
| 8                     | .32463                                         | .37041                                         | .35634                                         | .11112                                         | 1.7780                           | .8948                                     | 14.317                                    |
| 9                     | .36520                                         | .41671                                         | .40088                                         | .12501                                         | 2.0002                           | 1.0067                                    | 16.106                                    |
| 10                    | .40578                                         | .46301                                         | .44542                                         | .13890                                         | 2.2224                           | 1.1185                                    | 17.896                                    |

|                    | Go                              | old,                    | Sil                             | ver.                    |
|--------------------|---------------------------------|-------------------------|---------------------------------|-------------------------|
| Thickness in Mils. | Troy<br>Ounces per<br>Sq. Foot. | Grains per<br>Sq. Foot. | Troy<br>Ounces per<br>Sq. Foot. | Grains per<br>Sq. Foot. |
| 1                  | 1.4642                          | 702.8                   | 0.7967                          | 382.4                   |
| 2                  | 2.9285                          | 1405.7                  | 1.5933                          | 764.8                   |
| 3                  | 4.3927                          | 2108.5                  | 2.3900                          | 1147.2                  |
| 4 5                | 5.8570                          | 2811.3                  | 3.1867                          | 1 529.6                 |
| 5                  | 7.3212                          | 3514.2                  | 3.9833                          | 1912.0                  |
| 6                  | 8.7854                          | 4217.0                  | 4.7800                          | 2294.4                  |
| 7 8                | 10.2497                         | 4919.8                  | 5.5767                          | 2676.8                  |
|                    | 11.7139                         | 5622.7                  | 6.3734                          | 3059.2                  |
| 9                  | 13.1782                         | 6325.5                  | 7.1700                          | 3441.6                  |
| 10                 | 14.6424                         | 7028.3                  | 7.9667                          | 3824.0                  |
|                    |                                 |                         |                                 |                         |

## DENSITY OF LIQUIDS.

Density or mass in grams per cubic centimeter and in pounds per cubic foot of various liquids.

| Liquid.                    | Grams per<br>cubic centimeter. | Pounds per cubic foot. | Temp. C. |
|----------------------------|--------------------------------|------------------------|----------|
| Acetone                    | 0.792                          | 49.4                   | 20°      |
| Alcohol, ethyl             | 0.807                          | 50.4                   | 0        |
| " methyl                   | 0.810                          | 50.5                   | 0        |
| Aniline                    | 1.035                          | 64.5                   | 0        |
| Benzene                    | 0.899                          | 56.1                   | 0        |
| Bromine                    | 3.187                          | 199.0                  | 0        |
| Carbolic acid (crude) •    | 0.950-0.965                    | 59.2-60.2              | 15       |
| Carbon disulphide          | 1.293                          | 80.6                   | 0        |
| Cocoa-butter               | 1.480                          | 92.3                   | 18       |
| Ether .                    | 0.857                          | 53.5                   | 100      |
| Gasoline                   | 0.736                          | 45.9                   | 0        |
| Clyparine                  | 0.66-0.69                      | 41.0-43.0<br>78.6      | 0        |
| Japan wax                  | 0.875                          | 54.6                   | 100      |
| Milk                       | 1.028-1.035                    | 64.2-64.6              | 100      |
| Naphtha (wood)             | 0.848-0.810                    | 52.9-50.5              | 0        |
| Naphtha (petroleum ether). | 0.665                          | 41.5                   | 15       |
| Oils: Amber                | 0.800                          | 49.9                   | 15       |
| Anise-seed                 | 0.996                          | 62.1                   | 16       |
| Camphor                    | 0.010                          | 56.8                   | -        |
| Castor                     | 0.969                          | 60.5                   | 15       |
| Clove                      | 1.04-1.06                      | 6566.                  | 25       |
| Cocoanut                   | 0.925                          | 57.7                   | 15       |
| Cotton Seed                | 0.926                          | 57.8                   | 16       |
| Creosote                   | 1.040-1.100                    | 64.9-68.6              | 15       |
| Lard                       | 0.920                          | 57 - 4                 | 15       |
| Lavender                   | 0.877                          | 54.7                   | 16       |
| Lemon                      | 0.844                          | 52.7                   | 16       |
| Linseed (boiled)           | 0.942                          | 58.8                   | 15       |
| Neat's foot                | 0.913917                       | 57.0-57.2              |          |
| Olive                      | 0.918                          | 57.3                   | 15       |
| Palm                       | 0.905                          | 56.5                   | 15       |
| Pentane                    | 0.650                          | 40.6                   | 0        |
| Donnouwint                 | 0.623                          | 38.9                   | 25       |
| Peppermint                 | 0.9092                         | 56-57<br>54.8          | 25       |
| " (light)                  | 0.795-0.805                    | 49.6-50.2              | 15       |
| Ding.                      | 0.850-0.860                    | 53.0-54.0              | 15       |
| Poppy                      | 0.924                          | 57.7                   | 12       |
| Rapeseed (crude)           | 0.915                          | 57·1                   | 15       |
| " (refined)                | 0.913                          | 57.0                   | 15       |
| Resin                      |                                | 59.6                   | 15       |
| Sperm                      | 0.955<br>0.88                  | 55.                    | 25       |
| Soya-bean                  | 0.919                          | 57.3                   | 30       |
| "                          | 0.906                          | 56.5                   | 90       |
| Train or Whale             | 0.918-0.925                    | 57.3-57.7              | 15       |
| Turpentine                 | 0.873                          | 54.2                   | 16       |
| Valerian                   | 0.965                          | 60.2                   | 16       |
| Wintergreen                | 1.18                           | 74.                    | 25       |
| Pyroligneous acid          | 0.800                          | 49.9                   | 0        |
| Water                      | I.000                          | 62.4                   | 4        |
|                            |                                |                        |          |

# DENSITY OF PURE WATER FREE FROM AIR. 0° TO 41° C.

[Under standard pressure (76 cm), at every tenth part of a degree of the international hydrogen scale from 00 to 410 C, in grams per milliliter 1]

|                            |                                                  |                                              |                                       | m.                                           | Aba of D                                     |                                              |                                              |                                              |                                              |                                       |                                              |
|----------------------------|--------------------------------------------------|----------------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------|----------------------------------------------|
| De-<br>grees<br>Centi-     |                                                  |                                              |                                       | Ter                                          | ths of D                                     | egrees.                                      |                                              |                                              |                                              |                                       | Mean<br>Differ-                              |
| Centi-<br>grade.           | 0                                                | 1                                            | 2                                     | 3                                            | 4                                            | 5                                            | 6                                            | 7                                            | 8                                            | 9                                     | ences.                                       |
| 0 1 2 3                    | 0.999 8681<br>9267<br>9679<br>9922               | 8747<br>9315<br>9711<br>9937                 | 8812<br>9363<br>9741<br>9951          | 887 5<br>9408<br>9769<br>9962                | 8936<br>9452<br>9796<br>9973                 | 8996<br>9494<br>9821<br>9981                 | 9053<br>9534<br>9844<br>9988                 | 9109<br>9573<br>9866<br>9994                 | 9163<br>9610<br>9887<br>9998                 | 9216<br>9645<br>9905<br>*0000         | + 59<br>+ 41<br>+ 24<br>+ 8<br>- 8           |
| 5 6 7 8                    | 0.999 9919<br>9682<br>9296<br>8764               | *9999<br>9902<br>9650<br>9249<br>8703        | *9996<br>9884<br>9617<br>9201<br>8641 | *9992<br>9864<br>9582<br>9151<br>8577        | *9986<br>9842<br>9545<br>9100<br>8512        | *9979<br>9819<br>9507<br>9048<br>8445        | *9970<br>9795<br>9468<br>8994<br>8377        | *9960<br>9769<br>9427<br>8938<br>8308        | *9947<br>9742<br>9385<br>8881<br>8237        | *9934<br>9713<br>9341<br>8823<br>8165 | - 24<br>- 39<br>- 53<br>- 67                 |
| 9<br>10<br>11<br>12<br>13  | 7282<br>6331<br>5248<br>4040                     | 8017<br>7194<br>6228<br>5132<br>3912         | 7940<br>7105<br>6124<br>5016<br>3784  | 7863<br>7014<br>6020<br>4898<br>3654<br>2289 | 7784<br>6921<br>5913<br>4780<br>3523<br>2147 | 7704<br>6826<br>5805<br>4660<br>3391<br>2003 | 7622<br>6729<br>5696<br>4538<br>3257<br>1858 | 7539<br>6632<br>5586<br>4415<br>3122<br>1711 | 7455<br>6533<br>5474<br>4291<br>2986<br>1564 | 7369<br>6432<br>5362<br>4166<br>2850  | - 81<br>- 95<br>-108<br>-121<br>-133<br>-145 |
| 14<br>15<br>16<br>17<br>18 | 1266<br>0.998 9705<br>8029<br>6244<br>4347       | 2572<br>1114<br>9542<br>7856<br>6058<br>4152 | 0962<br>9378<br>7681<br>5873<br>3955  | 0809<br>9214<br>7505<br>5686<br>3757         | 0655<br>9048<br>7328<br>5498<br>3558         | 0499<br>8881<br>7150<br>5309<br>3358         | 0343<br>8713<br>6971<br>5119<br>3158         | 0185<br>8544<br>6791<br>4927<br>2955         | 0026<br>8373<br>6610<br>4735<br>2752         | *9865<br>8202<br>6427<br>4541<br>2549 | -156<br>-168<br>-178<br>-190<br>-200         |
| 20<br>21<br>22<br>23<br>24 | 2343<br>0233<br>0.997 8019<br>5702<br>3286       | 2137<br>0016<br>7792<br>5466<br>3039         | 1930<br>*9799<br>7564<br>5227<br>2790 | 1722<br>*9580<br>7335<br>4988<br>2541        | 1511<br>*9359<br>7104<br>4747<br>2291        | 1301<br>*9139<br>6873<br>4506<br>2040        | 1090<br>*8917<br>6641<br>4264<br>1788        | 0878<br>*8694<br>6408<br>4021<br>1535        | 0663<br>*8470<br>6173<br>3777<br>1280        | 0449<br>*8245<br>5938<br>3531<br>1026 | -211<br>-221<br>-232<br>-242<br>-252         |
| 25<br>26<br>27<br>28<br>29 | 0770<br>0.996 8158<br>5451<br>2652<br>0.995 9761 | 0513<br>7892<br>5176<br>2366<br>9466         | 0255<br>7624<br>4898<br>2080<br>9171  | *9997<br>7356<br>4620<br>1793<br>8876        | *9736<br>7087<br>4342<br>1505<br>8579        | *9476<br>6817<br>4062<br>1217<br>8282        | *9214<br>6545<br>3782<br>0928<br>7983        | *8951<br>6273<br>3500<br>0637<br>7684        | *8688<br>6000<br>3218<br>0346<br>7383        | *8423<br>5726<br>2935<br>0053<br>7083 | -261<br>-271<br>-280<br>-289<br>-298         |
| 30<br>31<br>32<br>33<br>34 | 6780<br>3714<br>0561<br>0.994 7325<br>4007       | 6478<br>3401<br>0241<br>6997<br>3671         | 6174<br>3089<br>*9920<br>6668<br>3335 | 5869<br>2776<br>*9599<br>6338<br>2997        | 5564<br>2462<br>*9276<br>6007<br>2659        | 5258<br>2147<br>*8954<br>5676<br>2318        | 4950<br>1832<br>*8630<br>5345<br>1978        | 4642<br>1515<br>*8304<br>5011<br>1638        | 4334<br>1198<br>*7979<br>4678<br>1296        | 4024<br>0880<br>*7653<br>4343<br>0953 | -307<br>-315<br>-324<br>-332<br>-340         |
| 35<br>36<br>37<br>38<br>39 | 0610<br>0.993 7136<br>3585<br>0.992 9960<br>6263 | 0267<br>6784<br>3226<br>9593<br>5890         | *9922<br>6432<br>2866<br>9227<br>5516 | *9576<br>6078<br>2505<br>8859<br>5140        | *9230<br>5725<br>2144<br>8490<br>4765        | *8883<br>5369<br>1782<br>8120<br>4389        | *8534<br>5014<br>1419<br>7751<br>4011        | *8186<br>4658<br>1055<br>7380<br>3634        | *7837<br>4301<br>0691<br>7008<br>3255        | *7486<br>3943<br>0326<br>6636<br>2876 | -347<br>-355<br>-362<br>-370<br>-377         |
| 40<br>41                   | 0.991 8661                                       | 2116                                         | 1734                                  | 1352                                         | 097.1                                        | 0587                                         | 0203                                         | *9818                                        | *9433                                        | *9047                                 | -384                                         |

<sup>&</sup>lt;sup>1</sup> According to P. Chappuis, Bureau international des Poids et Mesures, Travaux et Mémoires, 13; 1907. SMITHSONIAN TABLES.

# VOLUME IN CUBIC CENTIMETERS AT VARIOUS TEMPERATURES OF A CUBIC CENTIMETER OF WATER FREE FROM AIR AT THE TEMPERATURE OF MAXIMUM DENSITY. 0° TO 40° C.

Hydrogen Thermometer Scale.

| Temp.<br>C.                |       |                                  | .1                               | .2                               | •3                                           | .4                               | -5                                 | .6                               | -7                               | .8                               | -9                                |
|----------------------------|-------|----------------------------------|----------------------------------|----------------------------------|----------------------------------------------|----------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|
| 0<br>I<br>2<br>3<br>4      | 1.000 | 0132<br>073<br>032<br>008<br>000 | 125<br>069<br>029<br>006<br>000  | 118<br>064<br>026<br>005         | 059<br>023<br>004<br>001                     | 106<br>055<br>020<br>003<br>001  | 100<br>051<br>018<br>002<br>002    | 095<br>047<br>016<br>001<br>003  | 089<br>043<br>013<br>001<br>004  | 084<br>039<br>011<br>000<br>005  | 079<br>035<br>009<br>000<br>007   |
| 5<br>6<br>7<br>8<br>9      |       | 008<br>032<br>070<br>124<br>191  | 010<br>035<br>075<br>130<br>198  | 012<br>039<br>080<br>137<br>206  | 014<br>042<br>085<br>142<br>214              | 016<br>046<br>090<br>149<br>222  | 018<br>050<br>095<br>156<br>230    | 021<br>054<br>101<br>162<br>238  | 023<br>058<br>106<br>169<br>246  | 026<br>062<br>112<br>176<br>254  | 029<br>066<br>118<br>184<br>263   |
| 10<br>11<br>12<br>13<br>14 |       | 272<br>367<br>476<br>596<br>729  | 281<br>377<br>487<br>609<br>743  | 290<br>388<br>499<br>623<br>757  | 299<br>398<br>511<br>636<br>772              | 308<br>409<br>522<br>649<br>786  | 317<br>420<br>534<br>661<br>800    | 327<br>430<br>547<br>675<br>815  | 337<br>441<br>559<br>688<br>830  | 347<br>453<br>571<br>702<br>844  | 357<br>464<br>584<br>715<br>859   |
| 15<br>16<br>17<br>18       | 1.001 | 873<br>1031<br>198<br>378<br>568 | 890<br>047<br>216<br>396<br>588  | 905<br>063<br>233<br>415<br>606  | 920<br>080<br>252<br>433<br>626              | 935<br>097<br>269<br>452<br>646  | 951<br>113<br>287<br>471<br>667    | 967<br>130<br>305<br>490<br>687  | 983<br>147<br>323<br>510<br>707  | 998<br>164<br>341<br>529<br>728  | 015*<br>182<br>358<br>548<br>748  |
| 20<br>21<br>22<br>23<br>24 | 1.002 | 769<br>981<br>203<br>436<br>679  | 790<br>002*<br>226<br>459<br>704 | 811<br>024*<br>249<br>483<br>729 | 832<br>046*<br>271<br>507<br>754             | 853<br>068*<br>295<br>532<br>779 | 874<br>091*<br>319<br>. 556<br>804 | 895<br>113*<br>342<br>581<br>829 | 916<br>135*<br>364<br>605<br>854 | 938<br>158*<br>389<br>629<br>879 | 960<br>181*<br>412<br>654<br>905  |
| 25<br>26<br>27<br>28<br>29 | 1.003 | 467<br>749                       | 958<br>221<br>495<br>776<br>069  | 983<br>248<br>523<br>806<br>100  | 010*<br>275<br>550<br>836<br>129             | 036*<br>302<br>579<br>865<br>160 | 061*<br>330<br>607<br>893<br>189   | 088*<br>357<br>635<br>922<br>220 | 384<br>663<br>951<br>250         | 141*<br>412<br>692<br>981<br>280 | 168*<br>439<br>720<br>011*<br>310 |
| 30<br>31<br>32<br>33<br>34 | 1.00  | 341<br>651<br>968<br>5296<br>631 | 371<br>682<br>001*<br>328<br>665 | 403<br>713<br>033*<br>361<br>698 | 43 <sup>2</sup> 744 066* 395 73 <sup>2</sup> | 464<br>777<br>098*<br>427<br>768 | 494<br>808<br>132*<br>461<br>802   | 526<br>840<br>163*<br>496<br>836 | 557<br>872<br>197*<br>530<br>871 | 588<br>904<br>229*<br>562<br>904 | 619<br>936<br>263*<br>597<br>940  |
| 35                         |       | 975                              | 009*                             | 044*                             | 078*                                         | 115*                             | 150*                               | 185*                             | 219*                             | 255*                             | 290*                              |

Reciprocals of the preceding table.

## DENSITY AND VOLUME OF WATER. -10° TO +250° C.

The mass of one cubic centimeter at 4° C. is taken as unity.

| mp. C.                     | Density.                                                                                                                | Volume.                  | Temp. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Density.                                   | Volume.                                        |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------|
| -10°                       | 0.99815                                                                                                                 | 1.00186                  | + <b>35°</b> 36 37 38 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.99406                                    | 1.00598                                        |
| 9                          | . 843                                                                                                                   | 157                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 371                                        | 633                                            |
| 8                          | 869                                                                                                                     | 131                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 336                                        | 669                                            |
| 7                          | 892                                                                                                                     | 108                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 <b>0</b> 0                               | 706                                            |
| 6                          | 912                                                                                                                     | 088                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 263                                        | 743                                            |
| -5                         | 0.99930                                                                                                                 | 1.00070                  | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.99225                                    | 1.00782                                        |
| -4                         | 945                                                                                                                     | 055                      | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 187                                        | 821                                            |
| -3                         | 958                                                                                                                     | 042                      | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 147                                        | 861                                            |
| -2                         | 970                                                                                                                     | 031                      | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 107                                        | 901                                            |
| -1                         | 979                                                                                                                     | 021                      | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 066                                        | 943                                            |
| +0                         | 0.99987                                                                                                                 | 1.00013                  | <b>45</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.99025                                    | 1.00985                                        |
| I                          | 993                                                                                                                     | 007                      | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.98982                                    | 1.01028                                        |
| 2                          | 997                                                                                                                     | 003                      | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 940                                        | 072                                            |
| 3                          | 999                                                                                                                     | 001                      | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 896                                        | 116                                            |
| 4                          | 1.00000                                                                                                                 | 1.00000                  | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 852                                        | 162                                            |
| <b>5</b> 6 7 8 9           | 0.99999<br>997<br>993<br>988<br>981                                                                                     | 003<br>007<br>012<br>019 | 50<br>51<br>52<br>53<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98807<br>762<br>715<br>669<br>621        | 1.01207<br>254<br>301<br>349<br>398            |
| 10<br>11<br>12<br>13<br>14 | 0.99973<br>963<br>952<br>940<br>927                                                                                     | 037<br>048<br>060<br>073 | 55<br>60<br>65<br>70<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98573<br>324<br>059<br>0.97781<br>489    | 1.01448<br>705<br>979<br>1.02270<br>576        |
| 15                         | 0.99913                                                                                                                 | 1.00087                  | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.97183                                    | 1.02899                                        |
| 16                         | 897                                                                                                                     | ·103                     | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.96865                                    | 1.03237                                        |
| 17                         | 880                                                                                                                     | 120                      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 534                                        | 590                                            |
| 18                         | 862                                                                                                                     | 138                      | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 192                                        | 959                                            |
| 19                         | 843                                                                                                                     | 157                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.95838                                    | 1.04343                                        |
| 20                         | 0.99823                                                                                                                 | 1.00177                  | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9510                                     | 1.0515                                         |
| 21                         | 802                                                                                                                     | 198                      | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·9434                                      | 1.0601                                         |
| 22                         | 780                                                                                                                     | 220                      | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·9352                                      | 1.0693                                         |
| 23                         | 757                                                                                                                     | 244                      | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·9264                                      | 1.0794                                         |
| 24                         | 733                                                                                                                     | 268                      | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·9173                                      | 1.0902                                         |
| 25<br>26<br>27<br>28<br>29 | 0.99708<br>682<br>655<br>627<br>598                                                                                     | 320<br>347<br>375<br>404 | 160<br>170<br>180<br>190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9075<br>.8973<br>.8866<br>.8750<br>.8628 | 1.1019<br>1.1145<br>1.1279<br>1.1429<br>1.1590 |
| 30                         | 0.99568                                                                                                                 | 1.00434                  | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.850                                      | 1.177                                          |
| 31                         | 537                                                                                                                     | 465                      | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .837                                       | 1.195                                          |
| 32                         | 506                                                                                                                     | 497                      | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .823                                       | 1.215                                          |
| 33                         | 473                                                                                                                     | 530                      | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .809                                       | 1.236                                          |
| 34                         | 440                                                                                                                     | 563                      | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .794                                       | 1.259                                          |
|                            | -10° -98 -8 -7 -6 -3 -2 -1 +0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | -10°                     | -10° 0.99815 1.00186 -9 843 157 -8 869 131 -7 892 108 -6 912 088 -5 0.99930 1.00070 -4 945 0.55 -3 958 0.42 -2 970 031 -1 979 021 +0 0.99987 1.00013 1 993 007 2 997 033 3 999 001 4 1.0000 1.00000  5 0.99999 1.0001 6 997 003 7 993 007 8 988 012 9 981 019  10 0.99973 1.00027 11 963 037 12 952 048 13 940 060 14 927 073  15 0.99913 1.00027 16 897 1.03 17 880 120 18 862 138 19 843 157  20 0.99823 1.00177 21 802 138 22 780 220 23 757 244 733 268  25 0.99708 1.00293 26 682 320 27 655 347 28 627 375 29 598 404  30 0.99568 1.00434 31 537 32 596 33 473 | -10°                                       | -10°                                           |

<sup>\*</sup> From — 10° to 0° the values are due to means from Pierre, Weidner, and Rosetti; from 0° to 41°, to Chappuis, 42° to 100°, to Thiesen; 110° to 250°, to means from the works of Ramsey, Young, Waterston, and Hirn.

## DENSITY OF MERCURY

Density or mass in grams per cubic centimeter, and the volume in cubic centimeters of one gram of mercury.

| -                          |                                         |                                           |                          |                                         |                                            |
|----------------------------|-----------------------------------------|-------------------------------------------|--------------------------|-----------------------------------------|--------------------------------------------|
| Temp. C.                   | Mass in grams per cu. cm.               | Volume of 1 gram in cu. cms.              | Temp. C                  | Massin<br>grams per<br>cu. cm.          | Volume of I gram in cu. cms.               |
| -10° -9 -8 -7 -6           | 13.6198                                 | 0.0734225                                 | 30°                      | 13.5213                                 | 0.0739572                                  |
|                            | 6173                                    | 4358                                      | 31                       | 5189                                    | 9705                                       |
|                            | 6148                                    | 4492                                      | 32                       | 5164                                    | 9839                                       |
|                            | 6124                                    | 4626                                      | 33                       | 5140                                    | 9973                                       |
|                            | 6099                                    | 4759                                      | 34                       | 5116                                    | 40107                                      |
| -5                         | 13.6074                                 | 0.0734893                                 | 35                       | 13.5091                                 | 0.0740241                                  |
| -4                         | 6050                                    | 5026                                      | 36                       | 5066                                    | 0374                                       |
| -3                         | 6025                                    | 5160                                      | 37                       | 5042                                    | 0508                                       |
| -2                         | 6000                                    | 5293                                      | 38                       | 5018                                    | 0642                                       |
| -1                         | 5976                                    | 5427                                      | 39                       | 4994                                    | 0776                                       |
| OI23 _4                    | 13.5951                                 | 0.0735560                                 | 40                       | 13.4969                                 | 0.0740910                                  |
|                            | 5926                                    | 5694                                      | 50                       | 4725                                    | 2250                                       |
|                            | 5901                                    | 5828                                      | 60                       | 4482                                    | 3592                                       |
|                            | 5877                                    | 5961                                      | 70                       | 4240                                    | 4936                                       |
|                            | 5852                                    | 6095                                      | 80                       | 3998                                    | 6282                                       |
| <b>5</b> 6 7 8 9           | 13.5827                                 | 0.0736228                                 | 90                       | 13.3723                                 | 0.0747631                                  |
|                            | 5803                                    | 6362                                      | 100                      | 3515                                    | 8981                                       |
|                            | 5778                                    | 6496                                      | 110                      | 3279                                    | 50305                                      |
|                            | 5754                                    | 6629                                      | 120                      | 3040                                    | 1653                                       |
|                            | 5729                                    | 6763                                      | 130                      | 2801                                    | 3002                                       |
| 10                         | 13.5704                                 | 0.0736893                                 | 140                      | 13.2563                                 | 0.0754 <sup>-</sup> 54                     |
| 11                         | 5680                                    | 7030                                      | 150                      | 2326                                    | 5708                                       |
| 12                         | 5655                                    | 7164                                      | 160                      | 2090                                    | 7064                                       |
| 13                         | 5630                                    | 7298                                      | 170                      | 1853                                    | 8422                                       |
| 14                         | 5606                                    | 7431                                      | 180                      | 1617                                    | 9784                                       |
| 15                         | 13.5581                                 | 0.0737565                                 | 190                      | 13.1381                                 | 0.0761149                                  |
| 16                         | 5557                                    | 7699                                      | 200                      | 1145                                    | 2516                                       |
| 17                         | 5532                                    | 7832                                      | 210                      | 0910                                    | 3886                                       |
| 18                         | 5507                                    | 7966                                      | 220                      | 0677                                    | 5260                                       |
| 19                         | 5483                                    | 8100                                      | 230                      | 0440                                    | 6637                                       |
| 20                         | 13.5458                                 | 0.0738233                                 | 240                      | 13.0206                                 | 0.0768017                                  |
| 21                         | 5434                                    | 8367                                      | 250                      | 12.9972                                 | 9402                                       |
| 22                         | 5409                                    | 8501                                      | 260                      | 9738                                    | 7090                                       |
| 23                         | 5385                                    | 8635                                      | 270                      | 9504                                    | 2182                                       |
| 24                         | 5360                                    | 8768                                      | 280                      | 9270                                    | 3579                                       |
| 25<br>26<br>27<br>28<br>29 | 13.5336<br>5311<br>5287<br>5262<br>5238 | 0.0738902<br>9036<br>9170<br>9304<br>9437 | 300<br>310<br>320<br>330 | 12.9036<br>8803<br>8569<br>8336<br>8102 | 0.0774979<br>6385<br>7795<br>9210<br>80630 |
| 30                         | 13.5213                                 | 0.0739571                                 | 340<br>350<br>360        | 12.7869<br>7635<br>7402                 | 0.0782054<br>3485<br>4921                  |

Based upon Thiesen und Scheel, Tätigkeitber. Phys.-Techn. Reichsanstalt, 1897-1898; Chappuis, Trav. Bur. Int. 13, 1903. Thiesen, Scheel, Sell; Wiss. Abh. Phys.-Techn. Reichsanstalt 2, p. 184, 1895, and 1 liter = 1.000027 cu. dm.

## DENSITY OF AQUEOUS SOLUTIONS.\*

The following table gives the density of solutions of various salts in water. The numbers give the weight in grams per cubic centimeter. For brevity the substance is indicated by formula only.

| grams per cubic centimeter. For previty the substance is indicated by formula only.                                                                                                                         |                  |                                           |                                           |                                  |                                           |                                           |                                       |                                           |                                           |                                           |                                      |                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------------|
| Substance.                                                                                                                                                                                                  |                  | W                                         | eight of                                  | the dis                          |                                           | ubstanc<br>ne soluti                      |                                       | parts b                                   | y weigh                                   | t of                                      | p. C.                                | Authority.                                  |
|                                                                                                                                                                                                             |                  | 5                                         | 10                                        | 15                               | 20                                        | 25                                        | 30                                    | 40                                        | 50                                        | 60                                        | Temp.                                |                                             |
| Na <sub>2</sub> O NaOH                                                                                                                                                                                      |                  | 1.047<br>1.040<br>1.073<br>1.058<br>0.978 | 1.082<br>1.144<br>1.114                   | 1.218                            | 1. <b>1</b> 76<br>1. <b>2</b> 84<br>1.224 |                                           | 1.286<br>1.421<br>1.331               | 1.410                                     |                                           | 1.809<br>1.666<br>1.829<br>1.642          | 15.                                  | Schiff. " " Carius.                         |
| KCl                                                                                                                                                                                                         |                  | 1.015<br>1.031<br>1.035<br>1.029<br>1.041 | 1.030                                     | 1.044                            | I.135<br>I.150<br>I.116                   | 1.072<br>-<br>1.191<br>1.147<br>1.232     |                                       | -<br>-<br>1.255<br>1.402                  |                                           |                                           | 15.<br>15.<br>15.<br>15.             | Gerlach.                                    |
| $CaCl_2 + 6H$ $AlCl_3$ $MgCl_2$ $MgCl_2+6H$ $ZnCl_2$                                                                                                                                                        |                  | I.030<br>I.04I<br>I.014                   | 1.040<br>1.072<br>1.085<br>1.032<br>1.089 | 1.111<br>1.130<br>1.049          | 1.067                                     | 1.196                                     | 1.241<br>1.278<br>1.103               | 1.176<br>1.340<br>-<br>1.141<br>1.417     | 1.225<br>-<br>1.183<br>1.563              | _                                         | 18.<br>15.<br>15.<br>24.<br>19.5     | Schiff.<br>Gerlach.<br>"Schiff.<br>Kremers. |
| $\begin{array}{c} CdCl_2 & . & . \\ SrCl_2 & . & . \\ SrCl_2 + 6H \\ BaCl_2 & . & . \\ BaCl_2 + 2H \end{array}$                                                                                             | <sub>2</sub> O   | 1.043<br>1.044<br>1.027<br>1.045<br>1.035 | 1.092                                     | 1.143                            | 1.193<br>1.198<br>1.111<br>1.205<br>1.166 | 1.257<br>1.042<br>1.269                   | 1.319<br>1.321<br>1.174<br>-<br>1.273 | 1.469<br>-<br>1.242<br>-<br>-             | 1.653                                     | 1.887<br><br><br>-                        | 19.5<br>15.<br>15.<br>15.            | Gerlach. " " Schiff.                        |
| 37101                                                                                                                                                                                                       |                  | 1.044<br>1.048<br>1.041<br>1.041<br>1.046 | 1.092                                     | 1.157                            | 1.221<br>1.223<br>-<br>1.179<br>1.214     | 1.299                                     | 1.290                                 | 1.527<br>-<br>-<br>1.413<br>1.546         |                                           | -<br>-<br>1.668                           | 17.5<br>17.5<br>20.<br>17.5          | Franz. " Mendelejeff. Hager. Precht.        |
| SnCl <sub>2</sub> +2H<br>SnCl <sub>4</sub> +5H<br>LiBr<br>KBr<br>NaBr                                                                                                                                       | I <sub>2</sub> O | 1.032<br>1.029<br>1.033<br>1.035<br>1.038 | 1.058                                     | 1.089                            | I.122<br>I.154<br>I.157                   | 1.185<br>1.157<br>1.202<br>1.205<br>1.224 | 1.193<br>1.252<br>1.254               | 1.329<br>1.274<br>1.366<br>1.364<br>1.408 | 1.365                                     | 1.580<br>1.467<br>-<br>-                  | 15.<br>15.<br>19.5<br>19.5           | Gerlach.  Kremers.  "                       |
| ZnBr <sub>2</sub> CdBr <sub>2</sub> CaBr <sub>2</sub>                                                                                                                                                       |                  | 1.041<br>1.043<br>1.041<br>1.042<br>1.043 | 1.091<br>1.088<br>1.087                   | 1.144                            | 1.197                                     | 1.263                                     | 1.324                                 | 1.449<br>1.473<br>1.479<br>1.459<br>1.483 | 1.623<br>1.648<br>1.678<br>1.639<br>1.683 | 1.8 <sub>73</sub>                         | 19.5<br>19.5<br>19.5<br>19.5         | 66<br>66<br>66<br>66                        |
| SrBr <sub>2</sub> KI LiI NaI ZnI <sub>2</sub>                                                                                                                                                               |                  | 1.043<br>1.036<br>1.036<br>1.038<br>1.043 | 1.076<br>1.077<br>1.080                   | 1.118                            | 1.164                                     | 1.260<br>1.216<br>1.222<br>1.232<br>1.253 | 1.269                                 | 1.489<br>1.394<br>1.412<br>1.430<br>1.467 | 1.693<br>1.544<br>1.573<br>1.598<br>1.648 | 1.953<br>1.732<br>1.775<br>1.808<br>1.873 | 19.5<br>19.5<br>19.5<br>19.5<br>19.5 | 66<br>66<br>66<br>66                        |
| $\begin{array}{c} \operatorname{CdI}_2 \ . \ . \ . \\ \operatorname{MgI}_2 \ . \ . \ . \\ \operatorname{CaI}_2 \ . \ . \ . \\ \operatorname{SrI}_2 \ . \ . \ . \\ \operatorname{BaI}_2 \ . \ . \end{array}$ |                  | 1.041                                     | 1.088                                     | 1.137<br>1.138<br>1.140<br>1.141 | 1.192<br>1.196<br>1.198<br>1.199          | 1.252<br>1.258<br>1.260<br>1.263          | 1.318<br>1.319<br>1.328<br>1.331      | I.474<br>I.472<br>I.475<br>I.489<br>I.493 | 1.666                                     | TOFOL                                     | 19.5                                 | 66<br>66<br>66<br>66                        |
| NaClO <sub>8</sub> NaBrO <sub>8</sub> KNO <sub>8</sub> NaNO <sub>8</sub> AgNO <sub>8</sub>                                                                                                                  |                  | 1.039                                     | 1.064                                     | 1.127                            | 1.176                                     | 1.188<br>1.229<br>-<br>1.180<br>1.255     | 1.287                                 | 1.329                                     | -<br>1.416<br>1.675                       | 1.918                                     | 19.5<br>19.5<br>15.<br>20.2<br>15.   | " Gerlach. Schiff. Kohlrausch.              |

<sup>\*</sup> Compiled from two papers on the subject by Gerlach in the "Zeit. für Anal. Chim.," vols. 8 and 27.

SMITHSONIAN TABLES.

# DENSITY OF AQUEOUS SOLUTIONS.

| Substance.                                                                                                                                                                                                                                                        | w                                         | eight of                                  | the diss                                  | solved s                                  | ubstance<br>e solution                    | e in 100                         | parts by                          | y weight                                  | of                                | . C.                                 | Authority.                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|-----------------------------------|-------------------------------------------|-----------------------------------|--------------------------------------|---------------------------------|
| Dubstance                                                                                                                                                                                                                                                         | 5                                         | 10                                        | 15                                        | 20                                        | 25                                        | 30                               | 40                                | 50                                        | 60                                | Temp.                                |                                 |
| NH <sub>4</sub> NO <sub>3</sub> Zn(NO <sub>3</sub> ) <sub>2</sub> Zn(NO <sub>3</sub> ) <sub>2</sub> +6H <sub>2</sub> O                                                                                                                                            | 1.020                                     | 1.041<br>1.095<br>1.054                   | 1.063<br>1.146                            | 1.085<br>1.201<br>1.113                   | 1.107<br>1.263                            | 1.131<br>1.325<br>1.178          | 1.456                             |                                           | 1.282                             | 17.5<br>17.5<br>14.                  | Gerlach.<br>Franz.<br>Oudemans. |
| $Ca(NO_3)_2 \cdot \cdot \cdot Cu(NO_3)_2 \cdot \cdot \cdot \cdot$                                                                                                                                                                                                 | 1.037                                     | 1.075                                     | 1.118                                     | 1.162                                     | 1.211                                     | 1.260                            |                                   | 1.482                                     | 1.604                             | 17.5                                 | Gerlach.<br>Franz.              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                              | 1.039<br>1.043<br>1.052<br>1.045          | 1.091<br>1.097<br>1.090                   | I.129<br>I.143<br>I.150<br>I.137<br>I.137 | I.179<br>I.199<br>I.212<br>I.192<br>I.192 | 1.262<br>1.283<br>1.252<br>1.252          | 1.355                            |                                   | 1.759                                     |                                   | 19.5<br>17.5<br>17.5<br>17.5<br>17.5 | Kremers.<br>Gerlach.<br>Franz.  |
| $\begin{array}{c} \text{Fe}_2(\text{NO}_3)_6 \ . \ . \ . \\ \text{Mg}(\text{NO}_3)_2 + 6\text{H}_2\text{O} \\ \text{Mn}(\text{NO}_3)_2 + 6\text{H}_2\text{O} \\ \text{K}_2\text{CO}_3 \ . \ . \ . \\ \text{K}_2\text{CO}_3 + 2\text{H}_2\text{O} \ . \end{array}$ | 1.039<br>1.018<br>1.025<br>1.044<br>1.037 | 1.076<br>1.038<br>1.052<br>1.092<br>1.072 | 1.079<br>1.141                            | 1.160<br>1.082<br>1.108<br>1.192<br>1.150 | 1.210<br>1.105<br>1.138<br>1.245<br>1.191 |                                  | 1.235                             | 1.496<br>1.232<br>1.307<br>1.543<br>1.415 | 1.657<br>-<br>1.386<br>-<br>1.511 | 17.5<br>21<br>8<br>15                | Schiff. Oudemans. Gerlach.      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                              | I.019<br>I.027<br>I.045<br>I.025<br>I.05I | 1.038<br>1.055<br>1.096<br>1.053<br>1.104 | 1.057<br>1.084<br>1.150<br>1.081<br>1.161 | I.077<br>I.113<br>I.207<br>I.111<br>I.221 | 1.098<br>1.142<br>1.270<br>1.141<br>1.284 | 1.170                            | 1.226<br>1.489<br>1.238           | I.287<br>-<br>-<br>-                      |                                   | 15.<br>19.<br>18.<br>17.2            | Schiff. Hager. Schiff. Gerlach. |
| $\begin{array}{c} {\rm MgSO_4 + 7H_2O} . \\ {\rm Na_2SO_4 + 10H_2O} \\ {\rm CuSO_4 + 5H_2O} . \\ {\rm MnSO_4 + 4H_2O} . \\ {\rm ZnSO_4 + 7H_2O} . \end{array}$                                                                                                    | 1.025<br>1.019<br>1.031<br>1.031<br>1.027 | 1.050<br>1.039<br>1.064<br>1.064<br>1.057 | 1.075<br>1.059<br>1.098<br>1.099          | 1.101<br>1.081<br>1.134<br>1.135<br>1.122 | 1.129<br>1.102<br>1.173<br>1.174<br>1.156 | I.124<br>I.213<br>I.214          | 1.215<br>-<br>-<br>1.303<br>1.269 | 1.278<br>_<br>1.398<br>1.351              | -<br>-<br>-<br>1.443              | 15.<br>15.<br>18.<br>15.<br>20.5     | " Schiff. Gerlach. Schiff.      |
| $Fe_2(SO_4)_3 \cdot K_2SO_4 + 24H_2O \cdot \cdot \cdot Cr_2(SO_4)_3 \cdot K_2SO_4$                                                                                                                                                                                | 1.026                                     |                                           | 1.066                                     | 1.088                                     | 1.112                                     | 1.141                            | -                                 | -                                         | -                                 | 17.5                                 | Franz.                          |
| $+24H_2O$ . MgSO <sub>4</sub> + K <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                    | 1.016                                     | 1.033                                     | 1.051                                     | 1.073                                     | 1.099                                     | 1.126                            | 1.188                             | 1.287                                     | 1.454                             | 17.5                                 | "                               |
| +6H <sub>2</sub> O (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> +                                                                                                                                                                                              | 1.032                                     | 1.066                                     | 1.101                                     | 1.138                                     | -                                         | -                                | _                                 | _                                         | _                                 | 15.                                  | Schiff.                         |
| $ \begin{array}{c c} \operatorname{FeSO}_4 + 6\operatorname{H}_2\operatorname{O} \\ \operatorname{K}_2\operatorname{CrO}_4 & \cdot & \cdot \\ \operatorname{K}_2\operatorname{Cr}_2\operatorname{O}_7 & \cdot & \cdot \end{array} $                               | 1.039                                     | 1.058<br>1.082                            | 1.127                                     | 1.174                                     | 1.154                                     |                                  | 1.397                             | _                                         | _                                 | 19.5                                 | " Kremers.                      |
| $K_2Cr_2O_7$ Fe(Cy) <sub>6</sub> K <sub>4</sub> Fe(Cy) <sub>6</sub> K <sub>3</sub> Pb(C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> ) <sub>2</sub> +                                                                                                               | 1.035<br>1.028<br>1.025                   | 1.059                                     | 1.092                                     | 1.126                                     | -                                         | 1 1                              | -                                 | -                                         | _                                 | 15.                                  | Schiff.                         |
| $_{2}^{3}H_{2}O$ $_{2}^{3}N_{2}O_{5}$                                                                                                                                                                                                                             | 1.031                                     | 1.064                                     | 1.100                                     | 1.137                                     | 1.177                                     |                                  | 1.315                             | 1.426                                     | -                                 | 15.                                  | Gerlach. Schiff.                |
| + 24H <sub>2</sub> O                                                                                                                                                                                                                                              | 5                                         | 1.042                                     | 1.066                                     | 20                                        | 30                                        | 40                               | 60                                | 80                                        | ICO                               | 14.                                  | Jenn.                           |
| $SO_3 \dots SO_2 \dots$                                                                                                                                                                                                                                           | 1.040                                     | 1.084                                     | I.I32<br>I.045                            | 1.179                                     | 1.277                                     | 1.389                            | 1.564                             | 1.840                                     | _                                 | 15.                                  | Brineau.<br>Schiff.             |
| $N_2O_5$                                                                                                                                                                                                                                                          | 1.033                                     | 1.069                                     | 1.104                                     |                                           | 1.150                                     | 1.207                            | I.422<br>-<br>I.273               | -                                         | -                                 | 15.<br>15.<br>15.                    | Kolb.<br>Gerlach.               |
| Cane sugar HCl HBr HI                                                                                                                                                                                                                                             | 1.019                                     | 1.039                                     | 1.060                                     | 1.082<br>1.101<br>1.158                   | 1.129                                     | 1.178<br>1.200<br>1.376<br>1.400 | 1.289                             |                                           | 1 1 1                             | 17.5<br>15.<br>14.<br>13.            | Kolb.<br>Topsöe.                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                             | 1.032<br>1.040<br>1.035<br>1.027          | 1.069<br>1.082<br>1.077<br>1.057          | 1.119                                     | I.174<br>I.167<br>I.119                   | 1.223<br>1.273<br>1.271<br>1.188          | -<br>1.385<br>1.264              |                                   |                                           | 1.838                             | 15.<br>17.5<br>17.5<br>15.           | Kolb. Stolba. Hager. Schiff.    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                            | 1.028                                     | 1.056                                     | 1.088                                     | 1.119                                     | 1.184                                     | 1.052                            | 1.373                             |                                           | 1.528                             |                                      | Kolb.<br>Oudemans.              |

# DENSITIES OF MIXTURES OF ETHYL ALCOHOL AND WATER IN CRAMS PER MILLILITER.

The densities in this table are numerically the same as specific gravities at the various temperatures in terms of water at 4° C. as unity. Based upon work done at U. S. Bureau of Standards. See Bulletin Bur. Stds. vol. 9, no. 3; contains extensive bibliography; also Circular 19, 1913.

| Per cent                                      |                                    | Temperatures.                      |                                    |                                    |                                    |                                    |                                    |  |  |  |  |  |  |
|-----------------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--|--|--|--|--|--|
| C <sub>2</sub> H <sub>5</sub> OH<br>by weight | 10° C.                             | 15° C.                             | 20° C.                             | 25° C.                             | 30° C.                             | 35° C.                             | 40° C.                             |  |  |  |  |  |  |
| 0                                             | 0.99973                            | 0.99913                            | 0.99823                            | 0.99708                            | 0.99568                            | 0.99406                            | 0.99225                            |  |  |  |  |  |  |
| 1                                             | 785                                | 725                                | 636                                | 520                                | 379                                | 217                                | 034                                |  |  |  |  |  |  |
| 2                                             | 602                                | 542                                | 453                                | 336                                | 194                                | 031                                | .98846                             |  |  |  |  |  |  |
| 3                                             | 426                                | 365                                | 275                                | 157                                | 014                                | .98849                             | 663                                |  |  |  |  |  |  |
| 4                                             | 258                                | 195                                | 103                                | .98984                             | .98839                             | 672                                | 485                                |  |  |  |  |  |  |
| 5                                             | 098                                | 032                                | .98938                             | 817                                | 670                                | 501                                | 311                                |  |  |  |  |  |  |
| 6                                             | .98946                             | .98877                             | 780                                | 656                                | 507                                | 335                                | 142                                |  |  |  |  |  |  |
| 7                                             | 801                                | 729                                | 627                                | 500                                | 347                                | 172                                | •97975                             |  |  |  |  |  |  |
| 8                                             | 660                                | 584                                | 478                                | 346                                | 189                                | 009                                | 808                                |  |  |  |  |  |  |
| 9                                             | 524                                | 442                                | 331                                | 193                                | 031                                | .97846                             | 641                                |  |  |  |  |  |  |
| 10<br>11<br>12<br>13                          | 393<br>267<br>145<br>026<br>.97911 | 304<br>171<br>041<br>.97914<br>790 | 187<br>047<br>.97910<br>775<br>643 | 043<br>.97897<br>753<br>611<br>472 | .97875<br>723<br>573<br>424<br>278 | 685<br>527<br>371<br>216<br>063    | 475<br>312<br>150<br>.96989<br>829 |  |  |  |  |  |  |
| 15<br>16<br>17<br>18                          | 800<br>692<br>583<br>473<br>363    | 669<br>552<br>433<br>313<br>191    | 514<br>387<br>259<br>129           | 334<br>199<br>062<br>.96923<br>782 | 133<br>.96990<br>844<br>697<br>547 | .96911<br>760<br>607<br>452<br>294 | 670<br>512<br>352<br>- 189<br>023  |  |  |  |  |  |  |
| 20                                            | 252                                | 068                                | 864                                | 639                                | 395                                | 134                                | .95856                             |  |  |  |  |  |  |
| 21                                            | 139                                | .96944                             | 729                                | 495                                | 242                                | •95973                             | 687                                |  |  |  |  |  |  |
| 22                                            | 024                                | 818                                | 592                                | 348                                | 087                                | 809                                | 516                                |  |  |  |  |  |  |
| 23                                            | .96907                             | 689                                | 453                                | 199                                | •95929                             | 643                                | 343                                |  |  |  |  |  |  |
| 24                                            | 787                                | 558                                | 312                                | 048                                | 769                                | 476                                | 168                                |  |  |  |  |  |  |
| 25                                            | 665                                | 424                                | 168                                | .95895                             | 607                                | 306                                | .94991                             |  |  |  |  |  |  |
| 26                                            | 539                                | 287                                | 020                                | 738                                | 442                                | 133                                | 810                                |  |  |  |  |  |  |
| 27                                            | 406                                | 144                                | .95867                             | 576                                | 272                                | •94955                             | 625                                |  |  |  |  |  |  |
| 28                                            | 268                                | .95996                             | -710                               | 410                                | 098                                | 774                                | 438                                |  |  |  |  |  |  |
| 29                                            | 125                                | 844                                | 548                                | 241                                | .94922                             | 590                                | 248                                |  |  |  |  |  |  |
| 30                                            | ·95977                             | 686                                | 382                                | 067                                | 741                                | 403                                | 055                                |  |  |  |  |  |  |
| 31                                            | 823                                | 524                                | 212                                | .94890                             | 557                                | 214                                | .93860                             |  |  |  |  |  |  |
| 32                                            | 665                                | 357                                | 038                                | 709                                | 370                                | 021                                | 662                                |  |  |  |  |  |  |
| 33                                            | 502                                | 186                                | .94860                             | 525                                | 180                                | .93825                             | 461                                |  |  |  |  |  |  |
| 34                                            | 334                                | 011                                | 679                                | 337                                | .93986                             | 626                                | 257                                |  |  |  |  |  |  |
| 35                                            | 162                                | .94832                             | 494                                | 146                                | 790                                | 425                                | 051                                |  |  |  |  |  |  |
| 36                                            | .94986                             | 650                                | 306                                | •93952                             | 591                                | 221                                | .92843                             |  |  |  |  |  |  |
| 37                                            | 805                                | 464                                | 114                                | 756                                | 390                                | 016                                | 634                                |  |  |  |  |  |  |
| 38                                            | 620                                | 273                                | .93919                             | 556                                | 186                                | .92808                             | 422                                |  |  |  |  |  |  |
| 39                                            | 431                                | 079                                | 720                                | 353                                | •92979                             | 597                                | 208                                |  |  |  |  |  |  |
| 40                                            | 238                                | .93882                             | 518                                | 148                                | 770                                | 385                                | .91992                             |  |  |  |  |  |  |
| 41                                            | 042                                | 682                                | 314                                | .92940                             | 558                                | 170                                | 774                                |  |  |  |  |  |  |
| 42                                            | .93842                             | 478                                | 107                                | 729                                | 344                                | .91952                             | 554                                |  |  |  |  |  |  |
| 43                                            | 639                                | 271                                | .92897                             | 516                                | 128                                | 733                                | 332                                |  |  |  |  |  |  |
| 44                                            | 433                                | 062                                | 685                                | 301                                | .91910                             | 513                                | 108                                |  |  |  |  |  |  |
| 45                                            | 226                                | .92852                             | 472                                | 085                                | 692                                | 291                                | .90884                             |  |  |  |  |  |  |
| 46                                            | 017                                | 640                                | 257                                | .91868                             | 472                                | 069                                | 660                                |  |  |  |  |  |  |
| 47                                            | .92806                             | 426                                | 041                                | 649                                | 250                                | .90845                             | 434                                |  |  |  |  |  |  |
| 48                                            | 593                                | 211                                | .91823                             | 429                                | 028                                | 621                                | 207                                |  |  |  |  |  |  |
| 49                                            | 379                                | .91995                             | 604                                | 208                                | .90805                             | 396                                | .89979                             |  |  |  |  |  |  |
| 50                                            | 162                                | 776                                | 384                                | .90985                             | 580                                | 168                                | 750                                |  |  |  |  |  |  |

# DENSITY OF MIXTURES OF ETHYL ALCOHOL AND WATER IN CRAMS PER MILLILITER.

|                                              |                                         |                                       |                                    | Tamporatus                            |                                    |                                       |                                         |
|----------------------------------------------|-----------------------------------------|---------------------------------------|------------------------------------|---------------------------------------|------------------------------------|---------------------------------------|-----------------------------------------|
| Per cent<br>C <sub>2</sub> H <sub>5</sub> OH |                                         |                                       | 1                                  | Temperature.                          |                                    | ı                                     |                                         |
| by weight                                    | 100 С.                                  | 15° C.                                | 20° C.                             | 25° C.                                | 30° C.                             | 35° C.                                | 40° C.                                  |
| 50                                           | 0.92162                                 | 0.91776                               | 0.91384                            | 0.90985                               | 0.90580                            | 0.90168                               | 0.89750                                 |
| 51                                           | .91943                                  | 555                                   | 160                                | 760                                   | 353                                | .89940                                | 519                                     |
| 52                                           | 723                                     | 333                                   | .90936                             | 534                                   | 125                                | 710                                   | 288                                     |
| 53                                           | 502                                     | 110                                   | 711                                | 307                                   | .89896                             | 479                                   | 056                                     |
| 54                                           | 279                                     | .90885                                | 485                                | 079                                   | 667                                | 248                                   | .88823                                  |
| 55                                           | 055                                     | 659                                   | 258                                | .89850                                | 437                                | . 016                                 | 589                                     |
| 56                                           | .90831                                  | 433                                   | 031                                | 621                                   | 206                                | .88784                                | 356                                     |
| 57                                           | 607                                     | 207                                   | .89803                             | 392                                   | .88975                             | 552                                   | 122                                     |
| 58                                           | 381                                     | .89980                                | 574                                | 162                                   | 744                                | 319                                   | .87888                                  |
| 59                                           | 154                                     | 752                                   | 344                                | .88931                                | 512                                | 085                                   | 653                                     |
| 60<br>61<br>62<br>. 63<br>64                 | .89927<br>698<br>468<br>237<br>006      | 523<br>293<br>062<br>.88830<br>597    | .88882<br>650<br>417<br>183        | 699<br>466<br>233<br>.87998<br>763    | 278<br>044<br>.87809<br>574<br>337 | .87851<br>615<br>379<br>142<br>.86905 | 417<br>180<br>.86943<br>705<br>466      |
| 65<br>66<br>67<br>68<br>69                   | .88774 .<br>541<br>308<br>074<br>.87839 | 364<br>130<br>.87895<br>660<br>424    | .87948<br>713<br>477<br>241<br>004 | 527<br>291<br>054<br>.86817<br>579    | .86863<br>625<br>387<br>148        | 667<br>429<br>190<br>.85950<br>710    | .8 <b>5</b> 987<br>.747<br>.507<br>.266 |
| 70                                           | 602                                     | 187                                   | .86766                             | 340                                   | .85908                             | 470                                   | . 84783                                 |
| 71                                           | 365                                     | .86949                                | 527                                | 100                                   | 667                                | 228                                   | .84783                                  |
| 72                                           | 127                                     | 710                                   | 287                                | .85859                                | 426                                | .84986                                | . 540                                   |
| 73                                           | .86888                                  | 470                                   | 047                                | 618                                   | 184                                | 743                                   | . 297                                   |
| 74                                           | 648                                     | 229                                   | .85806                             | 376                                   | .84941                             | 500                                   | . 053                                   |
| 75                                           | 408                                     | .85988                                | 564                                | 134                                   | 698                                | 257                                   | .83809                                  |
| 76                                           | 168                                     | 747                                   | 322                                | .84891                                | 455                                | 013                                   | 564                                     |
| 77                                           | .85927                                  | 505                                   | 079                                | 647                                   | 211                                | .83768                                | 319                                     |
| 78                                           | 685                                     | 262                                   | .84835                             | 403                                   | .83966                             | 523                                   | 074                                     |
| 79                                           | 442                                     | 018                                   | 590                                | 158                                   | 720                                | 277                                   | .82827                                  |
| 80                                           | 197                                     | .84772                                | 344                                | .83911                                | 473                                | 029                                   | 578                                     |
| 81                                           | .84950                                  | 525                                   | 096                                | 664                                   | 224                                | .82780                                | 329                                     |
| 82                                           | 702                                     | 277                                   | .83848                             | 415                                   | .82974                             | 530                                   | 079                                     |
| 83                                           | 453                                     | 028                                   | 599                                | 164                                   | 724                                | 279                                   | .81828                                  |
| 84                                           | 203                                     | .83777                                | 348                                | .82913                                | 473                                | 027                                   | 576                                     |
| 85                                           | .83951                                  | 525                                   | 095                                | 660                                   | 220                                | .81774                                | 322                                     |
| 86                                           | 697                                     | 271                                   | .82840                             | 405                                   | .81965                             | 519                                   | 067                                     |
| 87                                           | 441                                     | 014                                   | 583                                | 148                                   | 708                                | 262                                   | .80811                                  |
| 88                                           | 181                                     | .82754                                | 323                                | .81888                                | 448                                | 003                                   | 552                                     |
| 89                                           | .82919                                  | 492                                   | 062                                | 626                                   | 186                                | .80742                                | 291                                     |
| 90                                           | 654                                     | .81959                                | .81797                             | 362                                   | .80922                             | 478                                   | 028                                     |
| 91                                           | 386                                     | .81959                                | 529                                | 094                                   | 655                                | 211                                   | .79761                                  |
| 92                                           | 114                                     | .688                                  | 257                                | .80823                                | 384                                | .79941                                | 491                                     |
| 93                                           | .81839                                  | .413                                  | .80983                             | 549                                   | 111                                | 669                                   | 220                                     |
| 94                                           | 561                                     | .134                                  | 705                                | 272                                   | .79835                             | 393                                   | .78947                                  |
| 95<br>96<br>97<br>98<br>99                   | 278<br>.So991<br>698<br>399<br>094      | .80852<br>566<br>274<br>•79975<br>670 | 424<br>138<br>.79846<br>547<br>243 | .79991<br>706<br>415<br>117<br>.78814 | 555<br>271<br>.78981<br>684<br>382 | .78831<br>542<br>247<br>.77946        | 670<br>388<br>100<br>.77806<br>507      |
| 100                                          | .79784                                  | 360                                   | .78934                             | 506                                   | 075                                | 641                                   | 203                                     |

# DENSITIES OF AQUEOUS MIXTURES OF METHYL ALCOHOL, CANE SUGAR, OR SULPHURIC ACID.

| Per cent<br>by weight<br>of<br>substance. | Methyl<br>Alcohol.<br>D 150/40 C.              | Cane<br>Sugar.<br>200                                    | Sulphuric<br>Acid.<br>D $\frac{20^{\circ}}{4^{\circ}}$ C. | Per cent<br>by weight<br>of<br>substance. | Methyl<br>Alcohol.<br>D 15° C.                 | Cane<br>Sugar.<br>200                                    | Sulphuric<br>Acid.<br>D 200 C.                      |
|-------------------------------------------|------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|
| 0                                         | 0.99913                                        | 0.998234                                                 | 0.99823                                                   | 50                                        | 0.91852                                        | 1.229567                                                 | 1.39505                                             |
| 1                                         | .99727                                         | 1.002120                                                 | 1.00506                                                   | 51                                        | .91653                                         | 1.235085                                                 | 1.40487                                             |
| 2                                         | .99543                                         | 1.006015                                                 | 1.01178                                                   | 52                                        | .91451                                         | 1.240641                                                 | 1.41481                                             |
| 3                                         | .99370                                         | 1.009934                                                 | 1.01839                                                   | 53                                        | .91248                                         | 1.246234                                                 | 1.42487                                             |
| 4                                         | .99198                                         | 1.013881                                                 | 1.02500                                                   | 54                                        | .91044                                         | 1.251866                                                 | 1.43503                                             |
| 5                                         | .99029                                         | 1.017854                                                 | 1.03168                                                   | 55                                        | .90839                                         | 1.257535                                                 | 1.44530                                             |
| 6                                         | .98864                                         | 1.021855                                                 | 1.03843                                                   | 56                                        | .90631                                         | 1.263243                                                 | 1.45568                                             |
| 7                                         | .98701                                         | 1.025885                                                 | 1.04527                                                   | 57                                        | .90421                                         | 1.268989                                                 | 1.46615                                             |
| 8                                         | .98547                                         | 1.029942                                                 | 1.05216                                                   | 58                                        | .90210                                         | 1.274774                                                 | 1.47673                                             |
| 9                                         | .98394                                         | 1.034029                                                 | 1.05909                                                   | 59                                        | .89996                                         | 1.280595                                                 | 1.48740                                             |
| 10                                        | .98241                                         | 1.038143                                                 | 1.06609                                                   | 60                                        | .89781                                         | 1.286456                                                 | 1.49818                                             |
| 11                                        | .98093                                         | 1.042288                                                 | 1.07314                                                   | 61                                        | .89563                                         | 1.292354                                                 | 1.50904                                             |
| 12                                        | .97945                                         | 1.046462                                                 | 1.08026                                                   | 62                                        | .89341                                         | 1.298291                                                 | 1.51999                                             |
| 13                                        | .97802                                         | 1.050665                                                 | 1.08744                                                   | 63                                        | .89117                                         | 1.304267                                                 | 1.53102                                             |
| 14                                        | .97660                                         | 1.054900                                                 | 1.09468                                                   | 64                                        | .88890                                         | 1.310282                                                 | 1.54213                                             |
| 15<br>16<br>17<br>18                      | .97518<br>.97377<br>.97237<br>.97096           | 1.059165<br>1.063460<br>1.067789<br>1.072147<br>1.076537 | 1.10199<br>1.10936<br>1.11679<br>1.12428<br>1.13183       | 65<br>66<br>67<br>68<br>69                | .88662<br>.88433<br>.88203<br>.87971<br>.87739 | 1.316334<br>1.322425<br>1.328554<br>1.334722<br>1.340928 | 1.55333<br>1.56460<br>1.57595<br>1.58739<br>1.59890 |
| 20                                        | .96814                                         | 1.080959                                                 | 1.13943                                                   | 70                                        | .87507                                         | 1.347174                                                 | 1.61048                                             |
| 21                                        | .96673                                         | 1.085414                                                 | 1.14709                                                   | 71                                        | .87271                                         | 1.353456                                                 | 1.62213                                             |
| 22                                        | .96533                                         | 1.089900                                                 | 1.15480                                                   | 72                                        | .87033                                         | 1.359778                                                 | 1.63384                                             |
| 23                                        | .96392                                         | 1.094420                                                 | 1.16258                                                   | 73                                        | .86792                                         | 1.366139                                                 | 1.64560                                             |
| 24                                        | .96251                                         | 1.098971                                                 | 1.17041                                                   | 74                                        | .86546                                         | 1.372536                                                 | 1.65738                                             |
| 25 · 26 · 27 · 28 · 29                    | .96108<br>.95963<br>.95817<br>.95668           | 1.103557<br>1.108175<br>1.112828<br>1.117512<br>1.122231 | 1.17830<br>1.18624<br>1.19423<br>1.20227<br>1.21036       | 75<br>76<br>77<br>78<br>79                | .86300<br>.86051<br>.85801<br>.85551<br>.85300 | 1.378971<br>1.385446<br>1.391956<br>1.398505<br>1.405091 | 1.66917<br>1.68095<br>1.69268<br>1.70433<br>1.71585 |
| 30<br>31<br>32<br>33<br>34                | .95366<br>.95213<br>.95056<br>.94896           | 1.126984<br>1.131773<br>1.136596                         | 1.21850<br>1.22669<br>1.23492<br>1.24320<br>1.25154       | 80<br>81<br>82<br>83<br>84                | .85048<br>.84794<br>.84536<br>.84274<br>.84009 | 1.411715<br>1.418374<br>1.425072<br>1.431807<br>1.438579 | 1.72717<br>1.73827<br>1.74904<br>1.75943<br>1.76932 |
| 35                                        | .94570                                         | 1.151275                                                 | 1.25992                                                   | 85                                        | .83742                                         | 1.445388                                                 | 1.77860                                             |
| 36                                        | .94404                                         | 1.156238                                                 | 1.26836                                                   | 86                                        | .83475                                         | 1.452232                                                 | 1.78721                                             |
| 37                                        | .94237                                         | 1.161236                                                 | 1.27685                                                   | 87                                        | .83207                                         | 1.459114                                                 | 1.79509                                             |
| 38                                        | .94067                                         | 1.166269                                                 | 1.28543                                                   | 88                                        | .82937                                         | 1.466032                                                 | 1.80223                                             |
| 39                                        | .93894                                         | 1.171340                                                 | 1.29407                                                   | 89                                        | .82667                                         | 1.472986                                                 | 1.80864                                             |
| 40                                        | .93720                                         | 1.176447                                                 | 1.30278                                                   | 90                                        | .82396                                         | 1.479976                                                 | 1.81438                                             |
| 41                                        | .93543                                         | 1.181592                                                 | 1.31157                                                   | 91                                        | .82124                                         | 1.487002                                                 | 1.81950                                             |
| 42                                        | .93365                                         | 1.186773                                                 | 1.32043                                                   | 92                                        | .81849                                         | 1.494063                                                 | 1.82401                                             |
| 43                                        | .93185                                         | 1.191993                                                 | 1.32938                                                   | 93                                        | .81568                                         | 1.501158                                                 | 1.82790                                             |
| 44                                        | .93001                                         | 1.197247                                                 | 1.33843                                                   | 94                                        | .81285                                         | 1.508289                                                 | 1.83115                                             |
| 45<br>46<br>47<br>48<br>49                | .92815<br>.92627<br>.92436<br>.92242<br>.92048 | 1.202540<br>1.207870<br>1.213238<br>1.218643<br>1.224086 | 1.34759<br>1.35686<br>1.36625<br>1.37574<br>1.38533       | 95<br>96<br>97<br>98                      | .80999<br>.80713<br>.80428<br>.80143<br>.79859 | 1.515455<br>1.522656<br>1.529891<br>1.537161<br>1.544462 | 1.83368<br>1.83548<br>1.83637<br>1.83605            |
| 50                                        | .91852                                         | 1.229567                                                 | 1.39505                                                   | 100                                       | -79577                                         | 1.551800                                                 |                                                     |

 Calculated from the specific gravity determinations of Doroschevski and Rozhdestvenski at 15°/15° C.; J. Russ., Phys. Chem. Soc., 41, p. 977, 1909.
 According to Dr. F. Plato; Wiss. Abh. der K. Normal-Eichungs-Kommission, 2, p. 153, 1900.
 Calculated from Dr. Domke's table; Wiss. Abh. der K. Normal-Eichungs-Kommission, 5, p. 131, 1900.

#### DENSITY OF GASES

The following table gives the density as the weight in grams of a liter (normal liter) of the gas at 0° C, 76 cm pressure and standard gravity (sea-level, 45° latitude), the specific gravity referred to dry, carbon-dioxide-free air and to pure oxygen, and the weight in pounds per cubic foot. Dry, carbon-dioxide-free air is of remarkably uniform density; Guye, Kovacs and Wourtzel found maximum variations in the density of only 7 to 8 parts in 10,000. For highest accuracy pure oxygen should be used as the standard gas for specific gravities. Observed densities are closely proportional to the molecular weights.

| Gas.                                                     | Formula.                                                                                                                                                                                                                                                                                                                                         | Weight of<br>normal<br>liter in                                                                                                                                                                                                  | Specific                                                                                                                                                      | gravity.                                                                                                                                                      | Pounds per cubic foot.                                                                                                                                                               | Refer.                                                                                        |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                                                          |                                                                                                                                                                                                                                                                                                                                                  | grams.                                                                                                                                                                                                                           | Air = r                                                                                                                                                       | O <sub>2</sub> = I                                                                                                                                            | cubic foot.                                                                                                                                                                          |                                                                                               |
| Air                                                      | C <sub>2</sub> H <sub>2</sub> NH <sub>3</sub> A Br <sub>2</sub> C <sub>4</sub> H <sub>10</sub> CO <sub>2</sub> CO Cl <sub>2</sub> — C <sub>2</sub> N <sub>2</sub> C <sub>5</sub> H <sub>6</sub> C <sub>2</sub> H <sub>4</sub> F <sub>2</sub> He HBr HCl HF H <sub>2</sub> H <sub>2</sub> S Kr CH <sub>3</sub> Cl C <sub>4</sub> H <sub>6</sub> O | 1.2930<br>1.1791<br>0.7708<br>1.7809<br>7.14<br>2.594<br>1.9768<br>1.2504<br>3.221<br>0.41 to<br>0.96<br>2.323<br>1.3562<br>1.2609<br>1.70<br>0.1785<br>3.616<br>1.6398<br>0.922<br>0.08987<br>1.538<br>3.708<br>0.7168<br>2.304 | 1.0000 0.9119 0.5961 1.3773 5.52 2.006 1.5289 0.9671 2.491 { 0.32 to 0.74 1.797 1.0489 0.9752 1.31 0.1381 2.797 1.2682 0.713 0.06950 1.189 2.868 0.5544 1.782 | 0.9048 0.8251 0.5394 1.2462 5.00 1.815 1.3833 0.8750 2.254 { 0.29 to 0.67 1.626 0.9490 0.8823 1.19 0.1249 2.530 1.1475 0.645 0.06289 1.076 2.595 0.5016 1.612 | 0.08072 0.07361 0.04812 0.11118 0.446 0.1619 0.12341 0.07806 0.2011 \[ \cdot 0.060 0.1450 0.08467 0.07872 0.106 0.01115 0.2257 0.10237 0.0576 0.005610 0.09602 0.2315 0.04475 0.1438 | 1 2 3 3 4 4 4 3 3 3 3 — 4 5 2 6 6 14 4 4 3 8 9 3 7 7 5 10 10 10 10 10 10 10 10 10 10 10 10 10 |
| Methyl ether                                             | $egin{array}{c} Ne \ N_2 \ NO \ N_2O \end{array}$                                                                                                                                                                                                                                                                                                | 2.110<br>0.9002<br>1.2507<br>1.3402<br>1.9777                                                                                                                                                                                    | 1.632<br>0.6962<br>0.9673<br>1.0365<br>1.5296                                                                                                                 | 1.477<br>0.6299<br>0.8752<br>0.9378<br>1.3839                                                                                                                 | 0.1317<br>0.05620<br>0.07808<br>0.08367<br>0.12347                                                                                                                                   | 7<br>3<br>3<br>3                                                                              |
| Oxygen. Propane Steam at 100° C. Sulphur dioxide. Xenon. | O <sub>2</sub> . C <sub>3</sub> H <sub>8</sub> H <sub>2</sub> O SO <sub>2</sub>                                                                                                                                                                                                                                                                  | 1.42905<br>2.0196<br>0.598<br>2.9266<br>5.851                                                                                                                                                                                    | 1.1052<br>1.5620<br>0.462<br>2.2634<br>4.525                                                                                                                  | 1.0000<br>1.4132<br>0.418<br>2.0479<br>4.094                                                                                                                  | 0.089214<br>0.12608<br>0.0373<br>0.18270<br>0.3653                                                                                                                                   | 11<br>12<br>13<br>3<br>7                                                                      |

References: (1) Guye, Kovacs, Wourtzel, Jour. chim. phys., 10, p. 332, 1912; (2) Stahrfoss, Arch. Sc. phys. et nat., IV, 28, p. 384, 1909; (3) Guye, Jour. chim. phys., 5, p. 203, 1907 (contains review of best determinations and indicates most probable values); (4) Computed; (5) Baume and Perrot, Jour. chim. phys., 7, p. 369, 1909; (6) Moissan, C. R., 138, 1904; (7) Watson, Jour. Chem. Soc., 97, p. 833, 1910; (8) Thorpe, Hambley, Jour. Chem. Soc., 53, p. 765, 1888; (9) Morley, Smithsonian Contributions to Knowledge, 1895; (10) Baume, Jour. chim. phys., 6, p. 1, 1908; (11) Germann, Jour. of Phys. Chem., 19, p. 437, 1915; (12) Timmermans, C. R., 158, p. 789, 1914; (13) Peabody's Steam Tables, 1909; (14) Taylor, Phys. Rev., 10, p. 653, 1917.

#### TABLE 112.

## VOLUME OF CASES.

#### Values of 1 + .00367 t.

The quantity t + .00367 t gives for a gas the volume at  $t^0$  when the pressure is kept constant, or the pressure at  $t^0$  when the volume is kept constant, in terms of the volume or the pressure at  $0^0$ .

(a) This part of the table gives the values of t + .00367t for values of t between o<sup>0</sup> and  $to^{\circ}$  C. by tenths of a degree.

(b) This part gives the values of 1+.00367 t for values of t between -90° and +1990°.
C. by 10° steps.

These two parts serve to give any intermediate value to one tenth of a degree by a simple computation as follows:—In the (b) table find the number corresponding to the nearest lower temperature, and to this number add the decimal part of the number in the (a) table which corresponds to the difference between the nearest temperature in the (b) table and the actual temperature. For example, let the temperature be  $682^{\circ}$ , 2:

- (c) This part gives the logarithms of 1+.00367 t for values of t between -49° and +399° C. by degrees.
- (d) This part gives the logarithms of t + .00367t for values of t between 400° and 1990° C. by 10° steps.

# (a) Values of $1+.00367\,t$ for Values of t between $0^\circ$ and $10^\circ$ C. by Tenths of a Degree.

|    | t                     | 0.0                                                       | 0.1                                                                 | 0.2                                                                 | 0.3                                                                | 0.4                                                                 |
|----|-----------------------|-----------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|
|    | 0                     | 1.00000                                                   | 1.00037                                                             | 1.00073                                                             | 1.00110                                                            | 1.00147                                                             |
|    | ī                     | .00367                                                    | .00404                                                              | .00440                                                              | .00477                                                             | .00514                                                              |
| 11 | 2                     | .00734                                                    | .00771                                                              | .00807                                                              | .00844                                                             | .00881                                                              |
| 1  | 3                     | .01101                                                    | .01138                                                              | .01174                                                              | .01211                                                             | .01248                                                              |
| 1  | 4                     | .01468                                                    | .01 505                                                             | .01541                                                              | .01578                                                             | .01615                                                              |
|    | 5                     | 1.01835                                                   | 1.01872                                                             | 1.01908                                                             | 1.01945                                                            | 1.01982                                                             |
|    | 6                     | .02202                                                    | .02239                                                              | .02275                                                              | .02312                                                             | .02349                                                              |
|    | 7 8                   | .02569                                                    | .02606                                                              | .02642                                                              | .02679                                                             | .02716                                                              |
|    |                       | .02936                                                    | .02973                                                              | .03009                                                              | .03046                                                             | .03083                                                              |
|    | 9                     | .03303                                                    | .03340                                                              | .03376                                                              | .03413                                                             | .03450                                                              |
|    | t                     | 0.5                                                       | 0.6                                                                 | 0.7                                                                 | 0.8                                                                | 0.9                                                                 |
| 1  |                       |                                                           |                                                                     |                                                                     |                                                                    |                                                                     |
|    |                       |                                                           |                                                                     |                                                                     |                                                                    |                                                                     |
|    | 0                     | 1.00184                                                   | 1.00220                                                             | 1.00257                                                             | 1.00204                                                            | 1.00330                                                             |
|    | 0                     | 1.00184                                                   | 1.00220                                                             | 1.00257                                                             | 1.00294                                                            | 1.00330                                                             |
|    | I<br>2                | .00550                                                    | .00587                                                              | .00624                                                              |                                                                    | 1.00330<br>.00697<br>.01064                                         |
|    | 1<br>2<br>3           | .00550<br>.00918<br>.01284                                | .00587                                                              | .00624<br>.00991<br>.01358                                          | .00661<br>01028<br>.01395                                          | .00697<br>.01064<br>.01431                                          |
|    | I<br>2                | .00550                                                    | .00587                                                              | .00624                                                              | .00661                                                             | .00697                                                              |
|    | 1<br>2<br>3<br>4      | .00550<br>.00918<br>.01284<br>.01652                      | .00587                                                              | .00624<br>.00991<br>.01358                                          | .00661<br>01028<br>.01395                                          | .00697<br>.01064<br>.01431                                          |
|    | 1<br>2<br>3<br>4<br>5 | .00550<br>.00918<br>.01284<br>.01652<br>1.02018<br>.02386 | .00587<br>.00954<br>.01321<br>.01688                                | .00624<br>.00991<br>.01358<br>.01725                                | .00661<br>01028<br>.01395<br>.01762<br>1.02129                     | .00697<br>.01064<br>.01431<br>.01798                                |
|    | 1<br>2<br>3<br>4<br>5 | .00550<br>.00918<br>.01284<br>.01652<br>1.02018<br>.02386 | .00587<br>.00954<br>.01321<br>.01688<br>1.02055<br>.02422<br>.02789 | .00624<br>.00991<br>.01358<br>.01725<br>1.02092<br>.02459<br>.02826 | .00661<br>01028<br>.01395<br>.01762<br>1.02129<br>.02496<br>.02863 | .00697<br>.01064<br>.01431<br>.01798<br>1.02165<br>.02532<br>.02899 |
|    | 1<br>2<br>3<br>4      | .00550<br>.00918<br>.01284<br>.01652<br>1.02018<br>.02386 | .00587<br>.00954<br>.01321<br>.01688                                | .00624<br>.00991<br>.01358<br>.01725                                | .00661<br>01028<br>.01395<br>.01762<br>1.02129                     | .00697<br>.01064<br>.01431<br>.01798                                |

(b) Values of  $1+.00367\,t$  for Values of t between  $-\,90^{\circ}$  and  $+\,1990^{\circ}$  O. by  $10^{\circ}$  Steps.

| T  |                                                                                      |                                                                                                                                                     |                                                                                                                                                                             | -                                                                                                                                                                                                 |                                                                                                                                                                     |                                                                                                                                                                      |
|----|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| l  | t                                                                                    | 00                                                                                                                                                  | 10                                                                                                                                                                          | 20                                                                                                                                                                                                | 30                                                                                                                                                                  | 40                                                                                                                                                                   |
| l  | 000                                                                                  | 1.00000                                                                                                                                             | 0.96330                                                                                                                                                                     | 0.92660                                                                                                                                                                                           | 0.88990                                                                                                                                                             | 0.85320                                                                                                                                                              |
| II | +000                                                                                 | 1.00000                                                                                                                                             | 1.03670                                                                                                                                                                     | 1.07340                                                                                                                                                                                           | 1.11010                                                                                                                                                             | 1.14680                                                                                                                                                              |
| Ш  | 100                                                                                  | 1.36700                                                                                                                                             | 1.40370                                                                                                                                                                     | 1.44040                                                                                                                                                                                           | 1.47710                                                                                                                                                             | 1.51380<br>1.88080                                                                                                                                                   |
| Н  | 200                                                                                  | 1.73400                                                                                                                                             | 1.77070                                                                                                                                                                     | 1.80740                                                                                                                                                                                           | 1.84410                                                                                                                                                             | 1.88080                                                                                                                                                              |
| Н  | 300                                                                                  | 2.10100                                                                                                                                             | 2.13770                                                                                                                                                                     | 2.17440                                                                                                                                                                                           | 2.21110                                                                                                                                                             | 2.24780                                                                                                                                                              |
| I  | 400                                                                                  | 2,46800                                                                                                                                             | 2.50470                                                                                                                                                                     | 2.54140                                                                                                                                                                                           | 2.57810                                                                                                                                                             | 2.61480                                                                                                                                                              |
| Н  | 500                                                                                  | 2.83500                                                                                                                                             | 2.87170                                                                                                                                                                     | 2.90840                                                                                                                                                                                           | 2.94510                                                                                                                                                             | 2.98180                                                                                                                                                              |
| Н  | 600                                                                                  | 3.20200                                                                                                                                             | 3.23870                                                                                                                                                                     | 3.27540                                                                                                                                                                                           | 3.31210                                                                                                                                                             | 3.34880                                                                                                                                                              |
| Н  | 700<br>800                                                                           | 3.56900                                                                                                                                             | 3.60570                                                                                                                                                                     | 3.64240                                                                                                                                                                                           | 3.67910                                                                                                                                                             | 3.71580                                                                                                                                                              |
| Ш  |                                                                                      | 3.93600                                                                                                                                             | 3.97270                                                                                                                                                                     | 4.00940                                                                                                                                                                                           | 4.04610                                                                                                                                                             | 4.08280                                                                                                                                                              |
| I  | 900                                                                                  | 4.30300                                                                                                                                             | 4.33970                                                                                                                                                                     | 4.37640                                                                                                                                                                                           | 4.41310                                                                                                                                                             | 4.44980                                                                                                                                                              |
| I  | 1000                                                                                 | 4.67000                                                                                                                                             | 4.70670                                                                                                                                                                     | 4.74340                                                                                                                                                                                           | 4.78010                                                                                                                                                             | 4.81680                                                                                                                                                              |
| Ш  | 1100                                                                                 | 5.03700                                                                                                                                             | 5.07370                                                                                                                                                                     | 5.11040                                                                                                                                                                                           | 5.14710                                                                                                                                                             | 5.18380                                                                                                                                                              |
| П  | 1200                                                                                 | 5.40400                                                                                                                                             | 5.44070                                                                                                                                                                     | 5.47740                                                                                                                                                                                           | 5.51410                                                                                                                                                             | 5.55080                                                                                                                                                              |
| Н  | 1 300                                                                                | 5.77100                                                                                                                                             | 5.80770                                                                                                                                                                     | 5.84440                                                                                                                                                                                           | 5.51410                                                                                                                                                             | 5.91780                                                                                                                                                              |
| ł  | 1400                                                                                 | 6.13800                                                                                                                                             | 6.17470                                                                                                                                                                     | 6.21140                                                                                                                                                                                           | 6.24810                                                                                                                                                             | 6.28480                                                                                                                                                              |
| 1  | 1500                                                                                 | 6.50500                                                                                                                                             | 6.54170                                                                                                                                                                     | 6.57840                                                                                                                                                                                           | 6.61510                                                                                                                                                             | 6.65180                                                                                                                                                              |
| Ш  | 1600                                                                                 | 6.87200                                                                                                                                             | 6.90870                                                                                                                                                                     | 6.94540                                                                                                                                                                                           | 6.98210                                                                                                                                                             | 7.01880                                                                                                                                                              |
| п  | 1700                                                                                 | 7.23900                                                                                                                                             | 7.27570                                                                                                                                                                     | 7.21240                                                                                                                                                                                           | 7.34910                                                                                                                                                             | 7.38580                                                                                                                                                              |
| ı  | 1800                                                                                 | 7.60600                                                                                                                                             | 7.64270                                                                                                                                                                     | 7.31240<br>7.67940                                                                                                                                                                                | 7.71610                                                                                                                                                             | 7.75280                                                                                                                                                              |
| ı  | 1900                                                                                 | 7.97300                                                                                                                                             | 7.64270<br>8.00970                                                                                                                                                          | 8.04640                                                                                                                                                                                           | 7.71610<br>8.08310                                                                                                                                                  | 8.11980                                                                                                                                                              |
| ۱  | 2000                                                                                 | 8.34000                                                                                                                                             | 8.37670                                                                                                                                                                     | 8.41340                                                                                                                                                                                           | 8.45010                                                                                                                                                             | 8.48680                                                                                                                                                              |
| ш  |                                                                                      |                                                                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                      |
| ۱  | t                                                                                    | 50                                                                                                                                                  | 60                                                                                                                                                                          | 70                                                                                                                                                                                                | 80                                                                                                                                                                  | 90                                                                                                                                                                   |
|    |                                                                                      | o.81650                                                                                                                                             | 0.77980                                                                                                                                                                     | 0.74310                                                                                                                                                                                           | 0.70640                                                                                                                                                             | 90                                                                                                                                                                   |
|    | -000                                                                                 | 0.81650                                                                                                                                             | 0.77980                                                                                                                                                                     | 0.74310                                                                                                                                                                                           | 0.70640                                                                                                                                                             | 0.66970                                                                                                                                                              |
|    |                                                                                      | 0.81650                                                                                                                                             | 0.77980                                                                                                                                                                     | 0.74310                                                                                                                                                                                           |                                                                                                                                                                     | 0.66970                                                                                                                                                              |
|    | -000<br>+000                                                                         | 0.81650<br>1.18350<br>1.55050                                                                                                                       | 0.77980<br>1.22020<br>1.58720                                                                                                                                               | 0.74310<br>1.25690<br>1.62390                                                                                                                                                                     | 0.70640<br>1.29360<br>1.66060                                                                                                                                       | 0.66970                                                                                                                                                              |
|    | -000<br>+000<br>100<br>200                                                           | 0.81650<br>1.18350<br>1.55050<br>1.91750                                                                                                            | 0.77980<br>1.22020<br>1.58720<br>1.95420                                                                                                                                    | 0.74310<br>1.25690<br>1.62390<br>1.99090                                                                                                                                                          | 0.70640<br>1.29360<br>1.66060<br>2.02760                                                                                                                            | 0.66970<br>1.33030<br>1.69730<br>2.06430<br>2.43130                                                                                                                  |
|    | -000<br>+000                                                                         | 0.81650<br>1.18350<br>1.55050                                                                                                                       | 0.77980<br>1.22020<br>1.58720                                                                                                                                               | 0.74310<br>1.25690<br>1.62390                                                                                                                                                                     | 0.70640<br>1.29360<br>1.66060                                                                                                                                       | 0.66970<br>1.33030<br>1.69730                                                                                                                                        |
|    | -000<br>+000<br>100<br>200<br>300<br>400                                             | 0.81650<br>1.18350<br>1.55050<br>1.91750<br>2.28450<br>2.65150                                                                                      | 0.77980<br>1.22020<br>1.58720<br>1.95420<br>2.32120<br>2.68820                                                                                                              | 0.74310<br>1.25690<br>1.62390<br>1.99090<br>2.35790<br>2.72490                                                                                                                                    | 0.70640<br>1.29360<br>1.66060<br>2.02760<br>2.39460<br>2.76160                                                                                                      | 0.66970<br>1.33030<br>1.69730<br>2.06430<br>2.43130<br>2.79830                                                                                                       |
|    | -000<br>+000<br>100<br>200<br>300                                                    | 0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850                                                                                             | 0.77980<br>1.22020<br>1.58720<br>1.95420<br>2.32120<br>2.68820                                                                                                              | 0.74310<br>1.25690<br>1.62390<br>1.99090<br>2.35790<br>2.72490<br>3.09190                                                                                                                         | 0.70640<br>1.29360<br>1.66060<br>2.02760<br>2.39460<br>2.76160<br>3.12860<br>3.49560                                                                                | 0.66970<br>1.33030<br>1.69730<br>2.06430<br>2.43130<br>2.79830<br>3.16530                                                                                            |
|    | -000<br>+000<br>100<br>200<br>300<br>400<br>500<br>600                               | 0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550                                                                                     | 0.77980  1.22020 1.58720 1.95420 2.32120 2.68820  3.05520 3.42220                                                                                                           | 0.74310<br>1.25690<br>1.62390<br>1.99090<br>2.35790<br>2.72490<br>3.09190<br>3.45890                                                                                                              | 0.70640<br>1.29360<br>1.66060<br>2.02760<br>2.39460<br>2.76160<br>3.12860<br>3.49560                                                                                | 0.66970<br>1.33030<br>1.69730<br>2.06430<br>2.43130<br>2.79830<br>3.16530                                                                                            |
|    | -000<br>+000<br>100<br>200<br>300<br>400<br>500                                      | 0.81650<br>1.18350<br>1.55050<br>1.91750<br>2.28450<br>2.65150<br>3.01850<br>3.38550<br>3.75250                                                     | 0.77980<br>1.22020<br>1.58720<br>1.95420<br>2.32120<br>2.68820<br>3.05520<br>3.42220<br>3.78920                                                                             | 0.74310<br>1.25690<br>1.62390<br>1.99090<br>2.35790<br>2.72490<br>3.09190                                                                                                                         | 0.70640<br>1.29360<br>1.66060<br>2.02760<br>2.39460<br>2.76160<br>3.12860                                                                                           | 0.66970<br>1.33030<br>1.69730<br>2.06430<br>2.43130<br>2.79830                                                                                                       |
|    | -000<br>+000<br>100<br>200<br>300<br>400<br>500<br>600<br>700                        | 0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.38550                                                                                     | 0.77980  1.22020 1.58720 1.95420 2.32120 2.68820  3.05520 3.42220                                                                                                           | 0.74310<br>1.25690<br>1.62390<br>1.99090<br>2.35790<br>2.72490<br>3.09190<br>3.45890<br>3.82590                                                                                                   | 0.70640<br>1.29360<br>1.66060<br>2.02760<br>2.39460<br>2.76160<br>3.12860<br>3.49560<br>3.86260                                                                     | 0.66970  1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930                                                                                             |
|    | -000<br>+000<br>100<br>200<br>300<br>400<br>500<br>600<br>700<br>800                 | 0.81650<br>1.18350<br>1.55050<br>1.91750<br>2.28450<br>2.65150<br>3.01850<br>3.75250<br>4.11950<br>4.48650                                          | 0.77980  1.22020 1.58720 1.95420 2.32120 2.68820  3.05520 3.42220 3.78920 4.15620 4.52320                                                                                   | 0.74310<br>1.25690<br>1.62390<br>1.99090<br>2.35790<br>2.72490<br>3.09190<br>3.45890<br>3.82590<br>4.19290<br>4.55990                                                                             | 0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660                                                                                     | 0.66970<br>1.33030<br>1.69730<br>2.06430<br>2.43130<br>2.79830<br>3.16530<br>3.53230<br>3.89930<br>4.26630<br>4.63330                                                |
|    | -000<br>+000<br>100<br>200<br>300<br>400<br>500<br>600<br>700<br>800<br>900          | 0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650                                                                     | 0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.15620 4.52320 4.89020                                                                             | 0.74310<br>1.25690<br>1.62390<br>1.99090<br>2.35790<br>2.72490<br>3.09190<br>3.45890<br>3.82590<br>4.19290<br>4.92690                                                                             | 0.70640 1.29360 1.66060 2.02760 2.39460 2.76160 3.12860 3.49560 4.22960 4.59660                                                                                     | 0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930 4.26630 4.63330 5.00030                                                                    |
|    | -000 +000 100 200 300 400  500 600 700 800 900 1100                                  | 0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650                                                                     | 0.77980  1.22020 1.58720 1.95420 2.32120 2.68820  3.05520 3.78920 4.15620 4.52320  4.89020 5.25720                                                                          | 0.74310<br>1.25690<br>1.62390<br>1.99090<br>2.35790<br>2.72490<br>3.09190<br>3.45890<br>4.19290<br>4.19290<br>4.92690<br>5.29390                                                                  | 0.70640  1.29360 1.66060 2.02760 2.39460 2.76160  3.12860 3.49560 4.22960 4.59660  4.96360 5.33060                                                                  | 0.66970  1.33030 1.69730 2.06430 2.43130 2.79830 3.16530 3.53230 3.89930 4.26630 4.63330  5.00030 5.36730                                                            |
|    | -000 +000 100 200 300 400  500 600 700 800 900 11000 11000 11200                     | 0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650 4.85350 5.22050 5.58750                                             | 0.77980  1.22020 1.58720 1.95420 2.32120 2.68820  3.05520 3.42220 3.78920 4.15620 4.52320  4.89020 5.25720 5.62420                                                          | 0.74310<br>1.25690<br>1.62390<br>1.99090<br>2.35790<br>2.72490<br>3.09190<br>3.45890<br>3.82590<br>4.19290<br>4.92690<br>5.29390<br>5.66090                                                       | 0.70640  1.29360 1.66060 2.02760 2.39460 2.76160  3.12860 3.49560 3.86260 4.2960 4.59660  4.96360 5.33060 5.69760                                                   | 0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930 4.26630 4.63330 5.00030                                                                    |
|    | -000 +000 100 200 300 400  500 600 700 800 900 1100                                  | 0.81650 1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650                                                                     | 0.77980  1.22020 1.58720 1.95420 2.32120 2.68820  3.05520 3.78920 4.15620 4.52320  4.89020 5.25720                                                                          | 0.74310<br>1.25690<br>1.62390<br>1.99090<br>2.35790<br>2.72490<br>3.09190<br>3.45890<br>4.19290<br>4.19290<br>4.92690<br>5.29390                                                                  | 0.70640  1.29360 1.66060 2.02760 2.39460 2.76160  3.12860 3.49560 4.22960 4.59660  4.96360 5.33060                                                                  | 0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930 4.26630 4.63330  5.00030 5.36730 5.73430                                                   |
|    | -000 +000 100 200 300 400  500 600 700 800 900 1100 1200 1300 1400                   | 0.81650  1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650  4.85350 5.22050 5.58750 5.95450 6.32150                           | 0.77980  1.22020 1.58720 1.95420 2.32120 2.68820  3.05520 3.42220 3.78920 4.15620 4.52320  4.89020 5.25720 5.62420 5.99120 6.35820                                          | 0.74310  1.25690 1.62390 1.99090 2.35790 2.72490  3.09190 3.45890 4.19290 4.55990  4.92690 5.20390 5.66090 6.02790 6.39490                                                                        | 0.70640  1.29360 1.66060 2.02760 2.39460 2.76160  3.12860 3.49560 4.22960 4.59660  4.96360 5.33060 5.69760 6.06460 6.43160                                          | 0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930 4.26630 4.63330  5.00030 5.36730 5.73430 6.10130 6.46830                                   |
|    | -000 +000 100 200 300 400  500 600 700 800 900 1000 11200 1300 1400 1500             | 0.81650  1.18350 1.55050 1.91750 2.28450 2.65150  3.01850 3.38550 3.75250 4.11950 4.48650  4.85350 5.22050 5.58750 5.95450 6.32150                  | 0.77980  1.22020 1.58720 1.95420 2.32120 2.68820  3.05520 3.42220 3.78920 4.15620 4.52320  4.89020 5.25720 5.62420 5.99120 6.35820  6.72520                                 | 0.74310  1.25690 1.62390 1.99090 2.35790 2.72490  3.09190 3.45890 3.82590 4.19290 4.92690 5.29390 5.66090 6.02790 6.39490  6.76190                                                                | 0.70640  1.29360 1.66060 2.02760 2.39460 2.76160  3.12860 3.49360 3.86260 4.29660 4.59660  4.96360 5.33060 5.69760 6.06460 6.43160                                  | 0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930 4.26630 4.63330 5.00030 5.36730 5.73430 6.10130 6.46830 6.83530                            |
|    | -000 +000 100 200 300 400  500 600 700 800 900  1000 11200 1200 1300 1400  1500 1600 | 0.81650  1.18350 1.55050 1.91750 2.28450 2.65150  3.01850 3.38550 3.75250 4.11950 4.48650  4.85350 5.22050 5.58750 5.95450 6.32150  6.68850 7.05550 | 0.77980  1.22020 1.58720 1.95420 2.32120 2.68820  3.05520 3.42220 3.78920 4.15620 4.52320  4.89020 5.25720 5.62420 5.99120 6.35820  6.72520 7.09220                         | 0.74310<br>1.25690<br>1.62390<br>1.99090<br>2.35790<br>2.72490<br>3.09190<br>3.45890<br>4.19290<br>4.19290<br>4.92690<br>5.29390<br>5.66090<br>6.02790<br>6.39490<br>6.76190<br>7.12890           | 0.70640  1.29360 1.66060 2.02760 2.39460 2.76160  3.12860 3.49360 3.86260 4.29660 4.59660  4.96360 5.33060 5.69760 6.06460 6.43160                                  | 0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930 4.26630 4.63330  5.00030 5.36730 5.73430 6.10130 6.46830  6.83530 7.20230                  |
|    | -000 +000 100 200 300 400  500 600 700 800 900 1100 1200 1300 1400  1500 1600 1700   | 0.81650  1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650  4.85350 5.22050 5.58750 6.32150  6.68850 7.05550 7.42250          | 0.77980 1.22020 1.58720 1.95420 2.32120 2.68820 3.05520 3.42220 3.78920 4.1 5620 4.52320 4.89020 5.25720 5.62420 5.99120 6.35820 6.72520 7.09220 7.45920                    | 0.74310<br>1.25690<br>1.62390<br>1.99090<br>2.35790<br>2.72490<br>3.09190<br>3.45890<br>4.19290<br>4.55990<br>4.92690<br>5.29390<br>5.6090<br>6.02790<br>6.39490<br>6.76190<br>7.12890<br>7.49590 | 0.70640  1.29360 1.66060 2.02760 2.39460 2.76160  3.12860 3.49360 3.86260 4.29660 4.59660  4.96360 5.33060 5.69760 6.06460 6.43160                                  | 0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930 4.26630 4.63330  5.00030 5.36730 5.73430 6.10130 6.46830  6.83530 7.20230 7.56930          |
|    | -000 +000 100 200 300 400  500 600 700 800 900  1000 11200 1200 1300 1400  1500 1600 | 0.81650  1.18350 1.55050 1.91750 2.28450 2.65150  3.01850 3.38550 3.75250 4.11950 4.48650  4.85350 5.22050 5.58750 5.95450 6.32150  6.68850 7.05550 | 0.77980  1.22020 1.58720 1.95420 2.32120 2.68820  3.05520 3.42220 3.78920 4.15620 4.52320  4.89020 5.25720 5.62420 5.99120 6.35820  6.72520 7.09220                         | 0.74310<br>1.25690<br>1.62390<br>1.99090<br>2.35790<br>2.72490<br>3.09190<br>3.45890<br>4.19290<br>4.19290<br>4.92690<br>5.29390<br>5.66090<br>6.02790<br>6.39490<br>6.76190<br>7.12890           | 0.70640  1.29360 1.66060 2.02760 2.39460 2.76160  3.12860 3.49560 3.86260 4.22960 4.59660  4.96360 5.33060 5.69760 6.06460 6.43160                                  | 0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930 4.26630 4.63330  5.00030 5.36730 5.73430 6.10130 6.46830  6.83530 7.20230                  |
|    | -000 +000 100 200 300 400  500 600 700 800 1100 1200 1300 1400  1500 1600 1700 1800  | 0.81650  1.18350 1.55050 1.91750 2.28450 2.65150 3.01850 3.75250 4.11950 4.48650  4.85350 5.22050 5.58750 6.32150  6.68850 7.05550 7.42250          | 0.77980  1.22020 1.58720 1.95420 2.32120 2.68820  3.05520 3.42220 3.78920 4.15620 4.52320  4.89020 5.25720 5.62420 5.99120 6.35820  6.72520 7.45920 7.45920 7.45920 7.82620 | 0.74310  1.25690 1.62390 1.99090 2.35790 2.72490  3.09190 3.45890 4.19290 4.92690 5.20390 5.66090 6.02790 6.76190 7.12890 7.49590 7.49590 7.86290                                                 | 0.70640  1.29360 1.66060 2.02760 2.39460 2.76160  3.12860 3.49560 3.86260 4.22960 4.59660  4.96360 5.33060 5.33060 6.64406 6.43160  6.79860 7.16560 7.53260 7.89960 | 0.66970  1.33030 1.69730 2.06430 2.43130 2.79830  3.16530 3.53230 3.89930 4.26630 4.63330  5.00030 5.36730 5.73430 6.10130 6.46830  6.83530 7.20230 7.56930 7.993630 |

VOLUME OF

(c) Logarithms of 1+.00367t for Values

|            |                             |                    |                    |                    |          | 1                         |
|------------|-----------------------------|--------------------|--------------------|--------------------|----------|---------------------------|
| t          | 0                           | 1                  | 2                  | 3                  | 4        | Mean diff.<br>per degree. |
| -40        | 1.931051                    | 1.929179           | 1.927299           | 1.925410           | 1.923513 | 1884                      |
| - 30       | .949341                     | .947546            | 945744             | •943934            | .942117  | 1805                      |
| - 20       | .966892                     | .965169            | .963438            | .961701            | -959957  | 1733                      |
| -10        | .983762                     | .982104            | .980440            | .978769            | .977092  | 1667                      |
| -0         | 0.000000                    | .998403            | .996801            | .995192            | •993577  | 1605                      |
| +0         | 0.000000                    | 0.001591           | 0.003176           | 0.004755           | 0.006329 | 1582                      |
| 10         | .01 5653                    | .017188            | .018717            | .020241            | .021760  | 1526                      |
| 20         | .030762                     | .032244            | .033721            | .035193            | .036661  | 1474<br>1426              |
| 30<br>40   | .045362<br>.0 <b>5</b> 9488 | .060875            | .062259            | .063637            | .065012  | 1381                      |
| 50         | 0.073168                    | 0.074513           | 0.075853           | 0.077190           | 0.078522 | 1335                      |
| 60         | .086431                     | .087735            | .089036            | .000332            | .091624  | 1299                      |
| 70         | .099301                     | .100567            | .101829            | .103088            | .104344  | 1259                      |
| 80         | .111800                     | .113030            | .114257            | .115481            | .116701  | 1226                      |
| 90         | .123950                     | .125146            | .126339            | .1 27 529          | .128716  | 1191                      |
| 100        | 0.135768                    | 0.136933           | 0.138094           | 0.139252           | 0.140408 | 1158                      |
| 110        | .147274                     | .248408            | .149539            | .1 50667           | .151793  | 1129                      |
| 120        | .158483                     | .159588            | .160691            | .161790            | .162887  | 1101                      |
| 130        | .169410                     | .170488            | .171563            | .172635            | .173705  | 1074                      |
|            | .180003                     | .101120            | .102109            | .183216            | .184260  | 1048                      |
| 150        | 0.190472                    | 0.191498           | 0.192523           | 0.193545           | 0.194564 | 1023                      |
| 160        | .200632                     | .201635            | .202635            | .203634            | .204630  | 1000                      |
| 170        | .210559                     | .211540            | .212518            | 213494             | .214468  | 976                       |
| 190        | .220265                     | .221224            | .231633            | .223135            | .224087  | 956                       |
|            | 2.02                        |                    | .23.033            | .232307            | *233499  | 935                       |
| 200        | 0.239049                    | 0.239967           | 0.240884           | 0.241798           | 0.242710 | 916                       |
| 210<br>220 | .248145                     | .249044            | .249942            | .250837            | .251731  | 897                       |
| 230        | .257054                     | ·257935<br>·266648 | .258814            | .259692            | .260567  | 878                       |
| 240        | •274343                     | .275189            | .267510            | .268370            | .269228  | 861<br>844                |
|            |                             |                    |                    |                    | .277719  | 044                       |
| 250<br>260 | 0.282735                    | 0.283566           | 0.284395           | 0.285222           | 0.286048 | 828                       |
| 270        | .290969                     | .291784            | .292597            | .293409            | .294219  | 813                       |
| 280        | .306982                     | .307768            | .300648            | .301445            | .302240  | 798<br>784                |
| 290        | .314773                     | .31 5544           | 316314             | .309334            | .310115  | 769                       |
| 300        | 0.322426                    |                    |                    |                    |          |                           |
| 310        | •329947                     | 0.323184           | 0.323941           | 0.324696           | 0.325450 | 756                       |
| 320        | •329947                     | .338072            | •331435<br>•338803 | .332178            | .332919  | 743                       |
| 330        | .344608                     | •345329            | .346048            | ·339533<br>·346766 | .347482  | 730<br>719                |
| 340        | .351758                     | .352466            | -353174            | .353880            | -354585  | 707                       |
| 350        | 0.358791                    | 0.359488           | 0.360184           | 0.360879           | 0.361573 | 696                       |
| 360        | .365713                     | .366399            | .367084            | .367768            | .368451  | 684                       |
| 370        | -372525                     | .373201            | -373875            | -374549            | -37 5221 | 674                       |
| 380<br>390 | •379233<br>•385439          | 379898             | 380562             | .381225            | .381887  | 664                       |
| 390        | 393439                      | -386494            | .387148            | .387801            | .388453  | 654                       |
|            |                             |                    |                    |                    |          |                           |

CASES.

of t between  $-49^{\circ}$  and  $+399^{\circ}$  C. by Degrees.

| F          |          |          |          |          |          |                           |
|------------|----------|----------|----------|----------|----------|---------------------------|
| t          | 5        | 6        | 7        | 8        | 9        | Mean diff.<br>per degree. |
| -40        | 1.921608 | 7.919695 | Ī.917773 | T.915843 | Ī.913904 | 1926                      |
| - 30       | .940292  | .938460  | .936619  | •93477 I |          |                           |
| - 20       | .958205  | .956447  | .954681  | .952909  | .932915  | 1845                      |
| - 10       | .975409  | .973719  | .972022  | .970319  | .951129  | 1771                      |
| -0         | .991957  | .990330  | .988697  | .987058  | .985413  | 1699                      |
|            | .99195/  | .990330  | .900097  | .907050  | .905413  | 1030                      |
| +0         | 0.007897 | 0.009459 | 0.011016 | 0.012567 | 0.014113 | 1554                      |
| 10         | .023273  | .024781  | .026284  | .027782  | .029274  | 1 500                     |
| 20         | .038123  | .039581  | .041034  | .042481  | .043924  | 1450                      |
| 30         | .052482  | .053893  | .055298  | .056699  | .058096  | 1402                      |
| 40         | .066382  | .067748  | .069109  | .070466  | .071819  | 1359                      |
| 50         | 0.079847 | 0.081174 | 0.082495 | 0.083811 | 0.085123 | YOTE                      |
| 60         | .092914  | .094198  | .095486  | .096765  | .098031  | 1315                      |
| 70         | .105595  | .106843  | .108088  | .109329  | .110566  | 1243                      |
| 80         | .117917  | .119130  | .120340  | .121547  | .122750  | 1210                      |
| 90         | .129899  | .131079  | .132256  | .133430  | .134601  | 1175                      |
| 90         | 1129099  | .1310/9  |          | **33430  | .134001  | 11/3                      |
| 100        | 0.141559 | 0.142708 | 0.143854 | 0.144997 | 0.146137 | 1144                      |
| 110        | .1 52915 | .1 54034 | .155151  | .156264  | ·I 57375 | 1115                      |
| 120        | .163981  | .164072  | .166161  | .167246  | .168330  | 1087                      |
| 130        | .174772  | .175836  | .176898  | .177958  | .179014  | 1060                      |
| 140        | .185301  | .186340  | .187377  | .188411  | .189443  | 1035                      |
| 7.50       | 0        |          |          |          |          |                           |
| 150        | 0.195581 | 0.196596 | 0.197608 | 0.198619 | 0.199626 | 1011                      |
| 160        | .205624  | .206615  | .207605  | .208592  | .209577  | 988                       |
| 170        | .21 5439 | .216409  | .217376  | .218341  | .219304  | 966                       |
| 180        | .225038  | .225986  | .226932  | .227876  | .228819  | 946                       |
| 190        | .234429  | .235357  | .236283  | .237207  | .238129  | 925                       |
| 200        | 0.243621 | 0.244529 | 0.245436 | 0.246341 | 0.247244 | 906                       |
| 210        | .252623  | .253512  | .254400  | .255287  | .256172  | 887                       |
| 220        | .261441  | .262313  | .263184  | .264052  | .264919  | 870                       |
| 230        | .270085  | .270940  | .271793  | .272644  | .273494  | 853                       |
| 240        | .278559  | .279398  | .280234  | .281070  | .281903  | 853<br>836                |
| 050        |          | 0.6      | 00       | 0        |          | 900                       |
| 250        | 0.286872 | 0.287694 | 0.288515 | 0.289326 | 0.290153 | 820                       |
| 260        | .295028  | .295835  | .296640  | .297445  | .298248  | 805                       |
| 270<br>280 | .303034  | .303827  | .304618  | .305407  | .306196  | 790<br>776                |
|            | .310895  | .311673  | .312450  | .313226  | .314000  | 763                       |
| 290        | .318616  | .319381  | .320144  | .320906  | .32100/  | 703                       |
| 300        | 0.326203 | 0.326954 | 0.327704 | 0.328453 | 0.329201 | 750                       |
| 310        | .333659  | •334397  | -335135  | .335871  | .336606  | 737                       |
| 320        | .340989  | -341715  | -34244I  | .343164  | -343887  | 724                       |
| 330        | .348198  | .348912  | .349624  | -350337  | .351048  | 713                       |
| 340        | .355289  | -355991  | .356693  | -357394  | .358093  | 701                       |
| 350        | 0.362266 | 0.362957 | 0.363648 | 0.364337 | 0.365025 | 690                       |
| 360        | .369132  | .369813  | .370493  | .371171  | .371849  | 678                       |
| 370        | .375892  | .376562  | •377232  | .377900  | .378567  | 668                       |
| 380        | .382548  | .383208  | .383868  | .384525  | .385183  | 658                       |
| 390        | .389104  | .389754  | .390403  | .391052  | .391699  | 648                       |
| 390        | .3-7.04  | 3-3134   | 3,54-3   | 1        | 0, ,,    |                           |
|            |          |          |          |          |          |                           |

## VOLUME OF GASES.

(d) Logarithms of  $1+.00367\,t$  for Values of t between 400° and 1990° C. by 10° Steps.

| t                                    | 00                                                               | 10                                                               | 20                                                               | 30                                                               | 40                                                    |
|--------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|
| 400                                  | 0.392345                                                         | 0.398756                                                         | 0.405073                                                         | 0.411300                                                         | 0.417439                                              |
| 500<br>600<br>700<br>800<br>900      | 0.452553<br>.505421<br>.552547<br>.595055<br>.633771             | 0.458139<br>.510371<br>.556990<br>.599086<br>.637460             | 0.463654<br>.515264<br>.561388<br>.603079<br>.641117             | 0.469100<br>.520103<br>.565742<br>.607037<br>.644744             | 0.474479<br>.524889<br>.570052<br>.610958<br>.648341  |
| 1000<br>1100<br>1200<br>1300<br>1400 | 0.669317<br>.702172<br>. <b>7</b> 32715<br>.761251<br>.788027    | 0.672717<br>•705325<br>•735655<br>•764004<br>•790616             | o.676090<br>.708455<br>.738575<br>.766740<br>.793190             | 0.679437<br>.711563<br>.741475<br>.769459<br>.795748             | 0.682759<br>.714648<br>.744356<br>.772160<br>.798292  |
| 1500<br>1600<br>1700<br>1800<br>1900 | 0.813247<br>.837083<br>.859679<br>.881156<br>.901622             | 0.81 5691<br>.839396<br>.861875<br>.883247<br>.903616            | 0.818120<br>.841697<br>.864060<br>.885327<br>.905602             | 0.820536<br>.843986<br>.866234<br>.887398<br>.907578             | 0.822939<br>.846263<br>.868398<br>.889459<br>.909545  |
| t                                    | 50                                                               | 60                                                               | 70                                                               | 80                                                               | 90                                                    |
|                                      |                                                                  |                                                                  |                                                                  |                                                                  |                                                       |
| 400                                  | 0.423492                                                         | 0.429462                                                         | 0.435351                                                         | 0.441161                                                         | 0.446894                                              |
| . 500<br>600<br>700<br>800<br>900    | 0.423492<br>0.479791<br>.529623<br>.574321<br>.614845<br>.651908 | 0.429462<br>0.485040<br>•534305<br>•578548<br>.618696<br>.655446 | 0.435351<br>0.490225<br>.538938<br>.582734<br>.622515<br>.658955 | 0.441161<br>0.495350<br>.543522<br>.586880<br>.626299<br>.662437 |                                                       |
| . <b>500</b> 600 700 800             | 0.479791<br>.529623<br>.574321<br>.614845                        | 0.485040<br>.534305<br>.578548<br>.618696                        | 0.490225<br>.538938<br>.582734<br>.622515                        | 0.495350<br>.543522<br>.586880<br>.626299                        | 0.446894<br>0.500415<br>.548058<br>.590987<br>.630051 |

# RELATIVE DENSITY OF MOIST AIR FOR DIFFERENT PRESSURES AND HUMIDITIES.

TABLE 113.—Values of  $\frac{h}{760}$ , from h=1 to h=9, for the Computation of Different Values of the Ratio of Actual to Normal Barometric Pressure.

This gives the density of moist air at pressure h in terms of the same air at normal atmosphere pressure. When air contains moisture, as is usually the case with the atmosphere, we have the following equation for pressure term: h=B-0.378e, where e is the vapor pressure, and B the corrected barometric pressure. When the necessary psychrometric observations are made the value of e may be taken from Table 189 and then 0.378e from Table 115, or the dew-point may be found and the value of 0.378e taken from Table 115.

| h          | h<br>760                          |
|------------|-----------------------------------|
| 1          | 0.0013158                         |
| 2          | .0026316                          |
| 3          | .0039474                          |
| <b>4</b> 5 | 0.0052632<br>.0065789<br>.0078947 |
| <b>7</b>   | 0.0092105                         |
| 8          | .0105263                          |
| 9          | .0118421                          |

TABLE 114. — Values of the logarithms of  $\frac{h}{760}$  for values of h between 80 and 340.

Values from 8 to 80 may be got by subtracting 1 from the characteristic, and from 0.8 to 8 by subtracting 2 from the characteristic, and so on.

| h    | 1       |         |         |         | Values of $\log \frac{h}{760}$ . |         |         |         |         |         |
|------|---------|---------|---------|---------|----------------------------------|---------|---------|---------|---------|---------|
| ,,   | 0       | 1       | 2       | 3       | 4                                | 5       | 6       | 7       | 8       | 9       |
| 80   | ī.02228 | 1.02767 | ī.03300 | ī.03826 |                                  | ī.04861 | ī.o5368 | 7.05871 | ī.06367 | 7.06858 |
| 90   | .07343  | .07823  | .08297  | .08767  | .09231                           | .09691  | .10146  | .10596  | .11041  | .11482  |
| 100  | 1.11919 | 7.12351 | Ī.12779 | 1.13202 | T.13622                          | ī.14038 | Ī.14449 | 1.14857 | 1.15261 | ī.15661 |
| 110  | .16058  | .16451  | .16840  | .17226  | .17609                           | .17988  | .18364  | .18737  | .19107  | .19473  |
| I 20 | .19837  | .20197  | .20555  | .20909  | .21261                           | .21611  | .21956  | .22299  | .22640  | .22978  |
| 130  | .23313  | .23646  | .23976  | .24304  | .24629                           | .24952  | .25273  | .25591  | .25907  | .26220  |
| 140  | .26531  | .26841  | .27147  | .27452  | ·27755                           | .28055  | .28354  | .28650  | .28945  | .29237  |
| 150  | 1.29528 | 7.29816 | T.30103 | 7.30388 | 1.30671                          | ī.30952 | ī.31231 | 1.31509 | 1.31784 | ī.32058 |
| 160  | .32331  | .32601  | .32870  | .33137  | .33403                           | .33667  | •33929  | .34190  | .34450  | .34707  |
| 170  | .34964  | .35218  | ·3547 I | .35723  | •35974                           | .36222  | .36470  | .36716  | .36961  | .37204  |
| 180  | .37446  | .37686  | .37926  | .38164  | .38400                           | .38636  | .38870  | .39128  | •39334  | .39565  |
| 190  | •39794  | .40022  | .40249  | .40474  | .40699                           | .40922  | .41144  | .41365  | .41585  | .41804  |
| 200  | Ī.42022 | 1.42238 | T.42454 | ī.42668 | ī.42882                          | ī.43094 | ī.43305 | 7.43516 | T.43725 | ī.43933 |
| 210  | .44141  | •44347  | .44552  | •447.57 | .44960                           | .45162  | .45364  | .45565  | .45764  | .45963  |
| 220  | .46161  | .46358  | .46554  | .46749  | 46943                            | .47137  | 47329   | 47521   | .47712  | .47902  |
| 230  | .48091  | .48280  | .48467  | .48654  | .48840                           | .49025  | .49210  | •49393  | .49576  | .49758  |
| 240  | 49940   | .50120  | .50300  | .50479  | .50658                           | .50835  | .51012  | .51188  | .51364  | .51539  |
| 250  | 1.51713 | ī.51886 | T.52059 | ī.52231 | Ī.52402                          | ī.52573 | ī.52743 | Ī.52912 | 1.53081 | 1.53249 |
| 260  | .53416  | .53583  | .53749  | .53914  | 54079                            | .54243  | .54407  | .54570  | .54732  | .54894  |
| 270  | .55055  | .55216  | .55376  | .55535  | .55694                           | .55852  | .56010  | .56167  | .56323  | .56479  |
| 280  | .56634  | .56789  | .56944  | .57097  | .57250                           | .57403  | .57555  | .57707  | .57858  | .58008  |
| 290  | .58158  | .58308  | .58457  | .58605  | .58753                           | .58901  | .59048  | .59194  | .59340  | .59486  |
| 300  | 1.59631 | ī.59775 | 7.59919 | ī.60063 | 7.60206                          | 1.60349 | 1.60491 | T.60632 | ī.60774 | 7.60914 |
| 310  | .61055  | .61195  | .61334  | .61473  | .61611                           | .61750  | .61887  | .62025  | .62161  | .62298  |
| 320  | .62434  | .62569  | .62704  | .62839  | .62973                           | .63107  | .63240  | .63373  | .63506  | .63638  |
| 330  | .63770  | .63901  | .64032  | .64163  | .64293                           | .64423  | .64553  | .64682  | .64810  | .64939  |
| 340  | .65067  | .65194  | .65321  | .65448  | .65574                           | .65701  | .65826  | .65952  | .66077  | .66201  |

# DENSITY OF AIR.

Values of logarithms of  $\frac{h}{760}$  for values of h between 350 and 800.

| E  |            |                     |                   |         |                   |                  |                          |                           |                    |         |                   |
|----|------------|---------------------|-------------------|---------|-------------------|------------------|--------------------------|---------------------------|--------------------|---------|-------------------|
| ı  |            |                     |                   |         |                   | Values o         | $f \log \frac{h}{760}$ . |                           |                    |         |                   |
|    | Je .       | 0                   | 1                 | 2       | 3                 | 4                | 5                        | 6                         | 7                  | 8       | 9                 |
| l  | 350        | T 66221             | ī.66449           | ī.66573 | ī.66696           | 7.66819          | ī.66941                  | ī.67064                   | 7.67185            | ī.67307 | ī.67428           |
| I  | 360        | 1.66325             | .67669            | .67790  | .67909            | .68029           | .68148                   | .68267                    | .68385             | .68503  | .68621            |
| I  | 370        | .68739              | .688 56           | .68973  | .69090            | .69206           | .69322                   | .69437                    | .69553             | .69668  | .69783            |
| ı  | 380        | .69897              | .70011            | .70125  | .70239            | .70352<br>.71468 | .70465                   | .70577                    | .70690             | .70802  | .70914            |
| ı  |            | _                   |                   | _       | _                 |                  |                          | _                         |                    |         | _                 |
| H  | 400        | .73197              | 1.72233<br>.73303 | .73408  | 1.72449<br>.73514 | .73619           | 1.72664                  | .73828                    | 7.72878<br>7.73932 | 74036   | .74140            |
|    | 420        | .74244              | ·74347            | .74450  | ·74553            | .74655           | ·73723<br>·74758         | .74860                    | .74961             | .75063  | .75164            |
| I  | 430        | .75265              | .75366            | .7 5467 | .75567            | .75668           | .75768                   | .75867                    | .75967             | .76066  | .76165            |
| U  | 440        | .76264              | .76362            | .76461  | .76559            | .76657           | .76755                   | .76852                    | .76949             | .77046  | .77143            |
| I  | 450        | 1.77240             | 1.77336           | 78383   | 7.77528           | 1.77624          | ī.77720<br>.78664        | 78757                     | 78850              | 1.78005 | 1.78100           |
| I  | 460<br>470 | .78194              | .78289            | .78383  | .78477            | .78570           | .78664                   | .78757                    | .78850             | .78943  | .79036            |
| II | 480        | .80043              | .80133            | .80223  | .80313            | .80403           | .80493                   | .80582                    | .80672             | .80761  | .80850            |
| I  | 490        | .80938              | .81027            | .81115  | .81203            | .81291           | .81379                   | .81467                    | .81554             | .81642  | .81729            |
| II | 500        | 7.81816             | 1.81902           | 7.81989 | 1.82075           | 1.82162          | T.82248                  | 1.82334                   | 7.82419            | 1.82505 | 1.82590           |
| H  | 510        | .82676              | .82761            | .82846  | .82930            | .83015           | .83099                   | .83184                    | .83268             | .83352  | .83435            |
| I  | 520        | .83519              | .83602<br>.84428  | .83686  | .83769            | .83852           | .83935                   | .84017                    | .84100             | .84182  | .84264            |
| H  | 530        | .85158              | .85238            | .85319  | .85399            | .85479           | .85558                   | .85638                    | .85717             | .85797  | .85876            |
| ı  | 550        | 7.85955             | ī.86o34           | ī.86113 | 1.86191           | ī.86270          | ī.86348                  | ī.86426                   | 7.86504            | 7.86582 | ī.8666o           |
| I  | 560        | .86737              | .86815            | .86892  | .86969            | .87047           | .87123                   | .87200                    | .87277             | .87353  | .87430<br>.88186  |
| I  | 570        | .87506              | .87582            | .87658  | .87734            | .87810           | .87885                   | .87961<br>.887 <b>0</b> 8 | .88 <b>0</b> 36    | .88111  |                   |
| ı  | 580        | .89004              | .88336            | .88411  | .89224            | .88560           | .88634                   | .89443                    | .89516             | .89589  | .88930            |
| I  | 600        | T 90724             |                   | 700000  | - Soore           | T 00000          | _                        | _                         | T 00008            | _       | T 00280           |
| H  | 610        | 1.89734             | 7.89806<br>.90523 | 1.89878 | 1.89950<br>.90665 | 1.90022          | .90094                   | 1.90166                   | 1.90238            | 1.90309 | 1.90380           |
| H  | 620        | .91158              | .91228            | .91298  | .91367            | .91437           | .91 507                  | .91576                    | .91645             | .91715  | .91784            |
| I  | 630        | .91853              | .91922            | .91990  | .92059            | .92128           | .92196                   | .92264                    | .92333             | .92401  | .92469            |
| I  | 640        | ·9 <sup>2</sup> 537 | .92604            | .92672  | .92740            | .92807           | .92875                   | .92942                    | .93009             | .93076  | .93143            |
| I  | 650        | 1.93210             | 1.93277           | 1.93343 | 1.93410           | 1.93476          | 1.93543                  | 1.93609                   | 1.93675            | 1.93741 | 1.93807           |
| ı  | 660        | .93873              | ·93939<br>·94591  | .94004  | .94070            | .94135           | .94201                   | .94266                    | .94331             | .94396  | .94461            |
| II | 680        | .95170              | .95233            | .95297  | .95361            | .95424           | .95488                   | .95551                    | .95614             | .95677  | .95741            |
| ı  | 690        | .95804              | .95866            | .95929  | .95992            | .96055           | .96117                   | .96180                    | .96242             | .96304  | .96366            |
| 1  | 700        | 7.96428             | 1.96490           | 1.96552 | 7.96614           | 7.96676          | 1.96738                  | 1.96799                   | ī.96861            | 1.96922 | 1.96983           |
|    | 710        | -97044              | .97106            | .97167  | .97228            | .07288           | .97349                   | .97410                    | .97471             | .97531  | .97 592<br>.98191 |
| 1  | 720        | .97652              | .97712            | .97772  | .97832            | .97892           | .97951                   | .98606                    | .98665             | .98132  | .98191            |
| 1  | 740        | .98842              | .98900            | .98959  | .99018            | .99076           | .99134                   | .99193                    | .99251             | .99309  | .99367            |
| 1  | 750        | Ī.99425             | 1.99483           | 1.99540 | 7.99598           | ī.99656          | 1.99713                  | Ī.99771                   | ī.99828            | 7.99886 | ī.99942           |
|    | 760        | 0.00000             | 0.00057           | 0.00114 | 0.00171           | 0.00228          | 0.00285                  | 0.00342                   | 0.00398            | 0.00455 | 0.00511           |
| 1  | 770<br>780 | .00568              | .00624            | .00680  | .00737            | .00793           | .00849                   | .00905                    | .00961             | .01017  | .01072            |
|    | 790        | .01681              | .01736            | .01239  | .01295            | .01350           | .01406                   | .01461                    | .01516             | .01571  | .01626            |
| 1  |            |                     |                   | 1       |                   |                  |                          |                           |                    |         | ,3                |

#### TABLE 115. - Values of 0.378e.\*

This table gives the humidity term 0.378e, which occurs in the equation  $\delta = \delta_0 \frac{h}{760} = \delta_0 \frac{B - 0.378e}{760}$  for the calculation of the density of air containing aqueous vapor at pressure e;  $\delta_0$  is the density of dry air at normal temperature and barometric pressure, B the observed barometric pressure, and h = B - 0.378e, the pressure corrected for humidity. For values of  $\frac{760}{h}$ , see Table 113. Temperatures are in degrees Centigrade, and pressures in millimeters of mercury.

|                   | icicury.                    |        |            |                         |        |                 |                         |              |
|-------------------|-----------------------------|--------|------------|-------------------------|--------|-----------------|-------------------------|--------------|
| Dew point.        | Vapor<br>pressure<br>(ice). | 0.378e | Dew point. | Vapor pressure (water). | 0.378e | Dew point.      | Vapor pressure (water). | 0.378e       |
| C                 | mm                          | mm     | C<br>O°    | mm                      | mm     | C               | mm                      | mm           |
| -50°              | 0.029                       | 0.01   | 1          | 4.58                    | 1.73   | 30°             | 31.86                   | 12.0         |
| -45               | 0.054                       | 0.02   | I          | 4.92                    | 1.86   | 31              | 33.74                   | 12.8         |
| -40               | 0.096                       | 0.04   | 2          | 5.29                    | 2.00   | 32              | 35.70                   | 13.5         |
| -35               | 0.169                       | 0.06   | 3          | 5.68                    | 2.15   | 33              | 37.78                   | 14.3         |
| -30<br><b>-25</b> | 0.280                       | 0.11   | 4<br>5     | 6.10                    | 2.31   | 34<br><b>35</b> | 39.95                   | 15.1         |
|                   |                             | 0.18   | 6          | 6.54                    | 2.47   |                 | 42.23                   | 16.0         |
| 24                | 0.530                       | 0.20   |            | 7.01                    | 2.66   | 36              | 44.62                   | 16.9         |
| 23                | 0.585                       | 0.22   | 7 8        | 7.51                    | , ,    | 37<br>38        | 47.13                   | 17.8         |
| 22                | 0.040                       | 0.24   |            | 8.04<br>8.61            | 3.04   |                 | 49.76                   | 18.8         |
| -20               | 0.712                       | 0.27   | 10         | 0.01                    | 3.25   | 39<br><b>40</b> | 52.51                   | 19.8         |
| 10                | 0.862                       | 0.33   | II         | 9.21                    | 3.40   | 41              | 55.40<br>58.42          | 20.9<br>22.1 |
| 18                | 0.002                       | 0.36   | 12         | 10.52                   | 3.98   | 42              | 61.58                   |              |
| 17                | 1.041                       | 0.30   | 13         | 11.24                   | 4.25   | 42              | 64.80                   | 23.3         |
| 16                | 1.142                       | 0.43   | 14         | 11.24                   | 4.25   | 43              | 68.35                   | 24.5         |
| -15               | 1.252                       | 0.43   | 15         | 12.79                   | 4.84   | 45              | 71.97                   | 27.2         |
| 14                | 1.373                       | 0.52   | 16         | 13.64                   | 5.16   | 46              | 75.75                   | 28.6         |
| 13                | 1.503                       | 0.57   | 17         | 14.54                   | 5.50   | 47              | 79.70                   | 30.1         |
| 12                | 1.644                       | 0.62   | 18         | 15.40                   | 5.85   | 48              | 83.83                   | 31.7         |
| II                | 1.798                       | 0.68   | 10         | 16.40                   | 6.23   | 49              | 88.14                   | 33.3         |
| -10               | 1.064                       | 0.74   | 20         | 17.55                   | 6.63   | 50              | 92.6                    | 35.0         |
| 9                 | 2.144                       | 0.81   | 21         | 18.66                   | 7.06   | 51              | 97.3                    | 36.8         |
| 8                 | 2.340                       | 0.88   | 22         | 10.84                   | 7.50   | 52              | 102.2                   | 38.6         |
| . 7               | 2.550                       | 0.96   | 23         | 21.00                   | 7.97   | 53              | 107.3                   | 40.6         |
| 6                 | 2.778                       | 1.05   | 24         | 22.40                   | 8.47   | 54              | 112.7                   | 42.6         |
| -5                | 3.025                       | 1.14   | 25         | 23.78                   | 8.99   | 55              | 118.2                   | 44.7         |
| 4                 | 3.291                       | 1.24   | 26         | 25.24                   | 9.54   | 56              | 124.0                   | 46.9         |
| 3                 | 3.578                       | 1.35   | 27         | 26.77                   | 10.12  | 57              | 130.0                   | 49.I         |
| 2                 | 3.887                       | 1.47   | 28         | 28.38                   | 10.73  | 58              | 136.3                   | 51.5         |
| I                 | 4.220                       | 1.60   | 29         | 30.08                   | 11.37  | 59              | 142.8                   | 54.0         |
| 0                 | 4.580                       | 1.73   | 30         | 31.86                   | 12.04  | 60              | 149.6                   | 56.5         |
|                   |                             |        |            |                         |        |                 |                         |              |
|                   |                             |        |            |                         |        |                 |                         |              |

<sup>\*</sup> Table quoted from Smithsonian Meteorological Tables.

#### TABLE 116. - Maintenance of Air at Definite Humidities.

Taken from Stevens, Phytopathology, 6, 428, 1916; see also Curtis, Bul. Bur. Standards, 11, 359, 1914; Dieterici, Ann. d. Phys. u. Chem., 50, 47, 1893. The relative humidity and vapor pressure of aqueous vapor of moist air in equilibrium conditions above aqueous solutions of sulphuric acid are given below.

| Density of | Relative     | Vapor       | Vapor pressure. |                     | Relative | Vapor pressure. |       |
|------------|--------------|-------------|-----------------|---------------------|----------|-----------------|-------|
| acid sol.  | humidity.    | 20° C 30° C |                 | acid sol. humidity. |          | 20° C           | 30° C |
|            |              | mm          | mm              |                     |          | mm              | mm    |
| 1.00       | 100.0        | 17.4        | 31.6            | 1.30                | 58.3     | 10.1            | 18.4  |
| 1.05       | 97.5         | 17.0        | 30.7            | 1.35                | 47.2     | 8.3             | 15.0  |
| 1.10       |              | 16.3        | 29.6            | 1.40                | 37.I     | 6.5             | 11.9  |
| 1.15       | 93.9<br>88.8 | 15.4        | 28.0            | 1.50                | 18.8     | 3.3             | 6.0   |
| 1.20       | 80.5         | 14.0        | 25.4            | 1.60                | 8.5      | 1.5             | 2.7   |
| 1.25       | 70.4         | 12.2        | 22.2            | 1.70                | 3.2      | 0.6             | 1.0   |

## PRESSURE OF COLUMNS OF MERCURY AND WATER.

British and metric measures. Correct at 0° C. for mercury and at 4° C. for water.

|                              | METRIC MEAS                         | SURE.                                  |                             | BRITISH MEA                         | SURE.                                  |
|------------------------------|-------------------------------------|----------------------------------------|-----------------------------|-------------------------------------|----------------------------------------|
| Cms. of<br>Hg.               | Pressure<br>in grams per<br>sq. cm. | Pressure<br>in pounds per<br>sq. inch. | Inches of Hg.               | Pressure<br>in grams per<br>sq. cm. | Pressure<br>in pounds per<br>sq. inch. |
| 1                            | 13.5956                             | 0.193376                               | 1                           | 34-533                              | 0.491174                               |
| 2                            | 27.1912                             | 0.386752                               | 2                           | 69.066                              | 0.982348                               |
| 3                            | 40.7868                             | 0.580128                               | 3                           | 103.598                             | 1.473522                               |
| 4                            | 54.3824                             | 0.773504                               | 4                           | 138.131                             | 1.964696                               |
| 5                            | 67.9780                             | 0.966880                               | 5                           | 172.664                             | 2.455870                               |
| 6                            | 81.5736                             | 1.160256                               | 6                           | 207.197                             | 2.947044                               |
| 7                            | 95.1692                             | 1.353632                               | 7                           | 241.730                             | 3.438218                               |
| 8                            | 108.7648                            | 1.547008                               | 8                           | 276.262                             | 3.929392                               |
| 9 .                          | 122.3604                            | 1.740384                               | 9                           | 310.795                             | 4.420566                               |
| 10                           | 135.9560                            | 1.933760                               | 10                          | 345.328                             | 4.911740                               |
| Cms. of<br>H <sub>2</sub> O. | Pressure<br>in grams per<br>sq. cm. | Pressure<br>in pounds per<br>sq. inch. | Inches of H <sub>2</sub> O. | Pressure<br>in grams per<br>sq. cm. | Pressure<br>in pounds per<br>sq. inch. |
| 1                            | 1                                   | 0.0142234                              | 1                           | 2.54                                | 0.036127                               |
| 2                            | 2                                   | 0.0284468                              | 2                           | 5.08                                | 0.072255                               |
| 3                            | 3                                   | 0.0426702                              | 3                           | 7.62                                | 0.108382                               |
| 4                            | 4                                   | 0.0568936                              | 4                           | 10.16                               | 0.144510                               |
| 5                            | 5                                   | 0.0711170                              | 5                           | 12.70                               | 0.180637                               |
| 6                            | 6                                   | 0.0853404                              | 6                           | 15.24                               | 0.216764                               |
| 7                            | 7                                   | 0.0995638                              | 7                           | 17.78                               | 0.252892                               |
| 8                            | 8                                   | 0.1137872                              | 8                           | 20.32                               | 0.289019                               |
| 9                            | 9                                   | 0.1280106                              | 9                           | 22.86                               | 0.325147                               |
| 10                           | 10                                  | 0.1422340                              | 10                          | 25.40                               | 0.361274                               |

# REDUCTION OF BAROMETRIC HEIGHT TO STANDARD TEMPERATURE.

| Corrections for brass scale and<br>English measure.                                                                                                                                              |                                                                                                                                                                                                                                                                             | Corrections for metric                                                                                                                                             | r brass scale and<br>measure.                                                                                                                                                                                                                       | Corrections for glass scale and metric measure.                                                                                                        |                                                                                                                                                                                                                                                |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Height of barometer in inches.                                                                                                                                                                   | in inches for temp. F.                                                                                                                                                                                                                                                      | Height of barometer in mm.                                                                                                                                         | in mm. for temp. C.                                                                                                                                                                                                                                 | Height of barometer in mm.                                                                                                                             | in mm. for temp. C.                                                                                                                                                                                                                            |  |  |
| 15.0 16.0 17.0 17.5 18.0 18.5 19.0 19.5  20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5  24.0 24.5 25.0 26.5 27.0 26.5 27.0 27.5  28.0 28.5 29.0 29.4 29.6 29.8 30.0 30.2 30.4 30.6 30.8 31.0 31.2 31.4 | 0.00135<br>.00145<br>.00154<br>.00158<br>.00163<br>.00167<br>.00172<br>.00176<br>.00185<br>.00190<br>.00194<br>.00199<br>.00203<br>.00208<br>.00212<br>.00217<br>.00221<br>.00226<br>.00231<br>.00236<br>.00240<br>.00245<br>.00249<br>.00258<br>.00268<br>.00277<br>.00268 | 400 410 420 430 440 450 460 470 480 490  500 510 520 530 540 550 560 570 580 590  600 610 620 630 640 630 660 670 680 690  700 710 720 730 740 750 760 770 780 790 | 0.0651 .0668 .0684 .0700 .0716 .0732 .0749 .0765 .0781 .0797 0.0813 .0830 .0846 .0862 .0878 .0894 .0911 .0927 .0943 .0959 0.0975 .0992 .1008 .1024 .1040 .1056 .1073 .1089 .1105 .1121 0.1137 .1154 .1170 .1186 .1202 .1218 .1235 .1251 .1267 .1283 | 50 100 150 200 250 300 350 400 450 500 520 540 560 580 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 850 900 950 | 0.0086 .0172 .0258 .0345 .0431 .0517 .0603  0.0689 .0775 .0861 .0895 .0930 .0965 .0999  0.1034 .1051 .1068 .1085 .1103 .1120 .1137  0.1154 .1172 .1189 .1206 .1223 .1240 .1258  0.1275 .1292 .1309 .1327 .1344 .1361 .1378  0.1464 .1551 .1639 |  |  |

<sup>\*</sup>The height of the barometer is affected by the relative thermal expansion of the mercury and the glass, in the case of instruments graduated on the glass tube, and by the relative expansion of the mercury and the metallic inclosing case, usually of brass, in the case of instruments graduated on the brass case. This relative expansion is practically proportional to the first power of the temperature. The above tables of values of the coefficient of relative expansion will be found to give corrections almost identical with those given in the International Meteorological Tables. The numbers tabulated under  $\alpha$  are the values of  $\alpha$  in the equation  $H_f = H_f - \alpha(l' - l')$  where  $H_f$  is the height at the standard temperature,  $H_f$  the observed height at the temperature l', and  $\alpha(l'-l)$  the correction for temperature. The standard temperature is  $\alpha$ 0°C. For the metric system and  $\alpha$ 1°5,  $\beta$ 7, for the English system. The English barometer is correct for the temperature of melting ice at a temperature of approximately 28°.5 F., because of the fact that the brass scale is graduated so as to be standard at 62° F., while mercury has the standard density at  $\alpha$ 2° F.

EXAMPLE.—A barometer having a brass scale gave H = 765 mm. at  $\alpha$ 2° C.; required, the corresponding reading at  $\alpha$ 0°C. Here the value of  $\alpha$  is the mean of .1225 and .1251, or .1243; · · ·  $\alpha(l'-l)$ 1 = .1243 × 25 = 3.11. Hence  $H_0 = 765 - 3.11 = 761.89$ .

N. B.—Although  $\alpha$ 1 is here given to three and sometimes to four significant figures, it is seldom worth while to use more than the nearest two-figure number. In fact, all barometers have not the same values for  $\alpha$ , and when great accuracy is wanted the proper coefficients have to be determined by experiment.

mined by experiment.

### REDUCTION OF BAROMETER TO STANDARD GRAVITY.

#### Free-air Altitude Term. Correction to be subtracted.

The correction to reduce the barometer to sea-level is  $(g_1-g)/g \times B$  where B is the barometer reading and g and  $g_1$  the value of gravity at sea-level and the place of observation respectively. The following values were computed for free-air values of gravity  $g_1$  (Table 565). It has been customary to assume for mountain stations that the value of  $g_1$  = say about  $\frac{a}{2}$  the free-air value, but a comparison of modern determinations of  $g_1$  in this country shows that little reliance can be placed on such an assumption. Where  $g_1$  is known its value should be used in the above correction term. (See Tables 566 and 567. Similarly for the latitude term, see succeeding tables, the true value of g should be used if known; the succeeding tables are based on the theoretical values, Table 565.)

|                     |                | 1                                            |          |            |          |          |                                                                         |          |        |        |        | 1                 |
|---------------------|----------------|----------------------------------------------|----------|------------|----------|----------|-------------------------------------------------------------------------|----------|--------|--------|--------|-------------------|
| Height              | a. – a         | Observed height of barometer in millimeters. |          |            |          |          |                                                                         |          |        |        |        |                   |
| above<br>sea-level. | g1 — g         | 400                                          | 450      | 500        | 550      | 600      | 650                                                                     | 700      | 750    | 800    |        |                   |
| meters.             |                |                                              |          |            |          |          |                                                                         |          |        |        |        |                   |
| 100                 | 0.031          |                                              |          |            |          | subtract |                                                                         | .02      | .02    | .02    | _      | -                 |
| 200                 | 0.062          |                                              |          |            |          | st colun | in and                                                                  | .04      | .05    | .05    | _      |                   |
| 300<br>400          | 0.093          | Barom                                        | eter rea | laing in   | the top  | nne.     |                                                                         | .07      | .07    | .07    |        |                   |
| 500                 | 0.154          | - 1                                          | _        | -          | I —      | 1 —      | -                                                                       | .11      | .12    | .13    | _      | -                 |
| 600                 | 0.185          | -                                            | _        | _          | -        | <u> </u> | .12                                                                     | .13      | .14    | _      | _      | -                 |
| 700<br>800          | 0.216          |                                              |          | _          | _        |          | .14                                                                     | .15      | .16    |        |        |                   |
| 900                 | 0.278          |                                              | _        | _          |          | _        | .18                                                                     | . 20     | .22    | _      | _      | -                 |
| 1000                | 0.309          | -                                            | _        | _          | . 18     | .19      | . 20                                                                    | . 22     | .24    | _      |        |                   |
| 1100<br>1200        | 0.339          |                                              |          | _          | .19      | .21      | .22                                                                     | . 24     |        |        |        |                   |
| 1300                | 0.370          | _                                            | _        |            | .21      | . 23     | .24                                                                     | . 20     | _      | _      | _      |                   |
| 1400                | 0.432          | _                                            | _        |            | . 24     | . 26     | . 28                                                                    | .31      | -      | _      | _      | _                 |
| 1500                | 0.463          |                                              |          | . 24       | . 26     | . 28     | .30                                                                     | -33      | _      | _      | _      | -                 |
| 1000                | 0.494          |                                              | _        | .25        | . 28     | .30      | .32                                                                     |          |        |        |        |                   |
| 1800                |                | _                                            |          | .28        | .31      | .34      | .36                                                                     |          | _      | .020   | .0463  | 15000             |
| 1900                | 0.555          | -                                            | _        | .30        | -33      | .36      | -39                                                                     | _        |        | .019   | .0447  | 14500             |
| 2000                | 0.617          | _                                            | . 28     | .31        | .34      | .38      | -41                                                                     |          | .021   | .019   | .0432  | 14000             |
| 2200                | 0.679          |                                              | .31      | ·33        | .38      | .40      | _                                                                       |          | .020   | .017   | .0416  | 13500             |
| 2300                | 0.710          |                                              | .32      | .36        | .40      | -43      | _                                                                       | .021     | .019   | .017   | .0386  | 12500             |
| 2400<br>2500        | 0.740          |                                              | •34      | .38        | .42      | - 45     | =                                                                       | .021     | .018   | .016   | .0370  | 12000             |
| 2500                | 0.771          | .31                                          | ·35      | -39<br>-4I | •43      | • 47     | .021                                                                    | .020     | .018   | .015   | .0355  | 11500             |
| 2700                | 0.833          | •34                                          | .38      | .42        | _        | -        | .020                                                                    | .018     | .016   | .014 * | .0324  | 10500             |
| 2800                | 0.864          | -35                                          | .40      | .44        | _        | _        | .010                                                                    | .017     | .015   | .013   | .0308  | 10000             |
| 2900<br>3000        | 0.895<br>0.926 | .36                                          | .41      | .46        |          | .020     | .018                                                                    | .016     | .015   | .013   | .0293  | 9500              |
| 3100                | 0.957          | .39                                          | .44      | -47        | _        | .019     | .017                                                                    | .015     | .014   | .012   | .0278  | 8500              |
| 3200                | 0.988          | .40                                          | .46      | -          | _        | .017     | .015                                                                    | .014     | .012   | _      | .0247  | 8000              |
| 3300<br>3400        | 1.019          | -42                                          | • 47     | _          | .017     | .016     | .014                                                                    | .013     | _      | _      | .0231  | 7500              |
| 3500                | 1.049          | · 43<br>- 44                                 | .48      |            | .016     | .015     | .013                                                                    | .012     | Ξ      |        | .0216  | 6500              |
| 3600                | I.III          | .45                                          | - 12     |            | .014     | .013     | .OII                                                                    | _        |        | -      | .0185  | 6000              |
| 3700                | I.I42          | .46                                          | _        | _          | .013     | .012     | .OII                                                                    | -        | _      | _      | .0170  | 5500              |
| 3900                | I.173<br>I.204 | .48                                          | _        | .012       | .010     | .010     | .010                                                                    | _        | _      |        | .0154  | 5000              |
| 4000                | 1.235          | .50                                          | _        | .010       | .009     | .009     | _                                                                       | - 1      | _      | _      | .0139  | 4500              |
| = 1                 | _              | -                                            | .008     | .008       | .007     | .007     |                                                                         |          | in in. |        | .0092  | 3000              |
| _                   | = 1            | .006                                         | .003     | .005       | -004     | _        | subtracted for height above .0062<br>sea-level in last column and .0031 |          |        |        |        | 1000              |
|                     |                |                                              |          |            |          |          | barometer reading in bot-                                               |          |        |        |        |                   |
|                     |                | com mie.                                     |          |            |          |          |                                                                         |          | feet.  |        |        |                   |
| - 4                 |                |                                              |          |            |          |          |                                                                         |          |        |        |        |                   |
|                     |                | 30                                           | 28       | 26         | 24       | 22       | 20                                                                      | 18       | 16     | 14     |        | Heigh             |
|                     |                |                                              | (        | Observe    | d height | of baro  | meter i                                                                 | n inches |        |        | g1 — g | above<br>sea-leve |

#### METRIC MEASURES.

From Latitude o° to 45°, the Correction is to be Subtracted.

| Lati-     | 520           | 540           | 560           | 580           | 600           | 620           | 640           | 660           | 680           | 700           | <b>200</b>    | W40           |               |               |
|-----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| tude.     |               |               |               |               |               |               |               |               |               |               | 720           | 740           | 760           | 780           |
| 0         | mm.<br>—I.39  | mm.<br>—1.45  | mm.<br>—I.50  | mm.<br>—1.55  | mm.<br>—1.61  | mm.<br>—1.66  | mm.<br>—1.71  | mm.<br>—1.77  | mm.<br>—1.82  | mm.<br>—1.87  | mm.<br>—I.93  | mm.<br>—1.98  | mm.<br>-2.04  | mm.           |
|           |               |               |               |               |               |               | 1             |               |               |               |               |               |               |               |
| <b>5</b>  | -1.37<br>1.36 | -I.42<br>I.42 | -1.48<br>1.47 | -1.53<br>1.52 | —1.58<br>1.57 | —1.64<br>1.63 | -1.69<br>1.68 | -1.74<br>1.73 | -1.79<br>1.78 | —1.85<br>1.83 | -1.90<br>1.89 | -I.95<br>I.94 | -2.00<br>I.99 | -2.06<br>2.04 |
| 7 8       | 1.35          | 1.40          | 1.46          | 1.51          | 1.56          | 1.61          | 1.66          | 1.72          | 1.77          | 1.82          | 1.87          | 1.92          | 1.98          | 2.03          |
| 9         | I.34<br>I.33  | 1.39<br>1.38  | 1.44          | I.49<br>I.48  | 1.55          | 1.60          | 1.65          | 1.70<br>1.68  | 1.75<br>1.73  | 1.80<br>1.78  | 1.85<br>1.84  | 1.91          | 1.96<br>1.94  | 2.01          |
| 10        | I.3I          | <b>—1.3</b> 6 | —I.4I         | —I.46         | <u>—</u> 1.51 | —ı.56         | _I.6I         | —ı.66         | —I.7I         | —I.76         | -1.81         | —ı .86        | —I.92         | -1.97         |
| II        | 1.29          | 1.34          | 1.39          | 1.44          | 1.49          | 1.54          | 1.59          | 1.64          | 1.69          | 1.74          | 1.79          | 1.84          | 1.89          | 1.94          |
| I2<br>I3  | I.27<br>I.25  | 1.32          | 1.37          | I.42<br>I.40  | I.47<br>I.45  | I.52<br>I.50  | I.57<br>I.54  | 1.62          | 1.67          | 1.72          | 1.76<br>1.74  | 1.81          | 1.86          | 1.91          |
| 14        | 1.23          | 1.28          | 1.33          | 1.38          | 1.42          | 1.47          | 1.52          | 1.56          | 1.61          | 1.66          | 1.71          | 1.75          | 1.80          | 1.85          |
| 15        | -I.2I         | <b>—1.2</b> 6 | -1.30         | <b>—1.35</b>  | <b>—</b> 1.40 | —I.44         | <b>_J</b> .49 | -1.54         | <u>-1.58</u>  | <b>—1.63</b>  | -1.67         | —I.72         | —I.77         | -1.81         |
| 16<br>17  | 1.19          | 1.23          | I.28<br>I.25  | I.32<br>I.20  | I.37<br>I.34  | I.4I<br>I.38  | I.46<br>I.43  | I.50<br>I.47  | I.55<br>I.52  | 1.60<br>1.56  | 1.64          | 1.69          | I.73<br>I.69  | 1.78          |
| 18        | 1.13          | 1.18          | 1.22          | 1.26          | 1.31          | 1.35          | 1.39          | 1.44          | 1.48          | 1.52          | 1.57          | 1.61          | 1.65          | 1.70          |
| 19        | 1.10          | 1.15          | 1.19          | 1.23          | 1.27          | 1.32          | 1.36          | 1.40          | 1.44          | 1.48          | 1.53          | 1.57          | 1.61          | 1.65          |
| 20        | -I.07<br>I.04 | 1.11          | -1.16<br>1.12 | -1.20<br>1.16 | -I.24<br>I.20 | -1.28<br>1.24 | -I.32<br>I.28 | —I.36<br>I.32 | -1.40<br>1.36 | -1.44<br>1.40 | -I.49<br>I.44 | -1.53<br>1.48 | -1.57<br>1.52 | -1.61<br>1.56 |
| 22        | 1.01          | 1.05          | 1.09          | 1.13          | 1.16          | 1.20          | 1.24          | 1.28          | 1.32          | 1.36          | 1.40          | 1.44          | 1.48          | 1.51          |
| 23<br>24  | 0.98          | 0.98          | 1.05          | I.09<br>I.05  | 1.13          | I.16<br>I.12  | I.20<br>I.16  | I.24<br>I.19  | I.28<br>I.23  | I.31<br>I.27  | 1.35          | I.39<br>I.34  | 1.43          | 1.46          |
| 25        | -0.90         | -0.94         | -0.97         | —I.0I         | —I.04         | -1.08         | -1.11         | -1.15         |               |               | —I.25         | —I.29         | <b>—</b> 1.32 | —ı.36         |
| 26        | 0.87          | 0.90          | 0.93          | 0.97          | 1.00          | 1.03          | 1.07          | 1.10          | 1.13          | 1.17          | 1.20          | 1.23          | 1.27          | 1.30          |
| 27<br>28  | 0.83          | 0.86          | 0.89          | 0.92          | 0.96          | 0.99          | I.02          | I.05<br>I.00  | 1.08          | 1.12          | 1.15          | 1.18          | 1.21          | 1.24          |
| 29        | 0.75          | 0.78          | 0.81          | 0.84          | 0.86          | 0.89          | 0.92          | 0.95          | 0.98          | 1.01          | 1.04          | 1.07          | 1.10          | 1.12          |
| 30        | -0.71         | -0.74         | -0.76         | -0.79         | -0.82         | -o.85         | -0.87         | -0.90         | -0.93         | -0.95         | -0.98         | -1.01         | -1.04         | -I.06         |
| 3I<br>32  | 0.62          | 0.69          | 0.72          | 0.74          | 0.77          | 0.80<br>9.74  | 0.82          | 0.85          | 0.87          | 0.90          | 0.92          | 0.95          | 0.98          | I.00<br>0.94  |
| 33        | 0.58          | 0.60          | 0.63          | 0.65          | 0.67          | 0.69          | 0.72          | 0.74          | 0.76          | 0.78          | 0.80          | 0.83          | 0.85          | 0.87          |
| 34        | 0.54          | 0.56          | 0.58          | 0.60          | 0.62          | 0.64          | 0.66          | 0.68          | 0.70          | 0.72          | 0.74          | 0.76          | 0.79          | 0.81          |
| <b>35</b> | -0.49<br>0.45 | 0.46          | -0.53<br>0.48 | -0.55<br>0.50 | -0.57<br>0.52 | -0.59<br>0.53 | -0.61<br>0.55 | -0.63<br>0.57 | -0.64<br>0.58 | -0.66<br>0.60 | -0.68<br>0.62 | -0.70<br>0.64 | -0.72<br>0.65 | 0.74          |
| 37<br>38  | 0.40          | 0.42          | 0.43          | 0.45          | 0.46          | 0.48          | 0.49          | 0.51          | 0.52          | 0.54          | 0.56          | 0.57          | 0.59          | 0.60          |
| 38        | 0.36          | 0.37          | 0.38          | 0.40          | 0.41          | 0.42          | 0.44          | 0.45          | 0.46          | 0.48          | 0.49          | 0.51          | 0.52          | 0.53          |
| 40        | -0.26-        | -0.27         | -0.28         |               |               |               |               |               | -0.34         | -0.35         | <b>-</b> 0.36 | -0.37         | -0.38         | -0.39         |
| 41        | 0.21          | 0.22          | 0.23          | -0.29<br>0.24 | -0.30<br>0.25 | -0.31<br>0.26 | 0.32          | -0.33<br>0.27 | 0.28          | 0.29          | 0.30          | 0.30          | 0.31          | 0.32          |
| 42   43   | 0.17          | 0.17          | 0.18          | 0.19          | 0.19          | 0.20<br>0.14  | 0.21          | 0.21          | 0.22          | 0.22          | 0.23          | 0.24          | 0.24          | 0.25          |
| 44        | 0.07          | 0.07          | 0.08          | 0.08          | 0.08          | 0.08          | 0.09          | 0.09          | 0.09          | 0.10          | 0.10          | 0.10          | 0.10          | 0.11          |
| 45        | -0.02         | -0.02         | -0.03         | -0.03         | -0.03         | -0.03         | -0.03         | -0.03         | -0.03         | -0.03         | -0.03         | -0.03         | -0.03         | -0.04         |
|           |               |               |               | -1            |               |               | (             | - 1           | 1             |               |               |               |               |               |

<sup>\* &</sup>quot; Smithsonian Meteorological Tables."

#### METRIC MEASURES.

From Latitude 46° to 90°, the Correction is to be Added.

| Lati-                      | 520                                   | 540                           | 560                           | 580                           | 600                           | 620                           | 640                           | 660                           | 680                           | 700                           | 720                           | 740                           | 760                           | 780                           |
|----------------------------|---------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| 45                         | mm.                                   | mm.                           | mm.                           | mm.<br>0.03                   | mm.                           | mm.<br>0.03                   | mm.                           | mm.                           | mm.<br>0.03                   | mm.                           | mm.                           | mm.                           | mm.<br>—0.03                  | mm.<br>—0.04                  |
| 46<br>47<br>48<br>49<br>50 |                                       | +0.03<br>0.08<br>0.12<br>0.17 | +0.03<br>0.08<br>0.13<br>0.18 | +0.03<br>0.08<br>0.13<br>0.19 | +0.03<br>0.08<br>0.14<br>0.19 | +0.03<br>0.09<br>0.14<br>0.20 | +0.03<br>0.09<br>0.15<br>0.21 | +0.03<br>0.09<br>0.15<br>0.21 | +0.03<br>0.09<br>0.16<br>0.22 | +0.03<br>0.10<br>0.16<br>0.23 | +0.03<br>0.10<br>0.17<br>0.23 | +0.03<br>0.10<br>0.17<br>0.24 | +0.04<br>0.10<br>0.18<br>0.25 | +0.04<br>0.11<br>0.18<br>0.25 |
| 51<br>52<br>53<br>54<br>55 | +0.26<br>0.31<br>0.36<br>0.40<br>0.45 | 0.32<br>0.37<br>0.42          | 0.33<br>0.38<br>0.43          | 0.34<br>0.40<br>0.45          | 0.36<br>0.41<br>0.46          | 0.37<br>0.42<br>0.48          | 0.38<br>0.44<br>0.49          | 0.39<br>0.45<br>0.51          | 0.40<br>0.46<br>0.52          | 0.42<br>0.48<br>0.54          | 0.43<br>0.49<br>0.56          | 0.44<br>0.51<br>.057          | 0.45<br>0.52<br>0.59          | 0.53<br>0.60                  |
| 56<br>57<br>58<br>59<br>60 | 0.54<br>0.58<br>0.62<br>0.66          | 0.56<br>0.60<br>0.65<br>0.69  | 0.58<br>0.62<br>0.67<br>0.72  | 0.60<br>0.65<br>0.69<br>0.74  | 0.62<br>0.67<br>0.72<br>0.77  | 0.64<br>0.69<br>0.74<br>0.79  | 0.66<br>0.71<br>0.77<br>0.82  | 0.68<br>0.74<br>0.79<br>0.84  | 0.70<br>0.76<br>0.81<br>0.87  | 0.72<br>0.78<br>0.84<br>0.89  | 0.74<br>0.80<br>0.86<br>0.92  | 0.76<br>0.82<br>0.89<br>0.94  | 0.78<br>0.85<br>0.91<br>0.97  | 0.87<br>0.93<br>1.00          |
| 61<br>62<br>63<br>64<br>65 | +0.71<br>0.74<br>0.78<br>0.82<br>0.86 | 0.77<br>0.81<br>0.85          | 0.80<br>0.85<br>0.89          | 0.83<br>0.88<br>0.92          | 0.85                          | 0.88<br>0.94<br>0.98          | 0.91<br>0.97<br>1.01          | 0.94<br>1.00<br>1.04          | 0.97<br>1.03<br>1.08          | 1.00                          | I.02<br>I.09<br>I.14          | I.05<br>I.12<br>I.17          | I.08<br>I.15<br>I.20          | I.18<br>I.23                  |
| 66<br>67<br>68<br>69<br>70 | +0.90<br>0.93<br>0.97<br>1.00<br>1.03 | 0.97<br>1.00                  | I.00<br>I.04<br>I.08          | 1.04<br>1.08<br>1.11          | 1.11                          | I.11<br>I.15<br>I.19          | 1.15<br>1.19<br>1.23          | I.18<br>I.23<br>I.27          | I.26<br>I.31                  | I.25<br>I.30<br>I.34          | I.29<br>I.34<br>I.38          | I.33<br>I.37<br>I.42          | 1.36<br>1.41<br>1.46          | I.40<br>I.45<br>I.50          |
| 71<br>72<br>73<br>74<br>75 | +1.06<br>1.09<br>1.12<br>1.14<br>1.17 | 1.13                          | I.17<br>I.20<br>I.23          | I.22<br>I.25<br>I.28          | I.20<br>I.29<br>I.32          | 1.30                          | I · 34<br>I · 37<br>I · 41    | I.42<br>I.45                  | 1.46                          | I.47<br>I.50<br>I.54          | I.51<br>I.55<br>I.58          | I.55<br>I.59<br>I.63          | 1.59<br>1.63<br>1.67          | 1.63<br>1.67<br>1.72          |
| 76<br>77<br>78<br>79<br>80 | 1.21<br>1.23<br>1.25<br>1.27          | 1.28<br>1.30<br>1.32          | 1.31<br>1.33<br>1.35<br>1.37  | 1.35<br>1.38<br>1.40<br>1.42  | 1.40<br>1.42<br>1.45<br>1.47  | 1.45<br>1.47<br>1.49<br>1.51  | 1.49<br>1.52<br>1.54<br>1.56  | 1.54<br>1.57<br>1.59<br>1.61  | 1.59<br>1.61<br>1.64<br>1.66  | 1.63<br>1.66<br>1.69<br>1.71  | 1.68<br>1.71<br>1.73<br>1.76  | 1.73<br>1.76<br>1.78<br>1.81  | 1.77<br>1.80<br>1.83<br>1.86  | 1.88                          |
| 81<br>82<br>83<br>84<br>85 | +1.29<br>1.30<br>1.31<br>1.32<br>1.33 | 1.35<br>1.36<br>1.37          | 1.40<br>1.41<br>1.42          | 1.45<br>1.46<br>1.48          | 1.50<br>1.51<br>1.53          | 1.55<br>1.56<br>1.58          | 1.60<br>1.61<br>1.63          | 1.65<br>1.67<br>1.68          | 1.70<br>1.72<br>1.73          | 1.75<br>1.77<br>1.78          | 1.80<br>1.82<br>1.83          | 1.85<br>1.87<br>1.88          | 1.90<br>1.92<br>1.93          | 1.97                          |
| 90                         | +1.35                                 | +1.41                         | +1.46                         | +1.51                         | +1.56                         | +1.61                         | +1.67                         | +1.72                         | +1.77                         | +1.82                         | +1.87                         | +1.93                         | +1.98                         | +2.03                         |

#### ENGLISH MEASURES.

From Latitude o° to 45°, the Correction is to be Subtracted.

| Lati- | 19              | 20              | 21              | 22              | 23              | 24              | 25              | 26     | 27     | 28             | 29              | 30     |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|--------|----------------|-----------------|--------|
| rude. |                 |                 |                 |                 |                 |                 |                 |        |        |                |                 |        |
|       | Inch.           | Inch.  | Inch.  | Inch.          | Inch.           | Inch.  |
| 0     | -0.051          | -0.054          | -0.056          | -0.059          | -0.062          | -0.064          | -0.067          | -0.070 | -0.072 | -0.075         | -0.078          | -0.080 |
| 5     | 0 0 70          | 0.053           | -0.055          | 0.058           | 0.061           | 0.060           | 0 066           | 0.060  | 0.07   |                |                 |        |
| 6     | -0.050<br>0.050 | -0.053<br>0.052 | -0.055<br>0.055 | -0.058<br>0.058 | -0,061<br>0.060 | -0.063<br>0.063 | -0.066<br>0.066 |        |        | 0.074          | -0.077<br>0.076 | 0.079  |
|       | 0.049           | 0.052           | 0.055           | 0.057           | 0.060           |                 | 0.065           |        | 0.070  | 0.073          | 0.075           |        |
| 7 8   | 0.049           | 0'052           |                 | 0.057           | 0.059           | 0.062           | 0.064           |        | 0.070  | 0.072          | 0.075           |        |
| 9     | 0.048           | 0.051           | 0.054           | 0.056           | 0.059           | 0.061           | 0.064           | 0.066  | 0.069  | 0.071          | 0.074           | 0.076  |
| 10    | -0.048          | -0.050          | -o.o53          | -o.o55          | -o.o58          | -0.060          | -0.063          | -0.066 | -o.o68 | -0.07I         | -0.073          | -0.076 |
| II    | 0.047           | 0.050           |                 | 0.055           | 0.057           | 0.060           | 0.062           |        | 0.067  | 0.070          | 0.072           |        |
| 12    | 0.047           | 0.049           | 0.051           | 0.054           | 0.056           |                 | 0.061           |        | 0.066  | 0.069          | 0.071           | 0.074  |
| 13    | 0.046           | 0.048           |                 | 0.053           | 0.055           | 0.058           | 0.060           |        | 0.065  | 0.068          | 0.070           | 0.072  |
| 14    | 0.045           | 0.047           | 0.050           | 0.052           | 0.055           | 0.057           | 0.059           | 0.062  | 0.064  | 0,066          | 0.069           | 0.071  |
| 15    | -0.044          | -0.047          | -0.049          | -0.051          | -0.053          | -o.o56          | -o.o58          | 0,060  | -0.063 | -0.065         | -0.067          | -0.070 |
| 16    | 0.043           | 0.046           |                 | 0.050           | 0.052           | 0.055           | 0.057           |        | 0.062  | 0.064          | 0.066           |        |
| 17    | 0.042           | 0.045           | 0.047           | 0.049           | 0.051           | 0.053           | 0.056           | 0.058  | 0.060  | 0.062          | 0.065           | 0.067  |
| 18    | 0.041           | 0.044           |                 | 0.048           | 0.050           |                 | 0.054           |        | 0.059  | 0.061          | 0.063           |        |
| 19    | 0.040           | 0.042           | 0.045           | 0.047           | 0.049           | 0.051           | 0.053           | 0.055  | 0.057  | 0.059          | 0.062           | 0.064  |
| 20    | -0.039          | -0.041          | -0.043          | -0.045          | -0.047          | -0.050          | -0.052          | -0.054 | -0.056 | -0.058         | -0.060          | -0.062 |
| 21    | 0.038           | 0.040           |                 | 0.044           | 0.046           |                 | 0.050           |        | 0.054  | 0.056          |                 |        |
| 22    | 0.037           | 0.039           | 0.041           | 0.043           | 0.045           | 0.047           | 0.049           |        |        | 0.054          | 0.056           |        |
| 23    | 0.036           | 0.038           | 0.039           | 0.041           | 0.043           | 0.045           | 0.047           |        | 0.051  | 0.053          | 0.054           | 0.056  |
| 24    | 0.034           | 0.036           | 0.038           | 0.040           | 0.042           | 0.043           | 0.045           | 0.047  | 0.049  | 0.051          | 0.052           | 0.054  |
| 25    | -0.033          | -0.035          | -0.037          | -o.o38          | -0.040          | -0.042          | -0.043          | -0.045 | -0.047 | -0.049         | -0.050          | -0.052 |
| 26    | 0.032           | 0.033           |                 | 0.037           | 0.038           |                 | 0.043           |        |        | 0.047          | 0.048           |        |
| 27    | 0.030           | 0.032           |                 | 0.035           | 0.037           | 0.038           | 0.040           |        | 0.043  | 0.045          | 0.046           |        |
| 28    | 0.029           | 0.030           |                 | 0.033           | 0.035           | 0.036           | 0.038           |        | 0.041  | 0.043          |                 | 0.046  |
| 29    | 0.027           | 0.029           | 0.030           | 0.032           | 0.033           | 0.035           | 0.036           | 0.037  | 0.039  | 0.040          | 0.042           | 0.043  |
| 30    | -0.026          | -0.027          | -0.029          | -0.030          | -o.o31          | -0.033          | -0.034          | -0.035 | -0.037 | <b>—</b> о.о38 | -0.040          | -0.04! |
| 31    | 0.024           | 0.026           |                 | 0.028           | 0.030           |                 | 0.032           |        | 0.035  | 0.036          | 0.037           | 0.038  |
| 32    | 0.023           | 0.024           |                 | 0.026           | 0.028           |                 | 0.030           |        | 0.032  | 0 034          | 0.035           |        |
| 33    | 0.021           | 0.022           |                 | 0.025           | 0.026           |                 | 0.028           |        | 0.030  | 0.031          | 0.032           |        |
| 34    | 0.020           | 0.021           | 0.022           | 0.023           | 0.024           | 0.025           | 0.026           | 0.027  | 0.028  | 0.029          | 0.030           | 0.031  |
| 35    | -0.018          | -0.019          | -0.020          | -0.021          | -0.022          |                 | -0.024          | -0.025 | -0.026 | -0.027         | -0.027          | -0.028 |
| 36    | 0.016           | 0.019           |                 | 0.021           | 0.022           |                 | 0.024           |        | 0.023  | 0.024          | 0.025           | 0.026  |
| 37    | 0.015           | 0.015           |                 | 0.017           | 0.028           |                 | 0.019           |        | 0.021  | 0.022          | 0.022           | 0.023  |
| 38    | 0.013           | 0.014           |                 | 0.015           | 0.016           |                 | 0.017           | 0.018  | 0.018  | 0.019          | 0.020           | 0.020  |
| 39    | 0.011           | 0.012           | 0.012           | 0.013           | 0.014           | 0.014           | 0.015           | 0.015  | 0.016  | 0.017          | 0.017           | 0.018  |
| 40    | -0.010          | -0.010          | -0.011          | -0.011          | -0.070          | -0.070          |                 | -0 OT2 | -0.014 | -0.014         | -o.015          | -0.015 |
| 41    | 0.008           | 0.008           |                 | 0.000           | -0.012          | -0.012<br>0.010 | -0.013<br>0.010 |        | 0.011  | 0.012          | 0.013           | 0.013  |
| 42    | 0.006           | 0.006           | 0.007           | 0.007           | 0.007           | 0.008           | 0.008           |        | 0.009  | 0.009          | 0.009           |        |
| 43    | 0.004           | 0.005           | 0.005           | 0.005           | 0.005           | 0.005           | 0.006           |        | 0.006  | 0.006          | 0.007           | 0.007  |
| 44    | 0.003           | 0.003           | 0.003           | 0.003           | 0.003           | 0.003           | 0.003           | 0.004  | 0.004  | 0.004          | 0.004           | 0.004  |
| 45    |                 |                 | 0.00*           | -0.00*          | -0.00*          | _0.007          |                 | -0.001 | -0.001 | -0.001         | -0.001          | -0.001 |
| 40 1  | 0.001           | 0.001           | -0.001          | -0.001          | 0.001           | -0.001          | -0.001          | 0.001  | 0.001  | 0.001          | 0.001           | 0.001  |

<sup>\* &</sup>quot; Smithsonian Meteorological Tables."

ENGLISH MEASURES.

From Latitude 46° to 90° the Correction is to be Added.

| 1              |        | 1      |        |        |        |        |        |        | 1      |        |        |        |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Lati-<br>tude. | 19     | 20     | 21     | 22     | 23     | 24     | 25     | 26     | 27     | 28     | 29     | 30     |
|                | Inch.  |
| 45             | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 |
| 46             | +0.001 | +0.001 | +0.001 | +0.001 | +0.001 | +0.001 | +0.001 | +0.001 | +0.001 | +0.001 | +0.001 | +0.001 |
| 47             | 0.003  |        |        |        |        |        |        |        | 1      | 1      |        |        |
| 48             | 0.004  | 1      |        |        |        |        |        | -      |        |        |        | 0.007  |
| 50             | 0.008  |        |        |        |        |        |        | _      |        |        |        |        |
| 51             | +0.010 | +0.010 | +0.011 | +0.011 | +0.012 | +0.012 | +0.013 | +0.013 | +0.014 | +0.014 | +0.015 | +0.015 |
| 52             | 0.011  |        |        |        |        |        |        |        |        |        |        | 0.018  |
| 53             | 0.013  |        | 1 4    |        |        |        | ,      |        |        | _      |        |        |
| 54             | 0.015  |        |        |        | 1      |        |        |        |        | 0.022  |        | 9      |
| 55             | 0.010  | 0.017  | 0.018  | 0.019  | 0.020  | 0.021  | 0.021  | 0.022  | 0.023  | 0.024  | 0.025  | 0.020  |
| 56             |        |        |        |        |        |        |        |        |        |        |        | +0.028 |
| 57             | 0.020  |        |        | 0.023  | 0.024  |        | 0.026  |        | 0.028  |        |        |        |
| 58             | 0.021  |        |        | 0.025  | 0.026  |        | 0.028  |        | -      | -      |        | 00     |
| 59             | 0.023  |        | 0.025  | 0.026  |        | -      | 0.030  |        | -      |        | -      |        |
|                |        |        |        |        |        |        |        |        |        |        |        |        |
| 61             |        |        |        |        |        |        |        |        |        |        |        | +0.041 |
| 62             | 0.027  | 0.029  |        |        |        | 0.034  | 0.036  |        | 0.039  | 0.040  |        |        |
| 63             | 0.029  | -      |        | 0.033  | 0.035  | - 0    |        |        | 0.041  | 0.042  | 1      | 10     |
| 65             | 0.031  |        |        | 0.035  |        |        |        |        | 0.043  | 0.044  |        |        |
|                |        |        |        |        |        |        |        |        |        |        | ·      |        |
| 66             |        |        |        |        |        |        |        |        |        |        |        | +0.052 |
| 67             | 0.034  | -      | 0 -    |        |        |        |        |        | 0.048  |        |        |        |
| 60             | 0.035  |        | 0.039  | 0.041  | , ,    | 0.045  | 0.046  |        |        |        |        | 0.056  |
| 70             | 0.038  |        |        |        | 1 1    |        |        |        | -      | 0.055  |        | 0.059  |
|                |        |        |        |        |        |        |        |        |        |        |        |        |
| 71             | 0.040  | 0.041  |        |        |        |        |        |        |        |        | +0.059 |        |
| 72 73          | 0.040  |        |        | 0.046  | 0.048  | -      | -      |        |        | 0.059  |        | 0.063  |
| 74             | 0.042  | - 10   |        |        | 12     | 5-     | 0.055  |        | 0 -    | 0.062  |        | 0.066  |
| 75             | 0.043  |        |        | 0.049  |        |        |        |        |        | 0.063  |        | 0.067  |
| 76             | +0.044 | +0.046 | +0.048 | +0.050 | +0.053 | +0.055 | +0.057 | +0.060 | +0.062 | +0.064 | 0.066  | 0.060  |
|                | 0.044  | 0.047  | 0.049  | 0.051  |        |        |        |        | 0.063  | 0.065  | 0.068  | 0.070  |
| 77<br>78       | 0.045  | 0.047  | 0.050  |        | 0 1    | 0.057  | 0.059  | -      | 0.064  | 0.066  |        | 0.071  |
| 79<br>80       | 0.046  |        | 0 -    | 0.053  | 0.055  | 0.058  | 0.060  | 0.063  | 0.065  | 0.067  | 0.070  | 0.072  |
| 80             | 0.046  | 0.049  | 0.051  | 0.054  | 0.056  | 0.059  | 0.061  | 0.063  | 0.066  | 0.068  | 0.071  | 0.073  |
| 81             | +0.047 | +0.049 | +0.052 | +0.054 | +0.057 | +0.059 | +0.062 | +0.064 | +0.067 | +0.069 | +0.072 | +0.074 |
| 82             | 0.047  | 0.050  | 0.052  | 0.055  | 0.057  | 0.060  | 0.062  | 0.065  | 0.067  | 0.070  | 0.072  | 0.075  |
| 83             | 0.048  |        |        |        |        | _      | 0.063  |        | 0.068  | 0.071  |        | 0.076  |
| 85             | 0.048  |        |        |        |        | 0.061  | 0.064  | 0.066  | 0.069  | 0.071  |        | 0.076  |
|                | 0.049  | 0.031  | 0.034  | 0.030  | 0.059  | 0.001  | 0.004  | 0.007  | 0.009  | 0.0/2  | 0.0/4  | 0.0//  |
| 90             | +0.049 | +0.052 | +0.055 | +0.057 | +0.060 | +0.062 | +0.065 | +0.068 | +0.070 | +0.073 | +0.075 | +0.078 |

<sup>\* &</sup>quot; Smithsonian Meteorological Tables."

#### TABLE 124. - Correction of the Barometer for Capillarity.\*

|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | ı. Men | TRIC MEA      | SURE.         |          | 4   |     |  |  |  |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------|---------------|---------------|----------|-----|-----|--|--|--|--|
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | Неібнт | of Menis      | cus in Mili   | IMETERS. |     |     |  |  |  |  |
| Diameter<br>of tube<br>in mm.                        | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6                          | 0.8    | 1.0           | 1.2           | 1.4      | 1.6 | 1.8 |  |  |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | Correc | ction to be a | dded in milli | meters.  |     |     |  |  |  |  |
| 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13   | 0.83<br>.47<br>.27<br>.18<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .47 0.65 0.86 1.19 1.45 1.80 |        |               |               |          |     |     |  |  |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | 2. Bri | TISH MEA      | SURE.         |          |     |     |  |  |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | Нви    | GHT OF ME     | INISCUS IN I  | NCHES.   |     |     |  |  |  |  |
| Diameter<br>of tube<br>in inches.                    | .01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .02                          | .03    | .04           | .05           | .06      | 07  | .08 |  |  |  |  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | Cor    | rection to be | e added in in | ches.    |     |     |  |  |  |  |
| .15<br>.20<br>.25<br>.30<br>.35<br>.40<br>.45<br>.50 | 0.024         0.047         0.069         0.092         0.116         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - |                              |        |               |               |          |     |     |  |  |  |  |

<sup>\*</sup> The first table is from Kohlrausch (Experimental Physics), and is based on the experiments of Mendelejeff and Gutkowski (Jour. de Phys. Chem. Geo. Petersburg, 1877, or Wied. Beib. 1877). The second table has been calculated from the same data by conversion into inches and graphic interpolation.

TABLE 125. - Volume of Mercury Meniscus in Cu. Mm.

| Height of           |                                       |                          |                          |                                 | Diamete                         | r of tube                       | in mm.                          |                                 |                                 |                                 |                                 |
|---------------------|---------------------------------------|--------------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| mm. 1.6 1.8 2.0 2.2 | 14<br>157<br>181<br>206<br>233<br>262 | 185<br>211<br>240<br>271 | 214<br>244<br>278<br>313 | 245<br>281<br>319<br>358<br>400 | 280<br>320<br>362<br>406<br>454 | 318<br>362<br>409<br>459<br>511 | 356<br>407<br>460<br>515<br>573 | 398<br>455<br>513<br>574<br>639 | 444<br>507<br>571<br>637<br>708 | 49 <sup>2</sup> 560 631 704 781 | 541<br>616<br>694<br>776<br>859 |
| 2.4                 | 291                                   | 303                      | 350<br>388               | 444                             | 503                             | 565                             | 633                             | 706                             | 782                             | 862                             | 948                             |

### BAROMETRIC PRESSURES CORRESPONDING TO THE TEMPERATURE OF THE BOILING POINT OF WATER.

Useful when a boiling-point apparatus is used in the determination of heights. Copied from the Smithsonian Meteorological Tables, 4th revised edition.

(A) METRIC UNITS.

| Tem-<br>perature.                | .0                                          | .1                                                       | .2                                          | .3                                                       | .4                              | .5                                          | .6                                   | .7                                          | .8                                                       | .9                                                       |
|----------------------------------|---------------------------------------------|----------------------------------------------------------|---------------------------------------------|----------------------------------------------------------|---------------------------------|---------------------------------------------|--------------------------------------|---------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| C<br>80°<br>81<br>82<br>83       | mm.<br>355.40<br>370.03<br>385.16<br>400.81 | mm.<br>356.84<br>371.52<br>386.70<br>402.40              | mm.<br>358.28<br>373.01<br>388.25<br>404.00 | mm.<br>359·73<br>374·51<br>389.80<br>405.61              | mm. 361.19 376.02 391.36 407.22 | mm.<br>362.65<br>377.53<br>392.92<br>408.83 | 410.45                               | mm.<br>365.58<br>380.57<br>396.06<br>412.08 | mm. 367.06 382.09 397.64 413.71                          | mm.<br>368.54<br>383.62<br>399.22<br>415.35              |
| 84<br>85<br>86<br>87<br>88<br>89 | 468.84                                      | 418.64<br>435.41<br>452.75<br>470.66<br>489.16<br>508.26 | 437.12<br>454.51<br>472.48                  | 421.95<br>438.83<br>456.28<br>474.31<br>492.93<br>512.15 | 458.06                          | 459.84                                      | 444.01<br>461.63<br>479.83<br>498.63 | 445·75<br>463·42                            | 430.32<br>447.49<br>465.22<br>483.54<br>502.46<br>521.99 | 432.01<br>449.24<br>467.03<br>485.41<br>504.39<br>523.98 |
| 90<br>91<br>92<br>93<br>94       | 525.97<br>546.26<br>567.20                  | 527.97<br>548.33<br>569.33<br>591.00<br>613.35           | 529.98<br>550.40<br>571.47                  | 531.99<br>552.48<br>573.61<br>595.41<br>617.90           | 534.01<br>554.56<br>575.76      | 536.04<br>556.65                            | 538.07<br>558.75<br>580.08<br>602.09 | 540.11<br>560.85<br>582.25                  | 542.15<br>562.96<br>584.43<br>606.57<br>629.41           | 544.21                                                   |
| 95<br>96<br>97<br>98<br>99       | 657.75<br>682.18<br>707.35                  | 660.16                                                   | 662.58<br>687.15<br>712.47                  | 665.00                                                   | 667.43<br>692.15<br>717.63      | 669.87                                      | 697.19                               | 674.77                                      | 652.96<br>677.23<br>702.25<br>728.03<br>754.59           | 679.70                                                   |
| 100                              | 760.00                                      | 762.72                                                   | 765.44                                      | 768.17                                                   | 770.91                          | 773.66                                      | 776.42                               | 779.18                                      | 781.95                                                   | 784.73                                                   |

|                  |         |         |         | (B) EN  | GLISH . | UNITS.  |         |         |         |         |
|------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Tem-<br>perature | .0      | .1      | .2      | .3      | .4      | .5      | .6      | .7      | .8      | .9      |
| F.               | Inches. |
| 185°             | 17.075  | 17.112  | 17.150  | 17.187  | 17.224  | 17.262  | 17.300  | 17.337  | 17.375  | 17.413  |
| 186              | 17.450  | 17.488  | 17.526  | 17.564  | 17.602  | 17.641  | 17.679  | 17.717  | 17.756  | 17.794  |
| 187              | 17.832  | 17.871  | 17.910  | 17.948  | 17.987  | 18.026  |         | 18.104  | 18.143  | 18.182  |
| 188              | 18.221  | 18.261  | 18.300  | 18.340  | 18.379  |         | 18.458  | 18.498  | 18.538  | 18.578  |
| 189              | 18.618  | 18.658  | 18.698  | 18.738  | 18.778  | 18.818  | 18.859  | 18.899  | 18.940  | 18.980  |
| 190              | 19.021  | 19.062  | 19.102  | 19.143  | 19.184  | 19.225  | 19.266  | 19.308  | 19.349  | 19.390  |
| 191              | 19.431  | 19.473  | 19.514  | 19.556  | 19.598  | 19.639  |         | 19.723  | 19.765  | 19.807  |
| 192              | 19.849  | 19.892  | 19.934  | 19.976  | 20.019  | 20.061  | 20.104  | 20.146  | 20.189  | 20.232  |
| 193              | 20.275  | 20.318  | 20.361  |         |         | 20.490  | 20.533  | 20.577  | 20.620  | 20.664  |
| 194              | 20.707  | 20.751  | 20.795  | 20.839  | 20.883  | 20.927  | 20.971  | 21.015  | 21.059  | 21.103  |
| 195              | 21.148  | 21.192  | 21.237  | 21.282  | 21.326  | 21.371  | 21.416  | 21.461  | 21.506  | 21.551  |
| 196              | 21.597  | 21.642  | 21.687  | 21.733  | 21.778  | 21.824  |         | 21.015  | 21.961  | 22.007  |
| 197              | 22.053  | 22.099  | 22.145  | 22.192  | 22.238  | 22.284  | 22.331  | 22.377  | 22.424  | 22.471  |
| 198              | 22.517  |         | 22.611  |         |         | 22.752  | 22.800  | 22.847  | 22.895  | 22.942  |
| 199              | 22.990  | 23.038  | 23.085  | 23.133  | 23.181  | 23.229  | 23.277  | 23.325  | 23.374  | 23.422  |
| 200              | 23.470  | 23.519  | 23.568  | 23.616  | 23.665  | 23.714  | 23.763  | 23.812  | 23.861  | 23,910  |
| 201              | 23.959  | 24.009  | 24.058  | 24.108  |         | 24.207  |         | 24.307  |         | 24.407  |
| 202              | 24.457  | 24.507  |         | 24.608  | 24.658  | 24.709  | 24.759  | 24.810  | 24.861  | 24.912  |
| 203              | 24.963  |         | 25.065  | 25.116  | 25.168  |         | 25.271  | 25.322  |         | 25.426  |
| 204              | 25.478  | 25.530  | 25.582  | 25.634  | 25.686  | 25.738  | 25.791  | 25.843  | 25.896  | 25.948  |
| 205              | 26.001  | 26.054  | 26.107  | 26.160  | 26.213  | 26.266  | 26.310  | 26.373  | 26.426  | 26.480  |
| 206              | 26.534  | 26.587  | 26.641  | 26.695  |         |         | 26.857  | 26.912  |         | 27.021  |
| 207              | 27.075  |         | 27.184  |         |         |         | 27.404  | 27.460  | 27.515  | 27.570  |
| 208              | 27.626  | 27.681  | 1 101   | 27.793  |         |         | 27.960  | 28.016  |         | 28.129  |
| 209              | 28.185  | 28.242  | 28.298  | 28.355  | 28.412  | 28.469  | 28.526  | 28.583  | 28.640  | 28.697  |
| 210              | 28.754  |         |         | 28.927  | 28.985  | 29.042  | 29.100  | 29.158  | 29.216  | 29.275  |
| 211              | 29.333  | 29.391  |         | 29.508  | 29.567  | 29.626  | 29.685  |         | 29.803  | 29.862  |
| 212              | 29.921  | 29.981  |         | 30.100  |         | 30,210  | 30,270  | 30.330  | 30.300  | 30.450  |
| 213              | 30.519  | 30.580  | 30.640  | 30.701  | 30.761  | 30.822  | 30 883  | 30.044  | 31.005  | 31 066  |

#### DETERMINATION OF HEIGHTS BY THE BAROMETER.

Formula of Babinet: 
$$Z = C \frac{B_0 - B}{B_0 + B}$$
.  
 $C$  (in feet) = 52494  $\left[1 + \frac{t_0 + t - 64}{900}\right]$  English measures.  
 $C$  (in meters) = 16000  $\left[1 + \frac{2(t_0 + t)}{1000}\right]$  metric measures.

In which Z = difference of height of two stations in feet or meters.  $B_0$ , B = barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.

 $t_0$ , t = air temperatures at the lower and upper stations respectively.

Values of C.

| Eng                         | LISH MEAS                                 | URES.                                  | ME                         | TRIC MEAS                                 | URES.                                           |
|-----------------------------|-------------------------------------------|----------------------------------------|----------------------------|-------------------------------------------|-------------------------------------------------|
| $\frac{1}{2}(t_0+t).$       | С                                         | Log C                                  | $\frac{1}{2}(t_0+t).$      | С                                         | Log C                                           |
| Fahr. 10° 15 20 25          | Feet.<br>49928<br>50511<br>51094<br>51677 | 4.69834<br>•7°339<br>4.7°837<br>•7133° | Cent10° -8 -6 -4 -2        | Meters.  15360 15488 15616 15744 15872    | 4.18639<br>.19000<br>.19357<br>.19712<br>.20063 |
| 30<br>35<br>40<br>45        | 52261<br>52844<br>53428<br>54011          | 4.71818<br>.72300<br>4.72777<br>.73248 | 0<br>+ 2<br>4<br>6<br>8    | 16000<br>16128<br>16256<br>16384<br>16512 | 4.20412<br>.20758<br>.21101<br>.21442<br>.21780 |
| <b>50</b> 55                | 54595<br>55178                            | 4.73715<br>.74177                      | 10                         | 16640<br>16768                            | 4.22115                                         |
| <b>60</b> 65                | 55761<br>56344                            | 4.74633<br>.75085                      | 14<br>16<br>18             | 16896<br>17024<br>17152                   | .22778<br>.23106<br>.23431                      |
| 70<br>75<br><b>80</b><br>85 | 56927<br>57511<br>58094<br>58677          | 4.75532<br>.75975<br>4.76413<br>.76847 | 20<br>22<br>24<br>26<br>28 | 17280<br>17408<br>17536<br>17664<br>17792 | 4.23754<br>.24075<br>.24393<br>.24709<br>.25022 |
| 90<br>95<br>100             | 59260<br>59844<br>60427                   | 4.77276<br>.77702<br>4.78123           | 30<br>32<br>34<br>36       | 17920<br>18048<br>18176<br>18304          | 4.25334<br>.25643<br>.25950<br>.26255           |

Values only approximate. Not good for great altitudes. A more accurate formula with corresponding tables may be found in Smithsonian Meteorological Tables.

#### VELOCITY OF SOUND IN SOLIDS.

The velocity of sounds in solids varies as  $\sqrt{E/\rho}$ , where E is Young's Modulus of elasticity and  $\rho$  the density. These constants for most of the materials given in this table vary through a somewhat wide range, and hence the numbers can only be taken as rough approximations to the velocity which may be obtained in any particular case. When temperatures are not marked, between 10° and 20° is to be understood.

| Substance.                         | Temp.     | C. Velocity in meters per second. |              | Authority.           |
|------------------------------------|-----------|-----------------------------------|--------------|----------------------|
| Metals: Aluminum .                 |           | 5104                              | 16740        | Masson.              |
| Brass                              | _         | 3500                              | 11480        | Various.             |
| Cadmium                            |           | 2307                              | 7570         | Masson.              |
| Cobalt                             |           | 4724                              | 15500        | 66                   |
| Copper                             | 20        | 3560                              | 11670        | Wertheim.            |
| • •                                | 100       | 3290                              | 10800        | 46                   |
| "                                  | 200       | 2950                              | 9690         | "                    |
| Gold (soft) .                      | 20        | 1743                              | 5717<br>6890 | 66                   |
| " (hard)                           |           | 2100                              |              | Various.             |
| Iron and soft steel                |           | 5000                              | 16410        |                      |
| Iron                               | 20        | 5130                              | 16820        | Wertheim.            |
| * * *                              | 100       | 5300                              | 17390        | "                    |
| " cast steel .                     | 200       | 4720<br>4990                      | 16360        | "                    |
| " " "                              | 200       | 4790                              | 15710        | 66                   |
| Lead                               | 20        | 1227                              | 4026         | 46                   |
| Magnesium .                        |           | 4602                              | 15100        | Melde.               |
| Nickel                             |           | 4973                              | 16320        | Masson.              |
| Palladium                          | –         | 3150                              | 10340        | Various.             |
| Platinum                           | 20        | 2690                              | 8815         | Wertheim.            |
| 66                                 | 100       | 2570                              | 8437         | 66                   |
|                                    | 200       | 2460                              | 8079         | "                    |
| Silver                             | 20        | 2610                              | 8553         | "                    |
| Tin                                | 100       | 2640                              | 8658         |                      |
| Zinc                               |           | 2500                              | 8200         | Various.             |
| Various: Brick                     |           | 3700                              | 12140        | Chladni.             |
| Clay rock .                        |           | 3652<br>3480                      | 11420        | Gray & Milne.        |
| Cork                               |           | 500                               | 1640         | Stefan.              |
| Granite                            |           | 3950                              | 12960        | Gray & Milne.        |
| Marble                             |           | 3810                              | 12500        | "                    |
| Paraffin                           | 15        | 1304                              | 4280         | Warburg.             |
| Slate                              |           | 4510                              | 14800        | Gray & Milne.        |
| · Tallow                           | 16        | 390<br>2850                       | 1280         | Warburg.             |
| Tuff                               | :         |                                   | 9350         | Gray & Milne.        |
| Glass                              | from -    | 5000                              | 16410        | Various.             |
| Ivory                              | ) to      | 6000                              | 19690        | G* 0 G "             |
| Vulcanized rubber                  | 1 0       | 3013                              | 9886         | Ciccone & Campanile. |
|                                    | olack) 50 | 54                                | 177          | Exner.               |
|                                    | ed) . o   | 31<br>69                          | 226          | 66                   |
| 66 66                              | " . 70    |                                   | 111          | 66                   |
| Wax                                | 17        | 34<br>88o                         | 2890         | Stefan.              |
| "                                  | 28        | 441                               | 1450         | 66                   |
| Woods: Ash, along the fibre        |           | 4670                              | 15310        | Wertheim.            |
| " across the ring                  | s . –     | 1390                              | 4570         | 66                   |
| " along the rings                  | -         | 1260                              | 4140         | "                    |
| Beech, along the fib               |           | 3340                              | 10960        | 46                   |
| " across the ri<br>" along the rir |           | 1840                              | 6030         | 46                   |
| Elm, along the fibre               | igs –     | 1415                              | 4640         | 66                   |
| " across the rin                   |           | 4120<br>1420                      | 13516        | **                   |
| " along the ring                   |           | 1013                              | 3324         | 66                   |
| Fir, along the fibre               |           | 4640                              | 15220        | 66                   |
| Maple "                            |           | 4110                              | 13470        | 46                   |
| Oak "                              |           | 3850                              | 12620        | 66                   |
| Pine "                             |           | 3320                              | 10900        | 44                   |
| Poplar " Sycamore "                |           | 4280                              | 14050        | 44                   |
|                                    |           | 4460                              | 14640        | 66                   |

### VELOCITY OF SOUND IN LIQUIDS AND GASES.

For gases, the velocity of sound= $\sqrt{\gamma P/\rho}$ , where P is the pressure,  $\rho$  the density, and  $\gamma$  the ratio of specific heat at constant pressure to that at constant volume (see Table 253). For moderate temperature changes  $V_t = V_0(1+\alpha t)$  where  $\alpha = 0.00367$ . The velocity of sound in tubes increases with the diameter up to the free-air value as a limit. The values from ammonia to methane inclusive are for closed tubes.

| •                                        |          | Velocity in           | Velocity in |                    |
|------------------------------------------|----------|-----------------------|-------------|--------------------|
| Substance.                               | Temp. C. | meters per            | feet per    | Authority.         |
|                                          |          | meters per<br>second. | second.     | Thursday.          |
|                                          |          |                       |             |                    |
|                                          | 0        |                       |             |                    |
| Liquids: Alcohol, 95%                    | 12.5     | 1241.                 | 4072.       | Dorsing, 1908.     |
| 44                                       | 20.5     | 1213.                 | 3980.       | 14 3, -            |
| Ammonia, conc                            | 16.      | 1663.                 | 5456.       | 4.6                |
| Benzol                                   | 17.      | 1166.                 | 3826.       | 44                 |
| Carbon bisulphide .                      | 15.      | 1161.                 | 3800.       | 46                 |
| Chloroform                               |          | 983.                  |             | 66                 |
|                                          | 15.      |                       | 3225.       | 66                 |
| Ether                                    | 15.      | 1032.                 | 3386.       | 44                 |
| NaCl, 10% sol.                           | 15.      | 1470.                 | 4823.       | **                 |
| 15% "                                    | 15.      | 1530.                 | 5020.       |                    |
| 20%                                      | 15.      | 1650.                 | 5414.       | **                 |
| Turpentine oil                           | 15.      | 1326.                 | 4351.       |                    |
| Water, air-free .                        | 13.      | 1441.                 | 4728.       | **                 |
|                                          | 19.      | 1461.                 | 4794        | 44                 |
| et te tt .                               | 31.      | 1505.                 | 4938.       | 66                 |
| " Lake Geneva                            | 9.       | 1435.                 | 4708.       | Colladon-Sturm.    |
| " Seine river .                          | 15.      | 1437                  | 4714.       | Wertheim.          |
| 66 66                                    | 30.      | 1528.                 | 5013.       | 4.6                |
| 66 66 66                                 | 60.      | 1724.                 | 5657.       | 44                 |
| Explosive waves in water:                |          | -,                    | 3037        |                    |
| Guncotton, 9 ounces                      |          | 1732.                 | 5680.       | Threlfall, Adair,  |
| " 10 "                                   |          | 1775.                 | 5820.       | 1889, see Bar-     |
| " 18 "                                   |          |                       |             | ton's Sound, p.    |
| " 64 "                                   |          | 1942.                 | 6372.       | ton's Sound, p.    |
|                                          |          | 2013.                 | 6600.       | 518.               |
| Gases: Air, dry, CO <sub>2</sub> -free . | 0.       | 331.78                | 1088.5      | Rowland.           |
| " " CO from                              | 0.       | 331.36                | 1087.1      | Violle, 1900.      |
| CO <sub>2</sub> -1ree .                  | 0.       | 331.92                | 1089.0      | Thiesen, 1908.     |
| 1 atmosphere.                            | 0.       | 331.7                 | 1088.       | Mean.              |
| 25                                       | 0.       | 332.0                 | 1089.       | " (Witkowski).     |
| 30                                       | 0.       | 334.7                 | 1098.       |                    |
| " 100 "                                  | 0.       | 350.6                 | 1150.       |                    |
|                                          | 20.      | 344.                  | 1129.       |                    |
|                                          | 100.     | 386.                  | 1266.       | Stevens.           |
|                                          | 500.     | 553.                  | 1814.       | 44                 |
| "                                        | 1000.    | 700.                  | 2297.       |                    |
| Explosive waves in air:                  |          |                       |             |                    |
| Charge of powder, 0:24 gms.              | =        | 336.                  | 1102.       | Violle, Cong. In-  |
| " " " 3.80 "                             |          | 500.                  | 1640.       | tern. Phys. I,     |
| " " " 17.40 "                            | 1/4/     | 931.                  | 3060.       |                    |
| " " " 45.60 "                            |          | 1268.                 | 4160.       | 243, 1900.         |
| Ammonia                                  | 0.       | 415.                  | 1361.       | Masson.            |
| Carbon monoxide .                        | 0.       | 337.I                 | 1106.       | Wullner.           |
| "                                        | 0.       | 337 • 4               | 1107.       | Dulong.            |
| " dioxide                                | 0.       | 258.0                 | 846.        | Brockendahl, 1906. |
| " disulphide .                           | 0.       | 189.                  | 620.        | Masson.            |
| Chlorine                                 | 0.       | 206.4                 | 677.        | Martini.           |
| "                                        | 0.       | 205.3                 | 674.        | Strecker.          |
| Ethylene                                 | 0.       | 314.                  | 1030.       | Dulong.            |
| Hydrogen                                 | 0.       | 1269.5                | 4165.       | "                  |
| "                                        | 0.       | 1286.4                | 4105.       | Zoch.              |
| Illuminating gas .                       | 0.       | 490.4                 | 1600.       | 11                 |
| Methane                                  | 0.       | 432.                  |             | Masson.            |
|                                          |          |                       | 1417.       | "                  |
| Nitric oxide                             | 0.       | 325.                  | 1           | Dulong.            |
| Nitrous oxide                            | 0.       | 261.8                 | 859.        | Dulong.            |
| Oxygen                                   | 0.       | 317.2                 | 1041.       | Masson             |
| Vapors: Alcohol                          | 0.       | 230.6                 | 756.        | Masson.            |
| Ether                                    | 0.       | 179.2                 | 588.        | 44                 |
| Water                                    | 0.       | 401.                  | 1315.       | Troitz 1003        |
|                                          | 100.     | 404.8                 | 1328.       | Treitz, 1903.      |
| "                                        | 130.     | 424.4                 | 1392.       |                    |

#### MUSICAL SCALES.

The pitch relations between two notes may be expressed precisely (1) by the ratio of their vibration frequencies; (2) by the number of equally-tempered semitones between them (E. S.); also, less conveniently, (3) by the common logarithm of the ratio in (1); (4) by the lengths of the two portions of the tense string which will furnish the notes; and (5) in terms of the octave as unity. The ratio in (4) is the reciprocal of that in (1); the number for (5) is 1/12 of that for (2); the number for (2) is nearly 40 times that for (3).

Table 130 gives data for the middle octave, including vibration frequencies for three standards of pitch; As-435 double vibrations per second, is the international standard and was adopted by the American Plano Manufacturers' Association. The "just-diatonic scale" of C-major is usually deduced, following Chladni, from the ratios of the three perfect major triads reduced to one octave, thus:

4:5:6

5 4 5 B 6 E C 36 24 30 54 24 27 30 32 36 40 45 48

6

Other equivalent ratios and their values in E. S. are given in Table 131. By transferring D to the left and using the ratio 10: 12:15 the scale of A-minor is obtained, which agrees with that of C-major except that D=26 2/3. Nearly the same ratios are obtained from a series of harmonics beginning with the eighth; also by taking 12 successive perfect or Pythagoran fifths or fourths and reducing to one octave. Such calculations are most easily made by adding and subtracting intervals expressed in E. S. The notes needed to furnish a just major scale in other keys may be found by successive transpositions by fifths or fourths as shown in Table 131. Disregarding the usually negligible difference of 0.02 E. S., the table gives the 24 notes to the octave required in the simplest enharmonic organ; the notes fall into pairs that differ by a comma, 0.22 E. S. The line "mean tone" is based on Dom Bedos' rule for tuning the organ (1746). The tables have been checked by the data in Ellis' Helmholtz's "Sensations of Tone."

TABLE 130.

|                                  |       | rval.          | Ra    | tios.                         | Logar  | ithms.                     | Numb         | erofo      | double \       | Vibratio                | ns per s                | econd.                  |
|----------------------------------|-------|----------------|-------|-------------------------------|--------|----------------------------|--------------|------------|----------------|-------------------------|-------------------------|-------------------------|
| Note.                            | Just. | Tem-<br>pered. | Just. | Tem-<br>pered.                | Just.  | Tem-<br>pered.             | Just.        | Just.      | Just.          | Tem-<br>pered-          | Tem-<br>pered.          | Tem-<br>pered.          |
| C <sub>8</sub>                   | E. S. | E. S.          | 1.00  | 1.00000                       | •0000  | .00000                     | 256          | 264        | 258.7          | 258.7                   | 261.6                   | 271.1                   |
| D <sub>8</sub>                   | 2.04  | 3              | 1.125 | 1.12246                       | .05115 | .05017                     | 288          | 297        | 291.0          | 290.3<br>307.6          | 293 · 7<br>3II · I      | 304.3                   |
| E <sub>3</sub><br>F <sub>8</sub> | 3.86  | 5 6            | 1.25  | 1.25992<br>1.33484<br>1.41421 | •12494 | .10034                     | 320<br>341.3 | 330<br>352 | 323·4<br>344·9 | 325·9<br>345·3<br>365.8 | 329.6<br>349.2<br>370.0 | 341.6<br>361.9<br>383.4 |
| G <sub>8</sub>                   | 7.02  | 7 8            | 1.50  | 1.49831                       | .17609 | .17560<br>20069            | 384          | 396        | 388            | 387.5                   | 392.0<br>415.3          | 406.2                   |
| A <sub>3</sub><br>B <sub>3</sub> | 8.84  | 9<br>10<br>11  | 1.67  | 1.68179<br>1.78180<br>1.88775 | .22185 | .22577<br>.25086<br>.27594 | 426.7<br>480 | 440        | 485.0          | 435.0<br>460.9<br>488.3 | 440.0<br>446.2<br>493.9 | 456.0<br>483.1<br>511.8 |
| C4                               | 12.00 | 12             | 2.00  | 2.00000                       | .30103 | -30103                     | 512          | 528        | 517.3          | 517-3                   | 523.2                   | 542.3                   |

TABLE 131.

| Ke                                                    | y of                            | С                                            |                                                                                                                      | D                                                    |                                                                                                              | E                                                                    | F                                             |                                                                                              | G                                                    |                                                                                                                      | A                                                    |                                               | В                                                                                      | С                                                                    |
|-------------------------------------------------------|---------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 7 #s 6 " 5 " 4 " 3 " 2 " 1 # 1 b 2 bs 3 " 4 " 5 " 7 " | C# F# B E A DG CF Bb CC F CC CC | 0.00°<br>0.00°<br>0.00°<br>0.00°<br>22<br>22 | 1.14<br>0.92<br>1.14<br>0.92<br>1.14<br>0.92<br>0.70<br>0.92<br>0.70<br>0.92<br>0.70<br>0.92<br>0.90<br>0.90<br>0.90 | 2.04<br>1.82<br>2.04<br>2.04<br>1.82<br>1.82<br>1.82 | 3.18<br>2.96<br>2.96<br>2.74<br>2.96<br>2.74<br>2.96<br>2.74<br>2.94<br>2.94<br>2.94<br>2.94<br>2.72<br>2.72 | 4.08<br>3.86<br>4.08<br>3.86<br>4.08<br>3.86<br>3.86<br>3.86<br>3.86 |                                               | 6.12<br>5.90<br>6.12<br>5.90<br>6.12<br>5.90<br>5.68<br>5.90<br>5.90<br>5.90<br>5.88<br>5.88 | 7.02<br>7.02<br>7.02<br>7.02<br>6.80<br>6.80<br>6.80 | 8.16<br>7.94<br>8.16<br>7.94<br>7.72<br>7.94<br>7.72<br>7.94<br>7.72<br>7.92<br>7.92<br>7.92<br>7.92<br>7.92<br>7.92 | 9.06<br>8.84<br>9.06<br>9.06<br>9.06<br>8.84<br>8.84 |                                               | 11.10<br>10.88<br>11.10<br>10.88<br>11.10<br>10.88<br>11.10<br>10.88<br>10.88<br>10.88 | 12.00<br>11.80<br>12.00<br>12.00<br>12.00<br>11.78<br>11.78<br>11.78 |
| Harmon<br>Cycle of<br>Cycle of<br>Mean to<br>Equal 7  | fourths                         | 8<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0         | (17<br>1.05)<br>1.14<br>0.90<br>0.76                                                                                 | 9<br>2.04<br>2.04<br>1.80<br>1.93<br>1.71            | (2.98)<br>3.18<br>2.94<br>3.11<br>3.43                                                                       | 3.86<br>4.08<br>3.84<br>3.86                                         | (21<br>(4.70)<br>5.22<br>4.98<br>5.03<br>5.14 | 5.51<br>6.12<br>5.88<br>5.79                                                                 | 7.02<br>7.02<br>6.78<br>6.97<br>6.86                 | (25<br>7.73)<br>8.16<br>7.92<br>7.72                                                                                 | 9.06<br>8.82<br>8.90<br>8.57                         | 14<br>9.69<br>10.20<br>9.96<br>10.07<br>10.29 | 15<br>10.88<br>11.10<br>10.86<br>10.83                                                 | 16<br>12.00<br>12.24<br>11.76<br>12.00<br>12.00                      |

#### MISCELLANEOUS SOUND DATA.

## TABLE 132. — A Fundamental Tone, Its Harmonics (Overtones) and the Nearest Tone of the Equal-tempered Scale.

| No. of partial Frequency Nearest tempered note. Corresponding frequency.   | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|----------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|
|                                                                            | 129  | 259  | 388  | 517  | 647  | 776  | 905  | 1035 | 1164 | 1293 |
|                                                                            | . C  | C    | G    | C    | E    | G    | B5   | C    | D    | E    |
|                                                                            | 129  | 259  | 388  | 517  | 652  | 775  | 922  | 1035 | 1164 | 1293 |
| No. of partial. Frequency. Nearest tempered note. Corresponding frequency. | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   |
|                                                                            | 1423 | 1552 | 1681 | 1811 | 1940 | 2069 | 2199 | 2328 | 2457 | 2586 |
|                                                                            | Gb   | G    | G#   | Bb   | B    | C    | C#   | D    | D#   | E    |
|                                                                            | 1463 | 1550 | 1642 | 1843 | 1953 | 2069 | 2192 | 2323 | 2461 | 2607 |

Note. — Overtones of frequencies not exact multiples of the fundamental are sometimes called inharmonic partials.

#### TABLE 133. — Relative Strength of the Partials in Various Musical Instruments.

The values given are for tones of medium loudness. Individual tones vary greatly in quality and, therefore, in loudness.

| Total                                                                  |                                       | Strength of partials in per cent of total tone strength. |                               |                         |                         |                              |                            |   |          |          |    |                       |  |
|------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------|-------------------------------|-------------------------|-------------------------|------------------------------|----------------------------|---|----------|----------|----|-----------------------|--|
| Instrument.                                                            | I                                     | 2                                                        | 3                             | 4                       | 5                       | 6                            | 7                          | 8 | 9        | 10       | II | 12                    |  |
| Tuning fork on box. Flute Violin, A string Oboe Clarinet Horn Trombone | 100<br>66<br>26<br>2<br>12<br>36<br>6 | 24<br>25<br>2<br>0<br>26<br>11                           | 4<br>9<br>4<br>10<br>17<br>35 | 6<br>10<br>29<br>3<br>7 | 27<br>35<br>5<br>4<br>8 | -<br>1<br>14<br>0<br>3<br>11 | -<br>0<br>4<br>8<br>2<br>6 |   | 3 15 1 3 | 4 18 1 2 |    | -<br>0<br>6<br>1<br>1 |  |

#### TABLE 134. - Characteristics of the Vowels.

The larynx generates a fundamental tone of a *chosen* pitch with some 20 partials, usually of low intensity. The particular partial, or partials, most nearly in unison with the mouth cavity is greatly strengthened by resonance. Each vowel, for a given mouth, is characterized by a particular *fixed* pitch, or pitches, of resonance corresponding to that vowel's definite form of mouth cavity. These pitches may be judged by whispering the vowels. It is difficult to sing vowels true above the corresponding pitches. The greater part of the energy or loudness of a vowel of a *chosen* pitch is in those partials reinforced by resonance. The vowels may be divided into two classes,—the first having one characteristic resonance region, the second, two. The representative pitches of maximum resonance of a mouth cavity for selected vowels in each group are given in the following table.

| Vowel indicated by italics in the words.                          | Pitch of maximum resonance. | Vowel indicated by italics in the words. | Pitch of maxi-<br>mum resonance.                             |
|-------------------------------------------------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------|
| father, far, guardraw, fall, haulno, rode, goalgloom, move, group | 732<br>461                  | mat, add, cat                            | 800 and 1840<br>691 and 1953<br>488 and 2461<br>308 and 3100 |

#### TABLE 135. - Miscellaneous Sound Data.

Koenig's temperature coefficient for the frequency (n) of forks is nearly the same for all pitches.  $n_t =$ 

Koeng's temperature coenicient for the frequency (n) of forks is hearly the same for an piccus.  $m_t = m_0(1 - o.coonit^2 C)$ , Ann. d. Phys. 9, p. 408, 1880.

Vibration frequencies for continuous sound sensations are practically the same as for continuous light sensation, to or more per second. Helmholtz' value of 32 per sec, may be taken as the flicker value for the ear. Moving pictures use 16 or more per sec. For light the number varies with the intensity.

Pitch limits of voice: 60 to 1200 vibrations per second.

Plano pitch limits: 27.2 to 4138.4 v. per sec. (over 7 octaves).

Organ pitch limits: 16 (32 ft. pipe), sometimes 8 (64 ft.) to 4138 (1\frac{1}{2}\text{ in.}) (9 octaves).

Ear can detect frequencies of 20,000 to 30,000 v. per sec. Koenig, by means of dust figures, measured sounds from steel forks with frequencies up to 90,000.

The quality of a musical tone depends solely on the number and relative strength of its partials (simple tones) and

probably not at all on their phases.

The wave-lengths of sound issuing from a closed pipe of length L are 4L, 4L/3, 4L/5, etc., and from an open pipe, 2L, 2L/3, 2L/3, etc. The end correction for a pipe with a flange is such that the antinode is  $0.82 \times \text{radius}$  of pipe beyond the end; with no flange the correction is  $0.57 \times \text{radius}$  of pipe.

The energy of a pure sine wave is proportional to  $n^2A^2$ ; the energy per cm³ is on the average  $2\rho\pi^2U^3A^2/\lambda^2$ ; the energy

passing per sec. through 1 cm<sup>2</sup> perpendicular to direction of propagation is  $2\rho\pi^2U^3A^2/\lambda^2$ ; the pressure is  $\frac{1}{2}(\gamma+1)$ (average energy per cm³); where n is the vibration number per sec,  $\lambda$  the wave-length, A the amplitude V the velocity of sound,  $\rho$  the density of the medium,  $\gamma$  the specific heat ratio. Although (Ann. d. Phys. 11, p. 405, 1903) measured sound-wave pressures of the order of 0.24 dynes/cm² = 0.00018 mm Hg.

#### TABLE 136. - Aerodynamics.

KINETICS OF BODIES IN RESISTING MEDIUM.

The differential equation of a body falling in a resisting medium is  $du/dt = g - ku^2$ . The velocity tends asymptotically to a certain terminal velocity,  $V = \sqrt{g/k}$ . Integration gives u =V- tanh (gt/V),  $x = \frac{V^2}{\log \cosh (gt/V)}$  if u = x = t = 0.

When body is projected upwards,  $du/dt = -g - ku^2$ , and if  $u_0$  is velocity of projection, then  $\tan^{-1} u/V = \tan^{-1} (u_0/V) - gt/V$ ,  $x = (V^2/2g) \log (V^2 + u_0^2) (V^2 + u^2)$ . The particle comes to rest when  $t = (V/g) \tan^{-1} (u_0/V)$  and  $x = (V^2/2g) \log (1 - u_0^2/V^2)$ .

For small velocities the resistance is more nearly proportional to the velocity.

Stokes' Law for the rate of fall of a spherical drop of radius a under gravity g gives for the velocity, v,

$$v = \frac{2ga^2}{g\eta}(\sigma - \rho),$$

where  $\sigma$  and  $\rho$  are the densities of the drop and the medium,  $\eta$  the viscosity of the medium. This depends on five assumptions: (1) that the sphere is large compared to the inhomogeneities of the medium; (2) that it falls as in a medium of unlimited extent; (3) that it is smooth and rigid; (4) that there is no slipping of the medium over its surface; (5) that its velocity is so small that the resistance is all due to the viscosity of the medium and not to the inertia of the latter. Because of 5, the law does not hold unless the radius of the sphere is small compared with  $\eta/v\rho$  (critical radius). Arnold showed that a must be less than 0.6 this radius.

If the medium is contained in a circular cylinder of radius R and length L, Ladenburg showed that the following formula is applicable (Ann. d. Phys. 22, 287, 1907, 23, 447, 1908):

$$V = \frac{2}{9} \frac{ga^{2}(\sigma - \rho)}{\eta(1 + 2.4a/R)(1 + 3.1a/L)}.$$

As the spheres diminish in size the medium behaves as if inhomogeneous because of its molecular structure, and the velocity becomes a function of l/a, where l is the mean free path of the molecules. Stokes' formula should then be modified by the addition of a factor, viz.:  $v_1 = \frac{2}{9} \frac{ga^2}{\eta} (\sigma - \rho) \left\{ 1 + (0.864 + 0.29e^{-1.25} (a/l)) \frac{l}{a} \right\}$ 

$$v_1 = \frac{2}{0} \frac{ga^2}{n} (\sigma - \rho) \left\{ 1 + (0.864 + 0.29e^{-1.25} (a/l)) \frac{l}{a} \right\}$$

(See chapter V, Millikan, The Electron, 1917; also Physical Review 15, p. 545, 1920.)

#### TABLE 137. - Flow of Gases through Tubes.\*

When the dimensions of a tube are comparable with the mean free path (L) of the molecules of a gas, Knudsen (Ann. der Phys. 28, 75, 199, 1908) derives the following equation correct to 5% even when D/L = 0.4: Q, the quantity of gas in terms of PV which flows in a second through a tube of diameter D, length I, connecting two vessels at low pressure, difference of pressure  $P_2-P_1$ , equals  $(P_2-P_1)/W\sqrt{\rho}$  where  $\rho$  is the density of the gas at one bar (1 dyne/cm²) = (molecular weight)/(83.15 × 106 T) and W; which is of the nature of a resistance, = 2.3941 $l/D^3$  + 3.184/ $D^2$ . The following table gives the cm³ of air and H at 1 bar which would flow through different sized tubes, difference of pressure 1 bar, room temperature.

$$l = 1 \text{ cm.}$$
  $D = 1 \text{ cm.}$   $W = 5.58$   $Q, \text{ cm}^3 \text{ of air, } 5200.$   $\text{cm}^3 \text{ of } H_2, 19700.$  1070. 4050. 1070. 10.7 40.5 10 0.1 24300. 1.20 3.60

Knudsen derives the following equation, equivalent to Poiseuille's at higher, and to the above at lower pressures:

 $Q = (P_2 - P_1) \{aP + b (1 + c_1 P)/(1 + c_2 P)\}$  where  $a = \pi D^4/128\eta l$  (Poiseuille's constant);  $b = \frac{1}{2} (P_1 - P_2) \{aP + b (1 + c_1 P)/(1 + c_2 P)\}$  $1/W\sqrt{\rho_1}$  (coefficient of molecular flow);  $c_1 = \sqrt{\rho} \ D/\eta$ ; and  $c_2 = 1.24 \sqrt{\rho} \ D/\eta$ ;  $\eta = \text{viscosity coefficient.}$  The following are the volumes in cm³ at 1 bar,  $20^{\circ}C$ , that flow through tube, D = 1 cm, l = 10cm, l = 10cm,

$$P = 10.6$$
  $Q = 13,000,000$ ,  $P = 5$ .  $Q = 1026$ .  $P = 1$ .  $Q = 1044$ . cm 100. 1,058. 3. 1025. 0.01 1070.

When the velocity of flow is below a critical value, F (density, viscosity, diameter of tube), the stream lines are parallel to the axis of the tube. Above this critical velocity, Ve, the flow is turbulent.  $V_0 = k\eta/\rho r$  for small pipes up to about 5 cm diameter, where K is a constant, and r the tube radius. When these are in cgs units, k is 108 in round numbers. Below  $V_c$  the pressure drop along the tube is proportional to the velocity of gas flow; above it to the square of the velocity.

<sup>\*</sup> See Dushman, The Production and Measurement of High Vacua, General Elec. Rev. 23, p. 493, 1920 SMITHSONIAN TABLES.

#### AERODYNAMICS.

#### TABLE 138. - Air Pressures upon Large Square Normal Planes at Different Speeds through the Air.

The resistance F of a body of fixed shape and presentation moving through a fluid may be written

$$F = \rho L^2 V^2 f(LV/\nu)$$

in which  $\rho$  denotes the fluid density,  $\nu$  the kinematic viscosity, L a linear dimension of the body, V the speed of translation. In general f is not constant, even for constant conditions of the fluid, but is practically so for normal impact on a plane of fixed size. In the following,  $\rho$  is taken as 1.230~g/l (.0768 lbs./ft²). The mean pressure on thin square plates of 1.1 m² (12 ft²), or over, moving normally through air of standard density at ordinary transportation speeds may be written  $P = .00602^{\circ}$  for P in kg per m² and v in km per hour, or  $P = .00322^{\circ}$  for P in bs. per ft² and v in miles per hour. The following values are computed from this formula. For smaller areas the correction factors as given in the succeeding table (Table 139) derived from experiments made at the British National Physical Laboratory, may be applied.

Units: the first of each group of three columns gives the velocity; the second, the corresponding pressure in kg/m² when the first column is taken as km per hour; the third in pds/ft² when in miles per hour.

| Veloc-                                                                                                                                                                                 | Pres                                                                                                                                                                                                                 | sure.                                                                                                                                                                                                | Veloc-                                                                                                                                                         | Pres                                                                                                                      | ssure.                                                                                                                                                                                                                                                    | Veloc-                                                                                                                                                                           | Pres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sure.                                                                                                                                                                                                                | Veloc-                                                                                                                                                                                                         | · Pres                                                                                                                                                                                                                       | sure.                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ity.                                                                                                                                                                                   | Metric.                                                                                                                                                                                                              | English.                                                                                                                                                                                             | ity.                                                                                                                                                           | Metric.                                                                                                                   | English.                                                                                                                                                                                                                                                  | ity.                                                                                                                                                                             | Metric.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | English.                                                                                                                                                                                                             | ity.                                                                                                                                                                                                           | Metric.                                                                                                                                                                                                                      | English.                                                                                                                                                                                                                                                                     |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>33<br>34<br>35<br>36<br>37<br>38<br>39 | 0.60<br>0.73<br>0.86<br>1.01<br>1.18<br>1.35<br>1.54<br>1.73<br>2.40<br>2.65<br>2.90<br>3.17<br>3.46<br>4.37<br>4.06<br>4.37<br>4.70<br>5.05<br>5.77<br>6.14<br>6.54<br>6.54<br>6.93<br>7.74<br>8.22<br>8.66<br>9.12 | 0.32<br>0.39<br>0.46<br>0.54<br>0.63<br>0.72<br>0.92<br>1.04<br>1.16<br>1.28<br>1.41<br>1.55<br>1.69<br>1.84<br>2.00<br>2.16<br>2.33<br>3.28<br>3.28<br>3.38<br>3.70<br>4.15<br>4.35<br>4.45<br>4.87 | 40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>60<br>61<br>62<br>63<br>64<br>65<br>66<br>66<br>66<br>69 | 9.60 10.58 11.09 11.6 12.1 13.3 14.4 15.6 16.2 17.5 18.8 19.5 20.2 20.9 21.6 22.3 23.0 23.8 24.6 25.4 26.2 26.9 27.7 28.6 | 5.12<br>5.38<br>5.64<br>5.92<br>6.20<br>6.48<br>6.77<br>7.07<br>7.37<br>7.68<br>8.00<br>8.32<br>8.65<br>9.93<br>9.33<br>9.68<br>10.04<br>10.40<br>11.14<br>11.52<br>11.91<br>12.3<br>12.3<br>12.3<br>12.7<br>13.1<br>13.5<br>13.9<br>14.4<br>8.15<br>12.2 | 70<br>71<br>72<br>73<br>74<br>75<br>70<br>77<br>78<br>79<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99 | 29.4<br>30.2<br>31.1<br>32.0<br>32.8<br>33.7<br>35.6<br>37.4<br>36.5<br>37.4<br>38.4<br>40.3<br>41.3<br>42.3<br>44.4<br>45.4<br>47.5<br>48.4<br>47.5<br>51.9<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0<br>53.0 | 15.7<br>16.1<br>17.0<br>17.5<br>18.5<br>19.5<br>20.0<br>20.5<br>21.0<br>21.0<br>22.6<br>22.6<br>22.7<br>24.2<br>23.7<br>24.2<br>25.9<br>26.5<br>27.7<br>28.3<br>27.7<br>28.3<br>27.7<br>28.3<br>29.5<br>30.7<br>31.4 | 100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110<br>111<br>112<br>113<br>114<br>115<br>116<br>117<br>118<br>119<br>120<br>121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>129 | 60.0<br>61.2<br>62.4<br>63.7<br>64.9<br>66.1<br>77.4<br>68.7<br>70.0<br>71.3<br>72.6<br>78.0<br>78.0<br>78.0<br>78.0<br>80.8<br>82.1<br>83.5<br>84.9<br>85.4<br>90.8<br>92.2<br>93.8<br>90.8<br>92.2<br>93.3<br>96.8<br>96.8 | 32.0<br>32.6<br>33.3<br>33.9<br>34.6<br>35.3<br>36.0<br>36.0<br>36.0<br>37.2<br>38.0<br>38.7<br>39.4<br>40.1<br>40.1<br>40.1<br>40.1<br>40.1<br>44.6<br>45.3<br>44.6<br>45.3<br>46.8<br>47.6<br>48.4<br>49.2<br>50.8<br>50.8<br>50.8<br>50.8<br>50.8<br>50.8<br>50.8<br>50.8 |

TABLE 139. - Correction Factor for Small Square Normal Planes.

The values of Table 138 are to be multiplied by the following factors when the area of the surface is less than about I m2 (12 ft2).

|          | Me      | tric.    |         | English.              |         |           |        |  |  |  |  |
|----------|---------|----------|---------|-----------------------|---------|-----------|--------|--|--|--|--|
| Area. m² | Factor. | Area. m² | Factor. | Area. ft <sup>2</sup> | Factor. | Area. ft² | Factor |  |  |  |  |
| 0.03     | 0.845   | 5.0      | 0.969   | 0.03                  | 0.842   | 5.0       | 0.968  |  |  |  |  |
| 0.10     | 0.859   | 6.0      | 0.975   | 0.10                  | 0.884   | 7.0       | 0.973  |  |  |  |  |
| 0.75     | 0.890   | 8.0      | 0.984   | 0.75                  | 0.889   | 8.0       | 0.981  |  |  |  |  |
| 1.00     | 0.898   | 9.0      | 0.989   | 1.00                  | 0.896   | 9.0       | 0.986  |  |  |  |  |
| 2.00     | 0.919   | 10.0     | 0.993   | 2.00                  | 0.917   | 10.0      | 0.990  |  |  |  |  |
| 3.00     | 0.933   | II.O     | 0.999   | 3.00                  | 0.930   | II.O      | 0.994  |  |  |  |  |
| 4.00     | 0.950   | 12.0     | 1.000   | 4.00                  | 0.943   | 12.0      | 1.000  |  |  |  |  |

#### TABLE 140. - Effect of Aspect Ratio upon Normal Plane Pressure (Eiffel).

The mean pressure on a rectangular plane varies with the "aspect ratio," a name introduced by Langley to denote the ratio of the length of the leading edge to the chord length. The effect of aspect ratio on normally moving rectangular plates is given in the following table, derived from Eiffel's experiments.

| Aspect ratio | 0 10.000 14.60 20.00 30.00 41.500 50.00 1.145 1.25 1.34 1.40 1.435 1.47 |
|--------------|-------------------------------------------------------------------------|
|--------------|-------------------------------------------------------------------------|

#### TABLE 141. - Ratio of Pressures on Inclined and Normal Planes.

The pressure on a slightly inclined plane is proportional to the angle of incidence a, and is given by the formula  $P_a = c \cdot P_{90} \cdot a$ . The value of c, which is constant for incidences up to about 12°, is given for various aspect ratios. The angle of incidence is taken in degrees.

| Aspect ratio. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 10 |
|----------------------------------------------------------------------|----|
|----------------------------------------------------------------------|----|

#### TABLE 142. - Skin Friction.

The skin friction on an even rectangular plate moving edgewise through ordinary air is given by Zahm's equation,

$$F(\text{kg/m}^2) = 0.00030 \{A(\text{m}^2)\}^{0.93} \{V(\text{km/hr.})\}^{1.86} \text{ in metric units}$$
  
or  $F(\text{pds./ft.}^2) = 0.0000082 \{A(\text{ft.}^2)\}^{0.93} \{V(\text{ft./sec.})\}^{1.86},$ 

where A is the surface area and V the speed of the plane. The following table gives the friction per unit area on one side of a plate.

| 5 0                                             | 0.0059 0.                                                                                                                        | m long. miles/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft./sec.                                                                                                      | I ft. long.                                                                                                                                                                                     | 32 ft. long.                                                                                                                             |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 10                                              |                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                               |                                                                                                                                                                                                 |                                                                                                                                          |
| 20 25 30 40 50 60 70 80 110 120 125 130 135 140 | 0.0464 0. 0.079 0. 0.122 0. 0.169 0. 0.288 0. 0.439 0. 0.616 0. 0.82 0. 1.06 0. 1.31 1. 1.58 1. 1.58 1. 2.20 1. 2.39 1. 2.256 2. | 0047         5           0171         10           0364         15           062         20           095         25           133         30           225         40           346         50           482         60           64         70           83         80           03         90           24         100           49         110           73         120           87         125           01         135           31         146           47         145 | 7·3 14.7 22.0 29·3 36·7 44.0 58·7 73·3 88.0 102.7 117·3 132.0 146.7 161.2 175.8 183.4 190.5 197.8 205.4 212.5 | 0.00033<br>0.00121<br>0.00258<br>0.00439<br>0.0068<br>0.0094<br>0.0160<br>0.0244<br>0.0342<br>0.0455<br>0.0587<br>0.073<br>0.088<br>0.105<br>0.122<br>0.133<br>0.142<br>0.149<br>0.164<br>0.175 | 0.00026 0.00095 0.00202 0.00345 0.00530 0.0074 0.0125 0.0192 0.0268 0.0357 0.0461 0.0572 0.069 0.083 0.096 0.104 0.112 0.117 0.128 0.137 |

The following tables, based on Eiffel, show the variation of the resistance coefficient K, with the angle of impact i, the aspect (ratio of leading edge to chord length), shape and velocity Vin the formula

 $R(kg/m^2) = KS(m^2) \{V(m/sec.)\}^2$ 

The value of K for km/hour would be 0.77 times greater.

TABLE 143. - Variation of Air Resistance with Aspect and Angle.

| -                                                                                              |             |                                               | Values of i.                                  |                                        |                                                      |                                              |                                              |                                              |                                              |                                              | atio.                            |
|------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------|
| Size of plane.                                                                                 | Aspect.     | 6°                                            | IO°                                           | 20°                                    | 30°                                                  | 40°                                          | 45°                                          | 60°                                          | 75°                                          | 37-1                                         |                                  |
|                                                                                                |             | Values of Ki /Km.                             |                                               |                                        |                                                      |                                              |                                              |                                              |                                              | Value.                                       | i.                               |
| 15 x 90 cm<br>15 x 45 cm<br>25 x 25 cm<br>30 x 15 cm<br>45 x 15 cm<br>90 x 15 cm<br>90 x 10 cm | 1 6 1 3 6 9 | .07<br>.11<br>.20<br>.26<br>.31<br>.37<br>.45 | .13<br>.21<br>.36<br>.43<br>.50<br>.58<br>.62 | .40<br>.51<br>.80<br>.91<br>.77<br>.70 | 0.67<br>0.89<br>1.24<br>0.72<br>0.77<br>0.78<br>0.80 | 0.92<br>1.20<br>1.17<br>0.79<br>0.84<br>0.84 | 1.08<br>1.22<br>1.08<br>0.82<br>0.88<br>0.88 | 1.07<br>1.06<br>1.03<br>0.90<br>0.94<br>0.93 | 1.03<br>1.02<br>1.02<br>0.97<br>0.99<br>0.98 | 1.07<br>1.22<br>1.46<br>0.91<br>0.77<br>0.69 | 60<br>45<br>38<br>20<br>20<br>15 |

#### TABLE 144. - Variation of Air Resistance with Shape and Size.

| The Late variation of the Resistance with Shape a.                           | na bizo.          |
|------------------------------------------------------------------------------|-------------------|
| Cylinder, base $\perp$ to wind: Length. o cm $_{1}R^{*}$ $_{2}R^{*}$ $_{4}R$ | * 6R* 8R* 14R*    |
| Diameter of base, 30 cm $K = .0675 .068 .055 .05$                            | o — — —           |
| Diameter of base, 15 cm $K = .066 .066 .055 .05$                             | 1 .051 .0515 .059 |
| Cylinder, base    to wind: diameter base, 15 cm, length, 60 cm               |                   |
| Cylinder, base    to wind: diameter base, 3 cm, length, 100 cm               |                   |
| Cone, angle 60°, diam. base, 40 cm, point to wind, solid                     | K = .032          |
| Cone, angle 30°, diam. base, 40 cm, point to wind, solid                     | K = .02I          |
| Sphere, 25 cm diam.                                                          | K = .011          |
| Hemisphere, same diam., convex to wind                                       | K = .021          |
| Hemisphere, same diam., concave to wind                                      | K = .083          |
| Sphero-conic body, diam., 20 cm, cone 20°, point forward                     | K = .010          |
| Sphero-conic body, diam., 20 cm, cone 20°, point to rear                     | K = .0055         |
| Cylinder, 120 cm long, spherical ends to wind                                | K = .012          |
| The said dealers for the continue of this table was a series                 |                   |

The wind velocity for the values of this table was 10 m/sec.

Tables 143 and 144 were taken from "The Resistance of the Air and Aviation," Eiffel, translated by Hunsaker, 1913.

#### TABLE 145. — Variation of Air Resistance with Shape, Size and Speed.

This table shows the peculiar drop in air resistance for speeds greater than 4 to 12 meters per second. Another change occurs when the velocity approaches that of sound

| Shape.                                                                                                                                                                                                        |                       | Values of K.                         |                                      |                                      |                                      |                                      |                              |                                      |                                      |                                      |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|
| Snape.                                                                                                                                                                                                        | Speed, m/sec.         | 4                                    | 6                                    | 8                                    | 10                                   | 12                                   | 14                           | 16                                   | 20                                   | 32                                   |  |
| Sphere, 16.2 cm diameter Sphere, 24.4 cm diameter Sphere, 33 cm diameter Concave cup, 25 cm diameter Convex cup, 25 cm diameter Disk, 25 cm diameter Cylinder element ⊥ to wind, d = 15 element ⊥ to wind, 33 | cm<br>cm, l = 15.0    | .025<br>.023<br>.090<br>.027<br>.071 | .025<br>.017<br>.090<br>.022<br>.070 | .021<br>.012<br>.089<br>.021<br>.070 | .013<br>.010<br>.087<br>.022<br>.070 | .010<br>.010<br>.087<br>.022<br>.070 | .010<br>.088<br>.021<br>.070 | .010<br>.011<br>.089<br>.020<br>.070 | .010<br>.012<br>.095<br>.019<br>.070 | .010<br>.012<br>.100<br>.018<br>.068 |  |
| element \(\perp\) to wind, \(\perp\) to element \(\perp\) to wind, \(\perp\) element \(\perp\) to wind, \(\perp\) element \(\perp\) to wind, \(\perp\) Spherical ends, \(\perp\)                              | 12.0<br>22.5<br>105.0 | .038                                 | .037<br>.041                         | .032<br>.036<br>.038<br>.057         | .032                                 | .030                                 | .028                         | .027<br>.025<br>.051                 | .025                                 | .020                                 |  |

Taken from "Nouvelles Recherches sur la résistance de l'air et l'aviation," Eiffel, 1914. SMITHSONIAN TABLES.

<sup>\*</sup> In the case of these cylinders the percentages due to skin friction are 2, 3, 6, 8, 11 and 16 per cent respectively, excluding the disk.

The required force F necessary to just move an object along a horizontal plane =fN where N is the normal pressure on the plane and f the "coefficient of friction." The angle of repose  $\Phi$  (tan  $\Phi=F/N$ ) is the angle at which the plane must be tilted before the object will move from its own weight. The following table of coefficients was compiled by Rankine from the results of General Morin and other authorities and is sufficient for ordinary purposes.

| """ soapy       .20       5.00       2.00-1.67       26.1         """ wet       .2426       4.17-3.85       13.1       13.2       5.00       13.2       5.00       14.17-3.85       13.2       13.2       5.00       14.17-3.85       13.2       5.00       14.17-3.85       13.2       13.2       13.2       5.00       14.27-3.85       13.2       14.27-3.85       13.2       14.27-3.85       13.2       14.27-3.85       13.2       14.27-3.85       13.2       14.27-3.85       13.2       14.27-3.85       13.2       22.2       5.00       4.00       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2       11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-26.5<br>11.5<br>5-31.0<br>5-14.5<br>1.5<br>5-14.0<br>8.0<br>8.5<br>-19.5<br>9.5<br>0.0<br>3.0 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| """ soapy       .20       5.00       2.00-1.67       26.         """ wet       .2426       4.17-3.85       13.         """ elm, dry       .2025       5.00-4.00       11.         Hemp on oak, dry       .53       1.89       2         """ wet       .33       3.00       1         Leather on oak       .2738       3.70-2.86       15.0         """ wet       .36       2.78       2         """ oily       .15       6.67       8         """ oily       .15       6.67       8         Metals on metals, dry       .15       6.67-5.00       8.5         """ wet       .3       3.33       1         Smooth surfaces, occasionally greased       .0708       14.3-12.50       4.0         """ continually greased       .05       20.00       20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.5<br>5-31.0<br>5-14.5<br>1.5<br>5-14.0<br>8.0<br>8.5<br>-19.5<br>9.5<br>9.5<br>9.5           |
| """ soapy       .20       5.00       2.00-1.67       26.         """ wet       .2426       4.17-3.85       13.         """ elm, dry       .2025       5.00-4.00       11.         Hemp on oak, dry       .53       1.89       2         """ wet       .33       3.00       1         Leather on oak       .2738       3.70-2.86       15.0         """ wet       .36       2.78       2         """ oily       .15       6.67       8         """ oily       .15       6.67       8         Metals on metals, dry       .15       6.67-5.00       8.5         """ wet       .3       3.33       1         Smooth surfaces, occasionally greased       .0708       14.3-12.50       4.0         """ continually greased       .05       20.00       20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.5<br>5-31.0<br>5-14.5<br>1.5<br>5-14.0<br>8.0<br>8.5<br>-19.5<br>9.5<br>9.5<br>9.5           |
| Metals on oak, dry       .5060       2.00-1.67       26.         """ wet       .2426       4.17-3.85       13.         """ elm, dry       .20       .500       11.         """ wet       .33       3.00       11.         Leather on oak       .2738       3.70-2.86       15.0         """ wet       .36       2.78       2         """ wet       .36       2.78       2         """ oily       .15       6.67       6.67         Metals on metals, dry       .1520       6.67-5.00       8.5         """ wet       .333       1         Smooth surfaces, occasionally greased       .0708       14.3-12.50       4.0         """ continually greased       .05       20.00       20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5-31.0<br>5-14.5<br>1.5<br>5-14.0<br>8.0<br>8.5<br>-19.5<br>9.5<br>9.5<br>9.5<br>9.5            |
| " " wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5-14.5<br>1.5<br>5-14.0<br>88.0<br>8.5<br>19.5<br>9.5<br>19.5<br>19.5<br>19.5                   |
| " " elm, dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.5<br>5-14.0<br>8.5<br>8.5<br>19.5<br>9.5<br>0.0<br>3.0                                        |
| ## elm, dry ## elm, dry ## wet | 5-14.0<br>8.0<br>8.5<br>0-19.5<br>9.5<br>0.0<br>3.0                                             |
| ## elm, dry ## elm, dry ## elm, dry ## wet # | 8.6<br>8.5<br>-19.5<br>9.5<br>0.0<br>3.0                                                        |
| Leather on oak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.5<br>-19.5<br>9.5<br>0.0<br>3.0                                                               |
| Leather on oak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.5<br>9.5<br>0.0<br>3.0                                                                        |
| " " metals, dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.5<br>0.0<br>3.0<br>3.5                                                                        |
| " " wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.0<br>3.5                                                                                      |
| " " " greasy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.0<br>3.5                                                                                      |
| ## " oily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.5                                                                                             |
| Metals on metals, dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |
| " " wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                 |
| Smooth surfaces, occasionally greased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -11.5                                                                                           |
| " continually greased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.5                                                                                             |
| " continually greased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -4.5                                                                                            |
| if if heat requite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.0                                                                                             |
| 0051 1054115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5-2.0                                                                                           |
| Steel on agate, dry *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5. I                                                                                            |
| Iron on stone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -35.0                                                                                           |
| Wood on stone   About .40   2.50   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0                                                                                             |
| Masonry and brick work, dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -35.0                                                                                           |
| " " " damp mortar74 1.35 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.5                                                                                             |
| " on dry clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.0                                                                                             |
| " " moist clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.25                                                                                            |
| Earth on earth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -45.0                                                                                           |
| " " dry sand, clay, and mixed earth . 3875 2.63-1.33 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -37.0                                                                                           |
| " " damp clay 1.00 1.00 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.0                                                                                             |
| " " wet clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.0                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -48.0                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |

<sup>\*</sup> Quoted from a paper by Jenkin and Ewing, "Phil. Trans. R. S." vol. 167. In this paper it is shown that in cases where "static friction" exceeds "kinetic friction" there is a gradual increase of the coefficient of friction as the speed is reduced towards zero.

#### TABLE 147. - Lubricants.

The best lubricants are in general the following: Low temperatures, light mineral lubricating oils. Very great pressures, slow speeds, graphite, soapstone and other solid lubricants. Heavy pressures, slow speeds, ditto and lard, tallow and other greases. Heavy pressures and high speeds, sperm oil, castor oil, heavy mineral oils. Light pressures, high speeds, sperm, refined petroleum olive, rape, cottonseed. Ordinary machinery, lard oil, tallow oil, heavy mineral oils and the heavier vegetable oils. Steam cylinders, heavy mineral oils, lard, tallow. Watches and delicate mechanisms, clarified sperm, neat's-foot, porpoise, olive and light mineral lubricating oils.

TABLE 148. - Lubricants For Cutting Tools.

| Material.                                                                         | Turning.                                                                                     | Chucking.                                              | Drilling.                     | Tapping<br>Milling.             | Reaming.                                           |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------|---------------------------------|----------------------------------------------------|
| Tool Steel,<br>Soft Steel,<br>Wrought iron<br>Cast iron, brass<br>Copper<br>Glass | dry or oil<br>dry or soda water<br>dry or soda water<br>dry<br>dry<br>turpentine or kerosene | oil or s. w.<br>soda water<br>soda water<br>dry<br>dry | oil or s. w. oil or s. w. dry | oil<br>oil<br>oil<br>dry<br>dry | lard oil<br>lard oil<br>lard oil<br>dry<br>mixture |

Mixture = 1/3 crude petroleum, 3/4 lard oil. Oil = sperm or lard.

Tables 147 and 148 quoted from "Friction and Lost Work in Machinery and Mill Work," Thurston, Wiley and Sons. SMITHSONIAN TABLES.

#### VISCOSITY.

#### TABLE 149. - Viscosity of Fluids and Solids.

The coefficient of viscosity of a substance is the tangential force required to move a unit area of a plane surface thu unit speed relative to another parallel plane surface from which it is separated by a layer a unit thick of the substance. Viscosity measures the temporary rigidity it gives to the substance. The viscosity of fluids is generally measured by the rate of flow of the fluid through a capillary tube the length of which is great in comparison with its diameter. The equation generally used is

$$\mu$$
, the viscosity,  $=\frac{\gamma \pi g d^4 t}{128Q(l+\lambda)} \left(h-\frac{mv^2}{g}\right)$ ,

where  $\gamma$  is the density  $(g/\text{cm}^3)$ , d and l are the diameter and length in cm of the tube, Q the volume in cm<sup>3</sup> discharged in l sec.,  $\lambda$  the Couette correction which corrects the measured to the effective length of the tube, l the average head in cm, m the coefficient of kinetic energy correction,  $mv^2/g$ , necessary for the loss of energy due to turbulent in distinction from viscous flow, g being the acceleration of gravity (cm/sec/sec), v the mean velocity in cmp er sec. (See Technologic Paper of the Bureau of Standards, 100 and 112, Herschel, 1917–1918, for discussion of this correction and  $\lambda$ .)

The fluidity is the reciprocal of the absolute viscosity. The kinetic viscosity is the absolute viscosity divided by the density. Specific viscosity is the viscosity relative to that of some standard substance, generally water, at some definite temperature. The dimensions of viscosity are  $ML^{-1}T^{-1}$ . It is generally expressed in cgs units as dyne-seconds are cm<sup>2</sup> or poises.

per cm2 or poises.

The viscosity of solids may be measured in relative terms by the damping of the oscillations of suspended wires (see Table 78). Ladenburg (1906) gives the viscosity of Venice turpentine at 18.3° as 1300 poises; Trouton and Andrews (1904) of pitch at 0°, 51 × 10<sup>10</sup>, at 15°, 1.3 × 10<sup>10</sup>; of shoemakers' wax at 8°, 4.7 × 10<sup>6</sup>; of soda glass at 575°, II × 10<sup>12</sup>; Deeley (1908) of glacier ice as 12 × 10<sup>13</sup>.

#### TABLE 150. - Viscosity of Water in Centipoises. Temperature Variation.

Bingham and Jackson, Bulletin Bureau of Standards, 14, 75, 1917.

| °C. | Vis-<br>cosity. | °C. | Vis-<br>cosity.<br>cp | ° C. | Vis-<br>cosity. |
|-----|-----------------|-----|-----------------|-----|-----------------|-----|-----------------|-----|-----------------|-----|-----------------------|------|-----------------|
| 0   | 1.7921          | 10  | 1.3077          | 20  | 1.0050          | 30  | 0.8007          | 40  | 0.6560          | 50  | 0.5494                | 60   | 0.4688          |
| 1   | 1.7313          | 11  | 1.2713          | 21  | 0.9810          | 31  | 0.7840          | 41  | 0.6439          | 51  | 0.5404                | 65   | 0.4355          |
| 2   | 1.6728          | 12  | 1.2363          | 22  | 0.9579          | 32  | 0.7679          | 42  | 0.6321          | 52  | 0.5315                | 70   | 0.4061          |
| 3   | 1.6191          | 13  | 1.2028          | 23  | 0.9358          | 33  | 0.7523          | 43  | 0.6207          | 53  | 0.5229                | 75   | 0.3799 °        |
| 4   | 1.5674          | 14  | 1.1709          | 24  | 0.9142          | 34  | 0.7371          | 44  | 0.6007          | 54  | 0.5146                | 80   | 0.3565          |
| 5   | 1.5188          | 15  | 1.1404          | 25  | 0.8937          | 35  | 0.7225          | 45  | 0.5988          | 55  | 0.5064                | 85   | 0.3355          |
| 6   | 1.4728          | 16  | 1.1111          | 26  | 0.8737          | 36  | 0.7085          | 46  | 0.5883          | 56  | 0.4985                | 90   | 0.3165          |
| 7   | 1.4284          | 17  | 1.0828          | 27  | 0.8545          | 37  | 0.6947          | 47  | 0.5782          | 57  | 0.4907                | 95   | 0.2994          |
| 8   | 1.3860          | 18  | 1.0559          | 28  | 0.8360          | 38  | 0.6814          | 48  | 0.5683          | 58  | 0.4832                | 100  | 0.2838          |
| 9   | 1.3462          | 19  | 1.0299          | 29  | 0.8180          | 39  | 0.6685          | 49  | 0.5588          | 59  | 0.4759                | 153  | 0.181 *         |

\* de Haas, 1894. Undercooled water: -2.10°, 1.33 cp; -4.70°, 2.12 cp; -6.20°, 2.25 cp; -8.48°, 2.46 cp; 9.30°, 2.55 cp; White, Twining, J. Amer. Ch. Soc., 50, 380, 1913.

TABLE 151. - Viscosity of Alcohol-water Mixtures in Centipoises. Temperature Variation.

|                                                              |                                                                                                 | Percentage by weight of ethyl alcohol.                                                          |                                                                                                 |                                                                                         |                                                                                         |                                                                                         |                                                                                         |                                                                                         |                                                                                |                                                                                                 |                                                                                                 |                                                                                                 |                                                                                                 |  |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|
| ° C.                                                         | 0                                                                                               | 10                                                                                              | 20                                                                                              | 30                                                                                      | 39                                                                                      | 40                                                                                      | 45                                                                                      | 50                                                                                      | 60                                                                             | 70                                                                                              | 80                                                                                              | 90                                                                                              | 100                                                                                             |  |  |
| 0<br>5<br>10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50 | 1.792<br>1.519<br>1.308<br>1.140<br>1.005<br>0.894<br>0.801<br>0.722<br>0.656<br>0.599<br>0.549 | 3.311<br>2.577<br>2.179<br>1.792<br>1.538<br>1.323<br>1.160<br>1.006<br>0.907<br>0.812<br>0.734 | 5.319<br>4.065<br>3.165<br>2.618<br>2.183<br>1.815<br>1.553<br>1.332<br>1.160<br>1.015<br>0.907 | 6.94<br>5.29<br>4.05<br>3.26<br>2.71<br>2.18<br>1.87<br>1.58<br>1.368<br>1.189<br>1.050 | 7.25<br>5.62<br>4.39<br>3.52<br>2.88<br>2.35<br>2.00<br>1.71<br>1.473<br>1.284<br>1.124 | 7.14<br>5.59<br>4.39<br>3.53<br>2.91<br>2.35<br>2.02<br>1.72<br>1.482<br>1.289<br>1.132 | 6.94<br>5.50<br>4.35<br>3.51<br>2.88<br>2.39<br>2.02<br>1.73<br>1.495<br>1.307<br>1.148 | 6.58<br>5.26<br>4.18<br>3.44<br>2.87<br>2.40<br>2.02<br>1.72<br>1.499<br>1.294<br>1.155 | 5.75<br>4.63<br>3.77<br>3.14<br>2.67<br>2.24<br>1.93<br>1.66<br>1.447<br>1.271 | 4.762<br>3.906<br>3.268<br>2.770<br>2.370<br>2.037<br>1.767<br>1.529<br>1.344<br>1.189<br>1.062 | 3.690<br>3.125<br>2.710<br>2.309<br>2.008<br>1.748<br>1.531<br>1.355<br>1.203<br>1.081<br>0.968 | 2.732<br>2.309<br>2.101<br>1.802<br>1.610<br>1.424<br>1.279<br>1.147<br>1.035<br>0.939<br>0.848 | 1.773<br>1.623<br>1.466<br>1.332<br>1.200<br>1.096<br>1.003<br>0.914<br>0.834<br>0.764<br>0.702 |  |  |
| 60<br>70<br>80                                               | 0.469<br>0.406<br>0.356                                                                         | 0.609                                                                                           | 0.736<br>0.608<br>0.505                                                                         | 0.834<br>0.683<br>0.567                                                                 | 0.885<br>0.725<br>0.598                                                                 | 0.893<br>0.727<br>0.601                                                                 | 0.907<br>0.740<br>0.609                                                                 | 0.913<br>0.740<br>0.612                                                                 | 0.902<br>0.729<br>0.604                                                        | o.856<br>o.695                                                                                  | 0.789                                                                                           | 0.704                                                                                           | 0.592                                                                                           |  |  |

### VISCOSITY.

#### TABLE 152. - Viscosity and Density of Sucrose in Aqueous Solution.

See Scientific Paper 298, Bingham and Jackson, Bureau of Standards, 1917, and Technologic Paper 100, Herschel, Bureau of Standards, 1917.

|                                  |                                                          | Viscosity in                                       | centipoises                                        |                                                 | Density d4t.                                       |                                                     |                                                     |                                                     |  |  |  |  |  |
|----------------------------------|----------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--|--|--|--|--|
| Tempera-<br>ture.                | Pe                                                       | er cent suc                                        | ose by weig                                        | ht.                                             |                                                    | Per cent sucr                                       | ose by weight                                       |                                                     |  |  |  |  |  |
|                                  | 0                                                        | 20                                                 | 40                                                 | 60                                              | 0                                                  | 20                                                  | 40                                                  | 60                                                  |  |  |  |  |  |
| o° C<br>5<br>10<br>15<br>20      | 1.7921<br>1.5188<br>1.3077<br>1.1404<br>1.0050           | 3.804<br>3.154<br>2.652<br>2.267<br>1.960          | 14.77<br>11.56<br>9.794<br>7.468<br>6.200          | 238.<br>156.<br>109.8<br>74.6<br>56.5           | 0.99987 · 0.99999<br>0.99973<br>0.99913<br>0.99823 | 1.08546<br>1.08460<br>1.08353<br>1.08233<br>1.08094 | 1.18349<br>1.18192<br>1.18020<br>1.17837<br>1.17648 | 1.29560<br>1.29341<br>1.29117<br>1.28884<br>1.28644 |  |  |  |  |  |
| 30<br>40<br>50<br>60<br>70<br>80 | 0.8007<br>0.6560<br>0.5494<br>0.4688<br>0.4061<br>0.3565 | 1.504<br>1.193<br>0.970<br>0.808<br>0.685<br>0.590 | 4.382<br>3.249<br>2.497<br>1.982<br>1.608<br>1.334 | 33.78<br>21.28<br>14.01<br>9.83<br>7.15<br>5.40 | o.99568<br>o.99225<br>o.98807<br>o.98330           | 1.07767<br>1.07366<br>1.06898<br>1.06358            | 1.17214<br>1.16759<br>1.16248<br>1.15693            | 1.28144<br>1.27615<br>1.27058<br>1.26468            |  |  |  |  |  |

TABLE 153. — Viscosity and Density of Glycerol in Aqueous Solution (20° C).

| % Glycerol.    | Den-<br>sity.<br>g/cm³                                   | Viscos-<br>ity in<br>centi-<br>poises. | Kine-<br>matic<br>viscos-<br>ity. | %<br>Glyc-<br>erol.              | Den-<br>sity.<br>g/cm³                                   | Viscos-<br>ity in<br>centi-<br>poises. | Kine-<br>matic<br>viscos-<br>ity.                  | %<br>Glyc-<br>erol.        | Den-<br>sity.<br>g/cm³                         | Viscos-<br>ity in<br>centi-<br>poises. | Kine-<br>matic<br>viscos-<br>ity.                  |
|----------------|----------------------------------------------------------|----------------------------------------|-----------------------------------|----------------------------------|----------------------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------|------------------------------------------------|----------------------------------------|----------------------------------------------------|
| 15<br>20<br>25 | 1.0098<br>1.0217<br>1.0337<br>1.0461<br>1.0590<br>1.0720 | 1.364<br>1.580<br>1.846<br>2.176       | 1.335<br>1.529<br>1.765<br>2.055  | 35<br>40<br>45<br>50<br>55<br>60 | 1.0855<br>1.0989<br>1.1124<br>1.1258<br>1.1393<br>1.1528 | 3.791<br>4.692<br>5.908<br>7.664       | 2.870<br>3.450<br>4.218<br>5.248<br>6.727<br>8.943 | 65<br>70<br>75<br>80<br>85 | 1.1662<br>1.1797<br>1.1932<br>1.2066<br>1.2201 | 21.49<br>33.71<br>55.34<br>102.5       | 12.44<br>18.22<br>28.25<br>45.86<br>84.01<br>168.3 |

The kinematic viscosity is the ordinary viscosity in cgs units (poises) divided by the density.

TABLE 154. - Viscosity and Density of Castor Oil (Temperature Variation).

| Density, | Viscosity in poises.  Kinematic viscosity.                                 | °C                               | Density,<br>g/cm³                                            | Kinematic viscosity.                                 | °C                         | Density,<br>g/cm³                                        | Viscosity in poises.                                 | Kinematic viscosity.                 | °C                                                 | Density,<br>g/cm³ | Viscosity in poises.                                 | Kinematic viscosity.                         |
|----------|----------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------|------------------------------------------------------|----------------------------|----------------------------------------------------------|------------------------------------------------------|--------------------------------------|----------------------------------------------------|-------------------|------------------------------------------------------|----------------------------------------------|
| 10 .9672 | 31.6 32.6<br>28.9 29.8<br>26.4 27.3<br>24.2 25.0<br>22.1 22.8<br>20.1 20.8 | 16<br>17<br>18<br>19<br>20<br>21 | . 9631 13<br>. 9624 12<br>. 9617 11<br>. 9610 10<br>. 9603 9 | 5.14 15.71<br>3.80 14.33<br>2.65 13.14<br>1.62 12.09 | 26<br>27<br>28<br>29<br>30 | . 9576<br>. 9569<br>. 9562<br>. 9555<br>. 9548<br>. 9541 | 7.06<br>6.51<br>6.04<br>5.61<br>5.21<br>4.85<br>4.51 | 7·37<br>6.80<br>6.32<br>5.87<br>5·46 | 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | .9471             | 3.65<br>3.40<br>3.16<br>2.94<br>2.74<br>2.58<br>2.44 | 3.84<br>3.58<br>3.33<br>3.10<br>2.89<br>2.72 |

Tables 153 and 154, taken from Technologic Paper 112, Bureau of Standards, 1918. Glycerol data due to Archbutt, Deeley and Gerlach; Castor Oil to Kahlbaum and Räber. See preceding table for definition of kinematic viscosity. Archbutt and Deeley give for the density and viscosity of castor oil at 65.6° C, 0.9284 and 0.605, respectively; at 100° C, 0.9050 and 0.169.

#### VISCOSITY OF LIQUIDS.

Viscosities are given in cgs units, dyne-seconds per cm2, or poises.

|                                                                                     |               |                      | D.     |                      |              |            | I      |
|-------------------------------------------------------------------------------------|---------------|----------------------|--------|----------------------|--------------|------------|--------|
| 71 11                                                                               | ° C           | X7224                | Refer- |                      |              |            | Refer- |
| Liquid.                                                                             | - C           | Viscosity.           | ence.  | Liquid.              | ° C          | Viscosity. | ence.  |
|                                                                                     |               |                      |        |                      |              |            |        |
|                                                                                     |               |                      |        | * D - 1 . 1 1        |              |            |        |
| Acetaldehyde                                                                        | 0.            | 0.00275              | I      | * Dark cylinder      | 37.8         | 7.324      | 10     |
| "                                                                                   | 10.           | 0.00252              | I      | *" Evt= T T "        | 100.0        | 0.341      | IO     |
| Air.                                                                                | 20.           | 0.00231              | 2      | *"Extra L. L."       | 37.8         | 11.156     | IO     |
| Aniline                                                                             | -192.3<br>20. | 0.00172              | 3      | Linseed .925 ‡       | 100.0        | 0.451      | IO     |
| "                                                                                   | 60.           | 0.0156               | 3      | " .922               | 30.<br>50.   | 0.331      | 9      |
| Bismuth                                                                             | 285.          | 0.0161               | 4      | " .914               | 90.          | 0.170      | 9      |
| 44                                                                                  | 365.          | 0.0146               | 4      | Olive .9195          | 10.          | 1.38       | 9      |
| Copal lac                                                                           | 22.           | 4.80                 |        | "                    | 15.          | 1.075      | II     |
| Glycerine                                                                           | 2.8           | 42.2                 | 5 6    | " .0130              | 20.          | 0.840      | II     |
| 46                                                                                  | 14.3          | 13.87                | 6      | " .9065              | 30.          | 0.540      | II     |
| 66                                                                                  | 20.3          | 8.30                 | 6      | " .9000              | 40.          | 0.363      | II     |
| "                                                                                   | 26.5          | 4.94                 | 6      | " .8935              | 50.          | 0.258      | II     |
| " 80.31% H <sub>2</sub> O                                                           | 8.5           | 1.021                | 6      | " .8800              | 70.          | 0.124      | II     |
| " 80.31% H <sub>2</sub> O<br>" 64.05% H <sub>2</sub> O<br>" 49.79% H <sub>2</sub> O | 8.5           | 0.222                | 6      | † Rape               | 15.6         | 1.118      | IO     |
| 49.79% H <sub>2</sub> O                                                             | 8.5           | 0.092                | 6      | "                    | 37.8         | 0.422      | IO     |
| Hydrogen, liquid                                                                    |               | 0.00011              | 2      | " '/                 | 100.0        | 0.080      | 10     |
| Menthol, solid                                                                      | 14.9          | 2 × 10 <sup>12</sup> | 7      | " (another)          | 15.6         | 1.176      | IO     |
|                                                                                     | 34.9          | 0.069                | 7 8    | (another)            | 100.0        | 0.085      | IO     |
| Mercury                                                                             | -20.          | 0.0184               |        | Soya bean .919‡      | 30.0         | 0.406      | 9      |
| "                                                                                   | o.<br>20.     | 0.01547              | 4      | " " .915<br>" " .906 | 50.0         | 0.200      | 9      |
| "                                                                                   |               | 0.01347              | 4      | † Sperm              | 15.6         | 0.078      | 10     |
| "                                                                                   | 34.<br>98.    | 0.01263              | 4      | 1 Special            | 37.8         | 0.185      | IO     |
| "                                                                                   | 193.          | 0.01070              | 4      | 44                   | 100.0        | 0.046      | IO     |
| "                                                                                   | 200.          | 0.00075              | 4      | Paraffins:           |              | 0.040      |        |
| Oils:                                                                               | -99.          | 0.00975              | 7      | Pentane              | 21.0         | 0.0026     | 12     |
| Dogfish-liver . 923 ‡                                                               | 30.           | 0.414                | 9      | Hexane               | 23.7         | 0.0033     | 12     |
| " " .918                                                                            | 50.           | 0.211                | 9      | Heptane              | 24.0         | 0.0045     | 12     |
| .900                                                                                | 90.           | 0.080                | 9      | Octane               | 22.2         | 0.0053     | 12     |
| Linseed .925                                                                        | 30.           | 0.331                | 9      | Nonane               | 22.3         | 0.0062     | 12     |
| .922                                                                                | 50.           | 0.176                | 9      | Decane               | 22.3         | 0.0077     | 12     |
| * Spindle oil .885                                                                  | 90.           | 0.071                | 9      | Undecane             | 22.7         | 0.0005     | 12     |
| * Spindle oil .885                                                                  | 15.6          | 0.453                | 10     | Dodecane             | 23.3         | 0.0126     | 12     |
| " " "                                                                               | 37.8          | 0.162                | 10     | Tridecane            | 23.3<br>21.0 | 0.0155     | 12     |
| * Light machinery                                                                   | 100.0         | 0.033                | 10     | Pentadecane          | 22.0         | 0.0213     | 12     |
| .907 ‡                                                                              | 15.6          | 1.138                | 10     | Hexadecane           | 22.0         | 0.0359     | 12     |
| * Light machinery                                                                   | 37.8          | 0.342                | 10     | Phenol.              | 18.3         | 0.1274     | 13     |
| 11 11                                                                               | 100.0         | 0.049                | 10     | 44                   | 00.0         | 0.0126     | 13     |
| * "Solar red" engine.                                                               | 15.6          | 1.015                | 10     | Sulphur              | 170.         | 320.0      | 14     |
| 66 66 66                                                                            | 37.8          | 0.496                | 10     | 74                   | 180.         | 550.0      | 14     |
|                                                                                     | 100.0         | 0.058                | 10     | 66                   | 187.         | 560.0      | 14     |
| *" Bayonne" engine                                                                  | 15.6          | 2.172                | 10     | 4                    | 200.         | 500.0      | 14     |
|                                                                                     | 37.8          | 0.572                | 10     |                      | 250.         | 104.0      | 14     |
| *"0                                                                                 | 100.0         | 0.063                | 10     | "                    | 300.         | 24.0       | 14     |
| *" Queen's red" engine                                                              | 15.6          | 2.995                | IO     | ***********          | 340.         | 6.2        | 14     |
| 66 66 66                                                                            | 37.8          | 0.711                | 10     |                      | 380.         | 2.5        | 14     |
| * " Galena " axle oil                                                               | 100.0         | 0.070                | 10     | "                    | 420.         | 0.80       | 14     |
| * " " " " " " " " " " " " " " " " " " "                                             | 37.8          | 0.000                | 10     | † Tallow             | 66.          | 0.176      | 10     |
| * Heavy machinery                                                                   | 15.6          | 6.606                | 10     | Tanow                | 100.         | 0.078      | 10     |
| " " " " " " " " " " " " " " " " " " "                                               | 37.8          | 1.274                | 10     | Zinc                 | 280.         | 0.0168     | 4      |
| * Filtered cylinder                                                                 | 37.8          | 2.406                | 10     | 44                   | 357.         | 0.0142     | 4      |
| " "                                                                                 | 100.0         | 0.187                | IO     | "                    | 389.         | 0.0131     | 4      |
| * Dark cylinder                                                                     | 37.8          | 4.224                | IO     |                      |              | 1          |        |
| 46 46                                                                               | 100.0         | 0.240                | IO     | 115                  |              |            |        |
| 1                                                                                   |               |                      |        |                      |              |            |        |
|                                                                                     |               |                      |        |                      |              |            |        |

<sup>\*</sup>American mineral oils; based on water as .01028 at 20° C. † Based on water as per 1st footnote. ‡ Densities. References: (1) Thorpe and Rodger, 1894-7; (2) Verschaffelt, Sc. Ab. 1917; (3) Wijkander, 1879; (4) Plüse. Z. An. Ch. 93, 1915; (5) Metz, C. R. 1903; (6) Schöttner, Wien. Ber. 77, 1878, 79, 1879; (7) Heydweiller, W. Ann. 63, 1897; (8) Koch, W. Ann. 14, 1881; (9) White, Bul. Bur. Fish. 32, 1912; (10) Archbutt-Deeley, Lubrication and Lubricants, 1912; (11) Higgins, Nat. Phys. Lab. 11, 1914; (12) Bartolli, Stracciati, 1885-6; (13) Scarpa, 1903-4; (14) Rotinganz, Z. Ph. Ch. 62, 1908.

#### VISCOSITY OF LIQUIDS.

Compiled from Landolt and Börnstein, 1912. Based principally on work of Thorpe and Rogers, 1894–97. Viscosity given in centipoises. One centipoise = 0.01 dyne-second per cm<sup>2</sup>.

| Liquid.                      |                                                                                              |        | Vis     | cosity ir | centipo | ises. |       |       |        |
|------------------------------|----------------------------------------------------------------------------------------------|--------|---------|-----------|---------|-------|-------|-------|--------|
| Diquid.                      | Formula.                                                                                     | o° C   | 10° C   | 20° C     | 30° C   | 40° C | 50° C | 70° C | 100° C |
|                              |                                                                                              | 1      |         |           |         |       |       |       |        |
| Acids: Formic                | $CH_2O_2$                                                                                    | solid  | 2.247   | 1.784     | 1.460   | 1.219 | 1.036 | . 780 | .549   |
| Acetic                       | C <sub>2</sub> H <sub>4</sub> O <sub>2</sub>                                                 | solid  | solid   | I.222     | 1.040   | 0.905 | 0.796 | .631  | .465   |
| Propionic                    | $C_3H_6O_2$                                                                                  | 1.521  | 1.289   | 1.102     | 0.960   | 0.845 | 0.752 | .607  | .459   |
| Butyric                      | C <sub>4</sub> H <sub>8</sub> O <sub>2</sub>                                                 | 2.280  | 1.851   | 1.540     | 1.304   | 1.120 | 0.975 | . 700 | .551   |
| i-Butyric                    | C <sub>4</sub> H <sub>8</sub> O <sub>2</sub><br>CH <sub>4</sub> O                            |        |         | 1.318     |         |       |       |       | . 501  |
| Alcohols: Methyl Ethyl *     | C <sub>2</sub> H <sub>6</sub> O                                                              |        |         | 0.596     |         |       |       |       |        |
| Allyl                        | C <sub>3</sub> H <sub>6</sub> O                                                              |        |         | 1.363     |         |       |       |       |        |
| Propyl                       | C <sub>3</sub> H <sub>8</sub> O                                                              |        |         | 2.256     |         |       |       |       |        |
| i-Propyl                     | C <sub>3</sub> H <sub>8</sub> O                                                              |        |         | 2.370     |         |       |       |       |        |
| Butyric                      | $C_4H_{10}O$                                                                                 |        |         | 2.948     |         |       |       |       | . 540  |
| i-Butyric                    | C <sub>4</sub> H <sub>10</sub> O                                                             |        |         | 3.907     |         |       |       |       | . 527  |
| Amyl, op. act                |                                                                                              | 11.129 |         |           |         |       |       |       | .610   |
| Amyl, op. inact              | $C_6H_{12}O$ $C_6H_6$                                                                        | 0.532  | 0.000   | 4.342     | 3.207   | 2.415 | 1.851 | 250   | .632   |
| Toluene                      | C <sub>7</sub> H <sub>8</sub>                                                                | 0.772  | 0.671   | 0.590     | 0.525   | 0.471 | 0.444 | 354   | . 278  |
| Ethylbenzole                 | C <sub>8</sub> H <sub>10</sub>                                                               | 0.877  | 0.761   | 0.669     | 0.504   | 0.531 | 0.470 | .307  | .310   |
| Orthoxylene                  | C <sub>8</sub> H <sub>10</sub>                                                               |        |         | 0.810     |         |       |       |       |        |
| Metaxylene                   | $C_8H_{10}$                                                                                  | 0.806  | 0.702   | 0.620     | 0.552   | 0.497 | 0.451 | .375  | . 296  |
| Paraxylene                   | $C_8H_{10}$                                                                                  | solid  | 0.738   | 0.648     | 0.574   | 0.513 | 0.463 | . 383 | . 300  |
| Bromides: Ethyl              | C <sub>2</sub> H <sub>6</sub> Br                                                             | 0.487  | 0.441   | 0.402     | 0.368   |       |       | -     |        |
| Propyl                       | C <sub>3</sub> H <sub>7</sub> Br<br>C <sub>3</sub> H <sub>7</sub> Br                         | 0.051  | 0.582   | 0.524     | 0.475   | 0.433 | 0.397 | . 338 |        |
| Allyl                        | C <sub>3</sub> H <sub>5</sub> Br                                                             | 0.626  | 0.560   | 0.504     | 0.443   | 0.410 | 0.384 | . 328 |        |
| Ethylene                     | C <sub>2</sub> H <sub>4</sub> Br                                                             |        |         | 1.721     |         |       |       |       | .678   |
| Bromine                      | Br                                                                                           | 1.267  | I. I 20 | 1.005     | 0.911   | 0.830 | 0.761 |       | _      |
| Chlorides: Propyl            | C <sub>3</sub> H <sub>7</sub> Cl                                                             | 0.442  | 0.396   | 0.359     | 0.326   | 0.299 | -     |       | -      |
| Allyl                        | C <sub>3</sub> H <sub>5</sub> Cl                                                             | 0.413  | 0.372   | 0.337     | 0.307   | 0.282 | _     |       |        |
| Ethylene                     | C <sub>2</sub> H <sub>4</sub> Cl<br>CHCl <sub>3</sub>                                        |        |         | 0.838     |         |       |       |       |        |
| Carbon-tetra                 | CCL <sub>4</sub>                                                                             |        |         | 0.571     |         |       |       |       |        |
| Ethers: Diethyl              | C <sub>4</sub> H <sub>10</sub> O                                                             | 0.204  | 0. 268  | 0.245     | 0.222   | - 740 | -     | - 554 | _      |
| Methyl-propyl                | C4H10O                                                                                       | 0.314  | 0.285   | 0.260     | 0.237   |       |       | _     | _      |
| Ethyl-propyl                 | C5H12O                                                                                       | 0.402  | 0.360   | 0.324     | 0.294   | 0.268 | 0.245 | -     | -      |
| Dipropyl                     | $C_6H_{14}O$                                                                                 | 0.544  | 0.479   | 0.425     | 0.381   | 0.344 |       |       | -      |
| Esters: Methylformate        |                                                                                              |        |         | 0.355     |         |       | -     | -     | -      |
| Ethylformate Methylacetate   |                                                                                              | 0.510  | 0.454   | 0.408     | 0.309   | 0.336 | 0.308 |       |        |
| Ethylacetate                 | C <sub>3</sub> H <sub>6</sub> O <sub>2</sub><br>C <sub>4</sub> H <sub>8</sub> O <sub>2</sub> |        |         | 0.388     |         |       |       |       |        |
| Iodides: Methyl              | CH <sub>3</sub> I                                                                            |        |         | 0.500     |         |       |       |       |        |
| Ethyl                        | C <sub>2</sub> H <sub>5</sub> I                                                              |        |         | 0.592     |         |       |       | .391  | -      |
| Propyl                       | $C_8H_7I$                                                                                    | 0.944  | 0.833   | 0.744     | 0.669   | 0.607 | 0.552 | .466  | .371   |
| Allyl<br>Paraffines: Pentane |                                                                                              |        |         | 0.734     |         |       | 0.544 | .458  | .365   |
| i-Pentane                    | $C_{5}H_{12}$ $C_{5}H_{12}$                                                                  |        |         | 0.240     |         | _     | _     |       | -      |
| Hexane                       | C <sub>6</sub> H <sub>14</sub>                                                               |        |         | 0.234     |         | 0 277 | 0 248 |       |        |
| i-Hexane                     | C <sub>6</sub> H <sub>14</sub>                                                               |        |         | 0.326     |         |       |       |       | _      |
| Heptane                      | C7H16                                                                                        |        |         | 0.416     |         |       |       |       |        |
| i-Heptane                    |                                                                                              | 0.481  | 0.428   | 0.384     | 0.347   | 0.315 | 0.288 | . 243 | -      |
| Octane                       | $C_8H_{18}$                                                                                  | 0.706  | 0.616   | 0.542     | 0.483   | 0.433 | 0.391 | . 324 | . 252  |
| Sulphides: Carbon di Ethyl   | $CS_2$<br>$C_4H_{10}S$                                                                       | 0.438  | 0.405   | 0.376     | 0.352   | 0.330 |       |       |        |
| Turpentine†                  | C411105                                                                                      |        |         | 0.450     |         |       |       |       |        |
|                              |                                                                                              | 2.240  | 1.703   | 1.407     | 1.272   | 1.071 | 0.920 | . 720 |        |
|                              |                                                                                              |        |         |           |         |       |       |       |        |

<sup>\*</sup> Bureau of Standards, see special table. † Glaser.

This table is intended to show the effect of change of concentration and change of temperature on the viscosity of solutions of salts in water. The specific viscosity × 100 is given for two or more densities and for several temperatures in the case of each solution.  $\mu$  stands for specific viscosity, and t for temperature Centigrade.

|                                     |                                                    |                         | - 11                    |              |                                 |         |                                 |      |                              |    |              |
|-------------------------------------|----------------------------------------------------|-------------------------|-------------------------|--------------|---------------------------------|---------|---------------------------------|------|------------------------------|----|--------------|
| Salt.                               | Percentage<br>by weight<br>of salt in<br>solution. | Density.                | μ                       | t            | μ                               | ŧ       | μ                               | ŧ    | μ                            | t  | Authority.   |
| BaCl <sub>2</sub><br>"              | 7.60<br>15.40<br>24.34                             |                         | 77.9<br>86.4<br>100.7   | 10 "         | 44.0<br>56.0<br>66.2            | 30 "    | 35.2<br>39.6<br>47.7            | 50 " | =                            |    | Sprung.<br>" |
| Ba(NO <sub>3</sub> ) <sub>2</sub>   | 2.98<br>5.24                                       | 1.027                   | 62.0<br>68.1            | 15           | 51.1<br>54.2                    | 25      | 42.4<br>44.I                    | 35   | 34.8<br>36.9                 | 45 | Wagner.      |
| CaCl <sub>2</sub> " "               | 15.17<br>31.60<br>39.75<br>44.09                   |                         | 110.9<br>272.5<br>670.0 | 10<br>"<br>" | 71.3<br>177.0<br>379.0<br>593.1 | 30 "    | 50.3<br>124.0<br>245.5<br>363.2 | 50 " |                              |    | Sprung.      |
| Ca(NO <sub>3</sub> ) <sub>2</sub> " | 17.55<br>30.10<br>40.13                            | 1.171<br>1.274<br>1.386 | 93.8<br>144.1<br>242.6  | 15           | 74.6<br>112.7<br>217.1          | 25 "    | 60.0<br>90.7<br>156.5           | 35   | 49.9<br>75.1<br>128.1        | 45 | Wagner.      |
| CdCl <sub>2</sub> "                 | 11.09<br>16.30<br>24.79                            | 1.109<br>1.181<br>1.320 | 77·5<br>88.9<br>104.0   | 15           | 60.5<br>70.5<br>80.4            | 25 "    | 49.1<br>57.5<br>64.6            | 35   | 40.7<br>47.2<br>53.6         | 45 | 66<br>66     |
| Cd(NO <sub>8</sub> ) <sub>2</sub>   | 7.81<br>15.71<br>22.36                             | 1.074<br>1.159<br>1.241 | 61.9<br>71.8<br>85.1    | 15           | 50.1<br>58.7<br>69.0            | 25 "    | 41.1<br>48.8<br>57.3            | 35   | 34.0<br>41.3<br>47.5         | 45 | cc<br>cc     |
| CdSO <sub>4</sub>                   | 7.14<br>14.66<br>22.01                             | 1.068<br>1.159<br>1.268 | 78.9<br>96.2<br>120.8   | 15           | 61.8<br>72.4<br>91.8            | 25 "    | 49.9<br>58.1<br>73.5            | 35   | 41.3<br>48.8<br>60.1         | 45 | ee<br>ee     |
| CoCl <sub>2</sub>                   | 7.97<br>14.86<br>22.27                             | 1.081<br>1.161<br>1.264 | 83.0<br>111.6<br>161.6  | 15           | 65.1<br>85.1<br>126.6           | 25 "    | 53.6<br>73.7<br>101.6           | 35   | 44.9<br>58.8<br>85.6         | 45 | 66<br>66     |
| Co(NO <sub>3</sub> ) <sub>2</sub>   | 8.28<br>15.96<br>24.53                             | 1.073<br>1.144<br>1.229 | 74·7<br>87.0<br>110.4   | 15           | 57.9<br>69.2<br>88.0            | 25 "    | 48.7<br>55.4<br>71.5            | 35   | 39.8<br>44.9<br><b>5</b> 9.1 | 45 | 66<br>66     |
| CoSO <sub>4</sub>                   | 7.24<br>14.16<br>21.17                             | 1.086<br>1.159<br>1.240 | 86.7<br>117.8<br>193.6  | 15           | 68.7<br>95.5<br>146.2           | 25      | 55.0<br>76.0<br>113.0           | 3.5  | 45.1<br>61.7<br>89.9         | 45 | 66<br>66     |
| CuCl <sub>2</sub> "                 | 12.01<br>21.35<br>33.03                            | 1.104<br>1.215<br>1.331 | 87.2<br>121.5<br>178.4  | 15           | 67.8<br>95.8<br>137.2           | 25<br>" | 55.1<br>77.0<br>107.6           | 35   | 45.6<br>63.2<br>87.1         | 45 | 66           |
| Cu(NO <sub>8</sub> ) <sub>2</sub> " | 18.99<br>26.68<br>46.71                            | 1.177<br>1.264<br>1.536 | 97.3<br>126.2<br>382.9  | 15           | 76.0<br>98.8<br>283.8           | 25<br>" | 61.5<br>80.9<br>215.3           | 35   | 51.3<br>68.6<br>172.2        | 45 | 66           |
| CuSO <sub>4</sub>                   | 6.79<br>12.57<br>17.49                             | 1.055<br>1.115<br>1.163 | 79.6<br>98.2<br>124.5   | 15           | 61.8<br>74.0<br>96.8            | 25 "    | 49.8<br>59.7<br>75.9            | 35 " | 41.4<br>52.0<br>61.8         | 45 | 66           |
| HC1<br>"                            | 8.14<br>16.12<br>23.04                             | 1.037<br>1.084<br>1.114 | 71.0<br>80.0<br>91.8    | 15 "         | 57.9<br>66.5<br>79.9            | 25 "    | 48.3<br>56.4<br>65.9            | 35   | 40.1<br>48.1<br>56.4         | 45 | ec<br>ec     |
| HgCl <sub>2</sub>                   | 0.23<br>3·55                                       | 1.002                   | 76.75                   | - 10         | 58.5<br>59.2                    | 20      | 46.8<br>46.6                    | 30   | 38.3<br>38.3                 | 40 | 66           |

| Salt.                                         | Percentage<br>by weight<br>of salt in    | Density.                | μ                                    | 1 2          | μ                                    | t       | μ                                    | t     | μ                              | t       | Authority.        |
|-----------------------------------------------|------------------------------------------|-------------------------|--------------------------------------|--------------|--------------------------------------|---------|--------------------------------------|-------|--------------------------------|---------|-------------------|
|                                               | solution.                                |                         | -                                    | _            |                                      |         |                                      |       |                                |         |                   |
| HNO <sub>3</sub>                              | 8.37<br>12.20<br>28.31                   | 1.067<br>1.116<br>1.178 | 66.4<br>69.5<br>80.3                 | 15           | 54.8<br>57.3<br>65.5                 | 25      | 45·4<br>47·9<br>54·9                 | 3,5   | 37.6<br>40.7<br>46.2           | 45      | Wagner.           |
| H <sub>2</sub> SO <sub>4</sub>                | 7.87<br>15.50<br>23.43                   | 1.065<br>1.130<br>1.200 | 77.8<br>95.1<br>122.7                | 15           | 61.0<br>75.0<br>95.5                 | 25      | 50.0<br>60.5<br>77.5                 | 35    | 41.7<br>49.8<br>64.3           | 45      | 66<br>66<br>66    |
| KCI "                                         | 10.23                                    | -                       | 70.0<br>70.0                         | 10           | 46.1<br>48.6                         | 30      | 33.I<br>.36.4                        | 50    | _                              | -       | Sprung.           |
| KBr<br>"                                      | 14.02<br>23.16<br>34.64                  | -                       | 67.6<br>66.2<br>66.6                 | 10           | 44.8<br>44.7<br>47.0                 | 30      | 32.1<br>33.2<br>35.7                 | 50    | -                              |         | 66<br>66          |
| KI<br>"<br>"                                  | 8.42<br>17.01<br>33.03<br>45.98<br>54.00 |                         | 69.5<br>65.3<br>61.8<br>63.0<br>68.8 | 10<br>"<br>" | 44.0<br>42.9<br>42.9<br>45.2<br>48.5 | 30 "    | 31.3<br>31.4<br>32.4<br>35.3<br>37.6 | 50 "" |                                |         | 66<br>66<br>66    |
| KClO <sub>3</sub>                             | 3.51<br>5.69                             | = 1                     | 71.7                                 | 10           | 44·7<br>45·0                         | 30      | 31.5<br>31.4                         | 50    | -                              | -       | 66                |
| KNO <sub>8</sub>                              | 6.32<br>12.19<br>17.60                   |                         | 70.8<br>68.7<br>68.8                 | 10<br>"      | 44.6<br>44.8<br>46.0                 | 30 "    | 31.8<br>32.3<br>33.4                 | 50    | -<br>-                         | -       | 66<br>66          |
| K <sub>2</sub> SO <sub>4</sub>                | 5.17<br>9.77                             | -                       | 77-4<br>81.0                         | 10           | 48.6                                 | 30      | 34·3<br>36.9                         | 50    | _                              | -       | "                 |
| K <sub>2</sub> CrO <sub>4</sub>               | 11.93<br>19.61<br>24.26<br>32.78         | 1.233                   | 75.8<br>85.3<br>97.8<br>109.5        | 10<br>"<br>" | 62.5<br>68.7<br>74.5<br>88.9         | 30 "    | 41.0<br>47.9<br>54.5<br>62.6         | 40 "  | -<br>-<br>-                    | 1 1 1 1 | " Slotte. Sprung. |
| K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> | 4.71<br>6.97                             | 1.032                   | 72.6<br>73.1                         | IO<br>"      | 55.9<br>56.4                         | 20      | 45·3<br>45·5                         | 30    | 37·5<br>37·7                   | 40      | Slotte.           |
| LiCl<br>"                                     | 7.76<br>13.91<br>26.93                   | -                       | 96.1<br>121.3<br>229.4               | 10<br>"      | 59.7<br>75.9<br>142.1                | 30      | 41.2<br>52.6<br>98.0                 | 50 "  | -                              | 1 1 1   | Sprung.           |
| Mg(NO <sub>3</sub> ) <sub>2</sub>             | 18.62<br>34.19<br>39.77                  | I.102<br>I.200<br>I.430 | 99.8<br>213.3<br>317.0               | 15           | 81.3<br>164.4<br>250.0               | 25<br>" | 66.5<br>132.4<br>191.4               | 35    | 56.2<br>109.9<br>158.1         | 45 "    | Wagner.           |
| MgSO <sub>4</sub>                             | 4.98<br>9.50<br>19.32                    | -                       | 96.2<br>1 30.9<br>302.2              | 10           | 59.0<br>77.7<br>166.4                | 30 "    | 40.9<br>53.0<br>106.0                | 50 "  |                                |         | Sprung.           |
| MgCrO <sub>4</sub>                            | 12.31<br>21.86<br>27.71                  | 1.089<br>1.164<br>1.217 | 111.3<br>167.1<br>232.2              | 10 "         | 84.8<br>125.3<br>172.6               | 20 "    | 67.4<br>99.0<br>133.9                | 30 "  | 55.0<br>79.4<br>106.6          | 40 "    | Slotte.           |
| MnCl <sub>2</sub> " "                         | 8.01<br>15.65<br>30.33<br>40.13          |                         | 92.8<br>130.9<br>256.3<br>537·3      | 15           | 71.1<br>104.2<br>193.2<br>393.4      | 25 "    | 57·5<br>84.0<br>155.0<br>300.4       | 35 "  | 48.1<br>68.7<br>123.7<br>246.5 | 45      | Wagner. " "       |

| Salt.                                             | Percentage<br>by weight<br>of salt in<br>solution. | Density.                | μ                                    | t                 | μ                                    | ŧ            | μ                                    | t    | μ                      | t       | Authority.     |
|---------------------------------------------------|----------------------------------------------------|-------------------------|--------------------------------------|-------------------|--------------------------------------|--------------|--------------------------------------|------|------------------------|---------|----------------|
| Mn(NO <sub>3</sub> ) <sub>2</sub> "               | 18.31<br>29.60<br>49.31                            | 1.148<br>1.323<br>1.506 | 96.0<br>167.5<br>396.8               | 15                | 76.4<br>126.0<br>301.1               | 25           | 64.5<br>104.6<br>221.0               | 35   | 55.6<br>88.6<br>188.8  | 45      | Wagner.        |
| MnSO <sub>4</sub>                                 | 11.45<br>18.80<br>22.08                            | 1.147<br>1.251<br>1.306 | 129.4<br>228.6<br>661.8              | 15                | 98.6<br>172.2<br>474·3               | 25 "         | 78.3<br>137.1<br>347.9               | 35   | 63.4<br>107.4<br>266.8 | 45      | ec<br>64       |
| NaCl<br>"                                         | 7.95<br>14.31<br>23.22                             | -                       | 82.4<br>94.8<br>1.28.3               | 10<br>"           | 52.0<br>60.1<br>79.4                 | 30 "         | 31.8<br>36.9<br>47.4                 | 50 " | -                      | -       | Sprung.        |
| NaBr<br>"                                         | 9.77<br>18.58<br>27.27                             | -                       | 75.6<br>82.6<br>95.9                 | 10<br>"           | 48.7<br>53.5<br>61.7                 | 30 "         | 34·4<br>38·2<br>43·8                 | 50 " | -                      | -       | 66<br>66       |
| NaI<br>"<br>"                                     | 8.83<br>17.15<br>35.69<br>55.47                    | -                       | 73.1<br>73.8<br>86.0<br>157.2        | 10 "              | 46.0<br>47.4<br>55.7<br>96.4         | 30 "         | 32·4<br>33·7<br>40·6<br>66·9         | 50 " |                        |         | 66<br>66<br>66 |
| NaClO <sub>3</sub>                                | 11.50<br>20.59<br>33.54                            |                         | 78.7<br>88.9<br>121.0                | 10<br>"           | 50.0<br>56.8<br>75.7                 | 30 "         | 35·3<br>40·4<br>53·0                 | 50 " |                        |         | 66<br>66       |
| NaNO <sub>3</sub> " " " "                         | 7.25<br>12.35<br>18.20<br>31.55                    |                         | 75.6<br>81.2<br>87.0<br>121.2        | 10 "              | 47.9<br>51.0<br>55.9<br>76.2         | 30<br>"<br>" | 33.8<br>36.1<br>39.3<br>53.4         | 50 " |                        |         | 66<br>66<br>66 |
| Na <sub>2</sub> SO <sub>4</sub> " "               | 4.98<br>9.50<br>14.03<br>19.32                     |                         | 96.2<br>130.9<br>187.9<br>302.2      | 10<br>"<br>"      | 59.0<br>77.7<br>107.4<br>166.4       | 30 "         | 40.9<br>53.0<br>71.1<br>106.0        | 50 " |                        |         | 66             |
| Na <sub>2</sub> CrO <sub>4</sub>                  | 5.76<br>10.62<br>14.81                             | 1.058<br>1.112<br>1.164 | 85.8<br>103.3<br>127.5               | 10                | 66.6<br>79.3<br>97.1                 | 20 "         | 53.4<br>63.5<br>77.3                 | 30   | 43.8<br>52.3<br>63.0   | 40      | Slotte.        |
| NH <sub>4</sub> Cl<br>"<br>"                      | 3.67<br>8.67<br>1 5.68<br>23.37                    |                         | 71.5<br>69.1<br>67.3<br>67.4         | 10 "              | 45.0<br>45.3<br>46.2<br>47.7         | 30 "         | 31.9<br>32.6<br>34.0<br>36.1         | 50 " | -                      | 1 1 1 1 | Sprung.        |
| NH <sub>4</sub> Br<br>"                           | 15.97<br>25.33<br>36.88                            |                         | 65.2<br>62.6<br>62.4                 | 10 "              | 43.2<br>43.3<br>44.6                 | 30 "         | 31.5<br>32.2<br>34.3                 | 50 " | -                      | 1 1 1   | 66             |
| NH <sub>4</sub> NO <sub>3</sub><br>"<br>"<br>     | 5.97<br>12.19<br>27.08<br>37.22<br>49.83           | 11111                   | 69.6<br>66.8<br>67.0<br>71.7<br>81.1 | 10<br>"<br>"<br>" | 44·3<br>44·3<br>47·7<br>51·2<br>63·3 | 30 "         | 31.6<br>31.9<br>34.9<br>38.8<br>48.9 | 50 " |                        | 11111   | 66<br>66<br>66 |
| (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> " | 8.10<br>15.94<br>25.51                             | -                       | 107.9<br>120.2<br>148.4              | 10<br>"           | 52.3<br>60.4<br>74.8                 | 30 "         | 37.0<br>43.2<br>54.1                 | 50 " | -                      | -       | 66             |

| Salt.                                                          | Percentage<br>by weight<br>of salt in<br>solution. | Density.                | μ                            | t    | μ                      | t       | μ                     | t    | μ                     | t       | Authority.   |
|----------------------------------------------------------------|----------------------------------------------------|-------------------------|------------------------------|------|------------------------|---------|-----------------------|------|-----------------------|---------|--------------|
| (NH <sub>4</sub> ) <sub>2</sub> CrO <sub>4</sub>               | 10.52<br>19.75<br>28.04                            | 1.063<br>1.120<br>1.173 | 79·3<br>88.2<br>101.1        | 10   | 62.4<br>70.0<br>80.7   | 20 "    | 57.8<br>60.8          | 30   | 42.4<br>48.4<br>56.4  | 40 -    | Slotte.      |
| (NH <sub>4</sub> ) <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> | 6.85<br>13.00<br>19.93                             | 1.039<br>1.078<br>1.126 | 72.5<br>72.6<br><b>7</b> 7.6 | 10 " | 56.3<br>57.2<br>58.8   | 20 "    | 45.8<br>46.8<br>48.7  | 30 " | 38.0<br>39.1<br>40.9  | 40 "    | 66<br>66     |
| NiCl <sub>2</sub>                                              | 11.45<br>22.69<br>30.40                            | 1.109<br>1.226<br>1.337 | 90.4<br>140.2<br>229.5       | 15   | 70.0<br>109.7<br>171.8 | 25<br>" | 57·5<br>87.8<br>139.2 | 35   | 48.2<br>72.7<br>111.9 | 45      | Wagner.<br>" |
| Ni(NO <sub>8</sub> ) <sub>2</sub>                              | 16.49<br>30.01<br>40.95                            | 1.136<br>1.278<br>1.388 | 90.7<br>135.6<br>222.6       | "    | 70.1<br>105.9<br>169.7 | 25 "    | 57·4<br>85.5<br>128.2 | 35   | 48.9<br>70.7<br>152.4 | 45      | 66<br>66     |
| NiSO <sub>4</sub>                                              | 10.62<br>18.19<br>25.35                            | 1.092<br>1.198<br>1.314 | 94.6<br>154.9<br>298.5       | "    | 73·5<br>119.9<br>224.9 | 25 "    | 60.1<br>99.5<br>173.0 | 3,5  | 49.8<br>75.7<br>152.4 | 45      | 66           |
| Pb(NO <sub>3</sub> ) <sub>2</sub>                              | 17.93<br>32.22                                     | 1.179<br>1.362          | 74.0<br>91.8                 | 15   | 59.1<br>72.5           | 25      | 48.5<br>59.6          | 3,5  | 40.3<br>50.6          | 45      | 66           |
| Sr(NO <sub>3</sub> ) <sub>2</sub> "                            | 10.29<br>21.19<br>32.61                            | 1.088<br>1.124<br>1.307 | 69.3<br>87.3<br>116.9        | 15   | 56.0<br>69.2<br>93·3   | 25 "    | 45.9<br>57.8<br>76.7  | 35   | 39.1<br>48.1<br>62.3  | 45      | 66           |
| ZnCl <sub>2</sub>                                              | 1 5.33<br>23.49<br>33.78                           | 1.146<br>1.229<br>1.343 | 93.6<br>111.5<br>151.7       | 15   | 72.7<br>86.6<br>117.9  | 25 "    | 57.8<br>69.8<br>90.0  | 35   | 48.2<br>57.5<br>72.6  | 45<br>" | 66           |
| Zn(NO <sub>8</sub> ) <sub>2</sub> "                            | 1 5.95<br>30.23<br>44.50                           | 1.115<br>1.229<br>1.437 | 80.7<br>104.7<br>167.9       | 15   | 64.3<br>85.7<br>130.6  | 25 "    | 52.6<br>69.5<br>105.4 | 35   | 43.8<br>57.7<br>87.9  | 45<br>" | 66           |
| ZnSO <sub>4</sub>                                              | 7.12<br>16.64<br>23.09                             | 1.106<br>1.195<br>1.281 | 97.1<br>156.0<br>232.8       | "    | 79.3<br>118.6<br>177.4 | 25      | 62.7<br>94.2<br>135.2 | 35   | 51.5<br>73.5<br>108.1 | 45      | 66           |

TABLE 158.
SPECIFIC VISCOSITY.\*

|                                       | Normal s         | solution.           | ½ norr   | mal.                | 1 nor   | mal.                | l nor            | mal.                |            |
|---------------------------------------|------------------|---------------------|----------|---------------------|---------|---------------------|------------------|---------------------|------------|
| Dissolved salt.                       | ·.               | ic<br>ty.           | · ·      | ty.                 | ·ķ.     | ty.                 | y.               | o .;                | Authority. |
|                                       | Density.         | Specific viscosity. | Density. | Specific viscosity. | Density | Specifie viscosity. | Density.         | Specific viscosity. |            |
| Acids: Cl <sub>2</sub> O <sub>3</sub> | 1.0562           | 1.012               | 1.0283   | 1.003               | 1.0143  | 1.000               | 1.0074           | 0.999               | Reyher.    |
| HCl<br>HClO <sub>8</sub>              | 1.0177           | 1.067               | 1.0092   | 1.034               | 1.0045  | 1.017               | 1.0025           | 1.009               | 66         |
| HNO <sub>3</sub>                      | 1.0332           | 1.027               | 1.0168   | 1.011               | 1.0086  | 1.005               | 1.0044           | 1.003               | "          |
| $H_2SO_4$                             | 1.0303           | 1.090               | 1.0154   | 1.043               | 1.0074  | 1.022               | 1.0035           | 1.008               | Wagner.    |
| Aluminium sulphate<br>Barium chloride | 1.0550           | 1.406               | 1.0278   | 1.178               | 1.0138  | 1.082               | 1.0068           | 1.038               | "          |
| " nitrate                             |                  | 1.123               | 1.0441   | 1.057               | 1.0226  | 1.026               | 1.0114           | 1.013               | "          |
| Calcium chloride                      | 1.0446           | 1.156               | 1.0218   | 1.076               | 1.0105  | 1.036               | 1.0050           | 1.017               | 66         |
|                                       | 1.0596           | 1.117               | 1.0300   | 1.053               | 1.0151  | 1.022               | 1.0076           |                     |            |
| Cadmium chloride . " nitrate .        | 1.0779           | 1.134               | 1.0394   | 1.063               | 1.0197  | 1.031               | 1.0098           | 1.020               | 66         |
| " sulphate.                           | 1.0973           | 1.348               | 1.0487   | 1.157               | 1.0244  | 1.078               | 1.0120           | 1.033               | "          |
| Cobalt chloride                       | 1.0571           | 1.204<br>1.166      | 1.0286   | 1.097               | 1.0144  | 1.048               | 1.0058           | 1.023               | 66         |
| " sulphate                            | 1.0750           | 1.354               | 1.0383   | 1.160               | 1.0193  | 1.077               | 1.0110           | 1.040               | 66         |
| Copper chloride                       | 1.0624           | 1.205               | 1.0313   | 1.098               | 1.0158  | 1.047               | 1.0077           | 1.027               | 66         |
| " nitrate                             | 1.0755           | 1.179               | 1.0372   | 1.080               | 1.0185  | 1.040               | 1.0092           | 1.018               | 66         |
| " sulphate                            | 1.0790           | 1.358               | 0.0699   | 1.160               | 1.0205  | 1.080               | 1.0103           | 1.038               | 66         |
| Lithium chloride .                    | 1.0243           | 1.142               | 1.0129   | 1.066               | 1.0062  | 1.031               | 1.0030           | 1.012               | 66         |
| " sulphate .                          | 1.0453           | 1.290               | 1.0234   | 1.137               | 1.0115  | 1.065               | 1.0057           | 1.032               |            |
| Magnesium chloride nitrate.           | 1.1375           | 1.201               | 1.0188   | 1.094               | 1.0091  | 1.044               | 1.0043<br>1.0066 | I.02I<br>I.020      | "          |
| " sulphate                            |                  | 1.367               | 1.0297   | 1.164               | 1.0152  | 1.078               | 1.0076           | 1.032               | 66         |
| Manganese chloride nitrate.           | 1.0513           | 1.209               | 1.0259   | 1.098               | 1.0125  | 1.048               | 1.0063           | 1.023               | 66         |
| " sulphate                            | 1.0728           | 1.364               | 1.0365   | 1.169               | 1.0179  | 1.076               | 1.0087           | 1.037               | 66         |
| Nickel chloride                       | 1.0591           | 1.205               | 1.0308   | 1.097               | 1.0144  | 1.044               | 1.0067           | 1.021               | 66         |
| " nitrate                             | 1.0755           | 1.180               | 1.0381   | 1.084               | 1.0192  | 1.042               | 1.0096           | 1.019               | 66         |
| " sulphate Potassium chloride .       | 1.0773<br>1.0466 | 0.987               | 1.0391   | 0.987               | 1.0198  | 0.990               | 1.0017           | 0.993               | "          |
| " chromate                            | 1.0935           | 1.113               | 1.0475   | 1.053               | 1.0241  | 1.022               | 1.0121           | 1.012               | 66         |
| " nitrate . " sulphate                | 1.0605           | 0.975               | 1.0305   | 0.982               | 1.0161  | 0.987               | 1.0075           | 0.992               | . 66       |
| Sodium chloride.                      | 1.0401           | 1.097               | 1.0208   | 1.047               | 1.0107  | 1.024               | 1.0056           | 1.013               | Reyher.    |
| " bromide                             | 1.0786           | 1.064               | 1.0396   | 1.030               | 1.0190  | 1.015               | 1.0100           | 1.008               | "          |
| " chlorate . " nitrate                | 1.0710           | 1.090               | 1.0359   | 1.042               | 1.0180  | I.022<br>I.012      | 1.0092           | I.0I2<br>I.007      | 46         |
| Silver nitrate                        | 1.1386           | 1.058               | 1.0692   | 1.020               | 1.0348  | 1.006               | 1.0173           | 1.000               | Wagner.    |
| Strontium chloride .                  | 1.0676           | 1.141               | 1.0336   | 1.067               | 1.0171  | 1.034               | 1.0084           | 1.014               | "          |
| " nitrate .<br>Zinc chloride          | 1.0822           | 1.115               | 1.0419   | 1.049<br>1.096      | 1.0208  | 1.024               | 1.0104           | 1.011               | 66         |
| " nitrate                             | 1.0590           | 1.164               | 1.0302   | 1.086               | 1.0191  | 1.039               | 1.0096           | 1.019               | 66         |
| " sulphate                            | 1.0792           | 1.367               | 1.0402   | 1.173               | 1.0198  | 1.082               | 1.0094           | 1.036               |            |
|                                       |                  |                     |          |                     |         |                     |                  |                     |            |

<sup>\*</sup> In the case of solutions of salts it has been found (vide Arrhennius, Zeits. für Phys. Chem. vol. 1, p. 285) that the specific viscosity can, in many cases, be nearly expressed by the equation  $\mu = \mu_1 n$ , where  $\mu_1$  is the specific viscosity for a normal solution referred to the solvent at the same temperature, and n the number of gramme molecules in the solution under consideration. The same rule may of course be applied to solutions stated in percentages instead of gramme molecules. The table here given has been compiled from the results of Reyher (Zeits. für Phys. Chem. vol. 2, p. 749) and of Wagner (Zeits. für Phys. Chem. vol. 5, p. 31) and illustrates this rule. The numbers are all for 25° C

#### VISCOSITY OF GASES AND VAPORS.

The values of  $\mu$  given in the table are 10<sup>6</sup> times the coefficients of viscosity in C. G. S. units.

|                       |       |       |   |                 |                 | Temp  |               | Refer- |
|-----------------------|-------|-------|---|-----------------|-----------------|-------|---------------|--------|
| Substance.            | Temp. | μ     |   | Refer-<br>ence. | Substance.      | Temp. |               | ence.  |
|                       |       |       |   |                 |                 |       |               |        |
|                       |       |       |   |                 |                 |       |               |        |
| Acetone               | 18.0  | 78.   |   | I               | Ether           | 16.1  | 73.2          | I      |
| Air *                 | -21.4 | 163.9 |   | 2               | Total districts | 36.5  | 79.3          | I      |
| 66                    | 0.0   | 173.3 |   | 2               | Ethyl chloride  | 0.    | 93.5          | 4      |
|                       | 15.0  | 180.7 |   | 2               | Ethyl iodide    | 72.3  | 216.0         | 3      |
|                       | 99.I  | 220.3 |   | 2               | Ethylene        | 0.0   | 96.1          | 2      |
|                       | 182.4 | 255.9 |   | 2               | Helium          | 0.0   | 189.1         | 5      |
|                       | 302.0 | 299.3 |   | 2               | 66              | 15.3  | 196.9         | 5      |
| Alcohol, Methyl       | 66.8  | 135.  |   | 3               | "               | 66.6  | 234.8         | 5      |
| Alcohol, Ethyl        | 78.4  | 142.  |   | 3               | Hydrogen        | 184.6 | 269.9<br>81.0 | 5 2    |
| Alcohol, Propyl,      |       |       |   |                 | Hydrogen        | 0.0   | 86.7          | 10     |
| norm                  | 97.4  | 142.  |   | 3               | "               |       | 88.9          | 2      |
| Alcohol, Isopropyl.   | 82.8  | 162.  |   | 3               | "               | 15.   | 105.0         | 2      |
| Alcohol, Butyl, norm. |       | 143.  |   | 3               | "               | 182.4 | 121.5         | 2      |
| Alcohol, Isobutyl     | 108.4 | 144.  |   | 3               | "               | 302.0 | 130.2         | 2      |
| Alcohol, Tert. butyl. | 82.9  | 96.   | Е | 3 4             | Krypton         | 15.0  | 246.          | 11     |
| 11                    | 20.0  | 108.  |   | 4               | Mercury         | 270.0 | 489.†         | 8      |
| Ammon                 | 0.0   | 210.4 | ш | 5               | ""              | 300.0 | 532.          | 8      |
| Argon                 |       | 220.8 | Б | 5               | "               | 330.0 | 582.1         | 8      |
| 66                    | 14.7  | 224.I |   | 5               | "               | 360.0 | 627.†         | 8      |
| 46                    | 99.7  | 273.3 |   | 5               | "               | 390.0 | 671.          | 8      |
| "                     | 183.7 | 322.I |   | 5               | Methane         | 20.0  | 120.1         | 4      |
| Benzene               | 0.    | 70.   |   | 10              | Methyl chloride | 0.0   | 98.8          | 2      |
| 66                    | 10.0  | 79.   |   | 6               | "               | 15.0  | 105.2         | 2      |
| 66                    | 100.0 | 118.  |   | 6               | " "             | 302.0 | 213.0         | 2      |
| Carbon bisulphide     | 16.0  | 02.4  |   | I               | Methyl iodide   | 44.0  | 232.          | 3      |
| Carbon dioxide        | -20.7 | 120.4 |   | 2               | Nitrogen        | -21.5 | 156.3         | 7      |
| " "                   | 0.    | 142.  |   | 10              | "               | 0.    | 166.          | 10     |
| " "                   | 15.0  | 145.7 |   | 2               | "               | 10.9  | 170.7         | 7      |
| " "                   | 99.1  | 186.1 |   | 2               | 66              | 53.5  | 189.4         | 7      |
| " "                   | 182.4 | 222.I |   | 2               | Nitric oxide    | 0.    | 179.          | 10     |
| 66 66                 | 302.0 | 268.2 |   | 2               | Nitrous oxide   | 0.    | 138.          | 10     |
| Carbon monoxide       | 0.0   | 163.0 |   | 10              | Oxygen          | 0.    | 189.          | 10     |
|                       | 20.0  | 184.0 |   | 4               |                 | 15.4  | 195.7         | 7      |
| Chlorine              | 0.0   | 128.7 |   | 4               |                 | 53.5  | 215.9         | 7      |
| "                     | 20.0  | 147.0 |   | 4               | Water Vapor     | 0.0   | 90.4          | 1      |
| Chloroform            | 0.0   | 95.9  |   | I               | " " …           | 16.7  | 96.7          | 1      |
| 66                    | 17.4  | 102.9 |   | I               |                 | 100.0 | 132.0         | 9      |
|                       | 61.2  | 189.0 |   | 3               | Xenon           | 15.   | 222.          | II     |
| Ether                 | 0.0   | 68.9  |   | I               |                 |       |               |        |
|                       |       |       |   |                 |                 |       |               |        |

- 1 Puluj, Wien. Ber. 69 (2), 1874. 2 Breitenbach, Ann. Phys. 5, 1901. 3 Steudel, Wied. Ann. 16, 1882. 4 Graham, Philos. Trans. Lond. 1846, III. 5 Schultze, Ann. Phys. (4), 5, 6, 1901.
- 6 Schumann, Wied. Ann. 23, 1884.
- 7 Obermayer, Wien. Ber. 71 (2a), 1875. 8 Koch, Wied. Ann. 14, 1881, 19, 1883.
- 9 Meyer-Schumann, Wied. Ann. 13, 1881.
- 10 Jeans, assumed mean, 1916. 11 Rankine, 1910.
- 12 Vogel (Eucken, Phys. Z. 14, 1913). For summaries see: Fisher, Phys. Rev. 24, 1904; Chapman, Phil. Tr. A. 211, 1911; Gilchrist, Phys. Rev. 1, 1913.

Schmidt, Ann. d. Phys. 30, 1909.

† The values here given were calculated from Koch's table (Wied. Ann. 19, p. 869, 1883) by the formula  $\mu = 489 [1 + 746(t - 270)]$ .

<sup>\*</sup> Gilchrist's value of the viscosity of air may be taken as the most accurate at present available. His value at 20.2° C is 1.812 × 10-4. The temperature variation given by Holman (Phil. Mag. 1886) gives  $\mu = 1715.50 \times 10^{-7} (1 + .00275t - .0000034t^2)$ . See Phys. Rev. 1, 1913. Millikan (Ann. Phys. 41, 759, 1913) gives for the most accurate value  $\mu_t = 0.00018240 - 0.00000493(23 - t)$  when (23 > t > 12) whence  $\mu_{20} = 0.0001809 = 0.1\%$ . For  $\mu_0$  he gives 0.0001711.

#### VISCOSITY OF GASES

#### Variation of Viscosity with Pressure and Temperature.

According to the kinetic theory of gases the coefficient of viscosity  $\mu=\frac{1}{2}(\rho \bar{c}l)$ ,  $\rho$  being the density,  $\bar{c}$  the average velocity of the molecules, l the average path. Since l varies inversely as the number of molecules per unit volume,  $\rho l$  is a constant and  $\mu$  should be independent of the density and pressure of a gas (Maxwell's law). This has been found true for ordinary pressures; below  $\bar{c}$ 0 atmosphere it may fail, and for certain gases it has been proved untrue for high pressures, e.g., CO<sub>2</sub> at 33° and above 50 atm. See Jeans, "Dynamical Theory of Gases."

 $\bar{c}$  depends only on the temperature and the molecular weight; viscosity should, therefore, increase with the pressures for gases.  $\bar{c}$  varies as the  $\sqrt{T}$ , but  $\mu$  has been found to increase much more rapidly. Meyer's formula,  $\mu_t = \mu_0(1 + at)$ , where a is a constant and  $\mu_0$  the viscosity at  $o^\circ$  C, is a convenient approximate relation. Sutherland's formula (Phil. Mag. 31, 1893).

$$\mu_t = \mu_o \, \frac{273 + C}{T + C} \left( \frac{T}{273} \right)^{\frac{3}{2}},$$

is the most accurate formula in use, taking in account the effect of molecular forces. It holds for temperatures above the critical and for pressures following approximately Boyle's law. It may be thrown into the form  $T = KT^{\frac{3}{2}}/\mu - C$  which is linear in terms of T and  $T^{\frac{3}{2}}/\mu$ , with a slope equal to K and the ordinate intercept equal to -C. See Fisher, Phys. Rev. 24, 1907, from which most of the following table is taken. Onnes (see Jeans) shows that this formula does not represent Helium at low temperatures with anything like the accuracy of the simpler formula  $\mu = \mu_0 (T/273.1)^n$ .

The following table contains the constants for the above three formulae, T being always the absolute temperature, Centigrade scale.

| Gas. | С                               | К<br>× 10 <sup>7</sup>                        | а      | n*                                             | Gas.                                                                        | С          | -K<br>× 10 <sup>7</sup>           | а      | n 🌣                          |
|------|---------------------------------|-----------------------------------------------|--------|------------------------------------------------|-----------------------------------------------------------------------------|------------|-----------------------------------|--------|------------------------------|
| Air  | 172<br>102<br>240<br>454<br>226 | 150<br>206<br>135<br>158<br>159<br>106<br>148 | .00269 | .754<br>.819<br>.74<br>.98<br><br>.683<br>.647 | Hydrogen Krypton Neon Nitrogen Nitrous oxide, N <sub>2</sub> O Oxygen Xenon | 313<br>131 | 66<br>—<br>143<br>172<br>176<br>— | .00269 | .69<br><br>.74<br>.93<br>.79 |

<sup>\*</sup>The authorities for n are: Air, Rayleigh; Ar, Mean, Rayleigh, Schultze; CO, CO<sub>2</sub>, N<sub>2</sub>, N<sub>2</sub>O, von Obermayer; Helium, Mean, Rayleigh, Schultze; 2d value, low temperature work of Onnes; H<sub>2</sub>, O<sub>2</sub>, Mean, Rayleigh, von Obermayer.

#### DIFFUSION OF AN AQUEOUS SOLUTION INTO PURE WATER.

If k is the coefficient of diffusion, dS the amount of the substance which passes in the time dt, at the place x, through q sq. cm. of a diffusion cylinder under the influence of a drop of concentration dc/dx, then

 $dS = -kq \frac{dc}{dr} dt.$ 

k depends on the temperature and the concentration.  $\epsilon$  gives the gram-molecules per liter. The unit of time is a day.

| Substance.                    | С   | ţ0    | k     | Refer-<br>ence | Substance.          | с     | to         | k     | Refer-<br>ence. |
|-------------------------------|-----|-------|-------|----------------|---------------------|-------|------------|-------|-----------------|
| Bromine                       | 1.0 | 12.   | 0.8   | I              | Calcium chloride .  | 0.864 | 8.5        | 0.70  | 4               |
| Chlorine                      |     | 12.   | 1,22  | 66             | 66 66               | 1.22  | 9.         | 0.72  | _               |
| Copper sulphate .             | 66  | 17.   | 0.39  | 2              |                     | 0.060 | 9.         | 0.64  | 46              |
| Glycerine                     | 66  | 10.14 | 0.357 | 3              | 66 66               | 0.047 | 9.         | 0.68  | 66              |
| Hydrochloric acid .           | 66  | 19.2  | 2.21  | 2              | Copper sulphate .   | 1.95  | 17.        | 0.23  | 2               |
| Iodine                        | 66  | 12.   | (0.5) | I              | "                   | 0.95  | 17.        | 0.26  | 66              |
| Nitric acid                   | 64  | 19.5  | 2.07  | 2              | 66 66               | 0.30  | 17.        | 0.33  | 66              |
| Potassium chloride.           | 46  | 17.5  | 1.38  | 2              | " "                 | 0.005 | 17.        | 0.47  | 66              |
| " hydroxide .                 | 66  | 13.5  | 1.72  | 2              | Glycerine           | 2/8   | 10.14      | 0.354 | 3               |
| Silver nitrate                | 66  | 12.   | 0.985 | 2              | "                   | 6/8   | 10.14      | 0.345 | _               |
| Sodium chloride .             | 66  | 15.0  | 0.94  | 2              | 66                  | 10/8  | 10.14      | 0.329 | "               |
| Urea                          | 66  | 14.8  | 0.97  | 3              | 66                  | 14/8  | 10.14      | 0.300 | 66              |
| Acetic acid                   | 0.2 | 13.5  | 0.77  | 4              | Hydrochloric acid . | 4.52  | 11.5       | 2.93  | 4               |
| Barium chloride .             | 66  | 8.    | 0.66  | 4              | "                   | 3.16  | II.        | 2.67  | 66              |
| Glycerine                     | 66  | 10.1  | 3.55  | 3              | 66 66               | 0.945 | II.        | 2.12  | 66              |
| Sodium actetate .             | 66  | 12.   | 0.67  | 5 2            | " "                 | 0.387 | 11.        | 2.02  | 66              |
| " chloride .                  | 66  | 15.0  | 0.94  | 2              | 66 66 .             | 0.250 | II.        | 1.84  | 66              |
| Urea                          | -66 | 14.8  | 0.969 | 3 6            | Magnesium sulphate  | 2.18  | 5-5        | 0.28  | 4               |
| Acetic acid                   | 1.0 | 12.   | 0.74  | 6              | " .                 | 0.541 | 5.5        | 0.32  | 66              |
| Ammonia                       | 66  | 15.23 | 1.54  | 7              | 66 66 .             | 3.23  | 10.        | 0.27  | 66              |
| Formic acid                   | 66  | 12.   | 0.97  | 7              | - "                 | 0.402 | 10.        | 0.34  | 66              |
| Glycerine                     | 66  | 10.14 | 0.339 | 3 6            | Potassium hydroxide | 0.75  | 12.        | 1.72  | 6               |
| Hydrochloric acid .           | 66  | I 2.  | 2.09  | 6              | " . " .             | 0.49  | 12.        | 1.70  | 66              |
| Magnesium sulphate            | 66  | 7.    | 0.30  | 4              | 66 46               | 0.375 | 12.        | 1.70  | 66              |
| Potassium bromide.            | 64  | 10.   | 1.13  | 8              | " nitrate .         | 3.9   | 17.6       | 0.89  | 2               |
| " hydroxide.                  | 66  | 12.   | 1.72  | 6              | 66 66 .             | 1.4   | 17.6       | 1.10  | 66              |
| Sodium chloride .             | 66  | 15.0  | 0.94  | 2              | "                   | 0.3   | 17.6       | 1.26  | 64              |
|                               | 66  | 14.3  | 0.964 | 3              | 66 66               | 0.02  | 17.6       | 1.28  | 66              |
| llydroxide.                   | 66  | 12.   | I.II  | 2              | " sulphate          | 0.95  | 19.6       | 0.79  | 66              |
| " iodide .                    | "   | 10.   | 0.80  | 8              | " " .               | 0.28  | 19.6       | 0.86  | 66              |
| Sugar                         |     | 12.   | 0.254 | 6              |                     | 0.05  | 19.6       | 0.97  |                 |
| Sulphuric acid .              | "   | 12.   | 1.12  | 6              | 66 66               | 0.02  | 19.6       | 1.01  | 66              |
| Zinc sulphate                 | 66  | 14.8  | 0.236 | 9              | Silver nitrate      | 3.9   | 12.        | 0.535 | 66              |
| Acetic acid                   | 2.0 | 12.   | 0.69  |                | " "                 | 0.9   | 12.        | 0.88  | "               |
| Calcium chloride .            | 66  | 10.   | 0.68  | 8              |                     | 0.02  | 12.        | 1.035 |                 |
| Cadmium sulphate.             | 66  | 19.04 | 0.246 | 9              | Sodium chloride .   | 2/8   | 14.33      | 1.013 | 3               |
| Hydrochloric acid.            | 66  | 12.   | 2.21  |                | " "                 | 4/8   | 14.33      | 0.996 |                 |
| Sodium iodide .               | 66  | 10.   | 0.90  | 8              | " "                 | 6/8   | 14.33      | 0.980 | 2               |
| Sulphuric acid . Zinc acetate | 66  | 12.   | 1.16  | 6              | " "                 | 10/8  | 14.33      | 0.948 | 16              |
| Zinc acetate                  | 66  | 18.05 | 0.210 | 9              |                     | 14/8  | 14.33      | 0.917 |                 |
| Acetic acid                   |     | 0.04  | 0.120 | 9              | Sulphuric acid .    | 9.85  | 18.        | 2.36  | 2               |
| Potassium carbonate           | 3.0 | 12.   | 0.60  | 8              |                     | 4.85  | 18.<br>18. | 1.60  | "               |
| " hydroxide                   | 66  | 10.   | 1.80  | 6              | "                   | 2.85  | 18.        |       | 66              |
| Acetic acid                   | 4.0 | 12.   | 0.66  | 6              | "                   | 0.85  | 18.        | 1.34  | 66              |
| Potassium chloride.           | 4.0 | 10.   | 1     | 8              | "                   | 0.35  | 18.        | 1.32  | 66              |
| 1 otassium chionde            |     | 10.   | 1.27  | 10             |                     | 0.005 | 10.        | 1.30  |                 |

Euler, Wied. Ann. 63, 1897.
 Thovert, C. R. 133, 1901; 134, 1902.
 Heimbrodt, Diss. Leipzig, 1903.
 Scheffer, Chem. Ber. 15, 1882; 16, 1883; Zeitschr. Phys. Chem. 2, 1888.

<sup>5</sup> Kawalki, Wied. Ann. 52, 1894; 59, 1896. 6 Arrhenius, Zeitschr. Phys. Chem. 10, 1892.

<sup>7</sup> Abegg, Zeitschr. Phys. Chem. 11, 1893.

<sup>8</sup> Schuhmeister, Wien. Ber. 79 (2), 1879.

<sup>9</sup> Seitz, Wied. Ann. 64, 1898.

#### DIFFUSION OF VAPORS.

Coefficients of diffusion of vapors in C. G. S. units. The coefficients are for the temperatures given in the table and a pressure of 76 centimeters of mercury.\*

| Vapor.                 | Temp. C. | kt for vapor diffusing into hydrogen. | kt for vapor diffusing into air. | kt for vapor diffusing into carbon dioxide. |
|------------------------|----------|---------------------------------------|----------------------------------|---------------------------------------------|
| Acids: Formic          | 0.0      | 0.5121                                |                                  | 0                                           |
| "                      | 65.4     | 0.5131                                | 0.1315                           | 0.0879                                      |
| "                      | 84.9     | 0.8830                                | 0.2035                           | 0.1343                                      |
| Acetic                 | 0.0      | 0.4040                                | 0.2244                           | 0.1519                                      |
| "                      | 65.5     | 0.6211                                | 0.1578                           | 0.0713                                      |
| "                      | 98.5     | 0.7481                                | 0.1965                           | 0.1048                                      |
| Isovaleric             | 0.0      | 0.2118                                | 0.0555                           | 0.1321                                      |
|                        | 98.0     | 0.3934                                | 0.1031                           | 0.0696                                      |
| 41 1 1 26 11 1         |          | 0,0.                                  |                                  |                                             |
| Alcohols: Methyl       | 0.0      | 0.5001                                | 0.1325                           | 0.0880                                      |
|                        | 25.6     | 0.6015                                | 0.1620                           | 0.1046                                      |
|                        | 49.6     | 0.6738                                | 0.1809                           | 0.1234                                      |
| Ethyl                  | 0.0      | 0.3806                                | 0.0994                           | 0.0693                                      |
| " · · ·                | 40.4     | 0.5030                                | 0.1372                           | 0.0898                                      |
|                        | 66.9     | 0.5430.                               | 0.1475                           | 0.1026                                      |
| Propyl                 | 0.0      | 0.3153                                | 0.0803                           | 0.0577                                      |
| "                      | 66.9     | 0.4832                                | 0.1237                           | 0.0901                                      |
| Butyl                  | 83.5     | 0.5434                                | 0.1379                           | 0.0976                                      |
| Butyl                  | 0.0      | 0.2716                                | 0.0681                           | 0.0476                                      |
| Amyl : : :             | 99.0     | 0.5045                                | 0.1265                           | 0.0884                                      |
| Killyl                 | 0.0      | 0.2351                                | 0.0589                           | 0.0422                                      |
| Hexyl                  | 99.1     | 0.4362                                | 0.1094                           | 0.0784                                      |
| "                      | 0.0      | 0.1998                                | 0.0499                           | 0.0351                                      |
|                        | 99.0     | 0.3712                                | 0.0927                           | 0.0651                                      |
| Benzene                | 0.0      | 0.2940                                | 0.0751                           | 0.0527                                      |
| "                      | 19.9     | 0.3409                                | 0.0877                           | 0.0609                                      |
| "                      | 45.0     | 0.3993                                | 0.1011                           | 0.0715                                      |
|                        | 43.0     | - 3993                                |                                  | 0.07.5                                      |
| Carbon disulphide      | 0.0      | 0.3690                                | 0.0883                           | 0.0629                                      |
| "                      | 19.9     | 0.4255                                | 0.1015                           | 0.0726                                      |
|                        | 32.8     | 0.4626                                | 0.1120                           | 0.0789                                      |
| Fetore Mothyl acetete  |          | 0.00                                  | 0.0010                           | 0.0555                                      |
| Esters: Methyl acetate | 0.0      | 0.3277                                | 0.0840                           | 0.0557                                      |
| Ethyl "                | 20.3     | 0.3928                                | 0.1013                           | 0.0679                                      |
| ic ic                  | 46.1     | 0.2373                                | 0.0030                           | 0.0450                                      |
| Methyl butyrate        | 0.0      | 0.3729                                | 0.0640                           | 0.0438                                      |
| " "                    | 92.1     | 0.4308                                | 0.1139                           | 0.0800                                      |
| Ethyl "                | 0.0      | 0.2238                                | 0.0573                           | 0.0406                                      |
| " "                    | 96.5     | 0.4112                                | 0.1064                           | 0.07 56                                     |
| " valerate             | 0.0      | 0.2050                                | 0.0505                           | 0.0366                                      |
| "                      | 97.6     | 0.3784                                | 0.0932                           | 0.0676                                      |
|                        |          |                                       |                                  |                                             |
| Ether                  | 0.0 -    | 0.2960                                | 0.0775                           | 0.0552                                      |
| "                      | 19.9     | 0.3410                                | 0.0893                           | 0.0636                                      |
| Water                  |          | - 68                                  | 0.7080                           | 0.1310                                      |
| Water                  | 0.0      | 0.6870                                | 0.1980                           | 0.1310                                      |
|                        | 49.5     | 1.0000                                | 0.2827                           |                                             |
|                        | 92.4     | 1.1794                                | 0.3451                           | 0.2384                                      |
|                        |          |                                       |                                  |                                             |

<sup>\*</sup> Taken from Winkelmann's papers (Wied. Ann. vols. 22, 23, and 26). The coefficients for  $0^{\circ}$  were calculated by Winkelmann on the assumption that the rate of diffusion is proportional to the absolute temperature. According to the investigations of Loschmidt and of Oberneyer the coefficient of diffusion of a gas, or vapor, at  $0^{\circ}$  C. and a pressure of 76 centimetres of mercury may be calculated from the observed coefficient at another temperature and pressure by the formula  $k_0 = k_T \left(\frac{T_0}{T}\right)^n \frac{26}{\rho}$ , where T is temperature absolute and p the pressure of the gas. The exponent n is found to be about 1.75 for the permanent gases and about 2 for condensible gases. The following are examples: Air  $-CO_2$ , n=1.968;  $CO_2-N_2O_1$ , n=2.05;  $CO_2-H_1$ , n=1.742;  $CO-O_1$ , n=1.795;  $H-O_1$ , n=1.755;  $O-N_1$ , n=1.792. Winkelmann's results, as given in the above table, seem to give about 2 for vapors diffusing into air, hydrogen or carbon dioxide.

#### DIFFUSION OF GASES, VAPORS, AND METALS.

TABLE 163. - Coefficients of Diffusion for Various Gases and Vapors.\*

<sup>\*</sup> Compiled for the most part from a similar table in Landolt & Börnstein's Phys. Chem. Tab.

#### TABLE 164,- Diffusion of Metals into Metals.

 $\frac{dv}{dt} = k \frac{d^2v}{dx^2};$  where x is the distance in direction of diffusion; v, the degree of concentration of the diffusing metal; t, the time; k, the diffusion constant = the quantity of metal in grams diffusing through a sq. cm. in a day when unit difference of concentration (gr. per cu. cm.) is maintained between two sides of a layer one cm. thick.

| Diffusing Metal. | Dissolving<br>Metal,     | Tempera-<br>ture O C.                                       | k.                                                                        | Diffusing Metal.                                                      | Dissolving<br>Metal.                   | Tempera-<br>ture O C.                     | k.                                                                       |
|------------------|--------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|
| Gold             | Lead . " " " Bismuth Tin | 555<br>492<br>251<br>200<br>165<br>100<br>555<br>555<br>555 | 3.19<br>3.00<br>0.03<br>0.008<br>0.004<br>0.00002<br>4.52<br>4.65<br>4.14 | Platinum . Lead . Rhodium . Tin . Lead Zinc . Sodium . Potassium Gold | Lead . Tin . Lead . Mercury  " " " " " | 492<br>555<br>550<br>15<br>15<br>15<br>15 | 1.69<br>3.18<br>3.04<br>1.22*<br>1.0*<br>1.0*<br>0.45*<br>0.40*<br>0.72* |

From Roberts-Austen, Philosophical Transactions, 187A, p. 383, 1896.

\* These values are from Guthrie.

# SOLUBILITY OF INORCANIC SALTS IN WATER; VARIATION WITH THE TEMPERATURE.

The numbers give the number of grams of the anhydrous salt soluble in 1000 grams of water at the given temperatures.

|                                                                                |                       |            |                   |                 | Temper       | rature Co   | entigrade         |                                     |                        |                        |                        |
|--------------------------------------------------------------------------------|-----------------------|------------|-------------------|-----------------|--------------|-------------|-------------------|-------------------------------------|------------------------|------------------------|------------------------|
| Salt.                                                                          | 00                    | 100        | 20°               | 300             | 40°          | 50°         | 60°               | 70°                                 | 80°                    | 900                    | 100°                   |
| $AgNO_3$ $Al_2(SO_4)_3$                                                        | . 1150                | 1600       | 21 50<br>362      | 2700<br>404     | 3350         | 4000<br>521 | 4700              | 5500                                | 6500                   | 7600<br>808            | 9100                   |
| $Al_2K_2(SO_4)_4$ $Al_2K_2(SO_4)_4$ $Al_2(NH_4)_2(SO_4)_4$                     | 313                   | 335        | 66                | 84              | 457          | -           | 59I<br>248<br>211 | 270                                 | 731                    | -                      | 1540                   |
| $B_2O_3$                                                                       | . II                  | 45         | 22                | 382             | 40           | 1 59        | 62                | -                                   | 35 <sup>2</sup><br>95  | -                      | 1 57<br>588            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                           | 316                   | 333        | 357<br>92         | 116             | 408<br>142   | 436         | 203               | 494<br>236                          | 524<br>270             | 556<br>306             | 342                    |
| $CaCl_2 \dots CoCl_2 \dots$                                                    | 595                   | 650        | 745               | 565             | 650          | 935<br>2185 | 1368              | 950                                 | 960                    | 1527                   | 1590                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                           | . 1614                | 1747       | 1865              | 1973<br>339     | 2080<br>472  | 644         | 838               | 2395                                | 2500<br>1340           | 2601<br>1630           | 1970                   |
| $Cs_2SO_4 \cdot \cdot \cdot \cdot Cu(NO_3)_2 \cdot \cdot \cdot \cdot$          | . 818                 | 1731       | 1787              | 1841            | 1899         | 1949        | 1999              | 2050                                | 2103                   | 2149                   | 2203                   |
| $CuSO_4$ FeCl <sub>2</sub>                                                     | : 149                 | 2          | 685               | <sup>2</sup> 55 | 295          | 336<br>820  | 390               | 457                                 | 535                    | 627<br>1050            | 735                    |
| $Fe_2Cl_6 \dots FeSQ_4 \dots \dots$                                            | 744                   | 208        | 918               | 330<br>84       | 402          | 3151<br>486 | 550               | -<br>560                            | 5258                   | 430                    | 5357                   |
| $HgCl_2 \dots KBr \dots$                                                       | 43                    | 66         | 74<br>650         | 84              | 96<br>760    | 113         | 139<br>860        | 173                                 | 243<br>955             | 371                    | 1050                   |
| $K_2CO_3 \dots KC1 \dots$                                                      | . 1050                | 312        | 343               | 373             | 1170<br>401  | 1210        | 1270              | 1330                                | 1400<br>510            | 1470<br>538            | 1560<br>566            |
| $KClO_3 \dots K_2CrO_4 \dots$                                                  | 33 589                | 609        | 71<br>629         | 650             | 145<br>670   | 197<br>690  | 260<br>710        | 3 <sup>2</sup> 5<br>73 <sup>0</sup> | 396<br>751             | 475<br>77 I            | 560<br>791             |
| $K_2Cr_2O_7 \dots KHCO_3 \dots$                                                | . 50                  | 85         | 131<br>332        | 390             | 292<br>453   | 522         | 505<br>600        | -                                   | 730                    | _                      | 1020                   |
| $KI \dots KNO_3 \dots$                                                         | . 1279                | 1361       | 1442<br>316       | 1523<br>458     | 1600         | 1680<br>855 | 1760              | 1840                                | 1690                   | 2010                   | 2090                   |
| $KOH K_2PtCl_6$                                                                | 970                   | 1030       | 1120              | 1260            | 1360         | 1400        | 1460              | 1510<br>32                          | 1590                   | 1680<br>45<br>228      | 1780                   |
| $K_2SO_4 \dots$                                                                | . 74                  | 92         | 111               | 130             | 148          | 165         | 182               | 198                                 | 1 53<br>660            | -                      | 175                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                           | . 528<br>.q) 260      | 535        | 545<br>356        | 409             | 57.5<br>456  | Ξ0          | 610               | -                                   | -                      | -                      | 730                    |
| " (6a<br>NH <sub>4</sub> Cl                                                    | . 297                 | 333        | 439<br>372        | 453<br>414      | 458          | 504<br>504  | 550<br>552        | 596<br>602                          | 642<br>656             | 689                    | 73 <sup>8</sup><br>773 |
| $ \begin{array}{cccc} NH_4HCO_3. & . & . \\ NH_4NO_8 & . & . & . \end{array} $ | . 119                 | 1 59       | 210               | 270<br>2418     | 2970         | 3540?       | 4300?             | 5130?                               | 5800                   | 7400                   | 8710                   |
| $(NH_4)_2SO_4.$ NaBr                                                           | . 706                 | 730        | 754<br>903        | 780             | 810          | 844         | 880               | 916                                 | 953                    | 992                    | 1033                   |
| $Na_2B_4O_7$ Na <sub>2</sub> CO <sub>8</sub> (10a)                             |                       | 16         | 214               | 39<br>409       | -            | 105         | 200               | 244                                 | 314                    | 408                    | 523                    |
| NaCl                                                                           | (q) 204<br>356<br>820 | 263<br>357 | 335<br>358        | 435<br>360      | (1aq)<br>363 | 475<br>367  | 464<br>37 I       | 458<br>375                          | 45 <sup>2</sup><br>380 | 45 <sup>2</sup><br>385 | 452<br>391<br>2040     |
| NaClO <sub>3</sub> · · · · · · Na <sub>2</sub> CrO <sub>4</sub> · · · ·        | . 317                 | 890<br>502 | 990               | -               | 960          | 1050        | 1470              | -                                   | 1750<br>1240<br>3860   | 1_                     | 1260                   |
| Na <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> NaHCO <sub>3</sub>              | . 69                  | 1700<br>82 | 1800              | 1970            | 127          | 2480<br>145 | 2830<br>164       | 3230                                | -                      | -                      | 988                    |
| Na <sub>2</sub> HPO <sub>4</sub><br>NaI                                        | 1 590                 | 1690       | 93<br>1790<br>880 | 1900            | 2050         | 2280        | 2570<br>1246      | 949                                 | 2950                   | 1610                   | 3020<br>1755           |
| NaNO <sub>3</sub>                                                              | · 73°                 | 805        | 000               | 962             | 1049         | 1140        | 1240              | 1300                                | 1400                   |                        | , 55                   |

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

#### SOLUBILITY OF SALTS AND CASES IN WATER.

TABLE 165 (concluded) - Solubility of Inorganic Salts in Water; Variation with the Temperature.

The numbers give the number of grams of the anhydrous salt soluble in 1000 grams of water at the given temperatures.

|                                               |           |            |            | ,    | l'empera | ture Ce | ntigrade  |             |      |      |      |
|-----------------------------------------------|-----------|------------|------------|------|----------|---------|-----------|-------------|------|------|------|
| Salt.                                         |           |            |            | 1    |          |         |           |             |      | 1    | -    |
|                                               | 00        | 100        | 200        | 30°  | 40°      | 500     | 60°       | 700         | 80°  | 900  | 100° |
| NaOH                                          | 420       | 515        | 1000       | 1190 | 1290     | 1450    | 1740      | -           | 3130 | _    | _    |
| Na <sub>4</sub> P <sub>2</sub> O <sub>7</sub> | 32        | 39         | 62         | 99   | 135      | 174     | 220       | 255         | 300  | -    | -    |
| Na <sub>2</sub> SO <sub>8</sub>               | 141       | -          | 287        | -    | 495      | -       | -         | -           | -    | -    | 330  |
| $Na_2SO_4$ (10aq)                             | 50<br>196 | 90<br>305  | 194        | 400  | 482      | 468     | 455       | 445         | 437  | 429  | 427  |
| $Na_2S_2O_3$                                  | 525       | 610        | 700        | 847  | 1026     | 1697    | 2067      | -           | 2488 | 2542 | 2660 |
| $NiCl_2$                                      | -         | 600        | 640        | 680  | 720      | 760     | 810       | -           | -    | -    | -    |
| NiSO <sub>4</sub>                             | 272       | - ,        | -          | 425  | -        | 502     | 548       | 594         | 632  | 688  | 776  |
| $PbBr_2 \dots \dots$                          | 5         | 6          | 8          | 12   | 15       | 20      | 24<br>880 | 28          | 33   | -    | 48   |
| $Pb(NO_3)_2$ RbCl                             | 365       | 444<br>844 | 523<br>911 | 976  | 1035     | 787     | 1155      | 977<br>1214 | 1076 | 1174 | 1270 |
| RbNO <sub>8</sub>                             | 195       | 330        | 533        | 813  | 1167     | 1556    | 2000      | 2510        | 3090 | 3750 | 4520 |
| Rb <sub>2</sub> SO <sub>4</sub>               | 364       | 426        | 482        | 535  | 585      | 631     | 674       | 714         | 750  | 787  | 818  |
| SrCl <sub>2</sub>                             | 442       | 483        | 539        | 600  | 667      | 744     | 831       | 896         | 924  | 962  | 1019 |
| $SnI_2$                                       | -         | -          | 10         | 12   | 14       | 17      | 21        | 25          | 30   | 34   | 40   |
| $Sr(NO_8)_2$                                  | 395       | 549        | 708        | 876  | 913      | 926     | 940       | 956         | 972  | 990  | 1011 |
| $Th(SO_4)_2$ (9aq)                            | 7         | IO         | 14         | 20   | 30       | 51      | 16        | Ţ.,         | _    | -    | -    |
| TICI (4aq)                                    | 2         | 2          | - 2        | 1    | 40       | 25<br>8 | 10        | 11          | 16   | 20   |      |
| TINO8                                         | 39        | 62         | 3<br>96    | 143  | 200      | 304     | 462       | 695         | 1110 | 2000 | 4140 |
| Tl <sub>2</sub> SO <sub>4</sub>               | 27        | 37         | 49         | 62   | 76       | 92      | 109       | 127         | 146  | 165  | T    |
| $Yb_2(SO_4)_3$                                | 442       | -          | -          | -    | -        |         | 104       | 72          | 69   | 58   | 47   |
| $Zn(NO_3)_2$                                  | 948       | -          | -          | -    | 2069     | -       | -         | -           | -    | -    | -    |
| ZnSO <sub>4</sub>                             | -         | _          | -          | -    | 700      | 768     | -         | 890         | 860  | 920  | 785  |

TABLE 166. - Solubility of a Few Organic Salts in Water; Variation with the Temperature.

| Salt.                                                                               | 00                             | 100                     | 200                                   | 300                       | 400                               | 50°                            | 60°                                     | 70°                                  | 800                                      | 900                                    | 1000                                    |
|-------------------------------------------------------------------------------------|--------------------------------|-------------------------|---------------------------------------|---------------------------|-----------------------------------|--------------------------------|-----------------------------------------|--------------------------------------|------------------------------------------|----------------------------------------|-----------------------------------------|
| $H_2(CO_2)_2$ $H_2(CH_2,CO_2)_2$ Tartaric acid Racemic " $K(HCO_2)$ $KH(C_4H_4O_6)$ | 36<br>28<br>1150<br>92<br>2900 | 53<br>45<br>1260<br>140 | 102<br>69<br>1390<br>206<br>3350<br>6 | 159<br>106<br>1560<br>291 | 228<br>162<br>1760<br>433<br>3810 | 321<br>244<br>1950<br>595<br>- | 445<br>358<br>2180<br>783<br>4550<br>24 | 635<br>511<br>2440<br>999<br>-<br>32 | 978<br>708<br>2730<br>1250<br>5750<br>45 | 1 200<br>-<br>3070<br>1 530<br>-<br>57 | -<br>1209<br>3430<br>1850<br>7900<br>69 |

#### TABLE 167.- Solubility of Gases in Water; Variation with the Temperature.

The table gives the weight in grams of the gas which will be absorbed in 1000 grams of water when the partial pressure of the gas plus the vapor pressure of the liquid at the given temperature equals 760 mm.

| Gas.                                                                                                                                          | 00                                                                    | 100                                                                      | 200                                                                      | 30°                                                                 | 400   | 50°                                             | 60°                                             | 70 <sup>0</sup>                                   | 80°                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------|-------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| O <sub>2</sub> H <sub>2</sub> N <sub>2</sub> Br <sub>2</sub> Cl <sub>2</sub> CO <sub>2</sub> H <sub>2</sub> S NH <sub>3</sub> SO <sub>2</sub> | .0705<br>.00192<br>.0293<br>431.<br>-<br>3.35<br>7.10<br>987.<br>228. | .0551<br>.00174<br>.0230<br>248.<br>9.97<br>2.32<br>5.30<br>689.<br>162. | .0443<br>.00160<br>.0189<br>148.<br>7.29<br>1.69<br>3.98<br>535-<br>113. | .0368<br>.00147<br>.0161<br>94.<br>5.72<br>1.26<br>-<br>422.<br>78. | .0139 | .0263<br>.00129<br>.0121<br>40.<br>3.93<br>0.76 | .0221<br>.00118<br>.0105<br>28,<br>3.30<br>0.58 | .0181<br>.00102<br>.0089<br>18.<br>2.79<br>-<br>- | .0135<br>.00079<br>.0069<br>11.<br>2.23<br>-<br>- |

#### CHANGE OF SOLUBILITY PRODUCED BY UNIFORM PRESSURE.\*

|                                     | CdSO <sub>4</sub> 8/3                                                         | H <sub>2</sub> O at 25° | ZnSO <sub>4.7</sub>                                                            | H <sub>2</sub> O at 25° | Mannite                                                              | at 24.05°          | NaCl at 24.05°                                                     |                    |  |
|-------------------------------------|-------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------|--------------------|--------------------------------------------------------------------|--------------------|--|
| Pressure<br>in<br>atmos-<br>pheres. | Conc. of satd. soln.<br>gs. CdSO <sub>4</sub> per<br>100 gs. H <sub>2</sub> O | Percentage change.      | Conc. of satd. solu.<br>gs. ZnSO <sub>4</sub> per<br>roo gs. H <sub>2</sub> O. | Percentage change.      | Conc. of satd. soln.<br>gs. monnite per<br>roo gs. H <sub>2</sub> O. | Percentage change. | Conc. of satd. soln.<br>gs. NaCl. per<br>100 gs. H <sub>2</sub> O. | Percentage change. |  |
| ı                                   | 76.80                                                                         | - 1                     | 57.95                                                                          | _                       | 20,66                                                                | -                  | 35.90                                                              | _                  |  |
| 500                                 | 78.01                                                                         | + 1.57                  | 57.87                                                                          | -0.14                   | 21.14                                                                | + 2.32             | 36.55                                                              | + 1.81             |  |
| 1000                                | 78.84                                                                         | + 2.68                  | 57.65                                                                          | -0.52                   | 21,40                                                                | + 3.57             | 37.02                                                              | + 3.12             |  |
| 1500                                | _                                                                             | _                       | _                                                                              | _                       | 21.64                                                                | + 4.72             | 37.36                                                              | + 4.07             |  |

<sup>\*</sup> E. Cohen and L. R. Sinnige, Z. physik. Chem. 67, p. 432, 1909; 69, p. 102, 1909. E. Cohen, K. Inouye and C. Euwen, ibid. 75, p. 257, 1911. These authors give a critical résumé of earlier work along this line.

#### ABSORPTION OF CASES BY LIQUIDS.\*

|                                                                    | _ |                                     |                                              |                |                                                                               |                                                                                                   |                                                                               | _                 |                                                                                         |                  |                                                                   |                                       |                                                    |                                                                                        |
|--------------------------------------------------------------------|---|-------------------------------------|----------------------------------------------|----------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------|---------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------|
| Temperature                                                        |   |                                     |                                              |                | ABSOR                                                                         | PTION COEFF                                                                                       | ICIENTS, at,                                                                  | FOR (             | GASE                                                                                    | s in             | WATE                                                              | R.                                    |                                                    |                                                                                        |
| Centigrade.                                                        |   | Carl<br>diox<br>CO                  | ide.                                         |                | Carbon<br>onoxide.<br>CO                                                      | Hydrogen.<br>H                                                                                    | Nitrogen.<br>N                                                                |                   | Nitr<br>oxid<br>NO                                                                      | le.              | 0:                                                                | trous<br>xide.<br>N <sub>2</sub> O    |                                                    | Oxygen.                                                                                |
| 0<br>5<br>10<br>15<br>20<br>25<br>30<br>40<br>50                   |   | I.4<br>I.1                          | 72<br>-<br>306<br>-                          |                | .0354<br>.0315<br>.0282<br>.0254<br>.0232<br>.0214<br>.0200<br>.0177<br>.0161 | 0.02110<br>.02022<br>.01044<br>.01875<br>.01809<br>.01745<br>.01600<br>.01644<br>.01608<br>.01600 | 0.02399<br>.02134<br>.01918<br>.01742<br>.01599<br>.01481<br>.01370<br>.01195 |                   | 0.0738<br>.0646<br>.0571<br>.0515<br>.0471<br>.0432<br>.0400<br>.0351<br>.0315          |                  | 1.048<br>0.8778<br>0.7377<br>0.6294<br>0.5443<br>-<br>-<br>-<br>- |                                       |                                                    | .04925<br>.04335<br>.03852<br>.03456<br>.03137<br>.02874<br>.02646<br>.02316<br>.02080 |
| Temperature<br>Centigrade.                                         |   | Ai                                  | r.                                           |                | nmonia.<br>N H <sub>3</sub>                                                   | Chlorine.<br>Cl                                                                                   | Ethylene.<br>C <sub>2</sub> H <sub>4</sub>                                    | M                 | CH sulp                                                                                 |                  | lrogen<br>bhide.<br>I <sub>2</sub> S                              |                                       | Sulphur<br>dioxide.<br>SO <sub>2</sub>             |                                                                                        |
| 0<br>5<br>10<br>15<br>20<br>25                                     |   | .010<br>.010<br>.017                | 79<br>9 <b>5</b> 3<br>795                    | 3              | 174.6<br>171.5<br>1840.2<br>156.0<br>1583.1<br>1510.8                         | 3.036<br>2.808<br>2.585<br>2.388<br>2.156<br>1.950                                                | 0.2563<br>.2153<br>.1837<br>.1615<br>.1488                                    |                   | .04889 3.<br>.04367 3.<br>.03903 3.<br>.03499 2.                                        |                  | .371<br>.965<br>.586<br>.233<br>.905                              |                                       | 79·79<br>67.48<br>56.65<br>47.28<br>39·37<br>32·79 |                                                                                        |
| Temperature                                                        |   |                                     | A                                            | BSOF           | RPTION C                                                                      | OEFFICIENTS,                                                                                      | at, for Ga                                                                    | SES I             | n A                                                                                     | соно             | L, C <sub>2</sub>                                                 | H₅OH.                                 |                                                    |                                                                                        |
| Centigrade.                                                        |   | arbon<br>loxide.<br>CO <sub>2</sub> | Ethyl<br>C <sub>2</sub> F                    |                | Methane<br>CH <sub>4</sub>                                                    | Hydrogen.                                                                                         | Nitrogen.                                                                     | Nitroxid<br>N(    | le.                                                                                     | Niti<br>oxi<br>N | de.                                                               | Hydrog<br>sulphid<br>H <sub>2</sub> S |                                                    | Sulphur<br>dioxide.<br>SO <sub>2</sub>                                                 |
| 0 4.329<br>5 3.891<br>10 3.514<br>15 3.199<br>20 2.946<br>25 2.756 |   | 3.891<br>3.514<br>3.199<br>2.946    | 3.59<br>3.32<br>3.08<br>2.88<br>2.71<br>2.57 | 23<br>36<br>32 | 0.5226<br>.5086<br>.4953<br>.4828<br>.4710<br>.4598                           |                                                                                                   | 0.1263<br>.1241<br>.1228<br>.1214<br>.1204<br>.1196                           | .29<br>.28<br>.27 | 0.3161 4.190<br>.2998 3.838<br>.2861 3.525<br>.2748 3.215<br>.2659 3.015<br>.2595 2.819 |                  | .838   14.78<br>.525   11.99<br>.215   9.54<br>.015   7.41        |                                       | 1                                                  | 328.6<br>251.7<br>190.3<br>144.5<br>114.5                                              |

<sup>\*</sup> This table contains the volumes of different gases, supposed measured at o° C. and 76 centimeters' pressure, which unit volume of the liquid named will absorb at atmospheric pressure and the temperature stated in the first column. The numbers tabulated are commonly called the absorption coefficients for the gases in water, or in alcohol, at the temperature t and under one atmosphere of pressure. The table has been compiled from data published by Bohr & Bock, Bunsen, Carius, Dittmar, Hamberg, Henrick, Pagliano & Emo, Raoult, Schönfeld, Setschenow, and Winkler. The numbers are in many cases averages from several of these authorities.

Note. — The effect of increase of pressure is generally to increase the absorption coefficient. The following is approximately the magnitude of the effect in the case of ammonia in alcohol at a temperature of 23° C.:

According to Setschenow the effect of varying the pressure from 45 to 85 centimeters in the case of carbonic acid in water is very small.

#### CAPILLARITY. - SURFACE TENSION OF LIQUIDS.\*

TABLE 170. - Water and Alcohol in Contact with Air.

TABLE 172. —Solutions of Salts in Water.†

| Temp.<br>C.            | in dy                                                        | e tension<br>mes per<br>meter.                               | Temp.                    | in dy                                                        | tension<br>mes per<br>meter.                                 | Temp.                             | Surface<br>tension<br>in dynes<br>per cen-<br>timeter. |
|------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------|--------------------------------------------------------|
|                        | Water.                                                       | Ethyl<br>alcohol.                                            | C.                       | Water.                                                       | Ethyl<br>alcohol.                                            | С.                                | Water.                                                 |
| 0° 5 10 15 20 25 30 35 | 75.6<br>74.9<br>74.2<br>73.5<br>72.8<br>72.1<br>71.4<br>70.7 | 23.5<br>23.1<br>22.6<br>22.2<br>21.7<br>21.3<br>20.8<br>20.4 | 40° 45 50 55 60 65 70 75 | 70.0<br>69.3<br>68.6<br>67.8<br>67.1<br>66.4<br>65.7<br>65.0 | 20.0<br>19.5<br>19.1<br>18.6<br>18.2<br>17.8<br>17.3<br>16.9 | 80°<br>85<br>90<br>95<br>100<br>- | 64.3<br>63.6<br>62.9<br>62.2<br>61.5                   |

| Salt in solution.                                                                                                | Density.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tension<br>in dynes<br>per cm.                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                  | 1.2820<br>1.0497<br>1.3511<br>1.2773<br>1.1190<br>1.0887<br>1.1699<br>1.1011<br>1.0463<br>1.2338<br>1.1694<br>1.0360<br>1.0758<br>1.0535<br>1.0281<br>1.3114<br>1.1204<br>1.0567<br>1.3575<br>1.0281<br>1.3114<br>1.1204<br>1.0565<br>1.0283<br>1.1319<br>1.0565<br>1.0283<br>1.1329<br>1.0655<br>1.0283<br>1.1329<br>1.0655<br>1.0283<br>1.1329<br>1.0655<br>1.0283<br>1.1329<br>1.0655<br>1.0283<br>1.1329<br>1.0655<br>1.0283<br>1.1329<br>1.0655<br>1.0283<br>1.1329<br>1.0655<br>1.0283<br>1.1329<br>1.0655<br>1.0283<br>1.0466<br>1.3022<br>1.1311<br>1.1775<br>1.0276<br>1.0276<br>1.0276<br>1.0276<br>1.0276<br>1.0276<br>1.0276<br>1.0276<br>1.0287 | 15-16<br>19<br>19<br>20<br>20<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16 | in dynes per cm.  81.8 77.5 95.0 90.2 73.6 74.5 75.3 82.8 80.1 78.2 78.0 85.8 80.5 77.6 84.3 81.7 78.8 85.6 79.4 77.8 87.2 78.9 81.8 77.6 83.5 80.0 78.6 77.0 63.0 ? |
| "  K <sub>2</sub> SO <sub>4</sub> "  MgSO <sub>4</sub> "  Mn <sub>2</sub> SO <sub>4</sub> "  ZnSO <sub>4</sub> " | 1.4453<br>1.2636<br>1.0744<br>1.0360<br>1.2744<br>1.0680<br>1.1119<br>1.0329<br>1.3981<br>1.2830<br>1.1039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16<br>15-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79.7<br>79.7<br>78.0<br>77.4<br>83.2<br>77.8<br>79.1<br>77.3<br>83.3<br>80.7<br>77.8                                                                                 |

TABLE 171. - Miscellaneous Liquids in Contact with Air.

| Liquid.                                    | Temp.                                                                               | Surface<br>tension<br>in dynes<br>per cen-<br>timeter.                                         | . Authority.                                                                                               |
|--------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Aceton                                     | 16.8<br>17.0<br>15.0<br>15.0<br>20.0<br>20.0<br>20.0<br>17.0<br>0.0<br>68.0<br>15.0 | 23.3<br>30.2<br>24.8<br>28.8<br>28.7<br>30.5<br>28.3<br>18.4<br>63.14<br>21.2<br>14.2<br>520.0 | Ramsay-Shields. Average of various.  " Quincke. Average of various.  Hall. Schiff. " Average of various. " |
| Petroleum Propyl alcohol Toluol Turpentine | 20.0<br>5.8<br>97.1<br>15.0<br>109.8<br>21.0                                        | 34·7<br>25.9<br>25.9<br>18.0<br>29.1<br>18.9<br>28.5                                           | Magie.<br>Schiff.<br>"<br>"<br>"<br>Average of various.                                                    |

<sup>\*</sup> This determination of the capillary constants of liquids has been the subject of many careful experiments, but the results of the different experimenters, and even of the same observer when the method of measurement is changed, do not agree well together. The values here quoted can only be taken as approximations to the actual values for the liquids in a state of purity in contact with pure air. In the case of water the values given by Lord Rayleigh from the wave length of ripples (Phil. Mag. 1890) and by Hall from direct measurement of the tension of a flat film (Phil. Mag. 1893) have been preferred, and the temperature correction has been taken as 0.14 (dup per degree centigrade. The values for alcohol were derived from the experiments of Hall above referred to and the experiments on the effect of temperature made by Timberg (Wied. Ann. vol. 30).

The authority for a few of the other values given is quoted, but they are for the most part average values derived from a large number of results published by different experimenters.

For more recent data see expectally Harkins, J. Am. Ch. Soc. 39, p. 55, 1917 (336 liquids) and 42.

For more recent data see especially Harkins, J. Am. Ch. Soc., 39, p. 55, 1917 (336 liquids). and 42, p. 702, 2543, 1920.

#### TENSION OF LIQUIDS.

#### TABLE 173. - Surface Tension of Liquids.\*

| Liquid.                                                                                                                                    | Specific gravity. | Surface tension in dynes per centimeter of liquid in contact with                          |                                                                                     |                                                             |                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------|
|                                                                                                                                            |                   | Air.                                                                                       | Water.                                                                              | Mercury.                                                    |                                                                          |
| Water Mercury Bisulphide of carbon Chloroform Ethyl alcohol Olive oil Turpentine Petroleum Hydrochloric acid Hyposulphite of soda solution |                   | 1.0<br>13.543<br>1.2687<br>1.4878<br>0.7906<br>0.9136<br>0.8867<br>-7977<br>1.10<br>1.1248 | 75.0<br>513.0<br>30.5<br>(31.8)<br>(24.1)<br>34.6<br>28.8<br>29.7<br>(72.9)<br>69.9 | 0.0<br>392.0<br>41.7<br>26.8<br>-<br>18.6<br>11.5<br>(28.9) | (392)<br>0<br>(387)<br>(415)<br>364<br>317<br>241<br>271<br>(392)<br>429 |

#### TABLE 174. - Surface Tension of Liquids at Solidifying Point,†

| Substance.    | Tempera-<br>ture of<br>solidifi-<br>cation.<br>Cent.°         | Surface<br>tension in<br>dynes per<br>centimeter.                     | Substance. | Tempera-<br>ture of<br>solidifi-<br>cation.<br>Cent.°   | Surface<br>tension in<br>dynes per<br>centimeter.                 |
|---------------|---------------------------------------------------------------|-----------------------------------------------------------------------|------------|---------------------------------------------------------|-------------------------------------------------------------------|
| Platinum Gold | 2000<br>1200<br>360<br>230<br>—40<br>330<br>1000<br>265<br>58 | 1691<br>1003<br>877<br>599<br>588<br>457<br>427<br>1390<br>371<br>258 | Antimony   | 432<br>1000<br>1000<br>-<br>0<br>217<br>111<br>43<br>68 | 249<br>216<br>210<br>116<br>87.9‡<br>71.8<br>42.1<br>42.0<br>34.1 |

#### TABLE 175. - Tension of Soap Films.

Elaborate measurements of the thickness of soap films have been made by Reinold and Rucker. || They find that a film of oleate of soda solution containing 1 of soap to 70 of water, and having 3 per cent of KNO3 added to increase electrical conductivity, breaks at a thickness varying between 7.2 and 14.5 micro-millimeters, the average being 12.1 micromillimeters. The film becomes black and apparently of nearly uniform thickness round the point where fracture begins. Outside the black patch there is the usual display of colors, and the thickness at these parts may be estimated from the colors of thin plates and the refractive index of the solution.

When the percentage of KNO3 is diminished, the thickness of the black patch increases. KNO<sub>3</sub> For example, = 3 I 0.5 0.0

Thickness = 12.4 13.5 14.5 22.1 micro-mm.

A similar variation was found in the other soaps.

It was also found that diminishing the proportion of soap in the solution, there being no KNO3 dissolved, increased the thickness of the film.

- 1 part soap to 30 of water gave thickness 21.6 micro-mm.
- I part soap to 40 of water gave thickness 22.1 micro-mm.
- I part soap to 60 of water gave thickness 27.7 micro-mm.
- I part soap to 80 of water gave thickness 29.3 micro-mm.

about 20° C.

† Quincke, "Pogg. Ann." vol. 135, p. 661.

‡ It will be observed that the value here given on the authority of Quincke is much higher than his subsequent measurements, as quoted above, give.

# "Proc. Roy. Soc." 1877, and "Phil. Trans. Roy. Soc." 1881, 1883, and 1893.

Note. — Quincke points out that substances may be divided into groups in each of which the ratio of the surface tension to the density is nearly constant. Thus, if this ratio for mercury be taken as unit, the ratio for the bromides and iodides is about a half: that of the nitrates, chlorides, sugars, and fats, as well as the metals, lead, bismuth, and antimony, about 1; that of water, the carbonates, sulphates, and probably phosphates, and the metals platinum, gold, silver, cadmium, tin, and copper, 2; that of zinc, iron, and palladium, 3; and that of sodium, 6.

<sup>\*</sup> This table of tensions at the surface separating the liquid named in the first column and air, water or mercury as stated at the head of the last three columns, is from Quincke's experiments (Pogg. Ann. vol. 130, and Phil. Mag. 1871). The numbers given are the equivalent in dynes per centimeter of those obtained by Worthington from Quincke's results (Phil. Mag. vol. 20, 1885) with the exception of those in brackets, which were not corrected by Worthington; they are probably somewhat too high, for the reason stated by Worthington. The temperature was

|                                                                                                          |                                             |                                                                                                       |                                                                 |                                                                                  |                                                      |                                                                                          |                                                                                  | _                                                                                      |                                                                              |                                      |                                                                   |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------|
| Hydroge                                                                                                  | en.                                         | Oxyge                                                                                                 | en.                                                             | Nitro                                                                            | gen.                                                 | Ar                                                                                       | gon.                                                                             | Xe                                                                                     | non.                                                                         | Kry                                  | pton.                                                             |
| H scale.                                                                                                 | mm                                          | H scale.                                                                                              | mm                                                              | Т                                                                                | mm                                                   | ° K                                                                                      | mm                                                                               | °K                                                                                     | mm                                                                           | ° K                                  | mm                                                                |
| 20.41° K<br>20.22<br>19.93<br>19.41<br>18.82<br>18.15<br>17.36<br>16.37<br>14.93<br>Travers, Jarrod, 190 |                                             | go. 60° K<br>go. 10<br>89. 33<br>87. 91<br>86. 29<br>84. 39<br>82. 09<br>79. 07<br>Travers,<br>ter, J | 760<br>700<br>600<br>500<br>400<br>300<br>200<br>Sen-<br>Jaque- | 77.33° K<br>76.83<br>76.65<br>75.44<br>74.03<br>72.39<br>72.39<br>67.80<br>63.65 | 700.<br>600.<br>500.<br>400.<br>300.<br>200.<br>100. | 139.0<br>137.8<br>136.8<br>123.1<br>87.8<br>86.5<br>85.5<br>83.8<br>82.6<br>81.7<br>77.3 | 21334.<br>20700.<br>10313.<br>821.2<br>704.5<br>633.4<br>524.3<br>465.0<br>410.1 | 273·3<br>255.6<br>254.0<br>252.6<br>248.7<br>244.2<br>239.7<br>237·4<br>231.4<br>183.2 | 31501<br>21967<br>21512<br>19982<br>18153<br>15868<br>1397<br>13500<br>11132 | 84.2                                 | 37006<br>34693<br>31621<br>30837<br>28808<br>11970<br>387<br>17.4 |
| Cl                                                                                                       | olorine.                                    |                                                                                                       | Bro                                                             | mine.                                                                            | Iod                                                  | line.                                                                                    | C                                                                                | opper.                                                                                 |                                                                              | Silv                                 | ver.                                                              |
| °C                                                                                                       | Pr                                          | essure.                                                                                               | ° C                                                             | mm                                                                               | °C                                                   | mm                                                                                       | °C                                                                               | Atm                                                                                    | ie.                                                                          | °C                                   | Atme.                                                             |
| +146.<br>+100.<br>+50.<br>+20.                                                                           | 41.                                         | 50 atm.<br>70 atm.<br>70 atm.<br>62 atm.                                                              | +58.7<br>56.3<br>51.9<br>46.8                                   | 700                                                                              | +55<br>50<br>45<br>40                                | 3.084<br>2.154<br>1.498<br>1.025                                                         | 2310<br>2180<br>1980                                                             | 1.0<br>0.33<br>0.13                                                                    | 8                                                                            | 1955<br>1780<br>1660<br>Bism         | 1.0<br>0.346<br>0.1355<br>uth.                                    |
| 0.                                                                                                       | 3.                                          | 66 atm.                                                                                               | 40.4                                                            | 5 400                                                                            | 35                                                   | 0.699                                                                                    | °C                                                                               | Atm                                                                                    | ne.                                                                          | °C                                   | Atme.                                                             |
| -20.<br>-33.6<br>-40.<br>-50.<br>-60.<br>-70.<br>-80.                                                    | 760.<br>560.<br>350.<br>210.<br>118.<br>62. | mm<br>mm<br>mm<br>mm<br>5 mm                                                                          | 33.0<br>23.4<br>16.9<br>8.2<br>-5.0<br>-7.0<br>-8.4             | 200<br>150<br>150<br>100<br>5 50<br>45<br>40                                     | 30<br>25<br>15<br>0<br>Baxter,<br>ey, F              | Iolmes,                                                                                  | _                                                                                | 11.7<br>6.3<br>1.0<br>0.3<br>0.1                                                       | 50 38                                                                        | 2060<br>1950<br>1740<br>1420<br>1310 | 16.5<br>11.7<br>6.3<br>1.0<br>0.338<br>0.134                      |
| $ \begin{array}{c c} -85. \\ -88. \end{array} $                                                          | 45 · 37 ·                                   | mm<br>5 mm                                                                                            | -12.0 $-16.6$                                                   |                                                                                  | J. An Soc.                                           | m. Ch                                                                                    | . Z                                                                              | linc.                                                                                  |                                                                              | Ti                                   | n.                                                                |
| Knietsch, V<br>Cu to Sn, C<br>Roy. So<br>Zs. ph. C                                                       | Greenv<br>c. 83.                            | vood, Pr.<br>A, 1910;                                                                                 |                                                                 | h. Soc.                                                                          |                                                      |                                                                                          | °C<br>1510<br>1280<br>1230<br>1120                                               | 53.<br>21.<br>11.<br>6.                                                                | 0 2<br>5 2<br>7 1                                                            | 2100                                 | Atme. 1.0 0.345 0.133                                             |

TABLE 177. - Vapor Pressure and Rate of Evaporization.

| ° K                                                                  | Mo<br>mm                                                                                                                             | W                                                                                                                                                                               |                                                                                                                                               | tion rate.<br>½/sec.                                                                                                                                                                                   |      | Platinum.                                                                                                             |            |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------|------------|
|                                                                      | IIIII                                                                                                                                | шш                                                                                                                                                                              | Mo                                                                                                                                            | W                                                                                                                                                                                                      | ° K  | mm                                                                                                                    | g/cm²/sec. |
| 1800<br>2000<br>2200<br>2400<br>2600<br>2800<br>3000<br>3200<br>3500 | 0.0 <sub>8</sub> 643<br>0.0 <sub>6</sub> 789<br>0.0 <sub>4</sub> 396<br>0.0 <sub>2</sub> 1027<br>0.0160<br>0.1679<br>3890°<br>760 mm | 0.0 <sub>11</sub> 645<br>0.0 <sub>9</sub> 849<br>0.0 <sub>7</sub> 492<br>0.0 <sub>5</sub> 151<br>0.0 <sub>4</sub> 286<br>0.0 <sub>3</sub> 362<br>0.0 <sub>2</sub> 333<br>0.0572 | 0.0 <sub>10</sub> 863<br>0.0 <sub>7</sub> 100<br>0.0 <sub>6</sub> 480<br>0.0 <sub>4</sub> 120<br>0.0 <sub>3</sub> 179<br>0.0 <sub>2</sub> 181 | O. O <sub>12</sub> II4<br>O. O <sub>10</sub> I44<br>O. O <sub>9</sub> 798<br>O. O <sub>7</sub> 236<br>O. O <sub>6</sub> 429<br>O. O <sub>5</sub> 523<br>O. O <sub>4</sub> 467<br>O. O <sub>3</sub> 769 | Rev. | 0.017324<br>0.012111<br>0.09188<br>0.07484<br>0.05350<br>0.03107<br>760 mm<br>nuir, MacK<br>2, 1913; 4,<br>of vacuum, | 1914.      |

#### VAPOR PRESSURES.

The vapor pressures here tabulated have been taken, with one exception, from Regnault's results. The vapor pressure of Pictet's fluid is given on his own authority. The pressures are in centimeters of mercury.

|   | _                              |                                             |                                          |                                               |                                                   |                                       |                                                      |                                                     |                                                       |                                         |                                                    |
|---|--------------------------------|---------------------------------------------|------------------------------------------|-----------------------------------------------|---------------------------------------------------|---------------------------------------|------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|-----------------------------------------|----------------------------------------------------|
|   | Tem-<br>pera-<br>ture<br>Cent. | Acetone.<br>C <sub>8</sub> H <sub>6</sub> O | Benzol.<br>C <sub>6</sub> H <sub>6</sub> | Carbon<br>bisul-<br>phide.<br>CS <sub>2</sub> | Carbon<br>tetra-<br>chloride.<br>CCl <sub>4</sub> | Chloro-<br>form.<br>CHCl <sub>8</sub> | Ethyl<br>alcohol.<br>C <sub>2</sub> H <sub>6</sub> O | Ethyl<br>ether.<br>C <sub>4</sub> H <sub>10</sub> O | Ethyl<br>bromide.<br>C <sub>2</sub> H <sub>5</sub> Br | Methyl<br>alcohol.<br>CH <sub>4</sub> O | Turpen-<br>tine.<br>C <sub>10</sub> H <sub>6</sub> |
|   | _25°                           |                                             |                                          |                                               | _                                                 | _                                     | _                                                    | _ '                                                 | 4.41                                                  | .41                                     | _                                                  |
| Ш | -20                            | -                                           | .58                                      | 4.73                                          | .98                                               | -                                     | -33                                                  | 6.89                                                | 5.92                                                  | .63                                     | -                                                  |
| П | -15                            | -                                           |                                          | 6.16                                          | 1.35                                              | -                                     | .65                                                  | 8.93                                                | 7.81                                                  | .93                                     | _                                                  |
| Ш | -10                            | _                                           | 1.29                                     | 7.94                                          | 2.48                                              | _                                     | .05                                                  | 11.47                                               | 13.06                                                 | 1.35                                    | _                                                  |
| Ш | -5                             |                                             | 1.03                                     | 10.13                                         | 2.40                                              |                                       | .91                                                  | 14.01                                               | 13.00                                                 | 1192                                    | _                                                  |
| ш | 0                              | -                                           | 2.53                                     | 12.79                                         | 3.29                                              | 5.97                                  | 1.27                                                 | 18.44                                               | 16.56                                                 | 2.68                                    | .21                                                |
| Ш | 5                              | -                                           | 3.42                                     | 16.00                                         | 4.32                                              | 10.05                                 | 1.76                                                 | 23.09<br>28.68                                      | 20.72<br>25.74                                        | 3.69<br>5.01                            | .29                                                |
| Ш | 10                             |                                             | 4.52<br>5.89                             | 19.85                                         | 5.60<br>7.17                                      | 10.05                                 | 2.42<br>3.30                                         | 35.36                                               | 31.69                                                 | 6.71                                    |                                                    |
| Ш | 20                             | 17.96                                       | 7.56                                     | 29.80                                         | 9.10                                              | 16.05                                 | 4.45                                                 | 43.28                                               | 38.70                                                 | 8.87                                    | -44                                                |
|   | 0.5                            |                                             |                                          | 1                                             |                                                   |                                       |                                                      |                                                     | 16.0-                                                 | 116-                                    |                                                    |
| ш | 25                             | 22.63                                       | 9.59                                     | 36.11                                         | 11.43                                             | 20.02                                 | 5.94<br>7.85                                         | 52.59<br>63.48                                      | 46.91                                                 | 11.60                                   | .69                                                |
| П | 30                             | 34.52                                       | 14.93                                    | 51.97                                         | 17.55                                             | 30.35                                 | 10.29                                                | 76.12                                               | 56.45                                                 | 19.20                                   | -                                                  |
| Ш | 40                             | 42.01                                       | 18.36                                    | 61.75                                         | 21.48                                             | 36.93                                 | 13.37                                                | 90.70                                               | 80.19                                                 | 24.35                                   | 1.08                                               |
| Ш | 45                             | 50.75                                       | 22.41                                    | 72.95                                         | 26.08                                             | 44.60                                 | 17.22                                                | 107.42                                              | 94.73                                                 | 30.61                                   | -                                                  |
| ı | 50                             | 62.29                                       | 27.14                                    | 85.71                                         | 31.44                                             | 53.50                                 | 21.99                                                | 126.48                                              | 111.28                                                | 38.17                                   | 1.70                                               |
| H | 55<br>60                       | 72.59                                       | 32.64                                    | 100.16                                        | 37.63                                             | 63.77                                 | 27.86                                                | 148.11                                              | 130.03                                                | 47.22                                   | -                                                  |
| П |                                | 86.05                                       | 39.01                                    | 116.45                                        | 44.74                                             | 75·54<br>88.97                        | 35.02                                                | 172.50                                              | 151.19                                                | 57.99                                   | 2.65                                               |
| Ш | 65                             | 101.43                                      | 46.34                                    | 134.75                                        | 52.87                                             | 104.21                                | 43.69                                                | 199.89                                              | 174.95                                                | 70.73<br>85.71                          | 4.06                                               |
| Н | 70                             | 110.94                                      | 34./4                                    | 133.21                                        | 02.11                                             | 104.21                                | 34111                                                | 0 .,                                                | 201131                                                | 05.71                                   |                                                    |
| Ш | 75                             | 138.76                                      | 64.32                                    | 177.99                                        | 72.57                                             | 121.42                                | 66.55                                                | 264.54                                              | 231.07                                                | 103.21                                  | -                                                  |
| П | 80<br>85                       | 161.10                                      | 75.19                                    | 203.25                                        | 84.33                                             | 140.76                                | 98.64                                                | 302.28                                              | 263.86                                                | 123.85                                  | 6.13                                               |
| Ш | 90                             | 214.17                                      | 87.46                                    | 231.17                                        | 97.51                                             | 186.52                                | 118.93                                               | 389.83                                              | 339.89                                                | 174.17                                  | 9.06                                               |
| Ш | 95                             | 245.28                                      | 116.75                                   | 296.63                                        | 128.69                                            | 213.28                                | 142.51                                               | 440.18                                              | 383.55                                                | 205.17                                  | -                                                  |
| Ш | 100                            |                                             |                                          |                                               | 146.71                                            | 21202                                 | 160 ==                                               | 10000                                               | 407.00                                                | 240.51                                  | 13.11                                              |
| Ш | 105                            | 279.73                                      | 134.01                                   | 332.51                                        | 166.72                                            | 242.85                                | 169.75                                               | 495.33                                              | 431.23                                                | 280.63                                  | - 13.11                                            |
| Ш | 110                            | 359.40                                      | 174.44                                   | 416.41                                        | 188.74                                            | 311.10                                | 236.76                                               | 621.46                                              | 539.40                                                | 325.96                                  | 18.60                                              |
| Ш | 115                            | 405.00                                      | 197.82                                   | 463.74                                        | 212.91                                            | 350.10                                | 277.34                                               | 693.33                                              | 600.24                                                | 376.98                                  | -                                                  |
| П | I 20                           | 454.69                                      | 223.54                                   | 514.88                                        | 239.37                                            | 392.57                                | 323.17                                               | 771.92                                              | 665.80                                                | 434.18                                  | 25.70                                              |
|   | 125                            | 508.62                                      | 251.71                                   | 569.97                                        | 268.24                                            | 438.66                                | 374.69                                               | -                                                   | 736.22                                                | 498.05                                  | -                                                  |
|   | 130                            | 566.97                                      | 282.43                                   | 629.16                                        | 299.69                                            | 488.51                                | 432.30                                               | _                                                   | 811.65                                                | 569.13                                  | 34.90                                              |
|   | 135                            | 629.87                                      | 315.85                                   | 692.59                                        | 333.86                                            | 542.25                                | 496.42<br>567.46                                     | _                                                   | 892.19                                                | 647.93                                  | 46.40                                              |
|   | 145                            |                                             | 391.21                                   | 832.69                                        | 411.00                                            | 661.92                                | 645.80                                               | -                                                   | -                                                     | 830.89                                  | -                                                  |
|   | 150                            | 1.0                                         | 122.25                                   | 000 50                                        | 454.27                                            | 728.06                                | 72181                                                |                                                     |                                                       | 936.13                                  | 60.50                                              |
|   |                                | _                                           | 433.37                                   | 909.59                                        | 454.31                                            | 728.06                                | 731.84                                               | _                                                   | _                                                     | 930.13                                  | 68.60                                              |
|   | 155                            | -                                           | 527.14                                   | -                                             | 551.31                                            | 873.42                                | -                                                    | -                                                   | -                                                     |                                         | 77.50                                              |
|   | 165                            | -                                           | 568.30                                   | -                                             | 605.38                                            | 952.78                                | -                                                    | -                                                   | -                                                     | -                                       | -                                                  |
|   | 170                            |                                             | 634.07                                   | -                                             | 663.44                                            | _                                     |                                                      |                                                     |                                                       | _                                       | -                                                  |
| L |                                |                                             |                                          |                                               |                                                   |                                       |                                                      |                                                     |                                                       |                                         |                                                    |

#### VAPOR PRESSURES.

| Temperature,<br>Centigrade.    | Ammonia.<br>NH <sub>3</sub>                         | Carbon<br>dioxide.<br>CO <sub>2</sub>               | Ethyl<br>chloride.<br>C <sub>2</sub> H <sub>5</sub> Cl | Ethyl iodide. C <sub>2</sub> H <sub>5</sub> I | Methyl<br>chloride.<br>CH <sub>3</sub> Cl      | Methylic<br>ether.<br>C <sub>2</sub> H <sub>6</sub> O | Nitrous<br>oxide.<br>N <sub>2</sub> O               | Pictet's fluid.<br>64SO <sub>2</sub> +<br>44CO <sub>2</sub> by weight | Sulphur<br>dioxide.<br>SO <sub>2</sub>         | Hydrogen<br>sulphide.<br>H <sub>2</sub> S           |
|--------------------------------|-----------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|
| -30°                           | 86.61                                               | -                                                   | 11.02                                                  | -                                             | 57.90                                          | 57.65                                                 | -                                                   | 58.52                                                                 | 28.75                                          | -                                                   |
| -25<br>-20<br>-15<br>-10<br>-5 | 110.43<br>139.21<br>173.65<br>214.46<br>264.42      | 1300.70<br>1514.24<br>1758.25<br>2034.02<br>2344.13 | 14.50<br>18.75<br>23.96<br>30.21<br>37.67              | 1111                                          | 71.78<br>88.32<br>107.92<br>130.96<br>157.87   | 71.61<br>88.20<br>107.77<br>130.66                    | 1569.49<br>1758.66<br>1968.43<br>2200.80<br>2457.92 | 67.64<br>74.48<br>89.68<br>101.84<br>121.60                           | 37.38<br>47.95<br>60.79<br>76.25<br>94.69      | 374-93<br>443.85<br>519.65<br>608.46<br>706.60      |
| 0<br>5<br>10<br>15<br>20       | 318.33<br>383.03<br>457.40<br>543.34<br>638.78      | 2690.66<br>3075.38<br>3499.86<br>3964.69<br>4471.66 | 46.52<br>56.93<br>69.11<br>83.26<br>99.62              | 4.19<br>5.41<br>6.92<br>8.76<br>11.00         | 189.10<br>225.11<br>266.38<br>313.41<br>366.69 | 187.90<br>222.90<br>262.90<br>307.98<br>358.60        | 2742.10<br>3055.86<br>3401.91<br>3783.17<br>4202.79 | 139.08<br>167.20<br>193.80<br>226.48<br>258.40                        | 116.51<br>142.11<br>171.95<br>206.49<br>246.20 | 820.63<br>949.08<br>1089.63<br>1244.79<br>1415.15   |
| 25<br>30<br>35<br>40<br>45     | 747.70<br>870.10<br>1007.02<br>1159.53<br>1328.73   | 5020.73<br>5611.90<br>6244.73<br>6918.44<br>7631.46 | 118.42<br>139.90<br>164.32<br>191.96<br>223.07         | 13.69<br>16.91<br>20.71<br>25.17<br>30.38     | 426.74<br>494.05<br>569.11                     | 415.10<br>477.80<br>-<br>-                            | 4664.14<br>5170.85<br>6335.98                       | 297.92<br>338.20<br>383.80<br>434.72<br>478.80                        | 291.60<br>343.18<br>401.48<br>467.02<br>540.35 | 1601.24<br>1803.53<br>2002.43<br>2258.25<br>2495.43 |
| 50<br>55<br>60<br>65<br>70     | 1515.83<br>1721.98<br>1948.21<br>2196.51<br>2467.55 | 11111                                               | 257.94<br>266.84<br>340.05<br>387.85<br>440.50         | 36.40<br>43.32<br>51.22                       |                                                | -                                                     | 1111                                                | 521.36<br>-<br>-<br>-<br>-                                            | 622.00<br>712.50<br>812.38<br>922.14           | 2781.48<br>3069.07<br>3374.02<br>3696.15<br>4035.32 |
| 75<br>80<br>85<br>90<br>95     | 2763.00<br>3084.31<br>3433.09<br>3810.92<br>4219.57 |                                                     | 498.27<br>561.41<br>630.16<br>704.75<br>785.39         | -                                             | 11111                                          | 1 1 1 1                                               | -                                                   | 11111                                                                 |                                                |                                                     |
| 100                            | 4660.82                                             | -                                                   | 872.28                                                 | -                                             |                                                | -                                                     | - ,                                                 | -                                                                     | -                                              | -                                                   |

#### VAPOR PRESSURE.

TABLE 179. - Vapor Pressure of Ethyl Alcohol.\*

| C.                      | 0°                                                                       | 1°                                                                       | 2°                                                                       | 3°                                                                       | 40                                                                       | <b>5</b> °                                                                | 6°                                                                        | <b>7</b> °                                                                | 8°                                                                        | 9°                                                                        |  |  |  |
|-------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|
| Temp.                   |                                                                          |                                                                          | Va                                                                       | por pressur                                                              | e in millim                                                              | eters of me                                                               | ercury at o                                                               | c.                                                                        |                                                                           |                                                                           |  |  |  |
| 0° 10 20 30 40 50 60 70 | 12.24<br>23.78<br>44.00<br>78.06<br>133.70<br>220.00<br>350.30<br>541.20 | 13.18<br>25.31<br>46.66<br>82.50<br>140.75<br>230.80<br>366.40<br>564.35 | 14.15<br>27.94<br>49.47<br>87.17<br>148.10<br>242.50<br>383.10<br>588.35 | 15.16<br>28.67<br>52.44<br>92.07<br>155.80<br>253.80<br>400.40<br>613.20 | 16.21<br>30.50<br>55.56<br>97.21<br>163.80<br>265.90<br>418.35<br>638.95 | 17.31<br>32.44<br>58.86<br>102.60<br>172.20<br>278.60<br>437.00<br>665.55 | 18.46<br>34.49<br>62.33<br>108.24<br>181.00<br>291.85<br>456.35<br>693.10 | 19.68<br>36.67<br>65.97<br>114.15<br>190.10<br>305.65<br>476.45<br>721.55 | 20.98<br>38.97<br>69.80<br>120.35<br>199.65<br>319.95<br>497.25<br>751.00 | 22.34<br>41.40<br>73.83<br>126.86<br>209.60<br>334.85<br>518.85<br>781.45 |  |  |  |
| Fron                    | n the form                                                               | nula log j                                                               | b = a + a                                                                | $ba^t + c\beta^t$                                                        | Ramsay                                                                   | and You                                                                   | ng obtair                                                                 | n the foll                                                                | owing nu                                                                  | mbers.†                                                                   |  |  |  |
| C                       | 0°                                                                       | 10°                                                                      | <b>20</b> °                                                              | 30°                                                                      | 40°                                                                      | 50°                                                                       | 60°                                                                       | 70°                                                                       | 80°                                                                       | 90°                                                                       |  |  |  |
| Temp.                   |                                                                          | Vapor pressure in millimeters of mercury at o° C.                        |                                                                          |                                                                          |                                                                          |                                                                           |                                                                           |                                                                           |                                                                           |                                                                           |  |  |  |
| 0°<br>100<br>200        | 12.24<br>1692.3.<br>22182.                                               | 2359.8                                                                   | 43.97<br>3223.0<br>32196.                                                | 78.11<br>4318.7<br>38389.                                                | 133.42<br>5686.6<br>45 <b>5</b> 19.                                      | 219.82<br>73 <sup>68</sup> .7                                             |                                                                           | 540.91<br>11858.                                                          | 811.81<br>14764.                                                          | 1186.5<br>18185.                                                          |  |  |  |

TABLE 180. - Vapor Pressure of Methyl Alcohol.;

| , c.                 | 0°                                | 1°                                                | 2°                               | 3°                               | 40                               | <b>5</b> °                       | 6°                               | <b>7</b> °                       | 8°                      | 9°                      |  |  |  |  |  |
|----------------------|-----------------------------------|---------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------|-------------------------|--|--|--|--|--|
| Temp.                |                                   | Vapor pressure in millimeters of mercury at o° C. |                                  |                                  |                                  |                                  |                                  |                                  |                         |                         |  |  |  |  |  |
| 0°<br>10<br>20       | 29.97<br>53.8<br>94.0             | 31.6<br>57.0<br>99.2                              | 33.6<br>60.3<br>104.7            | 35.6<br>63.8<br>110.4            | 37.8<br>67.5<br>116.5            | 40.2<br>71.4<br>122.7            | 42.6<br>75.5<br>129.3            | 45.2<br>79.8<br>136.2            | 47.9<br>84.3<br>143.4   | 50.8<br>89.0<br>151.0   |  |  |  |  |  |
| 30<br>40<br>50<br>60 | 1 58.9<br>259.4<br>409.4<br>624.3 | 167.1<br>271.9<br>427.7<br>650.0                  | 175.7<br>285.0<br>446.6<br>676.5 | 184.7<br>298.5<br>466.3<br>703.8 | 194.1<br>312.6<br>486.6<br>732.0 | 203.9<br>327.3<br>507.7<br>761.1 | 214.1<br>342.5<br>529.5<br>791.1 | 224.7<br>358.3<br>552.0<br>822.0 | 235.8<br>374.7<br>575.3 | 247.4<br>391.7<br>599.4 |  |  |  |  |  |

<sup>\*</sup> This table has been compiled from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47, and Phil. Trans. Roy. Soc., 1886).

<sup>†</sup> In this formula a = 5.0720301;  $\log b = \overline{2.6406131}$ ;  $\log c = 0.6050854$ ;  $\log a = 0.003377538$ ;  $\log \beta = \overline{1.99682424}$  (c is negative).

<sup>‡</sup> Taken from a paper by Dittmar and Fawsitt (Trans. Roy. Soc. Edin. vol. 33).

TABLE 181.

#### **VAPOR PRESSURE.\***

Carbon Disulphide, Chlorobenzene, Bromobenzene, and Aniline.

| Temp.                           | 0°                                             | 1°                                             | <b>2</b> °                                     | 3°                                             | <b>4</b> °                                     | 5°                                             | 6°                                             | <b>7</b> °                                     | 8°                                             | 9° .                                           |
|---------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
|                                 |                                                |                                                |                                                | (a) CAR                                        | BON DI                                         | SULPHID                                        | Е.                                             |                                                |                                                | ,                                              |
| 0°<br>10<br>20<br>30<br>40      | 127.90<br>198.45<br>298.05<br>434.60<br>617.50 | 133.85<br>207.00<br>309.90<br>450.65<br>638.70 | 140.05<br>215.80<br>322.10<br>467.15<br>660.50 | 146.45<br>224.95<br>334.70<br>484.15<br>682.90 | 153.10<br>234.40<br>347.70<br>501.65<br>705.90 | 160.00<br>244.15<br>361.10<br>519.65<br>729.50 | 167.15<br>254.25<br>374.95<br>538.15<br>753.75 | 174.60<br>264.65<br>389.20<br>557.15<br>778.60 | 182.25<br>275.40<br>403.90<br>576.75<br>804.10 | 190.20<br>286.55<br>419.00<br>596.85<br>830.25 |
|                                 |                                                |                                                |                                                | (b) C                                          | HLOROB                                         | ENZENE.                                        |                                                |                                                |                                                |                                                |
| 20°<br>3°<br>4°                 | 8.65<br>14.95<br>25.10                         | 9.14<br>15.77<br>26.38                         | 9.66<br>16.63<br>27.72                         | 10.21<br>17.53<br>29.12                        | 10.79<br>18.47<br>30.58                        | 11.40<br>19.45<br>32.10                        | 12.04<br>20.48<br>33.69                        | 12.71<br>21.56<br>35.35                        | 13.42<br>22.69<br>37.08                        | 14.17<br>23.87<br>38.88                        |
| 50<br>60<br>70<br>80<br>90      | 40.75<br>64.20<br>97.90<br>144.80<br>208.35    | 42.69<br>67.06<br>101.95<br>150.30<br>215.80   | 44.72<br>70.03<br>106.10<br>156.05<br>223.45   | 46.84<br>73.11<br>110.41<br>161.95<br>231.30   | 49.05<br>76.30<br>114.85<br>168.00<br>239.35   | 51.35<br>79.60<br>119.45<br>174.25<br>247.70   | 53.74<br>83.02<br>124.20<br>181.70<br>256.20   | 56.22<br>86.56<br>129.10<br>187.30<br>265.00   | 58.79<br>90.22<br>134.15<br>194.10<br>274.00   | 61.45<br>-94.00<br>139.40<br>201.15<br>283.25  |
| 100<br>110<br>120<br>130        | 292.75<br>402.55<br>542.80<br>718.95           | 302.50<br>415.10<br>558.70<br>738.65           | 312.50<br>427.95<br>575.05<br>758.80           | 322.80<br>441.15<br>591.70                     | 333·35<br>454·65<br>608·75                     | 344.15<br>468.50<br>626.15                     | 355.25<br>482.65<br>643.95                     | 366.65<br>497.20<br>662.15                     | 378.30<br>512.05<br>680.75                     | 390.25<br>527.25<br>699.65                     |
| 1                               |                                                |                                                |                                                | (c) 1                                          | Вкомовн                                        | ENZENE.                                        |                                                |                                                |                                                |                                                |
| <b>40</b> °                     | · _                                            | -                                              | _                                              | -                                              | _                                              | 12.40                                          | 13.06                                          | 13.75                                          | 14.47                                          | 15.22                                          |
| 50<br>60<br>70<br>80<br>90      | 16.00<br>26.10<br>41.40<br>63.90<br>96.00      | 16.82<br>27.36<br>43.28<br>66.64<br>99.84      | 17.68<br>28.68<br>45.24<br>69.48<br>103.80     | 18.58<br>30.06<br>47.28<br>72.42<br>107.88     | 19.52<br>31.50<br>49.40<br>75.46<br>112.08     | 20.50<br>33.00<br>51.60<br>78.60<br>116.40     | 21.52<br>34.56<br>53.88<br>81.84<br>120.86     | 22.59<br>36.18<br>56.25<br>85.20<br>125.46     | 23.71<br>37.86<br>58.71<br>88.68<br>130.20     | 24.88<br>39.60<br>61.26<br>92.28<br>135.08     |
| 100<br>110<br>120<br>130<br>140 | 140.10<br>198.70<br>274.90<br>372.65<br>495.80 | 145.26<br>205.48<br>283.65<br>383.75<br>509.70 | 150.57<br>212.44<br>292.60<br>395.10<br>523.90 | 156.03<br>219.58<br>301.75<br>406.70<br>538.40 | 161.64<br>226.90<br>311.15<br>418.60<br>553.20 | 167.40<br>234.40<br>320.80<br>430.75<br>568.35 | 173.32<br>242.10<br>330.70<br>443.20<br>583.85 | 179.41<br>250.00<br>340.80<br>455.90<br>599.65 | 185.67<br>258.10<br>351.15<br>468.90<br>615.75 | 192.10<br>266.40<br>361.80<br>482.20<br>632.25 |
| 150                             | 649.05                                         | 666.25                                         | 683.80                                         | 701.65                                         | 719.95                                         | 738.55                                         | 757-55                                         | 776.95                                         | 796.70                                         | 816.90                                         |
|                                 |                                                |                                                |                                                | (6                                             | ANIL                                           | INE.                                           |                                                |                                                |                                                |                                                |
| <b>80</b> °                     | 18.80                                          | 19.78<br>31.44                                 | 20.79<br>32.83                                 | 21.83<br>34.27                                 | 22.90<br>35.76                                 | 24.00<br>37.30                                 | 25.14<br>38.90                                 | 26.32<br>40.56                                 | 27·54<br>42·28                                 | 28.80<br>44.06                                 |
| 100<br>110<br>120<br>130<br>140 | 45.90<br>68.50<br>100.40<br>144.70<br>204.60   | 47.80<br>71.22<br>104.22<br>149.94<br>211.58   | 49.78<br>74.04<br>108.17<br>155.34<br>218.76   | 51.84<br>76.96<br>112.25<br>160.90<br>226.14   | 53.98<br>79.98<br>116.46<br>166.62<br>233.72   | 56.20<br>83.10<br>120.80<br>172.50<br>241.50   | 58.50<br>86.32<br>125.28<br>178.56<br>249.50   | 60.88<br>89.66<br>129.91<br>184.80<br>257.72   | 63.34<br>93.12<br>134.69<br>191.22<br>266.16   | 65.88<br>96.70<br>139.62<br>197.82<br>274.82   |
| 150<br>160<br>170<br>180        | 283.70<br>386.00<br>515.60<br>677.15           | 292.80<br>397.65<br>530.20<br>695.30           | 302.15<br>409.60<br>545.20<br>713.75           | 311.75<br>421.80<br>560.45<br>732.65           | 321.60<br>434.30<br>576.10<br>751.90           | 331.70<br>447.10<br>592.05<br>771.50           | 342.05<br>460.20<br>608.35                     | 352.65<br>473.60<br>625.05                     | 363.50<br>487.25<br>642.05                     | 374.60<br>501.25<br>659.45                     |

<sup>\*</sup> These tables of vapor pressures are quoted from results published by Ramsay and Young (Jour. Chem. Soc. vol. 47). The tables are intended to give a series suitable for hot-jacket purposes.

#### VAPOR PRESSURE.

Methyl Salicylate, Bromonaphthalene, and Mercury.

| Temp.<br>C.       | 0°                         | 1°                         | 2°                         | 3°                         | 4°                         | 5°                         | 6°               | 7°               | 8°               | 9°               |
|-------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------|------------------|------------------|------------------|
|                   | -                          |                            |                            | (e) ME                     | THYL SA                    | LICYLAT                    | Е.               |                  |                  |                  |
| 70°               | 2.40                       | 2.58                       | 2.77                       | 2.97                       | 3.18                       | 3.40                       | 3.62             | . 3.85           | 4.09             | 4·34             |
| 80                | 4.60                       | 4.87                       | 5.15                       | 5.44                       | 5.74                       | 6.05                       | 6.37             | 6.70             | 7.05             | 7·42             |
| 90                | 7.80                       | 8.20                       | 8.62                       | 9.06                       | 9.52                       | 9.95                       | 10.44            | 10.95            | 11.48            | 12.03            |
| 100               | 12.60                      | 13.20                      | 13.82                      | 14.47                      | 15.15                      | 15.85                      | 16.58            | 17.34            | 18.13            | 18.95            |
| 110               | 19.80                      | 20.68                      | 21.60                      | 22.55                      | 23.53                      | 24.55                      | 25.61            | 26.71            | 27.85            | 29.03            |
| 120               | 30.25                      | 31.52                      | 32.84                      | 34.21                      | 35.63                      | 37.10                      | 38.67            | 40.24            | 41.84            | 43.54            |
| 130               | 45.30                      | 47.12                      | 49.01                      | 50.96                      | 52.97                      | 55.05                      | 57.20            | 59.43            | 61.73            | 64.10            |
| 140               | 66.55                      | 69.08                      | 71.69                      | 74.38                      | 77.15                      | 80.00                      | 82.94            | 85.97            | 89.09            | 92.30            |
| 150               | 95.60                      | 99.00                      | 102.50                     | 106.10                     | 109.80                     | 113.60                     | 117.51           | 121.53           | 125.66           | 129.90           |
| 160               | 134.25                     | 138.72                     | 143.31                     | 148.03                     | 152.88                     | 157.85                     | 162.95           | 168.19           | 173.56           | 179.06           |
| 170               | 184.70                     | 190.48                     | 196.41                     | 202.49                     | 208.72                     | 215.10                     | 221.65           | 228.30           | 235.15           | 242.15           |
| 180               | 249.35                     | 256.70                     | 264.20                     | 271.90                     | 279.75                     | 287.80                     | 296.00           | 304.48           | 313.05           | 321.85           |
| 190               | 330.85                     | 340.05                     | 349.45                     | 359.05                     | 368.85                     | 378.90                     | 389.15           | 399.60           | 410.30           | 421.20           |
| 200<br>210<br>220 | 432.35<br>557.50<br>710.10 | 443.75<br>571.45<br>727.05 | 455·35<br>585.70<br>744·35 | 467.25<br>600.25<br>761.90 | 479.35<br>615.05<br>779.85 | 491.70<br>630.15<br>798.10 | 504.35<br>645.55 | 517.25<br>661.25 | 530.40<br>677.25 | 543.80<br>693.60 |
|                   |                            |                            |                            | (f) Bro                    | MONAPH                     | THALEN                     | E.               |                  |                  |                  |
| 110°              | 3.60                       | 3.74                       | 3.89                       | 4.05                       | 4.22                       | 4.40                       | 4·59             | 4.79             | 5.00             | 5.22             |
| 120               | 5.45                       | 5.70                       | 5.96                       | 6.23                       | 6.51                       | 6.80                       | 7·10             | 7.42             | 7.76             | 8.12             |
| 130               | 8.50                       | 8.89                       | 9.29                       | 9.71                       | 10.15                      | 10.60                      | 11·07            | 11.56            | 12.07            | 12.60            |
| 140               | 13.15                      | 13.72                      | 14.31                      | 14.92                      | 15.55                      | 16.20                      | 16.87            | 17.56            | 18.28            | 19.03            |
| 150               | 19.80                      | 20.59                      | 21.41                      | 22.25                      | 23.11                      | 24.00                      | 24.92            | 25.86            | 26.83            | 27.83            |
| 160               | 28.85                      | 29.90                      | 30.98                      | 32.09                      | 33.23                      | 34.40                      | 35.60            | 36.83            | 38.10            | 39.41            |
| 170               | 40.75                      | 42.12                      | 43.53                      | 44.99                      | 46.50                      | 48.05                      | 49.64            | 51.28            | 52.96            | 54.68            |
| 180               | 56.45                      | 58.27                      | 60.14                      | 62.04                      | 64.06                      | 66.10                      | 68.19            | 70.34            | 72.55            | 74.82            |
| 190               | 77.15                      | 79.54                      | 81.99                      | 84. <b>5</b> 1             | 87.10                      | 89.75                      | 92.47            | 95.26            | 98.12            | 101.05           |
| 200               | 104.05                     | 107.12                     | 110.27                     | 113.50                     | 116.81                     | 120.20                     | 123.67           | 127.22           | 130.86           | 134.59           |
| 210               | 138.40                     | 142.30                     | 146.29                     | 150.38                     | 154.57                     | 158.85                     | 163.25           | 167.70           | 172.30           | 176.95           |
| 220               | 181.75                     | 186.65                     | 191.65                     | 196.75                     | 202.00                     | 207.35                     | 212.80           | 218.40           | 224.15           | 230.00           |
| 230               | 235.95                     | 242.05                     | 248.30                     | 254.65                     | 261.20                     | 267.85                     | 274.65           | 281.60           | 288.70           | 295.95           |
| 240               | 303.35                     | 310.90                     | 318.65                     | 326.50                     | 334.55                     | 342.75                     | 351.10           | 359.65           | 368.40           | 377.30           |
| 250               | 386.35                     | 395.60                     | 405.05                     | 414.65                     | 424·45                     | 434·45                     | 444.65           | 455.00           | 465.60           | 476.35           |
| 260               | 487.35                     | 498.55                     | 509.90                     | 521.50                     | 533·35                     | 545·35                     | 557.60           | 570.05           | 582.70           | 595.60           |
| 270               | 608.75                     | 622.10                     | 635.70                     | 649.50                     | 663.55                     | 677.85                     | 692.40           | 70 <b>7.</b> 15  | 722.15           | 737.45           |
|                   |                            |                            |                            | (g                         | ) Merci                    | JRY.                       |                  |                  |                  |                  |
| 270°              | 123.92                     | 126.97                     | 130.08                     | 133.26                     | 136.50                     | 139.81                     | 143.18           | 146.61           | 150.12           | 1 53.70          |
| 280               | 157.35                     | 161.07                     | 164.86                     | 168.73                     | 172.67                     | 176.79                     | 180.88           | 185.05           | 189.30           | 193.63           |
| 290               | 198.04                     | 202.53                     | 207.10                     | 211.76                     | 216.50                     | 221.33                     | 226.25           | 231.25           | 236.34           | 241.53           |
| 300               | 246.81                     | 252.18                     | 257.65                     | 263.21                     | 268.87                     | 274.63                     | 280.48           | 286.43           | 292.49           | 298.66           |
| 310               | 304.93                     | 311.30                     | 317.78                     | 324.37                     | 331.08                     | 337.89                     | 344.81           | 351.85           | 359.00           | 366.28           |
| 320               | 373.67                     | 381.18                     | 388.81                     | 396.56                     | 404.43                     | 412.44                     | 420.58           | 428.83           | 437.22           | 445.75           |
| 330               | 454.41                     | 463.20                     | 472.12                     | 481.19                     | 490.40                     | 499.74                     | 509.22           | 518.85           | 528.63           | 538.56           |
| 340               | 548.64                     | 558.87                     | 569.25                     | 579.78                     | 590.48                     | 601.33                     | 612.34           | 623.51           | 634.85           | 646.36           |
| <b>350</b> 360    | 658.03<br>784.31           | 669.86                     | 681.86                     | 694.04                     | 706.40                     | 718.94                     | 731.65           | 744-54           | 757.61           | 770.87           |

#### VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.\*

The first column gives the chemical formula of the salt. The headings of the other columns give the number of gram-molecules of the salt in a liter of water. The numbers in these columns give the lowering of the vapor pressure produced by the salt at the temperature of boiling water under 76 centimeters barometric pressure.

|                                                                                                                                                                                                               |    |                                          |                                              |                                              |                                                | ter under                                 | ,                                |                                  |                         |                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------|-------------------------|-------------------------|
| Substanc                                                                                                                                                                                                      | e. | 0.5                                      | 1.0                                          | 2.0                                          | 3.0                                            | 4.0                                       | 5.0                              | 6.0                              | 8.0                     | 10.0                    |
| $\begin{array}{c} {\rm Al_2(SO_4)_3} \\ {\rm AlCl_3} \\ {\rm BaS_2O_6} \\ {\rm Ba(OH)_2} \\ {\rm Ba(NO_3)_2} \end{array}.$                                                                                    |    | 12.8<br>22.5<br>6.6<br>12.3<br>13.5      | 36.5<br>61.0<br>15.4<br>22.5<br>27.0         | 179.0<br>34·4<br>39.0                        | 318.0                                          |                                           |                                  |                                  |                         |                         |
| Ba(ClO <sub>3</sub> ) <sub>2</sub> . BaCl <sub>2</sub> . BaBr <sub>2</sub> . CaS <sub>2</sub> O <sub>3</sub> . Ca(NO <sub>3</sub> ) <sub>2</sub> .                                                            |    | 15.8<br>16.4<br>16.8<br>9.9<br>16.4      | 33·3<br>36·7<br>38·8<br>23.0<br>34·8         | 70.5<br>77.6<br>91.4<br>56.0<br>74.6         | 150.0<br>106.0<br>139.3                        | 204.7                                     | 205.4                            |                                  |                         |                         |
| $\begin{array}{c} \operatorname{CaCl_2} \cdot \cdot \\ \operatorname{CaBr_2} \cdot \cdot \\ \operatorname{CdSO_4} \cdot \\ \operatorname{CdI_2} \cdot \cdot \\ \operatorname{CdBr_2} \cdot \cdot \end{array}$ |    | 17.0<br>17.7<br>4.1<br>7.6<br>8.6        | 39.8<br>44.2<br>8.9<br>14.8<br>17.8          | 95.3<br>135.8<br>18.1<br>33.5<br>36.7        | 166.6<br>191.0<br>52.7<br>55.7                 | 241.5<br>283.3                            | 319.5<br>368.5                   |                                  |                         |                         |
| CdCl <sub>2</sub>                                                                                                                                                                                             |    | 9.6<br>15.9<br>17.5<br>5.5               | 18.8<br>36.1                                 | 36.7<br>78.0                                 | 57.0<br>122.2<br>45.5                          | 77-3                                      | 99.0                             |                                  |                         |                         |
| Co(NO <sub>3</sub> ) <sub>2</sub> .<br>FeSO <sub>4</sub> .<br>H <sub>3</sub> BO <sub>3</sub> .<br>H <sub>3</sub> PO <sub>4</sub> .                                                                            |    | 15.0<br>17.3<br>5.8<br>6.0<br>6.6<br>7.3 | 34.8<br>39.2<br>10.7<br>12.3<br>14.0<br>15.0 | 83.0<br>89.0<br>24.0<br>25.1<br>28.6<br>30.2 | 136.0<br>152.0<br>42.4<br>38.0<br>45.2<br>46.4 | 186.4<br>218.7<br>51.0<br>62.0<br>64.9    | 282.0                            | 332.0                            | 146.9                   | 189.5                   |
| H <sub>2</sub> SO <sub>4</sub> . KH <sub>2</sub> PO <sub>4</sub> . KNO <sub>3</sub> . KClO <sub>3</sub> . KBrO <sub>3</sub> .                                                                                 |    | 12.9<br>10.2<br>10.3<br>10.6<br>10.9     | 26.5<br>19.5<br>21.1<br>21.6<br>22.4         | 62.8<br>33·3<br>40.1<br>42.8<br>45.0         | 104.0<br>47.8<br>57.6<br>62.1                  | 148.0<br>60.5<br>74.5<br>80.0             | 198.4<br>73.1<br>88.2            | 247.0<br>85.2<br>102.1           | 343.2                   | 148.0                   |
| KHSO <sub>4</sub> .<br>KNO <sub>2</sub> .<br>KClO <sub>4</sub> .<br>KCl<br>KHCO <sub>2</sub> .                                                                                                                |    | 10.9<br>11.1<br>11.5<br>12.2<br>11.6     | 21.9<br>22.8<br>22.3<br>24.4                 | 43·3<br>44.8<br>48.8                         | 65.3<br>67.0<br>74.1<br>77.6                   | 85.5<br>90.0<br>100.9<br>104.2            | 107.8<br>110.5<br>128.5<br>132.0 | 129.2<br>130.7<br>152.2<br>160.0 | 170.0<br>167.0          | 198.8                   |
| KI                                                                                                                                                                                                            |    | 12.5<br>13.9<br>13.9<br>14.4<br>15.0     | 23.6<br>25.3<br>28.3<br>33.0<br>31.0<br>29.5 | 59.0<br>52.2<br>59.8<br>75.0<br>68.3<br>64.0 | 82.6<br>94.2<br>123.8<br>105.5<br>99.2         | 112.2<br>131.0<br>175.4<br>152.0<br>140.0 | 141.5<br>226.4<br>209.0<br>181.8 | 171.8<br>258.5<br>223.0          | 225.5<br>350.0<br>309.5 | 278.5                   |
| K <sub>2</sub> CrO <sub>4</sub> .<br>LiNO <sub>8</sub> .<br>LiCl .<br>LiBr .<br>Li <sub>2</sub> SO <sub>4</sub> .                                                                                             |    | 16.2<br>12.2<br>12.1<br>12.2<br>13.3     | 29.5<br>25.9<br>25.5<br>26.2<br>28.1         | 60.0<br>55.7<br>57.1<br>60.0<br>56.8         | 88.9<br>95.0<br>97.0<br>89.0                   | 122.2<br>132.5<br>140.0                   | 155.1<br>175.5<br>186.3          | 188.0<br>219.5<br>241.5          | 253.4<br>311.5<br>341.5 | 309.2<br>393·5<br>438.0 |
| $\begin{array}{ccc} \text{LiHSO}_4 & . \\ \text{LiI} & . & . \\ \text{Li}_2 \text{SiFI}_6 & . \\ \text{LiOH} & . \\ \text{Li}_2 \text{CrO}_4 & . \\ \end{array}$                                              |    | 12.8<br>13.6<br>15.4<br>15. 9<br>16.4    | 27.0<br>28.6<br>34.0<br>37.4<br>32.6         | 57.0<br>64.7<br>70.0<br>78.1<br>74.0         | 93.0<br>105.2<br>106.0                         | 130.0<br>154.5                            | 168.0<br>206.0                   | 264.0                            | 357.0                   | 445.0                   |

<sup>\*</sup> Compiled from a table by Tammann, "Mém. Ac. St. Petersb." 35, No. 9, 1887. See also Referate, "Zeit. f. Phys." ch. 2, 42, 1886.

SMITHSONIAN TABLES.

# VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER.

| Substance.                                                                                                 | 0.5                                  | 1.0                                  | 2.0                                      | 3.0                             | 4.0                                   | 5.0                             | 6.0                              | 8.0                     | 10.0                    |
|------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------|---------------------------------|---------------------------------------|---------------------------------|----------------------------------|-------------------------|-------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                       | 6.5<br>16.8<br>17.6<br>17.9<br>18.3  | 12.0<br>39.0<br>42.0<br>44.0<br>46.0 | 24.5<br>100.5<br>101.0<br>115.8<br>116.0 | 47·5<br>183·3<br>174·8<br>205·3 | 277.0<br>298.5                        | 377.0                           |                                  |                         |                         |
| MnSO <sub>4</sub>                                                                                          | 6.0<br>15.0<br>10.5<br>10.9<br>10.6  | 10.5<br>34.0<br>20.0<br>22.1<br>22.5 | 21.0<br>76.0<br>36.5<br>47.3<br>46.2     | 122.3<br>51.7<br>75.0<br>68.1   | 167.0<br>66.8<br>100.2<br>90.3        | 209.0<br>82.0<br>126.1          | 96.5<br>148.5<br>131.7           | 126.7<br>189.7<br>167.8 | 157.1<br>231.4<br>198.8 |
| NaClO <sub>3</sub>                                                                                         | 10.5                                 | 23.0                                 | 48.4                                     | 73.5                            | 98.5                                  | 123.3                           | 147.5                            | 196.5                   | 223.5                   |
| (NaPO <sub>3</sub> ) <sub>6</sub>                                                                          | 11.8<br>11.6<br>12.1                 | 22.8<br>24.4<br>23.5                 | 48.2<br>50.0<br>43.0                     | 77·3<br>75.0<br>60.0            | 107.5<br>98.2<br>78.7                 | 139.1<br>122.5<br>99.8          | 172.5<br>146.5<br>122.1          | 243.3<br>189.0          | 314.0<br>226.2          |
| NaHCO <sub>8</sub>                                                                                         | 12.9                                 | 24.1                                 | 48.2                                     | 77.6                            | 102.2                                 | 127.8                           | 152.0                            | 198.0                   | 239.4                   |
| Na <sub>2</sub> SO <sub>4</sub>                                                                            | 12.6                                 | 25.0<br>25.2<br>25.0                 | 48.9<br>52.1<br>54.1                     | 74.2<br>80.0<br>81.3            | 111.0                                 | 143.0                           | 176.5                            |                         |                         |
| NaBr                                                                                                       | 12.6                                 | 25.9                                 | 57.0                                     | 89.2                            | 124.2                                 | 159.5                           | 197.5                            | 268.0                   |                         |
| NaI                                                                                                        | 12.1<br>13.2                         | 25.6<br>22.0                         | 60.2                                     | 99.5                            | 1 36.7                                | 177.5                           | 221.0                            | 301.5                   | 370.0                   |
| $egin{array}{ccccc} Na_2CO_3 & . & . & . \\ Na_2C_2O_4 & . & . & . \\ Na_2WO_4 & . & . & . \\ \end{array}$ | 14.3<br>14.5<br>14.8                 | 27.3<br>30.0<br>33.6                 | 53.5<br>65.8<br>71.6                     | 80.2<br>105.8<br>115.7          | 111.0<br>146.0<br>162.6               |                                 |                                  |                         |                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                       | 16.5<br>17.1<br>12.8<br>11.5<br>12.0 | 30.0<br>36.5<br>22.0<br>25.0<br>23.7 | 52.5<br>42.1<br>44.5<br>45.1             | 62.7                            | 82.9                                  | 103.8                           | 121.0                            | 152.2                   | 180.0                   |
| NH <sub>4</sub> HSO <sub>4</sub>                                                                           | 11.5<br>11.0<br>11.9<br>12.9<br>5.0  | 22.0<br>24.0<br>23.9<br>25.1<br>10.2 | 46.8<br>46.5<br>48.8<br>49.8<br>21.5     | 71.0<br>69.5<br>74.1<br>78.5    | 94· <b>5</b><br>93.0<br>99·4<br>104.5 | 118.<br>117.0<br>121.5<br>132.3 | 139.0<br>141.8<br>145.5<br>156.0 | 181.2<br>190.2<br>200.0 | 218.0<br>228.5<br>243.5 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                       | 16.1<br>16.1<br>12.3<br>7.2          | 37.0<br>37.3<br>23.5<br>20.3         | 86.7<br>91.3<br>45.0<br>47.0             | 147.0<br>156.2<br>63.0          | 212.8 235.0                           |                                 |                                  |                         |                         |
| $Sr(NO_8)_2$                                                                                               | 15.8                                 | 31.0                                 | 64.0                                     | 97.4                            | 131.4                                 | 0                               |                                  |                         |                         |
| $\begin{array}{c} SrCl_2 \\ SrBr_2 \\ ZnSO_4 \\ ZnCl_2 \end{array} . \qquad . \qquad . \qquad .$           | 16.8<br>17.8<br>4.9<br>9.2           | 38.8<br>42.0<br>10.4<br>18.7         | 91.4<br>101.1<br>21.5<br>46.2            | 156.8<br>179.0<br>42.1<br>75.0  | 223.3<br>267.0<br>66.2<br>107.0       | 281.5                           | 195.0                            |                         |                         |
| Zn(NO <sub>3</sub> ) <sub>2</sub>                                                                          | 16.6                                 | 39.0                                 | 93.5                                     | 157.5                           | 223.8                                 |                                 |                                  |                         |                         |

#### TABLES 183-185.

#### PRESSURE OF SATURATED AQUEOUS VAPOR.

The following tables for the pressure of saturated aqueous vapor are taken principally from the Fourth Revised Edition (1918) of the Smithsonian Meteorological Tables.

TABLE 183. — At Low Temperatures, -69° to 0° C over Ice.

| Temp. | 0     | I     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|       | mm    |
| -60   | 0.008 | 0.007 | 0.006 | 0.005 | 0.004 | 0.004 | 0.003 | 0.003 | 0.003 | 0.002 |
| -50   | 0.020 | 0.026 | 0.023 | 0.020 | 0.017 | 0.015 | 0.013 | 0.012 | 0.010 | 0.009 |
| -40   | 0.096 | 0.086 | 0.076 | 0.068 | 0.060 | 0.054 | 0.048 | 0.042 | 0.037 | 0.033 |
| -30   | 0.288 | 0.259 | 0.233 | 0.209 | 0.188 | 0.169 | 0.151 | 0.135 | 0.121 | 0.108 |
| -20   | 0.783 | 0.712 | 0.646 | 0.585 | 0.530 | 0.480 | 0.434 | 0.392 | 0.354 | 0.319 |
| -10   | 1.964 | 1.798 | 1.644 | 1.503 | 1.373 | 1.252 | 1.142 | 1.041 | 0.947 | 0.861 |
| - 0   | 4.580 | 4.220 | 3.887 | 3.578 | 3.291 | 3.025 | 2.778 | 2.550 | 2.340 | 2.144 |
|       |       |       |       |       |       |       |       |       |       |       |

TABLE 184. — At Low Temperatures, - 16° to 0° C over Water.

| Temp. | 0     | I     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| -10°  | mm    |
|       | 2.144 | 1.979 | 1.826 | 1.684 | 1.551 | 1.429 | 1.315 | —     | —     | —     |
|       | 4.579 | 4.255 | 3.952 | 3.669 | 3.404 | 3.158 | 2.928 | 2.712 | 2.509 | 2.32I |

TABLE 185. - For Temperatures 0° to 374° C over Water.

|          |       |       | 1     | 1     | 1              |       |           |       | 1     |       |
|----------|-------|-------|-------|-------|----------------|-------|-----------|-------|-------|-------|
| Temp.    | .0    | Ι.    | . 2   | -3    | .4             | -5    | .6        | .7    | .8    | .9    |
|          | mm    | mm    | mm    | mm    | mm             | mm    | mm        | mm    | mm    | mm    |
| o°       | 4.580 | 4.614 | 4.647 | 4.681 | 4-715          | 4.750 | 4.784     | 4.819 | 4.854 | 4.889 |
| 1        | 4.924 | 4.960 | 4.996 | 5.032 | 5.068          | 5.105 | 5.142     | 5.179 | 5.216 | 5.254 |
| 2        | 5.291 | 5.329 | 5.368 | 5.406 | 5 - 445        | 5.484 | 5 - 5 2 3 | 5.562 | 5.602 | 5.642 |
| 3        | 5.682 | 5.723 | 5.763 | 5.804 | 5.846          | 5.887 | 5.929     | 5.971 | 6.013 | 6.056 |
| 4        | 6.098 | 6.141 | 6.185 | 6.228 | 6.272          | 6.316 | 6.361     | 6.406 | 6.450 | 6.496 |
| -        | 6.541 | 6.587 | 6.633 | 6.680 | 6.726          | 6.773 | 6.820     | 6.868 | 6.916 | 6.964 |
| 5 6      | 7.012 | 7.061 | 7.110 | 7.159 | 7.200          | 7.259 | 7.309     | 7.360 | 7.410 | 7.462 |
|          | 7.513 | 7.565 | 7.617 | 7.669 | 7.722          | 7.775 | 7.828     | 7.882 | 7.936 | 7.991 |
| 7 8      | 8.045 | 8.100 | 8.156 | 8.211 | 8.267          | 8.324 | 8.380     | 8.437 | 8.494 | 8.552 |
| 9        | 8.610 | 8.669 | 8.727 | 8.786 | 8.846          | 8.906 | 8.966     | 9.026 | 9.087 | 9.148 |
| 100      |       |       |       |       |                |       |           | - 6-  |       | 0 40  |
| 10       | 9.21  | 9.27  | 9.33  | 9.40  | 9.46           | 9.52  | 9.59      | 9.65  | 9.72  | 10.45 |
| II<br>I2 | 9.85  | 9.91  | 9.98  | 10.04 | 10.11          | 10.13 | 10.25     | 11.02 | 11.00 | 11.16 |
| 13       | 11.24 | 11.31 | 11.38 | 11.46 | 11.53          | 11.61 | 11.68     | 11.76 | 11.84 | II.Q2 |
| 14       | 11.00 | 12.07 | 12.15 | 12.23 | 12.31          | 12.30 | 12.47     | 12.55 | 12.63 | 12.71 |
|          |       |       |       |       |                |       |           |       |       |       |
| 15       | 12.79 | 12.88 | 12.96 | 13.04 | 13.13          | 13.21 | 13.30     | 13.38 | 13.47 | 13.56 |
| 16       | 13.64 | 13.73 | 13.82 | 13.91 | 14.00          | 14.08 | 14.17     | 14.26 | 14.36 | 14.45 |
| 17       | 14.54 | 14.63 | 14.73 | 14.82 | 14.91          | 15.01 | 15.10     | 15.20 | 15.29 | 15.39 |
| 18       | 15.49 | 15.58 | 15.68 | 15.78 | 15.88<br>16.91 | 15.98 | 16.08     | 17.22 | 17.33 | 17.44 |
| 19       | 16.49 | 16.59 | 10.70 | 10.00 | 10.91          | 17.01 | 17.12     | 17.22 | 17.33 | 17.44 |
| 20       | 17.55 | 17.66 | 17.77 | 17.88 | 17.99          | 18.10 | 18.21     | 18.32 | 18.44 | 18.55 |
| 21       | 18.66 | 18.78 | 18.90 | 19.01 | 19.13          | 19.25 | 19.36     | 19.48 | 19.60 | 19.72 |
| 22       | 19.84 | 19.96 | 20.09 | 20.21 | 20.33          | 20.46 | 20.58     | 20.71 | 20.83 | 20.96 |
| 23       | 21.09 | 21.22 | 21.34 | 21.47 | 21.60          | 21.73 | 21.87     | 22.00 | 22.13 | 22.26 |
| 24       | 22.40 | 22.53 | 22.67 | 22.80 | 22.94          | 23.08 | 23.22     | 23.36 | 23.50 | 23.64 |
| 25       | 22 78 | 22 02 | 24.06 | 24.21 | 24.35          | 24.50 | 24.64     | 24.79 | 24.94 | 25.00 |
| 25       | 23.78 | 23.92 | 24.00 | 24.21 | 24.33          | 24.30 | 24.04     | 24.79 | -4.94 | 23.39 |
|          |       |       |       |       |                |       |           |       |       |       |

# PRESSURE OF SATURATED AQUEOUS VAPOR.

# TABLE 185. — For Temperatures 0° to 374° C over Water.

| 6 |                                 |                                            |                                            |                                            |                                             |                                             |                                             |                                             |                                             | 1                                           |                                             |
|---|---------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| - | Tempera-<br>ture.               | .0                                         | .1                                         | . 2                                        | .3                                          | -4                                          | - 5                                         | .6                                          | -7                                          | .8                                          | .9                                          |
|   |                                 | mm                                         | mm                                         | mm                                         | mm                                          | mm                                          | mm                                          | mm                                          | mm                                          | mm                                          | mm                                          |
| ı | · 25°                           | 23.78<br>25.24                             | 23.92<br>25.38                             | 24.06                                      | 24.2I<br>25.69                              | 24.35<br>25.84                              | 24.50<br>25.99                              | 24.64<br>26.14                              | 24.79<br>26.30                              | 24.94<br>26.46                              | 25.09<br>26.61                              |
| I | 27<br>28<br>29                  | 26.77<br>28.38<br>30.08                    | 26.92<br>28.55<br>30.25                    | 27.08<br>28.71<br>30.43                    | 27.24<br>28.88<br>30.60                     | 27.40<br>29.05<br>30.78                     | 27.56<br>29.22<br>30.96                     | 27.72<br>29.39<br>31.14                     | 27.89<br>29.56<br>31.32                     | 28.05<br>29.73<br>31.50                     | 28.22<br>29.90<br>31.68                     |
| I | 30<br>31                        | 31.86<br>33.74                             | 32.04<br>33.93                             | 32.23                                      | 32.41                                       | 32.60<br>34.51                              | 32.79<br>34.71                              | 32.97<br>34.91                              | 33.16                                       | 33·35<br>35.30                              | 33·54<br>35.50                              |
| ł | 32<br>33<br>34                  | 35.70<br>37.78<br>39.95                    | 35.91<br>37.99<br>40.17                    | 36.11<br>38.20<br>40.39                    | 34.32<br>36.32<br>38.42<br>40.62            | 36.52<br>38.63<br>40.85                     | 36.73<br>38.85<br>41.07                     | 36.94<br>39.06<br>41.30                     | 37.14<br>39.28<br>41.53                     | 37.35<br>39.50<br>41.76                     | 37.56<br>39.72<br>41.99                     |
| I | 35<br>36                        | 42.23<br>41.62                             | 42.46                                      | 42.70<br>45.II                             | 42.93<br>45.36                              | 43.17<br>45.61                              | 43.41<br>45.86                              | 43.65<br>46.11                              | 43.89<br>46.36                              | 44.13<br>46.62                              | 44·37<br>46.87                              |
| I | 37<br>38<br>39                  | 47.13<br>49.76<br>52.51                    | 47.38<br>50.02<br>52.79                    | 47.64<br>50.30<br>53.08                    | 47.90<br>50.57<br>53.36                     | 48.16<br>50.84<br>53.65                     | 48.43<br>51.12<br>53.94                     | 48.69<br>51.39<br>54.23                     | 48.95<br>51.67<br>54.52                     | 49.22<br>51.95<br>54.81                     | 49.49<br>52.23<br>55.10                     |
|   | 40<br>41                        | 55.40                                      | 55.69<br>58.73                             | 55.99<br>59.04                             | 56.29<br>59.35                              | 56.59<br>59.66                              | 56.89<br>59.98                              | 57.19                                       | 57.50<br>60.62                              | 57.80                                       | 58.11                                       |
| ı | 42<br>43<br>44                  | 61.58<br>64.89<br>68.35                    | 61.90<br>65.23<br>68.70                    | 62.23<br>65.57<br>69.06                    | 62.56<br>65.91<br>69.42                     | 62.89<br>66.26<br>69.78                     | 63.22<br>66.60<br>70.14                     | 63.55<br>66.95<br>70.50                     | 63.88<br>67.30<br>70.87                     | 64.22<br>67.64<br>71.23                     | 64.55<br>68.00<br>71.60                     |
| ı | 45<br>46                        | 71.97<br>75.75                             | 72.34<br>76.14<br>80.11                    | 72.71<br>76.53<br>80.51                    | 73.09<br>76.92<br>80.92                     | 73.46<br>77.31<br>81.33                     | 73.84<br>77.70<br>81.74                     | 74.22<br>78.10<br>82.16                     | 74.60<br>78.50                              | 74.98<br>78.90                              | 75.36<br>79.30<br>83.41                     |
| ı | 47<br>48<br>49                  | 79.70<br>83.83<br>88.14                    | 84.25<br>88.58                             | 84.68                                      | 85.10<br>89.47                              | 85.53<br>89.92                              | 85.96<br>90.36                              | 86.39<br>90.82                              | 82.57<br>86.83<br>91.27                     | 82.99<br>87.26<br>91.72                     | 87.70<br>92.18                              |
|   |                                 | 0.                                         | ī.                                         | 2.                                         | 3.                                          | 4-                                          | 5-                                          | 6.                                          | 7.                                          | 8.                                          | 9.                                          |
|   | 50<br>60<br>70<br>80<br>90      | 92.6<br>149.6<br>233.9<br>355.4<br>526.0   | 97-3<br>156.6<br>244.2<br>370.0<br>546.3   | 102.2<br>164.0<br>254.9<br>385.2<br>567.2  | 107.3<br>171.6<br>266.0<br>400.8<br>588.8   | 112.7<br>179.5<br>277.4<br>417.0<br>611.1   | 118.2<br>187.8<br>289.3<br>433.7<br>634.1   | 124.0<br>196.3<br>301.6<br>451.0<br>657.8   | 130.0<br>205.2<br>314.4<br>468.8<br>682.2   | 136.3<br>214.4<br>327.6<br>487.3<br>707.4   | 142.8<br>224.0<br>341.2<br>506.3<br>733.3   |
|   | 100<br>110<br>120<br>130<br>140 | 760.0<br>1074<br>1489<br>2025<br>2709      | 787.5<br>1111<br>1536<br>2086<br>2786      | 815.9<br>1149<br>1585<br>2149<br>2866      | 845.0<br>1187<br>1636<br>2214<br>2947       | 875.1<br>1227<br>1687<br>2280<br>3030       | 906.0<br>1268<br>1740<br>2347<br>3115       | 937.8<br>1310<br>1794<br>2416<br>3201       | 970.5<br>1353<br>1850<br>2487<br>3290       | 1004.2<br>1397<br>1907<br>2559<br>3381      | 1038.8<br>1442<br>1965<br>2633<br>3473      |
|   | 150<br>160<br>170<br>180<br>190 | 3568<br>4632<br>5936<br>7513<br>9404       | 3665<br>4751<br>6080<br>7688<br>9612       | 3763<br>4873<br>6228<br>7865<br>9823       | 3864<br>4997<br>6378<br>8046<br>10040       | 3967<br>5123<br>6532<br>8230<br>10260       | 4072<br>5252<br>6688<br>8417<br>10480       | 4180<br>5383<br>6847<br>8608<br>10700       | 4290<br>5518<br>7009<br>8802<br>10940       | 4402<br>5654<br>7174<br>8999<br>11170       | 4516<br>5794<br>7342<br>9200<br>11410       |
|   | 200<br>210<br>220<br>230<br>240 | 11650<br>14290<br>17370<br>20950<br>25060  | 11890<br>14580<br>17710<br>21330<br>25500  | 12140<br>14870<br>18050<br>21720<br>25950  | 12400<br>15160<br>18390<br>22120<br>26410   | 12650<br>15470<br>18740<br>22520<br>26870   | 12920<br>15770<br>19100<br>22930<br>27340   | 13180<br>16080<br>19450<br>23350<br>27810   | 13450<br>16400<br>19820<br>23770<br>28290   | 13730<br>16720<br>20190<br>24190<br>28780   | 14010<br>17040<br>20560<br>24620<br>29270   |
|   | 250<br>260<br>270<br>280<br>290 | 29770<br>35130<br>41200<br>48040<br>55710  | 30280<br>35700<br>41840<br>48760<br>56530  | 30700<br>36280<br>42500<br>49500<br>57360  | 31310<br>36870<br>43160<br>50250<br>58190   | 31830<br>37470<br>43840<br>51000<br>59040   | 32360<br>38070<br>44520<br>51770<br>59890   | 32900<br>38680<br>45200<br>52540<br>60750   | 33450<br>39300<br>45900<br>53320<br>61620   | 34000<br>39920<br>46600<br>54110<br>62510   | 34560<br>40560<br>47320<br>54910<br>63400   |
|   | 300<br>310<br>320<br>330<br>340 | 64300<br>73870<br>84500<br>96290<br>109300 | 65210<br>74880<br>85630<br>97530<br>110700 | 66130<br>75910<br>86760<br>98790<br>112100 | 67060<br>76940<br>87910<br>100060<br>113500 | 68000<br>77990<br>89070<br>101350<br>114900 | 68960<br>79050<br>90250<br>102640<br>116300 | 69920<br>80120<br>91430<br>103950<br>117800 | 70890<br>81200<br>92630<br>105280<br>119200 | 71870<br>82290<br>93840<br>106600<br>120700 | 72860<br>83390<br>95060<br>108000<br>122200 |
|   | 350<br>360<br>370               | 123700<br>139600<br>157000                 | 125200<br>141200<br>158800                 | 126800<br>142900<br>160700                 | 128300<br>144600<br>162600                  | 129900<br>146300<br>164400                  | 131400                                      | 133000                                      | 134600                                      | 136300<br>153400                            | 137900<br>155200                            |
|   |                                 | 1                                          |                                            |                                            |                                             |                                             |                                             |                                             |                                             |                                             |                                             |

TABLE 186. - Weight in Grams of a Cubic Meter of Saturated Aqueous Vapor.

| Temp.                       | o°                                                            | 10                                                             | 2°                                                             | 3°                                                             | 4°                                                             | 5°                                                             | 6°                                                             | 7°                                                             | 8°                                                             | 9°                                                             |
|-----------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| -20° -10 -0 +0° +10 +20 +30 | 0.894<br>2.158<br>4.847<br>4.847<br>9.401<br>17.300<br>30.371 | 0.816<br>1.983<br>4.482<br>5.192<br>10.015<br>18.338<br>32.052 | 0.743<br>1.820<br>4.144<br>5.559<br>10.664<br>19.430<br>33.812 | 0.677<br>1.671<br>3.828<br>5.947<br>11.348<br>20.578<br>35.656 | 0.615<br>1.531<br>3.534<br>6.36c<br>12.070<br>21.783<br>37.583 | 0.559<br>1.403<br>3.261<br>6.797<br>12.832<br>23.049<br>39.599 | 0.508<br>1.284<br>3.006<br>7.261<br>13.635<br>24.378<br>41.706 | 0.461<br>1.174<br>2.770<br>7.751<br>14.482<br>25.771<br>43.908 | 0.418<br>1.073<br>2.551<br>8.271<br>15.373<br>27.234<br>46.208 | 0.378<br>0.980<br>2.347<br>8.821<br>16.311<br>28.765<br>48.609 |
|                             |                                                               |                                                                | For h                                                          | igher tem                                                      | peratures,                                                     | see Table                                                      | 259.                                                           |                                                                |                                                                |                                                                |

TABLE 187. - Weight in Grains of a Cubic Foot of Saturated Aqueous Vapor.

| Temp. ° F.                   | o°                               | 1.0                              | 2°                               | 3°                               | 4°                               | 5°                               | 6°                               | 7°                                | 8°                                | 9°                               |
|------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|
| -20°<br>-10<br>- 0           | 0.167<br>0.286<br>0.479          | 0.158<br>0.272<br>0.455          | 0.150<br>0.258<br>0.433          | 0.141<br>0.244<br>0.411          | 0.134<br>0.232<br>0.391          | 0.126<br>0.220<br>0.371          | 0.110<br>0.208<br>0.353          | 0.112<br>0.197<br>0.335           | o.106<br>o.187<br>o.318           | 0.100<br>0.176<br>0.302          |
| + 0°<br>+ 10<br>+ 20<br>+ 30 | 0.479<br>0.780<br>1.244<br>1.042 | 0.503<br>0.818<br>1.301<br>2.028 | 0.529<br>0.858<br>1.362<br>2.118 | 0.556<br>0.900<br>1.425<br>2.200 | 0.584<br>0.943<br>1.490<br>2.286 | 0.613<br>0.988<br>1.558<br>2.375 | 0.644<br>1.035<br>1.629<br>2.466 | 0.676<br>1.084<br>1.703<br>2.560  | 0.709<br>1.135<br>1.779<br>2.658  | 0.744<br>1.189<br>1.859<br>2.759 |
| +40<br>+50<br>+60<br>+70     | 2.863<br>4.108<br>5.800<br>8.066 | 2.970<br>4.255<br>5.999<br>8.329 | 3.082<br>4.407<br>6.203<br>8.600 | 3.196<br>4.564<br>6.413<br>8.879 | 3.315<br>4.725<br>6.630<br>9.165 | 3.436<br>4.891<br>6.852<br>9.460 | 3.563<br>5.062<br>7.082<br>9.761 | 3.693<br>5.238<br>7.317<br>10.072 | 3.828<br>5.420<br>7.560<br>10.392 | 3.965<br>5.607<br>7.809          |
| +80<br>+90                   | 11.056                           | 11.401 15.400                    | 11.756<br>15.858                 | 12.121<br>16.328<br>21.723       | 12.494<br>16.810                 | 12.878<br>17.305                 | 13.272<br>17.812<br>23.611       | 13.676<br>18.330<br>24.271        | 14.000<br>18.863                  | 14.515<br>19.407<br>25.636       |
| 110                          | 26.343                           | 27.066                           | 27.807                           | 28.563                           | 29.338                           | 30.130                           | 30.940                           | 31.768                            | 32.616                            | 33.482                           |

Tables are abridged from Smithsonian Meteorological Tables, fourth revised edition.

#### TABLE 188. — Pressure of Aqueous Vapor in the Atmosphere.

For various altitudes (barometric readings).

The first column gives the depression of the wet-bulb temperature  $t_1$  below the air temperature t. The value corresponding to the barometric height at the altitude of observation is to be subtracted from the vapor pressure corresponding to the wet-bulb temperature taken from Table 185. The temperature corresponding to this vapor pressure taken from Table 185 is the dew point. The wet bulb should be ventilated about 3 meters per second. For sea-level use Table 189. Example:  $t = 35^\circ$ ,  $t_1 = 30^\circ$ , barometer 74 cm. Then 31.83 - 2.46 = 29.37 mm = aqueous vapor pressure; the dew point is 28.6° C.

Abridged from Smithsonian Meteorological Tables, 1907.

|               |      |        |      |      | Ва    | rometri | c pressu | re in ce | ntimete      | rs.  |      |      |      |        |
|---------------|------|--------|------|------|-------|---------|----------|----------|--------------|------|------|------|------|--------|
| $t - t_1$ ° C | 74   | 72     | 70   | 68   | 66    | 64      | 62       | 60       | 58           | 56   | 54   | - 52 | 50   | 48     |
|               | mm   | mm     | mm   | mm   | mm    | mm      | mm       | mm       | mm           | mm   | mm   | mm   | mm   | mm     |
| 10            | 0.50 | 0.48   | 0.47 | 0.46 | 0.44  | 0.43    | 0.42     | 0.40     | 0.39         | 0.38 | 0.36 | 0.35 | 0.34 | 0.32   |
| 2             | 0.98 | 0.96   | 0.93 | 0.90 | 0.88  | 0.85    | 0.82     | 0.80     | 0.77         | 0.75 | 0.72 | 0.69 | 0.67 | 0.64   |
| 3             | 1.47 | 1.43   | 1.39 | 1.35 | 1.32  | 1.28    | 1.24     | 1.20     | 1.15         | 1.12 | 1.08 | 1.04 | 1.00 | 0.96   |
| 4             | 1.97 | 1.91   | 1.86 | 1.81 | 1.75  | 1.70    | 1.65     | 1.60     | 1.54         | 1.49 | 1.44 | 1.38 | 1.33 | 1.28   |
|               |      |        |      |      | . 1.1 |         |          |          |              | + 96 | 1.80 | 7 60 | * 66 | - 6-   |
| 5 6           | 2.46 | 2.39   | 2.32 | 2.26 | 2.19  | 2.13    | 2.06     | 1.99     | 1.93         | 1.86 | 2.16 | 1.73 | 2.00 | 1.60   |
|               | 2.95 | 2.87   | 2.79 | 2.71 | 2.63  | 2.55    | 2.47     | 2.39     | 2.32<br>2.7I | 2.61 | 2.52 | 2.43 | 2.33 | 1.92   |
| 7 8           | 3.45 | 3.36   | 3.26 | 3.17 | 3.08  | 2.99    | 3.31     | 3.20     | 3.10         | 2.00 | 2.88 | 2.78 | 2.67 | 2.56   |
| °             | 3.95 | 4.32   | 3.73 | 4.00 | 3.97  | 3.42    | 3.73     | 3.61     | 3.49         | 3.37 | 3.25 | 3.13 | 3.00 | 2.88   |
| 9             | 4.44 | 4.32   | 4,21 | 4.09 | 3.97  | 3.03    | 3.73     | 3.02     | 3.49         | 3.37 | 3.23 | 3.23 | 3.00 | 2.00   |
| 10            | 4.94 | 4.81   | 4.68 | 4.54 | 4.41  | 4.28    | 4.14     | 4.01     | 3.88         | 3.74 | 3.6r | 3.48 | 3.34 | 3.21   |
| II            | 5.44 | 5.30   | 5.15 | 5.00 | 4.86  | 4.71    | 4.56     | 4.42     | 4.27         | 4.12 | 3.97 | 3.83 | 3.68 | 3 - 53 |
| 12            | 5.94 | 5.78   | 5.62 | 5.46 | 5.30  | 5.14    | 4.98     | 4.82     | 4.66         | 4.50 | 4.34 | 4.18 | 4.02 | 3.85   |
| 13            | 6.45 | 6.27   | 6.10 | 5.92 | 5.75  | 5.57    | 5.40     | 5.23     | 5.05         | 4.88 | 4.70 | 4.53 | 4.36 | 4.18   |
| 14            | 6.95 | 6.76   | 6.58 | 6.39 | 6.20  | 6.01    | 5.83     | 5.64     | 5 - 45       | 5.26 | 5.07 | 4.88 | 4.70 | 4.51   |
|               |      |        |      |      |       | ,       |          | ,        |              |      |      |      |      |        |
| 15            | 7.46 | 7.26   | 7.06 | 6.85 | 6.65  | 6.45    | 6.25     | 6.05     | 5.85         | 5.64 | 5.44 | 5.24 | 5.04 | 4.84   |
| 16            | 7.96 | 7 - 75 | 7.54 | 7.32 | 7.11  | 6.89    | 6.68     | 6.46     | 6.24         | 6.03 | 5.81 | 5.60 | 5.38 | 5.17   |
| 17            | 8.47 | 8.24   | 8.02 | 7.79 | 7.56  | 7.33    | 7.10     | 0.87     | 6.64         | 6.41 | 6.18 | 5-95 | 5.72 | 5.50   |

#### PRESSURE OF AQUEOUS VAPOR IN THE ATMOSPHERE.

This table gives the vapor pressure corresponding to various values of the difference  $t-t_1$  between the readings of dry and wet bulb thermometers and the temperature  $t_1$  of the wet bulb thermometer. The difference  $t-t_1$  is given by two-degree steps in the top line, and  $t_1$  by degrees in the first column. Temperatures in Centigrade degrees, vapor pressures in millimeters of mercury are used throughout the table. The table was calculated for barometric pressure B equal to 76 centimeters. A correction is given for each centimeter at the top of the columns. Ventilating velocity of wet thermometer about 3 meters per second.

|                                 |                                           |                                            |                                           |                                           | _                                         | _                                         |                                           |                                           |                                           |                                           |                                           |                                           |
|---------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| t <sub>1</sub>                  | $t - t_1 = 0^{\circ}$                     | 2°                                         | 4°                                        | 6°                                        | 8°                                        | 100                                       | 12°                                       | 14°                                       | 16°                                       | 18°                                       | 20°                                       | Differ-<br>ence<br>for                    |
| Correct for B po                |                                           | .013                                       | .026                                      | .040                                      | .053                                      | .066                                      | .079                                      | .092                                      | .106                                      | .119                                      | .132                                      | 0.1° in t -t1                             |
| -10<br>- 9<br>- 8<br>- 7<br>- 6 | 1.96<br>2.14<br>2.34<br>2.55<br>2.78      | 0.97<br>1.15<br>1.35<br>1.56<br>1.78       | 0.16<br>0.35<br>0.66<br>0.79              |                                           | =                                         | Fro                                       | $-t_1 = 7$                                | = 10.0;<br>.2<br>6.17 -                   |                                           |                                           | 57<br>07                                  | 0.050<br>0.050<br>0.050<br>0.050<br>0.050 |
| - 5<br>- 4<br>- 3<br>- 2<br>- 1 | 3.02<br>3.29<br>3.58<br>3.89<br>4.22      | 2.03<br>2.29<br>2.58<br>2.89<br>3.22       | 1.03<br>1.29<br>1.58<br>1.89<br>2.22      | 0.03<br>0.29<br>0.58<br>0.88<br>1.21      |                                           | Her<br>—                                  |                                           | =                                         | =                                         | = 5.                                      |                                           | 0.050<br>0.050<br>0.050<br>0.050<br>0.050 |
| 0<br>1<br>2<br>3<br>4           | 4.58<br>4.92<br>5.29<br>5.68<br>6.10      | 3.58<br>3.92<br>4.29<br>4.68<br>5.09       | 2.57<br>2.92<br>3.28<br>3.67<br>4.08      | 1.57<br>1.91<br>2.27<br>2.66<br>3.07      | 0.57<br>0.91<br>1.27<br>1.66<br>2.07      | 0.26<br>0.65<br>1.06                      | 0.05                                      |                                           |                                           | =                                         |                                           | 0.050<br>0.050<br>0.050<br>0.050<br>0.050 |
| 5<br>6<br>7<br>8<br>9           | 6.54<br>7.01<br>7.51<br>8.04<br>8.61      | 5.53<br>6.00<br>6.50<br>7.03<br>7.60       | 4.52<br>4.99<br>5.49<br>6.02<br>6.58      | 3.51<br>3.98<br>4.48<br>5.01<br>5.57      | 2.51<br>2.97<br>3.47<br>4.00<br>4.56      | 1.50<br>1.96<br>2.46<br>2.98<br>3.54      | 0.49<br>0.95<br>1.45<br>1.97<br>2.53      | 0.43<br>0.96<br>1.52                      | 0.50                                      | =                                         |                                           | 0.050<br>0.050<br>0.050<br>0.050<br>0.050 |
| 10<br>11<br>12<br>13<br>14      | 9.21<br>9.85<br>10.52<br>11.24<br>11.99   | 8.20<br>8.83<br>9.50<br>10.22<br>10.97     | 7.18<br>7.81<br>8.49<br>9.20<br>9.95      | 6.17<br>6.80<br>7.47<br>8.18<br>8.93      | 5.15<br>5.78<br>6.45<br>7.16<br>7.91      | 4.14<br>4.77<br>5.44<br>6.14<br>6.90      | 3.12<br>3.75<br>4.42<br>5.13<br>5.88      | 2.11<br>2.73<br>3.40<br>4.11<br>4.86      | 1.09<br>1.72<br>2.38<br>3.09<br>3.84      | 0.08<br>0.70<br>1.37<br>2.07<br>2.82      | 0.35<br>1.05<br>1.80                      | 0.050<br>0.051<br>0.051<br>0.051          |
| 15<br>16<br>17<br>18<br>19      | 12.79<br>13.64<br>14.54<br>15.49<br>16.49 | 11.77<br>12.62<br>13.52<br>14.46<br>15.46  | 10.75<br>11.60<br>12.49<br>13.44<br>14.44 | 9.73<br>10.58<br>11.47<br>12.42<br>13.41  | 8.71<br>9.96<br>10.45<br>11.39<br>12.39   | 7.69<br>8.53<br>9.42<br>10.37<br>11.36    | 6.67<br>7.51<br>8.40<br>9.34<br>10.34     | 5.65<br>6.49<br>7.38<br>8.32<br>9.31      | 4.63<br>5.47<br>6.36<br>7.30<br>8.29      | 3.61<br>4.45<br>5.33<br>6.27<br>7.26      | 2.59<br>. 3.43<br>4.31<br>5.25<br>6.24    | 0.051<br>0.051<br>0.051<br>0.051<br>0.051 |
| 20<br>21<br>22<br>23<br>24      | 17.55<br>18.66<br>19.84<br>21.09<br>22.40 | 16.52<br>17.64<br>18.82<br>20.06<br>21.37  | 15.50<br>16.61<br>17.79<br>19.03<br>20.34 | 14.47<br>15.58<br>16.76<br>18.00<br>19.31 | 13.44<br>14.56<br>15.73<br>16.97<br>18.27 | 12.42<br>13.53<br>14.70<br>15.94<br>17.24 | 11.39<br>12.50<br>13.67<br>14.91<br>16.21 | 10.36<br>11.47<br>12.64<br>13.88<br>15.18 | 9.34<br>10.45<br>11.62<br>12.85<br>14.15  | 8.31<br>9.42<br>10.59<br>11.82<br>13.12   | 7.29<br>8.39<br>10.57<br>10.79<br>12.09   | 0.051<br>0.051<br>0.051<br>0.051          |
| 25<br>26<br>27<br>28<br>29      | 23.78<br>25.24<br>26.77<br>28.38<br>30.08 | 22.75<br>24.20<br>25.73<br>27.34<br>.29.04 | 21.71<br>23.17<br>24.70<br>26.31<br>28.00 | 20.68<br>22.14<br>23.66<br>25.27<br>26.97 | 19.65<br>21.10<br>22.63<br>24.24<br>25.93 | 18.62<br>20.07<br>21.60<br>23.20<br>24.89 | 17.59<br>19.04<br>20.56<br>22.17<br>23.86 | 16.56<br>18.00<br>19.53<br>21.13<br>22.82 | 15.52<br>16.97<br>18.49<br>20.10<br>21.78 | 14.49<br>15.94<br>17.46<br>19.06<br>20.75 | 13.46<br>14.90<br>16.42<br>18.02<br>19.71 | 0.052<br>0.052<br>0.052<br>0.052<br>0.052 |
| 30<br>31<br>32<br>33<br>34      | 31.86<br>33.74<br>35.70<br>37.78<br>39.95 | 30.82<br>32.70<br>34.66<br>36.73<br>38.90  | 29.78<br>31.66<br>33.62<br>35.69<br>37.86 | 28.75<br>30.62<br>32.58<br>34.65<br>36.82 | 27.71<br>29.58<br>31.54<br>33.61<br>35.78 | 26.67<br>28.54<br>30.50<br>32.57<br>34.73 | 25.63<br>27.50<br>29.46<br>31.53<br>33.69 | 24.60<br>26.46<br>28.42<br>30.49<br>32.65 | 23.56<br>25.42<br>27.38<br>29.44<br>31.61 | 22.52<br>24.38<br>26.34<br>28.40<br>30.57 | 21.48<br>23.34<br>25.30<br>27.36<br>29.52 | 0.052<br>0.052<br>0.052<br>0.052<br>0.052 |
| 35<br>36<br>37<br>38<br>39      | 42.23<br>44.62<br>47.13<br>49.76<br>52.51 | 41.18<br>43.57<br>46.08<br>48.71<br>51.46  | 40.14<br>42.53<br>45.04<br>47.66<br>50.41 | 39.10<br>41.48<br>43.99<br>46.61<br>49.37 | 38.05<br>40.44<br>42.94<br>45.57<br>48.32 | 37.01<br>39.40<br>41.90<br>44.52<br>47.27 | 35.97<br>38.35<br>40.85<br>43.47<br>46.22 | 34.92<br>37.31<br>39.81<br>42.43<br>45.17 | 33.88<br>36.26<br>38.76<br>41.38<br>44.12 | 32.83<br>35.22<br>37.71<br>40.33<br>43.08 | 31.79<br>34.17<br>36.67<br>39.29<br>42.03 | 0.052<br>0.052<br>0.052<br>0.052<br>0.052 |
| 40                              | 55.40                                     | 54.35                                      | 53.30                                     | 52.25                                     | 51.20                                     | 50.15                                     | 49.10                                     | 48.05                                     | 47.00                                     | 45.95                                     | 44.00                                     | 0.052                                     |

#### RELATIVE HUMIDITY.

Vertical argument is the observed vapor pressure which may be computed from the wet and drybulb readings through Table 188 or 189. The horizontal argument is the observed air temperature (dry-bulb reading). Based upon Table 43, p. 142, Smithsonian Meteorological Tables, 3d Revised Edition, 1907.

| 1                  |          |          |                |          |                 | _        |           |                     |                |          |          |                                  |          |                |                |                      |          | _              |                      |                |                |
|--------------------|----------|----------|----------------|----------|-----------------|----------|-----------|---------------------|----------------|----------|----------|----------------------------------|----------|----------------|----------------|----------------------|----------|----------------|----------------------|----------------|----------------|
| Vapor<br>Pressure. |          |          |                |          |                 |          | Air       | Ten                 | pera           | tures,   | dry b    | ulb, <sup>(</sup>                | Cen      | tigra          | de.            |                      |          |                |                      |                |                |
| mm.                | 0        | ° _      | -10            | -2°      | -3°             | -40      |           | 50 .                | <b>-6</b> °    | _7°      | —8°      | -9                               | -1       | .0° –          | -110           | -12°                 | -13      | -14            | <b>1</b> ° —         | 150 -          | -20°           |
| 0.25               | 6        | 5        | 6              | 6        | 7               | 8        | 8         | 3                   | 9              | 10       | II       | 12                               | 13       | I              | 4              | 15                   | 17       | 18             | 20                   | 0              | 32             |
| 0.50<br>0.75       | 11       |          | 8              | 13       | 14<br>21        | 15<br>23 | 1',<br>2' |                     | 18<br>27       | 20<br>30 | 21<br>32 | <sup>2</sup> 3                   | 38       | 4              | 8 -            | 30<br>46             | 34<br>50 | 37<br>55       | 6                    | 0              | 64<br>96       |
| 1.00               | 22       | 2        | :4             | 26       | 28              | 30       | 33        | 3                   | 36             | 40       | 42       | 47                               | 51       | 5              |                | 6r                   | 67       | 74             | 8                    | 0              |                |
| 1.25<br>1.50       | 27<br>33 | 3        | 6              | 32<br>39 | 35<br>42        | 38<br>46 | 42<br>50  | 2 .                 | 45<br>54       | 49<br>59 | 54<br>64 | 58<br>70                         | 64<br>76 | 7 8            | 0              | 76<br>92             | 84       | 92             | 10                   | 10             |                |
| 1.75               | 38       | 4        | .2             | 45       | 49              | 53       | 58        |                     | 63             | 69       | 75       | 82                               | 89       | 9              | 8              |                      |          |                |                      |                |                |
| 2.00               | 44<br>49 |          | .8             | 52<br>58 | 56<br>63        | 61       | 66<br>7.5 | 5                   | 72<br>81       | 79<br>89 | 86<br>96 | 93                               |          |                | m              |                      | 00       |                |                      | .20            | -80            |
| 2.50<br>2.75       | 55<br>60 | ) 6      |                | 65<br>71 | 70<br>77        | 76<br>84 | 83<br>91  | 3 !                 | 90             | 99       | _        | _                                |          |                | 3.5            | 75                   | 77<br>82 | 83<br>89       | 9                    |                | 98             |
| 3.00               | 66<br>71 |          |                | 78<br>84 | 91              | 92<br>99 | 10        | -                   | _              | _        | _        | _                                |          |                | 4.0            | 25                   | 88<br>93 | 95             | ,                    | -              | -              |
| 3.50               | 77       | 8        | 3              | 90       | 98              |          |           | _                   | _              |          | _        |                                  |          | 11             | 4.             | 50                   | 99       |                |                      |                |                |
| Vapor<br>Pressure. |          |          |                |          |                 |          | Air       | Ten                 | pera           | tures,   | dry b    | ulb,                             | O Cer    | ntigra         | ıde.           |                      |          |                |                      |                |                |
| mm.                | 00       | 10       | 20             | 3°       | 40              | 50       | 60        | 70                  | 80             | 90       | 10°      | 110                              | 120      | 13°            | 140            | 150                  | 160      | 17°            | 18°                  | 190            | 20°            |
| 0.5                | II       | 10       | 9              | 9        | 8               | 8        | 7         | 7                   | 6              | 6        | 5        | 5                                | 5        | 4              | 4 8            | 4 8                  | 4        | 3              | 3                    | 36             | 36             |
| 1.0<br>1.5         | 33       | 20<br>31 | 19<br>28       | 18<br>27 | 16<br>25        | 15<br>23 | 14<br>22  | 13<br>20            | 13             | 18       | 11       | 10                               | 10<br>14 | 9<br>13<br>18  | 13             | 12                   | 7<br>11  | 7<br>10        | 7<br>10              | 9              | 9              |
| 2.0<br>2.5         | 44 55    | 41<br>51 | 38<br>47       | 35<br>44 | 33 <sup>-</sup> | 31<br>38 | 29<br>36  | <sup>27</sup><br>33 | 25<br>31       | 23       | 22<br>27 | 20<br>26                         | 19<br>24 | 18             | 17<br>21       | 16<br>20             | 18       | 14             | 16                   | 12             | 12             |
| 3.0                | 66       | 61       | 57<br>66       | 53<br>62 | 49              | 46       | 43        | 40                  | 38             | 35       | 33       | 31                               | 29       | 27             | 25             | 24                   | 22       | 21             | 20                   | 18             |                |
| 3.5<br>4.0         | 77<br>88 | 71<br>81 | 76             | 71       | 58              | 54<br>61 | 50        | 47<br>54<br>60      | 44<br>50<br>56 | 4I<br>47 | 38       | 36                               | 34<br>38 | 31<br>36<br>40 | 29<br>34<br>38 | 28<br>32<br>36       | 26<br>30 | 24<br>28<br>31 | 23<br>26<br>29       | 21<br>25<br>28 | 20<br>23<br>26 |
| 4.5<br>5.0         | 99       | 92       | 8 <sub>5</sub> | 80<br>88 | 74<br>83        | 69<br>77 | 65<br>72  | 67                  | 63             | 53<br>58 | 49<br>55 | 46<br>51                         | 43<br>48 | 45             | 42             | 39                   | 33<br>37 | 35             | 33                   | 31             | 29             |
| 5.5<br>6.0         | -        |          | -              | 97       | 91              | 85<br>92 | 79<br>86  | 74<br>80            | 69<br>75       | 64<br>70 | 60<br>66 | 56<br>61                         | 53<br>58 | 49<br>54       | 46<br>51       | 43<br>47             | 41<br>44 | 38<br>42       | 36<br>39             | 34<br>37       | 32             |
| 6.5<br>7.0         | -        | -        | E              | -        | 99              | 100      | 93        | 8 <sub>7</sub>      | 8i<br>85       | 76<br>82 | 71       | 67<br>72                         | 62<br>67 | 58<br>63       | 55<br>59       | 51                   | 48<br>52 | 45             | 42<br>46             | 40             |                |
| 7.5                | -        | -        | -              | -        | -               | -        | -         | 100                 | 94             | 88       | 77<br>82 | 77                               | 72       | 67             | 63             | 59                   | 55       | 52             | 49                   | 46             |                |
| 8.0<br>8.5         | -        | _        | ıΞ             | -        | -               | -        | _         | _                   | 100            | 94<br>99 | 88<br>93 | 8 <sub>2</sub><br>8 <sub>7</sub> | 77<br>82 | 72<br>76       | 67<br>72       | 63<br>67             | 59<br>63 | 56<br>59       | 5 <sup>2</sup><br>55 | 49<br>52       | 46             |
| 9.0<br>9.5         | -        | _        | -              | -        | _               | _        | _         | _                   | _              |          | 98       | 9 <sup>2</sup><br>9 <sup>7</sup> | 86<br>91 | 81 85          | 76<br>80       | 7I<br>75             | 67<br>70 | 6 <sub>2</sub> | 59<br>62             | 55<br>58       | 52<br>55       |
| 10.0               | -        | -        | -              | -        | -               | -        | -         | -                   | -              | -        | -        | -                                | 96       | 90             | 84             | 79                   | 74       | 69             | 65                   | 61             | 57             |
| 11.0<br>12.0       | _        | -        | _              | _        | _               | -        | -         | _                   | -              | _        | _        | _                                | _        | 94             | 93             | 8 <sub>7</sub><br>94 | 81       | 76<br>83       | 72<br>78             | 6 <sub>7</sub> |                |
| 13.0<br>14.0       | _        | -        | -              | -        | -               | -        | -         | _                   | _              | -        | _        | _                                | _        | -              | -              | -                    | 96       | 90<br>97       | 8 <sub>5</sub>       | 80<br>86       | 80             |
| 15.0               | -        | -        | -              | -        | -               | -        | -         | -                   | -              | -        | -        | -                                | -        | -              | -              | -                    | -        | -              | 97                   | 92             | 86             |
| 16.0<br>17.0       | -        | -        | -              |          | -               | -        | _         | _                   | -              | -        | _        | -                                | _        | _              | _              | _                    | _        |                | _                    | 98             | 92<br>98       |
|                    | 1        |          |                |          |                 |          |           |                     |                |          |          |                                  |          |                | -              |                      |          |                |                      |                |                |

| Vanna                      |                            |                            |                            |                            |                            |                            |                            | ==                         | pera                       | tures,                     | dry b                                  | ulb,                                   | ° Cei                      | tigra                      | de.                        | -                          |                            |                            |                            |                            |                            |
|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------------------|----------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Vapor<br>Pressure.<br>mm.  | 200                        | 210                        | 220                        | 230                        | 240                        | 250                        |                            | 270                        |                            | 290                        |                                        | 31°                                    |                            |                            |                            | 35°                        | 36°                        | 37°                        | 382                        | 39°                        | 400                        |
| 1<br>2<br>3<br>4           | 6<br>12<br>17<br>23        | 5<br>11<br>16<br>22        | 5<br>10<br>15<br>20        | 5<br>10<br>14<br>19        | 5<br>9<br>14<br>18         | 4<br>8<br>13<br>17         | 4<br>8<br>12<br>16         | 4<br>8<br>11<br>15         | 4<br>7<br>11<br>14         | 3<br>7<br>10<br>13         | 3<br>6<br>10<br>13                     | 3<br>6<br>9<br>12                      | 3<br>6<br>9                | 3<br>5<br>8<br>11          | 3<br>5<br>8<br>10          | 3<br>5<br>7<br>10          | 2<br>5<br>7<br>9           | 2<br>4<br>6<br>9           | 2<br>4<br>6<br>8           | 2<br>4<br>6<br>8           | 2<br>4<br>5<br>7           |
| 5<br>6<br>7<br>8<br>9      | 29<br>34<br>40<br>46<br>52 | 27<br>32<br>38<br>43<br>49 | 25<br>31<br>36<br>41<br>46 | 24<br>29<br>34<br>38<br>43 | 23<br>27<br>32<br>36<br>41 | 21<br>26<br>30<br>34<br>38 | 20<br>24<br>28<br>32<br>36 | 19<br>23<br>26<br>30<br>34 | 18<br>21<br>25<br>29<br>32 | 17<br>20<br>24<br>27<br>30 | 16<br>19<br>22<br>25<br>29             | 15<br>18<br>21<br>24<br>27             | 14<br>17<br>20<br>23<br>25 | 13<br>16<br>19<br>21<br>24 | 13<br>15<br>18<br>20<br>23 | 12<br>14<br>17<br>19<br>22 | 11<br>14<br>16<br>18<br>20 | 11<br>13<br>15<br>17       | 10<br>12<br>14<br>16<br>18 | 10<br>12<br>13<br>15       | 9<br>11<br>13<br>15<br>16  |
| 10<br>11<br>12<br>13<br>14 | 57<br>63<br>69<br>75<br>80 | 54<br>60<br>65<br>70<br>76 | 51<br>56<br>61<br>66<br>71 | 48<br>53<br>58<br>62<br>67 | 45<br>50<br>54<br>59<br>63 | 43<br>47<br>51<br>55<br>60 | 40<br>44<br>48<br>52<br>56 | 38<br>42<br>45<br>49<br>53 | 36<br>39<br>43<br>46<br>50 | 34<br>37<br>40<br>44<br>47 | 3 <sup>2</sup><br>35<br>38<br>41<br>44 | 30<br>33<br>36<br>39<br>42             | 28<br>31<br>34<br>37<br>40 | 27<br>29<br>32<br>35<br>37 | 25<br>28<br>30<br>33<br>35 | 24<br>26<br>29<br>31<br>33 | 23<br>25<br>27<br>29<br>32 | 21<br>24<br>26<br>28<br>30 | 20<br>22<br>24<br>26<br>28 | 19<br>21<br>23<br>25<br>27 | 18<br>20<br>22<br>24<br>26 |
| 15<br>16<br>17<br>18<br>19 | 86<br>92<br>98<br>-        | 81<br>87<br>92<br>97       | 76<br>82<br>87<br>92<br>97 | 72<br>77<br>81<br>86<br>91 | 68<br>72<br>77<br>81<br>86 | 64<br>68<br>72<br>77<br>81 | 60<br>64<br>68<br>72<br>76 | 57<br>60<br>64<br>68<br>72 | 53<br>57<br>61<br>64<br>68 | 50<br>54<br>57<br>60<br>64 | 48<br>51<br>54<br>57<br>60             | 45<br>48<br>51<br>54<br>57             | 42<br>45<br>48<br>51<br>54 | 40<br>43<br>45<br>48<br>51 | 38<br>41<br>43<br>46<br>48 | 36<br>38<br>41<br>43<br>45 | 34<br>36<br>38<br>41<br>43 | 32<br>34<br>36<br>39<br>41 | 30<br>32<br>34<br>37<br>39 | 29<br>31<br>33<br>35<br>36 | 27<br>29<br>31<br>33<br>35 |
| 20<br>21<br>22<br>23<br>24 |                            |                            |                            | 96<br>-<br>-<br>-          | 90<br>95<br>100<br>-       | 85<br>89<br>94<br>98       | 80<br>84<br>88<br>92<br>96 | 76<br>79<br>83<br>87<br>91 | 71<br>75<br>78<br>82<br>85 | 67<br>71<br>74<br>77<br>81 | 63<br>67<br>70<br>73<br>76             | 60<br>63<br>66<br>69<br>7 <sup>2</sup> | 57<br>59<br>62<br>65<br>68 | 53<br>56<br>59<br>62<br>64 | 51<br>53<br>56<br>58<br>61 | 48<br>50<br>53<br>55<br>57 | 45<br>48<br>50<br>52<br>54 | 43<br>45<br>47<br>49<br>51 | 41<br>43<br>45<br>47<br>49 | 38<br>40<br>42<br>44<br>46 | 36<br>38<br>40<br>42<br>44 |
| 25<br>26<br>27<br>28<br>29 |                            |                            |                            |                            |                            |                            | 100                        | 94<br>98<br>-<br>-         | 89<br>93<br>96<br>100      | 84<br>87<br>91<br>94<br>97 | 79<br>83<br>86<br>89<br>92             | 75<br>78<br>81<br>84<br>87             | 71<br>74<br>76<br>79<br>82 | 67<br>70<br>72<br>75<br>78 | 63<br>66<br>68<br>71<br>73 | 60<br>62<br>65<br>67<br>69 | 56<br>59<br>61<br>63<br>65 | 54<br>56<br>58<br>60<br>62 | 51<br>53<br>55<br>57<br>59 | 48<br>50<br>52<br>54<br>56 | 46<br>47<br>49<br>51<br>53 |
| 30<br>31<br>32<br>33<br>34 |                            |                            |                            |                            |                            |                            |                            |                            |                            |                            | 95<br>98<br>-<br>-<br>-                | 90<br>93<br>96<br>99                   | 85<br>88<br>91<br>93<br>96 | 80<br>83<br>86<br>88<br>91 | 76<br>78<br>81<br>84<br>86 | 72<br>74<br>77<br>79<br>81 | 68<br>70<br>72<br>75<br>77 | 64<br>66<br>69<br>71<br>73 | 61<br>63<br>65<br>67<br>69 | 58<br>60<br>62<br>63<br>65 | 55<br>56<br>58<br>60<br>62 |
| 35<br>36<br>37<br>38<br>39 |                            |                            |                            |                            |                            |                            |                            |                            |                            |                            |                                        |                                        | 99<br>-<br>-<br>-          | 94<br>96<br>99<br>-        | 89<br>91<br>94<br>96<br>99 | 84<br>86<br>89<br>91<br>93 | 79<br>81<br>84<br>86<br>88 | 75<br>77<br>79<br>81<br>83 | 71<br>73<br>75<br>77<br>79 | 67<br>69<br>71<br>73<br>75 | 64<br>66<br>67<br>69<br>71 |
| 40<br>41<br>42<br>43<br>44 | 11111                      |                            |                            | 11113                      |                            |                            | 11111                      |                            |                            | -                          |                                        |                                        |                            |                            | 11111                      | 96<br>98<br>100<br>-       | 90<br>93<br>95<br>97<br>99 | 86<br>88<br>90<br>92<br>94 | 81<br>83<br>85<br>87<br>89 | 77<br>79<br>81<br>83<br>84 | 73<br>75<br>77<br>78<br>80 |
| 45<br>46<br>47<br>48<br>49 | 11111                      |                            |                            | 11111                      |                            |                            |                            | 11111                      |                            |                            |                                        |                                        |                            |                            |                            | 11111                      |                            | 96<br>99<br>-<br>-         | 91<br>93<br>95<br>97<br>99 | 86<br>88<br>90<br>92<br>94 | 82<br>84<br>86<br>87<br>89 |
| 50<br>51<br>52<br>53<br>54 |                            |                            |                            | 11111                      |                            |                            |                            | 11111                      |                            |                            |                                        |                                        | 1111                       |                            |                            |                            | 11111                      | 11111                      |                            | 96<br>98<br>100<br>-       | 91<br>93<br>95<br>97<br>98 |
| 55                         | -                          | -                          | -                          | -                          | -                          | -                          | -                          | -                          | -                          | -                          | _                                      | -                                      |                            | -                          | -                          | -                          | -                          | -                          | -                          | -                          | 100                        |

# TABLE 190 (concluded), 191. TABLE 190 (concluded).—Relative Humidity. (Data from 20° to 60° C. based upon Table 185).

| -                  | _   | _        |          |          |          |          | _        |          | _        |          |          |             |          | _        |          |          |                      | _        |          |          |                  |
|--------------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------|----------|----------|----------|----------------------|----------|----------|----------|------------------|
| Vapor<br>Pressure. |     |          |          |          |          |          | Air      | Ten      | npera    | tures    | , dry    | bulb,       | ° Ce     | entigr   | ade.     |          |                      |          |          |          |                  |
| mm.                | 400 | 410      | 420      | 430      | 440      | 45°      | 46°      | 47°      | 480      | 490      | 50°      | <b>51</b> ° | 520      | 53°      | 540      | 550      | 560                  | 570      | 580      | 590      | 600              |
| 5                  |     | 0        | 8        | 8        | 7        | -        | ~        | 6        | 6        | 6        | _        | _           | -        | -        | 4        |          |                      |          |          |          |                  |
| 10                 | 18  | 9        | 16       | 15       | 15       | 7        | 7        | 13       | 12       | II       | 5        | 5           | 5        | 5        | 4        | 8        | . 4                  | 8        | 7        | 4        | 3                |
| 15<br>20           | 36  | 26<br>34 | 24<br>33 | 23<br>31 | 22       | 2I<br>28 | 20<br>26 | 19<br>25 | 18       | 17<br>23 | 16       | 15<br>21    | 15<br>20 | 14       | 13       | 13       | 12                   | 12       | 11       | 10       | 10               |
| 25                 | 45  | 43       | 41       | 39       | 37       | 35       | 33       | 31       | 30       | 28       | 27       | 26          | 24       | 23       | 22       | 21       | 20                   | 19       | 18       | 18       | 13               |
| 30                 | 54  | 51       | 49       | 46       | 44       | 42       | 40       | 38       | 36       | 34       | 32       | 31          | 29       | 28       | 27       | 25       | 24                   | 23       | 22       | 21       | 20               |
| 35<br>40           | 63  | 60<br>68 | 57<br>65 | 54<br>62 | 51<br>59 | 49<br>56 | 46       | 44<br>50 | 42<br>48 | 40       | 38       | 36          | 34       | 33       | 31       | 30       | 28                   | 27       | 26       | 25<br>28 | 23               |
| 45                 | 81  | 77       | 73       | 69       | 66       | 63       | 53<br>59 | 57       | 54       | 45<br>51 | 43<br>49 | 41<br>46    | 39<br>44 | 37<br>42 | 36<br>40 | 34<br>38 | 3 <sup>2</sup><br>36 | 31<br>35 | 29<br>33 | 32       | <sup>27</sup> 30 |
| 50                 | 90  | 86       | 81       | 77       | 73       | 70       | 66       | 63       | 60       | 57       | 54       | 51          | 49       | 47       | 44       | 42       | 40                   | 38       | 37       | 35       | 33               |
| 55<br>60           | 99  | 94       | 89<br>98 | 85       | 81<br>88 | 76<br>83 | 73       | 69       | 66       | 62       | 59<br>65 | 57<br>62    | 54<br>60 | 51       | 49       | 46       | 44                   | 42       | 40       | 39       | 37               |
| 65                 | _   | _        | -        | 93       | 95       | 90       | 79<br>86 | 75<br>82 | 72<br>78 | 68<br>74 | 70       | 67          | 64       | 56<br>61 | 53<br>58 | 51<br>55 | 48<br>52             | 46<br>50 | 44<br>48 | 42<br>46 | 40               |
| 70<br>75           | _   | _        | _        | _        | _        | 97       | 92<br>99 | 88<br>94 | 84       | 80<br>85 | 76<br>81 | 72<br>77    | 68<br>74 | 65       | 62       | 59<br>64 | 56                   | 54<br>58 | 51       | 49<br>53 | 47 50            |
|                    |     |          |          |          |          |          | 22       | 24       | Ĺ.       |          |          |             |          |          |          |          |                      |          |          |          |                  |
| 80<br>85           | _   | _        | _        | _        | _        | _        | _        | 100      | 96       | 91<br>97 | 86<br>92 | 82<br>87    | 78<br>84 | 75<br>79 | 71<br>75 | 68<br>72 | 64                   | 62       | 59<br>62 | 56<br>60 | 54               |
| 90<br>95           | _   | -        | ım.      | 570      | 580      | 59°      | 60°      | -        | -        | -        | 97       | 93<br>98    | 88       | 84       | 80<br>84 | 76<br>80 | 73                   | 69       | 66       | 63       | 60               |
| 100                | _   |          | 25       | 96       | 92       | 88       | 84       | _        | _        | _        | _        | 90          | 94<br>98 | 93       | 89       | .85      | 77<br>81             | 73<br>77 | 70<br>73 | 67<br>70 | 64 67            |
| 105                | _   | 1        | 30       | 100      | 95       | 91       | 87       | _        | _        | _        |          | _           | _        | 98       | 93       | 89       | 85                   | 81       | 77       | 74       | 70               |
| 110                | -   |          | 35<br>40 | _        | 99       | 95<br>98 | 90       | -        | -        | -        | -        | -           | -        | -        | 98       | 93       | 89                   | 85<br>88 | 81<br>84 | 77<br>81 | 74               |
| 120                | _   | 1        | 45       | _        | -        | 98       | 94<br>97 | _        | _        | _        | _        | _           | _        | _        | _        | 97       | 93<br>97             | 92       | 88       | 84       | 77 80            |
| 125                | -   | 1        | 50       | -        | -        | -        | 100      | -        | -        | -        | -        | -           | -        | -        | -        | -        | -                    | 96       | 92       | 88       | 84               |
| <u> </u>           |     |          |          |          |          |          |          |          |          |          |          |             |          |          |          |          |                      |          |          | _        |                  |

#### TABLE 191. - Relative Humidity.

This table gives the relative humidity direct from the difference between the reading of the dry (t  $^{\circ}$  C.) and the wet (t<sub>1</sub>  $^{\circ}$  C.) thermometer. It is computed for a barometer reading of 96 cm. The wet thermometer should be ventilated about 3 meters per second. From manuscript tables computed at the U.S. Weather Bureau.

| tO             |      |                |                      |                                  |                                  | Depre    | ssion    | of wet   | -bulb 1  | hermo    | meter,   | t <sup>0</sup> -t <sub>1</sub> <sup>0</sup> . |          |          |          |          |          |
|----------------|------|----------------|----------------------|----------------------------------|----------------------------------|----------|----------|----------|----------|----------|----------|-----------------------------------------------|----------|----------|----------|----------|----------|
|                | 0.20 | 0.40           | 0.60                 | 0.80                             | 1.00                             | 1.2°     | 1.40     | 1.60     | 1.80     | 2.00     | 2.50     | 3.00                                          | 3.50     | 4.00     | 4.50     | 5.00     | 5.5      |
| -15            | 90   | 91             | 72                   | 62                               | 53                               | 44       | 35       | 25       | 16       | 7        | -        | _                                             | _        | _        | _        | -        | -        |
| $^{-12}$       | 92   | 8 <sub>5</sub> | 77<br>81             | 69                               | 62                               | 54<br>62 | 47<br>56 | 39<br>50 | 32<br>44 | 25<br>39 | 7<br>23  | 9                                             | _        | _        | _        | _        | _        |
| -6             | 94   | 89             | 85                   | 75<br>80                         | 70<br>74                         | 69       | 64       | 59       | 54       | 49       | 36       | 25                                            | 13       | 2        | _        | _        | _        |
| -3             | 96   | 91             | 87                   | 82                               | 78<br>81                         | 74       | 69       | 66       | 61       | 57       | 46       | 36                                            | 26       | 17       | 7        | -        | _        |
| +3             | 96   | 92             | 89                   | 85                               |                                  | 78<br>81 | 74       | 71       | 67       | 64       | 55<br>62 | 46                                            | 38<br>46 | 29       | 21       | 13       | 18       |
| +3             | 97   | 94             | 91                   | 87                               | 84                               | 91       | 78       | 75       | 72       | 69       | 02       | 54                                            | 40       | 40       | 32       | 25       | 10       |
|                | 0.5° | 1.0°           | 1.50                 | 2.00                             | 2.50                             | 3.00     | 3.50     | 4.00     | 4.50     | 5.00     | 6.00     | 7.00                                          | 8.00     | 9.00     | 10.0     | 11.0     | 12.9     |
| +3             | 92   | 84             | 76                   | 69                               | 62                               | 54       | 46       | 40       | 32       | 25       | 12       |                                               |          | _        | 200      | _        |          |
| +6             | 94   | 87             | 80                   | 73                               | 66                               | 60       | 54       | 47       | 41       | 35       | 23       | 11                                            | ~        | -        | _        | -        | -        |
| +9             | 94   | 88             | 82                   | 76                               | 70                               | 65       | 59       | 53       | 48       | 42       | 32       | 22                                            | 12       | 3        | -        | -        | -        |
| +12            | 94   | 89             | 84                   | 78                               | 73                               | 68       | 63       | 58       | 53       | 48       | 38       | 30                                            | 21       | 12       | 4        | _        | -        |
| +15            | 95   | 90             | 85                   | 80                               | 76                               | 71       | 66       | 62       | 58       | 53       | 44       | 36                                            | 28       | 20       | 13       | 4        | -        |
| +18            | 95   | 90             | 86                   | 82                               | 78                               | 73       | 69       | 65       | 61       | 57       | 49       | 42                                            | 35       | 27       | 20       | 13       | 6        |
| $^{+21}_{+24}$ | 96   | 91             | 8 <sub>7</sub><br>88 | 8 <sub>3</sub><br>8 <sub>5</sub> | 79<br>81                         | 75<br>77 | 71<br>74 | 67       | 64<br>66 | 60<br>63 | 53<br>56 | 46                                            | 39<br>43 | 32<br>37 | 26<br>31 | 19<br>26 | 13       |
| 721            | 90   | 92             | 00                   | 05                               | 01                               | //       | 74       | 70       | 00       | 03       | 30       | 49                                            | 43       | 3/       | 3 1      | 20       | 21       |
| +27            | 96   | 93             | 90                   | 86                               | 82                               | 79       | 76       | 72       | 68       | 65       | 59       | 53                                            | 47       | 41       | 36       | 31       | 26       |
| $+30 \\ +33$   | 96   | 93             | 90                   | 86<br>86                         | 8 <sub>2</sub><br>8 <sub>3</sub> | 79<br>80 | 76       | 73       | 70<br>71 | 67<br>68 | 61<br>63 | 55                                            | 50       | 44       | 39       | 35       | 30       |
| +36            | 90   | 93<br>93       | 90                   | 87                               | 84                               | 81       | 77<br>78 | 74<br>75 | 72       | 70       | 64       | 57<br>57                                      | 52<br>54 | 47<br>50 | 42<br>45 | 37<br>41 | 33<br>36 |
| +39            | 97   | 94             | 91                   | 88                               | 85                               | 82       | 79       | 76       | 74       | 71       | 66       | 61                                            | 56       | 52       | 47       | 43       | 39       |

# CORRECTION FOR TEMPERATURE OF EMERGENT MERCURIAL THERMOMETER THREAD.

When the temperature of a portion of a thermometer stem with its mercury thread differs much from that of the bulb, a correction is necessary to the observed temperature unless the instrument has been calibrated for the experimental conditions. This stem correction is proportional to  $n\beta(T-t)$ , where n is the number of degrees in the exposed stem,  $\beta$  the apparent coefficient of expansion of mercury in the glass, T the measured temperature, and t the mean temperature of the exposed stem. For temperatures up to 100° C, the value of  $\beta$  is for Jena 16<sup>111</sup> or Greiner and Friedrich resistance glass, 0.000159, for Jena 59<sup>111</sup>, 0.000164, and when of unknown composition it is best to use a value of about 0.000155. The formula requires a knowledge of the temperature of the emergent stem. This may be approximated in one of three ways: (1) by a "fadenthermometer" (see Buckingham, Bulletin Bureau of Standards, 8, p. 239, 1912); (2) by exploring the temperature distribution of the stem and calculating its mean temperature; and (3) by suspending along the side of, or attaching to the stem, a single thermometer. Table 192 is taken from the Smithsonian Meteorological Tables, Tables 193–195 from Rimbach, Z. f. Instrumentenkunde, 10, p. 153, 1890, and apply to thermometers of Jena or resistance glass.

TABLE 192. — Stem Correction for Centigrade Thermometers. Values of 0.000155n(T-t).

|                                                       |                                                                      |                                                                      |                                                                              | (T-                                                                          | -t).                                                                 |                                                                      |                                                                              |                                                                      |
|-------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 75                                                    | 10°                                                                  | 20°                                                                  | 30°                                                                          | 40°                                                                          | 50°                                                                  | 60°                                                                  | 70°                                                                          | 8o°                                                                  |
| 10° C<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90 | 0.02<br>0.03<br>0.05<br>0.06<br>0.08<br>0.09<br>0.11<br>0.12<br>0.14 | 0.03<br>0.06<br>0.09<br>0.12<br>0.16<br>0.19<br>0.22<br>0.25<br>0.28 | 0.05<br>0.09<br>0.14<br>0.19<br>0.23<br>0.28<br>0.33<br>0.37<br>0.42<br>0.46 | 0.06<br>0.12<br>0.19<br>0.25<br>0.31<br>0.37<br>0.43<br>0.50<br>0.56<br>0.62 | 0.08<br>0.16<br>0.23<br>0.31<br>0.39<br>0.46<br>0.54<br>0.62<br>0.70 | 0.09<br>0.19<br>0.28<br>0.37<br>0.46<br>0.56<br>0.65<br>0.74<br>0.84 | 0.11<br>0.22<br>0.33<br>0.43<br>0.54<br>0.65<br>0.76<br>0.87<br>0.98<br>1.08 | 0.12<br>0.25<br>0.37<br>0.50<br>0.62<br>0.74<br>0.87<br>0.99<br>1.12 |

TABLE 193. - Stem Correction for Thermometer of Jena Glass (0° to 360° C).

Degree length 0.9 to 1.1 mm; t = the observed temperature; t' = that of the surrounding air 1 dm. away; n = the length of the exposed thread.

|                                                                                                     |                                                                              |                                                                              | Correc                                                                       | ction to be                                                                          | added to                                                                                     | the readin                                                                           | g t.                                                                                                         |                                                                                                              |                                                                                                                              |                                                                                                                              |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                     |                                                                              |                                                                              |                                                                              |                                                                                      | t -                                                                                          | · t'                                                                                 |                                                                                                              |                                                                                                              |                                                                                                                              |                                                                                                                              |
| n                                                                                                   | 70°                                                                          | 80°                                                                          | 90°                                                                          | 100°                                                                                 | 120°                                                                                         | 140°                                                                                 | 160°                                                                                                         | 180°                                                                                                         | 200°                                                                                                                         | 220 °                                                                                                                        |
| 10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>120<br>140<br>160<br>180<br>200<br>220 | 0.01<br>0.08<br>0.25<br>0.30<br>0.41<br>0.52<br>0.63<br>0.75<br>0.87<br>0.98 | 0.01<br>0.12<br>0.28<br>0.35<br>0.46<br>0.60<br>0.74<br>0.87<br>0.99<br>1.12 | 0.03<br>0.14<br>0.32<br>0.41<br>0.52<br>0.68<br>0.85<br>1.01<br>1.13<br>1.29 | 0.04<br>0.19<br>0.36<br>0.48<br>0.59<br>0.79<br>0.98<br>1.15<br>1.28<br>1.47<br>1.88 | 0.07<br>0.25<br>0.42<br>0.60<br>0.79<br>0.99<br>1.20<br>1.38<br>1.62<br>1.82<br>2.28<br>2.75 | 0.10<br>0.28<br>0.48<br>0.67<br>0.89<br>1.11<br>1.32<br>2.03<br>2.49<br>2.97<br>3.35 | 0.13<br>0.32<br>0.54<br>0.77<br>0.98<br>1.23<br>1.45<br>1.70<br>1.94<br>2.20<br>2.68<br>3.22<br>3.80<br>4.37 | 0.17<br>0.40<br>0.66<br>0.92<br>1.16<br>1.46<br>1.70<br>1.98<br>2.25<br>3.13<br>3.75<br>4.35<br>4.99<br>5.68 | 0.19<br>0.49<br>0.78<br>1.08<br>1.38<br>1.70<br>1.99<br>2.29<br>2.60<br>2.92<br>3.59<br>4.24<br>4.92<br>5.63<br>6.34<br>7.05 | 0.21<br>0.54<br>0.87<br>1.20<br>1.53<br>1.87<br>2.21<br>2.54<br>2.89<br>3.24<br>3.96<br>4.69<br>5.45<br>6.22<br>6.98<br>7.82 |

# CORRECTION FOR TEMPERATURE OF MERCURY IN THERMOMETER STEM (continued).

#### TABLE 194. - Stem Correction for Thermometer of Jena Glass (0°-360° C).

Degree length 1 to 1.6 mm.; t = the observed temperature; t' = that of the surrounding air one dm. away; n = the length of the exposed thread.

| 27 0.33 0.38 <b>10°</b><br>53 0.61 0.67 20<br>78 0.88 0.97 30<br>04 1.16 1.28 40 | 0.27<br>0.53<br>0.78<br>1.04 | 0.21<br>0.46<br>0.70 | 0.17<br>0.38 | 120° | 100° | 90°  | 80°  | 70°  | n        |
|----------------------------------------------------------------------------------|------------------------------|----------------------|--------------|------|------|------|------|------|----------|
| 200° 220° 220° 227 0.33 0.38 10° 25 0.61 0.67 20 0.88 0.97 30 04 1.16 1.28 40    | 0.27<br>0.53<br>0.78         | 0.21                 | o.17<br>o.38 |      | 100° | 90°  | 80°  | 70°  | n        |
| 53                                                                               | 0.53                         | 0.46                 | 0.38         | 0.11 |      |      |      |      |          |
| 78 0.88 0.97 30<br>04 1.16 1.28 40                                               | 0.78                         |                      |              |      | 0.07 | 0.05 | 0.03 | 0.02 | 10°      |
| 04 1.16 1.28 40                                                                  |                              | 0.70                 |              | 0.29 | 0.22 | 0.18 | 0.15 | 0.13 | 20       |
|                                                                                  |                              | 0.94                 | 0.59         | 0.48 | 0.39 | 0.33 | 0.28 | 0.24 | 30<br>40 |
| 21 1.44 1.50 50                                                                  |                              | 0.94                 | 0.02         | 0.00 | 0.30 | 0.40 | 0.41 | 0.33 | 40       |
| 3                                                                                | 1.31                         | 1.17                 | 1.03         | 0.88 | 0.72 | 0.62 | 0.53 | 0.47 | 50       |
|                                                                                  | 1.58                         | 1.42                 | 1.25         | 1.09 | 0.89 | 0.77 | 0.66 | 0.57 | 60       |
|                                                                                  | 2.15                         | 1.67                 | I.47<br>I.71 | 1.30 | 1.06 | 0.92 | 0.79 | 0.69 | 70<br>80 |
| 15 2.33 2.55 80                                                                  | 2.15                         | 1.94                 | 1./1         | 1.52 | 1.21 | 1.05 | 0.91 | 0.00 | 00       |
| 42 2.64 2.89 90                                                                  | 2.42                         | 2.20                 | 1.96         | 1.73 | 1.38 | 1.19 | 1.04 | 0.91 | 90       |
|                                                                                  | 2.70                         | 2.45                 | 2.18         | 1.97 | 1.56 | 1.35 | 1.18 | 1.02 | 100      |
|                                                                                  | 2.98                         | 2.70                 | 2.43         | 2.19 | 1.78 | -    | _    | -    | 110      |
| 26 3.58 3.92 120                                                                 | 3.26                         | 2.95                 | 2.69         | 2.43 | 1.98 | -    | _    | _    | 120      |
| 56 3.89 4.28 130                                                                 | 3.56                         | 3.20                 | 2.94         | 2.68 | _    | 2    | _    | -    | 130      |
|                                                                                  | 3.86                         | 3.47                 | 3.22         | 2.92 | -    | -    | -    | -    | 140      |
|                                                                                  | 4.15                         | 3.74                 | -            | -    | -    | -    | _    | -    | 150      |
| 46   4.90   5.39   160                                                           | 4.46                         | 4.00                 | -            | -    | -    | -    | _    | _    | 160      |
| 76 5.24 5.77 170                                                                 | 4.76                         | 4.27                 | _            | _    |      | _    | _    | _    | 170      |
| 1- 3-4 311                                                                       | 5.07                         | 4.54                 | -            | _    | _    |      |      |      | 180      |
| 38   5.95   6.54   190                                                           | 5.38                         | -                    | -            | -    | -    | -    | -    | -    | 190      |
| 70 6.30 6.94 200                                                                 | 5.70                         | -                    |              | -    | -    | -    | -    | -    | 200      |
| - 6.68 7.35 <b>210</b>                                                           | _                            | _                    | _            | _    | _    |      |      | _    | 210      |
| - 7.04 7.75 220                                                                  | _                            | _                    | _            | _    | _    | _    | _    | _    | 220      |

<sup>\*</sup> See Hovestadt's "Jena Glass" (translated by J. D. and A. Everett) for data on changes of thermometer zeros.

TABLE 195. — Stem Correction for a so-called Normal Thermometer of Jena Glass (0°-100° 0).

Divided into tenth degrees; degree length about 4 mm.

|          |      |        | Co          | RRECTIO     | N TO BE | ADDED 7 | го тнв 1 | READING | t.   |      |      |      |
|----------|------|--------|-------------|-------------|---------|---------|----------|---------|------|------|------|------|
|          |      | t-t' ° |             |             |         |         |          |         |      |      |      |      |
| n        | 30°  | 35°    | <b>40</b> ° | <b>45</b> ° | 50°     | 55°     | 60°      | 65°     | 70°  | 75°  | 80°  | 85°  |
| 10       | 0.04 | 0.04   | 0.05        | 0.05        | 0.05    | 0.06    | 0.06     | 0.07    | 0.08 | 0.09 | 0.10 | 0.10 |
| 20       | 0.12 | 0.12   | 0.13        | 0.14        | 0.15    | 0.16    | 0.17     | 0.18    | 0.19 | 0.20 | 0.22 | 0.23 |
| 30       | 0.21 | 0.22   | 0.23        | 0.24        | 0.25    | 0.25    | 0.27     | 0.29    | 0.31 | 0.33 | 0.35 | 0.37 |
| 40       | 0.26 | 0.29   | 0.31        | 0.33        | 0.35    | 0.37    | 0.48     | 0.50    | 0.43 | 0.57 | 0.61 | 0.65 |
| 50       | 0.45 | 0.48   | 0.51        | 0.53        | 0.55    | 0.57    | 0.60     | 0.63    | 0.66 | 0.69 | 0.73 | 0.78 |
| 70<br>80 | -    | -      | _           | - 55        | - 33    | 0.66    | 0.69     | 0.71    | 0.75 | 0.81 | 0.87 | 0.92 |
| 80       | _    | -      | -           | -           | -       | -       | 0.76     | 0.81    | 0.87 | 0.93 | 1.00 | 1.06 |
| 90       | -    |        |             |             |         |         |          |         |      |      |      |      |
| 100      |      |        | -           | _           |         | _       | _        | _       | 1.10 | 1.18 | 1.26 | 1.34 |
|          | 1    |        | 1           |             |         |         |          |         |      |      |      |      |

#### THERMOMETERS.

#### TABLE 196. - Gas and Mercury Thermometers.

If  $t_{\rm H}$ ,  $t_{\rm N}$ ,  $t_{\rm CO2}$ ,  $t_{\rm 16}$ ,  $t_{\rm 59}$ ,  $t_{\rm 7}$ , are temperatures measured with the hydrogen, nitrogen, carbonic acid, 16<sup>111</sup>, 59<sup>111</sup>, and "verre dur" (Tonnelot), respectively, then

$$t_{\rm H} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[ -0.61859 + 0.0047351.t - 0.000011577.t^2 \right] *$$

$$t_{\rm N} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[ -0.55541 + 0.0048240.t - 0.000024807.t^2 \right] *$$

$$t_{002} - t_{\rm T} = \frac{(100 - t)t}{100^2} \left[ -0.33386 + 0.0039910.t - 0.000016678.t^2 \right] *$$

$$t_{\rm H} - t_{16} = \frac{(100 - t)t}{100^2} \left[ -0.67039 + 0.0047351.t - 0.000011577.t^2 \right] †$$

$$t_{\rm H} - t_{59} = \frac{(100 - t)t}{100^2} \left[ -0.31089 + 0.0047351.t - 0.000011577.t^2 \right] †$$

TABLE 197. tH - t16 (Hydrogen - 16111).

|                                                                 | 00                               | 10                              | 20                              | 3°                              | 4°                              | 5°                              | 60                              | 70                              | 80                           | 90                              |
|-----------------------------------------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------|---------------------------------|
| 0°<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100 | .000°056093113120116103083058030 | 007°061096114120115101081056027 | 013°065098115120114099078053024 | 019°069101116120113097076050021 | 025°073103117119111096074048018 | 031°077105118119110094071045015 | 036°080107119118109092069042012 | 042°084109119118107090066039009 | 047°087110117106087064036006 | 090<br>112<br>120<br>116<br>104 |

TABLE 198.  $t_H - t_{59}$  (Hydrogen - 59III).

|                                                                 | 00                                  | 10                                 | 20                                   | 30                                   | 40                                    | 5°                                    | 60                           | 70  | 80                              | 90                                   |
|-----------------------------------------------------------------|-------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|------------------------------|-----|---------------------------------|--------------------------------------|
| 0°<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100 | .000°024035038034026016008001 +.002 | 003°025036037033025015007001 +.002 | 006°027036037032024015006 .000 +.002 | 009°028037037032023014005 .000 +.002 | 011°030037037031022013005 +.001 +.002 | 014°031037036030021012004 +.001 +.002 | 016°032038036029011003 +.001 | 033 | 020°034038035028018009002 +.002 | 022°035038034027017008001 +.002 .000 |

TABLE 199. (Hydrogen - 16111), (Hydrogen - 59111).

|                                  | -5°    | -100   | -15°   | -20°   | -25°   | -3°°   | —35°   |
|----------------------------------|--------|--------|--------|--------|--------|--------|--------|
| t <sub>H</sub> — t <sub>16</sub> | +0.04° | +0.08° | +0.13° | +0.10° | +0.25° | +0.32° | +0.40° |
| t <sub>H</sub> — t <sub>59</sub> | +0.02° | +0.04° | +0.07° | +0.10° | +0.14° | +0.18° | +0.23° |

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

<sup>\*</sup> Chappuis; Trav. et Mém. du Bur. internat. des Poids et Mes. 6, 1888.
† Thiesen, Scheel, Sell; Wiss. Abh. d. Phys. Techn. Reichanstalt, 2, 1895; Scheel; Wied. Ann. 58, 1896; D. Mech. Zig. 1897.

#### AIR AND MERCURY THERMOMETERS.

TABLE 200. tAIR-t16. (Air-16111.)

| °C.                                                                       | 00                                                                                 | I,O                                                                                  | 20                                                                   | 30                                                                          | 40                                                                            | 5°                                                                          | 60                                                                            | 70                                                                          | 80                                                                                   | 90                                                                                   |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 0<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80                         | .000<br>049<br>083<br>103<br>110<br>107<br>096<br>078<br>054                       | 006053086104110107095076052                                                          | 012<br>057<br>089<br>105<br>111<br>106<br>093<br>074<br>049          | 017<br>061<br>091<br>106<br>111<br>105<br>092<br>072<br>047                 | 022<br>065<br>093<br>107<br>110<br>104<br>090<br>070                          | 027<br>068<br>095<br>108<br>110<br>103<br>088<br>067<br>041                 | 032<br>071<br>097<br>109<br>110<br>102<br>086<br>065<br>039                   | 037<br>074<br>099<br>110<br>101<br>084<br>062<br>036                        | 041<br>077<br>101<br>110<br>109<br>100<br>082<br>060<br>034                          | 045<br>080<br>102<br>110<br>108<br>098<br>080<br>057<br>031                          |
| 100<br>110<br>120<br>130<br>140<br>150<br>160<br>170<br>180               | 028<br>000<br>+.028<br>+.053<br>+.074<br>+.090<br>+.098<br>+.097<br>+.084<br>+.059 | +.003<br>+.030<br>+.055<br>+.076<br>+.091<br>+.098<br>+.096<br>+.082<br>+.055        | +.006<br>+.033<br>+.057<br>+.078<br>+.092<br>+.098<br>+.095<br>+.080 | 020<br>+.008<br>+.035<br>+.060<br>+.080<br>+.093<br>+.099<br>+.078<br>+.048 | +.011<br>+.038<br>+.062<br>+.081<br>+.094<br>+.099<br>+.093<br>+.076<br>+.045 | 014<br>+.014<br>+.064<br>+.083<br>+.095<br>+.099<br>+.092<br>+.073<br>+.041 | +.017<br>+.043<br>+.066<br>+.084<br>+.096<br>+.098<br>+.090<br>+.071<br>+.037 | 009<br>+.019<br>+.046<br>+.068<br>+.096<br>+.098<br>+.089<br>+.068<br>+.033 | 006<br>+.022<br>+.048<br>+.070<br>+.087<br>+.097<br>+.098<br>+.088<br>+.065<br>+.028 | 003<br>+.025<br>+.050<br>+.072<br>+.089<br>+.097<br>+.097<br>+.086<br>+.062<br>+.023 |
| 200<br>210<br>220<br>230<br>240<br>250<br>260<br>270<br>280<br>290<br>300 | +.0190381132083254666328251.0481.3011.5881.908                                     | +.014<br>045<br>122<br>219<br>338<br>481<br>650<br>846<br>-1.072<br>-1.328<br>-1.618 | +.009051130230351497668867 -1.096 -1.356 -1.649                      | 058139241365513687889 -1.121 -1.384 -1.680                                  | 0010661482523785297069111.1461.4121.711                                       | 0070731582643925467259331.1711.4401.743                                     | 013080168275407562745955 -1.196 -1.469 -1.776                                 | 019088177287421579765978 -1.222 -1.498 -1.808                               | 025096187300436597785 -1.001 -1.248 -1.528 -1.841                                    | 031105198312450614805 -1.025 -1.274 -1.558 -1.874                                    |

Note: See Circular 8, Bureau of Standards relative to use of thermometers and the various precautions and corrections.

TABLE 201. tair-tsp. (Air-59111.)

| °C.                                                                       | 00                                                                          | 10                                                                   | 20                                                                   | 3°                              | 40                                                                  | 5°                                                                  | 60                                                                  | 7°                              | 80                                                                  | 90                              |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------|---------------------------------|
| 100<br>110<br>120<br>130<br>140<br>150<br>160<br>170<br>180<br>190<br>200 | .000<br>.000<br>002<br>004<br>008<br>013<br>019<br>028<br>039<br>052<br>067 | .000<br>.000<br>002<br>004<br>008<br>013<br>020<br>029<br>040<br>053 | .000<br>.000<br>002<br>005<br>009<br>014<br>021<br>030<br>041<br>055 | .000001002005009015021031043056 | .000<br>001<br>002<br>006<br>010<br>016<br>022<br>032<br>044<br>057 | .000<br>001<br>003<br>006<br>010<br>016<br>023<br>033<br>045<br>059 | .000<br>001<br>003<br>006<br>011<br>016<br>024<br>034<br>046<br>060 | .000001003007011017025035048062 | .000<br>002<br>004<br>007<br>012<br>018<br>026<br>037<br>049<br>064 | .000002004008012019027038051066 |

# GAS, MERCURY, ALCOHOL, TOLUOL, PETROLETHER, PENTANE, THERMOMETERS.

TABLE 202. - tH-tM (Hydrogen-Mercury).

| Temperature, C. | Thuringer<br>Glass.* | Verre dur.<br>Tonnelot.† | Resistance<br>Glass.* | English<br>Crystal<br>Glass.* | Choisy-le-<br>Roi.* | 122 111.* | Nitrogen<br>Thermometer.<br>T <sub>H</sub> —T <sub>N</sub> .† | CO <sub>2</sub> Thermometer. TH—T <sub>CO<sub>2</sub></sub> .† |
|-----------------|----------------------|--------------------------|-----------------------|-------------------------------|---------------------|-----------|---------------------------------------------------------------|----------------------------------------------------------------|
| 0               | 0                    | 0                        | 0                     | 0                             | 0                   | 0         | 0                                                             | 0                                                              |
| 0               | .000                 | .000                     | .000                  | .000                          | .000                | .000      | .000                                                          | 000                                                            |
| 10              | 075                  | 052                      | 066                   | 008                           | 007                 | 005       | 006                                                           | 025                                                            |
| 20              | 125                  | 085                      | 108                   | 001                           | 004                 | 006       | 010                                                           | 043                                                            |
| 30              | <b> 7</b> 56         | 102                      | 131                   | +.017                         | +.004               | 002       | 011                                                           | 054                                                            |
| 40              | 168                  | 107                      | 140                   | 十.037                         | +.014               | +.001     | 011                                                           | 059                                                            |
| 50<br>60        | 166                  | 103                      | 135                   | 十.057                         | +.025               | +.004     | 009                                                           | 059                                                            |
| 60              | 150                  | 090                      | 119                   | +.073                         | +.033               | +.008     | 005                                                           | 053                                                            |
| 70<br>80        | 124                  | 072                      | 095                   | +.079                         | +.037               | +.009     | 100.—                                                         | 044                                                            |
| 80              | 088                  | 050                      | 068                   | +.070                         | +.032               | +.007     | +.002                                                         | 031                                                            |
| 90              | 047                  | 026                      | 034                   | +.046                         | +.022               | +.006     | +.003                                                         | 016                                                            |
| 100             | .000                 | .000                     | .000                  | .000                          | .000                | .000      | .000                                                          | .000                                                           |
|                 |                      |                          |                       |                               |                     |           |                                                               |                                                                |

<sup>\*</sup> Schlösser, Zt. Instrkde. 21, 1901.

#### TABLE 203. - Comparison of Air and High Temperature Mercury Thermometers.

Comparison of the air thermometer with the high temperature mercury thermometer, filled under pressure and made of  $50^{\rm HI}$  glass.

| Air.                    | 59 <sup>111</sup> • | Air.        | 59 <sup>III</sup> . |
|-------------------------|---------------------|-------------|---------------------|
| 0                       | 0                   | 0           |                     |
| 100                     | 0.                  | 375<br>400  | 385.4<br>412.3      |
| 200<br>300              | 200.4<br>304.1      | 425<br>450  | 440.7<br>469.1      |
| 3 <sup>2</sup> 5<br>350 | 330.9<br>358.1      | 47.5<br>500 | 498.0<br>527.8      |
| 350                     | 350.1               | 300         | 327.0               |

Mahlke, Wied. Ann. 1894.

#### TABLE 204. - Comparison of Hydrogen and Other Thermometers.

Comparison of the hydrogen thermometer with the toluol, alcohol, petrolether, and pentane thermometers (verre dur).

| Hydrogen.                                                                  | Toluol.*                                                                  | Alcohol I.*                                                               | Alcohol II.*                                                              | Petrolether.†                                                                                    | Pentane.‡                                                                                                 |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 0<br>-10<br>-20<br>-30<br>-40<br>-50<br>-60<br>-70<br>-100<br>-150<br>-200 | 0.00<br>-8.54<br>-16.90<br>-25.10<br>-33.15<br>-41.08<br>-48.90<br>-56.63 | 0,00<br>-9.31<br>-18.45<br>-27.44<br>-36.30<br>-45.05<br>-53.71<br>-62.31 | 0.00<br>-9.44<br>-18.71<br>-27.84<br>-36.84<br>-45.74<br>-54.55<br>-63.31 | 0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 0.00<br>-9.03<br>-17.87<br>-26.55<br>-35.04<br>-43.36<br>-51.50<br>-59.46<br>-82.28<br>-116.87<br>-146.84 |

<sup>\*</sup> Chappuis, Arch. sc. phys. (3) 18, 1892. † Holborn, Ann. d. Phys. (4) 6, 1901. ‡ Rothe, unpublished.

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

<sup>†</sup> Chappuis, Trav. et mém. du Bur. Intern. des Poids et Mes. 6, 1888.

#### TABLE 205 .- Platinum Resistance Thermometers.

Callendar has shown that if we define the platinum temperature, pt, by pt = 100 \ (R - R\_0) / (R\_{100} - R\_0) \ , where R is the observed resistance at t° C.,  $R_0$  that at 0°,  $R_{100}$  at 100°, then the relation between the platinum temperature and the temperature t on the scale of the gas thermometer is represented by  $t - pt = \delta \langle t/100 - 1 \rangle t/100$  where  $\delta$  is a constant for any given sample of platinum and about 1.50 for pure platinum (impure platinum having higher values). This holds good between  $-23^{\circ}$  and  $450^{\circ}$  when  $\delta$  has been determined by the boiling point of sulphur (445°.) See Waidner and Burgess, Bul. Bureau Standards, 6, p. 149, 1909. Also Bureau reprints 124, 143 and 149.

TABLE 206 .- Thermodynamic Temperature of the Ice Point, and Reduction to Thermodynamic Scale.

Mean = 273.13° C. (ice point).

For a discussion of the various values and for the corrections of the various gas thermometers to the thermodynamic scale see Buckingham, Bull. Bureau Standards, 3, p. 237, 1907. Scale Corrections for Gas Thermometers.

| Temp.                                                           | Const                                                                             | ant pressure = 1                                                                | 00 cm. | Constant vol., $p_0 = 100 \text{ cm}$ , $t_0 = 0^{\circ}\text{C}$ |                                                                                         |   |  |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---|--|--|
| Co.                                                             | Не                                                                                | Н                                                                               | N      | Не                                                                | Н                                                                                       | N |  |  |
| - 240° - 200 - 100 - 50 + 25 + 50 + 75 + 150 + 200 + 450 + 1500 | +0.13<br>+ .04<br>+ .012<br>003<br>003<br>003<br>+ .007<br>+ .01<br>+ .1<br>+ .03 | +1.0<br>+ .26<br>+ .03<br>+ .02<br>003<br>003<br>003<br>+ .01<br>+ .02<br>+0.04 |        | +0.02<br>+ .01<br>.000<br>.000<br>.000<br>.000<br>+ .000<br>-000  | +0.18<br>+ .06<br>+ .010<br>+ .004<br>.000<br>.000<br>.000<br>+ .001<br>+ .002<br>+0.01 |   |  |  |

See also Appendix, p. 438.

TABLE 207 .- Standard Points for the Calibration of Thermometers.

|                                                                                                                                                                                            | Point.                                                                                                                                                                                                                                                  | Atmos-                                                              | Crucible.                                                                                | Temper                                                                                                                                                                                          | ratures.                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Substance.                                                                                                                                                                                 | Point.                                                                                                                                                                                                                                                  | phere.                                                              | Crucible.                                                                                | Nitrogen Scale.                                                                                                                                                                                 | Thermodynamic.                                                                |
| Water Naphthalene Benzophenone Cadmium Zinc Sulphur Antimony Aluminum Silver Gold Copper Li <sub>2</sub> SiO <sub>8</sub> Diopside, pure Nickel  Cobalt Palladium Anorthite, pure Platinum | boiling, 760 mm.  " " " melting or solidify. " " boiling, 760 mm. melting or solidify. solidification melting or solidify. " " " melting or solidify. " " " melting or solidify. " " " melting " " melting or solidify. " " " melting " " melting " " " | air  air  CO2  air  air  H aud N  air  air  air  air  air  air  air | graphite  graphite  graphite  "  platinum  magnesia and Mg. aluminate magnesia  platinum | °C. 100.00 218.0 305.85 ± 0.1 320.8 ± 0.2 419.3 ± 0.3 444.45 ± 0.1 629.8 ± 0.5 658.5 ± 0.6 960.0 ± 0.7 1062.4 ± 0.8 1201.0 ± 1.0 1391.2 ± 1.5 1452.3 ± 2.0 1549.5 ± 2.0 1752. ± 5.* 1755. ± 5.† | °C.<br>100.00<br>218.0<br>305.9<br>320.9<br>419.4<br>444.55<br>630.0<br>658.7 |

\* Thermoelectric extrapolation. † Optical extrapolation.

(Day and Sosman, Journal de Physique, 1912. Mesure des témperatures élevées.) A few additional points are: H, boils—252.6°; O, boils—182.7°; CO<sub>2</sub>, sublimes—78.5°; Hg. freezes—38.87°; Alumina melts 2000°; Tungsten melts 3400°.

#### TABLE 208. - Standard Calibration Curve for Pt. - Pt. Rh. (10% Rh.) Thermo-Element.

Giving the temperature for every 100 microvolts. For use in conjunction with a deviation curve determined by calibration of the particular element at some of the following fixed points:

| Water<br>Naphthalene<br>Tin<br>Benzophenone<br>Cadmium<br>Zinc | boiling-pt. melting-pt. boiling-pt. melting-pt. | 100.0<br>217.95<br>231.9<br>305.9<br>320.9<br>419.4 | 643mv.<br>1585<br>1706<br>2365<br>2503<br>3430 | Silver<br>Gold<br>Copper<br>LigSiO <sub>3</sub><br>Diopside<br>Nickel | melting-pt. | 960.2<br>1062.6<br>1082.8<br>1201.<br>1391.5<br>1452.6 | 9111mv.<br>10296<br>10534<br>11941<br>14230<br>14973 |
|----------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------|-------------|--------------------------------------------------------|------------------------------------------------------|
| Sulphur<br>Antimony<br>Aluminum                                | boiling-pt.<br>melting-pt.                      | 444.55<br>630.0<br>658.7                            | 3672<br>5530<br>5827                           | Palladium<br>Platinum                                                 | 66 66       | 1549.5<br>1755.                                        | 16144<br>18608                                       |

| E micro-volts.                                                                      | 0                                                                                                          | 1000.                                                                                                      | 2000.                                                                                           | 3000.                                                                                  | 4000.                                                                                  | URES,                                                                                |                                                                                                  | 7000.                                                                                                      | 8000.                                                                                            | 9000.                                                                            | E<br>micro-<br>volts.                                                               |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 0.<br>100.<br>200.<br>300.<br>400.<br>500.<br>600.<br>700.<br>800.<br>900.          | 0.0<br>17.8<br>34.5<br>50.3<br>65.4<br>80.0<br>94.1<br>107.8<br>121.2<br>134.3                             | 147.1<br>159.7<br>172.1<br>184.3<br>196.3<br>208.1<br>219.7<br>231.2<br>242.7<br>254.1                     | 265.4<br>276.6<br>287.7<br>298.7<br>309.7<br>320.6<br>331.5<br>342.3<br>353.0<br>363.7          | 374·3<br>384·9<br>395·4<br>405·9<br>416·3<br>426·7<br>437·1<br>447·4<br>457·7<br>407·9 | 478.1<br>488.3<br>498.4<br>508.5<br>518.6<br>528.6<br>538.6<br>548.6<br>558.5<br>568.4 | 578.<br>588.<br>597.<br>607.<br>617.<br>627.<br>636.<br>646.<br>656.<br>665.         | 684.8<br>694.3<br>7 703.8<br>4 713.3<br>1 722.7<br>8 732.1<br>5 741.5<br>1 750.6                 | 778.8<br>788.0<br>797.2<br>806.4<br>815.6<br>824.7<br>833.8<br>842.9<br>852.0                              | 861.1<br>870.1<br>870.1<br>888.1<br>897.1<br>906.1<br>915.0<br>923.9<br>932.8<br>941.6           | 950.4<br>959.2<br>968.0<br>976.7<br>985.4<br>994.1<br>1002.8<br>1011.5<br>1020.1 | 0.<br>100.<br>200.<br>300.<br>400.<br>500.<br>600.<br>700.<br>800.<br>900.          |
| 1000.                                                                               | 147.1                                                                                                      | 265.4                                                                                                      | 374-3                                                                                           | 478.1                                                                                  | 578.3                                                                                  | 675.                                                                                 | 769.5                                                                                            | 16000.                                                                                                     | 950.4                                                                                            | 18000.                                                                           | 1000.                                                                               |
| micro-<br>volts.                                                                    | 10000.                                                                                                     | 11000.                                                                                                     | 1000.   12000.   13000.   14000.   15000.   16000.   17000.   18000.   TEMPERATURES, °C.        |                                                                                        |                                                                                        |                                                                                      |                                                                                                  |                                                                                                            | 18000.                                                                                           | E<br>micro-<br>volts.                                                            |                                                                                     |
| 0.<br>100.<br>200.<br>300.<br>400.<br>500.<br>600.<br>700.<br>800.<br>900.<br>1000. | 1037-3<br>1045-9<br>1054-4<br>1062-9<br>1071-4<br>1079-9<br>1088-4<br>1096-9<br>1105-4<br>1113-8<br>1122-2 | 1122.2<br>1130.6<br>1139.0<br>1147.4<br>1155.8<br>1164.2<br>1172.5<br>1180.9<br>1189.2<br>1197.6<br>1205.9 | 1205.<br>1214.<br>1222.<br>1230.<br>1239.<br>1247.<br>1255.<br>1264.<br>1272.<br>1281.<br>1289. | 2 129<br>6 130<br>9 131<br>3 132<br>6 133<br>9 133<br>3 134<br>6 135<br>0 136          | 7.7 13<br>6.0 13<br>4.3 13<br>2.6 14<br>0.9 14<br>9.2 14<br>7.5 14<br>5.8 14           | 72.4<br>80.7<br>89.0<br>97.3<br>05.6<br>13.8<br>22,0<br>30.2<br>38.4<br>46.6<br>54.8 | 1454.8<br>1463.0<br>1471.2<br>1479.4<br>1487.7<br>1496.0<br>1504.3<br>1512.6<br>1520.9<br>1529.2 | 1537.5<br>1545.8<br>1554.1<br>1562.4<br>1570.8<br>1579.1<br>1587.5<br>1595.8<br>1604.2<br>1612.5<br>1620.9 | 1620.9<br>1629.2<br>1637.6<br>1645.9<br>1654.3<br>1662.6<br>1670.9<br>1679.3<br>1687.6<br>1696.0 | 1704.3<br>1712.6<br>1721.0<br>1729.3<br>1737.7<br>1746.0<br>1754.3               | 0.<br>100.<br>200.<br>300.<br>400.<br>500.<br>600.<br>700.<br>800.<br>900.<br>1000. |

#### TABLE 209. - Standard Calibration Curve for Copper - Constantan Thermo-Element.

For use in conjunction with a deviation curve determined by the calibration of the particular element at some of the

Water, boiling-point, 100°, 4276 microvolts; Naphthalene, boiling-point, 217.95, 10248 mv.; Tin, melting-point, 231.9, 11009 mv.; Benzophenone, boiling-point, 305.9, 15203 mv.; Cadmium, melting-point, 320.9, 16083 mv.

| E.<br>micro-<br>volts.                                                     | 0                                                                                                          | 1000.                                                                                           | 2000.                                                                                           | 3000.                                                                                           | 4000.                                                                                                      | 5000.                                                                                                      | 6000.                                                                                                      | 7000.                                                                                                      | 8000.                                                                                                      | 9000.                                                                                                      | E<br>micro-<br>volts.                                                      |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 0.<br>100.<br>200.<br>300.<br>400.<br>500.<br>600.<br>700.<br>800.<br>900. | 0.00<br>2.60<br>5.17<br>7.73<br>10.28<br>12.81<br>15.33<br>17.83<br>20.32<br>22.80<br>25.27                | 25.27<br>27.72<br>30.15<br>32.57<br>34.98<br>37.38<br>39.77<br>42.15<br>44.51<br>46.86<br>40.20 | 49.20<br>51.53<br>53.85<br>56.16<br>58.46<br>60.76<br>63.04<br>65.31<br>67.58<br>69.83<br>72.08 | 72.08<br>74.31<br>76.54<br>78.76<br>80.97<br>83.17<br>85.37<br>87.56<br>89.74<br>91.91          | 94.07<br>96.23<br>98.38<br>100.52<br>102.66<br>104.79<br>106.91<br>109.02<br>111.12<br>113.22<br>115.31    | 115.31<br>117.40<br>119.48<br>121.56<br>123.63<br>125.69<br>127.75<br>129.80<br>131.84<br>133.88           | 135.91<br>137.94<br>139.96<br>141.98<br>143.99<br>146.00<br>148.00<br>150.00<br>151.99<br>153.97           | 155.95<br>157.92<br>159.89<br>161.86<br>163.82<br>165.78<br>167.73<br>169.68<br>171.62<br>173.56           | 175.50<br>177.43<br>179.36<br>181.28<br>183.20<br>185.11<br>187.02<br>188.93<br>190.83<br>192.73           | 194.62<br>196.51<br>198.40<br>200.28<br>202.16<br>204.04<br>205.91<br>207.78<br>209.64<br>211.50<br>213.36 | 0.<br>100.<br>200.<br>300.<br>400.<br>500.<br>600.<br>700.<br>800.<br>900. |
| E<br>micro-<br>volts.                                                      | 10000.                                                                                                     | 11000                                                                                           | 0.   12                                                                                         | 1                                                                                               | 13000.                                                                                                     | 14000.                                                                                                     | 15000.                                                                                                     | 16000.                                                                                                     | 17000.                                                                                                     | 18000.                                                                                                     | E micro-volts.                                                             |
| 0.<br>100.<br>200.<br>300.<br>400.<br>500.<br>600.<br>700.<br>800.<br>900. | 213.36<br>215.21<br>217.06<br>218.91<br>220.75<br>222.59<br>224.43<br>226.26<br>228.09<br>229.92<br>231.74 | 233.<br>235.<br>237.<br>239.<br>240.<br>242.<br>244.<br>246.<br>248.                            | 56 2<br>38 2<br>20 2<br>01 2<br>82 2<br>63 2<br>43 2<br>23 2<br>03 2                            | 19.82<br>51.61<br>53.40<br>55.18<br>56.96<br>58.74<br>50.52<br>52.29<br>54.06<br>55.83<br>57.60 | 267.60<br>269.36<br>271.12<br>272.88<br>274.64<br>276.40<br>278.15<br>279.90<br>281.65<br>283.39<br>285.13 | 285.13<br>286.87<br>288.61<br>290.35<br>292.08<br>293.81<br>295.54<br>297.26<br>298.98<br>300.70<br>302.42 | 302.42<br>304.14<br>305.85<br>307.56<br>309.27<br>310.98<br>312.69<br>314.39<br>316.09<br>317.79<br>319.49 | 319.49<br>321.19<br>322.88<br>324.57<br>326.26<br>327.95<br>329.64<br>331.32<br>333.00<br>334.68<br>336.36 | 336.36<br>338.04<br>339.72<br>341.40<br>343.07<br>344.74<br>346.41<br>348.08<br>349.75<br>351.42<br>353.09 | 353.09                                                                                                     | 0.<br>100.<br>200.<br>300.<br>400.<br>500.<br>600.<br>700.<br>800.<br>900. |

Cf. Day and Sosman, Am. Jour. Sci. 29, p. 93, 32, p. 51; ; ibid. R. B. Sosman, 30, p. 1.

#### MECHANICAL EQUIVALENT OF HEAT.

TABLE 210 .- Summary of Older Work.

Taken from J. S. Ames, L'équivalent mécanique de la chaleur, Rapports présentés au congrès international du physique, Paris, 1900. Reduced to Gram-calorie at 20° C. (Nitrogen thermometer).

| Joule | 4.169 × 10 <sup>7</sup> ergs.<br>4.181 ""<br>4.192 ""<br>4.189 ""<br>4.186 "" | * 4.169 × 10 <sup>7</sup> ergs. 4.181 " " 4.184 " " 4.181 " " 4.178 " " |
|-------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|-------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|

<sup>\*</sup> Admitting an error of 1 part per 1000 in the electrical scale. The mean of the last four then gives

1 gram (20° C) oalorie = 4.181 × 107 ergs. See next table.

1 gram (15° C.) calorie = 4.185 × 107 ergs assuming sp. ht. of water at 20° = 0.0000.

#### TABLE 211 .- (1915.) Best Value, Electrical and Mechanical Equivalents of Heat.

Since the preparation of Dr. Ames' Paris report, considerable work has been done on the mechanical equivalent of heat, including recomputations from the older measurements using better values for some of the electrical relations, etc. Taking all the available material into account the U.S. Bureau of Standards has adopted, provisionally, the relation

#### 1 (20° C.) gram-calorie = 4.183 international electric joules.

No exact comparison between the results of electrical equivalent and mechanical equivalent of heat measurements can be made without exact knowledge of the relations between the international and absolute electrical units. A recent absolute measurement of absolute resistance by F. E. Smith of the National Physical Laboratory of England indicates a difference of one part in 2000 between the international and absolute ohms. Pending the general acceptance of some definite figure for this relation it is useless to fix upon a single value to use for "J" better than about one part in a thousand. The value

#### 4.183 international joules = probably 4.184 mechanical joules.

This value is made the basis of the following table.

TABLE 212 .- Conversion Factors for Units of Work.

| '                                                                                                            | Joules. | Foot-pounds. | Kilogram-<br>meters.                                     | 20°<br>Calories.                                      | British ther-<br>mal units. | Kilowatt-hours.                                                                                           |
|--------------------------------------------------------------------------------------------------------------|---------|--------------|----------------------------------------------------------|-------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------|
| I Joule = I Foot-pound . = I Kilogram-meter = I 20° Calorie . = I British thermal unit = I Kilowatt-hour . = |         | 3.086†       | 0.1020†<br>0.1383<br>1<br>0.4267†<br>107.6†<br>367 100.† | 0.2390<br>0.3240*<br>2.344*<br>1<br>252.2<br>860 300. | 0.001285*                   | 0.2778×10 <sup>-6</sup> 0.3766×10 <sup>-6*</sup> 2.724×10 <sup>-6*</sup> 1.162×10 <sup>-6</sup> 0.0002931 |

The value used for g is the standard value, 980.665 cm. per sec. per sec.=32.174 feet per sec. \*The values thus marked vary directly with "g." for values of "g" see Tables 565-567.

TABLE 213.—Value of the English and American Horsepower (746 watts) in Local Foot-pounds and Kilogram-meters per Second at Various Altitudes and Latitudes.

|                         | K                          | ilogram-                   | meters pe                  | er second                  |                            | Foot-pounds per second.    |                            |                            |                            |                            |  |
|-------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|
| Altitude,               |                            | 11                         | Latitude.                  |                            |                            |                            |                            | Latitude.                  |                            |                            |  |
|                         | o°                         | 30°                        | 45°                        | 60°                        | 90°                        | o°                         | 30°                        | 45°                        | 60°                        | 90°                        |  |
| o km.<br>1.5 "<br>3.0 " | 76.275<br>76.297<br>76.320 | 76.175<br>76.197<br>76.220 | 76.074<br>76.095<br>76.119 | 75.973<br>75.995<br>76.018 | 75.873<br>75.895<br>75.918 | 551.70<br>551.86<br>552.03 | 550.97<br>551.13<br>551.30 | 550.24<br>550.41<br>550.57 | 549.52<br>549.68<br>549.85 | 548.79<br>548.95<br>549.12 |  |

The metals in heavier type are often used as standards.

The melting points are reduced as far as possible to a common (thermodynamic) temperature scale. This scale is defined in terms of Wien's law, with C<sub>2</sub> taken as 14,350, and on which the melting point of platinum is 1755° C (Nernst and Wartenburg, 1751; Waidner and Burgess, 1753; Day and Sosman, 1755; Holborn and Valentiner, 1770; see C. R. 148, p. 1177, 1909). Above 1100° C, the temperatures are expressed to the nearest 5° C. Temperatures above the platinum point may be uncertain by over 50° C.

| Element.          | Melting point. | Remarks.                 | Element.              | Melting point.             | Remarks.                        |
|-------------------|----------------|--------------------------|-----------------------|----------------------------|---------------------------------|
| Aluminum.         | 658.7          | Most samples             | Manganese             | 1230                       | Burgess-Waltenberg.             |
|                   |                | give 657 or less         | Mercury               | -38.87                     |                                 |
|                   |                | (Burgess).               | Molybdenum            |                            | Mendenhall-Forsythe             |
| Antimony .        | 630.0          |                          | Neodymium.            |                            | (Muthmann-Weiss.)               |
|                   | 00             | n m                      | Neon                  | -253?                      |                                 |
| Argon             | -188           | Ramsay-Travers.          | Nickel                | 1452                       | Day, Sosman, Bur-               |
| Arsenic           |                | (0                       | AT' - 1. 1            |                            | gess, Waltenberg.               |
| Barium            | 850            | (Guntz.)                 | Niobium               | 1700?                      | (Ti1 A1()                       |
| Beryllium Bismuth |                | Adimeted                 | Nitrogen              | -211                       | (Fischer-Alt.)                  |
| Dismuch           | 271            | Adjusted.                | Osinium               | About 2700                 | (Waidner-Burgess, unpublished.) |
| Boron             | 2200-2500?     |                          | Oxygen                | -218                       | unpublished.)                   |
| Bromine           |                |                          | Palladium             | $1549 \pm 5$               | (Waidner-Burgess,               |
| Cadmium           | 320.9          | Range: 320.7-            | I dildular            | 1349 - 3                   | Nernst-Wartenburg,              |
|                   | 39             | 320.9                    |                       |                            | Day and Sosman.)                |
| Cæsium            | 26             | Range: 26.37-            |                       |                            |                                 |
|                   |                | 25.3                     | Phosphorus            | 44.2                       |                                 |
| Calcium           |                | Adjusted.                | Platinum              | 1755 = 5                   | See Note.                       |
| Carbon            |                | Sublimes.                | Potassium             | 62.3                       |                                 |
| Cerium            | 640            | (0)                      | Praseodymium.         | 940                        | (Muthmann-Weiss.)               |
| Chlorine          | -101.5         | (Olszewski.)             | Radium                | 700                        | 0.5 1 1 11 7                    |
| Characterist      | -6             | D 777 1.                 | Rhodium               | 1950                       | (Mendenhall-Inger-              |
| Chromium.         | 1615           | Burgess-Walten-          | Darkidia              | -0                         | soll.)                          |
| Cobalt            | 1480           | berg.<br>Burgess-Walten- | Rubidium<br>Ruthenium | 38                         |                                 |
| Copart            | 1400           | berg.                    | Samarium              | 2450?<br>1300–1400         | (Muthmann-Weiss.)               |
|                   |                | berg.                    | Scandium              | 1300-1400                  | (1vi utililialili- vv ciss.)    |
| Copper            | 1083 ± 3       | Mean, Holborn-           | Selenium              | 217-220                    |                                 |
|                   |                | Day, Day-                | Silicon               | 1420                       | Adjusted.                       |
|                   |                | Clement.                 | Silver                | 960.5                      | Adjusted.                       |
| Erbium            |                |                          | Sodium                | 97.5                       |                                 |
| Fluorine          | -223           | (Moissan-Dew-            | Strontium             |                            | Between Ca and Ba?              |
|                   |                | ar.)                     | ~                     | Si 112.8                   | Various Forms. See              |
|                   |                |                          | Sulphur               | Sii 119.2                  | Landolt-Börnstein.              |
| Gallium           |                |                          |                       | Siii 106.8                 |                                 |
| Germanium         | 30. I<br>958   |                          | Tontolum              | 2000                       | Adjusted from Waid-             |
| Gold              | 1063.0         | Adjusted.                | Tantalum              | 2900                       | ner-Burgess = 2910.             |
| Helium            | <-271          | rajusteu.                |                       |                            | ner-Durgess = 2910.             |
| Hydrogen          | -259           |                          | Tellurium             | 452                        | Adjusted.                       |
| Indium            | 155            | (Thiel.)                 | Thallium              | 302                        |                                 |
| Iodine            | 113.5          | Range: 112-115.          | Thorium               | >1700                      | v. Wartenburg.                  |
|                   |                | 0.                       |                       | <mo< td=""><td></td></mo<> |                                 |
| Iridium           | 2350?          |                          | Tin                   | $231.9 \pm .2$             |                                 |
| Tron              |                | D                        | Titanium              |                            | Burgess-Waltenberg.             |
| Iron              | 1530           | Burgess-Walten-          | Tungsten              | 3400                       | Adjusted.                       |
| Krypton           | -160           | berg.                    |                       |                            |                                 |
| Lanthanum         |                | (Ramsay.)                | Uronium               | / 10 20                    | Moissan.                        |
|                   | 010.           | Weiss.)                  | Uranium<br>Vanadium   | <1850<br>1720              | Burgess-Waltenberg.             |
| Lead              | 327 ± 0.5      | (155.)                   | Xenon                 | -140                       | Ramsay.                         |
|                   | , ,            |                          | Ytterbium             | 140                        |                                 |
|                   |                |                          | Yttrium               | 1400                       |                                 |
| Lithium           | 186            | (Kahlbaum.)              | Zinc                  | 419.4                      |                                 |
| Magnesium         | 651            | (Grube) in clay          | Zirconium             | 1700?                      | Troost.                         |
|                   |                | crucibles, 635.          |                       |                            |                                 |
|                   |                |                          |                       |                            |                                 |

# BOILING-POINTS OF THE CHEMICAL ELEMENTS.

| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aluminum Antimony Argon Arsenic Barium Bismuth Cadmium Carbon Carbon Carbon Chlorine |
| Aluminum Antimony Argon Arsenic  """"  """  """"  """"  """"  """"  """"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Aluminum Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Aluminum Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Antimony   -   1440.   -   186.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sarium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bismuth   Boron   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Boron   Sp-63   G1.1   Thorpe, 1880; van der Plaats, 1886.   Berthelot, 1902.   Ruff-Johannsen.   Conputed, Violle, C. R. 120, 1895.   Volatilizes without melting in electric over Moisson.   Regnault, 1863.   Greenwood, Ch. News, 100, 1909.   Copper   2100-2310   2310.   Fluorine   - 187.   Helium   - 187.   Helium   - 252.5-252.8   Iodine   - 252.6   Iodine   - 151.7   Lead   - 1525.   Lithium   - 1400.   Regnault, 1863.   Greenwood, l. c.   Ramsay, Ch. News, 86, 1902.   Greenwood, l. c.   Ramsay, Ch. News, 87, 1903.   Greenwood, l. c.   Ruff-Johannsen, Ch. Ber. 38, 1905.   Ruff-Johannsen, Ch.   |
| Bromine   59-63   61.1   778.   Berthelot, 1902.   Ruff-Johannsen.   Conputed, Violle, C. R. 120, 1895.   Volatilizes without melting in electric over Moisson.   Regnault, 1863.   Greenwood, Ch. News, 100, 1909.   Copper   2100-2310   2310.   Fluorine   - 187.   Helium   - 187.   Helium   - 252.5-252.8   Iodine   - 252.6   Iodine   - 151.7   Lead   Lithium   - 1400.   Roper   1. c.   Greenwood, l. c.   Ramsay, Ch. News, 87, 1903.   Greenwood, l. c.   Ramsay, Ch. News, 87, 1903.   Greenwood, l. c.   Ruff-Johannsen, Ch. Ber. 38, 1905.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| """       -       -       -       Wolatilizes without melting in electric ove Moisson.         Chromium Copper Copper Pluorine Fluorine Helium Hel                                                                                               |
| Chlorine Chromium Copper         -         —33.6 2200.         Moisson.         Regnault, 1863.         Greenwood, Ch. News, 100, 1909.           Fluorine Helium Hydrogen Iron Iron Krypton Lead Lithium         -         —252.5−252.8 252.8 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 225.0 22                                                                                                                  |
| Chlorine Chromium Copper Fluorine Helium Hydrogen Iron Krypton Lead Lithium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Chromium   Copper   2100-2310   2310.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Copper Fluorine       2100-2310       2310.       "1. c.       Moisson-Dewar, C. R. 136, 1903.         Helium       -       -267.       Moisson-Dewar, C. R. 136, 1903.         Hydrogen Iodine       -252.5-252.8       -252.6       Mean.         Iron       -       2450.       Greenwood, I. c.         Krypton       -       -151.7       Ramsay, Ch. News, 87, 1903.         Lead       -       1525.       Greenwood, I. c.         Lithium       -       1400.       Ruff-Johannsen, Ch. Ber. 38, 1905.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fluorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Helium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Hydrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Iodine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Krypton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lead - 1525. Greenwood, l. c.<br>Lithium - 1400. Ruff-Johannsen, Ch. Ber. 38, 1905.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Lithium - 1400. Ruff-Johannsen, Ch. Ber. 38, 1905.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Magnesium - III20, Greenwood I c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Manganese - 1900. " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mercury - 357. Crafts; Regnault.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Nitrogen —195.7–194.4 —195. Mean.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Oxygen -182.5-182.9 -182.7 "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ozone119. Troost. C. R. 126, 1898.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Phosphorus   287–290   288.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Platinum - 3010. Langmuir, Mackay, Phys. Rev. 1014.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Potassium   667–757   712.   Perman; Ruff-Johannsen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Rubidium – 696. Ruff-Johannsen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Silver - 1955. Greenwood, l. c,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sodium 742-757 750. Perman; Ruff-Johannsen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sulphur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tellurium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tin - 1280. V. Wartenberg, 25 Anorg. Cli. 50, 1906.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Tungsten - 5830. Langmuir, Phys. Rev. 1913.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Xenon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Zinc 916-942 930.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Substance.                     | Melting point<br>at 1 kg/sq. cm                                      | Highest<br>experimental<br>pressure:<br>kg/sq. cm                       | at 1 kg/sq. cm.                                                                       | Δt (observed) for 1000 kg/sq. cm            | Reference             |
|--------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------|-----------------------|
| Hg. K. Na. Bi. Sn. Bi. Cd. Pb. | -38.85<br>59.7<br>97.62<br>271.0<br>231.9<br>270.9<br>320.9<br>327.4 | 12,000<br>2,800<br>12,000<br>12,000<br>2,000<br>2,000<br>2,000<br>2,000 | 0.00511<br>0.0136<br>0.00860<br>-0.00342<br>0.00317<br>-0.00344<br>0.00609<br>0.00777 | 5.1* 13.8 +12.3† -3.5† 3.17 -3.44 6.09 7.77 | 1 2 4 4 3 3 3 3 3 3 3 |

\*  $\Delta t$  (observed) for 10,000 kg/sq. cm is 50.8°. † Na melts at 177.5° at 12,000 kg/cm²; K at 179.6°; Bi at 218.3°; Pb at 644°. Luckey obtains melting point for tungsten as follows: 1 atme, 3623° K; 8, 3594; 18, 3572; 28, 3564. Phys. Rev. 1917.

Phys. Rev. 1917.

References: (1) P. W. Bridgman, Proc. Am. Acad. 47, pp. 391–96, 416–19, 1911; (2) G. Tammann, Kristallisieren und Schmelzen, Leipzig, 1903, pp. 98–99; (3) J. Johnston and L. H. Adams, Am. J. Sci. 31, p. 516, 1911; (4) P. W. Bridgman, Phys. Rev. 6, 1, 1915.

A large number of organic substances, selected on account of their low melting points, have also been investigated: by Tammann, loc. cit.; G. A. Hulett, Z. physik. Chem. 28, p. 629, 1899; F. Körber, ibid., 82, p. 45, 1913; E. A. Block, ibid., 82, p. 403, 1913; Bridgman, Phys. Rev. 3, 126, 1914; Pr. Am. Acad. 51, 55, 1915; 51, 581, 1916; 52, 57, 1916; 52, 91, 1916. The results for water are given in the following table.

TABLE 217. - Effect of Pressure on the Freezing Point of Water (Bridgman\*).

| Pressure: †<br>kg/sq. cm                                                                                         | Freezing point.                                                                                               | Phases in Equilibrium.                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>1,000<br>2,000<br>2,115<br>3,000<br>3,530<br>4,000<br>6,000<br>6,380<br>8,000<br>12,000<br>16,000<br>20,000 | 0.0<br>-8.8<br>-20.15<br>-22.0<br>-18.40<br>-17.0<br>-13.7<br>- 1.6<br>+ 0.16<br>12.8<br>37.9<br>57.2<br>73.6 | Ice I — liquid. Ice I — liquid. Ice I — liquid. Ice I — liquid. Ice I — ice III — liquid (triple point). Ice III — liquid. Ice III — liquid. Ice V — liquid. Ice V — liquid. Ice V — liquid. Ice V I — liquid (triple point). Ice VI — liquid. |

\* P. W. Bridgman, Proc. Am. Acad. 47, pp. 441-558, 1912.  $\dagger$  1 atm. = 1.033 kg/sq. cm.

TABLE 218. - Effect of Pressure on Boiling Point.\*

| Metal.                     | Pressure.                                                                          | °C                                           | Metal.                           | Pressure.                                                                              | ° C                                          | Metal.                           | Pressure.                                                                        | ° C                                          |
|----------------------------|------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|
| Bi<br>Bi<br>Bi<br>Bi<br>Ag | 10.2 cm Hg.<br>25.7 cm Hg.<br>6.3 atme.<br>11.7 atme.<br>16.5 atme.<br>10.3 cm Hg. | 1200<br>1310<br>1740<br>1950<br>2060<br>1660 | Ag<br>Cu<br>Cu<br>Sn<br>Sn<br>Pb | 26.3 cm Hg.<br>10.0 cm Hg.<br>25.7 cm Hg.<br>10.1 cm Hg.<br>26.2 cm Hg.<br>10.5 cm Hg. | 1780<br>1980<br>2180<br>1970<br>2100<br>1315 | Pb<br>Pb<br>Pb<br>Zn<br>Zn<br>Zn | 20.6 cm Hg.<br>6.3 atme.<br>11.7 atme.<br>11.7 atme.<br>21.5 atme.<br>53.0 atme. | 1410<br>1870<br>2100<br>1230<br>1280<br>1510 |

\* Greenwood, Pr. Roy. Soc., p. 483, 1910.

| Substance.            | Chemical formula.                             | Density,<br>about<br>20° C | Melting point C | Authority. | Boiling<br>point<br>C | Pres-<br>sure<br>mm | Authority. |
|-----------------------|-----------------------------------------------|----------------------------|-----------------|------------|-----------------------|---------------------|------------|
| Aluminum chloride     | AlCl <sub>3</sub>                             |                            | 190.            |            | TQ2 0                 | 750                 |            |
|                       | $Al(NO_3)_3 + 9H_2O$                          | _                          | 72.8            | I          | 183.°                 | 752                 | I          |
| " nitrate             | $Al_2O_3$                                     |                            |                 | 2          | 134.*                 | _                   | -          |
| " oxide               |                                               | 4.00                       | 2050.           | 28         |                       |                     |            |
| Ammonia               | NH <sub>3</sub>                               |                            | -75.            | 3          | -33.5                 | 760                 | 7          |
| Ammonium nitrate      | NH <sub>4</sub> NO <sub>3</sub>               | 1.72                       | 165.            | _          | 210.*                 | -                   |            |
| Suiphate              |                                               | 1.77                       | 140.            | 4          |                       | _                   |            |
| phospinte             | $NH_4H_2PO_3$                                 |                            | 123.            | 5          | 150.*                 |                     |            |
| Antimony trichloride  | SbCl₃                                         | 3.06                       | 73.             | _          | 223.                  | 760                 | -          |
| " pentachloride       |                                               | 2.35                       | 3.              | II         | 102.                  | 68                  | 14         |
| Arsenic trichloride   |                                               | 2.20                       | -18.            | 8          | 130.2                 | 760                 | 23         |
| Arsenic hydride       | AsH <sub>3</sub>                              | 1                          | -113.5          | 6          | -54.8                 | 760                 | 6          |
| Barium chloride       | BaCl <sub>2</sub>                             | 3.86                       | 960.            | II         |                       | -                   | -          |
| " nitrate             | $Ba(NO_3)_2$                                  | 3.24                       | 575 -           | 24         | -                     | _                   | -          |
| " perchlorate         | Ba(ClO <sub>4</sub> ) <sub>2</sub>            | _                          | 505.            | 10         | _                     | -                   |            |
| Bismuth trichloride   | BiCl₃                                         | 4.56                       | 232.5           | -          | 440.                  | 760                 | -          |
| Boric acid            | $H_3BO_3$                                     | 1.46                       | 185.            | -          | -                     | -                   |            |
| " anhydride           | $B_2O_3$                                      | 1.79                       | 577.            | _          |                       |                     | -          |
| Borax (sodium borate) | Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub> | 2.36                       | 741.            | 27         | _                     | _                   |            |
| Cadmium chloride      | CdCl <sub>2</sub> ·                           | 4.05                       | 560.            | 25         | 000 ±                 |                     | 9          |
| " nitrate             | $Cd(NO_3)_2 + 4H_2O$                          | 2.45                       | 59.5            | 2          | 132.                  | 760                 | 4          |
| Calcium chloride      | CaCl <sub>2</sub>                             | 2.26                       | 774.0           |            | _                     | -                   |            |
| " chloride            | $CaCl_2 + 6H_2O$                              | 1.68                       | 29.6            | l —        |                       |                     |            |
| " nitrate             | Ca(NO <sub>3</sub> ) <sub>2</sub>             | 2.36                       | 499.            | 24         |                       |                     |            |
| " nitrate             | $Ca(NO_3)_2 + 4H_2O$                          | 1.82                       | 42.3            | 26         | 132.*                 | _                   |            |
| " oxide               | CaO                                           | 3.3                        | 2570.           | 28         | _                     | -                   | -          |
| Carbon tetrachloride  | CCl <sub>4</sub>                              | 1.59                       | -24.            | 22         | 76.7                  | 760                 | 23         |
| " trichloride         | C <sub>2</sub> Cl <sub>6</sub>                | 1.63                       | 184.            | -          |                       | _                   | _          |
| " monoxide            | CO                                            | _                          | -207.           | 6          | -100.                 | 760                 | 6          |
| " dioxide             | $CO_2$                                        | 1.56                       | -57.            | 3          | -8o.                  | subl.               |            |
| " disulphide          | CS <sub>2</sub>                               | 1.26                       | -110.           | 13         | 46.2                  | 760                 |            |
| Chloric(per) acid     | $HClO_4 + H_2O$                               | 1.81                       | 50.             | 15         |                       | _                   | -          |
| Chlorine dioxide      | ClO <sub>2</sub>                              | -                          | <b>−</b> 76.    | 3.         | 9.9                   | 731                 | 21         |
| Chrome alum           | $KCr(SO_4)_2 + 12H_2O$                        | 1.83                       | 89.             | 16         |                       | -                   |            |
| " nitrate             |                                               | -                          | 37.             | 2          | 170.                  | 760                 | 2          |
| Chromium oxide        | Cr <sub>2</sub> O <sub>3</sub>                | 5.04                       | 1990.           | 28         | _                     | -                   | - 1        |
| Cobalt sulphate       | CoSO <sub>4</sub>                             | 3.53                       | 97.             | 16         | 880.*                 | _                   |            |
| Cupric chloride       | CuCl <sub>2</sub>                             | 3.05                       | 498.            | 9          | *                     | -                   |            |
| Cuprous chloride      | $Cu_2Cl_2$                                    | 3.7                        | 421.            |            | 1000 ±                | 760                 | 9          |
| Cupric nitrate        | $Cu(NO_3)_2 + 3H_2O$                          | 2.05                       | 114.5           | 2          | 170.*                 | 760                 | 2          |
| Hydrobromic acid      | HBr                                           | -                          | -86.7           | 3          | -68.7                 | 760                 |            |
| Hydrochloric acid     | HCl                                           | _                          | -111.3          | 17         | -83.I                 | 755                 | 17         |
| Hydrofluoric acid     | HFl                                           | 0.99                       | -92.3           | 6          | -36.7                 | 755                 | 17         |
| Hydriodic acid        | HI                                            | _                          | -51.3           | 17         | -35.7                 | 760                 | _          |
| Hydrogen peroxide     |                                               | 1.5                        | -2.             | 18         | 80.2                  | 47                  | 20         |
| " phosphide           | PH <sub>3</sub>                               |                            | -132.5          | 6          |                       |                     | -          |
| " sulphide            |                                               | -                          | -86.            | 3          | -62.                  |                     |            |
| Iron chloride         |                                               | 2.80                       | 301.            |            | _                     |                     | -          |
| " nitrate             |                                               | 1.68                       | 47-2            | 2          |                       | _                   | -          |
| suiphate              | $FeSO_4 + 7H_2O$                              | 1.90                       | 64.             | 16         | _                     |                     |            |
| Lead chloride         | PbCl <sub>2</sub>                             | 5.8                        | 500.            | 9          | 900 ±                 | 760                 |            |
| " metaphosphate       |                                               | _                          | 800.            | 9          | _                     | -                   |            |
| Magnesium chloride    | $MgCl_2$                                      | 2.18                       | 708.            | 9          |                       |                     |            |
| oxide                 | MgO                                           | 3.4                        | 2800.           | 28         |                       | -6-                 |            |
| mtrate                | $Mg(NO_3)_2 + 6H_2O$                          | 1.46                       | 90.             | 2          | 143.                  | 760                 | 2          |
| sulphate              | $MgSO_4 + 5H_2O$                              | 1.68                       | 150.            | 16         |                       |                     |            |
| Manganese chloride    | $MnCl_2 + 4H_2O$                              | 2.01                       | 87.5            | 19         | 106.                  | 760                 | 19         |
| " nitrate             | $Mn(NO_3)_2 + 6H_2O$                          | 1.82                       | 26.             | 2          | 129.                  | 760                 | 2          |
| sulphate              |                                               | 2.09                       | 54.             | 16         |                       |                     |            |
| Mercurous chloride    | $Hg_2Cl_2$                                    | 7.10                       | 450 ±           | -          |                       |                     |            |
| Mercuric chloride     | HgCl <sub>2</sub>                             | 5.42                       | 282.            | -          | 305.                  |                     |            |
|                       | 1                                             |                            |                 |            |                       |                     |            |

<sup>(1)</sup> Friedel and Crafts; (2) Ordway; (3) Faraday; (4) Marchand; (5) Amat; (6) Olszweski; (7) Gibbs; (8) Baskerville; (9) Carnelly; (10) Carnelly and O'Shea; (11) Ruff; (13) Wroblewski and Olszewski; (14) Anschütz; (15) Roscoe; (16) Tilden; (17) Ladenburg; (18) Staedel; (19) Clarke, Const. of Nature; (20) Bruhl; (21) Schacherl; (22) Tammann; (23) Thorpe; (24) Ramsay; (25) Lorenz; (26) Morgan; (27) Day; (28) Kanolt.

| DENSITIES AND MEL                    | TING AND BOILING                                     | 1 01111                    | 0 01 1110       | , ricire   | ITTO COM        | OONE                | , , ,      |
|--------------------------------------|------------------------------------------------------|----------------------------|-----------------|------------|-----------------|---------------------|------------|
| Substance.                           | Chemical formula.                                    | Density,<br>about<br>20° C | Melting point C | Authority. | Boiling point C | Pres-<br>sure<br>mm | Authority. |
| Nickel carbonyl                      | NiC <sub>4</sub> O <sub>4</sub>                      | 1.32                       | -25.            | I          | 43.°            | 760                 |            |
| " nitrate                            | $Ni(NO_3)_2 + 6H_2O$                                 | 2.05                       | 56.7            | 2          | 136.7           | 760                 | 2          |
| " oxide                              | NiO NiO                                              | 6.60                       | 30.7            |            | -30.7           | 700                 |            |
| " sulphate                           | $NiSO_4 + 7H_2O$                                     | 1.98                       | 99.             | 3          | _               |                     | _          |
| Nitric acid                          | HNO <sub>3</sub>                                     | 1.52                       | -42.            | 4          | 86.             | 760                 | 16         |
| " anhydride                          | $N_2O_5$                                             | 1.64                       | 30.             | 5          | 48.             | 760                 | 9          |
| " oxide *                            | NO                                                   | 1.27                       | -167.           | _          | -153.           | 760                 | 6          |
| peroxide                             | $N_2O_4$                                             | 1.49                       | -9.6            | 8          | 21.6            | 760                 |            |
| Nitrous anhydride                    | $N_2O_3$                                             | 1.45                       | -111.           | 7 8        | 3.5             | 760                 | - 1        |
| oxide                                | $N_2O$                                               |                            | -102.4          | 8          | -89.8           | 760                 | 8          |
| Phosphoric acid (ortho).             |                                                      | 1.88                       | 40 =            | -          |                 | _                   |            |
| Phosphorous acid                     | $H_3PO_3$                                            | 1.65                       | 72.             | _          |                 |                     | -          |
| Phosphorus trichloride               | $PCl_3$                                              | 1.61                       | -111.8          | 10         | 76.             | 760                 | 19         |
| " oxychloride                        | POCl <sub>3</sub>                                    | 1.68                       | +1.3            | _          | 108.            | 760                 |            |
| disulphide                           | P <sub>3</sub> S <sub>6</sub>                        |                            | 297.            | I 2        |                 | 760                 |            |
| pentasuipnide                        | $P_2S_5$                                             | _                          | 275.            | 13         | 522.            | 760                 |            |
| sesquistipnide                       |                                                      | 2.00                       | 168.            | _          | 400.            | 760                 | -          |
| risulphide Potassium carbonate       | P <sub>2</sub> S <sub>3</sub>                        |                            | 290 ±           | 14         | 490.            | 760                 | 25         |
|                                      | K <sub>2</sub> CO <sub>3</sub>                       | 2.29                       | 909.            | _          | _               |                     |            |
| " chlorate                           | KClO <sub>3</sub>                                    | 2.34                       | 357.            | 15         | _               |                     |            |
| " cyanide                            | K₂CrO₄<br>KCN                                        | 2.72                       | 975.<br>red h't | 17         |                 |                     |            |
| " perchlorate                        | KClO <sub>4</sub>                                    | 1.52                       | 610.            |            |                 | -6-                 |            |
| " chloride                           | KClO                                                 | 2.52                       |                 | 15         | 410.†           | 760                 |            |
| " nitrate                            | KNO <sub>3</sub>                                     | 1.99                       | 772.            |            | 1500.<br>400.†  | 760                 |            |
| " acid phosphate                     |                                                      | 2.34                       | 341.<br>96.     |            | 400.            |                     |            |
| " acid sulphate                      | KHSO <sub>4</sub>                                    | 2.35                       | 205.            | 3          | dec.            |                     |            |
| Silver chloride                      | AgCl                                                 | 5.56                       | 451.            | 15         | ucc.            |                     |            |
| " nitrate                            | AgNO <sub>3</sub>                                    | 4.35                       | 218.            | -3         | dec.            | _                   |            |
| " perchlorate                        | AgClO <sub>4</sub>                                   | 4.33                       | 486.            | 18         | -               | _                   |            |
| " phosphate                          | Ag <sub>3</sub> PO <sub>4</sub>                      | 6.37                       | 849.            | 15         |                 | Щ.                  | _          |
| " metaphosphate                      | $AgPO_3$                                             |                            | 482.            | 15         | _               |                     |            |
| " sulphate                           | $Ag_2SO_4$                                           | 5.45                       | 655 ±           | -3         | 1085.†          |                     | _          |
| Sodium chloride                      | NaCl                                                 | 2.17                       | 800.            | II         | 1490.           | 760                 |            |
| " hydroxide                          | NaOH                                                 | 2. I                       | 318.            | 27         |                 |                     | -          |
| nitrate                              | NaNO <sub>3</sub>                                    | 2.26                       | 315.            |            | 380.†           |                     | _          |
| chiorate                             | NaClO <sub>3</sub>                                   | 2.48                       | 248.            | 28         | †               | -                   |            |
| perchlorate                          | NaClO <sub>4</sub>                                   |                            | 482.            | 18         | _               |                     |            |
| carbonate                            | Na <sub>2</sub> CO <sub>3</sub>                      | 2.48                       | 852.            | -          | †               |                     |            |
| carbonate                            | Na <sub>2</sub> CO <sub>3</sub> + 10H <sub>2</sub> O | 1.46                       | 34.             | 3          | _               | -                   |            |
| " phosphate                          | $Na_2HPO_4 + 12H_2O$                                 | 1.54                       | 38.             |            |                 |                     | -          |
| " metaphosphate.<br>" pyrophosphate. | NaPO <sub>3</sub>                                    | 2.48                       | 617.            | 15         | -               |                     |            |
| " phosphite                          | $Na_4P_2O_7$<br>$(H_2NaPO_3)_2 + 5H_2O$              | 2.45                       | 970.            | 30         | _               | -                   |            |
| " sulphate                           | $Na_2SO_4$                                           | 2.67                       | 42.             | 20         |                 |                     |            |
| " sulphate                           | $Na_2SO_4 + 10H_2O$                                  | 2.67                       | 884.            | II         |                 |                     |            |
| " hyposulphite                       | $Na_2S_2O_3 + 5H_2O$                                 | 1.46                       | 32.38           | 17         | †               |                     |            |
| Sulphur dioxide                      | SO <sub>2</sub>                                      | 1.73                       | 48.16<br>-76.   |            |                 | 760                 |            |
| Sulphuric acid                       | $H_2SO_4$                                            | 1.83                       | 10.4            | 21         | -10.<br>338.    | 760                 | 22         |
| " acid                               | $12H_2SO_4 + H_2O$                                   |                            | -0.5            | 22         | 330.            | /00                 |            |
| " acid                               | $H_2SO_4 + H_2O$                                     |                            | 8.5             |            |                 |                     |            |
| " acid (pyro)                        | $H_2S_2O_7$                                          | 1.89                       | 35.             | 22         | †               |                     |            |
| Sulphur trioxide                     | SO <sub>3</sub>                                      | 1.91                       | 16.8            | _          | 44.9            | 760                 | _          |
| Tin, stannic chloride                | SnCl <sub>4</sub>                                    | 2.28                       | -33.            | 23         | 114.            | 760                 | 19         |
| stannous chloride                    | SnCl <sub>2</sub>                                    | -                          | 250.            | 24         | 605.            | 760                 | - 1        |
| Zinc chloride                        | ZnCl <sub>2</sub>                                    | 2.91                       | 365.            | 29         | 710.            | 760                 |            |
| chioride                             | $ZnCl_2 + 3H_2O$                                     | _                          | 6.5             | 26         | _               |                     | -          |
| mulate                               | $Zn(NO_3)_2 + 6H_2O$                                 | 2.06                       | 36.4            | 3          | 131.            | 760                 | 2          |
| " sulphate                           | $ZnSO_4 + 7H_2O$                                     | 2.02                       | 50.             | 3          |                 |                     | -          |
|                                      |                                                      |                            |                 |            |                 | - 1                 |            |

References: (1) Mond, Langer, Quincke; (2) Ordway; (3) Tilden; (4) Erdmann; (5) R. Weber; (6) Olszewski; (7) Birhaus; (8) Ramsay; (9) Deville; (10) Wroblewski; (11) Day, Sosman, White; (12) Ramme; (13) Meyer; (14) Lemoine; (15) Carnelly; (16) Mitscherlich; (17) LeChatelier; (18) Carnelly, O'Shea; (10) Thorpe; (20) Amat; (21) Mendelejeff; (22) Marignac; (23) Besson; (24) Clarke, Const. of Nature; (25) Isambert; (26) Mylius; (27) Hevesy; (28) Retgers; (29) Grünauer; (30) Richards and others.

<sup>\*</sup> Under pressure 138 mm mercury. † Decomposes.

### DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

N.B. — The data in this table refer only to normal compounds.

| Methane*   CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Substance.         | Formula                         | Temp.         | Den-   | Melting-         | Boiling-point.   | Authority.                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------|---------------|--------|------------------|------------------|---------------------------|
| Methane*         CH4         −164         0.415         −184         −165         Olszewski, Young.           Ethanet         C2H6         0         .446         −171.4         −93         Hadenburg.         Young, Hainlen.           Propane         C3H3         0         .536         −195.         −45.         Young, Hainlen.           Butane         C6H12         0         .607         −131.         36.3         Thorpe, Young.           Hexane         C6H12         0         .607         −97.         98.4         69.           Heytane         C7H16         0         .701         −97.         98.4         7horpe, Young.           Octane         C8H18         0         .719         −56.6         125.5         Kraft.           Nonane         C0H22         0         .745         −31.         173.         """           Undecane         C1H248         0         .776         −32.         173.         """           Undecane         C1H248         0         .775         5.         252.         ""           Pentadecane         C16H33         18.         .775         5.         252.         ""           Pentadecane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Substance.         | 1 Officia                       | ° C.          | sity.  | point            | Bonnig-point.    | Authority.                |
| Methane*         CH4         −164         0.415         −184         −165         Olszewski, Young.           Ethanet         C2H6         0         .446         −171.4         −93         Hadenburg.         Young, Hainlen.           Propane         C3H3         0         .536         −195.         −45.         Young, Hainlen.           Butane         C6H12         0         .607         −131.         36.3         Thorpe, Young.           Hexane         C6H12         0         .607         −97.         98.4         69.           Heytane         C7H16         0         .701         −97.         98.4         7horpe, Young.           Octane         C8H18         0         .719         −56.6         125.5         Kraft.           Nonane         C0H22         0         .745         −31.         173.         """           Undecane         C1H248         0         .776         −32.         173.         """           Undecane         C1H248         0         .775         5.         252.         ""           Pentadecane         C16H33         18.         .775         5.         252.         ""           Pentadecane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                                 |               |        | m o .            | 0.11             |                           |
| Ethanet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                                 | (a            | ) Para | mn Series        | $S: C_nH_{2n+2}$ |                           |
| Ethanet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Methane*           | CH4                             | <b>—</b> 164. | 0.415  | —184.            | —16r             | Olszewski Voung           |
| Propane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T2-13              |                                 |               | .446   |                  | <del>-</del> 93. | Ladenburg. "              |
| Butane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | C <sub>3</sub> H <sub>8</sub>   | 0             | .536   | <del>-195.</del> |                  | Young, Hainlen.           |
| Heptane   C <sub>7</sub> H <sub>16</sub>   O   701   -97.   98.   71.   150.   Nonane   C <sub>9</sub> H <sub>18</sub>   O   719   -36.6   125.5   Nonane   C <sub>10</sub> H <sub>29</sub>   O   743   -31.   173.   173.   Undecane   C <sub>11</sub> H <sub>24</sub>   O   756   -26.   195.   Undecane   C <sub>12</sub> H <sub>28</sub>   O   771   -6.   234.   "   Tetradecane   C <sub>12</sub> H <sub>28</sub>   O   775   -12.   214.   "   Tetradecane   C <sub>14</sub> H <sub>30</sub>   A   775   5.   252.   "   Pentadecane   C <sub>16</sub> H <sub>32</sub>   10.   776   10.   270.   "   Hexadecane   C <sub>16</sub> H <sub>34</sub>   18.   775   18.   287.   "   Heptadecane   C <sub>17</sub> H <sub>38</sub>   22.   777   22.   303.   "   Heptadecane   C <sub>18</sub> H <sub>38</sub>   28.   777   28.   317.   "   Nonadecane   C <sub>21</sub> H <sub>44</sub>   40.   47.78   40.   129.   "   Hencicosane   C <sub>22</sub> H <sub>44</sub>   44.   778   44.   136.5   "   Heptadecane   C <sub>22</sub> H <sub>44</sub>   44.   778   44.   136.5   "   Heptadecane   C <sub>23</sub> H <sub>48</sub>   48.   779   48.   1.42.5   "   Heptadecane   C <sub>24</sub> H <sub>46</sub>   68.   781   68.   199.   "   Heptadecane   C <sub>27</sub> H <sub>36</sub>   60.   780   60.   172.   "   Heptadecane   C <sub>28</sub> H <sub>46</sub>   60.   778   40.   129.   "   Heptadecane   C <sub>28</sub> H <sub>46</sub>   60.   778   40.   129.   "   Heptadecane   C <sub>28</sub> H <sub>46</sub>   60.   778   40.   129.   "   Heptadecane   C <sub>28</sub> H <sub>46</sub>   60.   778   60.   172.   "   Heptadecane   C <sub>28</sub> H <sub>46</sub>   60.   779.   48.   1.42.5   "   Heptadecane   C <sub>28</sub> H <sub>46</sub>   60.   779.   751.   243.   "   Heptadecane   C <sub>28</sub> H <sub>46</sub>   60.   779.   751.   243.   "   Heptadecane   C <sub>28</sub> H <sub>46</sub>   60.   779.   751.   243.   "   Heptadecane   C <sub>28</sub> H <sub>46</sub>   60.   779.   751.   243.   "   Heptadecane   C <sub>28</sub> H <sub>46</sub>   60.   779.   751.   243.   "   Heptadecane   C <sub>28</sub> H <sub>46</sub>   60.   779.   751.   243.   "   Heptadecane   C <sub>28</sub> H <sub>46</sub>   60.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779.   779 |                    |                                 |               | .60    |                  | I.               | Butlerow, Young.          |
| Heptane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                                 |               |        |                  | 36.3             |                           |
| Octane         .         C <sub>9</sub> H <sub>30</sub> o         .719         —56.6         125.5         """ """ "" """ """ """ """ """ """ """                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | YY .               |                                 |               |        |                  |                  | Schorlemmer.              |
| Nonane         C <sub>9</sub> H <sub>20</sub> 0         ·733         −51.         150.         Krafft.           Decane         C <sub>10</sub> H <sub>22</sub> 0         ·745         −31.         173.         "           Undecane         C <sub>11</sub> H <sub>24</sub> 0         ·766         −26.         195.         "           Dodecane         C <sub>12</sub> H <sub>26</sub> 0         ·705         −12.         214.         "           Totacane         C <sub>18</sub> H <sub>30</sub> 0         ·771         −6.         234.         "           Tetradecane         C <sub>16</sub> H <sub>32</sub> 10.         ·776         10.         270.         "           Henxadecane         C <sub>16</sub> H <sub>32</sub> 18.         .775         18.         287.         "           Heptadecane         C <sub>16</sub> H <sub>32</sub> 18.         .777         22.         303.         "           Octadecane         C <sub>19</sub> H <sub>43</sub> 22.         .777         22.         303.         "           Heptadecane         C <sub>19</sub> H <sub>43</sub> 32.         .777         32.         330.         "           Eincosane         C <sub>29</sub> H <sub>44</sub> 40.         .778         37.         121.8         "           Tetracosane         C <sub>24</sub> H <sub>56</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                                 |               |        |                  |                  | " " "                     |
| Decane   C <sub>11</sub> H <sub>124</sub>   O   -745   -31   173   "   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                                 |               |        |                  |                  | Krafft.                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Decane             | $C_{10}H_{22}$                  |               | .745   | <u>-31.</u>      |                  | 66                        |
| Tridecane . C <sub>18</sub> H <sub>28</sub> 0 .771 -6. 234. " Tetradecane . C <sub>14</sub> H <sub>30</sub> 4 .775 5. 252. " Pentadecane . C <sub>15</sub> H <sub>32</sub> 10776 10. 270. " Hexadecane . C <sub>16</sub> H <sub>34</sub> 18775 18. 287. " Heptadecane . C <sub>17</sub> H <sub>36</sub> 22777 22. 303. " Octadecane . C <sub>18</sub> H <sub>38</sub> 28777 28. 317. " Nonadecane . C <sub>18</sub> H <sub>40</sub> 32777 32. 330. " Eicosane C <sub>20</sub> H <sub>42</sub> 37778 37. 121. " Heneicosane . C <sub>21</sub> H <sub>44</sub> 40778 40. 129. " Docosane . C <sub>22</sub> H <sub>46</sub> 44778 44. 136.5 \$ " Tricosane . C <sub>22</sub> H <sub>46</sub> 44778 44. 136.5 \$ " Tricosane . C <sub>24</sub> H <sub>45</sub> 51779 51. 24.3 \$ " Heptacosane . C <sub>24</sub> H <sub>45</sub> 51779 51. 24.3 \$ " Heptacosane . C <sub>24</sub> H <sub>56</sub> 60780 60. 172. \$ " Heptacosane . C <sub>24</sub> H <sub>56</sub> 68781 68. 199. \$ " Dicetyl C <sub>32</sub> H <sub>66</sub> 70781 70. 205. \$ " Pentriacontane . C <sub>38</sub> H <sub>68</sub> 180 10. 205. \$ " Penta-tria-contane . C <sub>38</sub> H <sub>72</sub> 75782 75. 331. \$ "   **(b) Olefines, or the Ethylene Series: C <sub>n</sub> H <sub>2n</sub> .*  **Ethylene C <sub>4</sub> H <sub>8</sub> 169 103. Hadenburg, Krügel. Sieben. Wagner or Saytzeff. Wagner or Saytzeff. Wagner or Saytzeff. Wagner or Saytzeff. Wagner or Schorlemmer. Octylene C <sub>6</sub> H <sub>10</sub> 36. Hexylene C <sub>6</sub> H <sub>10</sub> 1976 - 69. Morgan or Schorlemmer. Octylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 70 1             |                                 |               | .756   | <del></del> 26.  | 195.             |                           |
| Tetradecane . C <sub>14</sub> H <sub>30</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | $C_{12}H_{26}$                  | i .           |        |                  |                  |                           |
| Pentadecane . C <sub>18</sub> H <sub>38</sub> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | C <sub>13</sub> H <sub>28</sub> | 1             |        |                  |                  |                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                 |               |        |                  |                  |                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TT 1               |                                 |               |        |                  |                  | 66                        |
| Octadecane         .         C <sub>18</sub> H <sub>38</sub> C <sub>19</sub> H <sub>40</sub> 28. 777 28. 330. 330. 32. 330. 32. 330. 32. 330. 32. 330. 32. 330. 32. 330. 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Heptadecane        |                                 |               |        |                  | ,                |                           |
| Eicosane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                                 | 28.           | -777   | 28.              |                  |                           |
| Heneicosane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                 |               | -777   |                  |                  |                           |
| Telelicosane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                  |                                 |               | .778   |                  |                  |                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T                  |                                 |               | .770   |                  |                  |                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                 | 44.           | .770   |                  |                  | 66                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                 |               |        |                  |                  | 46                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | $C_{27}H_{56}$                  | 60.           | .780   | 60.              | 172.§            |                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                 |               | .781   |                  | 199.§            |                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                                 |               | .781   |                  |                  |                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Penta-tria-contane | C35H72                          | 75.           | .782   | 75-              | 331.‡            | •••                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | · (b) (                         | Olefines      | or the | Ethylene         | Series C F       | f                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | (5)                             |               | , 0    |                  | - Scried: On     | ~2n'                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ethylene           | C <sub>2</sub> H <sub>4</sub>   | _             | 0.610  | -169.            | —103.            | Wroblewski or Olszewski.  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | C <sub>3</sub> H <sub>6</sub>   | -             | -      | —ı8o.            | 50.2             |                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                 | -13.5         | .635   | -                |                  |                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                 | _             | 76     | -                |                  |                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                 |               |        |                  |                  |                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                 |               |        | _                |                  |                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | $C_9H_{18}$                     |               |        | -                |                  | Beilstein, "Org. Chem."   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Decylene           |                                 |               | -      | -                | 175.             |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                 |               |        | -                |                  |                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                                 |               |        | —31.             |                  |                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m 1 1              |                                 |               |        | —I2.             |                  |                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                                 |               | .814   | 3                |                  |                           |
| Octadecylene       . $C_{18}H_{36}$ 18.       .791       18.       179.‡       Krafft.         Eicosylene       .       .       .871       -       390400.       Beilstein, "Org. Chem."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hexadecylene       | C <sub>16</sub> H <sub>32</sub> | 4.            |        | 4.               |                  | Krafft, Mendelejeff, etc. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                 | 18.           | .791   | 18.              | 179.‡            |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                 | 1             | .871   |                  | 390400.          |                           |
| Cerotene $C_{27}H_{54}$ 58 Berntnsen.   Melene $C_{30}H_{60}$ 62 "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cerotene           | C <sub>27</sub> H <sub>54</sub> |               |        | 58.              |                  | Bernthsen.                |
| Michelle   C301160   -     U2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | miciene            | C301160                         |               |        | 02.              | 1                |                           |

<sup>\*</sup> Liquid at—11,° C, and 180 atmospheres' pressure (Cailletet),

' ' ' + 4.0 '' ' 46

Boiling-point under 15 mm. pressure.

In vacuo.

#### DENSITIES, MELTING-POINTS, AND BOILING-POINTS OF SOME ORGANIC COMPOUNDS.

| _ |                                         |                                                                 |                 |                     |                    |                      |                                              |  |  |  |  |  |  |
|---|-----------------------------------------|-----------------------------------------------------------------|-----------------|---------------------|--------------------|----------------------|----------------------------------------------|--|--|--|--|--|--|
|   | Substance.                              | Chemical formula.                                               | Temp.           | Specific gravity.   | Melting-<br>point. | Boiling-<br>point.   | Authority.                                   |  |  |  |  |  |  |
|   |                                         | (c) A                                                           | cetylene        | Series:             | $C_nH_{2n}$        | -2.                  |                                              |  |  |  |  |  |  |
| 1 | Acetylene                               | C <sub>2</sub> H <sub>2</sub>                                   | <del></del> 80. | .613                | 8r.                | <b>—85.</b>          | Villard.                                     |  |  |  |  |  |  |
| ı | Allylene                                | C <sub>8</sub> H <sub>4</sub>                                   | _               | _                   | —110.<br>—130.     | -23.5<br>+8.         | D 1 . 17 . 1                                 |  |  |  |  |  |  |
| П | Ethylacetylene                          | C <sub>4</sub> H <sub>6</sub>                                   |                 |                     | 130.               | 100                  | Bruylants, Kutscheroff, and others.          |  |  |  |  |  |  |
| П | Propylacetylene                         | C <sub>5</sub> H <sub>8</sub>                                   | -               | -                   | -                  | 4850.                | Bruylants, Taworski.                         |  |  |  |  |  |  |
| H | Butylacetylene                          | C <sub>6</sub> H <sub>10</sub>                                  | -               | -                   | -                  | 68.–70.              | Taworski.                                    |  |  |  |  |  |  |
| П | Oenanthylidene                          | C <sub>7</sub> H <sub>12</sub>                                  | -               | -                   | -                  | 100101.              | Beilstein, and others.                       |  |  |  |  |  |  |
| ı | Caprylidene                             | C <sub>8</sub> H <sub>14</sub>                                  | 0.              | 0.771               | -                  | 133134.              | Behal.                                       |  |  |  |  |  |  |
| ı | Undecylidene                            | C <sub>11</sub> H <sub>20</sub>                                 | -               | -                   | -                  | 210215.              | Bruylants.                                   |  |  |  |  |  |  |
| ı | Dodecylidene                            | $C_{12}H_{22} \\ C_{14}H_{26}$                                  | -9. $+6.5$      | .810                | -9. $+6.5$         | 105.*                | Krafft.                                      |  |  |  |  |  |  |
| П | Hexadecylidene                          | C <sub>16</sub> H <sub>30</sub>                                 | 20.             | .804                | 20.                | 160.*                | 66                                           |  |  |  |  |  |  |
| ı | Octadecylidene                          | C <sub>18</sub> H <sub>34</sub>                                 | 30.             | .802                | 30.                | 184.*                | "                                            |  |  |  |  |  |  |
|   |                                         | (d) Monat                                                       | omic al         | cohols:             | $C_nH_{2n-}$       | HOH.                 |                                              |  |  |  |  |  |  |
|   | Methyl alcohol                          | CH <sub>8</sub> OH                                              | 0.              | 0.812               | <del>-97.</del>    | 66.                  |                                              |  |  |  |  |  |  |
| ı | Ethyl alcohol                           | C <sub>2</sub> H <sub>5</sub> OH                                | 0.              | .806                | -114.              | 78.                  |                                              |  |  |  |  |  |  |
| W | Propyl alcohol                          | C <sub>8</sub> H <sub>7</sub> OH                                | 0.              | .817                | —I27.<br>—         | 97.                  | From Zander, "Lieb.                          |  |  |  |  |  |  |
| ı | Butyl alcohol Amyl alcohol              | $C_4H_9OH$<br>$C_5H_{11}OH$                                     | 0.              | .823                | _                  | 117.                 | Ann." vol. 224, p. 85,<br>and Krafft, "Ber." |  |  |  |  |  |  |
| ı | Hexyl alcohol                           | C <sub>6</sub> H <sub>13</sub> OH                               | 0.              | .833                | -                  | 157.                 | vol. 16, 1714,                               |  |  |  |  |  |  |
| ı | Heptyl alcohol                          | $C_7H_{15}OH$                                                   | 0.              | .836                | <del>-36.</del>    | 176.                 | " 19, 2221,                                  |  |  |  |  |  |  |
| ı | Octyl alcohol                           | $C_8H_{17}OH$<br>$C_9H_{19}OH$                                  | 0.              | .839                | —18.<br>— 5.       | 195.                 | " 23, 2360,<br>and also Wroblew-             |  |  |  |  |  |  |
| ı | Decyl alcohol                           | $C_{10}H_{21}OH$                                                | + 7.            | .839                | + 7.               | 231.                 | . ski and Olszewski,                         |  |  |  |  |  |  |
| 1 | Dodecyl alcohol                         | C <sub>12</sub> H <sub>25</sub> OH                              | 24.             | .831                | 24.                | 143.*                | "Monatshefte,"                               |  |  |  |  |  |  |
| И | Tetradecyl alcohol Hexadecyl alcohol    | $C_{14}H_{29}OH$<br>$C_{16}H_{83}OH$                            | 38.<br>50.      | .824                | 38.<br>50.         | 167.*                | vol. 4, p. 338.                              |  |  |  |  |  |  |
| Ш | Octadecyl alcohol                       | C <sub>18</sub> H <sub>37</sub> OH                              | 59.             | .813                | 59.                | 211.*                |                                              |  |  |  |  |  |  |
| ı | 4                                       | (e) Ald                                                         | oholic e        | thers: (            | $C_nH_{2n+1}$      | O.                   |                                              |  |  |  |  |  |  |
|   | Dimethyl ether                          | C <sub>2</sub> H <sub>6</sub> O                                 | _               | _                   | _                  | - 23.6               | Erlenmeyer, Kreich-                          |  |  |  |  |  |  |
|   |                                         |                                                                 |                 |                     |                    |                      | baumer.                                      |  |  |  |  |  |  |
| ı | Diethyl ether                           | $C_4H_{10}O$                                                    | 4.              | 0.731               | - 117              | + 34.6               | Regnault, Olszewski.                         |  |  |  |  |  |  |
| ı | Dipropyl ether Di-iso-propyl ether      | $C_6H_{14}O \\ C_6H_{14}O$                                      | 0.              | .763                | _                  | 9 <b>0.</b> 7<br>69. | Zander and others.                           |  |  |  |  |  |  |
| ı | Di-n-butyl ether                        | C <sub>8</sub> H <sub>18</sub> O                                | 0.              | .784                | -                  | 141.                 | Lieben, Rossi, and others.                   |  |  |  |  |  |  |
|   | Di-sec-butyl ether                      | C <sub>8</sub> H <sub>18</sub> O                                | 21.             | .756                | -                  | 121.                 | Kessel.                                      |  |  |  |  |  |  |
|   | Di-iso-butyl " Di-iso-amyl "            | C <sub>8</sub> H <sub>18</sub> O                                | 15.             | .762                | _                  | 122.                 | Reboul.<br>Wurtz.                            |  |  |  |  |  |  |
| 1 | Di-sec-hexyl "                          | $ \begin{array}{c} C_{10}H_{22}O \\ C_{12}H_{26}O \end{array} $ | o.<br>-         | ·799<br>-           | _                  | 170175.<br>203208.   | Erlenmeyer and<br>Wanklyn.                   |  |  |  |  |  |  |
| - | Di-norm-octyl "                         | C <sub>16</sub> H <sub>84</sub> O                               | 17.             | .805                | -                  | 280282.              |                                              |  |  |  |  |  |  |
|   |                                         | ( <b>f</b> ) E                                                  | thyl eth        | ers: C <sub>n</sub> | $H_{2n+2}()$       |                      |                                              |  |  |  |  |  |  |
|   | Ethyl-methyl ether                      | C <sub>3</sub> H <sub>8</sub> O                                 | 0.              | 0.725               | -                  | II.                  | Wurtz, Williamson.                           |  |  |  |  |  |  |
| 1 | " propyl "                              | C <sub>5</sub> H <sub>12</sub> O                                | 20.             | 0.739               | -                  | 6364.                | Chancel, Brühl.                              |  |  |  |  |  |  |
|   | " iso-propyl ether . " norm-butyl ether | $\begin{array}{c c} C_5H_{12}O \\ C_6H_{14}O \end{array}$       | 0.              | ·745                | _                  | 54·<br>92.           | Markownikow.<br>Lieben, Rossi.               |  |  |  |  |  |  |
| 1 | " iso-butyl ether .                     | C <sub>6</sub> H <sub>14</sub> O                                | -               | .751                | -                  | 78.–80.              | Wurtz.                                       |  |  |  |  |  |  |
| 1 | " iso-amyl ether .                      | C <sub>7</sub> H <sub>16</sub> O                                | 18.             | .764                |                    | 112.                 | Williamson and                               |  |  |  |  |  |  |
|   | " norm-hexyl ether                      | C <sub>8</sub> H <sub>18</sub> O                                | _               | _                   | _                  | 134137.              | others.<br>Lieben, Janeczek.                 |  |  |  |  |  |  |
|   | " norm-heptyl ether                     | $C_9H_{20}O$                                                    | 16.             | .790                | -                  | 165.                 | Cross.                                       |  |  |  |  |  |  |
|   | " norm-octyl ether                      | $C_{10}H_{22}O$                                                 | 17.             | •794                | -                  | 182184.              | Moslinger.                                   |  |  |  |  |  |  |

<sup>\*</sup> Boiling-point under 15 mm. pressure. † Liquid at —11.° C. and 180 atmospheres' pressure (Cailletet).

#### DENSITIES AND MELTING AND BOILING POINTS OF SOME ORGANIC COMPOUNDS.

### (g) MISCELLANEOUS.

| Substance              | Chemical formula.                         | Density<br>temperat | and<br>ture. | Melting<br>point C | Boiling<br>point C | Authority. |
|------------------------|-------------------------------------------|---------------------|--------------|--------------------|--------------------|------------|
| Acetic acid            | CH₃COOH                                   |                     | o°           | 76 7               | 0                  | V.         |
| Acetone                | CH <sub>3</sub> COCH <sub>3</sub>         | 0.812               |              | 16.7               | 118.5              | Young, '09 |
| Aldehyde               | C <sub>2</sub> H <sub>4</sub> O           | 0.812               | 0            | -94.6<br>-120.     | 56.1               |            |
| Aniline                | $C_6H_5NH_2$                              | 1.038               | 0            | -120.<br>-8.       | +20.8<br>183.0     |            |
| Beeswax                | C61151V112                                | 0.06 ±              | U            | 62.                | 103.9              |            |
| Benzoic acid           | $C_7H_6O_2$                               | 1.203               | 4            | 121.               | 240.               |            |
| Benzene                | $C_6H_6$                                  | 0.879               | 20           | 5.48               | 80.2               | Richards   |
| Benzophenone           | $(C_6H_6)_2CO$                            | 1.000               | 50           | 48.                | 305.9              | Holborn-   |
| Denzophenone           | (06116/200                                | 1.090               | 30           | 40.                | 303.9              | Henning    |
| Butter                 |                                           | 0.86-7              |              | 30 ±               |                    | Tronning   |
| Camphor                | C <sub>10</sub> H <sub>16</sub> O         | 0.00                | IO           | 176.               | 200.               |            |
| Carbolic acid          | C <sub>6</sub> H <sub>5</sub> OH          | 1.060               | 21           | 43.                | 182.               |            |
| Carbon bisulphide      |                                           | 1.202               | 0            | -110.              | 46.2               |            |
| " tetrachlor-          | 002                                       | 2,-92               |              |                    | 70.2               |            |
| ide                    | CCl <sub>4</sub>                          | 1.582               | 21           | -30.               | 76.7               | Young      |
| Chlorbenzene           | C <sub>6</sub> H <sub>6</sub> Cl          | I.III               | 15           | -40.               | 132.               |            |
| Chloroform             | CHCl <sub>3</sub>                         | 1.257               | -3           | -65.               | 61.2               |            |
| Cyanogen               | $C_2N_2$                                  |                     |              | -35.               | -21.               |            |
| Ethyl bromide          | $C_2H_5Br$                                | 1.45                | 15           | -117.              | 38.4               |            |
| " chloride             | C <sub>2</sub> H <sub>5</sub> Cl          | 0.018               | 8            | -141.6             | 14.                |            |
| " ether                | C <sub>4</sub> H <sub>10</sub> O          | 0.736               | 0            | -118.              | 34.6               |            |
| " iodide               | $C_2H_5I$                                 | 1.944               | 14           | _                  | 72.                |            |
| Formic acid            | HCOOH                                     | 1.242               | 0            | 8.6                | 100.8              |            |
| Gasolene               |                                           | 0.68 ±              |              |                    | 70-90              |            |
| Glucose                | CHO(HCOH) <sub>4</sub> CH <sub>2</sub> OH | 1.56                |              | 146.               |                    |            |
| Glycerine              | $C_3H_8O_3$                               | 1.269               | 0            | 20.                | 290.               |            |
| Iodoform               | CHI <sub>3</sub>                          | 4.01                | 25           | 119.               | _                  |            |
| Lard                   |                                           |                     |              | 29 ±               | _                  |            |
| Methyl chloride        | CH₃Cl                                     | 0.992               | -24          | -103.6             | -24.I              |            |
| Methyl iodide          | CH₃I                                      | 2.285               | 15           | -64.               | 42.3               |            |
| Naphthalene            | $C_6H_4 \cdot C_4H_4$                     | 1.152               | 15           | 80.                | 218.               | Holborn-   |
|                        |                                           |                     |              |                    |                    | Henning    |
| Nitrobenzene           | $C_6H_5O_2N$                              | 1.212               | 7.5          | 5.                 | 211.               |            |
| Nitroglycerine         | $C_3H_5N_3O_9$                            | 1.60                |              | _                  | _                  |            |
| Olive oil              | CTT O TT O                                | 0.92                |              | 20 ±               | 300 =              |            |
| Oxalic acid            | $C_2H_2O_4 \cdot 2H_2O$                   | 1.68                |              | 190.               |                    |            |
| Paraffin wax, soft.    |                                           |                     |              | 38-52              | 350-390            |            |
| " " hard               |                                           | _                   |              | 52-56              | 390-430            |            |
| Pyrogallol             | $C_6H_3(OH)_3$                            | 1.46                | 40           | 133.               | 293.               |            |
| Spermaceti             | CHO                                       | 0.95                | 15           | 45 =               |                    |            |
| Starch                 |                                           | 1.56                |              | none               |                    |            |
| Sugar, cane            | $C_{12}H_{22}O_{11}$                      | 1.588               | 20           | 160.               |                    |            |
| Stearine               | $(C_{18}H_{35}O_2)_3C_3H_5$               | 0.925               | 65           | 71.<br>27–38       |                    |            |
| Tallow, beef           |                                           | 0.94                | 15           | 32-41              |                    |            |
| " mutton Tartaric acid | $C_4H_6O_6$                               | 0.94                | 15           | 170.               |                    |            |
| Toluene                | $C_4\Pi_6O_6$ $C_6H_5CH_3$                | 0.882               | 00           | -92.               | 110.31             | Richards   |
| Xylene (o)             | $C_6H_4(CH_3)_2$                          | 0.863               | 20           | -92.<br>-28.       | 142.               |            |
| " (m)                  | $C_6H_4(CH_3)_2$                          | 0.864               | 20           | 54.                | 140.               |            |
| " (p)                  | $C_6H_4(CH_3)_2$                          | 0.861               | 20           | 15.                | 138.               |            |
| (P)                    | C6114(C113/2                              | 0.001               |              | -3.                | -0                 |            |
| 1                      |                                           |                     |              |                    |                    |            |

#### TABLE 221. - Melting-point of Mixtures.

|            |      |            |      |            | Melti      | ng-point   | s, C°.     |             |      |             |             | - ac       |
|------------|------|------------|------|------------|------------|------------|------------|-------------|------|-------------|-------------|------------|
| Metals.    |      |            |      | Percen     | tage of r  | netal in   | second o   | column.     |      |             |             | Reference. |
|            | 0%   | 10%        | 20%  | 30%        | 40%        | 50%        | 60%        | 70%         | 80%  | 90%         | 100 %       | Re         |
| Pb. Sn.    | 326  | 295        | 276  | 262        | 240        | 220        | 190        | 185         | 200  | 215         | 232         |            |
| Bı.        | 322  | 290        | -    | -          | 179        | 145        | 126        | 168         | 205  | _           | 268         |            |
| Te.        | 322  | 710        | 790  | 880        | 917        | 760        | 600        | 480         | -410 | 425         | 446         |            |
| Ag.        | 328  | 460        | 545  | 590        | 620        | 650        | 705        | 775         | 840  | 905         | 959         |            |
| Na.        | 1    | 360        | 420  | 400        | 370        | 330        | 290        | 250         | 200  | 130         | 96          | 1          |
| Cu.        | 326  | 870        | 920  | 925        | 945        | 950        | 955        | 985         | 1005 | 1020<br>600 | 1084        | ١,         |
| Sb.        | 326  | 250        | 275  | 330        | 395        | 440        | 490        | 525         | 560  |             | 632         |            |
| Al. Sb.    | 650  | 750        | 840  | 925        | 945        | 950<br>580 | 970        | 1000        | 1040 | 1010        | 632<br>1084 | 2          |
| Cu.        | 650  | 630        | 600  | 560        | 540        |            |            | 755         | 930  | 1055        | 1062        |            |
| Au.        | 655  | 675        | 740  | 800<br>600 | 855        | 915<br>580 | 970        | 1025<br>570 | 1055 |             |             | _          |
| Ag.<br>Zn. | 650  | 625        | 615  | 600        | 590<br>580 | 560        | 575<br>530 | 510         | 475  | 750<br>425  | 954         | 1          |
| Fe.        | 654  | 860        |      | 1110       |            | 1145       | 1220       | 1315        | 1425 | 1500        | 1515        |            |
| Sn.        | 653  |            | 635  | 625        | 620        | 605        | 590        | 570         | 560  | 540         | 232         |            |
| Sb. Bi.    | 650  | 645<br>610 |      |            |            |            | 520        | 470         | 405  | 330         | 268         | 1          |
|            | 630  |            | 590  | 575        | 555        | 540        | 505        | 545         | 680  | 850         | 959         | _          |
| Ag.<br>Sn. | 622  | 595<br>600 | 570. | 545        | 520<br>480 |            |            | 350         | 310  | 255         | 232         | ,          |
| Zn.        | 632  | 555        | 570  | 525<br>540 | 570        | 430<br>565 | 395<br>540 | 525         | 510  | 470         | 419         | ,          |
| Ni. Sn.    | 1455 | 1380       | 1200 | 1200       | 1235       | 1290       | 1305       | 1230        | 1060 | 800         | 232         | 1          |
| Na. Bi.    | 96   | 425        | 520  | 590        | 645        | 690        | 720        | 730         | 715  | 570         | 268         | 1          |
| Cd.        | 96   | 125        | 135  | 245        | 285        | 325        | 330        | 340         | 360  | 390         | 322         | ,          |
| Ed. Ag.    | 322  | 420        | 520  | 610        | 700        | 760        | 805        | 850         | 895  | 940         | 954         |            |
| Tl.        | 321  | 300        | 285  | 270        | 262        | 258        | 245        | 230         | 210  | 235         | 302         |            |
| Źn.        | 322  | 280        | 270  | 295        | 313        | 327        | 340        | 355         | 370  | 390         | 419         |            |
| Au. Cu.    | 1063 | 910        | 890  | 895        | 905        | 925        | 975        | 1000        | 1025 | 1060        | 1084        |            |
| Ag.        | 1064 | 1062       | 1061 | 1058       | 1054       | 1049       | 1039       | 1025        | 1006 | 982         | 963         |            |
| Pt.        | 1075 | 1125       | 1190 | 1250       | 1320       | 1380       | 1455       | 1530        | 1610 | 1685        | 1775        | 2          |
| K. Na.     | 62   | 17.5       | -10  | -3.5       | 5          | 11         | 26         | 41          | 58   | 77          | 97.5        | 1          |
| Hg.        | -    | -7.5       | -    | -          |            | 90         | 110        | 135         | 162  | 265         | 77 -        | 1          |
| Tl.        | 62.5 | 133        | 165  | 188        | 205        | 215        | 220        | 240         | 280  | 305         | 301         | 1 1        |
| Cu. Ni.    | 1080 | 1180       | 1240 | 1290       | 1320       | 1335       | 1380       | 1410        | 1430 | 1440        | 1455        | 2          |
| Ag.        | 1082 | 1035       | 990  | 945        | 910        | 870        | 830        | 788         | 814  | 875         | 960         |            |
| Sn.        | 1084 | 1005       | 890  | 755        | 725        | 680        | 630        | 580         | 530  | 440         | 232         | ,          |
| Zn.        | 1084 | 1040       | 995  | 930        | 900        | 880        | 820        | 780         | 700  | 580         | 419         | 1          |
| Ag. Zn.    | 959  | 850        | 755  | 705        | 690        | 660        | 630        | 610         | 570  | 505         | 419         | 1          |
| Sn.        | 959  | 870        | 750  | 630        | 550        | 495        | 450        | 420         | 375  | 300         | 232         |            |
| Na. Hg.    | 96.5 | 90         | 80   | 70         | 60         | 45         | 22         | 55          | 95   | 215         | _           | 1          |

- 1 Means, Landolt-Börnstein-Roth Tabellen.

- 1 Means, Landolt-Börnstein-Roth Tabellen.
  2 Friedrich-Leroux, Metal. 4, 1907.
  3 Gwyer, Zs. Anorg. Ch. 57, 1908.
  4 Means, L.-B.-R. Tabellen.
  5 Roberts-Austen Chem. News, 87, 2, 1903.
  6 Shepherd J. ph. ch. 8, 1904.
  7 Kapp, Diss., Königsberg, 1901.
  8 Fay and Gilson, Trans. Am. Inst. Min. Eng. Nov. 1901.
- 9 Heycock and Neville, Phil. Trans. 189A, 1897.

- 11 Heycock and Neville, J. Chem. Soc. 71, 1897.

  12 """ Phil. Trans. 202A, 1, 1903.

  13 Kurnakow, Z. Anorg. Chem. 23, 439, 1900.

  14 """ 30, 86, 1902.

  15 """ 30, 109, 1902.

  16 Roland-Gosselin, Bul. Soc. d'Encour. (5) 1, 1896.

  17 Gautier, """ (5) 1, "

  18 Le Chatelier, """ (4) 10, 573,
- 1895.
  19 Reinders, Z. Anorg. Chem. 25, 113, 1896.
  20 Erliard and Schertel, Jahrb. Berg-u. Hüttenw. Sachsen, 1879, 17.

#### TABLE 222. - Alloy of Lead, Tin, and Bismuth.

|                   |                      | Per cent.            |                      |                      |                      |                      |                      |                      |                      |                     |  |  |  |
|-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|--|--|--|
| Lead              | 32.0<br>15.5<br>52.5 | 25.8<br>19.8<br>54.4 | 25.0<br>15.0<br>60.0 | 43.0<br>14.0<br>43.0 | 33·3<br>33·3<br>33·3 | 10.7<br>23.1<br>66.2 | 50.0<br>33.0<br>17.0 | 35.8<br>52.1<br>12.1 | 20.0<br>60.0<br>20.0 | 70.9<br>9.1<br>20.0 |  |  |  |
| Solidification at | 96°                  | 1010                 | 1250                 | 1280                 | 145°                 | 1480                 | 1610                 | 1810                 | 1820                 | 234°                |  |  |  |

Charpy, Soc. d'Encours, Paris, 1901.

#### TABLE 223. - Low Melting-point Alloy.

|         | Per cent.                                                       |                                                     |      |                                                |  |  |  |  |  |  |  |  |
|---------|-----------------------------------------------------------------|-----------------------------------------------------|------|------------------------------------------------|--|--|--|--|--|--|--|--|
| Cadmium | 10.8 10.2<br>14.2 14.3<br>24.9 25.1<br>50.1 50.4<br>65.5° 67.5° | 14.8<br>7.0<br>13.8<br>26.0<br>24.3<br>52.2<br>48.8 | 50.0 | 7.1 6.7<br>39.7 43.4<br>53.2 49.9<br>89.5° 95° |  |  |  |  |  |  |  |  |

Drewitz, Diss. Rostock, 1902.

All compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

### TRANSFORMATION AND MELTING TEMPERATURES OF LIME-ALUMINA-SILICA COMPOUNDS AND EUTECTIC MIXTURES.

The majority of these determinations are by G. A. Rankin. (Part unpublished.)

| Substance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | % CaO                                                                                                                   | $\mathrm{Al_2O_3}$                                   | SiO <sub>2</sub>                                                                              | Transformation. Temp.                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| CaSiO <sub>3</sub> CaSiO <sub>3</sub> CaSiO <sub>3</sub> Ca <sub>2</sub> SiO <sub>4</sub> " Ca <sub>3</sub> Si <sub>2</sub> O <sub>7</sub> Ca <sub>3</sub> Si <sub>2</sub> O <sub>7</sub> Ca <sub>3</sub> Al <sub>2</sub> O <sub>6</sub> Ca <sub>5</sub> Al <sub>6</sub> O <sub>14</sub> Ca <sub>4</sub> Ca <sub>4</sub> Ca <sub>4</sub> Ca <sub>3</sub> Al <sub>10</sub> O <sub>18</sub> Al <sub>2</sub> SiO <sub>5</sub> Ca <sub>4</sub> Al <sub>2</sub> SiO <sub>5</sub> Ca <sub>4</sub> Al <sub>2</sub> SiO <sub>7</sub> Ca <sub>3</sub> Al <sub>2</sub> SiO <sub>7</sub> Ca <sub>3</sub> Al <sub>2</sub> SiO <sub>8</sub> Ca <sub>4</sub> Al <sub>2</sub> SiO <sub>8</sub> | 48.2<br>48.2<br>65.<br>65.<br>65.<br>65.<br>65.<br>58.2<br>73.6<br>62.2<br>47.8<br>35.4<br>24.8<br>20.1<br>40.8<br>50.9 | 37.8<br>52.2<br>64.6<br>75.2<br>62.8<br>36.6<br>37.2 | 51.8<br>51.8<br>335.<br>335.<br>335.<br>41.8<br>226.4<br>———————————————————————————————————— | Melting                                                                                                                                           |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CUTECTICS                                                                                                               |                                                      |                                                                                               | EUTECTICS.                                                                                                                                        |
| Crystalline Phases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | % CaO A                                                                                                                 | l <sub>2</sub> O <sub>3</sub> SiO <sub>2</sub>       | Melting<br>Temp.                                                                              | Crystalline Phases. % CaO Al <sub>2</sub> O <sub>3</sub> SiO <sub>2</sub> Melting Temp.                                                           |
| CaSiO <sub>3</sub> ,SiO <sub>2</sub> Ca,SiO <sub>3</sub> 3CaO,2SiO <sub>2</sub> Ca,SiO <sub>4</sub> CaO. Al <sub>2</sub> SiO <sub>5</sub> ,SiO <sub>2</sub> Al <sub>2</sub> SiO <sub>5</sub> ,Al <sub>2</sub> O <sub>8</sub> CaAl <sub>2</sub> Si <sub>2</sub> O <sub>8</sub> CaSiO <sub>3</sub> CaAl <sub>2</sub> Si <sub>2</sub> O <sub>8</sub> CaAl <sub>2</sub> Si <sub>2</sub> O <sub>8</sub>                                                                                                                                                                                                                                                                              | - 62<br>34.1 18                                                                                                         | - 63.<br>- 45.5<br>- 32.5<br>87.<br>36.<br>3.6 47.3  | 1436° 1455± 2065± 1610 1810                                                                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                             |
| SiO <sub>2</sub> { CaAl <sub>2</sub> Si <sub>2</sub> O <sub>8</sub> } SiO <sub>2</sub> ,CaSiO <sub>3</sub> }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         | 9.5 70.<br>4.8 62.                                   | 1359                                                                                          | QUINTUPLE POINTS.                                                                                                                                 |
| $ \begin{array}{c c} Ca_{2}Al_{2}SiO_{7} \\ Ca_{2}SiO_{4} \\ Al_{2}O_{3} \\ CaAl_{2}Si_{2}O_{8} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                         | 3.7 26.7<br>9.3 41.4                                 | 1545                                                                                          | $ \begin{array}{c c} \hline & Ca_2Al_2SiO_7 \\ Ca_3SiO_7 \\ Ca_2SiO_4 \\ \end{array} \bigg\} \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
| $\begin{bmatrix} CaAl_2Si_2O_8 \\ Al_2SiO_5,SiO_2 \\ Ca_2Al_2SiO_7 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                         | 9.8 70.4<br>0.8 14.2                                 | 1345                                                                                          | $   \left  \begin{array}{c} Ca_2Al_2SiO_7 \\ Ca_2SiO_4 \\ CaAl_2O_4 \end{array} \right  48.3  42.  9.7  1380 $                                    |
| $\begin{array}{ccc} {\rm Ca_3Al_{10}O_{18}} & \{ & \\ {\rm Ca_2Al_2SiO_7} & \{ & \\ {\rm CaAl_2O_4} & \{ & \\ \end{array} \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00                                                                                                                      | 2.9 9.3                                              | 1512                                                                                          | $ \begin{array}{c c} CaAl_2Si_2O_8 \\ Al_2O_8 \\ Al_2SiO_5 \end{array} \right\} 15.6 36.5 47.9 1512 $                                             |
| $ \begin{bmatrix} Ca_2Al_2SiO_7 \\ CaAl_2O_4 \\ Ca_3Al_{10}O_{18} \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37-5 53                                                                                                                 | 3.2 9.3                                              | 1505                                                                                          | $ \left  \begin{array}{c} Ca_3Al_{10}O_{18} \\ Ca_2Al_2SiO_7 \\ Al_2O_3 \end{array} \right  31.2  44.5  24.3  1475 $                              |
| $\begin{bmatrix} CaAl_2Si_2O_8 \\ Ca_2Al_2SiO_7 \\ Ca_2Al_2SiO_7 \\ Ca_3Si_2O_7 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         | 5.8 33.<br>1.8 41.                                   | 1385                                                                                          | QUADRUPLE POINTS.                                                                                                                                 |
| $\begin{bmatrix} \text{CaSiO}_3 \\ \text{Ca}_2 \text{Al}_2 \text{SiO}_7 \\ \text{CaSiO}_3 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                         | 3.2 41.1                                             | 1316                                                                                          | 3CaO.2SiO <sub>2</sub> } 55.5 — 44.5 1475                                                                                                         |

The accuracy of the melting-points is 5 to 10 units. Geophysical Laboratory. See also Day and Sosman, Am. J. of Sc. xxxi, p. 341, 1911.

#### LOWERING OF FREEZING-POINTS BY SALTS IN SOLUTION.

In the first column is given the number of gram-molecules (anhydrous) dissolved in 1000 grams of water; the second contains the molecular lowering of the freezing-point; the freezing-point is therefore the product of these two columns. After the chemical formula is given the molecular weight, then a reference number.

| weight, then a r                           | CICICIIC               | oc mumber.                                               |                        |                                            |                        |                                         |                        |
|--------------------------------------------|------------------------|----------------------------------------------------------|------------------------|--------------------------------------------|------------------------|-----------------------------------------|------------------------|
| g. mol.<br>1000 g. H <sub>2</sub> O        | Molecular<br>Lowering. | g. mol.<br>1000 g. H <sub>2</sub> O                      | Molecular<br>Lowering. | g. mol.<br>1000 g. H <sub>2</sub> O        | Molecular<br>Lowering. | g, mol.<br>1000 g. H <sub>2</sub> O     | Molecular<br>Lowering. |
| Pb(NO <sub>3</sub> ) <sub>2</sub> , 331.0: |                        | 0.0500                                                   | 3.47°                  | 0.4978                                     | 2.02°                  | MgCl <sub>2</sub> , 95.26: 6,           | 14.                    |
| 0.000 362                                  | 5.5°                   | .1000                                                    | 3.42                   | .8112                                      | 2.01                   | 0.0100                                  | 5.10                   |
| .001204                                    | 5.30                   | ,2000                                                    | 3.32                   | 1.5233                                     | 2,28                   | .0500                                   | 4.98                   |
| .002805                                    | 5.17                   | .500                                                     | 3.26                   | BaCl <sub>2</sub> , 208.3: 3,6             |                        | .1500                                   | 4.96                   |
| .005570                                    | 4.97                   | 1.000                                                    | 3.14                   | 0.00200                                    | 5, 13.<br>5.5°         | .3000                                   | 5.186                  |
| .01737                                     | 4.69                   | Lino3, 69.07: 9.                                         | 3.14                   | .00498                                     | 5.2                    | .6099                                   | 5.69                   |
| .5015                                      | 2.99                   | 0.0398                                                   | 3.4°                   | .0100                                      | 5.0                    | KCl, 74.60: 9, 17-                      |                        |
| Ba(NO <sub>3</sub> ) <sub>2</sub> , 261.5: |                        | .1671                                                    | 3.35                   | .0200                                      | 4.95                   | 0.02910                                 | 3.54°                  |
| 0.000383                                   | 5.6°                   | .4728                                                    | 3.35                   | .04805                                     | 4.80                   | .05845                                  | 3.46                   |
| .001259                                    | 5.28                   | 1.0164                                                   | 3.49                   | .100                                       | 4.69                   | .112                                    | 3.43                   |
| .002681                                    | 5.23                   | Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> , 342.4: | 10.                    | .200                                       | 4.66                   | .3139                                   | 3.41                   |
| .005422                                    | 5.13                   | 0.0131                                                   | 5.6°                   | .500                                       | 4.82                   | .476                                    | 3.37                   |
| .008352                                    | 5.04                   | .0261                                                    | 4.9                    | .586                                       | 5.03                   | 1.000                                   | 3.286                  |
| Cd(NO <sub>3</sub> ) <sub>2</sub> , 236.5: | 3.                     | .0543                                                    | 4.5                    | .750                                       | 5.21                   | 1.989                                   | 3.25                   |
| 0.00298                                    | 5.4°                   | .1086                                                    | 4.03                   | _                                          |                        | 3.269                                   | 3.25                   |
| .00689                                     | 5.25                   | .217                                                     | 3.83                   | CdCl <sub>2</sub> , 183.3: 3, 1<br>0.00299 | 5.0°                   | NaCl, 58.50: 3, 20                      |                        |
| .01997                                     | 5.25<br>5.18           | CdSO <sub>4</sub> , 208.5: 1, 1                          | 11.                    | .00690                                     | 4.8                    | 0.00399                                 | 3.7°                   |
| .04873                                     | 5.15                   | 0.000704                                                 | 3.35°                  | .0200                                      | 4.64                   | .01000                                  | 3.67                   |
| AgNO3, 167.0: 4,                           | 5.                     | .002685                                                  | 3.05                   | .0541                                      | 4.11                   | .0221                                   | 3.55                   |
| 0.1506                                     | 3.32°                  | .01151                                                   | 2.69                   | .0818                                      | 3.93                   | .04949                                  | 3.51                   |
| .5001                                      | 2.96                   | .03120                                                   | 2.42                   | .214                                       | 3.39                   | .1081                                   | 3.48                   |
| .8645                                      | 2.87                   | .1473                                                    | 2.13                   | .429                                       | 3.03                   | .2325                                   | 3.42                   |
| 1.749                                      | 2.27                   | .4129                                                    | 1.80                   | .858                                       | 2.71                   | .4293                                   | 3.37                   |
| 2.953                                      | 1.85                   | .7501                                                    | 1.76                   | 1.072                                      | 2.75                   | .700                                    | 3.43                   |
| 3.856                                      | 1.64                   | 1.253                                                    | 1.86                   |                                            | 2./3                   |                                         |                        |
| 0.0560                                     | 3.82                   | K2SO4, 174.4: 3, 5,                                      | 6, 10, 12.             | CuCl <sub>2</sub> , 134.5:9.               | 4.00                   | NH <sub>4</sub> Cl, 53.52: 6,<br>0.0100 | 3.6°                   |
| .1401                                      | 3.58                   | 0.00200                                                  | 5.4°                   | 0.0350                                     | 4.9°<br>4.81           | .0200                                   | 3.56                   |
| .3490                                      | 3.28                   | .00398                                                   | 5.3                    | .1337                                      |                        | .0350                                   | 3.50                   |
| KNO3, 101.9: 6, 7                          |                        | .00865                                                   | 4.9                    | .3380                                      | 4.92                   | .1000 ·                                 | 3.43                   |
| 0.0100                                     | 3.5                    | .0200                                                    | 4.76                   | .7149                                      | 5.32                   | .2000                                   | 3.396                  |
| .0200                                      | 3.5                    | .0500                                                    | 4.60                   | CoCl <sub>2</sub> , 129.9: 9.              | 0                      | .4000                                   | 3.393                  |
| .0500                                      | 3.41                   | ,1000                                                    | 4.32                   | 0.0276                                     | 5.0°                   | .7000                                   | 3.41                   |
| .100                                       | 3.31                   | .200                                                     | 4.07                   | .1094                                      | 4.9                    |                                         | _                      |
| .200                                       | 3.19                   | -454                                                     | 3.87                   | .2369                                      | 5.03                   | LiCl, 42.48: 9, 15<br>0.00992           | 3.7°                   |
| .250                                       | 3.08                   | CuSO <sub>4</sub> , 159.7: 1, 4                          | , 11.                  | ·4399                                      | 5,30                   | .0455                                   | 3.5                    |
| .500                                       | 2.94                   | 0.000286                                                 | 3.3°                   | -538                                       | 5.5                    | .09952                                  | 3.53                   |
| .750                                       | 2.81                   | .000843                                                  | 3.15                   | CaCl <sub>2</sub> , 111.0: 5, 1            | 3-16.                  | .2474                                   | 3.50                   |
| 1.000                                      | 2.66                   | .002279                                                  | 3.03                   | 0.0100                                     | 5.1°                   | .5012                                   | 3.61                   |
| NaNO <sub>3</sub> , 85.09: 2,              | 6, 7.<br>3.6°          | .006670                                                  | 2.79                   | .05028                                     | 4.85                   | •7939                                   | 3.71                   |
| 0.0100                                     |                        | .01463                                                   | 2.59                   | .1006                                      | 4.79                   |                                         |                        |
| .0250                                      | 3.46                   | .1051                                                    | 2.28                   | .5077                                      | 5.33                   | BaBr <sub>2</sub> , 297.3: 14.          | 5.1°                   |
| .0500                                      | 3.44                   | .2074                                                    | 1.95                   | .946                                       | 5·3<br>8.2             | .150                                    | 4.9                    |
| .2000                                      | 3.345                  | .4043<br>.8898                                           | - 1                    | 2.432                                      |                        | .200                                    | 5.00                   |
| .500                                       | 3.24                   |                                                          | 1.76                   | 3.469<br>3.829                             | 11.5                   | .500                                    | 5.18                   |
| .5015                                      | 3.30                   | MgSO <sub>4</sub> , 120.4: 1,<br>0.000675                |                        |                                            | 14.4                   | _                                       | 3.1.1                  |
| 1.0030                                     | 3.03                   | .002381                                                  | 3.29                   | 0.0478                                     | 5.2                    | AlBr <sub>3</sub> , 267.0: 9.<br>0.0078 | 1.40                   |
|                                            |                        | .01263                                                   | 2.72                   | .153                                       | 4.91                   |                                         | 1.4                    |
| NH4NO3, 80.11: 6                           | 3.60                   | .0580                                                    | 2.65                   | .331                                       | 5.15                   | .0559                                   | 1.07                   |
| .0250                                      | 3.50                   | .2104                                                    | 2.23                   | .998                                       | 6.34                   | .4355                                   | 1.07                   |
| 10230                                      | 2,20                   | 12.04                                                    | 3                      | .990                                       | 0.34                   | *4333                                   | 0/                     |
|                                            |                        |                                                          |                        | "                                          |                        |                                         |                        |

<sup>1</sup> Hausrath, Ann. Phys. 9, 1902.
2 Leblanc-Noyes, Z. Phys. Ch. 6, 1890.
3 Jones, Z. Phys. Ch. 11, 1893.
4 Raoult, Z. Phys. Ch. 2, 1888.
5 Arrhenius, Z. Phys. Ch. 2, 1888.
6 Loomis, Wied. Ann. 57, 1896.
6 Loomis, Wied. Ann. 57, 1896.
7 Jones, Am. Chem. J. 27, 1902.
8 Jones-Caldwell, Am. Chem. J. 25, 1901.
9 Biltz, Z. Phys. Ch. 40, 1902.
10 Jones-Mackay, Am. Chem. J. 19, 1897.
Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

# LOWERING OF FREEZING-POINTS BY SALTS IN SOLUTION (continued).

|                                   | Molecular<br>Lowering. |                                             | Molecular<br>Lowering. |                                              | Molecular<br>Lowering. |                                         | L 60                   |
|-----------------------------------|------------------------|---------------------------------------------|------------------------|----------------------------------------------|------------------------|-----------------------------------------|------------------------|
| g. mol.                           | rical                  | g. mol.                                     | ri.c                   | g. mol                                       | rin                    | g mol.                                  | Molecular<br>Lowering. |
| 1000 g. H <sub>2</sub> O          | ole<br>we              | 1000 g. H <sub>2</sub> O                    | ole                    | 1000 g. H <sub>2</sub> O                     | lec<br>we              | 1000 g. H <sub>2</sub> O                | lec                    |
| 8, 1120                           | 23                     | 82.                                         | EZ -                   | 1000 B. 1120                                 | No.                    | 1000 g. 11 <sub>2</sub> 0               | 20                     |
|                                   | 1                      |                                             | 1                      |                                              |                        |                                         | 44                     |
|                                   |                        |                                             |                        |                                              |                        |                                         |                        |
| CdBr2, 272.3: 3, 1                | 4.                     | KOH, 56.16: 1, 1                            | 5, 23:                 | Na2SiO3, 122.5: 1                            | 5.                     | 0.472                                   | 2.20°                  |
| 0.00324                           | 5.1                    | 0.00352                                     | 3.60°                  | 0.01052                                      | 6.4°                   | .944                                    | 2.27                   |
| .00718                            | 4.6                    | .00770                                      | 3.59                   | .05239                                       | 5.86                   | 1.620                                   | 2.60                   |
| .03627                            | 3.84                   | .02002                                      | 3.44                   | .1048                                        | 5.28                   | (COOH)2, 90.02:                         | 4 10                   |
| .0719                             | 3.39                   | .05006                                      | 3.43                   | .2099                                        | 4.66                   | 0.01002                                 | 4, 15.<br>3.3°         |
| .1122 '                           | 3.39                   | .1001                                       | 3.42                   | .5233                                        | 3.99                   | .02005                                  |                        |
| .220                              | 2.96                   | .2003                                       | 3.424                  | HCl, 36.46:                                  | 0 //                   | .05019                                  | 3.19                   |
| .440                              | 2.76                   | .230                                        | 3.50                   | 1-3, 6, 13                                   | 18, 22.                | .1006                                   | 3.03<br>2.83           |
| .800                              | 2.59                   | .465                                        | 3.57                   | 0.00305                                      | 3.68°                  | .2022                                   |                        |
|                                   | 37                     | CH.OH. 32.03: 3                             | 3.37                   | .00695                                       | 3.66                   |                                         | 2.64                   |
| CuBr <sub>2</sub> , 223.5: 9.     | 5.1°                   | CH <sub>3</sub> OH, 32.03: 2<br>0.0100      | 1 80                   | .0100                                        | 3.6                    | .366                                    | 2.56                   |
| 0.0242                            | 2.1                    |                                             | 1.82                   | .01703                                       | 3.59                   | .648                                    | 2.3                    |
| .0817                             | 5.1                    | .0301                                       | 1.811                  | .0500                                        | 3.59                   | C3H5(OH)3, 92.06                        | : 24, 25.              |
| .2255                             | 5.27                   |                                             |                        |                                              |                        | 0.0200                                  | 1.86°                  |
| .6003                             | 5.89                   | 1.046                                       | 1.86                   | .1025                                        | 3.56                   | .1008                                   | 1.86                   |
| CaBr <sub>2</sub> , 200.0: 14.    |                        | 3.41                                        | 1.88                   |                                              | 3.57                   | .2031                                   | 1.85                   |
| 0.0871                            | 5.1°                   | 6.200                                       | 1.944                  | .3000                                        | 3.612                  | ·535                                    | 1.91                   |
| .1742                             | 5.18                   | C2H5OH, 46.04:                              |                        | .464                                         | 3.68                   | 2.40                                    | 1.98                   |
| .3484                             | 5.30                   | 1, 12, 17                                   | , 24-27                | .516                                         | 3.79                   | 5.24                                    | 2.13                   |
| .5226                             | 5.64                   | 0.000402                                    | 1.67°                  | 1.003                                        | 3.95                   |                                         |                        |
| 1                                 |                        | .004993                                     | 1.67                   | 1.032                                        | 4.10                   | $(C_2H_5)_2O$ , 74.08:                  | 24                     |
| MgBr <sub>2</sub> , 184.28: 14    | - 40                   | .0100                                       | 1.81                   | 1.500                                        | 4.42                   | 0.0100                                  | 1.60                   |
| 0.0517                            | 5.4°                   | .02892                                      | 1.707                  | 2.000                                        | 4.97                   | .020I                                   | 1.67                   |
| .103                              | 5.16                   | .0705                                       | 1.85                   | 2.115                                        | 4.52                   | .1011                                   | 1.72                   |
| .207                              | 5.26                   | .1292                                       | 1.829                  | 3.000                                        | 6.03                   | .2038                                   | 1.702                  |
| .517                              | 5.85                   | .2024                                       | 1.832                  | 3.053                                        | 4.90                   | Dextrose, 180.1:                        | 24. 30.                |
| KBr, 119.1: 9, 21.                |                        | .5252                                       | 1.834                  | 4.065                                        | 5.67                   | 0.0198                                  | 1.840                  |
| 0.0305                            | 3.61°                  | 1.0891                                      | 1.826                  | 4.657                                        | 6.19                   | .0470                                   | 1.85                   |
| .1850                             | 3.49                   |                                             |                        |                                              |                        | .1326                                   | 1.87                   |
| .6801                             | 3.30                   | 1.760                                       | 1.83                   | HNO <sub>3</sub> , 63.05: 3, 1               | 3, 15.                 | .4076 .                                 | 1.894                  |
| .250                              | 3.78                   | 3.901                                       | 1.92                   | 0.02004                                      | 3.55°                  | 1.102                                   | 1.921                  |
| .500                              | 3.56                   | 7.91                                        | 2.02                   | .05015                                       | 3.50                   |                                         | -                      |
|                                   |                        | 11.11                                       | 2.12                   | .0510                                        | 3.71                   | Levulose, 180.1:                        | 24, 25.                |
| CdI <sub>2</sub> , 366.1: 3, 5, 2 | 22.                    | 18.76                                       | 1.81                   | .1004                                        | 3.48                   | 0.0201                                  | 1.87°                  |
| 0.00210                           | 4.5°                   | 0.0173<br>.0778                             | 1.80                   | .1059                                        | 3.53                   | .2050                                   | 1.871                  |
| .00626                            | 4.0                    | .0778                                       | 1.79                   | .2015                                        | 3.45                   | ·554<br>1.384                           | 2.01                   |
| .02062                            | 3.52                   | K2CO3, 138.30: 6                            |                        | .250                                         | 3.50                   |                                         | 2.32                   |
| .04857                            | 2.70                   | 0.0100                                      | 5.1°                   | .500                                         | 3.62                   | 2.77                                    | 3.04                   |
| .1360                             | 2.35                   | .0200                                       | 4.93                   | 1.000                                        | 3.80                   | C13H22O11, 342.2: 1                     | , 24, 26.              |
| ·333<br>.684                      | 2.13                   | .0500                                       | 4.71                   | 2.000                                        | 4.17                   | 0.000332                                | 1.900                  |
|                                   | 2.23                   | .100                                        | 4.54                   | 3.000                                        | 4.64                   | .001410                                 | 1.87                   |
| .888                              | 2.51                   | .200                                        | 4.39                   | H <sub>3</sub> PO <sub>2</sub> , 66.0: 29.   |                        | .009978                                 | 1.86                   |
| KI, 166.0: 9, 2.                  |                        |                                             |                        | 0.1260                                       | 2.90°                  | .0201                                   | 1.88                   |
| 0.0651                            | 3.5°                   | Na <sub>2</sub> CO <sub>3</sub> , 106.10:   | 5.10                   | .2542                                        | 2.75                   | .1305                                   | 1.88                   |
| .2782                             | 3.50                   | .0200                                       |                        | .5171                                        | 2.59                   |                                         | 1.00                   |
| .6030                             | 3.42                   |                                             | 4.93                   | 1.071                                        |                        | H <sub>2</sub> SO <sub>4</sub> , 98.08: |                        |
| 1.003                             | 3.37                   | .0500                                       | 4.64                   | H <sub>8</sub> PO <sub>8</sub> , 82.0: 4, 5  | 2.45                   | 13, 20,                                 | 31-33.<br>4.8°         |
|                                   | 3.37                   | .1000                                       | 4.42                   |                                              |                        |                                         |                        |
| SrI <sub>2</sub> , 341.3: 22.     | - 10                   | .2000                                       | 4.17                   | 0.0745                                       | 3.0°                   | .0100                                   | 4.49                   |
| 0.054                             | 5.1°                   | Na <sub>2</sub> SO <sub>3</sub> , 126.2: 28 | 3.                     | .1241                                        | - 11                   | .0200                                   | 4.32                   |
| .108                              | 5.2                    | 0.1044                                      | 4.51°                  | .2482                                        | 2.6                    | .0461                                   | 4.10                   |
| .216                              | 5.35                   | ·3397                                       | 3.74                   | 1.00                                         | 2.39                   | .100                                    | 3.96                   |
| .327                              | 5.52                   | .7080                                       | 3.38                   | H <sub>3</sub> PO <sub>4</sub> , 98.0: 6, 22 | 2.                     | .200                                    | 3.85                   |
| NaOH, 40.06: 15.                  |                        | Na2HPO4, 142.1:                             | 22, 20.                | 0.0100                                       | 2.80                   | .400                                    | 3.98                   |
| 0.02002                           | 3.45°                  | 10010.0                                     | 5.00                   | .0200                                        | 2.68                   | 1.000                                   | 4.19                   |
| .05005                            | 3.45                   | .02003                                      | 4.84                   | .0500                                        | 2.49                   | 1.500                                   | 4.96                   |
| 1001.                             | 3.41                   | .05008                                      | 4.60                   | .1000                                        | 2.36                   | 2.000                                   | 5.65                   |
| .2000                             | 3.407                  | .1002                                       | 4.34                   | .2000                                        | 2.25                   | . 2.500                                 | 6.53                   |
|                                   |                        |                                             |                        |                                              |                        |                                         |                        |
|                                   |                        |                                             |                        |                                              |                        |                                         |                        |

<sup>1-20</sup> See page 217.
21 Sherrill, Z. Phys. Ch. 43, 1903.
22 Chambers-Frazer, Am. Ch. J. 23, 1900.
23 Noyes-Whitney, Z. Phys. Ch. 15, 1894.
24 Loomis, Z. Phys. Ch. 32, 1900.
25 Abegg, Z. Phys. Ch. 15, 1894.
26 Nernst-Abegg, Z. Phys. Ch. 15, 1894.

<sup>27</sup> Pictet-Altschul, Z. Phys. Ch. 16, 1895. 28 Barth, Z. Phys. Ch. 0, 1892. 29 Petersen, Z. Phys. Ch. 11, 1893. 30 Roth, Z. Phys. Ch. 43, 1903. 31 Wildermann, Z. Phys. Ch. 15, 1894. 32 Jones-Carroll, Am. Ch. J. 28, 1902.

#### RISE OF BOILING-POINT PRODUCED BY SALTS DISSOLVED IN WATER.\*

This table gives the number of grams of the salt which, when dissolved in 100 grams of water, will raise the boiling-point by the amount stated in the headings of the different columns. The pressure is supposed to be 76 centimeters.

| Salt.                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | <b>1</b> ° C.                        | 2°                                   | 3°                                            | 4°                                     | <b>5</b> °                                | <b>7</b> °                              | 10°                                      | 15°                                      | 20°                                | 25°                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------|----------------------------------------|-------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|------------------------------------|--------------------------------|
| $\begin{array}{c} \text{BaCl}_2 + 2\text{H}_2\text{O} \\ \text{CaCl}_2 \\ \text{Ca(NO}_3)_2 + 2\text{H}_2\text{O} \\ \text{KOH} \\ \text{KC}_2\text{H}_3\text{O}_2 \end{array}.$                                                                                                                                                                                                                                  |                                    | 15.0<br>6.0<br>12.0<br>4.7<br>6.0    | 31.1<br>11.5<br>25.5<br>9.3<br>12.0  | 47·3<br>16.5<br>39·5<br>13.6<br>18.0          | 63.5<br>21.0<br>53.5<br>17.4<br>24.5   | (71.6 g<br>25.0<br>68.5<br>20.5<br>31.0   | 32.0                                    | .5 rise<br>41.5<br>152.5<br>34.5<br>63.5 | of temp<br>55.5<br>240.0<br>47.0<br>98.0 | 69.0<br>331.5<br>57.5<br>134.0     | 84.5<br>443.5<br>67.3<br>171.5 |
| KCl                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | 9.2<br>11.5<br>13.2<br>15.0<br>15.2  | 16.7<br>22.5<br>27.8<br>30.0<br>31.0 | 23.4<br>32.0<br>44.6<br>45.0<br>47.5          | 29.9<br>40.0<br>62.2<br>60.0<br>64.5   | 36.2<br>47·5<br>74.0<br>82.0              | 48.4<br>60.5<br>99.5<br>120.5           | (57.4<br>78.5<br>134.<br>188.5           | 103.5                                    |                                    | 8°.5)<br>152.5<br>res 18°.5)   |
| $\begin{array}{c} K_2C_4H_4O_6 + \frac{1}{2}H_2O \\ KNaC_4H_4O_6 \\ KNaC_4H_4O_6 + 4H_5 \\ LiCl \\ LiCl \\ LiCl + 2H_2O \end{array}$                                                                                                                                                                                                                                                                              |                                    | 18.0<br>17.3<br>25.0<br>3.5<br>6.5   | 36.0<br>34.5<br>53.5<br>7.0<br>13.0  | 54.0<br>51.3<br>84.0<br>10.0<br>19.5          | 72.0<br>68.1<br>118.0<br>12.5<br>26.0  | 90.0<br>84.8<br>157.0<br>15.0<br>32.0     | 126.5<br>119.0<br>266.0<br>20.0<br>44.0 | 182.0<br>171.0<br>554.0<br>26.0<br>62.0  | 284.0<br>272.5<br>5510.0<br>35.0<br>92.0 | 390.0<br>42.5<br>123.0             | 510.0<br>50.0<br>160.5         |
| $\begin{array}{c} {\rm MgCl_2+6H_2O} \\ {\rm MgSO_4+7H_2O} \\ {\rm NaOH} \\ {\rm NaCl} \\ {\rm NaNO_3} \end{array}.$                                                                                                                                                                                                                                                                                              |                                    | 11.0<br>41.5<br>4.3<br>6.6<br>9.0    | 22.0<br>87.5<br>8.0<br>12.4<br>18.5  | 33.0<br>138.0<br>11.3<br>17.2<br>28.0         | 44.0<br>196.0<br>14.3<br>21.5<br>38.0  | 55.0<br>262.0<br>17.0<br>25.5<br>48.0     | 77.0<br>22.4<br>33.5<br>68.0            | 30.0<br>(40.7<br>99.5                    | 170.0<br>41.0<br>gives 8°<br>156.0       | 241.0<br>51.0<br>.8 rise)<br>222.0 | 334·5<br>60.1                  |
| $\begin{array}{c} NaC_2H_3O_2 + _3H_2O \\ Na_2S_2O_3 & \cdot & \cdot \\ Na_2HPO_4 & \cdot & \cdot \\ Na_2C_4H_4O_6 + _2H_2O \\ Na_2S_2O_8 + _5H_2O \end{array}$                                                                                                                                                                                                                                                   |                                    | 14.9<br>14.0<br>17.2<br>21.4<br>23.8 | 30.0<br>27.0<br>34.4<br>44.4<br>50.0 | 46.1<br>39.0<br>51.4<br>68.2<br>78.6          | 62.5<br>49.5<br>68.4<br>93.9<br>108.1  | 79.7<br>59.0<br>85.3<br>121.3             | 118.1<br>77.0<br>183.0<br>216.0         |                                          | 480.0<br>152.0<br>gives 8                | 6250.0<br>214.5<br>6°.4 rise)      | 311.0                          |
| $\begin{array}{c} Na_2CO_3 + 10H_2O \\ Na_2B_4O_7 + 10H_2O \\ NH_4CI \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ $                                                                                                                                                                                                                                                                                            |                                    | 34.1<br>39.<br>6.5<br>10.0<br>15.4   | 86.7<br>93.2<br>12.8<br>20.0<br>30.1 | 177.6<br>254.2<br>19.0<br>30.0<br>44.2        | 369.4<br>898.5<br>24.7<br>41.0<br>58.0 | 1052.9<br>(5555.5<br>29.7<br>52.0<br>71.8 | gives<br>39.6<br>74.0<br>99.1           | 56.2                                     | 88.5                                     |                                    | 337.0                          |
| $\begin{array}{c} \operatorname{SrCl}_2 + 6\operatorname{H}_2\operatorname{O} \\ \operatorname{Sr}(\operatorname{NO}_3)_2 \\ \cdot \\ \operatorname{C}_4\operatorname{H}_6\operatorname{O}_6 \\ \cdot \\ \operatorname{C}_2\operatorname{H}_2\operatorname{O}_4 + 2\operatorname{H}_2\operatorname{O} \\ \operatorname{C}_6\operatorname{H}_8\operatorname{O}_7 + \operatorname{H}_2\operatorname{O} \end{array}$ | •                                  | 20.0<br>24.0<br>17.0<br>19.0<br>29.0 | 40.0<br>45.0<br>34.4<br>40.0<br>58.0 | 60.0<br>63.6<br>52.0<br>62.0<br>87.0          | 81.0<br>81.4<br>70.0<br>86.0<br>116.0  | 103.0<br>97.6<br>87.0<br>112.0<br>145.0   | 150.0<br>123.0<br>169.0<br>208.0        | 234.0<br>177.0<br>262.0<br>320.0         | 524.0<br>272.0<br>540.0<br>553.0         | 374.0<br>1316.0<br>952.0           | 484.0<br>50000.0               |
| Salt.                                                                                                                                                                                                                                                                                                                                                                                                             | 40°                                | 6                                    | 0°                                   | 80°                                           | 100°                                   | 120°                                      | 140°                                    | 160                                      | 180                                      | 200                                | 240°                           |
| NaOH                                                                                                                                                                                                                                                                                                                                                                                                              | 137.<br>92.<br>93.<br>682.<br>980. | 5 1                                  | 22.0<br>21.7<br>50.8<br>70.0<br>74.0 | 314.0<br>152.6<br>230.0<br>2400.0<br>(infinit | 185.0<br>345.0<br>4099.0<br>y gives    | 526.3<br>8547.0                           | 800.0                                   |                                          |                                          |                                    |                                |

<sup>\*</sup> Compiled from a paper by Gerlach, "Zeit. f. Anal. Chem." vol. 26.

#### FREEZING MIXTURES.\*

Column 1 gives the name of the principal refrigerating substance, A the proportion of that substance, B the proportion of a second substance named in the column, C the proportion of a third substance, D the temperature of the substances before mixture, E the temperature of the mixture, E the lowering of temperature, E the temperature when all snow is melted, when snow is used, and E the amount of heat absorbed in heat units (small calories when E is grants). Temperatures are in Centigrade degrees.

| Substance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A                                                                                                                | В                                                                                             | С | D                                                         | E                                                          | F                                                                                                                              | G | Н                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---|-----------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------|
| Substance.  NaC <sub>2</sub> H <sub>3</sub> O <sub>2</sub> (cryst.) NIH <sub>4</sub> Cl NaNO <sub>3</sub> Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> (cryst.) . KI CaCl <sub>2</sub> (cryst.) . NH <sub>4</sub> NO <sub>3</sub> (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> NH <sub>4</sub> Cl CaCl <sub>2</sub> KNO <sub>3</sub> Na <sub>2</sub> SO <sub>4</sub> Na <sub>2</sub> SO <sub>4</sub> Na <sub>2</sub> SO <sub>4</sub> Na <sub>2</sub> CO <sub>3</sub> (cryst.) . KNO <sub>3</sub> CaCl <sub>2</sub> NH <sub>4</sub> Cl NH <sub>4</sub> Cl NH <sub>4</sub> NO <sub>3</sub> CaCl <sub>2</sub> NH <sub>4</sub> Cl NH <sub>4</sub> NO <sub>3</sub> NaCl   H <sub>2</sub> SO <sub>4</sub> + H <sub>2</sub> O (66.1 % H <sub>2</sub> SO <sub>4</sub> )   CaCl <sub>2</sub> + 6H <sub>2</sub> O  Alcohol at 4°  Chloroform Ether Liquid SO <sub>2</sub> | 85<br>30<br>75<br>110<br>250<br>60<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25 | B  H <sub>2</sub> O-100  """  """  """  """  """  """  """                                    | C | D   10.7   13.3   13.2   10.7   10.8   10.8   13.6   13.6 | E  - 4.7 - 5.1 - 5.3 - 8.0 - 11.7 - 12.4 - 13.6            | F  15.4 18.4 18.5 18.7 22.5 23.2 26.0 20.0 20.0 19.0 17.0 0.9 1.0 1.85 9.9 14.4 15.75 16.75 20.3 36.0 35.0 34.0 29.0 19.0 15.0 |   |                                                                 |
| NH <sub>4</sub> NO <sub>5</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                          | Snow " H <sub>2</sub> O-1.20 Snow " H <sub>2</sub> O-1.31 Snow " H <sub>2</sub> O-3.61 Snow " |   | 0 10 0                                                    | -4.0<br>-14.0<br>-14.0<br>-17.5†<br>-17.5†<br>-8.0<br>-8.0 | -                                                                                                                              | - | 40.5<br>122.2<br>17.9<br>129.5<br>10.6<br>131.9<br>0.4<br>327.0 |

<sup>\*</sup> Compiled from the results of Cailletet and Colardeau, Hammerl, Hanamann, Moritz, Pfanndler, Rudorf, and Tollinger.

<sup>†</sup> Lowest temperature obtained.

### CRITICAL TEMPERATURES, PRESSURES, VOLUMES, AND DENSITIES OF GASES.\*

 $\theta$  = Critical temperature.

P = Critical pressure in atmospheres.

 $\phi$  = Critical volume referred to volume at 0° and 76 centimeters pressure.

d = Critical density in grams per cubic centimeter.

 $\left(p + \frac{a}{v^2}\right) \left(v - b\right) = i + \alpha t.$ a, b, Van der Waals constants in

| Substance.                                  | θ               | P             | φ        | ď      | a × 10 <sup>5</sup> | b × 10 <sup>6</sup> | Observer         |
|---------------------------------------------|-----------------|---------------|----------|--------|---------------------|---------------------|------------------|
| Air                                         | -140.0          | 39.0          | _        | 00     | 257                 | 1560                | I                |
| Alcohol (C <sub>2</sub> H <sub>6</sub> O) . | 243.6           | 62.76<br>78.5 | 0.00713  | 0.288  | 2407<br>1898        | 3769                | 2                |
| " (CH <sub>4</sub> O) .                     | 239.95          | , ,           |          | _      | 798                 | 2992<br>1606        | 3                |
| Argon                                       | 130.0<br>—117.4 | 115.0<br>52.9 |          |        | 259                 | 1348                | 4<br>5<br>3<br>6 |
| Benzene                                     | 288.5           | 47.9          |          | 0.305  | 3726                | 5370                | 3                |
| Bromine                                     | 302.2           | 4/.9          | 0.00605  | 1.18   | 1434                | 2020                | 8                |
| Carbon dioxide .                            | 31.2            | 73-           | 0.0044   | 0.46   | 717                 | 1908                | _                |
| " monoxide.                                 | -141.1          | 35.9          | -        | -      | 275                 | 1683                | 7                |
| " disulphide                                | 273.            | 72.9          | 0.0090   | _      | 2316                | 3430                | 7 8              |
| Chloroform                                  | 260.0           | 54.9          |          | -      | 2930                | 4450                | 9                |
| Chlorine                                    | 141.0           | 83.9          | -        | -      | 1157                | 2259                | 4                |
| 66                                          | 146.0           | 93.5          | _        | -      | 1063                | 2050                | 10               |
| Ether                                       | 197.0           | 35.77         | 0.01 584 | 0.208  | 3496                | 6016                | II               |
| 46                                          | 194.4           | 35.61         | 0.01344  | 0.262  | 3464                | 6002                | 3                |
| Ethane                                      | 32.1            | 49.0          | -        | -      | 1074                | 2848                | 12               |
| Ethylene · ·                                | 9.9             | 51.1          | -        | -      | 886                 | 2533                | -                |
| Helium                                      | <-268.0         | 2.3           | _        | -      | 5                   | 700                 | 13               |
| Hydrogen                                    | -240.8          | 14.           | -        | -      | 42                  | _880                | 14               |
| " chloride.                                 | 51.25           | 86.0          | -        | _      | 692                 | 1726                | 15               |
| "                                           | 52.3            | 86.0          | -        | 0.61   | 697                 | 1731                | 4                |
| " sulphide.                                 | 100.0           | 88.7          | _        | -      | 888                 | 1926                | I                |
| Krypton                                     | -62.5           | 54.3          | _        | _      | 462                 | 1776                | 5                |
| Methane                                     | -81.8           | 54.9          | -        | _      | 376                 | 1557                | I                |
|                                             | -95.5           | 50.0          | _        |        | 357                 | 1625                | 4                |
| Neon                                        | <205.0          | 29.<br>71.2   |          | _      | 257                 | 1160                | 5,13             |
| Nitrogen                                    | -93.5<br>-146.0 | 1 '           |          | 0.44   | 259                 | 1650                | i                |
| " monoxide                                  | -140.0          | 35.0          |          | 0.44   | 239                 | 1030                | 1                |
| (N <sub>2</sub> O)                          | 35.4            | 75.0          | 0.0048   | 0.41   | 720                 | 1888                | 4,17             |
| Oxygen                                      | -118.0          | 50.0          | -        | 0.6044 | 273                 | 1420                | I                |
| Sulphur dioxide .                           | 155.4           | 78.9          | 0.00587  | 0.49   | 1316                | 2486                | 9,17             |
| Water                                       | 358.1           | _             | 0.001874 | 0.429  | _                   | _                   | 6                |
| 66                                          | 374.            | 217.5         | -        | -      | 1089                | 1362                | 16               |
| 1                                           | 0.1             |               |          |        |                     |                     |                  |

- (1) Olszewski, C. R. 98, 1884; 99, 1884; 100, 1885; Beibl. 14, 1890; Z. Phys. Ch. 16, 1893.

- (2) Ramsay-Young, Tr. Roy. Soc. 177, 1886. (3) Young, Phil. Mag. 1900. (4) Dewar, Phil. Mag. 18, 1884; Ch. News, 84, 1901.
- (5) Ramsay, Travers, Phil. Trans. 16, 17, 1901.
- (6) Nadejdine, Beibl. 9, 1885.
- Wroblewski, Wied. Ann. 20, 1883; Stz. Wien. Ak. 91, 1885.
- (8) Batelli, 1890.

- (9) Sajotschewsky, Beibl. 3, 1879.
- (10) Knietsch, Lieb. Ann. 259, 1890.
- (11) Batelli, Mem. Torino (2), 41, 1890.
- (12) Cardozo, Arch. sc. phys. 30, 1910. (13) Kamerlingh-Onnes, Comno. Phys. tab. Leiden, 1908, 1909, Proc. Amst. 11, 1908, C. R. 147, 1908. (14) Olszewski, Ann. Phys. 17, 1905.
- (15) Ansdell, Chem. News, 41, 1880.
- (16) Holborn, Baumann Ann. Phys. 31, 1910.
- (17) Cailletet, C. R. 102, 1886; 104, 1887.

\*Abridged for the most part from Landolt and Börnstein's "Phys. Chem. Tab."

#### CONDUCTIVITY FOR HEAT, METALS AND ALLOYS.

The coefficient k is the quantity of heat in small calories which is transmitted per second through a plate one centimeter thick per square centimeter of its surface when the difference of temperature between the two faces of the plate is one degree Centigrade. The coefficient k is found to vary with the absolute temperature of the plate, and is expressed approximately by the equation  $k_t = k_0 [\mathbf{1} + \alpha(t - t_0)]$ .  $k_0$  is the conductivity at  $t_0$ , the lower temperature of the bracketed pairs in the table,  $k_t$  that at temperature t, and  $\alpha$  is a constant.  $k_t$  in g-cal. per degree C per sec. across cm cube = 0.239  $\times$   $k_t$  in watts per degree C per sec. across cm cube.

| Substance                       | ℓ°C  | k <sub>t</sub> | a       | er-             | Substance.              | l t°C | k <sub>t</sub>  |         |                 |
|---------------------------------|------|----------------|---------|-----------------|-------------------------|-------|-----------------|---------|-----------------|
| Substance                       |      | ~ t            | a       | Refer-<br>ence. | Substance.              | 10    | κ <u>ξ</u>      | а       | Refer-<br>ence. |
| Aluminum                        | 760  |                |         | ı               | Mercury                 |       | 0.0210)         |         |                 |
| "                               |      | 0.514          | 1 0000  |                 | " ····                  |       | 0.0148          | +.0055  | 7               |
| 66                              |      | 0.492 {        | +.0030  | 2               | Molybdenum              |       | 0.346           | 0001    | 6               |
| "                               |      | 0.545          | +.0020  | 3               | Nickel                  |       | 0.129<br>0.1420 | _       | 1 2             |
| "                               | 500  | 0.885          | +.0014  | 3               | "                       | 0     | 0.1425          | 00032   | 3               |
| Antimony                        |      | 0.0442         | 1.0014  | 3               | "                       |       | 0.1380          | .00032  |                 |
| "                               | 100  | 0.0396         | 00104   | 4               | 16                      |       | 0.069           | 00095   | 3               |
| Bismuth                         |      | 0.025          |         | 5               | "                       | _     | 0.064           | 00047   | 3               |
| "                               |      | 0.0194         | 002I    | 2               | Palladium               |       | 0.058 \         |         |                 |
| Brass                           | -160 | 0.181          | -       | 1               |                         | 100   | 0.182           | +.0010  | 2               |
| " , yellow                      |      | 0.260          | +.0024  | 1<br>4          | Platinum                |       | 0.1664          | +.00051 | 2               |
| " , red                         | 0    | 0.246          | +.0015  | 4               | Pt 10% Ir               |       | 0.074           | +.0002  | 6               |
| Cadmium,pure                    |      | 0.239          |         | 1               | Pt 10% Rh. Platinoid    |       | 0.072           | +.0002  | 6               |
| "                               |      | 0.222          | 00038   | 2               | Potassium               |       | 0.060           |         | 8               |
| Constantan                      |      | 0.0540}        | +.00227 | 2               |                         | 57.4  | 0.216           | 0013    |                 |
| (60 Cu+40 Ni)<br>Copper,* pure. |      | 0.0640         |         | ī               | Rhodium<br>Silver, pure |       | 0.210           | 0010    | 6               |
| " "                             |      | 0.918          | 00013   | 2               | "                       |       | 1.006           | 00017   | 2               |
| German silver.                  |      | 0.908          | +.0027  |                 | Sodium                  |       | 0.992           | 00017   |                 |
| Gold                            |      | 0.705          | 00007   | 4 6             | Sourcini                |       | 0.321           | 0012    | 8               |
| Graphite                        |      | 0.037          | +.0003  | 6               | Tantalum                | _     | 0.130           | 0001    | 6               |
| Iridium Iron,† pure             | 17   | 0.141          | 0005    | 8               | "                       |       | 0.174           |         | 9               |
| " " "                           | 100  | 0.151          | 0008    | 2               |                         | 2100  | 0.198           | +.00032 | 9               |
| Iron, wrought.                  |      | 0.152          |         | I               | Tin                     |       | 0.155           | 00069   | 4               |
| 66 -66                          |      | 0.143          | 00008   | 2               | " , pure                |       | 0.143           | -       | I               |
| " steel, 1%                     | 1    | 0.108          | 0001    | 2               | Tungatan                | 7.0   | 2 476           |         | 6               |
| Lead, pure                      |      | 0.107          |         | I               | Tungsten                | 17    | 0.476           | 000I    | 0               |
| " "                             | 18   | 0.083          | 0001    | 2               | Tungsten                |       | 0.249           | +.00023 | 10              |
| ••••                            | otol | 0.081          | 10001   |                 | "                       |       | 0.272 }         |         |                 |
| Magnesium                       | 100) | 0.376          |         | 4               | ****                    |       | 0.313           | +.00016 | 10              |
| Manganin " (84 CU+4             |      | 0.035          |         | I               | Wood's alloy            |       | 0.319           | _       | 7               |
| Ni 12 Mn)                       |      | 0.0519         | +.0026  | 2               | Zinc, pure              |       |                 |         | 1               |
|                                 |      |                |         |                 | "                       |       | 0.2653          | 00016   | 2               |
|                                 |      |                |         |                 |                         |       |                 |         |                 |

References: (1) Lees, Phil. Trans. 1908; (2) Jaeger and Diesselhorst, Wiss. Abh. Phys. Tech. Reich. 3, 1900; (3) Angell, Phys. Rev. 1911; (4) Lorenz; (5) Macchia, 1907; (6) Barratt, Pr. Phys. Soc. 1914; (7) H. F. Weber, 1879; (8) Hornbeck, Phys. Rev. 1913; (9) Worthing, Phys. Rev. 1914; (10) Worthing, Phys. Rev. 1917.

ing; for reference see next page). † Iron: 100–727° C,  $k_t = 0.202$ ; 100–912°, 0.184; 100–1245°, 0.191 (Hering).

<sup>\*</sup> Copper: 100-197° C,  $k_t = 1.043$ ; 100-268°, 0.969; 100-370°, 0.931; 100-541°, 0.902 (Hering: for reference see pert page)

#### CONDUCTIVITY FOR HEAT.

### TABLE 230. - Thermal Conductivity at High Temperatures.

(See also Table 229 for metals; k in gram-calories per degree centigrade per second across a centimeter cube.)

| Material.                               | Tempera-<br>ture,<br>° C                                                                                                                                                     | k                                                                                                                                  | Reference.                            | Material.                                                                                                                                        | Tempera-<br>ture,<br>° C                                                                                                               | k                                                                                                                                                          | Reference.                                                                                            |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Amorphous carbon  Graphite (artificial) | 37-163<br>170-330<br>240-523<br>283-597<br>100-360<br>100-751<br>100-842<br>100-390<br>100-546<br>100-720<br>100-014<br>30-2830<br>2800-3200<br>90-110<br>180-120<br>500-700 | .028003<br>.027004<br>.020003<br>.011004<br>.089<br>.124<br>.129<br>.338<br>.324<br>.306<br>.291<br>.162<br>.002<br>.5545<br>.4434 | I I I I I I I I I I I I I I I I I I I | Brick: Carborundum Building Terra-cotta Fire-clay Gas-retort Graphite Magnesia Silica Granite  Limestone  Porcelain (Sèvres) Stoneware mixtures. | 150-1200<br>15-1100<br>125-1220<br>100-1125<br>300-700<br>50-1130<br>100-1000<br>100<br>500<br>40<br>100<br>350<br>165-1055<br>70-1000 | .0032027<br>.00180038<br>.00320054<br>.0038<br>.024<br>.00270072<br>.0020033<br>.00450050<br>.00430097<br>.00400057<br>.00390049<br>.00320035<br>.00390047 | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>3<br>3<br>3 |

References: (1) Hansen, Tr. Am. Electrochem. Soc. 16, 329, 1009; (2) Hering, Tr. Am. Inst. Elect. Eng. 1010; (3) Bul. Soc. Encouragement, 111, 870, 1009; Electroch. and Met. Ind. 7, 383, 433, 1009; (4) Poole, Phil. Mag. 24, 45, 1012; see also Clement, Egy, Eng. Exp. Univers. Ill. Bull. 36, 1009; Dewey, Progressive Age, 27, 772, 1009; Woolson, Eng. News, 58, 166, 1007, heat transmission by concretes; Richards, Met. and Chem. Eng. 11, 575, 1013. The ranges in values under 1 do not depend on variability in material but on possible errors in method; reduced from values expressed in other units.

TABLE 231. - Thermal Conductivity of Various Substances.

| Carbon, gas. Carbon, graphite. Carborundum Concrete, cinder stone. Diatomaceous earth Earth's crust. Fire-brick. Fluorite, -190. Fluorite, -0. Glass: window. crown, 02672, -190. crown, 02672, 0. | .000112<br>.010<br>.012<br>.00050<br>.00081<br>.0022<br>.00013<br>.004<br>.00028 | 1<br>-<br>2<br>-<br>3<br>4 | Naphthalene MP 70° C., -160<br>Naphthalene MP 70° C., o<br>Naphthol – B, MP 122° C., -160<br>Naphthol, o<br>Nitrophenol, MP 114° C., -160<br>Nitrophenol, o                                 | .0013<br>.00081<br>.00068<br>.00062 | 1 1 1 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------|
| Carbon, gas Carbon, graphite. Carborundum Concrete, cinder stone. Diatomaceous earth Earth's crust Fire-brick. Fluorite, -190. Fluorite, o. Glass: window crown, 04572, -190. crown, 04572, 100.   | .010<br>.012<br>.00050<br>.00081<br>.0022<br>.00013<br>.004                      | -<br>-<br>2<br>-<br>3<br>4 | Naphthalene MP $_{70}^{\circ}$ C., o<br>Naphthol $\rightarrow \beta$ , MP $_{122}^{\circ}$ C., $_{-160}^{\circ}$ .<br>Naphthol, o<br>Nitrophenol, MP $_{114}^{\circ}$ C., $_{-160}^{\circ}$ | .00081                              | 1     |
| Carbon, graphite. Carborundum Concrete, cinder stone. Diatomaceous earth Earth's crust Fire-brick. Fluorite, -190. Fluorite, o Glass: window crown, 02572, -190. crown, 02572, 0                   | .012<br>.00050<br>.00081<br>.0022<br>.00013<br>.004<br>.00028                    | 2<br>-<br>3<br>4           | Naphthol — β, MP 122° C., —160<br>Naphthol, ο<br>Nitrophenol, MP 114° C., —160<br>Nitrophenol o                                                                                             | .00068                              | _     |
| Carborundum Concrete, cinder stone.  Diatomaceous earth Earth's crust. Fire-brick. Fluorite, -190. Fluorite, o. Glass: window. crown, 04572, -190. crown, 04572, 100.                              | .00050<br>.00081<br>.0022<br>.00013<br>.004                                      | 3 4                        | Naphthol, o                                                                                                                                                                                 |                                     | 7     |
| Concrete, cinder stone.  Diatomaceous earth Earth's crust. Fire-brick. Fluorite, -190. Fluorite, o Glass: window. crown, 02672, -190. crown, 02672, 0                                              | .00081<br>.0022<br>.00013<br>.004<br>.00028                                      | 3 4                        | Nitrophenol. o                                                                                                                                                                              | .00106                              |       |
| stone.  Diatomaceous earth Earth's crust. Fire-brick. Fluorite, —190. Fluorite, o. Glass: window. crown, 0ss72, -190. crown, 0ss72, 0.                                                             | .00013<br>.004<br>.00028                                                         | 4                          | Nitrophenol. o                                                                                                                                                                              |                                     | 1     |
| Earth's crust. Fire-brick. Fluorite, -190. Fluorite, 0. Glass: window. crown, 02572, -190. crown, 02672, 0.                                                                                        | .004                                                                             | 4                          | Paraffin MD = 10 C - 160                                                                                                                                                                    | .00065                              | I     |
| Fire-brick. Fluorite, -190. Fluorite, o. Glass: window. crown, 0ssr2, -190. crown, 0ssr2, 0. crown, 0ssr2, 100.                                                                                    | .00028                                                                           | -                          | Laramin Mil 54 C., -100                                                                                                                                                                     | .00062                              | 1     |
| Fluorite, -190. Fluorite, o Glass: window. crown, 04572, -190. crown, 04572, 100.                                                                                                                  |                                                                                  |                            | Paraffin, o                                                                                                                                                                                 | .00059                              | I     |
| Fluorite, o Glass: window. crown, ossr2, -190 crown, ossr2, o crown, ossr2, 100                                                                                                                    |                                                                                  | 4                          | Porcelain                                                                                                                                                                                   | .0025                               | -     |
| Glass: window                                                                                                                                                                                      | .093                                                                             | 5                          | Quartz to axis, -190                                                                                                                                                                        | .0586                               | 5     |
| Crown, Os572, -190<br>Crown, Os572, O<br>Crown, Os572, 100                                                                                                                                         | .025                                                                             | 5                          | ", 0                                                                                                                                                                                        | .0173                               | 5     |
| CIOWN, O2572, O                                                                                                                                                                                    | .0025                                                                            | -                          | " ,100                                                                                                                                                                                      | .0133                               | 5     |
| crown, 03572, 100                                                                                                                                                                                  | 81100.                                                                           | 5                          | Quartz    to axis, o                                                                                                                                                                        | .0325                               | 5     |
|                                                                                                                                                                                                    | .00280                                                                           | 5                          | Rock salt, o                                                                                                                                                                                | .0167                               | 5     |
|                                                                                                                                                                                                    | .00324                                                                           | 5                          | Rock salt, 30                                                                                                                                                                               | .0150                               | 5     |
|                                                                                                                                                                                                    | .00081                                                                           | 5                          | Rubber, vulcanized, -160                                                                                                                                                                    | .00033                              | 5     |
|                                                                                                                                                                                                    | .00170                                                                           | 5                          | Rubber, o                                                                                                                                                                                   | .00037                              | 5     |
|                                                                                                                                                                                                    | .00181                                                                           | 5                          | Rubber, para                                                                                                                                                                                | . 00045                             | -     |
|                                                                                                                                                                                                    | .00077                                                                           | I                          | Sand, white, dry                                                                                                                                                                            | .00093                              | 6     |
|                                                                                                                                                                                                    | .0053                                                                            | 6                          | Sandstone, dry                                                                                                                                                                              | .0055                               | 0     |
|                                                                                                                                                                                                    | .0066                                                                            | I                          | Sawdust                                                                                                                                                                                     | .00012                              | 6     |
|                                                                                                                                                                                                    | .0050                                                                            | 5                          | Slateto cleavage                                                                                                                                                                            | .0034                               | 6     |
|                                                                                                                                                                                                    | .0103                                                                            |                            | Slate    to cleavage                                                                                                                                                                        | .0000                               | 7     |
|                                                                                                                                                                                                    | .00020                                                                           | 5 4                        | Snow, fresh, dens. = o.11                                                                                                                                                                   | .00020                              | 7     |
|                                                                                                                                                                                                    | .00029                                                                           | 6                          | Soil, average, sl't moist                                                                                                                                                                   | .0012                               | _     |
|                                                                                                                                                                                                    | .0056                                                                            | 6                          | Soil, very dry                                                                                                                                                                              | .0037                               |       |
|                                                                                                                                                                                                    | .0018                                                                            | _                          | Sulphur, rhombic, o                                                                                                                                                                         | ,00070                              |       |
|                                                                                                                                                                                                    | .0063                                                                            | 6                          | Vaseline, 20                                                                                                                                                                                | .00070                              | 5 8   |
|                                                                                                                                                                                                    | ,0044                                                                            | 6                          | Vulcanite                                                                                                                                                                                   | .00022                              | 0     |

References: (1) Lees, Tr. R. S. 1905; (2) Lorenz; (3) Norton; (4) Hutton, Blard; (5) Eucken, Ann. d. Phys., 1911; (6) Herschel, Lebour, Dunn, B. A. Committee, 1879; (7) Jansson, 1904; (8) Melmer, 1911; (9) Stefan.

# THERMAL CONDUCTIVITIES OF INSULATING MATERIALS.

Conductivity in g-cal, flowing in  $\tau$  sec. through plate  $\tau$  cm thick per cm² for  $\tau^{\circ}$  C difference of temperature.

| Material.               | Conduc-<br>tivity. | Density. | Remarks.                                                      |
|-------------------------|--------------------|----------|---------------------------------------------------------------|
| Air                     | 0.00006            |          | Horizontal layer, heated from above,                          |
| Calorox                 | 0.000076           | 0.064    | Fluffy, finely divided mineral matter.                        |
| Hair felt               | 0.000085           | 0.27     | Truny, miery divided immeras matter.                          |
| Keystone hair           | 0.000003           | 0.30     | Felt between layers of bldg. paper.                           |
| Pure wool               | 0.000084           | 0.107    | Firmly packed.                                                |
| 66 66                   | 0.000084           | 0.102    | (6 E (6                                                       |
| 66 66                   | 0.000000           | 0.061    | Loosely packed.                                               |
| " "                     | 0.000101           | 0.039    | Very loosely packed.                                          |
| Cotton wool             | 0.00010            |          | Firmly packed.                                                |
| Insulite                | 0.000102           | 1.9      | Pressed wood-pulp — rigid, fairly strong.                     |
| Linofelt                | 0.000103           | 0.18     | Vegetable fibers between layers of paper — soft and flexible. |
| Corkboard (pure)        | 0.000106           | 0.18     |                                                               |
| Eel grass               | 0.00011            | 0.25     | Inclosed in burlap.                                           |
| Flaxlinum               | 0.000113           | 0.18     | Vegetable fibers — firm and flexible.                         |
| Fibrofelt               | 0.000113           | 0.18     | D 1 1 1 1 11 11 1 11                                          |
| Rock cork               | 0.000119           | 0.33     | Rock wool pressed with binder, rigid.                         |
| Balsa wood              | 0.00012            | 0.12     | Very light and soft.                                          |
| Waterproof lith         | 0.00014            | 0.27     | Rock wool, vegetable fiber and binder, not flexible.          |
| Pulp board              |                    |          | Stiff pasteboard.                                             |
| Air cell ½ in. thick    | 0.00015            | 0.14     |                                                               |
| Air cell 1 in. thick    | 0.000154           | 0.14     | Corr. asbestos paper with air space.                          |
| Asbestos paper          | 0.00017            | 0.50     | Fairly firm, but easily broken.                               |
| Infusorial earth, block | 0.00020            | 0.60     | a war james, but bushing broader                              |
| Fire-felt, sheet        | 0.000205           | 0.42     | Asbestos sheet coated with cement, rigid.                     |
| Fire-felt, roll         | 0.00022            | 0.68     | Soft, flexible asbestos.                                      |
| Three-ply regal roofing | 0.00024            | 0.88     | Flexible tar roofing.                                         |
| Asbestos mill board     | 0.00029            | 0.97     | Pressed asbestos, firm, easily broken.                        |
| Woods, kiln dried:      |                    |          |                                                               |
| Cypress                 | 0.00023            | 0.46     |                                                               |
| White pine              | 0.00027            | 0.50     |                                                               |
| Mahogany                | 0.00031            | 0.55     |                                                               |
| Virginia pine           | 0.00033            | 0.55     |                                                               |
| Oak                     | 0.00035            | 0.61     |                                                               |
| Hard maple              | 0.00038            | 0.71     | Ashestes and coment warm hard winid                           |
| Asbestos wood, sanded   | 0.00093            | 1.97     | Asbestos and cement, very hard, rigid.                        |
|                         |                    |          |                                                               |

Dickinson and van Dusen, Am. Soc. Refrigerating Eng. J. 3, Sept. 1916.

#### TABLES 233-234.

# CONDUCTIVITY FOR HEAT.

TABLE 233. - Various Substances.

kt is the heat in gram-calories flowing in 1 sec. through a plate 1 cm. thick per sq. cm. for 1°C drop in temperature.

| Substance.  Asbestos fiber                                     | 0.201 .216 .021 .101 .0021 .109 .193 1.05 | 500<br>{ 100<br>500<br>100<br>1100<br>1100<br>1100<br>500<br>{ 200<br>100 | .00019<br>.00016<br>.00017<br>.000111<br>.00015<br>.000046<br>.000074<br>.000107 | Asbestos paper Blotting paper Portland cement Cork, t, o°C Chalk Ebonite, t, 49° Glass, mean Ice Leather, cow-hide ' chamois Linen Silk Caep stone, limestone | k <sub>t</sub> 0.00043 .00015 .00071 .00077 .0020 .00037 .002 .0057 .00042 .00015 .00021 | Authority.  Lees-Chorlton. Forbes. H, L, D, see p. 205. Various. Neumann. Lees-Chorlton. |
|----------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Poplox, popped Na <sub>2</sub> SiO <sub>3</sub> .  Wool fibers | 0.093<br>.015<br>.054<br>.192             | 1 2                                                                       |                                                                                  | Silk                                                                                                                                                          | .000095<br>.0043<br>.0021                                                                | H, L, D.                                                                                 |

Left-hand half of table from Randolph, Tr. Am. Electroch. Soc. XXI., p. 550, 1912; kt (Randolph's values) is mean conductivity between given temperature and about 10°C. Note effect of compression (density). The following are from Barratt Proc. Phys. Soc., London, 27, 81, 1914.

| Substance                                                 | Donsity                                      | 1,                                                 | C <sub>8</sub>                                      | Substance.                                               | Density.                                     | 1                                        | k <sub>t</sub>                                |
|-----------------------------------------------------------|----------------------------------------------|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------|------------------------------------------|-----------------------------------------------|
| Brick, fire Carbon, gas Ebonite Glass, soda Silica, fused | 1.73<br>1.42<br>1.19<br>1.29<br>2.59<br>2.17 | at 20°C.  .00110 .0085 .00014 .00112 .00172 .00237 | at 100°C.  .00109 .0095 .00013 .00119 .00182 .00255 | Boxwood Greenheart . Lignumvitæ . Mahogany Oak Whitewood | 0.90<br>1.08<br>1.16<br>0.55<br>0.65<br>0.58 | at 20°C00036 .00112 .00060 .00051 .00058 | at 100°C.  .00041 .00110 .00072 .00060 .00061 |

The following values are from unpublished data furnished by C. E. Skinner of the Westinghouse Co., Pittsburgh, Penn. They give the mean conductivity in gram-calories per sec. per cm. cube per °C. when the mean temperature of the cube is that stated in the table. Resistance in thermal ohms (watts/inch<sup>2</sup>/inch/°C.) =  $\frac{1}{10.6}$ conductivity.

| Substance.        | Grams.                                                |                                                           | (                                                         | Conductivity |                  |         | Safe                                   |
|-------------------|-------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--------------|------------------|---------|----------------------------------------|
| Substance.        | per cm³.                                              | 100° C.                                                   | 200° C.                                                   | 300° C.      | 400° C.          | 500° C. | temp.                                  |
| Air-cell asbestos | 0.232<br>.168<br>.326<br>.506<br>.321<br>.450<br>.362 | 0.00034<br>.00015<br>.00028<br>.00034<br>.00030<br>.00023 | 0.00043<br>.00019<br>.00032<br>.00032<br>.00029<br>.00025 | 0.00050<br>  | .00036<br>.00090 | 0.00046 | 320<br>180<br>600<br>400<br>300<br>600 |

#### TABLE 234 .- Water and Salt Solutions.

| Substance. | °C.                 | k <sub>t</sub>                        | Authority.                                                 | Solution in water.                                                                            | Density.                    | °C.                                             | k,                                                                  | Authority.                                                        |
|------------|---------------------|---------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|
| Water {    | 0<br>11<br>25<br>20 | 0.00150<br>.00147<br>.00136<br>.00143 | Goldschmidt, '11.<br>{ Lees, '98.<br>Milner, Chattock, '98 | CuSO <sub>4</sub><br>KCl<br>NaCl<br>""<br>H <sub>2</sub> SO <sub>4</sub><br>ZnSO <sub>4</sub> | 1.160<br>1.026<br>1.178<br> | 4.4<br>13.<br>4.4<br>26.3<br>20.5<br>21.<br>4.5 | 0.00118<br>.00116<br>.00115<br>.00135<br>.00126<br>.00130<br>.00118 | H. F. Weber.<br>Graetz.<br>H. F. Weber.<br>Chree.<br>H. F. Weber. |

### TABLE 235. - Thermal Conductivity of Organic Liquids.

| Substance. °C | kt                                 | Refer.  | Substance.                                                                 | °C                       | kı                        | Refer. | Substance.        | °C    | kı                                      | Refer. |
|---------------|------------------------------------|---------|----------------------------------------------------------------------------|--------------------------|---------------------------|--------|-------------------|-------|-----------------------------------------|--------|
|               | .0352<br>.0346<br>.03345<br>.03434 | 2 2 3 - | Carbon disulphide. Chloroform Ether Glycerine Oils: petroleum " turpentine | 9-15<br>9-15<br>25<br>13 | .03288<br>.03303<br>.0368 | 1 2 5  | " castor          | 25    | . 03395<br>. 03425<br>. 03349<br>. 0344 | 4 3 2  |
| References: ( | ı) H. F.                           | We      | ber; (2) Lees; (3) G                                                       | oldso                    | hmidt;                    | (4)    | Wachsmuth; (5) Gr | aetz. |                                         |        |

#### TABLE 236. - Thermal Conductivity of Gases.

The conductivity of gases,  $kt=\frac{1}{4}(9\gamma-5)\mu C_v$ , where  $\gamma$  is the ratio of the specific heats,  $C_p/C_v$ , and  $\mu$  is the viscosity coefficient (Jeans, Dynamical Theory of Gases, 1916). Theoretically  $k_t$  should be independent of the density and has been found to be so by Kundt and Warburg and others within a wide range of pressure below one atm. It increases with the temperature.

| Gas.                         | t° C                                        | . kı                                                                                                              | Ref.                                    | Gas.                                                                                                  | t° C                                             | kt                                                                                 | Ref.                                      | Gas.                      | t° C                                             | kt                                                                                                  | Ref.              |
|------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------|---------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------|
| Air* Ar " CO CO <sub>2</sub> | -191<br>0<br>100<br>-183<br>0<br>100<br>-78 | 0.0000180<br>0.0000566<br>0.0000719<br>0.0000142<br>0.0000388<br>0.0000509<br>0.0000542<br>0.0000219<br>0.0000332 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | CO <sub>2</sub><br>C <sub>2</sub> H <sub>4</sub><br>He<br>"<br>H <sub>2</sub><br>"<br>CH <sub>4</sub> | 100<br>0<br>-193<br>0<br>100<br>-192<br>0<br>100 | 0.0000496 0.000395 0.000146 0.000344 0.000398 0.000133 0.000416 0.000499 0.0000720 | 1<br>2<br>1<br>4<br>1<br>1<br>4<br>1<br>4 | Hg N2 " " " O2 " " NO N2O | 203<br>-191<br>0<br>100<br>-191<br>0<br>100<br>8 | 0.0000185<br>0.0000183<br>0.0000568<br>0.0000718<br>0.0000172<br>0.0000570<br>0.0000743<br>0.000046 | 3 1 1 1 1 1 1 2 4 |

References: (1) Eucken, Phys. Z. 12, 1911; (2) Winkelmann, 1875; (3) Schwarze, 1903; (4) Weber, 1917.

### TABLE 237. - Diffusivities.

The diffusivity of a substance  $=h^2=k/\epsilon\rho$ , where k is the conductivity for heat,  $\epsilon$  the specific heat and  $\rho$  the density (Kelvin). The values are mostly for room temperatures, about 18° C.

| Material.                                                                                                                                                                                                                                                              | Diffusivity.                                                                                                                                                                                             | Material.                                                                                                                                                                                                                                                                                                                                                        | Diffusivity.                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aluminum Antimony Bismuth Brass (yellow) Cadmium Copper Gold Iron (wrought, also mild steel) Iron (cast, also 1% carbon steel) Lead Magnesium Mercury Nickel Palladium Platinum Silver Tin Zinc Air Asbestos (loose) Brick (average fire) Brick (average fire) Bismuth | 0. 139<br>0. 0678<br>0. 339<br>0. 467<br>1. 133<br>1. 182<br>0. 173<br>0. 121<br>0. 237<br>0. 183<br>0. 0327<br>0. 152<br>0. 240<br>0. 243<br>1. 737<br>0. 407<br>0. 407<br>0. 179<br>0. 0035<br>0. 0074 | Coal. Concrete (cinder) Concrete (stone). Concrete (light slag). Cotk (ground). Ebonite. Glass (ordinary). Granite. Ice. Limestone. Marble (white). Paraffin. Rock material (earth aver.). Rock material (crustal rocks). Sandstone. Snow (fresh). Soil (clay or sand, slightly damp). Soil (very dry). Water. Wood (pine, cross grain). Wood (pine with grain). | 0.002<br>0.0032<br>0.0038<br>0.006<br>0.0017<br>0.0010<br>0.0057<br>0.0112<br>0.0092<br>0.0090<br>0.0093<br>0.0118<br>0.0033<br>0.005<br>0.0033<br>0.005<br>0.0031<br>0.0004 |

Taken from An Introduction to the Mathematical Theory of Heat Conduction, Ingersoll and Zobel, 1913.

<sup>\*</sup> Air: k<sub>0</sub> = 5.22 (10<sup>-5</sup>) cal. cm <sup>-1</sup> sec. <sup>-1</sup> deg. C<sup>-1</sup>; 5.74 at 22<sup>0</sup>; temp. coef. = .0029; Hercus-Laby, Pr. R. Soc. A95, 190, 1919.

### LINEAR EXPANSION OF THE ELEMENTS.

In the heading of the columns t is the temperature or range of temperature; C is the coefficient of linear expansion:  $A_1$  is the authority for C; M is the mean coefficient of expansion between 0° and 100° C;  $\alpha$  and  $\beta$  are the coefficients in the equation  $l_1 = l_0(1 + \alpha_t + \beta_t^2)$ , where  $l_0$  is the length at 0° C and  $l_2$  the length at  $l_1$ ° C;  $l_2$  is the authority for a, B, and M. See footnote for Molybdenum and Tungsten.

| Substance.           | t           | C × 104 | A1 | M × 104 | a × 104 | β× 10 <sup>6</sup> | A2  |
|----------------------|-------------|---------|----|---------|---------|--------------------|-----|
| Aluminum             | 40          | 0.2313  | 1  | 0.2220  | _       | _                  | 2   |
| 44                   | 600         | 0.3150  | 3  | _       |         |                    |     |
| 44                   | -191 to +16 | 0.1835  | 4  | _       | . 23536 | .00707             | 5   |
| A                    |             | 6       |    |         |         |                    |     |
| Antimony:    to axis | 40<br>40    | 0.1692  | I  |         |         | _                  |     |
| Mean                 | 40          | 0.1152  | ī  | 0.1056  | .0923   | .0132              | 6   |
| Arsenic              | 40          | 0.0559  | I  |         |         | _                  | _   |
| Discount II A        |             | 6       |    |         |         |                    |     |
| Bismuth:    to axis  |             | 0.1621  | I  |         |         |                    |     |
| ⊥ to axis            | 40          | 0.1346  | I  | 0.1316  | .1167   | .0140              | 6   |
| Mean                 | 40          | 0.1340  | I  | 0.1310  | . 2693  | .0466              | 6   |
| Cadmiditi            | 40          | 0.3009  | 1  | 0.3139  | . 2093  | .0400              | ·   |
| Carbon: Diamond      | 40          | 0.0118  | I  | _       |         | _                  |     |
| Gas carbon           | 40          | 0.0540  | r  |         | _       | _                  |     |
| Graphite             | 40          | 0.0786  | I  | _       | .0055   | .0016              | 13  |
| Anthracite           | 40          | 0.2078  | I  | -       | _       |                    | _   |
| Cobalt               | 40          | 0.1236  | I  |         |         |                    | 6   |
| Copper               | 40          | 0.1678  | 1  | 0.1666  | .1481   | .0185              |     |
| Cald                 |             | 0.1409  | 4  |         | .16070  | .00403             | 5 6 |
| Gold                 | 40<br>-170  | 0.1443  | 15 | 0.1470  | .1358   | .0112              |     |
| Indium               | 40          | 0.4170  | 13 |         | _       | _                  |     |
| Iridium              | 18          | 0.088   | 16 | 0.000   | _       |                    | 16  |
| Iron: Soft           | 40          | 0.1210  | I  | 0.090   | _       | _                  | -   |
| Cast                 | 40          | 0.1061  | r  | _       | _       | _                  | _   |
| Cast                 | -191 to +16 | 0.0850  | 4  |         | _       | —                  |     |
| Wrought              | -18 to 100  | 0.1140  | 7  | _       | .11705  | .005254            | 8   |
| Steel                | 40          | 0.1322  | 1  | _       | .09173  | .008336            | 8   |
| Steel annealed       | 40          | 0.1095  | ı  | 0.1089  | .1038   | .0052              | 9   |
| Lead (cast)          | 40<br>-170  | 0.2924  | I  | 0.2709  | . 273   | .0074              | 0   |
| Magnesium            | 40          | 0.24    | 15 | 0.261   |         | _                  | 16  |
| Nickel               | 40          | 0.1279  | 1  | 0.201   | .13460  | .003315            | 8   |
| 44                   |             | 0.1012  | 4  | 0.102   |         | _                  | 16  |
| Osmium               | 40          | 0.0657  | ī  | _       |         | _                  |     |
| Palladium            | 40          | 0.1176  | I  |         | .11670  | .002187            | 8   |
| Phosphorus           | 0-40        | 1.2530  | 10 |         |         |                    | _   |
| Platinum             | 40          | 0.0899  | I  | _       | .08868  | .001324            | 8   |
| Potassium            | 0-50        | 0.8300  | II | 111     | _       |                    |     |
| Rhodium              | 40          | 0.0850  | I  |         |         |                    |     |
| Selenium             | 40<br>40    | 0.0963  | I  | 0.6604  | _       | _                  | 12  |
| Silicon              | 40          | 0.3060  | 1  | 0.0004  | _       | _                  |     |
| Silver               |             | C. 1021 | ī  | _       | . 18270 | .004793            | 8   |
| *****************    | -191 to +16 | 0.1704  | 4  | 0.189   |         |                    | 16  |
| Sodium               | o to 90     | 2.26    | 14 | _       | _       |                    | _   |
| Sulphur: Cryst. mean | 40          | 0.6413  | I  | 1.180   |         | _                  | 12  |
| Tellurium            | 40          | 0.1675  | I  | 0.3687  | _       |                    | 12  |
| Thallium             | 40          | 0.3021  | I  |         |         | 2062               | 6   |
| Zinc                 | 40<br>40    | 0.2234  | I  | 0.2296  | . 2033  | .0263              | 6   |
| Zinc (cast)          | 40<br>-170  | 0.2018  | 15 | 3.2970  | .2741   | .0234              |     |
|                      | -10         | 3.190   | *3 |         |         |                    |     |

References: (1) Fizeau; (2) Calvert, Johnson and Lowe; (3) Chatelier; (4) Henning; (5) Dittenberger; (6) Matthiessen; (7) Andrews; (8) Holborn-Day; (9) Benoit; (10) Pisati and De Franchis; (11) Hagen; (12) Spring; (13) Day and Sosman; (14) Griffiths; (15) Dorsey; (16) Grüniesten: (L  $- L_0$ )/ $L_0 = 4.44 \times 10^{-6} (T - 300) + 4.5 \times 10^{-11} (T - 300)^2 + 2.20 \times 10^{-12} (T - 300)^3$ .  $L_0 = \text{length}$  at 300° K. Coefficient at 300° K = 4.44 × 10^-6; 1300° K, 5.19 × 10^-6; 2300° K, 7.26 × 10^-6. Worthing, Phys. Rev.

Molybdenum:  $L_t = L_0(1+5.15t \times 10^{-6} + 0.00570\ell \times 10^{-6})$ , for 19° to  $-142^{\circ}$  C;  $= L_0(1+5.01t \times 10^{-6} + 0.00138\ell \times 10^{-6})$ , for 19° to  $+305^{\circ}$  C; Schad and Hidnert, Phys. Rev. 1919. The Holborn-Day and Sosman data are for temperatures from 20° to 1000° C. The Dittenberger, 0° to 600° C.

### LINEAR EXPANSION OF MISCELLANEOUS SUBSTANCES.

The coefficient of cubical expansion may be taken as three times the linear coefficient. t is the temperature or range of temperature, C the coefficient of expansion, and A. the authority.

|                                                         |                          |                 |     |                                        |                      |                | _   |
|---------------------------------------------------------|--------------------------|-----------------|-----|----------------------------------------|----------------------|----------------|-----|
| Substance.                                              | t                        | C × 104         | A.  | Substance.                             | ŧ                    | C × 104        | A.  |
| Brass:                                                  |                          |                 |     |                                        |                      |                |     |
| Cast                                                    | 0-100                    | 0.1875          | 1   | Platinum -silver:                      |                      |                |     |
| Wire                                                    | 6.6                      | 0.1930          | 1   | I Pt + 2Ag                             | 0-100                | 0.1523         | 4   |
| **                                                      | 44                       | .1783193        | 2   | Porcelain                              | 20-790               | 0.0413         | 19  |
| 71.5 Cu + 27.7 Zn +<br>0.3 Sn + 0.5 Pb<br>71 Cu + 29 Zn |                          | 0               |     | " Bayeux                               | 1000-1400            | 0.0553         | 20  |
| 0.3 Sn + 0.5 Pb                                         | 40                       | 0.1859          | 3   | Quartz:                                | . 0.                 |                |     |
| Bronze:                                                 | 0-100                    | 0.1906          | 4   | Parallel to axis                       | 0-80<br>-190 to + 16 | 0.0797         | 6   |
| 3 Cu + 1 Sn                                             | 16.6-100                 | 0.1844          | 5   | Perpend. to axis                       | 0-80                 | 0.0521         | 6   |
| 302   20211111                                          |                          |                 | ,   | Quartz glass                           | -190 to +16          | -0.0026        | 13  |
|                                                         |                          |                 |     | 44 44                                  | 16 to 500            | 0.0057         | 26  |
|                                                         | 16.6-350                 | 0.2116          | 5   |                                        | 16-1000              | 0.0058         | 26  |
|                                                         |                          |                 |     | Rock salt                              | 40                   | 0.4040         | 3   |
| 46 46 46 46                                             | 16.6-057                 | 0.1737          | 5   | Rubber, hard                           | 0°<br>160            | 0.691          | 27  |
| 86.3 Cu + 9.7 Sn +                                      | 10.0 937                 | 0.1/3/          | 3   | Speculum metal                         | 0-100                | 0.300          | I I |
| 4 Zn                                                    | 40                       | 0.1782          | 3   | Topaz:                                 |                      | 0.1933         |     |
| 97.6 Cu +   (hard                                       | 0-80                     | 0.1713          | 6   | Parallel to lesser                     | 44                   |                |     |
| 4 Zn                                                    | ","                      | 0.1708          | 6   | horizontal axis                        | ••                   | 0.0832         | 8   |
| Caoutchous                                              |                          |                 | 2   | Parallel to greater<br>horizontal axis | 66                   | 0.000          | 8   |
| Caoutchouc                                              | 16.7-25.3                | 0.657-0.686     | 7   | Parallel to vertical                   |                      | 0.0836         | 0   |
| Constantan                                              | 4-29                     | 0.1523          |     | axis                                   | 66                   | 0.0472         | 8   |
| Ebonite                                                 | 25.3-35.4                | 0.842           | 7 8 | axis                                   |                      |                |     |
| Fluor spar: CaF2                                        | 0-100                    | 0.1950          |     | Parallel to longi-                     | 66                   |                |     |
| German silver                                           | **                       | 0.1836          | 8   | tudinai axis                           | "                    | 0.0937         | 8   |
| Gold-platinum:<br>2 Au + 1 Pt                           | 66                       | 0 7700          |     | Parallel to horizon-<br>tal axis       | 44                   |                | 8   |
| Gold-copper:                                            |                          | 0.1523          | 4   | Type metal                             | 16.6-254             | 0.0773         | 5   |
| 2 Au + 1 Cu                                             | 66                       | 0.1552          | 4   | Vulcanite                              | 0-18                 | 0.6360         | 22  |
| Glass:                                                  | 44                       |                 |     | Wedgwood ware                          | 0-100                | 0.0890         | 5   |
| Tube                                                    | 44                       | 0.0833          | I   | Wood:                                  |                      | 1              |     |
| Diete                                                   | 66                       | 0.0828          | 9   | Parallel to fiber:                     | 66                   |                | 00  |
| Plate                                                   | 44                       | 0.0897          | IO  | Ash<br>Beech                           | 2 2 4                | 0.0951         | 23  |
| Crown (mean)                                            | 50-60                    | 0.0954          | II  | Chestnut                               | 2.34                 | 0.0649         | 24  |
| Flint                                                   | 44                       | 0.0788          | II  | Elm                                    | 46                   | 0.0565         | 24  |
| Jena ther- 16 <sup>III</sup> mometer normal             | 0-100                    | 0.081           | 12  | Mahogany                               | 66                   | 0.0361         | 24  |
|                                                         |                          |                 |     | Maple                                  | 66                   | 0.0638         | 24  |
| ı" 59 <sup>III</sup>                                    | 44                       | 0.058           | 12  | Pine.                                  | 44                   | 0.0492         | 24  |
| " "                                                     | - 101 to + 16            | 0.424           | 13  | Walnut                                 | 44                   | 0.0658         | 24  |
| Gutta percha                                            | 20                       | 1.983           | 14  | Across the fiber:                      |                      |                |     |
| Ice                                                     | - 20 to - I              | 0.51            | 15  | Beech                                  | 66                   | 0.614          | 24  |
| Iceland spar:                                           | - 9-                     | 0.2631 °        | 6   | Chestnut                               | 46                   | 0.325          | 24  |
| Parallel to axis Perpendicular to axis                  | 0-80                     | 0.2031          | 6   | Mahogany                               | 44                   | 0.443          | 24  |
| Lead-tin (solder)                                       |                          | 0.0344          |     | Maple                                  | 44                   | 0.484          | 24  |
| 2 Pb + 1 Sn<br>Magnalium                                | 0-100                    | 0.2508          | 1   | Oak.<br>Pine.<br>Walnut                | 66<br>66             | 0.544          | 24  |
| Magnalium                                               | 12-39                    | 0.238           | 16  | Pine                                   | 44                   | 0.341          | 24  |
| Manganin                                                | 7.5-700                  | 0.181           | 77  | Walnut                                 | 10-26                | 0.484          | 24  |
| Marble                                                  | 0-16                     | 0.117           | 17  | wax: wnite                             | 26-31                | 2.300<br>3.120 | 25  |
| raramii                                                 | 16-38                    | 1.3030          | 18  | 66 66                                  | 31-43                | 4.860          | 25  |
| 46                                                      | 38-49                    | 4.7707          | 18  |                                        | 43-57                | 15.227         | 25  |
| Platinum-iridium                                        |                          |                 |     |                                        |                      |                |     |
| 10 Pt + 1 Ir                                            | 40                       | 0.0884          | 3   |                                        |                      |                |     |
| References:                                             |                          |                 |     |                                        |                      |                |     |
| (x) Smooton                                             | (8) Pfaff.               |                 |     | (15) Mean.                             |                      | (22) Mayer     | _   |
| (1) Smeaton.<br>(2) Various.                            | (9) Deluc                |                 |     | (16) Stadthagen                        |                      | (23) Glatze    |     |
| (3) Fizeau.                                             | (ro) Lavoi               | sier and Lanlag | ce. | (17) Fröhlich.                         |                      | (24) Villari   |     |
| (4) Matthiessen.                                        | (11) Pulfri              | ch.             |     | (18) Rodwell.                          |                      | (25) Kopp.     |     |
| (5) Daniell.                                            | (I2) Schot               | L.              |     | (19) Braun.                            | Tonnet               | (26) Randa     |     |
| (6) Benoit.<br>(7) Kohlrausch.                          | (13) Henni<br>(14) Russi | ing.            |     | (20) Deville and (21) Scheel.          | I roost.             | (27) Dorse     | у.  |
| (7) Komrausch.                                          | (14) Kussi               | ici.            |     | (21) Scheel.                           |                      |                |     |
|                                                         |                          |                 |     |                                        |                      |                |     |

### CUBICAL EXPANSION OF SOLIDS.

If  $v_2$  and  $v_1$  are the volumes at  $t_2$  and  $t_1$  respectively, then  $v_2 = v_1$  (1 +  $C\Delta t$ ), C being the coefficient of cubical expansion and  $\Delta t$  the temperature interval. Where only a single temperature is stated C represents the true coefficient of cubical expansion at that temperature.\*

| Substance.           | t or $\Delta t$ | C × 104 | Authority.          |
|----------------------|-----------------|---------|---------------------|
| Antimony             | 0-100           | 0.3167  | Matthiessen         |
| Beryl                | 0-100           | 0.0105  | Pfaff               |
| Bismuth              | 0-100           | 0,3948  | Matthiessen         |
| Copper               | 0-100           | 0.4998  | 44                  |
| Diamond              | 40              | 0.0354  | Fizeau              |
| Emerald              | 40              | 0.0168  | 66                  |
| Galena               | 0-100           | 0.558   | Pfaff               |
| Glass, common tube   | 0-100           | 0.276   | Regnault            |
| " hard               | 0-100           | 0.214   | 4.                  |
| " Jena, borosilicate |                 |         |                     |
| 59 III               | 20-100          | 0.156   | Scheel              |
| " pure silica        | 0–80            | 0.0129  | Chappuis            |
| Gold                 | 0-100           | 0.4411  | Matthiessen         |
| Ice                  | 20I             | 1.1250  | Brunner             |
| Iron                 | 0-100           | 0.3550  | Dulong and Petit    |
| Lead                 | 0-100           | 0.8399  | Matthiessen         |
| Paraffin             | 20              | 5.88    | Russner             |
| Platinum             | 0-100           | 0.265   | Dulong and Petit    |
| Porcelain, Berlin    | 20              | 0.0814  | Chappuis and Harker |
| Potassium chloride   | 0-100           | 1.094   | Playfair and Joule  |
| " nitrate            | 0-100           | 1.967   |                     |
| " sulphate           | 20              | 1.0754  | Tutton              |
| Quartz               | 0-100           | 0.3840  | Pfaff               |
| Rock salt            | 50-60           | 1.2120  | Pulfrich            |
| Rubber               | 20              | 4.87    | Russner             |
| Silver               | 0-100           | 0.5831  | Matthiessen         |
| Sodium               | 20              | 2.1364  | E. Hazen            |
| Stearic acid         | 33.8-45.5       | 1.8     | Kopp                |
| Sulphur, native      | 13.2-50.3       | 2.23    | 35                  |
| Zinc                 | 0-100           | 0.6889  | Matthiessen         |
| Zinc                 | 0-100           | 0.8928  |                     |

<sup>•</sup> For tables of cubical expansion complete to 1876, see Clark's Constants of Nature, Smithsonian Collections, 289.

SMITHSONIAN TABLES.

### CUBICAL EXPANSION OF LIQUIDS.

If  $V_0$  is the volume at  $0^\circ$  then at  $t^\circ$  the expansion formula is  $V_t = V_0 (1 + \alpha t + \beta t^2 + \gamma t^3)$ . The table gives values of  $\alpha$ ,  $\beta$  and  $\gamma$  and of C, the true coefficient of cubical expansion, at  $20^\circ$  for some liquids and solutions.  $\Delta t$  is the temperature range of the observation and A the authority.

| Liquid.                                       | Δέ                      | a 10 <sup>3</sup> | β 106              | γ 108               | C 10 <sup>8</sup> at 20 <sup>0</sup> | A         |
|-----------------------------------------------|-------------------------|-------------------|--------------------|---------------------|--------------------------------------|-----------|
| Acetic acid Acetone                           | 16-107                  | 1.0630            | 0.12636            | 1.0876              | 1.071                                | 3         |
| Alcohol:                                      | 0-54                    | 1.3240            | 3.8090             | -0.87983            | 1.487                                | 3         |
| Amyl<br>Ethyl, 30% by vol                     | 15-80<br>18-39          | 0.9001            | 0.6573             | 1.18458<br>—11.87   | 0.902                                | 4a        |
| " 50% "                                       | 0-39                    | 0.7450            | 1.85               | 0.730               | -                                    | 6         |
| " 99.3% " · · · · · · · · · · · · · · · · · · | 27-46<br>0-40           | 0.866             | 2.20               |                     | 1.12                                 | 6         |
| " 3000 " " .<br>Methyl                        | 0-40<br>0-61            | 0.524<br>1.1342   | 1.3635             | 0.8741              |                                      | I         |
| Benzene ,                                     | 11-81                   | 1.17626           | 1.27776            | 0.80648             | 1.199                                | 5a<br>5a  |
| Bromine                                       | 0-59                    | 1.06218           | 1.87714            | -0.30854            | 1.132                                | 2         |
| 5.8% solution                                 | 18-25<br>17-24          | 0.07878           | 4.2742<br>0.8571   | _                   | 0.250                                | 7         |
| Carbon disulphide                             | -34-60                  | 1.13980           | 1.37065            | 1.91225             | 1.218                                | 7<br>4a   |
| 500 atmos. pressure .                         | 0-50<br>0-50            | 0.940             |                    |                     |                                      | I         |
| Carbon tetrachloride Chloroform               | 0-76<br>0-63            | 1.18384           | 0.89881<br>4.66473 | 1.35135<br>-1.74328 | 1.236                                | 4b<br>4b  |
| Ether                                         | <b>—</b> 15 <b>–</b> 38 | 1.51324           | 2.35918            | 4.00512             | 1.656                                | 4a<br>· 8 |
| Glycerine                                     | -                       | 0.4853            | 0.4895             | -                   | 0.505                                | . 8       |
| 33.2% solution                                | 0-33                    | 0.4460            | 0.215              | _                   | 0.455                                | 9         |
| Olive oil                                     | -                       | 0.6821            | 1.1405             | -0.539              | 0.721                                | 10        |
| Pentane                                       | 0-33                    | 1.4646            | 3.09319            | 1.6084              | 1.608                                | 14        |
| 24.3% solution                                | 16-25<br>36-1.57        | 0.2695            | 2.080<br>0.10732   | 0.4446              | 0.353                                | 7         |
| Petroleum:                                    |                         |                   |                    |                     |                                      |           |
| Density 0.8467 Sodium chloride:               | 24-120                  | 0.8994            | 1.396              | - 10                | 0.955                                | 12        |
| 20.6% solution Sodium sulphate:               | 0-29                    | 0.3640            | 1.237              | -                   | 0.414                                | 9         |
| 24% solution                                  | 11-40                   | 0.3599            | 1.258              | -                   | 0.410                                | 9         |
| 10.9% solution                                | 0-30                    | 0.2835            | 2.580              | -                   | 0.387                                | 9         |
| Turpentine                                    | 0-30<br>9-106           | 0.5758            | -0.432<br>1.9595   | -0.44998            | 0.558                                | 9<br>5b   |
| Water                                         | 0-33                    | -0.06427          | 8.5053             | -6.7900             | 0.207                                | 13        |
|                                               | 1                       | 1                 | 1                  |                     |                                      | 1         |

#### AUTHORITIES.

- 1. Amagat: C. R. 105, p. 1120; 1887.
- 2. Thorpe: Proc. Roy. Soc. 24, p. 283; 1876.
- 3. Zander: Lieb. Ann. 225, p. 109; 1884.
- 4. Pierre: a. Lieb. Ann. 56, p. 139; 1845. b. Lieb. Ann. 80, p. 125; 1851.
- 5. Kopp: a. Lieb. Ann. 94, p. 257; 1855.
  b. Lieb. Ann. 93, p. 129; 1855.
  6. Recknagel: Sitzber. bayr. Ak. p. 327, 2
- Abt.; 1866. 7. Drecker: Wied. Ann. 34, p. 952; 1888.
   8. Emo: Ber. Chem. Ges. 16, 1857; 1883.

- 9. Marignac: Lieb. Ann., Supp. VIII, p. 335; 1872.
- 10. Spring: Bull. Brux. (3) 3, p. 331; 1882.
- Pinette: Lieb. Ann. 243, p. 32; 1888.
   Frankenheim: Pogg. Ann. 72, p. 422;
- 1847. 13. Scheel: Wiss. Abh. Reichsanstalt, 4, p. 1;
- 14. Thorpe and Jones: J. Chem. Soc. 63,
- p. 273; 1893.

### TABLE 242.

### COEFFICIENTS OF THERMAL EXPANSION.

#### Coefficients of Expansion of Gases.

Pressures are given in centimeters of mercury.

| Coefficient a                            | at Constant Vol                                                                                                                                                                                           | ume.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | Coefficient a                            | t Constant Pres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ssure.                                                                                             |                                                      |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Substance.                               | Pressure cm.                                                                                                                                                                                              | Coefficient X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reference.                             | Substance.                               | Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Coefficient X                                                                                      | Reference.                                           |
| Air  " " " " " " " " " " " " " " " " " " | .6 1.3 10.0 25.4 75.2 100.1 76.0 200.0 2000. 10000. 51.7 76.0 1.8 5.6 74.9 51.8 51.8 51.8 51.8 99.8 100.0 76. 56.7 .0077 .025 .47 .93 11.2 76.4 100.0 .06 .53 100.2 100.2 76007 .25 .51 1.9 18.5 75.9 76. | -37666 -37172 -36630 -36580 -36650 -36650 -3668 -36563 -365641 -37264 -36955 -36972 -36981 -37248 -3665 -37248 -3665 -37248 -3665 -37262 -36981 -37248 -3665 -37262 -37248 -3665 -37262 -37248 -3665 -37262 -37248 -3665 -37262 -37248 -3665 -37262 -37248 -3665 -37262 -37248 -3665 -37262 -37248 -3665 -37262 -37248 -3665 -37262 -37248 -3665 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 -37262 - | 1 "" " " " " " " " " " " " " " " " " " | Oxygen, $E = 0$ .<br>Nitrogen, $E = 0$ . | he calculation of and 100° Ce change of $v$ 3662(1 — .00 3662(1 — .00 3662(1 — .00 3662(1 — .00 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 3662(1 — .01 | on of the C. Expar colume u $0049 V/v$ , $026 V/v$ , $032 V/v$ , $031 V/v$ , $044 V/v$ , lensity o | e ex-<br>nsion<br>nder<br>),<br>),<br>),<br>),<br>), |

<sup>1</sup> Meleander, Wied. Beibl. 14, 1890; Wied.

Ann. 47, 1892. 2 Chappuis, Trav. Mem. Bur. Intern. Wts.

Meas. 13, 1903.
3 Regnault, Ann. chim. phys. (3) 5, 1842.
4 Keunen-Randall, Proc. R. Soc. 59, 1896.

<sup>5</sup> Chappuis, Arch. sc. phys. (3), 18, 1892. 6 Baly-Ramsay, Phil. Mag. (5), 38, 1894. 7 Andrews, Proc. Roy. Soc. 24, 1876. 8 Meleander, Acta Soc. Fenn. 19, 1891. 9 Amagat, C. R. 111, 1890. 10 Hirn, Théorie méc. chaleur, 1862.

### SPECIFIC HEAT OF THE CHEMICAL ELEMENTS.

|                  | Range * of               | C:6-           | Defen           |                 | Range * of             | C .c           | D .             |
|------------------|--------------------------|----------------|-----------------|-----------------|------------------------|----------------|-----------------|
| Element.         | temperature,             | Specific heat. | Refer-<br>ence. | Element.        | temperature.           | Specific heat. | Refer-<br>ence. |
|                  | °C                       | II Cut.        | chec.           |                 | ° C                    | neat.          | ence.           |
|                  |                          |                |                 |                 |                        |                |                 |
| Aluminum         | -240.6                   | .0002          | 45              | Cobalt          | 500                    | .1452          | 18              |
| "                | -190.0                   | .0889          | 45<br>46        | "               | 1000                   | . 204          | 18              |
|                  | -73.0                    | .190           |                 | "               | -182 to +15            | .0822          | 19              |
| "                | -190 to -82<br>-76 to -1 | .1466          | 47              | Copper †        | 15-100<br>-249.5       | .1030          | 19              |
| "                | +16 to +100              | .2122          | 47<br>48        | "               | -223                   | .0208          | 45              |
| "                | +16  to  +304            | . 2250         | 48              | ***********     | -185                   | .0532          | 45              |
| "                | -250<br>0                | .1428          | I               | 66              | -63 + 25               | .0865          | 46              |
| 66               | 100                      | .2226          | Î               | 66              | 76                     | .0937          | 5I              |
| "                | 250                      | . 2382         | I               | "               | 84                     | .0938          | 51              |
| "                | 500<br>16–100            | .2739          | I               | "               | 100<br>362             | .0942          | 5 I             |
| Antimony         | 15                       | .0480          | 43              | "               | 000                    | .0997          | 20              |
|                  | 100                      | .0503          | 2               | "               | 15-238                 | .0951          | 43              |
| Arsenic, gray    | 200<br>0-100             | .0520          | 2               | "               | -181 to 13             | .0868          | 21              |
| Arsenic, black   | 0-100                    | .0861          | 3               | Gallium, liquid | 23-100<br>12 to 113    | .0940          | 21              |
| Barium           | -185 to +20              | .068           |                 | " solid         | 12-23                  | .079           | 22              |
| Bismuth          | -186                     | .0284          | 5 6             | Germanium       | 0-100                  | .0737          | 23              |
| 66               | 75                       | .0301          | 6               | Gold            | -185 to +20            | .033           | 4 24            |
| 46               | 20-100                   | .0302          | 7 8             | Indium          | 0-100                  | .0570          | 13              |
| _ nuid           | 280-380                  | .0363          |                 | Iodine          | -90 to +17             | .0485          | 49              |
| Boron            | 0-100<br>-101 to -78     | .307           | 9<br>47         | 66              | -191 to -80            | .0454          | 49              |
| 66               | -76 to -0                | .1677          | 47              | Iridium         | -186 to +18            | .0282          | 26              |
| Bromine, solid   | -78  to  -20             | .0843          | 10              | "               | 18-100                 | .0323          | 26              |
| " solid<br>fluid | -192 to -80              | .0702          | 49              | Iron            | -223<br>-163           | .0176          | 46              |
| Cadmium          | 13-45<br>223             | .0308          | 46              | "               | -63                    | .0622          | 46<br>46        |
| "                | -173                     | .0478          | 46              | 44              | +37                    | .1092          | 46              |
| "                | -73                      | .0533          | 46              | cast            | 20-100                 | .1189          | 27              |
| "                | 2I<br>100                | .0551          | 2 2             | " wrought       | 15-100<br>1000-1200    | .1152          | 28              |
| "                | 200                      | .0594          | 2               | " wrought       | 500                    | .176           | 28              |
|                  | 300                      | .0617          | 2               | " hard-drawn    | 0-18<br>20-100         | .0986          | 29              |
| Cæsium           | 0-26<br>-185 to +20      | .0482          | 12              | " hard-drawn    | -185 to +20            | .0058          | 29              |
| 66               | 0-181                    | .170           | 13              | 66              | o to +200              | .1175          | 53              |
| Carbon, graphite | -191 to -79              | .0573          | 47              |                 | o to +300              | .1233          | 53              |
| " " …            | -76 to -0<br>-50         | .1255          | 47              | 46              | o to +400              | .1282          | 53              |
| " "              | +11                      | .160           | 14              | "               | o to +500<br>o to +600 | .1396          | 53              |
| " "              | 977                      | .467           | 14              | 66              | o to +700<br>o to +800 | .1487          | 53              |
| • • • •          | 1730                     | .50            | 52<br>50        | 66              | o to +800              | .1597          | 53              |
| Acheson          | -186                     | .003           | 50              | 66              | o to +1000             | .1557          | 53              |
| Carbon, diamond  | -50                      | .0635          | 47              |                 | o to +1100             | .1534          | 53              |
| ** ***           | +11<br>985               | .113           | 47<br>47        | Lanthanum       | 0-100<br>-250          | .0448          | 46              |
| Cerium           | 0~100                    | .0448          | 15              | 44              | -236                   | .0217          | 46              |
| Chlorine, liquid | 0-24                     | . 2262         | 16              | 46              | -193                   | .0276          | 46              |
| Chromium         | -200<br>0                | .0666          | 17              | "               | -73<br>15              | .0205          | 46              |
| 44               | 100                      | .1039          | 17              | "               | 100                    | .0311          | 2               |
| "                | 600                      | .1872          | 17              | " fluid         | 300                    | .0338          | 2               |
|                  | -185 to +20              | .086           | 4               | " fluid         | 310                    | .0356          | 30              |
|                  |                          |                |                 |                 |                        |                |                 |

<sup>\*</sup>When one temperature is given, the "true" specific heat is indicated, otherwise the "mean" specific heat.  $\dagger$  0.3834  $\pm$  0.00020(t - 25) intern. j per g degree = 0.0917  $\pm$  0.000048(t - 25) calso per g degree. (Griffith, 1913.)

### SPECIFIC HEAT OF THE CHEMICAL ELEMENTS.

|                                         |               | 1        | 1      |              |                      |          |          |
|-----------------------------------------|---------------|----------|--------|--------------|----------------------|----------|----------|
|                                         | Range * of    | Specific | Refer- |              | Range * of           | S===:6=  | D.C      |
| Element.                                | temperature,  |          |        | Element.     | temperature,         | Specific |          |
|                                         | ° C           | heat.    | ence.  |              | ° C                  | heat.    | ence.    |
|                                         |               |          |        |              |                      |          |          |
|                                         |               |          |        |              |                      |          |          |
|                                         |               |          |        |              |                      |          |          |
| Lead                                    | 90            | 0.0312   | 51     | Potassium    | -101 to -80          | 0.1568   | 47       |
| 66                                      | 210           | 0.0334   | 51     | 44           | -78 to o             | 0.1666   | 47       |
| 66                                      | 18-100        | 0.0310   | 43     | 66           | -185 to +20          | 0.170    | 4/       |
| 66                                      | 16-256        | 0.0319   | 43     | Rhodium      | 10-07                | 0.0580   |          |
| Tithium                                 |               | 0.0319   |        | Rubidium     |                      |          | 25       |
| Lithium                                 | -191 to -80   | 0.521    | 47     | Ruthenium    | 0                    | 0.0802   |          |
| "                                       | - 78 to o     | 0.595    | 47     | Kuthenium    | 0-100                | 0.0611   | 13       |
|                                         | -75 to $+19$  | 0.629    | 47     | Selenium     | -188  to  +18        | 0.068    | 36       |
|                                         | -100          | 0.5997   | 31     | Silicon      | -185 to +20          | 0.123    | 4        |
| **                                      | 0             | 0.7951   | 31     | "            | -185 to +20<br>-39 8 | 0.1360   | 14       |
| 46                                      | 50            | 0.0063   | 31     |              | +57.1                | 0.1833   | 14       |
| 44                                      | 100           | 1.0407   | 31     | 46           | 232                  | 0.2020   | 14       |
| 44                                      | 100           | 1.3745   | 31     | Silver       | -238                 | 0.0146   | 46       |
|                                         | -185 to +20   | 0.222    |        | 44           | -233                 |          | 46       |
| Magnesium                               |               |          | 4      |              |                      | 0.0307   | 46       |
| "                                       | 60            | 0.2492   | 7      | 44           | -173                 | 0.0447   | 46       |
|                                         | 325           | 0.3235   | 7      |              | <del>-</del> 73      | 0.0540   | 46       |
|                                         | 625           | 0.4352   | 7      |              | +27                  | 0.0560   | 46       |
| "                                       | 20-100        | 0.2492   | 7      | "            | 0-100                | 0.0559   | 13       |
| Manganese                               | -188 to -79   | 0.0820   | 49     |              | 23                   | 0.05498  | 2        |
| 66                                      | -79 to +15    | 0.1001   | 49     | 44           | 100                  | 0.05663  | 2        |
| 44                                      | 60            | 0.1211   | 49     |              | 500                  | 0.0581   | 34       |
| "                                       | 325           | 0.1783   | 49     | 66           | 17-507               | 0.05987  |          |
|                                         | 20-100        |          |        | 44           | 800                  | 0.03907  | 43<br>18 |
|                                         |               | 0.1211   | 49     | " fluid      |                      |          | 18       |
|                                         | -100          | 0.0979   | 31     |              | 907-1100             | 0.0748   |          |
|                                         | 0             | 0.1072   | 31     | Sodium       | -185  to  +20        | 0.253    | 4        |
|                                         | 100           | 0.1143   | 31     | "            | -191 to -83          | 0.243    | 47       |
| Mercury, sol                            | -77 to -42    | 0.0329   | 47     |              | -77 to o             | 0.276    | 47       |
| liq                                     | -36  to  -3   | 0.0334   | 47     |              | -223                 | 0.152    | 46       |
| 4                                       | -185 to +20   | 0.032    | 4      | 46           | -183                 | 0.210    | 46       |
| 44                                      | 0             | 0.03346  | 32     | Sulphur      | -188  to  +18        | 0.137    | 36       |
| 44                                      | 85            | 0.0328   | 32     | " rhombic.   | 0-54                 | 0.1728   | 33       |
| 46                                      | 100           |          | 2      | " monoclin.  | 0-52                 | 0.1800   |          |
| 44 ************************************ |               | 0.03284  |        |              |                      |          | 33       |
| Mahahalana                              | 250           | 0.03212  | 2      | i iiquiu     | 119-147              | 0.235    | 2        |
| Molybdenum                              | -185 to +20   | 0.062    | 4      | Tantalum     | -185 to +20          | 0.033    | 4        |
| 14                                      | 60            | 0.0647   | 7      | m            | 1400                 | 0.043    |          |
| "                                       | 475           | 0.0750   | 7      | Tellurium    | -188  to  +18        | 0.047    | 36       |
|                                         | 20 to 100     | 0.0647   | 7      | " crys       | 15-100               | 0.0483   | 37       |
| Nickel                                  | -185  to  +20 | 0.092    |        | Thallium     | -185 to $+20$        | 0.038    | 4        |
| 44                                      | 100           | 0.1128   | 18     | "            | 20-100               | 0.0326   | 27       |
| 66                                      | 300           | 0.1403   | 18     | Thorium      | 0-100                | 0.0276   | 38       |
| 46                                      | 500           | 0.1200   | 18     | Tin          | -196 to -79          | 0.0486   | 26       |
| 44                                      | 1000          | 0.1608   | 18     | 66           | -76  to  +18         | 0.0518   | 26       |
| 66                                      | 18-100        | 0.1008   | 26     | " cast       | 21-100               | 0.0551   | 30       |
| Osmium                                  | 10-08         |          |        | " fluid      |                      |          | 18       |
|                                         |               | 0.0311   | 10     | nuid         | 250                  | 0.05799  |          |
| Palladium                               | -186 to $+18$ | 0.0528   | 26     | Huid         | 1100                 | 0.0758   | 18       |
| 46                                      | 0-100         | 0.0592   | 24     | Titanium     | -185 to $+20$        | 0.082    | 4        |
|                                         | 0-1265        | 0.0714   | 24     | _ "          | 0-100                | 0.1125   | 39       |
| Phosphorus, red                         | 0-51          | 0.1829   | 33     | Tungsten     | -185  to  +20        | 0.036    | 4        |
| " yellow.                               | 13-36         | 0.202    | 33     | 6.6          | 0-100                | 0.0336   | 40       |
| " yellow.                               | -186 to +20   | 0.178    |        | 6.6          | 1000                 | 0.0337   | 52       |
| Platinum                                | -186 to +18   | 0.0203   | 26     | 66           | 2000                 | 0.042    | 52       |
| 44                                      | 100           | 0.0275   | 34     | 44           | 2400                 | 0.045    | 52       |
| 46                                      | 200           | 0.02/5   |        | Uranium      | 0-08                 | 0.028    |          |
| 4.6                                     |               |          | 35     |              |                      |          | 41       |
|                                         | 500           | 0.0349   | 35     | Vanadium     | 0 -100               | 0.1153   | 40       |
| 44                                      | 750           | 0.0365   | 35     | Zinc         | -243                 | 0.0144   | 46       |
|                                         | 1000          | 0.0381   | 35     |              | -193                 | 0.0625   | 46       |
|                                         | 1300          | 0.0400   | 35     | "            | -153                 | 0.0788   | 46       |
| 46                                      | 20-100        | 0.0319   | 35     | 46           | 20-100               | 0.0031   | 27       |
| "                                       | 20-500        | 0.0333   | 35     | "            | 100                  | 0.0051   | 2        |
| **                                      | 20-1000       | 0.0346   | 35     | 66           | 300                  | 0.1040   | 2        |
| 16                                      | 20-1300       | 0.0350   | 35     | Zirconium    | 0-100                | 0.0660   | 42       |
|                                         | 500           | -10339   | 33     | Direction in | 0 .00                | 2,000    | 4.       |
|                                         |               | •        | - 1    |              |                      |          |          |
|                                         |               |          |        |              |                      |          |          |

<sup>\*</sup>When one temperature is given, the "true" specific heat is indicated, otherwise the "mean" specific heat. See page 226 for references.

# HEAT CAPACITIES. TRUE AND MEAN SPECIFIC HEATS, AND

LATENT HEATS AT FUSION.

The following data are taken from a research and discussion entitled "Die Temperatur-Wärmeinhaltskurven der technisch wichtigen Metalle," Wüst, Meuthen und Durrer, For-

schungsarbeiten herausgegeben vom Verein Deutscher Ingenieure, Springer, Heft 204, 1918.

(a) There follow the constants of the equation for the heat capacity:  $W = a + bt + ct^2$ ; for the mean specific heat:  $s = at^{-1} + b + ct$ ; and for the true specific heat: s' = b + 2ct; also the latent heats at fusion. (See also Table 243, pp. 223-224.)

| Ele-<br>ment.                                                                                        | e  | <i>b</i>                                                                                        | c × 106                                                                                                                       | La-<br>tent<br>heat.<br>cal./g                     | Ele-<br>ment.        | Tempera-<br>ture<br>range.                                                                                                      | a                                                                                                         | ь                                                                                                                               | c×106                                                                                              | La-<br>tent<br>heat<br>cal./g.                                                     |
|------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Mo 0-1 W 0-1 Pt 0-1 Sn 0-2 232-1 Bi 0-2 270-1 Cd 0-3 321-1 Pb 0-3 327-1 Zn 0-4 410-1 Sb 630-1 Al 0-6 | 32 | 0.05550<br>0.06952<br>0.03591<br>0.02920<br>0.08777<br>0.13340<br>0.05179<br>0.05090<br>0.22200 | 10.99<br>1.07<br>3.54<br>-18.30<br>5.22<br>5.41<br>6.28<br>6.37<br>-11.47<br>3.30<br>43.48<br>-16.10<br>3.00<br>2.96<br>38.57 | 13.8.<br>10.2<br>10.8<br>-<br>5.47<br>23.0<br>38.9 | Cu<br>Mn<br>Ni<br>Co | 961-1300<br>0-1064<br>1064-1300<br>0-1084<br>1084-1300<br>1084-1300<br>1130-1210<br>1230-1250<br>0-320<br>330-1451<br>1451-1520 | 53.17<br>26.35<br>130.74<br>-7.41<br>3.83<br>0.41<br>50.21<br>-22.00<br>57.72<br>-1.63<br>18.31<br>-77.18 | 0.12037<br>0.17700<br>0.19800<br>0.10950<br>0.12931<br>0.13380<br>0.09119<br>0.11043<br>0.14720<br>0.10545<br>0.1592<br>0.14472 | 28.30<br>1.30<br>8.52<br>3.05<br>65.6<br>25.41<br>52.40<br>0.11<br>40.77<br>14.57<br>56.84<br>0.05 | 15.9<br>41.0<br>36.6<br>24.14*<br>56.1<br>1.33*<br>58.2<br>14.70*<br>49.4<br>6.56* |

<sup>\*</sup> Allotropic heat of transformation: Mn, 1070-1130°; Ni, 320-330°; Co, 950-1100°; Fe, 725-785°; 919° = 1; 1404.5° = 0.5.

### (b) TRUE SPECIFIC HEATS.

| °C                                                                     | Pb                                                                                               | Zn                                                                           | Al                                                                    | Ag                                                                                               | Au                                                                                               | Cu                                                                                                                               | Ni                                                                                                                   | Fe                                                                                                                                       | Со                                                                                                                                       | Quartz.                                                                                                                                  |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| o° C 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 | 0.0359<br>0.0336<br>0.0313<br>0.0290<br>0.0252<br>0.0252<br>0.0246<br>0.0239<br>0.0233<br>0.0226 | 0.0965<br>0.1052<br>0.1139<br>0.1226<br>0.1173<br>0.1141<br>0.1109<br>0.1076 | 0.2297 0.2374 0.2451 0.2529 0.2606 0.2683 0.2523 0.2571 0.2619 0.2667 | 0.0583<br>0.0594<br>0.0605<br>0.0616<br>0.0627<br>0.0638<br>0.0660<br>0.0671<br>0.0637<br>0.0694 | 0.0320<br>0.0322<br>0.0325<br>0.0328<br>0.0330<br>0.0335<br>0.0341<br>0.0343<br>0.0329<br>0.0346 | 0. 1014<br>0. 1020<br>0. 1026<br>0. 1032<br>0. 1038<br>0. 1045<br>0. 1051<br>0. 1057<br>0. 1063<br>0. 1068<br>0. 1028<br>0. 1291 | 0.1200<br>0.1305<br>0.1409<br>0.1294<br>0.1295<br>0.1295<br>0.1295<br>0.1295<br>0.1296<br>0.1296<br>0.1296<br>0.1296 | 0.1168<br>0.1282<br>0.1396<br>0.1509<br>0.1623<br>0.1737<br>0.1850<br>0.1592<br>0.1592<br>0.1448<br>0.1448<br>0.1448<br>0.1449<br>0.1449 | 0.0993<br>0.1073<br>0.1154<br>0.1235<br>0.1316<br>0.1396<br>0.1477<br>0.1558<br>0.1639<br>0.1424<br>0.1454<br>0.1454<br>0.1483<br>0.1512 | 0.2372<br>0.2416<br>0.2460<br>0.2504<br>0.2594<br>0.2592<br>0.2636<br>0.2680<br>0.2724<br>0.2768<br>0.2812<br>0.2812<br>0.2900<br>0.2944 |

For more elaborate tables and for all the elements in upper table, see original reference. SMITHSONIAN TABLES.

### ATOMIC HEATS (50° K), SPECIFIC HEATS (50° K), ATOMIC VOLUMES OF THE ELEMENTS.

The atomic and specific heats are due to Dewar, Pr. Roy. Soc. 89A, 168, 1913.

| ment223°C.   -223°C.   volume.   ment.   -223°C.   volume.   ment.   -223°C.   -223°C.   volume.   ment.   -223°C.   -223°C | Atomic heat — 223°C. Atomic volume.                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Li 0.1924 1.35 13.0 Cr 0.0142 0.70 7.6 Sn 0.0286 Gl 0.0137 0.125 4.9 Mn 0.0229 1.26 7.4 Sb 0.0240 B 0.0212 0.24 4.5 Fe 0.0175 0.98 7.1 I 0.0361 C* 0.0028 0.03 3.4 Co 0.0207 1.22 6.8 Cs 0.0513 Na 0.1519 3.50 23.6 Cu 0.0245 1.56 7.1 Bā¶ 0.0350 Mg 0.0713 1.74 14.1 Zn 0.0384 2.52 9.2 La 0.0322 Al 0.0413 1.12 10.0 As 0.0258 1.94 15.9 Ce 0.0330 Si \$ 0.0303 0.86 14.2 Se 0.0361 2.86 18.5 W 0.0095 Si \$ 0.0303 0.77 11.4 Br 0.0453 3.62 24.9 Os 0.0078 P yel. 0.0774 2.40 17.0 St¶ 0.0550 4.82 34.5 Pt 0.0355 P yel. 0.0431 1.34 13.5 S 0.0556 1.75 16. Ru 0.0141 1.36 9.3 Hg 0.0232 Cr 0.0260 1.38 8.5 Pb 0.0240 Rh 0.0134 1.38 8.5 Pb 0.0240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.41 20.3<br>2.89 18.2<br>4.59 25.7<br>3.68 21.2<br>6.82 71.0<br>4.80 36.6<br>4.60 22.6<br>4.64 20.3<br>1.75 9.8<br>1.49 8.5<br>1.92 8.6<br>2.63 9.2<br>3.16 10.2<br>4.65 14.8<br>4.80 17.2<br>4.96 18.3<br>4.54 21.1<br>3.30 12.8 |

\* Graphite. † Diamond. I Fused. § Crystallized. ¶ Impure.

### References to Table 243:

- (1) Bontschew.
- (2) Naccari, Atti Torino, 23, 1887-88.
- (3) Wigand, Ann. d. Phys. (4) 22, 1907. (4) Nordmeyer-Bernouli, Verh. d. phys.
- Ges. 9, 1907; 10, 1908. (5) Giebe, Verh. d. phys. Ges. 5, 1903.
- (6) Lorenz, Wied. Ann. 13, 1881.
- (7) Stücker, Wien. Ber. 114, 1905.
- (8) Person, C. R. 23, 1846; Ann. d. chim. (3) 21, 1847; 24, 1848.
- (9) Moisson-Gautier, Ann. chim. phys. (7) 17, 1896.
- (10) Regnault, Ann. d. chim. (3) 26, 1849; 63, 1861.
- (11) Andrews, Pog. Ann. 75, 1848.
- (12) Eckardt-Graefe, Z. Anorg. Ch. 23, 1900. (13) Bunsen, Pogg. Ann. 141, 1870; Wied.
- Ann. 31, 1887. (14) Weber, Phil. Mag. (4) 49, 1875.
- (15) Hillebrand, Pog. Ann. 158, 1876.
- (16) Knietsch.
- (17) Adler, Beibl. 27, 1903. (18) Pionchon, C. R. 102–103, 1886. (19) Tilden, Phil. Trans. (A) 201, 1903.
- (20) Richards, Ch. News, 68, 1893. (21) Trowbridge, Science, 8, 1898.
- (22) Berthelot, Ann. d. chim. (5) 15, 1878.
- (23) Pettersson-Hedellius, J. Pract. Ch. 24,
- (24) Violle, C. R. 85, 1877; 87, 1878.
- (25) Regnault, Ann. d. chim (2) 73, 1840;
- (3) 63, 1861. (26) Behn, Wied. Ann. 66, 1898; Ann. d. Phys. (4) 1, 1900.

- (27) Schmitz, Pr. Roy. Soc. 72, 1903.
- (28) Nichol, Phil. Mag. (5) 12, 1881. (29) Hill, Verh. d. phys. Ges. 3, 1901.
- (30) Spring, Bull. de Belg. (3) 11, 1886; 29,
- (31) Laemmel, Ann. d. Phys. (4) 16, 1905.
- (32) Barnes-Cooke, Phys. Rev. 16, 1903. (33) Wiegand, Fort. d. Phys. 1906.
- (34) Tilden, Pr. Roy. Soc. 66, 1900; 71, 1903; Phil. Trans. (A) 194, 1900; 201, 1903.
- (35) White, Phys. Rev. 12, 436, 1918.
- (36) Dewar, Ch. News, 92, 1905. (37) Kopp, Phil. Trans. London, 155, 1865.
- (38) Nilson, C. R. 96, 1883.
- (39) Nilson-Pettersson, Zt. phys. Ch. 1, 1887.
- (40) Mache, Wien, Ber. 106, 1807
- (41) Blümcke, Wied. Ann. 24, 1885. (42) Mixter-Dana, Lieb Ann. 169, 1873.
- (43) Magnus, Ann. d. Phys. 31, 1910.
- (44) Harper, Bull. Bureau of Stds. 11, p. 259, 1914.
- (45) Nernst, Lindemann, 1910, 1911.
- (46) Nernst, Dewar.
- (47) Kosef, Ann. d. Phys. 36, 1911.
- (48) Magnus, Ann. d. Phys. 31, 1910. (49) Estreicher, Straniewski, 1912.
- (50) Nernst, Ann. d. Phys. 36, 395, 1911.
- (51) King, Phys. Rev. 11, 1918.
- (52) Worthing, Phys. Rev. 12, 1918.
  (53) Harker, Pr. Phys. Soc. London, 19, 703, 1905; Fe .01; C .02; Si .03; S .04; P, Mn trace.

### TABLE 246 .- Specific Heat of Various Solids.

| Solia.                                                                                                                                                                                                                                                                                                                                                                                                                                     | Temperature °C.                                                                                                                   | Specific heat.                                                                                                                                                            | Au-<br>thority.                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Alloys:  Bell metal  Brass, red  "yellow  80 Cu + 20 Sn  88.7 Cu + 11.3 Al  German silver  Lipowitz alloy: 24.97 Pb + 10.13 Cd + 50.66 Bi  + 14.24 Sn  "Rose's alloy: 27.5 Pb + 48.9 Bi + 23.6 Sn  Wood's alloy: 25.85 Pb + 6.99 Cd + 52.43 Bi  + 14.73 Sn  (fluid)  Miscellaneous alloys:  17.5 Sb + 29.9 Bi + 18.7 Zn + 33.9 Sn  33.1 Sb + 62.9 Pb  39.9 Pb + 60.1 Bi  "(fluid)  63.7 Pb + 36.3 Sn  46.7 Pb + 53.3 Sn  63.8 Bi + 36.2 Sn | Temperature  *C.  15-98 0 0 14-98 20-100 0-100  5-50 100-15077-20 20-89 5-50 100-150  20-99 10-98 16-99 144-358 12-99 10-99 20-90 | 0.0858<br>.08991<br>.08831<br>.0862<br>.10432<br>.09464<br>.0345<br>.0426<br>.0356<br>.0552<br>.0352<br>.0426<br>.03657<br>.03880<br>.03165<br>.03500<br>.04073<br>.04907 | R L " R Ln T M " S ." M " R ." R ." |
| " (fluid)                                                                                                                                                                                                                                                                                                                                                                                                                                  | 144-358<br>12-99<br>10-99                                                                                                         | .03500<br>.04073<br>.04507                                                                                                                                                | R                                   |
| Glass, normal thermometer 16111                                                                                                                                                                                                                                                                                                                                                                                                            | 19-100<br>-<br>10-50<br>10-50<br>-188252                                                                                          | .1988<br>.1869<br>.161<br>.117                                                                                                                                            | W<br>Z<br>H M                       |
| India rubber (Para)                                                                                                                                                                                                                                                                                                                                                                                                                        | -78188<br>-1878<br>?-100<br>20<br>-20- +3                                                                                         |                                                                                                                                                                           | GT<br>RW                            |
| " fluid Vulcanite                                                                                                                                                                                                                                                                                                                                                                                                                          | -19- +20<br>0-20<br>35-40<br>60-63<br>20-100                                                                                      | .5251<br>.6939<br>.622<br>.712                                                                                                                                            | B<br>A M                            |
| Woods                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                | .327                                                                                                                                                                      |                                     |

### TABLE 247 .- Specific Heat of Water and of Mercury.

|                       |         | Specifi  | ic Heat of           | Water.                |        |                      | Specific Heat of Mercury. |                   |                       |                   |  |  |
|-----------------------|---------|----------|----------------------|-----------------------|--------|----------------------|---------------------------|-------------------|-----------------------|-------------------|--|--|
| Temper-<br>ature, °C. | Barnes. | Rowland. | Barnes-<br>Regnault. | Temper-<br>ature, °C. | Barnes | Barnes-<br>Regnault. | Temper-<br>ature, °C.     | Specific<br>Heat. | Temper-<br>ature, °C. | Specific<br>Heat. |  |  |
| -5                    | 1.0155  | _        | _                    | 60                    | 0.9988 | 0.9994               | 0                         | 0.03346           | 90                    | 0.03277           |  |  |
| o                     | 1.0001  | 1.0070   | 1.0094               | 65                    | .9994  | 1.0004               | 5                         | .03340            | 100                   | .03269            |  |  |
| +5                    | 1.0050  | 1.0039   | 1.0053               | 70                    | 1.0001 | 1.0015               | 10                        | .03335            | 110                   | .03262            |  |  |
| 10                    | 1.0020  | 1.0016   | 1.0023               | 80                    | 1.0014 | 1.0042               | 15                        | .03330            | 120                   | .03255            |  |  |
| 15                    | 1.0000  | 1.0000   | 1.0003               | 90                    | 1.0028 | 1.0070               | 20                        | .03325            | 130                   | .03248            |  |  |
| 20                    | 0.9987  | 1000     | 0.9990               | 100                   | 1.0043 | 10101                | 25                        | .03320            | 140                   | .03241            |  |  |
| 25                    | .9978   | .9989    | .9981                | 120                   | -      | 1.0162               | 30                        | .03316            | 150                   | .0324             |  |  |
| 30                    | .9973   | .9990    | .9976                | 140                   | -      | 1.0223               | 35                        | .03312            | 170                   | .0322             |  |  |
| 35                    | .9971   | -9997    | .9974                | 160                   | -      | 1.0285               | 40                        | .03308            | 190                   | .0320             |  |  |
| 40                    | .9971   | 1.0006   | .9974                | 180                   | -      | 1.0348               | 50                        | .03300            | 210                   | .0319             |  |  |
| 45                    | .9973   | 1.0018   | .9976                | 200                   | -      | 1.0410               | 60                        | .03294            | -                     |                   |  |  |
| 50                    | -9977   | 1.0031   | .9980                | 220                   |        | 1.0476               | 70                        | .03289            | -                     | -                 |  |  |
| 55                    | .9982   | 1.0045   | .9985                | -                     | -      | -                    | 80                        | .03284            | -                     | -                 |  |  |

Barnes's results: Phil. Trans. (A) 199, 1902; Phys. Rev. 15, 1902; 16, 1903. (H thermometer.)

Bousfield, Phil. Trans. A 211, p. 199, 1911.

Barnes-Regnault's as revised by Peabody; Steam Tables.

The mercury data from o° C to 80, Barnes-Cooke (H thermometer); from 90° to 140, mean of Winklemann, Naccari and Milthaler (air thermometer); above 140°, mean of Naccari and Milthaler.

### TABLE 248. - Specific Heat of Various Liquids.

| Liquid.        | Temp.                                                                               | Spec.<br>heat.                                                                                                                      | Au-<br>thority. | Liquid.                                                                                                                                                                                                                                                                                                                                                                                                                             | Temp.                                                              | Spec:<br>heat.                                                                                         | Au-<br>thority.                           |
|----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Alcohol, ethyl | 0 40 0 5-10 15 30 0 50 10 0 65 0 0 0 0 0 0 0 0 0 12-15 0 12-15 0 12-15 0 13-17 0 53 | 0.601<br>0.514<br>0.520<br>0.340<br>0.423<br>0.482<br>0.775<br>0.787<br>0.695<br>0.712<br>0.651<br>0.663<br>0.676<br>0.848<br>0.951 | R               | Ethyl ether.  Glycerine.  KOH + 30H <sub>2</sub> O.  " + 100"  NaOH + 50H <sub>2</sub> O.  " + 100"  NaCl + 10H <sub>2</sub> O.  " + 200"  Naphthalene, C <sub>10</sub> H <sub>8</sub> .  Nitrobenzole.  Oils: castor.  citron.  olive.  sesame.  turpentine.  Petroleum.  Sea water, sp. gr. 1.0043.  " " " 1.0235.  " " " 1.0463.  Toluol, C <sub>6</sub> H <sub>8</sub> .  "  ZnSO <sub>4</sub> + 50 H <sub>2</sub> O.  " + 200" | 15-50<br>18<br>18<br>18<br>18<br>18<br>18<br>90-95<br>14<br>28<br> | o.876 o.975 o.943 o.978 o.978 o.3791 o.978 o.362 o.434 o.438 o.471 o.511 o.980 o.938 o.903 o.364 o.938 | TH " " " " " " " W HW " " " " " " " " " " |

References: (A) Abbot; (B) Batelli; (E) Emo; (G) Griffiths; (DMG) Dickinson, Mueller, and George; (H-D) de Heen and Deruyts; (Ma) Marignac; (Pa) Pagliani; (R) Regnault; (Th) Thomsen; (W) Wachsmuth; (Z) Zouloff; (HW) H. F. Weber.

TABLE 249. — Specific Heat of Liquid Ammonia under Saturation Conditions. Expressed in Calories<sub>20</sub> per Gram per Degree C. Osborne and van Dusen, Bul. Bureau of Standards, 1918.

| Temp. °C.                                                          | 0                                                                                      | I                                                                                      | 2                                                                             | 3                                                                             | 4                                                                             | 5                                                                             | 6                                                                                      | 7                                                                                      | 8                                                                             | 9                                                                                      |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| -40<br>-30<br>-20<br>-10<br>- 0<br>+ 0<br>+10<br>+20<br>+30<br>+40 | 1.062<br>1.070<br>1.078<br>1.088<br>1.099<br>1.099<br>1.112<br>1.126<br>1.142<br>1.162 | 1.061<br>1.069<br>1.077<br>1.087<br>1.098<br>1.100<br>1.113<br>1.128<br>1.144<br>1.164 | 1.060<br>1.068<br>1.076<br>1.086<br>1.097<br>1.101<br>1.114<br>1.129<br>1.146 | 1.059<br>1.067<br>1.075<br>1.085<br>1.096<br>1.103<br>1.116<br>1.131<br>1.148 | 1.058<br>1.066<br>1.074<br>1.084<br>1.104<br>1.117<br>1.132<br>1.150<br>1.171 | 1.058<br>1.065<br>1.074<br>1.083<br>1.093<br>1.105<br>1.118<br>1.134<br>1.152 | 1.057<br>1.064<br>1.073<br>1.082<br>1.092<br>1.106<br>1.120<br>1.136<br>1.154<br>1.176 | 1.056<br>1.064<br>1.072<br>1.081<br>1.091<br>1.108<br>1.122<br>1.137<br>1.156<br>1.178 | 1.055<br>1.063<br>1.071<br>1.080<br>1.090<br>1.109<br>1.123<br>1.139<br>1.158 | 1.055<br>1.062<br>1.070<br>1.079<br>1.089<br>1.110<br>1.125<br>1.141<br>1.160<br>1.183 |

### TABLE 250. - Heat Content of Saturated Liquid Ammonia.

Heat content =  $H = \epsilon + pv$ , where  $\epsilon$  is the internal or intrinsic energy. Osborne and van Dusen, Bul. Bureau of Standards, 1918,

| Temperature $-50^{\circ}$<br>$H = \epsilon + pv$ $-53.8$ | -40° -3 | 30° -20° -<br>2.6 -21.8 - | -10° 0° | +10° +20°<br>+11.1 +22.4 | +30° +40°<br>-33.9 -45.5 | +50°<br>-57.4 |
|----------------------------------------------------------|---------|---------------------------|---------|--------------------------|--------------------------|---------------|
|                                                          |         |                           |         |                          |                          |               |

### SPECIFIC HEATS OF MINERALS AND ROCKS.

TABLE 251.-Specific Heat of Minerals and Rocks.

| Substance.                                                  | Tempera-<br>ture ° C. | Specific<br>Heat. | Refer-<br>ence. | Substance.          | Tempera-<br>ture ° C.  | Specific<br>Heat. | Refer-<br>ence. |
|-------------------------------------------------------------|-----------------------|-------------------|-----------------|---------------------|------------------------|-------------------|-----------------|
| Andalusite                                                  | 0-100                 | 0.1684            | I               | Rock-salt           | 13-45                  | 0.210             | 6               |
| Anhydrite, CaSO <sub>4</sub>                                | 0-100                 | .1753             | I               | Serpentine          | 16-98                  | .2586             | 2               |
| Apatite                                                     | 15-99                 | .1903             | 2               | Siderite            | 9-98                   | .1934             | 4               |
| Asbestos                                                    | 20-98                 | .195              | 3               | Spinel              | 15-47                  | .194              | 6               |
| Augite                                                      | 20-98                 | .1931             | 3               | Talc                | 20-08                  | .2092             | . 3             |
| Barite, BaSO4                                               | 10-98                 | .1128             | 4               | Topaz .             | 0-100                  | .2097             | I               |
| Bervl                                                       | 15-99                 | .1979             | 2               | Wollastonite .      | 19-51                  | .178              | 6               |
| Borax, Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub> fused  | 16-98                 | .2382             | 4               | Zinc blende, ZnS.   | 0-100                  | .1146             | I               |
| Calcite, CaCO <sub>3</sub>                                  | 0-50                  | .1877             | T               | Zircon              | 21-51                  | .132              | 6               |
| Carcite, Cacos                                              | 0-100                 | .2005             | I               | Rocks:              | 2. 3.                  |                   |                 |
| " "                                                         | 0-300                 | .2204             | I.              | Basalt, fine, black | 12-100                 | .1996             | 6               |
| Cassiterite SnO <sub>2</sub>                                | 16-98                 | .0933             | 4               | " " "               | 20-470                 | .199              | 9               |
| Chalcopyrite                                                | 15-99                 | .1291             | 2               | 66 66 66            | 470-750                | .243              | 9               |
| Corundum                                                    | 9-98                  | .1976             | 4               | 66 66 66            | 750-880                | .626              | 0               |
| Cryolite, Al <sub>2</sub> F <sub>6</sub> .6NaF .            | 16-99                 | .2522             | 2               | 66 66 66            | 880-1190               | -323              | 9               |
| Fluorite, CaF <sub>2</sub>                                  | I 5-99                | .2154             | 4               | Dolomite            | 20-98                  | .222              | 3               |
| Galena, PbS.                                                | 0-100                 | .0466             | 5               | Gneiss              | 17-99                  | .196              | 10              |
| Garnet                                                      | 16-100                | .1758             | 2               | "                   | 17-213                 | .214              | IO              |
| Hematite, Fe <sub>2</sub> O <sub>8</sub>                    | 15-99                 | .1645             | 2               | Granite             | 12-100                 | .192              | 7               |
| Hornblende                                                  | 20-98                 | .1952             | 3               | Kaolin              | 20-98                  | .224              | 3               |
| Hypersthene                                                 | 20-98                 | .1914             | 3               | Lava, Aetna .       | 23-100                 | .201              | II              |
| Labradorite                                                 | 20-98                 | .1949             |                 | 66 66               | 31-776                 | .259              | II              |
| Magnetite                                                   | 18-45                 | .156              | 3 6             | " Kilauea .         | 25-100                 | .197              | II              |
| Malachite, Cu <sub>2</sub> CO <sub>4</sub> H <sub>2</sub> O | 15-99                 | .1763             | 2               | Limestone           | 15-100                 | .216              | 12              |
| Mica (Mg)                                                   | 20-98                 | .2061             | 3               | Marble              | 0-100                  | .21               | -               |
| " (K)                                                       | 20-98                 | .2080             | 3               | Ouartz sand .       | 20-98                  | .191              | 3               |
| Oligoclase                                                  | 20-98                 | .2048             | 3               | Sandstone           |                        | .22               | -               |
| Orthoclase                                                  | 15-99                 | .1877             | 2               |                     |                        |                   |                 |
| Pyrolusite, MnO2.                                           | 17-48                 | .159              | 6               | - T' 3 - C T        |                        | - Dest            | 12              |
| Quartz, SiO <sub>2</sub>                                    | 12-100                | .188              |                 |                     |                        | 1 Barto           |                 |
| " "                                                         | 0                     | .1737             | 7 8             |                     | oly. I                 | 2 Mora            | 110.            |
| " "                                                         | 350                   | .2786             | 8               |                     |                        | ton D#            | lear            |
| " "                                                         | 400-1200              | .305              | 8               |                     | oberts-Aus<br>. Weber. | ien, Kuc          | ker.            |
|                                                             |                       | 3.3               |                 | 5 Iliden. To R      | . Wener.               |                   |                 |

Compiled from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 252.—Specific Heats of Silicates.

| Silicate. | Mean specific heats.<br>o° C to                                                    |                                                                                    |                                                                       |                                         | True specific heats. |                                                             |                                                        |                                                            |       |
|-----------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|----------------------|-------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|-------|
|           | 100°                                                                               | 500°                                                                               | 900°                                                                  | 1400°                                   | o°C                  | 100°                                                        | 500°                                                   | 1000°                                                      | 1300° |
| Albite    | .1948<br>.1977<br>.2033<br>.2040<br>.1925<br>.1934<br>.1901<br>.1883               | .2363<br>.2410<br>.2461<br>.2474<br>.2330<br>-<br>.2296<br>.2305<br>.2426          | .2561<br>.2640<br>.2661<br>-<br>.2525<br>.2615<br>02481<br>-<br>.2568 | -<br>.2731*<br>-<br>.2674<br>-<br>.2680 | .178                 | .211219205                                                  | .269                                                   | .294                                                       | .318  |
| Diopside  | .1924<br>.1939<br>.1871<br>.1919<br>.2039<br>.1868<br>.1845<br>-<br>.1852<br>.1844 | .2314<br>.2332<br>.2262<br>.2321<br>.2484<br>.2379<br>.2302<br>-<br>.2206<br>.2170 | .2500<br>-2450<br>.2514<br>-2596<br>.2512<br>.2344<br>-2324           | .2604†2598* .2640*2448                  | .171                 | .207<br>-<br>.201<br>.206<br>-<br>.204<br>.202<br>-<br>.197 | .262<br>-258<br>.264<br>-<br>.294<br>.266<br>-<br>.243 | .284<br>-<br>.279<br>.299<br>-<br>.285<br>.29<br>-<br>.262 |       |

\*0°-1100°; †0°-1250°;

Taken from White, Am. J. Sc. 47, 1, 1919.

### SPECIFIC HEATS OF GASES AND VAPORS.

|    | Substance.                               | Range of temp. ° C | Sp. ht.<br>constant<br>pres-<br>sure. | Authority.              | Range of temp. | Mean ratio of specific heats. Cp/Cv. | Authority.                  |
|----|------------------------------------------|--------------------|---------------------------------------|-------------------------|----------------|--------------------------------------|-----------------------------|
| I  | Acetone, C <sub>3</sub> H <sub>6</sub> O | 26-110             | 0.3468                                | Wiedemann.              | - 1            |                                      |                             |
| П  | Air                                      | -30-+10            | 0.2377                                | Regnault.               | 20             | 1.4011                               | Moody.                      |
| ı  | 44                                       | 0-200              | 0.2375                                | 166114416.              | -79.3          |                                      | Koch, 1907.                 |
| П  | "                                        | 20-440             | 0.2366                                | Holborn and             | -79.3          |                                      | " 200 atm                   |
| Ш  | "                                        | 20-630             | 0.2420                                | Austin.                 | 0              | 1.828                                | " " "                       |
| П  | "                                        | 20-800             | 0.2430                                | 66                      | 500            | 1.399                                | Fürstenau.                  |
| ı  | Alcohol, C2H5OH                          | 108-220            | 0.4534                                | Regnault.               | 53             | 1.133                                | Jaeger.                     |
| ı  | " "                                      | _                  |                                       | _                       | 100            | 1.134                                | Stevens.                    |
| П  | " CH <sub>3</sub> OH                     | 101-223            | 0.4580                                | Regnault.               | 100            | 1.256                                | 66                          |
| ı  | Ammonia                                  | 23-100             | 0.5202                                | Wiedemann.              | 0              | 1.3172                               | Wüllner.                    |
| П  | 46                                       | 27-200             | 0.5356                                | "                       | 100            | 1.2770                               |                             |
| Н  | Argon                                    | 20-90              | 0.1233                                | Dittenberger.           | 0              | 1.667                                | Niemeyer.                   |
| Ш  | Benzene, C <sub>6</sub> H <sub>6</sub>   | 34-115             | 0.2990                                | Wiedemann.              | 20             | 1.403                                | Pagliani.                   |
|    | 66 66                                    | 35-180             | 0.3325                                | D 1                     | 60             | 1.403                                |                             |
|    |                                          | 116-218            | 0.3754                                | Regnault.               | 99.7           | 1.105                                | Stevens.                    |
|    | Bromine                                  | 83-228             | 0.0555                                | "                       | 20-388         |                                      | Strecker.                   |
| Н  | Carbon dioxide, CO2                      | -28-+7             | 0.1843                                | "                       | 4-11           | 1.2995                               | Lummer and                  |
| I  |                                          | 15-100             | 0.2025                                | u                       | 0              | 1.3003                               | Pringsheim.<br>Moody, 1912. |
| II | " monoxide, CO                           | 23-99              | 0.2425                                | Wiedemann.              | 0              | 1.403                                | Wüllner.                    |
| Н  | " " " "                                  | 25-198             | 0.2426                                | "                       | 100            | 1.395                                | "                           |
| Н  | " disulphide, CS2.                       | 86-190             | 0.1596                                | Regnault.               | 3-67           | 1.205                                | Beyme.                      |
| ı  | Chlorine                                 | 16-343             | 0.1125                                | Strecker.               | 0              | 1.336                                | Martini.                    |
| H  | Chloroform, CHCl3                        | 27-118             | 0.1441                                | Wiedemann.              | 22-78          | 1.102                                | Beyme.                      |
| ı  | "                                        | 28-180             | 0.1489                                | 66                      | 99.8           | 1.150                                | Stevens.                    |
| ı  | Ether, C <sub>4</sub> H <sub>10</sub> O  | 69-224             | 0.4797                                | Regnault.               | 42-45          | 1.020                                | Müller.                     |
| ı  | "                                        | 25-111             | 0.4280                                | Wiedemann.              | 12-20          | 1.024                                | Low, 1894.                  |
| ı  | Helium                                   | _                  | -                                     | _                       | 0              | 1.64                                 | Mean, Jeans.                |
| H  | Hydrochloric acid, HCl.                  | 13-100             | 0.1940                                | Strecker.               | 20             | 1.389                                | Strecker.                   |
| ı  | TT 1                                     | 22-214             | 0.1867                                | Regnault.               | 100            | 1.400                                | - "                         |
| ı  | Hydrogen                                 | -28-+9             | 3.3996                                | "                       | 4-16           | 1.4080                               |                             |
| ı  |                                          | 12-198             | 3.4000                                |                         |                |                                      | Pringsheim.                 |
| ı  | " sulphide, H <sub>2</sub> S             | 21-100<br>20-206   | 3.4100                                | Wiedemann.<br>Regnault. | _              | 1.419                                | Hartmann.                   |
| ı  | Krypton                                  | 20-200             | 0.2451                                | Regnauit.               | 7.0            | 1.324                                | Capstick. Ramsay, '12.      |
| ı  | Mercury                                  |                    | _                                     | _                       | 310            | 1.666                                | Kundt and                   |
| ı  |                                          |                    |                                       |                         | 310            | 1.000                                | Warburg.                    |
| 1  | Methane, CH4                             | 18-208             | 0.5929                                | Regnault.               | 11-30          | 1.316                                | Müller.                     |
| 1  | Neon                                     | _                  |                                       | _                       | 19             | 1.642                                | Ramsay, '12                 |
| 1  | Nitrogen                                 | 0-200              | 0.2438                                | Regnault.               | _              | 1.41                                 | Cazin.                      |
| 1  | 66                                       | 20-440             | 0.2419                                | Holborn and             | -              | 1.405                                | Masson.                     |
| 1  | .,                                       | 20-630             | 0.2464                                | Austin.                 |                |                                      |                             |
| ı  | * * * * * * * * * * * * * * * * * * * *  | 20-800             | 0.2497                                | 7                       |                |                                      | "                           |
| I  | Nitric oxide, NO                         | 13-172             | 0.2317                                | Regnault.               | _              | 1.394                                |                             |
| 1  | Nitrogen tetroxide, NO2.                 | -, -,              | 1.625                                 | Berthelot and           | _              | 1.31                                 | Natanson.                   |
| 1  | 66 66 66                                 | 27-150             | 1.115                                 | Olger.                  |                |                                      |                             |
| 1  | Nitrous oxide, N2O                       | 27-280<br>16-207   | 0.65                                  | Regnault.               |                |                                      | Willner                     |
| 1  | . " " "                                  | 26-103             | 0.2126                                | Wiedemann.              | 100            | 1.311                                | Wüllner.                    |
| 1  |                                          | 27-206             | 0.2241                                | " redefitatiii.         | 100            | I. 272<br>I. 324                     | Leduc, '98.                 |
| 1  | Oxygen                                   | 13-207             | 0.2175                                | Regnault.               | 5-14           | 1.324                                | Lummer and                  |
| 1  |                                          | 20-440             | 0.2240                                | Holborn and             | 3 -4           | 3911                                 | Pringsheim.                 |
| 1  | 66                                       | 20-630             | 0.2300                                | Austin.                 |                |                                      | January                     |
| 1  | Sulphur dioxide, SO2                     | 16-202             | 0.1544                                | Regnault.               | 16-34          | 1.256                                | Müller.                     |
| 1  | Water vapor, H <sub>2</sub> O            | 0                  | 0.4655                                | Thiesen.                | 78             | 1.274                                | Beyme.                      |
| 1  | 46 66 66                                 | 100                | 0.421                                 |                         | 94             | 1.33                                 | Jaeger.                     |
| 1  |                                          | 180                | 0.51                                  | 66                      | 100            | 1.305                                | Makower.                    |
| 1  | Xenon                                    |                    | -                                     | _                       | 19             | 1.666                                | Ramsay,' 12.                |
| L  |                                          |                    | 1                                     |                         |                |                                      |                             |

### LATENT HEAT OF VAPORIZATION.

The temperature of vaporization in degrees Centigrade is indicated by t, the latent heat in large calories per kilogram or in small calories or therms per gram by r; the total heat from  $\circ^{\circ}$  C, in the same units by H. The pressure is that due to the vapor at the temperature t.

|                                         |                                     |                |              | 1          | !                           |
|-----------------------------------------|-------------------------------------|----------------|--------------|------------|-----------------------------|
| Substance.                              | Formula.                            | t° C           | 7            | H          | Authority.                  |
| Acetic acid                             | $C_2H_4O_2$                         | 118°           | 84.0         | _          | Ogier.                      |
| Air                                     | -                                   |                | 50.97        |            | Fenner-Richtmyer.           |
| Alcohol: Amyl                           | C <sub>5</sub> H <sub>12</sub> O    | 131            | 120          | _          | Schall.                     |
| Ethyl                                   | C <sub>2</sub> H <sub>6</sub> O     | 78.1           | 205          | 255        | Wirtz.                      |
| 66                                      | 66                                  | 0              | 236          | 236        | Regnault.                   |
| 46                                      | 66                                  | 50             | _            | 264        | 66                          |
| "                                       | 66                                  | 100            |              | 267        | "                           |
| Methyl                                  | CH <sub>4</sub> O                   | 150            | 267          | 285        | Wirtz.                      |
| Wiethyl                                 | 61140                               | 64.5           | 280          | 307<br>280 | Ramsay and Young.           |
| "                                       | "                                   | 50             | 209          | 274        |                             |
| "                                       | "                                   | 100            | _            | 246        | u u u                       |
| "                                       | "                                   | 150            | -            | 206        |                             |
| "                                       | "                                   | 200            |              | 152        | (6 66 66                    |
| • • • • • • • • • • • • • • • • • • • • |                                     | 238.5          | _            | 44.2       |                             |
| Aniline                                 | C <sub>6</sub> H <sub>7</sub> N     | 184            | 110          |            | Mean.<br>Wirtz.             |
| Benzene                                 | C <sub>6</sub> H <sub>6</sub><br>Br | 80.1<br>61     | 92.9<br>45.6 | 127.9      | Andrews.                    |
| Carbon dioxide, solid                   | CO <sub>2</sub>                     | <u> </u>       | 45.0         | 138.7      | Favre.                      |
| " " liquid                              | "                                   | -25            | 72.23        | 130.7      | Cailletet and Mathias.      |
| " " "                                   | "                                   | ő              | 57.48        |            |                             |
| " " " "                                 | "                                   | 12.35          | 44.97        | -          | Mathias.                    |
| " " " …                                 | 66                                  | 22.04          | 31.8         |            | "                           |
| " " " "                                 | "                                   | 29.85          | 14.4         | _          | 66                          |
| " disulphide                            | CS <sub>2</sub>                     | 30.82<br>46.1  | 3.72         |            | Wirtz.                      |
| " distiplinde                           | (,,                                 | 40.1           | 83.8         | 94.8       | Regnault.                   |
| " "                                     | - 66                                | 100            | <del>-</del> | 100.5      | - "                         |
| " "                                     | 46                                  | 140            |              | 102.4      | "                           |
| Chloroform                              | CHCl <sub>3</sub>                   | 60.9           | 58.5         | 72.8       | Wirtz.                      |
| Ether                                   | $C_4H_{10}O$                        | 34.5           | 88.4         | 107        | "                           |
|                                         | "                                   | 34.9           | 90.5         | _          | Andrews.                    |
| "                                       | 66                                  | 0              | 94           | 94         | Regnault.                   |
| "                                       | 66                                  | 50<br>120      |              | 115.1      | "                           |
| Ethyl bromide                           | C <sub>2</sub> H <sub>5</sub> Br    | 38.2           | 60.4         | 140        | Wirtz.                      |
| " chloride                              | C <sub>2</sub> H <sub>5</sub> Cl    | 12.5           | _            | 98         | Regnault.                   |
| iodide                                  | $C_2H_5I$                           | 71             | 47           | —          | Mean.                       |
| Heptane                                 | $C_7H_{16}$                         | 90             | 77.8         |            | Young.                      |
| Hexane                                  | $C_6H_{14}$                         | 70             | 79.2         | _          | Farms and Cilhams           |
| Iodine                                  | I                                   | 255            | 23.95        |            | Favre and Silbermann. Mean. |
| Mercury Nitrogen                        | $_{ m N_2}^{ m Hg}$                 | 357·<br>-195.6 | 65<br>47.65  | _          | Alt.                        |
| Octane                                  | $C_8H_{18}$                         | 130            | 70.0         | MANAGE     | Young.                      |
| Oxygen                                  | $O_2$                               | -182.9         | 50.97        |            | Alt.                        |
| Pentane                                 | $C_5H_{12}$                         | 30             | 85.8         | _          | Young.                      |
| Sulphur                                 | S                                   | 316            | 362.0        | -          | Person.                     |
| Sulphur dioxide                         | $SO_2$                              | 0              | 91.2         | _          | Cailletet and Mathias.      |
| " "                                     | "                                   | 30             | 80.5         |            |                             |
| Toluene                                 | C <sub>7</sub> H <sub>8</sub>       | 65             | 68.4<br>86.0 |            | Mean.                       |
| Turpentine                              | $C_{10}H_{10}$                      | 159.3          | 74.04        | _          | Brix.                       |
|                                         | 2102210                             | -39.3          | 74.04        |            |                             |
|                                         |                                     |                |              |            |                             |

### LATENT HEAT OF VAPORIZATION.

### TABLE 255. - Formulae for Latent and Total Heats of Vapors.

r= latent heat of vaporization at  $\ell^\circ$  C; H= total heat from fluid at o° to vapor at  $\ell^\circ$  C.  $T^\circ$  refers to Kelvin scale. Same units as preceding table,

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|-------------------------------------------------------|
|-------------------------------------------------------|

### TABLE 256.—Latent Heat of Vaporization of Ammonia.

CALORIES PER GRAM.

| °C  | 0     | ı ·   | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| -40 | 331.7 | 332.3 | 333.0 | 333.6 | 334·3 | 334.9 | 335·5 | 336.2 | 336.8 | 337.5 |
| -30 | 324.8 | 325.5 | 326.2 | 326.9 | 327.6 | 328.3 | 329·0 | 329.7 | 330.3 | 331.0 |
| -20 | 317.6 | 318.3 | 319.1 | 319.8 | 320.6 | 321.3 | 322·0 | 322.7 | 323.4 | 324.1 |
| -10 | 309.9 | 310.7 | 311.5 | 312.2 | 313.0 | 313.8 | 314·6 | 315.3 | 316.1 | 316.8 |
| - 0 | 301.8 | 302.6 | 303.4 | 304.3 | 305.1 | 305.9 | 306·7 | 307.5 | 308.3 | 309.1 |
| + 0 | 301.8 | 300.9 | 300.1 | 299.2 | 298.4 | 297.5 | 296.6 | 295.7 | 294.9 | 294.0 |
| +10 | 293.1 | 292.2 | 291.3 | 290.4 | 289.5 | 288.6 | 287.6 | 286.7 | 285.7 | 284.8 |
| +20 | 283.8 | 282.8 | 281.8 | 280.9 | 279.9 | 278.9 | 277.9 | 276.9 | 275.9 | 274.9 |
| +30 | 273.9 | 272.8 | 271.8 | 270.7 | 269.7 | 268.6 | 267.5 | 266.4 | 265.3 | 264.2 |
| +40 | 263.1 | 262.0 | 260.8 | 259.7 | 258.5 | 257.4 | 256.2 | 255.0 | 253.8 | 252.6 |

Osborne and van Dusen, Bul. Bureau Standards, 14, p. 439, 1918.

### TABLE 257. - "Latent Heat of Pressure Variation" of Liquid Ammonia.

When a fluid undergoes a change of pressure, there occurs a transformation of energy into heat or vice versa, which results in a change of temperature of the substance unless a like amount of heat is abstracted or added. This change expressed as the heat so transformed per unit change of pressure is the "latent heat of pressure variation." It is expressed below as Joules per gram per kg/cm². Osborne and van Dusen, loc. cit., p. 433, 1918.

| Temperature ° C |     |     |     |     |     |     |     |     |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Latent heat     | 055 | 057 | 068 | 088 | 107 | 123 | 140 | 150 |

### LATENT AND TOTAL HEATS OF VAPORIZATION OF THE ELEMENTS.

The following table of theoretical values is taken from J. W. Richards, Tr. Amer. Electroch. Soc. 13, p. 447, 1908. They are computed as follows:  $8T_m$  (8 = mean value atomic specific heat, Dulong-Petit constant,  $o^{\circ}$  to  $T^{\circ}$  K,  $T_m$  = melting point, Kelvin scale) plus  $2T_m$  (latent heat of fusion is approximately  $2T_m$ , J. Franklin Inst. 1897) plus  $10(T_b - T_m)$  (specific heat of liquid metals is nearly constant and equal to that of the solid at  $T_m$ ,  $T_b$  = boiling point, Kelvin scale) plus  $23T_b$  (23 = Trouton constant; latent heat of vaporization of molecular weight in grams is approximately 23 times  $T_b$ ) =  $33T_b$ . Total heat of vapor when raised from 273° K ( $o^{\circ}$  C) equals  $33T_b - 1700$  (mean value of Dulong-Petit constant between  $o^{\circ}$  and  $273^{\circ}$  K is 1700). Heats given in small calories per gram.

| Ele-<br>ment.                                        | $^{T_b}_{ m ^{\circ}K}$                                                                                                            | 23 <i>Tb</i>                                                                                                                                                 | Latent<br>heat of<br>vapori-<br>zation.                                                                              | 33 <i>Tb</i> —                                                                                                                                                                   | Total<br>heat<br>vapor<br>from<br>273° K                                                                               | Ele-<br>ment.                                                                                                                                                       | °K                                                                                                                               | 23Tb                                                                                                                                           | Latent<br>heat of<br>vapori-<br>zation.                                 | 33Tb-<br>1700                                                                                                 | Total heat of vapor from 273° K                                                  |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Hg K Cd Na Zn In Mg Te Bi Sb Tl Pb Ag Cu Sn Mn Ni Cr | 630<br>993<br>1050<br>1170<br>1200<br>1270<br>1370<br>1660<br>1710<br>1870<br>2070<br>2310<br>2370<br>2440<br>2470<br>2690<br>2640 | 14,500<br>22,800<br>24,200<br>27,700<br>29,300<br>31,600<br>38,200<br>39,300<br>43,100<br>45,400<br>47,700<br>53,000<br>54,500<br>56,500<br>59,800<br>60,700 | 72<br>590<br>230<br>1170<br>430<br>—<br>1320<br>300<br>190<br>360<br>220<br>230<br>490<br>860<br>480<br>1030<br>1010 | 19,100<br>31,100<br>33,000<br>37,000<br>38,000<br>40,300<br>43,600<br>54,900<br>56,400<br>60,000<br>63,400<br>66,700<br>74,600<br>76,600<br>78,800<br>79,500<br>84,000<br>85,400 | 96<br>800<br>310<br>1610<br>580<br>—<br>1820<br>430<br>270<br>510<br>320<br>690<br>1210<br>670<br>1440<br>1420<br>1640 | Rh Ru Au Pd Ir Os U Mo W H <sub>2</sub> N <sub>2</sub> O <sub>2</sub> Cl <sub>2</sub> Br <sub>2</sub> I <sub>3</sub> P <sub>3</sub> As <sub>3</sub> Se <sub>3</sub> | 2773<br>2700<br>2800<br>2810<br>2820<br>2870<br>3170<br>3470<br>3970<br>20<br>77<br>85<br>251<br>331<br>447<br>560<br>723<br>963 | 63,800<br>64,100<br>64,500<br>64,600<br>66,000<br>73,000<br>80,000<br>91,400<br>1,770<br>1,960<br>5,780<br>7,600<br>10,300<br>16,600<br>22,100 | 630<br>330<br>610<br>340<br>350<br>305<br>830<br>500<br>230<br>63<br>61 | 90,000<br>90,000<br>91,000<br>91,000<br>91,300<br>103,000<br>113,000<br>129,000<br>—<br>—<br>—<br>—<br>—<br>— | 870<br>880<br>460<br>850<br>470<br>490<br>430<br>1180<br>700<br>—<br>—<br>—<br>— |
| Fe<br>Pt                                             | 2690<br>2720                                                                                                                       | 62,000                                                                                                                                                       | 320                                                                                                                  | 87,200                                                                                                                                                                           | 1560                                                                                                                   | B <sub>2</sub><br>C <sub>2</sub>                                                                                                                                    | 3970<br>3970                                                                                                                     | 91,000                                                                                                                                         | 4200<br>3800                                                            | _                                                                                                             | =                                                                                |
| Ti                                                   | 2750                                                                                                                               | 63,200                                                                                                                                                       | 1320                                                                                                                 | 89,000                                                                                                                                                                           | 1850                                                                                                                   |                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                                | -                                                                       |                                                                                                               |                                                                                  |

### PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

Reprinted by permission of the author and publishers from "Tables of the Properties of Steam," Cecil H. Peabody, 8th edition, rewritten in 1909. Calorie used is heat required to raise 1 Kg, water from 15° to 16° C. B. T. U. is heat required to raise 1 pd. water from 62° to 63° F. Mechanical Equiv. of heat used, 778 ft. pds. or 427 m. Kg. Specific heats, see Barnes-Regnault-Peabody results, p. 227. Heat of Liquid, q. heat required to raise 1 Kg. (1 lb.) to corresponding temperature from o"C. Heat of vaporization, r. heat required to vaporize 1 Kg. (1 lb.) at corresponding temperature to dry saturated vapor against corresponding pressure; see Henning, Ann. der Phys., 21, p. 849, 1906. Total Heat, H=r+q, see Davis, Tr. Am. Soc. Mech. Eng., 1908.

| Temperature<br>Degrees<br>Centigrade. |                                           | Pressure.                            |                                                | Heat o                                    |                                           | He<br>Vapor                               | at of<br>rization.                             |                                           | quivalent<br>of<br>il Work.               | Temperature<br>Degrees<br>Fahrenheit      |
|---------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Temp<br>Temp<br>Cen                   | Mm. of<br>Mercury.                        | Kg.<br>per sq. cm.<br>p.             | Pds.<br>per sq. in.<br>p.                      | Calories.                                 | B. T U.                                   | Calories.                                 | B. T. U.                                       | Calories.                                 | Β. Τ. U.<br>ρ.                            | T'em<br>D'e                               |
| 0                                     | 4.579                                     | 0.00623                              | 0.0886                                         | 0.00                                      | 0.0                                       | 595.4                                     | 1071.7                                         | 565.3                                     | 1017.5                                    | 32.0                                      |
| 5                                     | 6.541                                     | .00889                               | .1265                                          | 5.04                                      | 9.1                                       | 592.8                                     | 1067.1                                         | 562.2                                     | 1011.9                                    | 41.0                                      |
| 10                                    | 9.205                                     | .01252                               | .1780                                          | 10.06                                     | 18.1                                      | 590.2                                     | 1062.3                                         | 559.0                                     | 1006.2                                    | 50.0                                      |
| 15                                    | 12.779                                    | .01737                               | .2471                                          | 15.06                                     | 27.1                                      | 587.6                                     | 1057.6                                         | 555.9                                     | 1000.5                                    | 59.0                                      |
| 20                                    | 17.51                                     | .02381                               | .3386                                          | 20.06                                     | 36.1                                      | 584.9                                     | 1052.8                                         | 552.7                                     | 994.8                                     | 68.0                                      |
| 25<br>30<br>35<br>40<br>45            | 23.69<br>31.71<br>42.02<br>55.13<br>71.66 | .03221<br>.04311<br>.05713<br>.07495 | .4581<br>.6132<br>.8126<br>1.0661<br>1.3858    | 25.05<br>30.04<br>35.03<br>40.02<br>45.00 | 45.1<br>54.1<br>63.1<br>72.0<br>81.0      | 582.3<br>579.6<br>576.9<br>574.2<br>571.3 | 1048.1<br>1043.3<br>1038.5<br>1033.5<br>1028.4 | 549.5<br>546.3<br>543.1<br>539.9<br>536.5 | 989.1<br>983.4<br>977.6<br>971.7<br>965.7 | 77.0<br>86.0<br>95.0<br>104.0             |
| 50                                    | 92.30                                     | .12549                               | 1.7849                                         | 49.99                                     | 90.0                                      | 568.4                                     | 1023.2                                         | 533.0                                     | 959.6                                     | 122.0                                     |
| 55                                    | 117.85                                    | .16023                               | 2.279                                          | 54.98                                     | 99.0                                      | 565.6                                     | 1018.1                                         | 529.7                                     | 953.5                                     | 131.0                                     |
| 60                                    | 149.19                                    | .20284                               | 2.885                                          | 59.97                                     | 108.0                                     | 562.8                                     | 1013.1                                         | 526.4                                     | 947.5                                     | 140.0                                     |
| 65                                    | 187.36                                    | .2547                                | 3.623                                          | 64.98                                     | 117.0                                     | 559.9                                     | 1007.8                                         | 523.0                                     | 941.3                                     | 149.0                                     |
| 70                                    | 233.53                                    | .3175                                | 4.516                                          | 69.98                                     | 126.0                                     | 556.9                                     | 1002.5                                         | 519.5                                     | 935.0                                     | 158.0                                     |
| 75                                    | 289.0                                     | .3929                                | 5.589                                          | 74.99                                     | 135.0                                     | 554.0                                     | 997·3                                          | 516.0                                     | 928.8                                     | 167.0                                     |
| 80                                    | 355.1                                     | .4828                                | 6.867                                          | 80.01                                     | 144.0                                     | 551.1                                     | 991.9                                          | 512.6                                     | 922.6                                     | 176.0                                     |
| 85                                    | 433.5                                     | .5894                                | 8.383                                          | 85.04                                     | 153.1                                     | 548.1                                     | 986.5                                          | 509.1                                     | 916.3                                     | 185.0                                     |
| 90                                    | 525.8                                     | .7149                                | 10.16 <b>7</b>                                 | 90.07                                     | 162.1                                     | 544.9                                     | 980.9                                          | 505.4                                     | 909.9                                     | 194.0                                     |
| 91                                    | 546.1                                     | .7425                                | 10.560                                         | 91.08                                     | 163.9                                     | 544·3                                     | 979.8                                          | 504.7                                     | 908.5                                     | 195.8                                     |
| 92                                    | 567.1                                     | .7710                                | 10.966                                         | 92.08                                     | 165.7                                     | 543·7                                     | 978.7                                          | 504.0                                     | 907.2                                     | 197.6                                     |
| 93                                    | 588.7                                     | .8004                                | 11.384                                         | 93.09                                     | 167.5                                     | 543·1                                     | 977.6                                          | 503.3                                     | 906.0                                     | 199.4                                     |
| 94                                    | 611.0                                     | .8307                                | 11.815                                         | 94.10                                     | 169.3                                     | 542·5                                     | 976.5                                          | 502.6                                     | 904.7                                     | 201.2                                     |
| 95<br>96<br>97<br>98<br>99            | 634.0<br>657.7<br>682.1<br>707.3<br>733.3 | .8620<br>.8942<br>.9274<br>.9616     | 12.260<br>12.718<br>13.190<br>13.678<br>14.180 | 95.11<br>96.12<br>97.12<br>98.13<br>99.14 | 171.2<br>173.0<br>174.8<br>176.6<br>178.5 | 541.9<br>541.2<br>540.6<br>539.9<br>539.3 | 97 5.4<br>974.2<br>973.1<br>971.9<br>970.8     | 501.9<br>501.1<br>500.4<br>499.6<br>498.9 | 903.4<br>902.1<br>900.8<br>899.4<br>898.2 | 203.0<br>204.8<br>206.6<br>208.4<br>210.2 |
| 100                                   | 760.0                                     | 1.0333                               | 14.697                                         | 100.2                                     | 180.3                                     | 538.7                                     | 969.7                                          | 498.2                                     | 896.9                                     | 212.0                                     |
| 101                                   | 787.5                                     | 1.0707                               | 15.229                                         | 101.2                                     | 182.1                                     | 538.1                                     | 968.5                                          | 497.5                                     | 895.5                                     | 213.8                                     |
| 102                                   | 815.9                                     | 1.1093                               | 15.778                                         | 102.2                                     | 183.9                                     | 537.4                                     | 967.3                                          | 496.8                                     | 894.1                                     | 215.6                                     |
| 103                                   | 845.1                                     | 1.1490                               | 16.342                                         | 103.2                                     | 185.7                                     | 536.8                                     | 966.2                                          | 496.1                                     | 892.9                                     | 217.4                                     |
| 104                                   | 875.1                                     | 1.1898                               | 16.923                                         | 104.2                                     | 187.6                                     | 536.2                                     | 965.1                                          | 495.4                                     | 891.6                                     | 219.2                                     |
| 105                                   | 906.1                                     | 1.2319                               | 17.522                                         | 105.2                                     | 189.4                                     | 535.6                                     | 964.0                                          | 494.7                                     | 890.3                                     | 221.0                                     |
| 106                                   | 937.9                                     | 1.2752                               | 18.137                                         | 106.2                                     | 191.2                                     | 534.9                                     | 962.8                                          | 493.9                                     | 889.0                                     | 222.8                                     |
| 107                                   | 970.6                                     | 1.3196                               | 18.769                                         | 107.2                                     | 193.0                                     | 534.2                                     | 961.6                                          | 493.1                                     | 887.6                                     | 224.6                                     |
| 108                                   | 1004.3                                    | 1.3653                               | 19.420                                         | 108.2                                     | 194.8                                     | 533.6                                     | 960.5                                          | 492.4                                     | 886.3                                     | 226.4                                     |
| 109                                   | 1038.8                                    | 1.4123                               | 20.089                                         | 109.3                                     | 196.7                                     | 532.9                                     | 959.3                                          | 491.6                                     | 885.0                                     | 228.2                                     |
| 110                                   | 1074.5                                    | 1.4608                               | 20.777                                         | 110.3                                     | 198.5                                     | 532.3                                     | 958.1                                          | 490.9                                     | 883.6                                     | 230.0                                     |
| 111                                   | 1111.1                                    | 1.5106                               | 21.486                                         | 111.3                                     | 200.3                                     | 531.6                                     | 956.9                                          | 490.2                                     | 882.3                                     | 231.8                                     |
| 112                                   | 1148.7                                    | 1.5617                               | 22.214                                         | 112.3                                     | 202.1                                     | 530.9                                     | 955.7                                          | 489.4                                     | 880.9                                     | 233.6                                     |
| 113                                   | 1187.4                                    | 1.6144                               | 22.962                                         | 113.3                                     | 203.9                                     | 530.3                                     | 954.5                                          | 488.7                                     | 879.5                                     | 235.4                                     |
| 114                                   | 1227.1                                    | 1.6684                               | 23.729                                         | 114.3                                     | 205.8                                     | 529.6                                     | 953.3                                          | 487.9                                     | 878.2                                     | 237.2                                     |
| 115                                   | 1267.9                                    | 1.7238                               | 24.518                                         | 115.3                                     | 207.6                                     | 528.9                                     | 952.1                                          | 487.1                                     | 876.8                                     | 239.0                                     |
| 116                                   | 1309.8                                    | 1.7808                               | 25.328                                         | 116.4                                     | 209.4                                     | 528.2                                     | 950.8                                          | 486.3                                     | 875.4                                     | 240.8                                     |
| 117                                   | 1352.8                                    | 1.8393                               | 26.160                                         | 117.4                                     | 211.2                                     | 527.5                                     | 949.5                                          | 485.5                                     | 873.9                                     | 242.6                                     |
| 118                                   | 1397.0                                    | 1.8993                               | 27.015                                         | 118.4                                     | 213.0                                     | 526.9                                     | 948.4                                          | 484.8                                     | 872.6                                     | 244.4                                     |
| 119                                   | 1442.4                                    | 1.9611                               | 27.893                                         | 119.4                                     | 214.9                                     | 526.2                                     | 947.2                                          | 484.0                                     | 871.3                                     | 246.2                                     |

### PROPERTIES OF SATURATED STEAM.

#### Metric and Common Units.

If a is the reciprocal of the Mechanical Equivalent of Heat, p the pressure, s and  $\sigma$  the specific volumes of the liquid and the saturated vapor, s  $-\sigma$ , the change of volume, then the heat equivalent of the external work is Apu = Ap(s  $-\sigma$ ). Heat equivalent of internal work,  $\rho = r - A$ pu. For experimental sp. vols. see Knoblauch, Linde and Klebe, Mitt. über Forschungarbeiten, 21, p. 33, 1905. Entropy = S dQ/T, where dQ = amount of heat added at absolute temperature T. For pressures of saturated steam see Holborn and Henning, Ann. der Phys. 26, p. 833, 1908; for temperatures above 205° C. corrected from Regnault.

|                                       | 1                    |                                      |                         |                            |                           |                         |                          |                            |                                       |
|---------------------------------------|----------------------|--------------------------------------|-------------------------|----------------------------|---------------------------|-------------------------|--------------------------|----------------------------|---------------------------------------|
| Temperature<br>Degrees<br>Centigrade. | of Ex                | quivalent<br>ternal<br>ork.          | Entropy<br>of the       | Entropy<br>of Evapo-       | Specific 1                | Volume.                 | Dei                      | nsity.                     | Femperature<br>Degrees<br>Fahrenheit. |
| Temp<br>De<br>Cent                    | Calories.            | B.T.U.                               | Liquid.                 | ration.                    | Cubic Meters<br>per Kilo- | per                     | Kilograms<br>per Cubic   | Pounds                     | Temp<br>Deg<br>Fahre                  |
| t                                     | Apu.                 | Apu.                                 | θ                       | T                          | gram.                     | Pound.                  | Meter.                   | Cubic Foot.                | t                                     |
| 0 5                                   | 30.1<br>30.6         | 54.2<br>55.2                         | 0.0000                  | 2.1804<br>2.1320           | 206.3<br>147.1            | 3304.<br>2356.          | 0.00485                  | 0.000303                   | 32.0<br>41.0                          |
| 10                                    | 31.2                 | 56.1<br>57.1<br>58.0                 | .0361                   | 2.0850<br>2.0396           | 77.9                      | 1703.                   | .00941                   | .000587                    | 50.0                                  |
| 20                                    | 32.2                 |                                      | .0709                   | 1.9959                     | 57.8                      | 926.                    | .01730                   | .001080                    | 59.0<br>68.0                          |
| 25<br>30<br>35                        | 32.8<br>33.3<br>33.8 | 59.0<br>59.9<br>60.9                 | .0878<br>.1044<br>.1207 | 1.9536<br>1.9126<br>1.8728 | 43.40<br>32.95            | 695.<br>528.            | .02304                   | .001439                    | 77.0<br>86.0                          |
| 40                                    | 34.3<br>34.8         | 61.8                                 | .1368                   | 1.8341                     | 25.25<br>19.57<br>15.25   | 404.7<br>313.5<br>244.4 | .03960<br>.0511<br>.0656 | .002471                    | 95.0<br>104.0<br>113.0                |
| 50                                    | 35.4                 | 63.6                                 | .1682                   | 1.7597                     | 12.02                     | 192.6                   | .0832                    | .00519                     | 122.0                                 |
| 55<br>60<br>65                        | 35.9<br>36.4<br>36.9 | 64.6<br>65.6<br>66.5                 | .1835                   | 1.7242                     | 9.56<br>7.66              | 153.2                   | .1305                    | .00653                     | 131.0                                 |
| 70                                    | 37.4                 | 67.4                                 | .2135                   | 1.6563                     | 6.19<br>5.04              | 99.2<br>80.7            | .1615                    | .01008                     | 149.0                                 |
| 75<br>80                              | 38.o<br>38.5         | 68. <sub>5</sub><br>69. <sub>3</sub> | .2427                   | 1.5918                     | 4.130<br>3.404            | 66.2<br>54.5            | .2421                    | .01510                     | 167.0<br>176.0                        |
| 85                                    | 39.0                 | 70.2                                 | .2711                   | 1.5307                     | 2.824<br>2.358            | 45.23<br>37.77          | •3541<br>•4241           | .02211                     | 185.0                                 |
| 91<br>92                              | 39.6<br>39.7         | 71.3                                 | .2879                   | 1.4952                     | 2.275<br>2.197            | 36.45<br>35.19          | ·4395<br>·4552           | .02743                     | 195.8                                 |
| 93<br>94                              | 39.8                 | 71.6                                 | .2934                   | 1.4836                     | 2.122                     | 34.00                   | .4713                    | .02941                     | 199.4                                 |
| 95                                    | 40.0                 | 72.0                                 | .2989                   | 1.4723                     | 1.980                     | 31.75                   | .505                     | .03149                     | 203.0                                 |
| 96<br>97<br>98                        | 40.1<br>40.2<br>40.3 | 72.I<br>72.3<br>72.5                 | .3016<br>.3043<br>.3070 | 1.4666<br>1.4609<br>1.4552 | 1.913<br>1.849<br>1.787   | 30.67<br>29.63<br>28.64 | .523<br>.541<br>.560     | .03260<br>.03375<br>.03492 | 204.8<br>206.6<br>208.4               |
| 99                                    | 40.4                 | 72.6                                 | .3097                   | 1.4496                     | 1.728                     | 27.69                   | -579                     | .03611                     | 210.2                                 |
| 101                                   | 40.5                 | 72.8                                 | .3125                   | 1.4441                     | 1.671                     | 26.78<br>25.90          | .598                     | .03734<br>.03861           | 212.0                                 |
| 102<br>103<br>104                     | 40.6<br>40.7<br>40.8 | 73.2<br>73.3<br>73.5                 | .3179<br>.3205<br>.3232 | 1.4330<br>1.4275<br>1.4220 | 1.564<br>1.514<br>1.465   | 25.06<br>24.25<br>23.47 | .639<br>.661             | .03990                     | 215.6<br>217.4<br>219.2               |
| 105                                   | 40.9                 |                                      |                         | 1.4165                     | 1.419                     | 22.73                   |                          | .04400                     | 221.0                                 |
| 106                                   | 41.0                 | 73.7<br>73.8<br>74.0                 | .3259<br>.3286<br>.3312 | 1.4111                     | 1.374                     | 22.01                   | .705<br>.728<br>.751     | .04543                     | 222.8                                 |
| 108                                   | 41.3                 | 74.2<br>74.3                         | ·3339<br>·3365          | 1.4003                     | 1.289                     | 20.64<br>19.99          | .776<br>.801             | .04845                     | 226.4                                 |
| 111                                   | 41.4                 | 74.5<br>74.6                         | .3392<br>.3418          | 1.3895                     | 1.209                     | 19.37                   | .827<br>.853             | .0516                      | 230.0<br>231.8                        |
| 112                                   | 41.5                 | 74.8                                 | •3445<br>•3471          | 1.3789<br>1.3736<br>1.3683 | 1.136                     | 18.20<br>17.64          | .880                     | .0550                      | 233.6<br>235.4                        |
| 114                                   | 41.7                 | 75.1                                 | .3498                   |                            | 1.068                     | 17.10                   | .936                     | .0585                      | 237.2                                 |
| 115                                   | 41.8<br>41.9<br>42.0 | 75.3<br>75.4<br>75.6                 | .3524<br>.3550          | 1.3631<br>1.3579<br>1.3527 | 1.036<br>1.005<br>0.9746  | 16.59<br>16.09<br>15.61 | .965<br>.995<br>1.026    | .0622                      | 239.0<br>240.8<br>242.6               |
| 118                                   | 42.I<br>42.2         | 75.8<br>75.9                         | .3576<br>.3602<br>.3628 | 1.3475<br>1.3423           | 0.9460                    | 15.16                   | 1.057                    | .0659                      | 244.4<br>246.2                        |
|                                       |                      |                                      |                         |                            |                           |                         |                          |                            |                                       |

# TABLE 259 (continued).

# PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

| _ | metric and common units.              |                       |                       |                        |              |                |               |          |                     |          |                                       |  |  |
|---|---------------------------------------|-----------------------|-----------------------|------------------------|--------------|----------------|---------------|----------|---------------------|----------|---------------------------------------|--|--|
|   | ature<br>ees<br>ade.                  |                       | Pressure.             |                        | Hea<br>the L | t of<br>iquid. | Hea<br>Vapori |          | Heat Equ<br>Interna |          | rature<br>rees<br>nheit.              |  |  |
|   | Temperature<br>Degrees<br>Centigrade. | Mm.<br>of<br>Mercury. | Kg.<br>per sq.<br>cm. | Pds.<br>per sq.<br>in. | Calories.    | B. T. U.       | Calories.     | B. T. U. | Calories            | B. T. U. | Temperature<br>Degrees<br>Fahrenheit. |  |  |
| H | t.                                    | p.                    | p.                    | p.                     | q.           | q              | r             | r.       | ρ.                  | ρ.       | t.                                    |  |  |
|   | 120                                   | 1489                  | 2.024                 | 28.79                  | 120.4        | 216.7          | 525.6         | 946.0    | 483.4               | 870.0    | 248.0                                 |  |  |
|   | 121                                   | 1537                  | 2.089                 | 29.72                  | 121.4        | 218.5          | 524.9         | 944.8    | 482.6               | 868.6    | 249.8                                 |  |  |
|   | 122                                   | 1586                  | 2.156                 | 30.66                  | 122.5        | 220.4          | 524.2         | 943.5    | 481.8               | 867.1    | 251.6                                 |  |  |
|   | 123                                   | 1636                  | 2.224                 | 31.64                  | 123.5        | 222.2          | 523.5         | 942.3    | 481.0               | 865.8    | 253.4                                 |  |  |
|   | 124                                   | 1688                  | 2.294                 | 32.64                  | 124.5        | 224.1          | 522.8         | 941.0    | 480.2               | 864.3    | 255.2                                 |  |  |
|   | 125                                   | 1740                  | 2.366                 | 33.66                  | 125.5        | 225.9          | 522.1         | 939.9    | 479.4               | 863.0    | 257.0                                 |  |  |
|   | 126                                   | 1795                  | 2.440                 | 34.71                  | 126.5        | 227.7          | 521.4         | 938.6    | 478.6               | 861.6    | 258.8                                 |  |  |
|   | 127                                   | 1850                  | 2.516                 | 35.78                  | 127.5        | 229.5          | 520.7         | 937.3    | 477.8               | 860.2    | 260.6                                 |  |  |
|   | 128                                   | 1907                  | 2.593                 | 36.88                  | 128.6        | 231.4          | 520.0         | 936.1    | 477.0               | 858.8    | 262.4                                 |  |  |
|   | 129                                   | 1966                  | 2.673                 | 38.01                  | 129.6        | 233.3          | 519.3         | 934.8    | 476.3               | 857.4    | 264.2                                 |  |  |
|   | 130                                   | 2026                  | 2.754                 | 39.17                  | 130.6        | 235.1          | 518.6         | 933.6    | 475.5               | 856.0    | 266.0                                 |  |  |
|   | 131                                   | 2087                  | 2.837                 | 40.36                  | 131.6        | 236.9          | 517.9         | 932.3    | 474.7               | 854.6    | 267.8                                 |  |  |
|   | 132                                   | 2150                  | 2.923                 | 41.57                  | 132.6        | 238.7          | 517.3         | 931.1    | 474.0               | 853.2    | 269.6                                 |  |  |
|   | 133                                   | 2214                  | 3.010                 | 42.81                  | 133.7        | 240.6          | 516.6         | 929.8    | 473.3               | 851.8    | 271.4                                 |  |  |
|   | 134                                   | 2280                  | 3.100                 | 44.09                  | 134.7        | 242.4          | 515.9         | 928.5    | 472.5               | 850.4    | 273.2                                 |  |  |
|   | 135                                   | 2348                  | 3.192                 | 45.39                  | 135.7        | 244.2          | 515.1         | 927.2    | 471.6               | 848.9    | 275.0                                 |  |  |
|   | 136                                   | 2416                  | - 3.285               | 46.73                  | 136.7        | 246.0          | 514.4         | 925.9    | 470.8               | 847.5    | 276.8                                 |  |  |
|   | 137                                   | 2487                  | 3.382                 | 48.10                  | 137.7        | 247.9          | 513.7         | 924.6    | 470.1               | 846.1    | 278.6                                 |  |  |
|   | 138                                   | 2560                  | 3.480                 | 49.50                  | 138.8        | 249.7          | 513.0         | 923.3    | 469.3               | 844.6    | 280.4                                 |  |  |
|   | 139                                   | 2634                  | 3.581                 | 50.93                  | 139.8        | 251.6          | 512.3         | 922.1    | 468.5               | 843.3    | 282.2                                 |  |  |
|   | 140                                   | 2710                  | 3.684                 | 52.39                  | 140.8        | 253.4          | 511.5         | 920.7    | 467.6               | 841.8    | 284.0                                 |  |  |
|   | 141                                   | 2787                  | 3.789                 | 53.89                  | 141.8        | 255.3          | 510.7         | 919.3    | 466.8               | 840.2    | 285.8                                 |  |  |
|   | 142                                   | 2866                  | 3.897                 | 55.43                  | 142.8        | 257.1          | 510.1         | 918.1    | 466.1               | 838.9    | 287.6                                 |  |  |
|   | 143                                   | 2948                  | 4.008                 | 57.00                  | 143.9        | 259.0          | 509.3         | 916.7    | 465.3               | 837.4    | 289.4                                 |  |  |
|   | 144                                   | 3030                  | 4.121                 | 58.60                  | 144.9        | 260.8          | 508.6         | 915.4    | 464.4               | 835.9    | 291.2                                 |  |  |
|   | 145                                   | 3115                  | 4.236                 | 60.24                  | 145.9        | 262.7          | 507.8         | 914.1    | 463.6               | 834·5    | 293.0                                 |  |  |
|   | 146                                   | 3202                  | 4.354                 | 61.92                  | 146.9        | 264.5          | 507.1         | 912.8    | 462.8               | 833·1    | 294.8                                 |  |  |
|   | 147                                   | 3291                  | 4.474                 | 63.64                  | 148.0        | 266.4          | 506.4         | 911.5    | 462.0               | 831.6    | 296.6                                 |  |  |
|   | 148                                   | 3381                  | 4.597                 | 65.39                  | 149.0        | 268.2          | 505.6         | 910.1    | 461.2               | 830.1    | 298.4                                 |  |  |
|   | 149                                   | 3474                  | 4.723                 | 67.18                  | 150.0        | 270.1          | 504.9         | 908.8    | 460.4               | 828.7    | 300.2                                 |  |  |
| - | 150                                   | 3569                  | 4.852                 | 69.01                  | 151.0        | 271.9          | 504.1         | 907.4    | 459.5               | 827.2    | 302.0                                 |  |  |
|   | 151                                   | 3665                  | 4.984                 | 70.88                  | 152.1        | 273.8          | 503.4         | 906.1    | 458.7               | 825.7    | 303.8                                 |  |  |
|   | 152                                   | 3764                  | 5.118                 | 72.79                  | 153.1        | 275.6          | 502.6         | 904.7    | 457.9               | 824.2    | 305.6                                 |  |  |
|   | 153                                   | 3865                  | 5.255                 | 74.74                  | 154.1        | 277.4          | 501.9         | 903.3    | 457.1               | 822.7    | 307.4                                 |  |  |
|   | 154                                   | 3968                  | 5.395                 | 76.73                  | 155.1        | 279.2          | 501.1         | 901.9    | 456.3               | 821.2    | 309.2                                 |  |  |
|   | 155                                   | 4073                  | 5.538                 | 78.76                  | 156.2        | 281.1          | 500.3         | 900.5    | 455.4               | 819.6    | 311.0                                 |  |  |
|   | 156                                   | 4181                  | 5.684                 | 80.84                  | 157.2        | 283.0          | 499.6         | 899.2    | 454.6               | 818.2    | 312.8                                 |  |  |
|   | 157                                   | 4290                  | 5.833                 | 82.96                  | 158.2        | 284.8          | 498.8         | 897.8    | 453.8               | 816.7    | 314.6                                 |  |  |
|   | 158                                   | 4402                  | 5.985                 | 85.12                  | 159.3        | 286.7          | 498.1         | 896.5    | 453.0               | 815.3    | 316.4                                 |  |  |
|   | 159                                   | 4517                  | 6.141                 | 87.33                  | 160.3        | 288.5          | 497.3         | 895.1    | 452.1               | 813.7    | 318.2                                 |  |  |
|   | 160                                   | 4633                  | 6.300                 | 89.59                  | 161.3        | 290.4          | 496.5         | 893.7    | 451.2               | 812.2    | 320.0                                 |  |  |
|   | 161                                   | 4752                  | 6.462                 | 91.89                  | 162.3        | 292.2          | 495.7         | 892.3    | 450.4               | 810.7    | 321.8                                 |  |  |
|   | 162                                   | 4874                  | 6.628                 | 94.25                  | 163.4        | 294.1          | 494.9         | 890.9    | 449.5               | 809.2    | 323.6                                 |  |  |
|   | 163                                   | 4998                  | 6.796                 | 96.65                  | 164.4        | 295.9          | 494.2         | 889.5    | 448.7               | 807.7    | 325.4                                 |  |  |
|   | 164                                   | 5124                  | 6.967                 | 99.09                  | 165.4        | 297.7          | 493.4         | 888.1    | 447.9               | 806.2    | 327.2                                 |  |  |
|   | 165                                   | 5253                  | 7.142                 | 101.6                  | 166.5        | 299.6          | 492.6         | 886.7    | 447.0               | 804.7    | 329.0                                 |  |  |
|   | 166                                   | 5384                  | 7.320                 | 104.1                  | 167.5        | 301.5          | 491.9         | 885.4    | 446.3               | 803.3    | 330.8                                 |  |  |
|   | 167                                   | 5518                  | 7.502                 | 106.7                  | 168.5        | 303.3          | 491.1         | 883.9    | 445.4               | 801.7    | 332.6                                 |  |  |
|   | 168                                   | 5655                  | 7.688                 | 109.4                  | 169.5        | 305.1          | 490.3         | 882.5    | 444.6               | 800.1    | 334.4                                 |  |  |
|   | 169                                   | 5794                  | 7.877                 | 112.0                  | 170.6        | 307.0          | 489.5         | 881.0    | 443.7               | 798.5    | 336.2                                 |  |  |

### PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

| Metric and Common Units. |                                       |                                      |                                      |                                            |                                                |                                            |                                            |                                           |                                            |                                           |  |
|--------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|--|
|                          | ature<br>ees<br>ade.                  |                                      | quivalent<br>nal Work.               | Entropy                                    | Entropy                                        | Specific                                   | Volume.                                    | Der                                       | asity.                                     | ature<br>ees<br>heit.                     |  |
| ı                        | Temperature<br>Degrees<br>Centigrade. | Calories.                            | B. T. U.                             | of the<br>Liquid.                          | of Evapo-<br>ration.                           | Cubic<br>Meters per<br>Kilogram.           | Cubic<br>Feet per<br>Pound.                | Kilograms<br>per Cubic<br>Meter.          | Pounds<br>per Cubic<br>Foot.               | Temperature<br>Degrees<br>Fahrenheit.     |  |
| ı                        | t.                                    | Apu.                                 | Apu.                                 | θ.                                         | T.                                             | 8.                                         | S.                                         | 1.                                        | 1.<br>8                                    | t.                                        |  |
|                          | 120<br>121<br>122<br>123<br>124       | 42.2<br>42.3<br>42.4<br>42.5<br>42.6 | 76.0<br>76.2<br>76.4<br>76.5<br>76.7 | 0.3654<br>.3680<br>.3705<br>.3731<br>.3756 | 1.3372<br>1.3321<br>1.3269<br>1.3218<br>1.3167 | 0.8914<br>.8653<br>.8401<br>.8158<br>.7924 | 14.28<br>13.86<br>13.46<br>13.07<br>12.69  | 1.122<br>1.156<br>1.190<br>1.226<br>1.262 | 0.0700<br>.0721<br>.0743<br>.0765<br>.0788 | 248.0<br>249.8<br>251.6<br>253.4<br>255.2 |  |
|                          | 125<br>126<br>127<br>128<br>129       | 42.7<br>42.8<br>42.9<br>43.0<br>43.0 | 76.8<br>77.0<br>77.1<br>77.3<br>77.4 | .3782<br>.3807<br>.3833<br>.3858<br>.3884  | 1.3117<br>1.3067<br>1.3017<br>1.2967<br>1.2917 | .7698<br>.7479<br>.7267<br>.7063<br>.6867  | 12.33<br>11.98<br>11.64<br>11.32<br>11.00  | 1.299<br>1.337<br>1.376<br>1.416<br>1.456 | .0811<br>.0835<br>.0859<br>.0883<br>.0909  | 257.0<br>258.8<br>260.6<br>262.4<br>264.2 |  |
|                          | 130<br>131<br>132<br>133<br>134       | 43.1<br>43.2<br>43.3<br>43.3<br>43.4 | 77.6<br>77.7<br>77.9<br>78.0<br>78.1 | .3909<br>.3934<br>.3959<br>.3985<br>.4010  | 1.2868<br>1.2818<br>1.2769<br>1.2720<br>1.2672 | .6677<br>.6493<br>.6315<br>.6142<br>.5974  | 10.70<br>10.40<br>10.12<br>9.839<br>9.569  | 1.498<br>1.540<br>1.583<br>1.628<br>1.674 | .0935<br>.0961<br>.0988<br>.1016           | 266.0<br>267.8<br>269.6<br>271.4<br>273.2 |  |
|                          | 135<br>136<br>137<br>138<br>139       | 43.5<br>43.6<br>43.6<br>43.7<br>43.8 | 78.3<br>78.4<br>78.5<br>78.7<br>78.8 | .4035<br>.4060<br>.4085<br>.4110           | 1.2623<br>1.2574<br>1.2526<br>1.2479<br>1.2431 | .5812<br>.5656<br>.5506<br>.5361<br>.5219  | 9.309<br>9.060<br>8.820<br>8.587<br>8.360  | 1.721<br>1.768<br>1.816<br>1.865<br>1.916 | .1074<br>.1104<br>.1134<br>.1165           | 275.0<br>276.8<br>278.6<br>280.4<br>282.2 |  |
| I                        | 140<br>141<br>142<br>143<br>144       | 43·9<br>43·9<br>44·0<br>44·0<br>44·2 | 78.9<br>79.1<br>79.2<br>79.3<br>79.5 | .4160<br>.4185<br>.4209<br>.4234<br>.4259  | 1.2383<br>1.2335<br>1.2288<br>1.2241           | .5081<br>.4948<br>.4819<br>.4694<br>.4574  | 8.140<br>7.926<br>7.719<br>7.519<br>7.326  | 1.968<br>2.021<br>2.075<br>2.130<br>2.186 | .1229<br>.1262<br>.1296<br>.1330<br>.1365  | 284.0<br>285.8<br>287.6<br>289.4<br>291.2 |  |
| l                        | 145<br>146<br>147<br>148<br>149       | 44.2<br>44.3<br>44.4<br>44.4<br>44.5 | 79.6<br>79.7<br>79.9<br>80.0<br>80.1 | .4283<br>.4307<br>.4332<br>.4356<br>.4380  | 1.2147<br>1.2100<br>1.2054<br>1.2008<br>1.1962 | ·4457<br>·4343<br>·4232<br>·4125<br>·4022  | 7.139<br>6.957<br>6.780<br>6.609<br>6.443  | 2.244<br>2.303<br>2.363<br>2.424<br>2.486 | .1401<br>.1437<br>.1475<br>.1513<br>.1552  | 293.0<br>294.8<br>296.6<br>298.4<br>300.2 |  |
|                          | 150<br>151<br>152<br>153<br>154       | 44.6<br>44.6<br>44.7<br>44.8<br>44.8 | 80.2<br>80.4<br>80.5<br>80.6<br>80.7 | .4405<br>.4429<br>.4453<br>.4477<br>.4501  | 1.1916<br>1.1870<br>1.1824<br>1.1778<br>1.1733 | .3921<br>.3824<br>.3729<br>.3637<br>.3548  | 6.282<br>6.126<br>5.974<br>5.826<br>5.683  | 2.550<br>2.615<br>2.682<br>2.750<br>2.818 | .1592<br>.1632<br>.1674<br>.1716           | 302.0<br>303.8<br>305.6<br>307.4<br>309.2 |  |
| -                        | 155<br>156<br>157<br>158<br>159       | 44.9<br>45.0<br>45.0<br>45.1<br>45.2 | 80.9<br>81.0<br>81.1<br>81.2<br>81.4 | •4525<br>•4549<br>•4573<br>•4596<br>•4620  | 1.1688<br>1.1644<br>1.1599<br>1.1554<br>1.1509 | .3463<br>.3380<br>.3298<br>.3218<br>.3140  | 5.546<br>5.413<br>5.282<br>5.154<br>5.029  | 2.888<br>2.959<br>3.032<br>3.108<br>3.185 | .1803<br>.1847<br>.1893<br>.1940<br>.1988  | 311.0<br>312.8<br>314.6<br>316.4<br>318.2 |  |
|                          | 160<br>161<br>162<br>163<br>164       | 45·3<br>45·3<br>45·4<br>45·5<br>45·5 | 81.5<br>81.6<br>81.7<br>81.8<br>81.9 | .4644<br>.4668<br>.4692<br>.4715<br>.4739  | 1.1465<br>1.1421<br>1.1377<br>1.1333<br>1.1289 | .3063<br>.2989<br>.2920<br>.2855<br>.2792  | 4.906<br>4.789<br>4.677.<br>4.571<br>4.469 | 3.265<br>3.345<br>3.425<br>3.503<br>3.582 | .2038<br>.2088<br>.2138<br>.2188<br>.2238  | 320.0<br>321.8<br>323.6<br>325.4<br>327.2 |  |
|                          | 165<br>166<br>167<br>168<br>169       | 45.6<br>45.6<br>45.7<br>45.7<br>45.8 | 82.0<br>82.1<br>82.2<br>82.4<br>82.5 | .4763<br>.4786<br>.4810<br>.4833<br>.4857  | 1.1245<br>1.1202<br>1.1159<br>1.1115<br>1.1072 | .2729<br>.2666<br>.2603<br>.2540<br>.2480  | 4.368<br>4.268<br>4.168<br>4.070<br>3.975  | 3.664<br>3.751<br>3.842<br>3.937<br>4.032 | .2289<br>.2343<br>.2399<br>.2457<br>.2516  | 329.0<br>330.8<br>332.6<br>334.4<br>336.2 |  |

# TABLE 259 (continued).

# PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

| Metric and Common Units.              |                                      |                                           |                                           |                                  |                                           |                                           |                                           |                                           |                                           |                                           |  |  |
|---------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--|--|
| ature<br>ses<br>ade.                  |                                      | Pressure.                                 |                                           |                                  | it of iquid.                              | Hea<br>Vaporis                            | t of<br>zation.                           | Heat Eq<br>of Intern                      | uivalent<br>al Work.                      | rature<br>rees<br>nheit.                  |  |  |
| Temperature<br>Degrees<br>Centigrade. | Mm.<br>of<br>Mercury.                | Kg.<br>per sq.<br>cm.                     | Pds.<br>per sq.<br>in.                    | Calories.                        | B. T. U.                                  | Calories.                                 | B. T. U.                                  | Calories.                                 | B. T. U.                                  | Temperature<br>Degrees<br>Fahrenheit.     |  |  |
| t.                                    | p.                                   | p.                                        | p.                                        | q.                               | q.                                        | r.                                        | r.                                        | ρ.                                        | ρ.                                        | t.                                        |  |  |
| 170                                   | 5937                                 | 8.071                                     | 114.8                                     | 171.6                            | 308.9                                     | 488.7                                     | 879.6                                     | 442.8                                     | 797.0                                     | 338.0                                     |  |  |
| 171                                   | 6081                                 | 8.268                                     | 117.6                                     | 172.6                            | 310.7                                     | 487.9                                     | 878.3                                     | 441.9                                     | 795.6                                     | 339.8                                     |  |  |
| 172                                   | 6229                                 | 8.469                                     | 120.4                                     | 173.7                            | 312.6                                     | 487.1                                     | 876.9                                     | 441.1                                     | 794.1                                     | 341.6                                     |  |  |
| 173                                   | 6379                                 | 8.673                                     | 123.4                                     | 174.7                            | 314.5                                     | 486.3                                     | 875.4                                     | 440.2                                     | 792.5                                     | 343.4                                     |  |  |
| 174                                   | 6533                                 | 8.882                                     | 126.3                                     | 175.7                            | 316.3                                     | 485.5                                     | 873.9                                     | 439.4                                     | 790.9                                     | 345.2                                     |  |  |
| 175                                   | 6689                                 | 9.094                                     | 129.4                                     | 176.8                            | 318.2                                     | 484.7                                     | 872.4                                     | 438.5                                     | 789.3                                     | 347.0                                     |  |  |
| 176                                   | 6848                                 | 9.310                                     | 132.4                                     | 177.8                            | 320.0                                     | 483.9                                     | 871.0                                     | 437.7                                     | 787.8                                     | 348.8                                     |  |  |
| 177                                   | 7010                                 | 9.531                                     | 135.6                                     | 178.8                            | 321.8                                     | 483.1                                     | 869.5                                     | 436.8                                     | 786.2                                     | 350.6                                     |  |  |
| 178                                   | 7175                                 | 9.755                                     | 138.8                                     | 179.9                            | 323.7                                     | 482.3                                     | 868.1                                     | 436.0                                     | 784.7                                     | 352.4                                     |  |  |
| 179                                   | 7343                                 | 9.983                                     | 142.0                                     | 180.9                            | 325.6                                     | 481.4                                     | 866.6                                     | 435.0                                     | 783.1                                     | 354.2                                     |  |  |
| 180                                   | 7514                                 | 10.216                                    | 145.3                                     | 181.9                            | 327.5                                     | 480.6                                     | 865.1                                     | 434.2                                     | 781.5                                     | 356.0                                     |  |  |
| 181                                   | 7688                                 | 10.453                                    | 148.7                                     | 183.0                            | 329.3                                     | 479.8                                     | 863.6                                     | 433.3                                     | 779.9                                     | 357.8                                     |  |  |
| 182                                   | 7866                                 | 10.695                                    | 152.1                                     | 184.0                            | 331.2                                     | 479.0                                     | 862.2                                     | 432.5                                     | 778.4                                     | 359.6                                     |  |  |
| 183                                   | 8046                                 | 10.940                                    | 155.6                                     | 185.0                            | 333.0                                     | 478.2                                     | 860.7                                     | 431.6                                     | 776.9                                     | 361.4                                     |  |  |
| 184                                   | 8230                                 | 11.189                                    | 159.2                                     | 186.1                            | 334.9                                     | 477.4                                     | 859.2                                     | 430.8                                     | 775.3                                     | 363.2                                     |  |  |
| 185<br>186<br>187<br>188<br>189       | 8417<br>8608<br>8802<br>8999<br>9200 | 11.44<br>11.70<br>11.97<br>12.24<br>12.51 | 162.8<br>166.5<br>170.2<br>174.0<br>177.9 | 187.1<br>188.1<br>189.2<br>190.2 | 336.8<br>338.6<br>340.5<br>342.4<br>344.2 | 476.6<br>475.7<br>474.8<br>474.0<br>473.2 | 857.7<br>856.3<br>854.7<br>853.2<br>851.7 | 429.9<br>429.0<br>428.0<br>427.2<br>426.3 | 773.7<br>772.2<br>770.5<br>768.9<br>767.4 | 365.0<br>366.8<br>368.6<br>370.4<br>372.2 |  |  |
| 190                                   | 9404                                 | 12.79                                     | 181.8                                     | 192.3                            | 346.1                                     | 472.3                                     | 850.2                                     | 425.4                                     | 765.8                                     | 374.0                                     |  |  |
| 191                                   | 9612                                 | 13.07                                     | 185.9                                     | 193.3                            | 347.9                                     | 471.5                                     | 848.7                                     | 424.5                                     | 764.2                                     | 375.8                                     |  |  |
| 192                                   | 9823                                 | 13.36                                     | 190.0                                     | 194.4                            | 349.8                                     | 470.6                                     | 847.1                                     | 423.6                                     | 762.5                                     | 377.6                                     |  |  |
| 193                                   | 10038                                | 13.65                                     | 194.1                                     | 195.4                            | 351.7                                     | 469.8                                     | 845.6                                     | 422.8                                     | 761.0                                     | 379.4                                     |  |  |
| 194                                   | 10256                                | 13.94                                     | 198.3                                     | 196.4                            | 353.5                                     | 468.9                                     | 844.1                                     | 421.9                                     | 759.4                                     | 381.2                                     |  |  |
| 195                                   | 10480                                | 14.25                                     | 202.6                                     | 197.5                            | 355.4                                     | 468.1                                     | 842.5                                     | 421.0                                     | 757.7                                     | 383.0                                     |  |  |
| 196                                   | 10700                                | 14.55                                     | 207.0                                     | 198.5                            | 357.3                                     | 467.2                                     | 841.0                                     | 420.1                                     | 756.1                                     | 384.8                                     |  |  |
| 197                                   | 10930                                | 14.87                                     | 211.4                                     | 199.5                            | 359.2                                     | 466.4                                     | 839.5                                     | 419.2                                     | 754.6                                     | 386.6                                     |  |  |
| 198                                   | 11170                                | 15.18                                     | 216.0                                     | 200.6                            | 361.1                                     | 465.6                                     | 838.0                                     | 418.4                                     | 753.0                                     | 388.4                                     |  |  |
| 199                                   | 11410                                | 15.51                                     | 220.6                                     | 201.6                            | 362.9                                     | 464.7                                     | 836.4                                     | 417.4                                     | 751.3                                     | 390.2                                     |  |  |
| 200                                   | 11650                                | 15.84                                     | 225.2                                     | 202.7                            | 364.8                                     | 463.8                                     | 834.8                                     | 416.5                                     | 749.7                                     | 392.0                                     |  |  |
| 201                                   | 11890                                | 16.17                                     | 223.0                                     | 203.7                            | 366.7                                     | 462.9                                     | 833.3                                     | 415.6                                     | 748.1                                     | 393.8                                     |  |  |
| 202                                   | 12140                                | 16.51                                     | 234.8                                     | 204.7                            | 368.5                                     | 462.1                                     | 831.8                                     | 414.8                                     | 746.6                                     | 395.6                                     |  |  |
| 203                                   | 12400                                | 16.85                                     | 239.7                                     | 205.8                            | 370.4                                     | 461.2                                     | 830.2                                     | 413.8                                     | 744.9                                     | 397.4                                     |  |  |
| 204                                   | 12650                                | 17.20                                     | 244.7                                     | 206.8                            | 372.3                                     | 460.3                                     | 828.6                                     | 412.9                                     | 743.3                                     | 399.2                                     |  |  |
| 205                                   | 12920                                | 17.56                                     | 249.8                                     | 207.9                            | 374.1                                     | 459.4                                     | 827.0                                     | 412.0                                     | 741.6                                     | 401.0                                     |  |  |
| 206                                   | 13180                                | 17.92                                     | 254.9                                     | 208.9                            | 376.0                                     | 458.6                                     | 825.4                                     | 411.1                                     | 740.0                                     | 402.8                                     |  |  |
| 207                                   | 13450                                | 18.29                                     | 260.1                                     | 210.0                            | 377.9                                     | 457.7                                     | 823.8                                     | 410.2                                     | 738.3                                     | 404.6                                     |  |  |
| 208                                   | 13730                                | 18.66                                     | 265.4                                     | 211.0                            | 379.8                                     | 456.8                                     | 822.2                                     | 409.3                                     | 736.7                                     | 406.4                                     |  |  |
| 209                                   | 14010                                | 19.04                                     | 270.8                                     | 212.0                            | 381.6                                     | 455.9                                     | 820.6                                     | 408.4                                     | 735.1                                     | 408.2                                     |  |  |
| 210                                   | 14290                                | 19.43                                     | 276.3                                     | 213.1                            | 383.5                                     | 455.0                                     | 819.1                                     | 407.5                                     | 733.6                                     | 410.0                                     |  |  |
| 211                                   | 14580                                | 19.82                                     | 281.9                                     | 214.1                            | 385.4                                     | 454.1                                     | 817.4                                     | 406.6                                     | 731.9                                     | 411.8                                     |  |  |
| 212                                   | 14870                                | 20.22                                     | 287.6                                     | 215.2                            | 387.3                                     | 453.2                                     | 815.8                                     | 405.7                                     | 730.2                                     | 413.6                                     |  |  |
| 213                                   | 15170                                | 20.62                                     | 293.3                                     | 216.2                            | 389.2                                     | 452.4                                     | 814.3                                     | 404.9                                     | 728.7                                     | 415.4                                     |  |  |
| 214                                   | 15470                                | 21.03                                     | 299.2                                     | 217.3                            | 391.1                                     | 451.5                                     | 812.7                                     | 404.0                                     | 727.1                                     | 417.2                                     |  |  |
| 215                                   | 1 5780                               | 21.45                                     | 305.1                                     | 218.3                            | 392.9                                     | 450.6                                     | 811.0                                     | 403.I                                     | 725.4                                     | 419.0                                     |  |  |
| 216                                   | 16090                                | 21.88                                     | 311.1                                     | 219.3                            | 394.8                                     | 449.6                                     | 809.3                                     | 402.I                                     | 723.7                                     | 420.8                                     |  |  |
| 217                                   | 16410                                | 22.31                                     | 317.3                                     | 220.4                            | 396.7                                     | 448.7                                     | 807.7                                     | 401.2                                     | 722.1                                     | 422.6                                     |  |  |
| 218                                   | 16730                                | 22.74                                     | 323.5                                     | 221.4                            | 398.5                                     | 447.8                                     | 806.1                                     | 400.3                                     | 720.5                                     | 424.4                                     |  |  |
| 219                                   | 17060                                | 23.19                                     | 329.8                                     | 222.5                            | 400.4                                     | 446.9                                     | 804.5                                     | 399.4                                     | 718.9                                     | 426 2                                     |  |  |
| 220                                   | 17390                                | 23.64                                     | 336.2                                     | 223.5                            | 402.3                                     | 446.0                                     | 802.9                                     | 398.5                                     | 717.3                                     |                                           |  |  |

## PROPERTIES OF SATURATED STEAM.

Metric and Common Units.

| Metric and common ones.               |                                      |                                      |                                            |                                                |                                            |                                           |                                           |                                            |                                           |  |  |
|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------|------------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|--|--|
| ade.                                  | Heat Ed                              | quivalent<br>nal Work.               | Entropy                                    | Entropy                                        | Specific V                                 | Volume.                                   | Den                                       | sity.                                      | ture<br>es<br>neit.                       |  |  |
| Temperature<br>Degrees<br>Centigrade. | Calories.                            | B. T. U.                             | of the<br>Liquid.                          | of Evapo-<br>ration.                           | Cubic<br>Meters per<br>Kilogram.           | Cubic<br>Feet per<br>Pound.               | Kilograms<br>per Cubic<br>Meter,          | Pounds<br>per Cubic<br>Foot.               | Temperature<br>Degrees<br>Fahrenheit.     |  |  |
| t.                                    | Apu.                                 | Apu.                                 | θ.                                         | <u>r</u> .                                     | s.                                         | s.                                        | 1<br>8                                    | 1 3                                        | t.                                        |  |  |
| 170<br>171<br>172<br>173<br>174       | 45.9<br>46.0<br>46.0<br>46.1<br>46.1 | 82.6<br>82.7<br>82.8<br>82.9<br>83.0 | 0.4880<br>.4903<br>.4926<br>.4949<br>.4972 | 1.1029<br>1.0987<br>1.0944<br>1.0901<br>1.0859 | 0.2423<br>.2368<br>.2314<br>.2262<br>.2212 | 3.883<br>3.794<br>3.799<br>3.626<br>3.545 | 4.127<br>4.223<br>4.322<br>4.421<br>4.521 | 0.2575<br>.2636<br>.2696<br>.2758<br>.2821 | 338.0<br>339.8<br>341.6<br>343.4<br>345.2 |  |  |
| 175<br>176<br>177<br>178<br>179       | 46.2<br>46.2<br>46.3<br>46.3<br>46.4 | 83.1<br>83.2<br>83.3<br>83.4<br>83.5 | .4995<br>.5018<br>.5041<br>.5064<br>.5087  | 1.0817<br>1.0775<br>1.0733<br>1.0691<br>1.0649 | .2164<br>.2117<br>.2072<br>.2027<br>.1983  | 3.467<br>3.391<br>3.318<br>3.247<br>3.177 | 4.621<br>4.724<br>4.826<br>4.933<br>5.04  | .2884<br>.2949<br>.3014<br>.3080<br>.3148  | 347.0<br>348.8<br>350.6<br>352.4<br>354.2 |  |  |
| 180<br>181<br>182<br>183<br>184       | 46.4<br>46.5<br>46.5<br>46.6<br>46.6 | 83.6<br>83.7<br>83.8<br>83.8<br>83.9 | .5110<br>.5133<br>.5156<br>.5178<br>.5201  | 1.0608<br>1.0567<br>1.0525<br>1.0484<br>1.0443 | .1941<br>.1899<br>.1857<br>.1817           | 3.109<br>3.041<br>2.974<br>2.911<br>2.849 | 5.15<br>5.27<br>5.38<br>5.50<br>5.62      | .3217<br>.3288<br>.3362<br>.3435<br>.3510  | 356.0<br>357.8<br>359.6<br>361.4<br>363.2 |  |  |
| 185<br>186<br>187<br>188<br>189       | 46.7<br>46.7<br>46.8<br>46.8<br>46.9 | 84.0<br>84.1<br>84.2<br>84.3<br>84.3 | .5224<br>.5246<br>.5269<br>.5291<br>.5314  | 1.0403<br>1.0362<br>1.0321<br>1.0280<br>1.0240 | .1740<br>.1702<br>.1666<br>.1632<br>.1598  | 2.787<br>2.727<br>2.669<br>2.614<br>2.560 | 5.75<br>5.88<br>6.00<br>6.13<br>6.26      | .3588<br>.3667<br>.3746<br>.3826<br>.3906  | 365.0<br>366.8<br>368.6<br>370.4<br>372.2 |  |  |
| 190<br>191<br>192<br>193<br>194       | 46.9<br>47.0<br>47.0<br>47.0<br>47.0 | 84.4<br>84.5<br>84.6<br>84.6<br>84.7 | .5336<br>.5358<br>.5381<br>.5403<br>.5426  | 1.0200<br>1.0160<br>1.0120<br>1.0080<br>1.0040 | .1565<br>.1533<br>.1501<br>.1470<br>.1440  | 2.507<br>2.456<br>2.405<br>2.355<br>2.306 | 6.39<br>6.52<br>6.66<br>6.80<br>6.94      | .3989<br>.4072<br>.4158<br>.4246<br>.4336  | 374 0<br>375.8<br>377.6<br>379.4<br>381.2 |  |  |
| 195<br>196<br>197<br>198<br>199       | 47.I<br>47.I<br>47.2<br>47.2<br>47.3 | 84.8<br>84.9<br>84.9<br>85.0<br>85.1 | .5448<br>.5470<br>.5492<br>.5514<br>.5536  | 1.0000<br>0.9961<br>.9922<br>.9882<br>.9843    | .1411<br>.1382<br>.1354<br>.1327<br>.1300  | 2.259<br>2.214<br>2.169<br>2.126<br>2.083 | 7.09<br>7.23<br>7.38<br>7.53<br>7.69      | .4426<br>.4516<br>.4610<br>.4704<br>.4801  | 383.0<br>384.8<br>386.6<br>388.4<br>390.2 |  |  |
| 200<br>201<br>202<br>203<br>204       | 47·3<br>47·3<br>47·3<br>47·4<br>47·4 | 85.1<br>85.2<br>85.2<br>85.3<br>85.3 | .5558<br>.5580<br>.5602<br>.5624<br>.5646  | .9804<br>.9765<br>.9727<br>.9688<br>.9650      | .1274<br>.1249<br>.1225<br>.1201<br>.1177  | 2.041<br>2.001<br>1.962<br>1.923<br>1.885 | 7.84<br>8.00<br>8.16<br>8.33<br>8.50      | .4900<br>.4998<br>.510<br>.520             | 392.0<br>393.8<br>395.6<br>397.4<br>399.2 |  |  |
| 205<br>206<br>207<br>208<br>209       | 47.4<br>47.5<br>47.5<br>47.5<br>47.5 | 85.4<br>85.4<br>85.5<br>85.5<br>85.5 | .5668<br>.5690<br>.5712<br>.5733<br>.5755  | .9611<br>.9572<br>.9534<br>.9496<br>.9458      | .1153<br>.1130<br>.1108<br>.1086           | 1.847<br>1.810<br>1.774<br>1.739<br>1.705 | 8.67<br>8.85<br>9.03<br>9.21<br>9.39      | .541<br>.552<br>.564<br>.575<br>.587       | 401.0<br>402.8<br>404.6<br>406.4<br>408.2 |  |  |
| 210<br>211<br>212<br>213<br>214       | 47.5<br>47.5<br>47.5<br>47.5<br>47.5 | 85.5<br>85.6<br>85.6<br>85.6<br>85.6 | ·5777<br>·5799<br>·5820<br>·5842<br>·5863  | .9420<br>.9382<br>.9344<br>.9307<br>.9269      | .1044<br>.1024<br>.1004<br>.0984<br>.0965  | 1.673<br>1.640<br>1.608<br>1.577<br>1.546 | 9.58<br>9.77<br>9.96<br>10.16<br>10.36    | .598<br>.610<br>.622<br>.634<br>.647       | 410.0<br>411.8<br>413.6<br>415.4<br>417.2 |  |  |
| 215<br>216<br>217<br>218<br>219       | 47·5<br>47·5<br>47·5<br>47·5<br>47·5 | 85.6<br>85.6<br>85.6<br>85.6<br>85.6 | •5885<br>•5906<br>•5927<br>•5948<br>•5969  | .9232<br>.9195<br>.9157<br>.9120<br>.9084      | .0947<br>.0928<br>.0910<br>.0893<br>.0876  | 1.516<br>1.486<br>1.458<br>1.430<br>1.403 | 10.56<br>10.78<br>10.99<br>11.20<br>11.41 | .660<br>.673<br>.686<br>.699               | 419.0<br>420.8<br>422.6<br>424.4<br>426.2 |  |  |
| 220                                   | 47.5                                 | 85.6                                 | .5991                                      | .9047                                          | .0860                                      | 1.376                                     | 11.62                                     | .727                                       | 428.0                                     |  |  |

### TABLE 260.

### LATENT HEAT OF FUSION.

This table contains the latent heat of fusion of a number of solid substances in large calories per kilogram or small calories or therms per gram. It has been compiled principally from Landolt and Börnstein's tables. C indicates the composition, T the temperature Centigrade, and H the latent heat.

| Substance.                                                                                            | С                                | T                              | Н             | Authority.            |
|-------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|---------------|-----------------------|
| Alloys: 30.5Pb + 69.5Sn                                                                               | PbSn <sub>4</sub>                | 183                            | 17.           | Spring.               |
| 36.9Pb + 63.1Sn                                                                                       | PbSn <sub>8</sub>                | 179                            | 15.5          | "                     |
| 63.7 Pb + 36.3Sn                                                                                      | PbSn                             | 177.5                          | 11.6          | 46                    |
| 77.8Pb + 22.2Sn                                                                                       | Pb <sub>2</sub> Sn               | 176.5                          | 9.54          | 66                    |
| Britannia metal, 9Sn + 1Pb .                                                                          | -                                | 236                            | 28.0*         | Ledebur.              |
| Rose's alloy,                                                                                         |                                  | -00                            | 60-           | M                     |
| 24Pb + 27.3Sn + 48.7Bi<br>Wood's alloy $\begin{cases} 25.8Pb + 14.7Sn \\ 1.52.4Bi + 7.0d \end{cases}$ | _                                | 98.8                           | 6.85          | Mazzotto.             |
| [ + 32.4DI + /Cu)                                                                                     | -                                | 75.5                           | 8.40          |                       |
| Aluminum                                                                                              | Al<br>NHa                        | 658.                           | 76.8          | Glaser.               |
| Ammonia                                                                                               | $C_6H_6$                         | <b>−75</b> .                   | 108.<br>30.6  | Massol.<br>Mean.      |
| Bromine                                                                                               | Br                               | 5.4                            | 16.2          | Regnault.             |
| Bismuth                                                                                               | Bi                               | <del>-7.3</del> <del>268</del> | 12.64         | Person.               |
| Cadmium                                                                                               | Cd                               | 320.7                          | 13.66         | 46                    |
| Calcium chloride                                                                                      | $CaCl_2 + 6H_2O$                 | 28.5                           | 40.7          | 66                    |
| Copper                                                                                                | Cu                               | 1083                           | 42.           | Mean.                 |
| Iron, Gray cast                                                                                       | -                                | -                              | 23.           | Gruner.               |
| " White "                                                                                             | -                                | -                              | 33.           | 66                    |
| " Slag                                                                                                | ī                                |                                | 50.           | Favre and Silbermann. |
|                                                                                                       |                                  | 1                              |               | S Dickinson, Harper,  |
| Ice                                                                                                   | H <sub>2</sub> O                 | 0                              | 79.63         | ) Osborne.†           |
| 66                                                                                                    | (HO 1 2 525)                     | 0                              | 79.59         | Smith.‡               |
| " (from sea-water)                                                                                    | $H_2O + 3.535$ of solids         | 8.7                            | 54.0          | Petterson.            |
| Lead                                                                                                  | Pb                               | 327                            | 5.36          | Mean.                 |
| Mercury                                                                                               | Hg                               | -39                            | 2.82          | Person.               |
| Naphthalene                                                                                           | C <sub>10</sub> H <sub>8</sub>   | 79.87                          | 35.62         | Pickering.            |
| Nickel                                                                                                | Ni                               | 1435                           | 4.64          | Pionchon.             |
| Palladium                                                                                             | Pd<br>P                          | 1545                           | 36.3          | Violle. Petterson.    |
| Platinum                                                                                              | Pt                               | 1755                           | 4.97          | Violle.               |
| Potassium                                                                                             | K                                | 62                             | 15.7          | Ioannis.              |
| Potassium nitrate                                                                                     | KNO <sub>3</sub>                 | 333.5                          | 48.9          | Person.               |
| Phenol                                                                                                | C <sub>6</sub> H <sub>6</sub> O  | 25.37                          | 24.93         | Petterson.            |
| Paraffin                                                                                              | 1.7                              | 52.40                          | 35.10         | Batelli.              |
| Silver                                                                                                | Ag                               | 961                            | 21.07         | Person.               |
| " nitrate                                                                                             | Na<br>NaNO <sub>8</sub>          | 97<br>305.8                    | 31.7<br>64.87 | Joannis.              |
| " phosphate                                                                                           | Ma <sub>2</sub> HPO <sub>4</sub> | 36.1                           | 66.8          | 46                    |
|                                                                                                       | 1 + 12H <sub>2</sub> O 5         |                                |               | D. ( 11)              |
| Spermaceti                                                                                            | s                                | 43.9                           | 36.98         | Batelli.              |
| Tin                                                                                                   | Sn                               | 115                            | 9.37          | Person.<br>Mean.      |
| Wax (bees)                                                                                            | -                                | 61.8                           | 42.3          | Mean.                 |
| Zinc                                                                                                  | Zn                               | 419                            | 28.13         | 44                    |
|                                                                                                       |                                  |                                |               |                       |
|                                                                                                       |                                  |                                |               |                       |

<sup>\*</sup> Total heat from 0° C.
† U. S. Bureau of Standards, 1913, in terms of 15° calorie.
† 1903, based on electrical measurements, assuming mechanical equivalent = 4.187, and in terms of the value of the international volt in use after 1911.

TABLE 261. - Heat of Combustion of Some Carbon Compounds.

| Compound.                                                                                                                                                                                                                                                                                                                                                                                | Formula.                                                                                 | Kg. cal.<br>per g-<br>mol.                                                                                                                                                                                     | Kg. cal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Compound.                                                                                                                                                                                                                                                                                 | Formula. | Kg. cal.<br>per g-<br>mol.                                                                                                                         | Kg. cal.<br>per g                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Paraffins: Methane, g. Ethane, g. Propane, g. i-Butane, g. n-Hexane, l. n-Heptane, l. n-Octane, l. Dekane, l. Olefines: Ethylene, g. Propylene, g. i-Butylene, g. Amylene, l. Hexylene, l. Acetylene, g. Trimethylene, g. Benzeue, l. Benzeue, l. Senzene, g. Naphthalene, l. Toluene, l. Chloroform, v. Carbon disulphide, l. Methyl-chloride, g. Ethyl-chloride, g. Ethyl-chloride, g. | CH4 CaH6 CaH6 CaH10 CaH10 CaH14 CaH14 CaH16 CaH16 CaH6 CaH6 CaH6 CaH6 CaH6 CaH6 CaH6 CaH | 214p<br>371p<br>528p<br>687p<br>905p<br>1139p<br>1020p<br>1315p<br>1020p<br>343p<br>651p<br>804p<br>962p<br>313p<br>781p<br>781p<br>782p<br>1235p<br>1235p<br>103p<br>70<br>253p<br>163p<br>332p<br>70<br>332p | 13.30<br>12.40<br>12.20<br>11.80<br>11.60<br>11.40<br>11.50<br>11.40<br>11.50<br>11.40<br>11.50<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60<br>11.60 | Alcohols: Methyl, 1. Ethyl, 1. n-propyl, 1. n-butyl, 1. Amyl, 1. Ethers: Dimethyl, g. Diethyl, v. Ethyl-methyl, v. Acids: Formic, 1. Acetic, 1. Propionic, 1. n-butyric, 1. Lactic, 1. Cellulose, s. Dextrine, s. Glycerine, 1. Phenol, 1. Sugar, cane, s. Starch, s. Thymol, 1. Urea, 1. | C2H4O2   | 170p<br>327p<br>483p<br>644p<br>788p<br>346p<br>660p<br>506p<br>506p<br>210p<br>308p<br>525p<br>525p<br>525p<br>525p<br>525p<br>525p<br>525p<br>52 | 5.31½ 7.10½ 8.00½ 8.68½ 8.68½ 8.96½ 7.60½ 8.43½ 1.357½ 3.49½ 4.96½ 7.84 3.95½ 4.32 7.84 3.95½ 4.23 9.02½ |

v, p, following the heats of combustion, signify at constant volume and pressure respectively. When referred to constant pressure, the values are 0.58 Kg-cal. greater (at about 18°C) for each condensed gaseous molecule. The values are means from various observers. The combustion products are gaseous CO<sub>8</sub>, liquid water, etc.

TABLE 262. - Heat of Combustion - Miscellaneous.

| Substance.                                                                                                                                                                                                                                     | Small<br>calories<br>per g<br>substance. | Reference.                  | Substance.       | Small<br>calories<br>per g<br>substance.                                                                                   | Reference.                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Asphalt Butter Carbon: amorphous charcoal. diamond graphite. Copper (to CuO). Dynamite, 75%. Egg, white of Egg, yolk of. Fats, animal. Hemoglobin. Hydrogen. Iron (to FecO <sub>3</sub> ). Magnesium (to MgO). Oils: cotton-seed. lard. olive. | 8100<br>7860<br>7900<br>590<br>1290      | 1 - 2 2 3 3 3 5 4 2 2 2 2 2 | Oils: petroleum: | 11500<br>10000<br>10200<br>9500<br>10000<br>11140<br>10340<br>8400<br>2200<br>2240<br>9500<br>4170<br>4210<br>3990<br>4420 | 2 2 2 6 7 6 6 - 2 5 6 8 8 8 8 8 |

References: (1) Slossen, Colburn; (2) Mean; (3) Berthellot; (4) Roux, Sarran; (5) Thomsen; (6) Stohmann; (7) Gibson; (8) Gottlieb.

### HEAT VALUES AND ANALYSES OF VARIOUS TYPES OF FUEL.

|                                                                                                                                                                                                                       |                                                                                                          |                                                                                          |                                                                  |                                                                                              | _                                                                                                   |                                                                                              |                                                              |                                                                               |                                                                |                                                                                            |                                                                      |                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                       |                                                                                                          |                                                                                          |                                                                  | (a                                                                                           | ) C                                                                                                 | OALS                                                                                         |                                                              |                                                                               |                                                                |                                                                                            |                                                                      |                                                                                                                |
| Coal.                                                                                                                                                                                                                 | Moisture.                                                                                                | Volatile<br>matter.                                                                      | Fixed                                                            | Caroni                                                                                       | Asn.                                                                                                | Sulphur.                                                                                     | Hydrogen.                                                    | Carbon.                                                                       | Nitrogen.                                                      | Oxygen.                                                                                    | Calories<br>per gram.                                                | B. T. U.'s<br>per pound.                                                                                       |
| Lignite { Low grade. High grade Sub-bitu- Low grade. minous High grade Semi-bitu- Low grade minous High grade Semi-anthracite Anthra- Low grade Oven Low grade. Coke High grade High grade Oven Low grade. High grade | 38.81<br>33.38<br>22.71<br>15.54<br>11.44<br>3.42<br>2.7<br>3.26<br>2.07<br>2.76<br>3.33<br>1.92<br>1.14 | 25.4<br>27.4<br>34.7<br>33.0<br>33.9<br>34.3<br>14.5<br>14.5<br>9.8<br>2.4<br>3.2<br>1.5 | 29.68<br>36.63<br>44.66<br>53.8<br>75.8<br>778.8<br>88.8<br>88.8 | 52   9<br>50   5<br>50   5<br>50   5<br>7<br>20   3<br>32   9<br>57   12<br>28   9<br>87   8 | . 42<br>. 56<br>. 91<br>. 37<br>. 71<br>. 39<br>. 3<br>. 97<br>. 30<br>. 69<br>. 12<br>. 99<br>. 57 | 0.97<br>0.94<br>0.29<br>0.58<br>4.94<br>0:58<br>0.99<br>0.54<br>1.74<br>0.60<br>1.18<br>0.69 | 5.86<br>5.36<br>5.25<br>4.58<br>4.76<br>3.62<br>2.23<br>3.08 | 41.31<br>52.54<br>60.08<br>60.06<br>77.98<br>80.65<br>84.62<br>80.28<br>79.22 | 1 0.67<br>1.03<br>1.05<br>1.02<br>1.29<br>1.82<br>1.02<br>1.47 | 45.57<br>40.57<br>34.09<br>27.03<br>17.88<br>11.51<br>4.66<br>5.09<br>3.59<br>4.64<br>5.06 | 3994<br>5115<br>5865<br>6088<br>7852<br>7845<br>8166<br>7612<br>6087 | 6347<br>7189<br>9207<br>10557<br>10958<br>14134<br>14121<br>14699<br>13702<br>12577<br>13351<br>14300<br>14410 |
|                                                                                                                                                                                                                       |                                                                                                          | (                                                                                        | (b) PE                                                           | ATS A                                                                                        | VD V                                                                                                | Voor                                                                                         | air (air                                                     | dried).                                                                       |                                                                |                                                                                            |                                                                      |                                                                                                                |
|                                                                                                                                                                                                                       | hy                                                                                                       |                                                                                          | Fixed<br>arbon.                                                  | Ash.                                                                                         | Su                                                                                                  |                                                                                              | ydro-<br>gen.                                                | Carbon.                                                                       | Nitro-<br>gen.                                                 | Oxygen.                                                                                    | Calories<br>per<br>gram.                                             | B.T.U.'s<br>per<br>pound.                                                                                      |
| Woods:<br>Oak, dry                                                                                                                                                                                                    | Franklin Co., N. Y 67, 10 28.99 Sawyer Co., Wis 56.54 27.92 Woods: Oak, dry                              |                                                                                          |                                                                  |                                                                                              |                                                                                                     |                                                                                              | 5.93<br>4.71<br>6.02<br>6.06<br>6.20                         | 57.17<br>51.00<br>50.16<br>48.88<br>50.31                                     | 1.48<br>1.92<br>0.09<br>0.10<br>0.04                           | 31.36<br>26.54<br>43.36<br>44.67<br>43.08                                                  | 5726<br>4867<br>4620<br>4771<br>5085                                 | 10307<br>8761<br>8316<br>8588<br>9153                                                                          |
|                                                                                                                                                                                                                       |                                                                                                          |                                                                                          | '                                                                | (c) L1                                                                                       | QUII                                                                                                | Fu                                                                                           | ELS.                                                         |                                                                               |                                                                |                                                                                            | 1                                                                    |                                                                                                                |
| Fu                                                                                                                                                                                                                    | el.                                                                                                      |                                                                                          |                                                                  | Spe                                                                                          | ecific<br>at 15                                                                                     | gravit<br>° C.                                                                               | у                                                            | Calories                                                                      | per gran                                                       | n. Brit                                                                                    | ish therm                                                            |                                                                                                                |
| Petroleum ether<br>Gasoline.<br>Kerosene.<br>Fuel oils, heavy petrol<br>Alcohol, fuel or dena<br>cent water and der                                                                                                   | leum or                                                                                                  | vith 7                                                                                   | to o per                                                         | e                                                                                            | 684-<br>710-<br>790-<br>960-                                                                        | . 730<br>. 800                                                                               |                                                              | 11100<br>11000<br>10200                                                       | -12220<br>-11400<br>-11200<br>-10500                           |                                                                                            | 21978-21<br>19980-20<br>19800-20<br>18360-18                         | 0520<br>0160<br>000                                                                                            |
|                                                                                                                                                                                                                       | (d) Gases.                                                                                               |                                                                                          |                                                                  |                                                                                              |                                                                                                     |                                                                                              |                                                              |                                                                               |                                                                |                                                                                            |                                                                      |                                                                                                                |
| Gas.                                                                                                                                                                                                                  |                                                                                                          | H <sub>2</sub>                                                                           | CH4                                                              | C <sub>2</sub> H <sub>2</sub>                                                                |                                                                                                     | umi-<br>ints.                                                                                | CO <sub>2</sub>                                              | СО                                                                            | O <sub>2</sub>                                                 | N <sub>2</sub>                                                                             | Cal.<br>per<br>m³                                                    | B.T.U.<br>per<br>cu. ft.                                                                                       |
| Natural gas, Cal Natural gas, Pa Natural gas, France. Coal gas, low grade. Coal gas, high grade. Water gas, low grade. Water gas, high grade.                                                                         | · · · · 3                                                                                                | -<br>34.80<br>57.2<br>52.88<br>36.4                                                      | 88.0<br>53.3<br>98.81<br>28.80<br>18.8<br>2.16<br>23.2           | 45.8*<br>9.50                                                                                | 1 0 3                                                                                               | .70                                                                                          | 0.58<br>0.20<br>2.00<br>3.02                                 | 10.40<br>3.20<br>36.8<br>19.1                                                 | 0.1<br>0.40<br>—<br>1.15                                       | 0.90<br>0.90<br>0.48<br>14.20<br>18.0<br>4.69<br>3.08                                      | 8339<br>12635<br>9364<br>6151<br>3736<br>2642<br>6140                | 937<br>1420<br>1052<br>657<br>399<br>283<br>657                                                                |

<sup>\*</sup> C<sub>2</sub>H<sub>6</sub>. Data from the Geological Survey, Poole's The Calorific Power of Fuels, and for natural gas from Snelling (Van Nostrand's Chemical Annual).

### CHEMICAL AND PHYSICAL PROPERTIES OF FIVE DIFFERENT CLASSES OF EXPLOSIVES.

|                                                           |                   |                                                                       |                                                                          |                                               |                                                | _                                              |                                 |                                                         |                                                                                                                                          |                                                            |
|-----------------------------------------------------------|-------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Explosive.                                                | Specific gravity. | Number of large calories developed<br>by 1 kilogram of the explosive. | Pressure developed in own volume after elimination of surface influence. | Unit disruptive charge by ballistic pendulum. | Rate of detonation.<br>Cartridges 12 in. diam. | Duration of flame from 100 grams of explosive. | Length of flame from 100 grams. | Cartridge 14 in. transmitted explosion at a distance of | Products of combustion from 200 grams; gaseous, solid, and liquid, respectively.                                                         | Ignition occurred in 4% fire damp & coal dust mixture with |
|                                                           |                   |                                                                       | Kg. per<br>sq. cm.                                                       | Grams.                                        | Meters per                                     | Millisec-<br>onds.                             | Inches.                         | Inches.                                                 | Grams.                                                                                                                                   | Grams.                                                     |
| (A) Forty-per-cent nitro-<br>glycerin dynamite            | 1.22              | 1221.4                                                                | 8235                                                                     | 227*                                          | 4688                                           | .358                                           | 24.63                           | 12                                                      | 88. <sub>4</sub><br>79. <sub>7</sub><br>14. <sub>5</sub>                                                                                 | 25                                                         |
| (B) FFF black blasting powder                             | 1.25              | 789.4                                                                 | 4817                                                                     | 374 <sup>†</sup><br>458*                      | 469.4‡                                         | 925.                                           | 54.32                           | -                                                       | 1 54.4<br>126.9<br>4.1                                                                                                                   | 25                                                         |
| (C) Permissible explo-<br>sive; nitroglycerin<br>class    | 1.10              | 760.5                                                                 | 5912                                                                     | 301*                                          | 3008                                           | .471                                           | 27.79                           | 4                                                       | 103.9<br>65.1<br>15.4                                                                                                                    | 1000                                                       |
| (D) Permissible explo-<br>sive; ammonium<br>nitrate class | 0.97              | 992.8                                                                 | 7300                                                                     | 279*                                          | 3438§                                          | .483                                           | 25.68                           | I                                                       | 89.8<br>27.5<br>75.5                                                                                                                     | 800                                                        |
| (E) Permissible explo-<br>sive; hydrated class            | 1.54              | 610.6                                                                 | 6597                                                                     | 434*                                          | 2479                                           | .338                                           | 17.49                           | 3                                                       | 86.1<br>56.0<br>33.0                                                                                                                     | Over 1000                                                  |
|                                                           |                   |                                                                       | Chemical                                                                 | Analyse                                       | s.                                             |                                                |                                 |                                                         |                                                                                                                                          |                                                            |
| Nitroglycerin                                             |                   |                                                                       |                                                                          |                                               |                                                |                                                |                                 |                                                         | 0.23<br>83.10<br>0.46<br>2.61<br>1.89<br>2.54<br>2.64<br>6.53<br>2.34<br>30.85<br>9.94<br>1.75<br>11.98<br>7.64<br>8.96<br>6.89<br>19.65 |                                                            |

<sup>\*</sup> One pound of clay tamping used. § Cartridges 13 in. diam.

f Rate of burning.

<sup>\*</sup> One pound of clay tamping used. † Two pounds of clay tamping used. ‡ Rate of burning S Cartridges 13 in. diam. # For 300 grammes.

Compiled from U. S. Geological Survey Results,—"Investigation of Explosives for use in Coal Mines, 1909."

#### TABLE 265. - Additional Data on Explosives.

| Explosive.<br>(Ref. Young, Nature, 102, 216, 1918.)                                                                                                                                                        | Vol. gas<br>per g in<br>cc = V | Calories<br>per<br>g = Q                          | Coefficient = QV + 1000                          | Coefficient $GP = 1$                      | Calculated Temperature Q/C C, sp. ht. gases = 0.24      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------|--------------------------------------------------|-------------------------------------------|---------------------------------------------------------|
| Gunpowder Nitroglycerine. Nitrocellulose, 13% Na Cordite, Mk. I. (NG, 57; NC, 38; Vaseline, 5) Cordite, MD (NG, 30; NC, 65; Vaseline, 5) Ballistite (NG, 50; NC, 50; Stabilizer, 5) Picric acid (Lyddite). | 888                            | 738<br>1652<br>931<br>1242<br>1031<br>1349<br>810 | 207<br>1224<br>859<br>1082<br>915<br>1102<br>710 | 1<br>6<br>4.3<br>5.2<br>4.4<br>5.3<br>3.4 | 2240° C<br>6880<br>3876<br>5175<br>4225<br>5621<br>3375 |

Shattering power of explosive = vol. gas per g  $\times$  cals./g  $\times$   $V_d \times$  density where  $V_d$  is the velocity of detonation. Trinitrotoluene:  $V_d = 7000$  m/sec. Shattering effect = .87 picric acid.

Amatol (Ammonium nitrate + trinitrotoluene, TNT):  $V_d = 4500$  m/sec.

Ammonal (Ammonium nitrate, TNT, Al): 1578 cal/g; 682 cc gas;  $V_d = 4000$  m/sec.

Sabulite (Ammonium nitrate, 78, TNT 8, Ca silicide 14): about same as ammonal.

#### TABLE 266. — Ignition Temperatures Gaseous Mixtures.

Ignition temperature taken as temperature necessary for hot body immersed in gas to cause ignition; slow combination may take place at lower temperatures. McDavid, J. Ch. Soc. Trans. 111, 1003, 1917. Gases were mixed with air. Practically same temperatures as with O<sub>2</sub> (Dixon, Conrad, loc. cit. 95, 1909).

| Benzene and air |
|-----------------|
|-----------------|

#### TABLE 267. — Time of Heating for Explosive Decomposition.

| Temperature ° C. | 170               | 180                                             | 190                                   | 200                                           | 220                                         | Ignition tem     | perature. |
|------------------|-------------------|-------------------------------------------------|---------------------------------------|-----------------------------------------------|---------------------------------------------|------------------|-----------|
| Time.            | sec.              | sec.                                            | sec.                                  | sec.                                          | sec.                                        | °C†              | °C‡       |
| Black powder     | 170<br>870<br>160 | n<br>195<br>130<br>60<br>165<br>100<br>340<br>n | n<br>130<br>—<br>67<br>60<br>240<br>n | n<br>45<br>90<br>21<br>56<br>50<br>150<br>590 | n<br>23<br>25<br>9<br>18<br>30<br>60<br>480 | 440<br>{ 300<br> | 450       |

n, failure to explode in twenty minutes. \* The decomposition of nitrocellulose in celluloid commences at about 100° C; above that the heat of decomposition may raise the mass to the ignition point if loss of heat is prevented. Above 170°, decomposition occurs with explosive violence as with nitrocellulose. Rate of combustion is 5 to 10 times that of poplar, pine, or paper of the same size and conditions.

† Measured by contact with porcelain tube of given temperature.

† Measured by contact with molten lead. Average.

Taken from Technologic Paper of Bureau of Standards, No. 98, 1917.

#### TABLE 268. - Flame Temperatures.

Measures made with optical pyrometer by Féry, J. de Phys. (4) 6, 1907.

| Alcohol, with NaCl. Bunsen flame, no air. Bunsen flame, ½ air. Bunsen flame, tull air. Illuminating gas-oxygen | 1705° C<br>1712<br>1812<br>1871<br>2200 | Hydrogen flame Hydrogen-oxygen Acetylene burner Acetylene-oxygen Cooper-Hewlit Hg | 1900° C<br>2420<br>2458<br>3000<br>3500 |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------|
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------|

#### THERMO-CHEMISTRY, CHEMICAL ENERGY DATA.

The total heat generated in a chemical reaction is independent of the steps from initial to final state. Heats of formation may therefore be calculated from steps chemically impracticable. Chemical symbols now represent the chemical energy in a gram-molecule or mol(e); treat reaction equations like algebraic equations:  $\text{CO} + \text{O} = \text{CO}_2 + 68 \text{ Kg-cal}$ ; subtract  $\text{C} + 2 \text{ O} = \text{CO}_2 + 97 \text{ Kg-cal}$ , then C + O = CO + 29 Kg-cal. We may substitute the negative values of the formation heats in an energy equation and solve  $\text{MgCl}_2 + 2 \text{Na} = 2 \text{NaCl} + \text{Mg} + x \text{ Kg-cal}$ ; -151 = -196 + x; x = 45 Kg-cal. Heats of formation of organic compounds can be found from the heats of combustion since burned to  $\text{H}_2\text{O}$  and  $\text{CO}_2$ . When changes are at constant volume, energy of external work is negligible; also generally for solid or liquid changes in volume. When a gas forms a solid or liquid at constant pressure, or vice versa, it must be allowed for. For N mols of gas formed (disappearing) at  $T_K^{\circ}$  the energy of the substance is decreased (increased) by  $0.002 \cdot \text{N} \cdot \text{T}_K$  Kg-cal.  $H_2 + O = H_2O + 67.5 \text{ Kg-cal}$ . at 18°C. at constant volume;  $\frac{1}{2}(2 \text{ H}_2 + O_2 - 2 \text{ H}_2O = 135.0 + 0.002 \times 3 \times 291 = 136.7) = 68.4 \text{ Kg-cal}$ .

The heat of solution is the heat, + or -, liberated by the solution of 1 mol of substance in so much water that the addition of more water will produce no additional heat effects. Aq. signifies this amount of water;  $H_2O$ , one mol.;  $NH_3 + Aq = NH_4OH \cdot Aq. + 8$  Kg-cal.

TABLE 269. (a). Heats of Formation from Elements in Kilogram Galories.

At ordinary temperatures.

| Compound.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Heat of<br>Forma-<br>tion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Compound.                                                                                                                                                                                                            | Heat of<br>Forma-<br>tion.                                                                                                                                                                                                                                                                                      | Compound.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heat of<br>Forma-<br>tion.                                                                                                                                                | Compound.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heat of<br>Forma-<br>tion.                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Al <sub>2</sub> O <sub>3</sub> Ag <sub>2</sub> O BaO <sub>2</sub> BaO <sub>2</sub> BaO <sub>3</sub> CO am CO di CO <sub>2</sub> am CO <sub>2</sub> di CaO CeO <sub>2</sub> Cl <sub>2</sub> O g CoO am CoO cr Co <sub>3</sub> O <sub>4</sub> CrO <sub>3</sub> Cs <sub>2</sub> O Cu <sub>2</sub> O Cu <sub>2</sub> O Cu <sub>2</sub> O Cu <sub>2</sub> O Gu | 380.<br>6.5<br>126.<br>142.<br>138.<br>29.0<br>26.1<br>97.0<br>94.8<br>152.<br>225.<br>-10.5<br>50.5<br>57.5<br>193.4<br>140.<br>91.3<br>42.3<br>37.2<br>65.7<br>196.5<br>270.8<br>68.4<br>46.8<br>22.2<br>21.4<br>91.<br>141.6<br>143.6<br>90.8<br>123.<br>33.5<br>141.6<br>143.6<br>90.8<br>123.<br>325.<br>144.<br>141.6<br>143.6<br>90.8<br>123.<br>325.<br>144.<br>141.6<br>143.6<br>90.8<br>123.<br>325.<br>144.<br>141.6<br>143.6<br>90.8<br>123.<br>325.<br>144.<br>144.<br>141.6<br>143.6<br>90.8<br>123.<br>325.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>144.<br>145.<br>145.<br>146.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147.<br>147. | HgO Na2O Nd2O3 NiO P2O5 sgs PbO PbO2 Pr3O3 Rb2O SO2 rh sgg SiO2 SnO SnO2 cr SrO2 ThO2 TiO2 am TiO2 cr TiO2 WO3 ZnO AgCl AlCl3 AuCl y AuCl3 y BaCl2 BiCl3 CCl4 am CaCl2 CdCl2 CdCl2 CuCl FeCl2 FeCl3 GlCl2 HgCl HgCl2 | 21.4<br>100.<br>435.<br>57.9<br>370.<br>50.3<br>62.4<br>412.<br>89.2<br>70.<br>191.0<br>66.9<br>137.5<br>135.<br>135.<br>135.<br>135.<br>121.6<br>218.6<br>42.2<br>131.<br>194.<br>5.81<br>22.8<br>197.<br>90.6<br>21.0<br>187.<br>93.2<br>76.5<br>51.5<br>34.1<br>82.1<br>96.0<br>155.<br>22.3<br>31.3<br>53.3 | KCl LiCl MgCl <sub>2</sub> MnCl <sub>2</sub> NaCl NdCl <sub>3</sub> NH <sub>4</sub> Cl NiCl <sub>2</sub> PbCl <sub>2</sub> PdCl <sub>4</sub> SnCl <sub>2</sub> SnCl <sub>4</sub> SnCl <sub>2</sub> SnCl <sub>4</sub> SrCl <sub>2</sub> ThCl <sub>4</sub> TlCl RbCl ZnCl <sub>2</sub> HBr glg NH <sub>4</sub> Br HF ggg Ag <sub>2</sub> S CS <sub>2</sub> sgg CS <sub>2</sub> sgg CAS (NH <sub>4</sub> ) <sub>2</sub> S Cu <sub>2</sub> S Cu <sub>3</sub> S (NH <sub>4</sub> ) <sub>2</sub> S Cu <sub>5</sub> S Su <sub>5</sub> | 105.7 93.8 151.0 112.3 97.8 250. 76.3 74.5 83.4 40.5 60.4 80.8 128. 128. 138. 300. 48.6 105.9 97.3 8.6 66. 27.3 103.4 79.4 89.3 11.6 26.2 111.5 193. 21.3 175. 165. 344.3 | Li <sub>2</sub> SO <sub>4</sub> (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> Na <sub>2</sub> SO <sub>4</sub> MgSO <sub>4</sub> PbSO <sub>4</sub> Tl <sub>2</sub> SO <sub>4</sub> ZnSO <sub>4</sub> CaCO <sub>3</sub> CuCO <sub>3</sub> FeCO <sub>3</sub> K <sub>2</sub> CO <sub>3</sub> MgCO <sub>5</sub> Na <sub>2</sub> CO <sub>5</sub> ZnCO <sub>5</sub> ZnCO <sub>5</sub> Ca(NO <sub>3</sub> ) <sub>2</sub> Cu(NO <sub>3</sub> ) <sub>2</sub> 6H <sub>2</sub> O HNO <sub>3</sub> ggg1 KNO <sub>3</sub> LiNO <sub>3</sub> Na <sub>4</sub> NO <sub>3</sub> Ci <sub>4</sub> Cy C | 334.2<br>283.<br>328.3<br>301.6<br>216.2<br>221.0<br>229.6<br>270.<br>143.<br>179.<br>280.<br>267.<br>272.<br>194.<br>28.7<br>209.<br>92.9<br>92.9<br>91.9<br>41.6<br>119.2<br>112.<br>88.3<br>111.0<br>58.2<br>20.<br>25.<br>-53.<br>-30.5<br>12.0<br>230.<br>88.8<br>102.<br>44.*<br>68.*<br>30.*<br>103.5<br>45.*<br>69.*<br>35.5* |

am = amorphous; di = diamond; gr = graphite; cr = crystal; g = gas; l = liquid; s = solid; y = yellow (gold); rh = rhombic (sulphur). \* Heats of formation not from elements but as indicated.

#### HEATS OF FORMATION OF IONS IN KILOGRAM-CALORIES.

+ and - signs indicate signs of ions and the number of these signs the valency. For the ionisation of each gram-molecule of an element divide the numbers in the table by the valency, e. g., 9.03 gr. Al = 9.03 gr. Al + + 40.3 Kg. cal. When a solution is of such dilution that further dilution does not increase its conductivity, then the heats of formation of substances in such solutions may be found as follows: FeCl<sub>3</sub>Aq = + 22.2 + 2  $\times$  39.1 = 100.4 Kg. cal. CuSO<sub>4</sub>Aq = - 15.8 + 214.0 = 198.2 Kg. cal.

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|

#### TABLE 271 .- Heats of Neutralization in Kilogram-Calories.

The heat generated by the neutralization of an acid by a base is equal, for each gram-molecule of water formed, to 13.7 Kg. cal. plus the heat produced by the amount of un-ionized salt formed, plus the sum of the heats produced in the completion of the ionizations of the acid and the base. (See also p. 209).

| Base.                                                                                                                                      | HCl-aq HNO3-aq H2SO4-aq                    |                                            | H <sub>2</sub> SO <sub>4</sub> ·aq          | HCN·aq                          | H <sub>2</sub> ·CO <sub>3</sub> ·aq        |                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------|--------------------------------------------|----------------------------------|
| KOH · aq<br>NaOH · aq<br>NH <sub>4</sub> OH · aq<br>½ Ca(OH) <sub>2</sub> · aq<br>½ Zn(OH) <sub>2</sub> · aq<br>½ Cu(OH) <sub>2</sub> · aq | 13.7<br>13.7<br>12.4<br>14.0<br>9.9<br>7.5 | 13.8<br>13.7<br>12.5<br>13.9<br>9.9<br>7.5 | 15.7<br>15.7<br>14.5<br>15.6<br>11.7<br>9.2 | 2.9<br>2.9<br>1.3<br>3.2<br>8.1 | 13.3<br>13.3<br>12.0<br>13.4<br>8.9<br>6.2 | 10.1<br>10.2<br>8.<br>9.5<br>5.5 |

### TABLE 272 .- Heat of Dilution, H2SO4.

In Kilogram-calories by the dilution of one gram-molecule of sulphuric acid by m gram-molecules of water.

| m | 6.38 | 2<br>9.42 | 3 11.14 | 5 13.11 | 19 16.26 | 49<br>16.68 | 99<br>16.86 | 199 | 399<br>17.31 | 1599 |
|---|------|-----------|---------|---------|----------|-------------|-------------|-----|--------------|------|

## RADIATION CONSTANTS.

## TABLE 273 .- Radiation Formulæ and Constants for Perfect Radiator.

The radiation per sq. cm. from a "black body" (exclusive of convection losses) at the temperature  $T^{\circ}$  (absolute, C) to one at  $t^{\circ}$  is equal to

The distribution of this energy in the spectrum is represented by Planck's formula:

$$\int_{\lambda} = C_1 \lambda^{-5} \left[ e^{\frac{C_2}{\lambda T}} - 1 \right]^{-1}$$

where  $J_{\lambda}$  is the intensity of the energy at the wave-length  $\lambda$  ( $\lambda$  expressed in microns,  $\mu$ ) and  $\epsilon$  is the base of the Napierian logarithms.

$$C_1 = 9.226 \times 10^3$$
 for  $J$  in  $\frac{gram.\ cal.}{sec.\ cm.^2} = 3.86 \times 10^4$  for  $J$  in  $\frac{watts}{cm.^2}$ 

$$C_2 = 14350 \text{ for } \lambda \text{ in } \mu$$

$$J_{\text{max}} = 3.11 \times 10^{-16} \ T^5 \text{ for } J \text{ in } \frac{gram. cal.}{see. cm.^2} = 1.30 \times 10^{-18} \ T^5 \text{ for } J \text{ in } \frac{watts}{cm.^2}$$

 $\lambda_{\text{max}} T = 2910 \text{ for } \lambda \text{ in } \mu$ 

h=Planck's unit=elementary "Wirkungs quantum"=6.83 × 10-27 ergs. sec.

k=constant of entropy equation=1.42 × 10-16 ergs./degrees.

## TABLE 274. - Radiation in Gram-Calories per 24 Hours per sq. cm. from a Perfect Radiator at to C to an absolutely Cold Space (-273° C).

Computed from the Stefan-Boltzmann formula.

| -220<br>-210<br>-200<br>-190<br>-180<br>-170<br>1<br>-160 | 7                        | 84<br>107<br>134<br>165<br>201<br>245<br>294<br>350 | -10<br>-18<br>-4<br>-2<br>0<br>+2<br>+4<br>-6<br>-4<br>-2<br>0<br>+2<br>+4<br>-6<br>-8<br>-18<br>-18<br>-18<br>-18<br>-18<br>-18<br>-18<br>-18<br>-18 | 571<br>588<br>606<br>625<br>643<br>662<br>682<br>701<br>722 | +12<br>+14<br>+16<br>+18<br>+20<br>+22<br>+24<br>+26<br>+28 | 787<br>808<br>831<br>855<br>879<br>903<br>928<br>953<br>979 | +34<br>+36<br>+38<br>+40<br>+42<br>+44<br>+46<br>+48<br>+50 | J<br>1059<br>1087<br>1115<br>1145<br>1174<br>1204<br>1234<br>1265<br>1298 | +56<br>+58<br>+60<br>+70<br>+80<br>+100<br>+200<br>+1000 | 1400<br>1430<br>1470<br>1650<br>1850<br>2070<br>2310<br>5960<br>313×108 |
|-----------------------------------------------------------|--------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|
| —150 2<br>—140 3                                          | 7 — 40<br>8 — 30<br>— 20 | 350                                                 | +6<br>+8<br>+10                                                                                                                                       |                                                             |                                                             | 953<br>979<br>1005<br>1032                                  |                                                             | 1298<br>1330<br>1363                                                      |                                                          | 313×10 <sup>8</sup><br>318×10 <sup>4</sup><br>921×10 <sup>5</sup>       |

#### TABLE 275. - Values of JA for Various Temperatures Centigrade.

Ekholm, Met. Z. 1902, used  $C_1 = 8346$  and  $C_2 = 14349$ , and for the unit of time the day. For 1000, the values for Jλ have been multiplied by 10, for the other temperatures by 100.

| λ<br>μ<br>2                | T= 100° C                                 | 0                                                 | 15° C                                             | °°C                                             | —30° С                                  | -80° C                                 | λ<br>μ<br>18                     | 100°C                                         | 2961                                                 | 15° C                                                | o°С<br>2175                                          | -30° C                                            | -80° C                                        |
|----------------------------|-------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------|-----------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|
| 3 4 5 6 7 8 9              | 80<br>469<br>1047<br>1526<br>1768<br>1810 | 41<br>508<br>1777<br>3464<br>4954<br>5928<br>6382 | 18<br>272<br>1085<br>2296<br>3481<br>4352<br>4834 | 7<br>138<br>628<br>1454<br>2353<br>3088<br>3646 | 27<br>172<br>493<br>931<br>1372<br>1730 | 0<br>1<br>8<br>39<br>105<br>203<br>316 | 20<br>21<br>22<br>23<br>24<br>25 | 443<br>386<br>337<br>295<br>259<br>228<br>202 | 2626<br>2329<br>2068<br>1840<br>1639<br>1462<br>1307 | 2281<br>2034<br>1816<br>1622<br>1448<br>1298<br>1165 | 1954<br>1754<br>1574<br>1413<br>1270<br>1141<br>1028 | 1363<br>1242<br>1129<br>1026<br>931<br>846<br>768 | 594<br>561<br>527<br>494<br>460<br>428<br>398 |
| 10<br>11<br>12<br>13<br>14 | 1573<br>1398<br>1225<br>1063<br>918       | 6386<br>6127<br>5712<br>5222<br>4713              | 4979<br>4833<br>4633<br>4300<br>3930              | 3781<br>3798<br>3676<br>3467<br>3215            | 1971<br>2098<br>2114<br>2090<br>2004    | 426<br>520<br>592<br>640<br>666        | 26<br>28<br>30<br>40<br>50       | 179<br>142<br>114<br>44<br>20                 | 947<br>771<br>311<br>146                             | 1047<br>850<br>696<br>285<br>135                     | 926<br>757<br>623<br>259<br>124                      | 698<br>579<br>482<br>209<br>102                   | 369<br>317<br>272<br>130<br>67                |
| 15<br>16<br>17             | 792<br>683<br>590                         | 4220<br>3759<br>3340                              | 3556<br>3198<br>2862                              | 2944<br>2674<br>2417                            | 1889<br>1760<br>1626                    | 673<br>663<br>649                      | 60<br>80<br>100                  | 10<br>4<br>2                                  | 77<br>27<br>12                                       | 72<br>25<br>11                                       | 66<br>24<br>10                                       | 55<br>20<br>9                                     | - 38<br>14<br>7                               |

## BLACK-BODY SPECTRUM INTENSITIES (JA).

Values of  $J\lambda$  using for  $C_1$ ,  $9.23 \times 10^3$ ,  $C_2$ , 14350.,  $\lambda$  in  $\mu$ . If the figures given for  $J\lambda$  are plotted in cms as ordinates to a scale of abscissae of 1 cm to 1  $\mu$ , then the area in cm² between the smooth curve through the resulting points and the axis of abscissae is equivalent to the radiation in calories per sec. from 1 cm² of a black body at the corresponding temperature, radiating to absolute zero. The intensities when radiating to a body at a lower temperature may be obtained by subtracting the intensities corresponding to the lower temperature from those of the higher. The nature of the black-body formula is such that when  $\lambda T$  is small, a small change in  $C_2$  produces a great change in  $J\lambda$ ; e.g., when  $C_2/\lambda T$  is 100 or 10, the change is 100 and 10 fold respectively; as  $\lambda T$  increases, the change becomes proportional; e.g., when  $C_2/\lambda T$  is less than 0.05, the change in  $J\lambda$  is proportional to the change in  $C_2$ .

| λ                                    | 50° K.                             | 100° K.                          | 150° K.                          | 200° K.                                     | 250° K.                                   | 273° K.                          | 300° K.                           | 373° K.                             | 400° K.                              | 500° K.                              | 600° K.                          |
|--------------------------------------|------------------------------------|----------------------------------|----------------------------------|---------------------------------------------|-------------------------------------------|----------------------------------|-----------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|
| μ<br>1.0<br>1.5<br>2.0               |                                    | . O583<br>. O283                 | . O372<br>. O242                 | . 0276<br>. 0172<br>. 0137                  | . O20I<br>. O183<br>. O9I                 | .018I<br>.0127<br>.09II          | .018I<br>.0102<br>.07I2           | .0122<br>.088<br>.0513              | .01124<br>.0749<br>.0546             | .0831                                | .0838                            |
| 2.5<br>3.0<br>3.5                    | .047I<br>.0409<br>.0344            | . 0196<br>. 0183                 | .0142<br>.0125<br>.0102          | .0103<br>.082<br>.072                       | .0618                                     | .077<br>.069<br>.055             | .0646                             | .0419<br>.08102<br>.0829            | .0450<br>.03242<br>.03620            | .0397                                | .0066                            |
| 4.0<br>5.0<br>6.0<br>7.0             | .0306<br>.0243<br>.02019<br>.01883 | .0142<br>.0111<br>.0105<br>.096  | .094<br>.0714<br>.0814<br>.066   | .0814<br>.0617<br>.068<br>.0419             | .0552<br>.0430<br>.048<br>.0315           | .0418<br>.048<br>.0318<br>.0330  | .0457<br>.0321<br>.0341<br>.0359  | .0360<br>.00134<br>.00195           | .00115<br>.00226<br>.00301<br>.00328 | .00690                               | .0229<br>.0249<br>.0224<br>.0186 |
| 8.0<br>9.0                           | .01872<br>.01422                   | .018                             | .0538                            | .0436                                       | .0822                                     | .0339                            | .0371                             | .00232                              | .00321                               | .00801                               | .0149<br>.0118                   |
| 12.0<br>14.0<br>16.0<br>18.0<br>20.0 | .01115<br>.01021<br>.0914<br>.0957 | .0624<br>.0661<br>.0511<br>.0517 | .0413<br>.0418<br>.0422<br>.0424 | .0494<br>.04102<br>.04100<br>.0492<br>.0482 | .0831<br>.0829<br>.0825<br>.0821<br>.0817 | .0347<br>.0341<br>.0334<br>.0328 | .0370<br>.0358<br>.0346<br>.03368 | .00157<br>.00117<br>.0287<br>.02653 | .00144                               | .00374<br>.00254<br>.00176<br>.00124 | .00380                           |
| 25.0<br>30.0<br>40.0                 | .0816<br>.0897<br>.0726            | .0530                            | .0421                            | .0457<br>.0438                              | .03122                                    | .03224<br>.03131<br>.0479        | .03164                            | .03258                              | .03295                               | .08439<br>.08237<br>.04858           | .03589                           |
| 50.0<br>75.0<br>100.0                | .0795                              | .0518                            | .0851<br>.0515<br>.0657          | .0592                                       | .04150                                    | .04158                           | .04184<br>.05436<br>.05150        | .04255<br>.05580<br>.05197          | .04281<br>.05634<br>.05214           | .04381<br>.05834<br>.05277           | .04482<br>.04103<br>.05342       |

|   | λ                               | 800°<br>K.                           | 1000°<br>K.                          | 1500°<br>K.                               | 2000°<br>K.                              | 3000°<br>K.                              | 4000°<br>K.                              | 5000°<br>K.                                         | 6000°<br>K.                                         | 8000°<br>K.                                | 10000°<br>K.                                 | 20000°<br>K.                                      |
|---|---------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--------------------------------------------|----------------------------------------------|---------------------------------------------------|
| l | μ<br>0.1<br>0.2<br>0.3          | =                                    | =                                    |                                           | 0.0226<br>0.087<br>0.0315                | 0.01115<br>0.0012<br>0.44                | 0.0624<br>0.46<br>24.2                   | 0.0331<br>15.4<br>263.                              | o. 038<br>184.<br>1310.                             | 15.<br>3660.<br>9640.                      | 540.<br>22100.<br>31000.                     | 710000.<br>820000.<br>3820000.                    |
| ۱ | 0.4<br>0.5<br>0.6<br>0.7<br>0.8 | .0640                                | .0548                                | <br>0.014<br>0.064<br>0.180               |                                          | 5.75<br>20.6<br>40.8<br>59.2<br>71.5     | 115.<br>226.<br>301.<br>328.             | 690.<br>952.<br>1000.<br>925.<br>800.               | 2280.<br>2490.<br>2240.<br>1860.                    | 10300.<br>8400.<br>6290.<br>4590.<br>3350. | 25600.<br>17800.<br>11950.<br>8110.<br>5620. | 180000.<br>92300.<br>51460.<br>30700.             |
|   | 0.9<br>1.0<br>1.5<br>2.0        | .0434<br>.00015<br>.0775<br>.0367    | .00183                               | 0.378                                     | 7.06<br>10.25                            | 77.8<br>52.2                             | 295.<br>262.<br>122.<br>57.6             | 554-<br>210.<br>90.2                                | 928.<br>309.<br>125.                                | 2470.<br>1842.<br>527.<br>198.             | 2880.<br>758.<br>275.                        | 8800.<br>1980.<br>668.                            |
| ۱ | 2.5<br>3.0<br>3.5               | .0719<br>.0964<br>.1050              | .305<br>.320<br>.296                 | 2.10<br>1.64<br>1.22                      | 5.68<br>3.82<br>2.60                     | 16.4<br>9.66<br>6.02                     | 29.5<br>16.4<br>9.84                     | 43.9<br>23.7<br>13.8                                | 58.9<br>31.1<br>17.9                                | 90.1<br>46.4<br>26.3                       | 121.9<br>61.9<br>34.7                        | 284.<br>140.7<br>77.3                             |
| ۱ | 4.0<br>5.0<br>6.0<br>7.0<br>8.0 | .1027<br>.0839<br>.0629<br>.0459     | .0811                                | 0.907<br>0.511<br>0.302<br>0.188<br>0.122 | 1.80<br>0.923<br>0.514<br>0.307<br>0.194 | 3.90<br>1.84<br>0.973<br>0.560<br>0.344  | 6.20<br>2.81<br>1.45<br>0.820<br>0.498   | 8.59<br>3.81<br>1.935<br>1.165<br>0.653             | 11.0<br>4.81<br>2.42<br>1.348<br>0.808              | 15.9<br>6.84<br>3.40<br>1.88<br>1.20       | 20.9<br>8.89<br>4.39<br>2.41<br>1.43         | 45.9<br>19.15<br>9.34<br>5.09<br>3.00             |
| ۱ | 9.0<br>10.0<br>12.0<br>14.0     | .0247<br>.0184<br>.01072<br>.00660   | .0160                                | 0.0824<br>0.0575<br>0.0304<br>0.0175      | 0.128<br>0.0880<br>0.0553<br>0.0256      | 0.223<br>0.151<br>0.0757<br>0.0421       | 0.319<br>0.214<br>0.107<br>0.0587        | 0.416<br>0.278<br>0.1373<br>0.0754                  | 0.513<br>0.342<br>0.168<br>0.0021                   | 0.709<br>0.470<br>0.230<br>0.125           | 0.90<br>0.598<br>0.292<br>0.150              | 1.87<br>1.24<br>0.602<br>0.326                    |
| I | 16.0<br>18.0<br>20.0            | .00425                               | .00606                               | 0.0108<br>0.00697<br>0.00470              | o. 0155<br>o. 00997<br>o. 00668          | 0.0253<br>0.0160<br>0.01068              | 0.0350<br>0.0221<br>0.0147               | 0.0448<br>0.0282<br>0.01868                         | 0.0546<br>0.0344<br>0.0227                          | 0.0742<br>0.0466<br>0.0307                 | o.og38<br>o.o585<br>o.o388                   | 0.192<br>0.120<br>0.0789                          |
|   | 30.0<br>40.0<br>50.0<br>75.0    | .03464<br>.03159<br>.04684<br>.04144 | .03619<br>.03209<br>.04888<br>.04184 | 0.00101<br>0.02334<br>0.02140<br>0.04286  | 0.00141<br>0.08459<br>0.08191<br>0.04387 | 0.00220<br>0.03710<br>0.03294<br>0.04591 | 0.00299<br>0.03960<br>0.03397<br>0.04794 | 0.00777<br>0.00378<br>0.00121<br>0.03500<br>0.04997 | 0.00941<br>0.00455<br>0.00146<br>0.03603<br>0.03120 | 0.03808                                    | 0.00247<br>0.00101<br>0.03201                | 0.0325<br>0.0157<br>0.00498<br>0.00204<br>0.03496 |
| I | 100.0                           | .06470                               | .01598                               | 0.05919                                   | 0.04124                                  | 0.04188                                  | 0.04252                                  | 0.04317                                             | 0.04381                                             | 0.04510                                    | 0.04639                                      | 0.03128                                           |

See Forsythe, J. Opt. Soc., 4,331, 1920, relative values, 0.4 to 0.76 μ (steps 0.01 μ), 12 temperatures, 1000 to 5000 K.

#### RADIATION EMISSIVITIES.

## TABLE 277. - Relative Emissive Powers for Total Radiation.

Emissive power of black body = 1. Receiving surface platinum black at 25°C; oxidized surfaces oxidized at 600 + °C. Randolph and Overholzer, Phys. Review, 2, p. 144, 1913.

|                            | Те    | mperature, Deg | . C.  |
|----------------------------|-------|----------------|-------|
|                            | 200   | 400            | 600   |
| Silver                     | 0.020 | 0.030          | 0.038 |
| Platinum (1)               | 0.060 | 0.086          | 0.110 |
| Oxidized zinc              | _     | 0.110          | -     |
| Oxidized aluminum          | 0.113 | 0.153          | 0.102 |
| Calorized copper, oxidized | 0.180 | 0.185          | 0,100 |
| Cast iron                  | 0.210 | _              |       |
| Oxidized nickel            | 0.369 | 0.424          | 0.478 |
| Oxidized monel             | 0.411 | 0.439          | 0.463 |
| Calorized steel, oxidized  | 0.521 | 0.547          | 0.570 |
| Oxidized copper            | 0.568 | 0.568          | 0.568 |
| Oxidized brass             | 0.610 | 0.600          | 0.589 |
| Oxidized lead              | 0.631 | _              |       |
| Oxidized cast iron         | 0.643 | 0.710          | 0.777 |
| Oxidized steel             | 0.790 | 0.788          | 0.787 |
| Black body                 | 1.00  | 1.00           | 1.00  |

Remark: For radiation properties of bodies at temperatures so low that the radiations of wave-length greater than 20  $\mu$  or thereabouts are important, doubt must exist because of the possible and perhaps probable lack of blackness of the receiving body to radiations of those wave-lengths or greater. For instance, see Table 379 for the transparency of soot.

#### TABLE 278. - Emissivities of Metals and Oxides.

Emissivities for radiation of wave-length 0.55 and 0.65 \(\mu\). Burgess and Waltenberg, Bul. Bureau of Standards,

11, 591, 1914. In the solid state practically all the metals examined appear to have a negligible or very small temperature coefficient of emission for  $\lambda = 0.55$  and  $0.65~\mu$  within the temperature range 20° C to melting point. Nickel oxide has a well-defined negative coefficient, at least to the melting point. There is a discontinuity in emissivity, for  $\lambda = 0.65~\mu$  at the melting point for some but not all the metals and oxides. This effect is most marked for gold, copper, and silver, and is appreciable for platinum and palladium. Palladium, in addition, possesses for radiation a property analogous to suffusion, in that the value of emissivity ( $\lambda = 0.65~\mu$ ) attural to the liquid state may persist for a time after solidification of the metal. The Violle unit of light does not appear to define a constant standard. Article contains bibliography.

| Metals.                              | Cu   | Ag    | Au                             | Pd                             | Pt               | Ir               | Rh                            | Ni   | Со      | Fe                            | Mn                             | Ti                            |
|--------------------------------------|------|-------|--------------------------------|--------------------------------|------------------|------------------|-------------------------------|------|---------|-------------------------------|--------------------------------|-------------------------------|
| eλ, 0.55 μ solid<br>0.55 μ liquid    | 0.38 | 0.35  | 0.38                           | 0.38                           | 0.38             | =                | 0.29                          | 0.44 | =       | =                             | =                              | 0.75                          |
| o.65 μ solid<br>liquid               | 0.10 | 0.04  | 0.14                           | 0.33                           | 0.33             | 0.30             | 0.29                          | 0.36 | 0.36    | 0.37                          | 0.59                           | 0.63                          |
| Metals                               | Zr   | Th    |                                | Er                             | Be               | Cb               | v                             | Cr   | Мо      | W                             | U                              |                               |
| $e\lambda$ , 0.55 $\mu$ solid liquid |      | 0.36  | _                              | 0.30                           | 0.61             | 0.61             | 0.29                          | 0.53 | _       | _                             | 0.77                           |                               |
| o.65 μ solid<br>liquid               | 0.32 | 0.36  | 0.35                           | 0.55                           | 0.61             | 0.49             | 0.35                          | 0.39 | 0.43    | 0.39                          | 0.54                           |                               |
| Oxides: 0.65 $\mu$                   | NiO  | C03O4 | Fe <sub>3</sub> O <sub>4</sub> | Mn <sub>3</sub> O <sub>4</sub> | TiO <sub>2</sub> | ThO <sub>2</sub> | Y <sub>2</sub> O <sub>3</sub> | BeO  | $CbO_x$ | V <sub>2</sub> O <sub>3</sub> | Cr <sub>2</sub> O <sub>3</sub> | U <sub>8</sub> O <sub>8</sub> |
| eλ, solidliquid                      | 0.89 | 0.77  | 0.63                           | 0.47                           | 0.52             | 0.57             | 0.61                          | 0.37 | 0.71    | 0.69                          | 0.60                           | 0.30                          |

#### RADIATION EMISSIVITIES.

## TABLE 279. - Relative Emissivities of Metals and Oxides.

Emissivity of black body taken as 100.

| True temperature C.                                                          | 500°  | 600° | 700°     | 800°     | 90                   | oo°                  | 1000°                | 1100°                | 12                     | 00°                  | Ref.    |
|------------------------------------------------------------------------------|-------|------|----------|----------|----------------------|----------------------|----------------------|----------------------|------------------------|----------------------|---------|
| 60 FeO.40 Fe <sub>2</sub> O <sub>3</sub> To<br>= Fe heated<br>in airλ = 0.65 |       | 85   | 86       | 87<br>98 |                      | 37                   | 88<br>95             | 88<br>93             |                        | 39                   | 1       |
| NiO                                                                          | tal — | 54   | 62<br>98 | 68<br>96 |                      | 72                   | 75<br>92             | 81<br>88             |                        | 36                   | 2 2     |
| Platinum:  True temp. C o  App.* temp. C —  Total emiss. Pt 3.1              |       | 300  | -        | 500      | 750                  | 1000<br>486<br>12.4  |                      | 1400<br>780<br>15.5  | 1600<br>930<br>16.9    | 1700<br>1005<br>17.5 | 3 3 3   |
| Tungsten:<br>True temp. K (abs.)                                             | 51.8  |      | 49.8     | 48.9     | 1800<br>47.9<br>44.3 | 2200<br>47.0<br>43.3 | 2600<br>46.0<br>42.4 | 3000<br>45.0<br>41.4 | 3400<br>44. I<br>40. 4 | 3800<br><br>39·5     | 4 4 4 4 |

## TABLE 280. — Temperature Scale for Tungsten.

Hyde, Cady, Forsythe, J. Franklin Inst. 181, 418, 1916. See also Phys. Rev. 10, 395, 1917. The color temperature = temperature of black body at which its color matches the given radiation.

| Lumens/watt                               | Color temperature.                                     | Black-body<br>temperature.                            | True temperature.                                                                | True temperature.                        | True - color.            | True — brightness.               |
|-------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------|--------------------------|----------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 1763° K. 1917 2025 2109 2179 2237 2290 2338 2383 24425 | 1627° K. 1753 1840 1909 1967 2017 2062 2102 2140 2174 | 1729° K.<br>1875<br>1976<br>2056<br>2125<br>2184<br>2238<br>2286<br>2332<br>2373 | 1700° 1800 1900 2000 2100 2200 2300 2400 | 12° 20 26 31 36 39 41 43 | 100° 115 128 142 158 175 191 208 |

## TABLE 281. — Color minus Brightness Temperatures for Carbon.

Hyde, Cady, Forsythe, Phys. Rev. 10, 395, 1917.

| Brightness temp. ° K | o° I | 700° 1800 | 0° 1900° | 2000° | 2100°<br>28 | 2200°<br>33 |
|----------------------|------|-----------|----------|-------|-------------|-------------|
|----------------------|------|-----------|----------|-------|-------------|-------------|

<sup>\*</sup> As observed with total radiation pyrometer sighted on the platinum.

References: (1) Burgess and Foote, Bul. Bureau of Standards, 12, 83, 1915; (2) Burgess and Foote, loc. cit.

11, 41, 1914; (3) Foote, loc. cit. 11, 607, 1914; (4) Worthing, Phys. Rev. 10, 377, 1917.

## COOLING BY RADIATION AND CONVECTION.

#### TABLE 282. - At Ordinary Pressures.

According to McFarlane\* the rate of loss of heat by a sphere placed in the centre of a spherical enclosure which has a blackened surface, and is kept at a constant temperature of about 14° C, can be expressed by the equations

$$e = .000238 + 3.06 \times 10^{-6}t - 2.6 \times 10^{-8}t^{2}$$

when the surface of the sphere is blackened, or

$$e = .000168 + 1.98 \times 10^{-6}t - 1.7 \times 10^{-3}t^{2}$$

when the surface is that of polished copper. In these equations,  $\varepsilon$  is the amount of heat lost in c. g. s. units, that is, the quantity of heat, small calories, radiated per second per square centimeter of surface of the sphere, per degree difference of temperature  $\varepsilon$ , and  $\varepsilon$  is the difference of temperature between the sphere and the enclosure. The medium through which the heat passed was moist air. The following table gives the results.

| Differ-<br>ence of | Valu              | e of e.            | Ratio. |
|--------------------|-------------------|--------------------|--------|
| tempera-<br>ture   | Polished surface. | Blackened surface. | Ratio. |
| 5                  | .000178           | .000252            | .707   |
| 10                 | .000186           | .000266            | .699   |
| 15                 | .000193           | .000279            | .692   |
| 20                 | .000201           | .000289            | .695   |
| 25                 | .000207           | .000298            | .694   |
| 30                 | .000212           | .000306            | .693   |
| 35                 | .000217           | .000313            | .693   |
| 40                 | .000220           | .000319            | .693   |
| 45                 | .000223           | .000323            | .690   |
| 50                 | .000225           | .000326            | .690   |
| 55                 | .000226           | .000328            | .690   |
| 60                 | .000226           | .000328            | .690   |

#### TABLE 283. - At Different Pressures.

Experiments made by J. P. Nicol in Tait's Laboratory show the effect of pressure of the enclosed air on the rate of loss of heat. In this case the air was dry and the enclosure kept at about 89 C.

| Polish                                                               | ed surface.                                                                  | Blacken                                                      | ed surface.                                                        |
|----------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|
| t                                                                    | et                                                                           | t                                                            | et                                                                 |
| PR                                                                   | ESSURE 76 CM                                                                 | s. of Mei                                                    | RCURY.                                                             |
| 63.8<br>57.1<br>50.5<br>44.8<br>40.5<br>34.2<br>29.6<br>23.3<br>18.6 | .00987<br>.00862<br>.00736<br>.00628<br>.00562<br>.00438<br>.00378<br>.00278 | 61.2<br>50.2<br>41.6<br>34.4<br>27.3<br>20.5                 | .01746<br>.01360<br>.01078<br>.00860<br>.00640<br>.00455           |
| PRE                                                                  | SSURE 10.2 CM                                                                | is. of Me                                                    | RCURY.                                                             |
| 67.8<br>61.1<br>55<br>49.7<br>44.9<br>40.8                           | .00492<br>.00433<br>.00383<br>.00340<br>.00302<br>.00268                     | 62.5<br>57.5<br>53.2<br>47.5<br>43.0<br>28.5                 | .01298<br>.01158<br>.01048<br>.00898<br>.00791                     |
| PE                                                                   | ESSURE 1 CM.                                                                 | of Merc                                                      | CURY.                                                              |
| 65<br>60<br>50<br>40<br>30<br>23.5                                   | .00388<br>.00355<br>.00286<br>.00219<br>.00157<br>.00124                     | 62.5<br>57.5<br>54.2<br>41.7<br>37.5<br>34.0<br>27.5<br>24.2 | .01182<br>.01074<br>.01003<br>.00726<br>.00639<br>.00569<br>.00446 |

<sup>\* &</sup>quot; Proc. Roy. Soc." 1872. † " Proc. Roy. Soc." Edinb. 1869. See also Compan, Annal. de chi. et phys. 26, p. 526.

SMITHSONIAN TABLES.

#### COOLING BY RADIATION AND CONVECTION.

## TABLE 284. - Cooling of Platinum Wire in Copper Envelope.

Bottomley gives for the radiation of a bright platinum wire to a copper envelope when the space between is at the highest vacuum attainable the following numbers:—

$$t = 408^{\circ}$$
 C.,  $et = 378.8 \times 10^{-4}$ , temperature of enclosure  $16^{\circ}$  C.  $t = 505^{\circ}$  C.,  $et = 726.1 \times 10^{-4}$ , "  $17^{\circ}$  C.

It was found at this degree of exhaustion that considerable relative change of the vacuum produced very small change of the radiating power. The curve of relation between degree of vacuum and radiation becomes asymptotic for high exhaustions. The following table illustrates the variation of radiation with pressure of air in enclosure.

| Temp. of enclosur                                | re 16° C., t=408° C.                                                                                            | Temp. of enclosure 17° C., t = 505° C.                                                               |                                                                             |  |  |  |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|
| Pressure in mm.                                  | et                                                                                                              | Pressure in mm.                                                                                      | et                                                                          |  |  |  |
| 740. 440. 140. 42. 4. 0.444 .070 .034 .012 .0051 | 8137.0 × 10 <sup>-4</sup> 7971.0 " 7875.0 " 7591.0 " 6036.0 " 2683.0 " 1045.0 " 727.3 " 539.2 " 436.4 " 378.8 " | 0.094<br>.053<br>.034<br>.013<br>.0046<br>.00052<br>.00019<br>Lowest reached }<br>but not measured } | 1688.0 × 10 <sup>-4</sup> 1255.0 " 1126.0 " 920.4 " 831.4 " 767.4 " 746.4 " |  |  |  |

#### TABLE 285.- Effect of Pressure on Loss of Heat at Different Temperatures.

The temperature of the enclosure was about 15° C. The numbers give the total radiation in therms per square centimeter per second.

|   | Temp. of             |      | 1                 | Pressure in mm. |            |                 |  |  |  |  |
|---|----------------------|------|-------------------|-----------------|------------|-----------------|--|--|--|--|
|   | Temp. of wire in C°. | 10.0 | 1.0               | .0.25           | 0.025      | About<br>o.r M. |  |  |  |  |
|   | 100°                 | 0.14 | 0.11              | 0.05            | 0.01       | 0.005           |  |  |  |  |
|   | 200                  | .31  | .24               | .11             | .02        | .0055           |  |  |  |  |
|   | 300                  | .50  | ·24<br>·38        | .18             | .04        | .0105           |  |  |  |  |
|   | 400                  | -75  | ·53<br>.69<br>.85 | .25             | .07        | .025            |  |  |  |  |
|   | 500                  | -    | .69               | -33             | .13        | .055            |  |  |  |  |
| i | 600                  | -    | .85               | -45             | .23        | .13             |  |  |  |  |
|   | 700                  | -    | -                 | -               |            | .24             |  |  |  |  |
|   | 800                  | -    | -                 | -               | ·37<br>·56 | .40             |  |  |  |  |
|   | 900                  | -    | -                 | -               | -          | .61             |  |  |  |  |

Note. — An interesting example (because of its practical importance in electric lighting) of the effect of difference of surface condition on the radiation of heat is given on the authority of Mr. Evans and himself in Bottomley's paper. The energy required to keep up a certain degree of incandescence in a lamp when the filament is dull black and when it is "flashed" with coating of hard bright carbon, was found to be as follows:—

Dull black filament, 57.9 watts. Bright " 39.8 watts.

## TABLE 286. — Conduction of Heat across Air Spaces (Ordinary Temperatures).

Loss of heat by air from surfaces takes place by radiation (dependent upon radiating power of surface; for small temperature differences proportional to temperature difference; follows Stefan-Boltzmann formula, see p. 247), conduction, and convection. The two latter are generally inextricably mixed. For horizontal air spaces, upper surface warm, the loss is all radiation and conduction; with warm lower surface the loss is greater than for similar vertical space.

Vertical spaces: The following table shows that for spaces of less than 1 cm width the loss is nearly proportional to the space width, when the radiation is allowed for; for greater widths the increase is less rapid, then reaches a maximum, and for yet greater widths is slightly less. The following table is from Dickinson and van Dusen, A. S. Refrigerating Engineers J. 3, 1916.

## HEAT CONDUCTION AND THERMAL RESISTANCES, RADIATION ELIMINATED, AIR SPACE 20 CM HIGH.

|                                 | -                                       |                                         | nduction.<br>r/cm²/° C.                 | Thermal resistance.<br>Same units.      |                                      |                                      |                                      |                                      |  |  |  |  |
|---------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|
| Air<br>space,<br>cm.            |                                         | Temperature                             | e difference.                           |                                         | Temperature difference.              |                                      |                                      |                                      |  |  |  |  |
|                                 | 10°                                     | 15°                                     | 20°                                     | 25°                                     | 10°                                  | 15°                                  | 20°                                  | 25°                                  |  |  |  |  |
| 0.5<br>1.0<br>1.5<br>2.0<br>3.0 | 0.46<br>0.24<br>0.160<br>0.161<br>0.172 | 0.46<br>0.24<br>0.172<br>0.178<br>0.196 | 0.46<br>0.24<br>0.182<br>0.200<br>0.208 | 0.46<br>0.24<br>0.192<br>0.217<br>0.217 | 2.17<br>4.25<br>6.25<br>6.20<br>5.80 | 2.17<br>4.20<br>5.80<br>5.60<br>5.10 | 2.17<br>4.15<br>5.50<br>5.00<br>4.80 | 2.17<br>4.10<br>5.20<br>4.60<br>4.60 |  |  |  |  |

Variation with height of air space: Max. thermal resistance = 4.0 at 1.4 cm air space, 10 cm high; 6.0 at 1.6 cm, 20 cm high; 8.9 at 2.5 cm, 60 cm high.

#### TABLE 287. - Heat Convection in Air at Ordinary Temperatures.

In very narrow layers of air between vertical surfaces at different temperatures the convection currents, in the main, flow up one side and down the other, with eddyless (stream-line) motion. It follows that these currents transport heat to or from the surfaces only when they turn and flow horizontally, from which fact it follows, in turn, that the convective heat transfer is independent of the height of the surface. It is, according to the laws of eddyless flow, proportional to the square of the temperature difference, and to the cube of the distance between the surfaces. As the flow becomes more rapid (e.g., for a 20° difference and a distance of 1.2 cm) turbulence enters, and the above relations begin to change. For the dimensions tested, convection in horizontal layers was a little over twice that in vertical.

Taken from White, Physical Review, 10, 743, 1917.

Heat Transfer, in the Usual C.G.S. Unit, i.e., Calories per Second per Degree of Thermal Head per Square Cm of Flat Surface, at 22.8° Mean Temperature.

Where two values are given, they show the range among determinations with different methods of getting the temperature of the outer plate. It will be seen that the value of the convection is practically unaffected by this difference of method.

| Thermal | 8 mm           | gap.      | 12 mr                                 | n gap.              | 24       | mm gap.       |
|---------|----------------|-----------|---------------------------------------|---------------------|----------|---------------|
| head.   |                |           | Total. Convection. Total. Convection. |                     | Total.   | Convection.   |
| 0.99°   |                | _         | .000 083 0                            | _                   | .000 065 | _             |
| 1.980   | { .000 109     | _         | .000 084 0                            | .000 000 I<br>000 4 | _        | -             |
| 4.95°   | .000 111       | .000 000. | 88 I                                  | .000 002 8          | .000 090 | over .000 025 |
| 9.89°   | { .000 II2 II3 | .000 003  | .000 093 7<br>95 2                    | (000 000)           | .000 106 | over .000 040 |
| 19.76°  | .000 116       | .000 007  | { .000 107 7 109 4                    | 026                 | .000 126 | over .000 060 |

## CONVECTION AND CONDUCTION OF HEAT BY GASES AT HIGH TEMPERATURES.

The loss of heat from wires at high temperatures occurs as if by conduction across a thin film of stationary gas adhering to the wire (vertical and horizontal losses very similar). Thickness of film is apparently independent of temperature of wire, but probably increases with the temperature of the gas and varies with the diameter of the wire according to the formula  $b \cdot \log b/a = 2B$ , where B = constant for any gas, b = diameter of film, a, of wire. The rate of convection (conduction) of heat is the product of two factors, one the shape factor, s, involving only a and B, the other a function  $\phi$  of the heat conductivity of the gas. If W = the energy loss in watts/cm, then  $W = s(\phi_2 - \phi_1)$ . s may be found from the relation

$$\frac{s}{\pi}e^{-\frac{2\pi}{s}} = \frac{a}{B}; \quad \phi = 4.19 \int_0^{\tau} k dt.$$

where k is the heat conductivity of the gas at temperature T in calories/cm  $^{\circ}$  C.  $\phi_2$  is taken at the temperature  $T_2$  of the wire,  $\phi_1$  at that of the atmosphere. The following may be taken as the conductivities of the corresponding gases at high temperatures:

For hydrogen 
$$\begin{array}{ll} k = 28 \times 10^{-6} \sqrt{T} \{ (\text{r} + .0002T)/(\text{r} + 77T^{-1}) \} \\ \text{air.} & k = 4.6 \times 10^{-6} \sqrt{T} \{ (\text{r} + .0002T)/(\text{r} + 124T^{-1}) \} \\ \text{mercury vapor.} & k = 2.4 \times 10^{-6} \sqrt{T} \{ \text{r}/(\text{r} + 960T^{-1}) \}. \end{array}$$

To obtain the heat loss: B may be assumed proportional to the viscosity of the gas and inversely proportional to the density. For air (see Table 289(b)) B may be taken as 0.43 cm; for  $H_2$ , 3.05 cm; for  $H_3$  vapor as 0.078. Obtain a from section (a) below from a/B; then from section (b) obtain  $\phi_2$  and  $\phi_1$  for the proper temperatures; the loss will be  $s(\phi_2 - \phi_1)$  in watts/cm.

## (a) s as Function of a/B.

| s          | a/B                                                  | s          | a/B   | s .      | a/B            | s        | a/B   |
|------------|------------------------------------------------------|------------|-------|----------|----------------|----------|-------|
| 0.0        | 0.0                                                  | 5.0        | 0.453 | 10       | 1.696          | 30       | 7.738 |
| 0.5        | 0.735 × 10 <sup>-6</sup><br>0.594 × 10 <sup>-8</sup> | 5.5        | 0.558 | 12       | 2.263<br>2.844 | 32<br>34 | 8.370 |
| 1.5        | 0.725 X 10 <sup>-2</sup>                             | 6.5        | 0.788 | 16       | 3.438          | 36<br>38 | 9.622 |
| 2.0        | 2.75 X 10 <sup>-2</sup>                              | 7.0        | 0.908 |          | 4.040          |          | 10.25 |
| 2.5        | 0.0644                                               | 7.5        | 1.032 | 20       | 4.645          | 40       | 10.87 |
| 3.0<br>3.5 | 0.1176                                               | 8.o<br>8.5 | 1.160 | 22<br>24 | 5.263<br>5.877 | 42<br>44 | 11.50 |
| 4.0        | 0.265                                                | 9.0        | 1.424 | 26       | 6.505          | 46       | 12.77 |
| 4.5        | 0.354                                                | 9.5        | 1.561 | 26<br>28 | 7.122          | 46<br>48 | 13.14 |
| 5.0        | 0.453                                                | 10.0       | 1.696 | 30       | 7.738          | 50       | 14.03 |

## (b) Table of $\phi$ in Watts per Cm as Function of Absolute Temp. (°K.).

| T° K. | H <sub>2</sub> | Air    | Hg     | T° K. | H <sub>2</sub> | Air   | Hg     |
|-------|----------------|--------|--------|-------|----------------|-------|--------|
| o°    |                |        |        |       | 0              |       | 0      |
| 100   | 0.0000         | 0.0000 | _      | 1500° | 4.787          | 0.744 | 0.1783 |
|       | 0.0329         | 0.0041 | _      | 1700  | 5.945          | 0.931 | 0.228  |
| 200   | 0.1294         | 0.0168 | _      | 1900  | 7.255          | 1.138 | 0.284  |
| 300   | 0.278          | 0.0387 | _      | 2100  | 8.655          | 1.363 | 0.345  |
| . 400 | 0.470          | 0.0669 | _      | 2300  | 10.18          | 1.608 | 0.411  |
| 500   | 0.700          | 0.1017 | 0.0165 | 2500  | 11.82          | 1.871 | 0.481  |
| 700   | 1.261          | 0.180  | 0.0356 | 2700  | 13.56          | -     | 0,556  |
| 900   | 1.961          | 0.207  | 0.0621 | 2900  | 15.54          | _     | 0.636  |
| 1100  | 2.787          | 0.426  | 0.0041 | 3100  | 17.42          | _     | 0.710  |
| 1300  | 3.726          | 0.576  | 0.1333 | 3300  | 19.50          | -     | 0.807  |
| 1500  | 4.787          | 0.744  | 0.1783 | 3500  | 21.70          |       | 0.808  |

<sup>\*</sup> Langmuir Physical Review, 34, p. 401, 1012.

SMITHSONIAN TABLES.

## HEAT LOSSES FROM INCANDESCENT FILAMENTS.

(a) Wires of Platinum Sponge Served as Radiators (to Room-temperature Surroundings). Hartman, Physical Review, 7, p. 431, 1916.

|                   |                                           |          |           | (A)          | Observ   | ved heat  | losses       | in watts | per cm.                |       |       |        |
|-------------------|-------------------------------------------|----------|-----------|--------------|----------|-----------|--------------|----------|------------------------|-------|-------|--------|
| Diameter<br>wire, |                                           |          |           |              | A        | bsolute   | temper       | atures.  |                        |       |       |        |
| cm.               | 900°                                      | 1000°    | 1100°     | 1200°        | 1300°    | 1400°     | 1500°        | 1600°    | 1700°                  | 1800° | 1900° | 2000°  |
| 0.0690            | 1.70                                      | 2.26     | 3.01      | 3.88         | 4.92     | 6.18      | 7.70         | 9.63     | 12.15                  | 15.33 | 10.25 | 23.75  |
| 0.0420            | 1.35                                      | 1.75     | 2.26      | 2.84         | 3.53     | 4.29      | 5.33         | 6.60     | 8.25                   | 10.20 | 12.45 | 14.75  |
| 0.0275            | 1.12<br>0.02                              | 1.40     | 1.39      | 1.74         | 2.73     | 3.23      | 3.9I<br>3.04 | 3.64     | 5.72<br>4.32           | 7.00  | 8.64  | 10.45  |
| 0.0194            | 0.92                                      | -11-3    | 59        | الغنتا       |          | 34        | 3.04         | 3.04     | 4.32                   | 3.10  | 0.10  | 7.35   |
|                   |                                           | (B) H    | eat losse | es correc    | ted for  | radiatio  | n, watt      | s per cn | n (A-C).               |       |       |        |
| 0.0690            | 0.91                                      | 1.05     | 1.23      | 1.36         | 1.45     | 1.51      | 1.54         | 1.66     | 2.00                   | 2.56  | 3.40  | 4.30   |
| 0.0420            | 0.87                                      | 1.02     | 1.17      | 1.31         | 1.42     | 1.45      | 1.57         | 1.76     | 2.08                   | 2.43  | 2.80  | 3.26   |
| 0.0275            | 0.80                                      | 0.92     | 0.80      | I.22<br>I.03 | 1.35     | 1.37      | 1.46         | 1.50     | 1.67                   | 1.01  | 2.32  | 2.70   |
| 0.0194            | 0.70                                      | 0.01     | 0.09      | 1.03         | 1.15     | 1.23      | 1.31         | 1.40     | 1.47                   | 1.51  | 1.64  | 1.88   |
|                   |                                           | (C) C    | ompute    | d radia      | tion, wa | tts per   | cm, σ =      | = 5.61   | X 10 <sup>-13</sup> .* |       |       |        |
| 0.0690            | 0.79                                      | 1.21     | 1.78      | 2.52         | 3.47     | 4.67      | 6.16         | 7.97     | 10.15                  | 12.77 | 15.85 | 19.45  |
| 0.0420            | 0.48                                      | 0.73     | 1.09      | 1.53         | 2.11     | 2.84      | 3.74         | 4.84     | 6.17                   | 7.77  | 9.65  | 11.85  |
| 0.0275            | 0.32                                      | 0.48     | 0.71      | 1.01         | 1.38     | 1.86      | 2.45         | 3.17     | 4.05                   | 5.00  | 6.32  | 7.75   |
| 0.0195            | 0:22                                      | 0.34     | 0.50      | 0.71         | 0.97     | 1.31      | 1.73         | 2.24     | 2.85                   | 3.59  | 4.46  | 5 - 47 |
|                   |                                           | (1       | O) Con    | duction      | loss by  | silver le | ads, wa      | itts per | cm.                    |       |       |        |
| 0.0420            | 0.42                                      | 0.46     | 0.40      | 0.61         | 0.75     | 0.88      | 1.00         | 1.07     | 1.13                   | I,22  | -     | _      |
| 0.0275            | 0.18                                      | 0.21     | 0.28      | 0.35         | 0.43     | 0.48      | 0.55         | 0.57     | 0.60                   | 0.67  | -     | -      |
| 0.0195            | 0.06                                      | 0.08     | 0.08      | 0.09         | 0.11     | 0.12      | 0.14         | 0.15     | 0.22                   | 0.23  | _     | -      |
|                   | (E) Convection loss by air, watts per cm. |          |           |              |          |           |              |          |                        |       |       |        |
| 0.0420            | 0.45                                      | 0.56     | 0.68      | 0.70         | 0.67     | 0.57      | 0.59         | 0.60     | 0.95                   | 1,21  | _     |        |
| 0.0275            | 0.62                                      | 0.71     | 0.77      | 0.87         | 0.92     | 0.89      | 0.91         | 0.93     | 1.07                   | 1.24  | _     | _      |
| 0.0195            | 0.64                                      | 0.73     | 18.0      | 0.94         | 1.04     | 1.11      | 1.17         | 1.25     | 1.29                   | 1.30  | _     | -      |
|                   | * T1                                      | nis valu | e is lowe | er than      | the pres | sently (1 | 1919) ac     | cepted   | value of               | 5.72. |       |        |

(b) Wires of Bright Platinum 40-50 Cm Long Served as Radiators to Surroundings at 300° K. Langmuir, Physical Review, 34, p. 401, 1912.

|                   | 1                                     |        | Obse        | rved energ   | losses in watt   | s per cm. |       |        |
|-------------------|---------------------------------------|--------|-------------|--------------|------------------|-----------|-------|--------|
| Diameter<br>wire, |                                       |        |             | Absolut      | e temperatures   | 3.        |       |        |
| cm.               | 500°                                  | . 700° | 900°        | 1100         | 1300°            | 1500°     | 1700° | 1900°  |
| 0.0510            | 0.22                                  | 0.52   | 0.90        | 1.42         |                  | 2.89      | 4.10  | 5.65   |
| 0.02508           | 0.17                                  | 0.39   | 0.68        | 1.02         |                  | 2.00      | 2.68  | 3.55   |
| 0.01262           | 0.13                                  | 0.31   | 0.53        | 0.79         |                  | 1.46      | 1.95  | 2.71   |
| 0.00691           | 0.12                                  | 0.29   | 0.48        | 0.72         |                  | 1.33      | 1.79  | 2.48   |
| 0.00404           | 0.11                                  | 0.24   | 0.41        | 0.61         | 0.84             | 1.14      | 1.54  | 2.13   |
|                   |                                       |        | Energy rac  | liated in wa | tts per cm.*     | 7         |       |        |
| 0.0510            | 0.002                                 | 0.013  | 0.049       | 0.13         |                  | 0.67      | 1.25  | 2.15   |
| 0.02508           | 0.001                                 | 0.007  | 0.024       | 0.06         |                  | 0.33      | 0.62  | 1.06   |
| 0.01262           | 0.001                                 | 0.003  | 0.012       | 0.03         |                  | 0.17      | 0.31  | 0.53   |
| 0.00691           | 0.000                                 | 0.002  | 0.007       | 0.01         |                  | 0.09      | 0.17  | 0.29   |
| 0.00404           | 0.000                                 | 0.001  | 0.004       | 0.01         | 0.026            | 0.05      | 0.10  | 0.17   |
|                   |                                       | 6      | Convection  | " losses in  | watts per cm.    |           |       |        |
| 0.0510            | 0.22                                  | 0.51   | 0.85        | 1.28         | 1.71             | 2.22      | 2.85  | 3.50   |
| 0.02508           | 0.17                                  | 0.38   | 0.66        | 0.95         | 1.29             | 1.67      | 2.06  | 2.49   |
| 0.01262           | 0.13                                  | 0.31   | 0.52        | 0.75         | 1.03             | 1.29      | 1.64  | 2.18   |
| 0.00691           | 0.12                                  | 0.29   | 0.47        | 0.70         |                  | 1.24      | 1.62  | 2.19   |
| 0.00404           | 0.11                                  | 0.24   | 0.41        | 0.60         | 0.81             | 1.09      | 1.44  | 1.96   |
|                   | · · · · · · · · · · · · · · · · · · · | Thic   | kness of th | eoretical co | nducting air fil | m.        |       |        |
|                   | 1                                     |        | 1           |              | 1                |           |       | Means. |
| 0.0510            | 0.28                                  | 0.30   |             |              | 0.36 0.37        |           | 0.36  | 0.34   |
| 0.02508           | 0.30                                  |        |             |              | 0.45             |           | 0.56  | 0.43   |
| 0.01262           | 0.42                                  |        |             |              | 0.69             |           | 0.47  | 0.54   |
| 0.00691           | 0.31                                  |        |             |              | 0.43             |           | 0.26  | 0.37   |
| 0.00404           | 0.27                                  | 0.43   | 0.43        | .47          | .56 0.47         | 0.40      | 0.25  | 0.41   |
| Means.            | 0.31                                  |        |             | .42          | 0.49 0.49        | 0.47      | 0.38  | 10.43  |

\* Computed with  $\sigma=5.32$ , black-body efficiency of platinum as follows (Lummer and Kurlbaum):  $492^\circ$  K. 0.33;  $654^\circ$ , 0.060;  $795^\circ$ , 0.075;  $1108^\circ$ , 0.112;  $1481^\circ$ , 0.154;  $1761^\circ$  K., 0.180. For significance of last group of data, see next page. † Weighted mean.

## THE EYE AND RADIATION.

Definitions: A meter-candle is the intensity of illumination due to a standard candle at a meter distance. The millilambert (0.001 lambert) measures the brightness of a perfectly diffusing (according to Lambert's cosine law) surface diffusing 1 lumen per cm<sup>2</sup>. A brightness of 10 meter-candles equals 1 millilambert. 0.001 ml corresponds roughly to night exteriors, 0.1, to night interiors, 10 ml to daylight interiors and 1000, to daylight exteriors. A brightness of 100,000 meter-candles is about that of a horizontal plane for summer day with sun in zenith, 500, on a cloudy day, 4, 1st magnitude stars just visible, 0.2, full moon in zenith, .001, by starlight; in winter the intensity at noon may drop about \frac{1}{2}.

## TABLE 290. - Spectral Variation of Sensitiveness as a Function of Intensity.

Radiation is easily visible to most eyes from 0.330  $\mu$  (violet) to 0.770  $\mu$  (red). At low intensities near threshold values (gray, rod vision) the maximum of spectral sensibility lies near 0.503  $\mu$  (green) for 90% of all persons. At higher intensities, after the establishment of cone vision, the max, shifts as far as 0.500  $\mu$ . See Table 207 for more accurate values of sensitiveness after this shift has been accomplished. The ratio of optical sensation to the intensity of energy increases with increasing energy more rapidly for the red than for the shorter wave-lengths (Purkinje phenomenon); i.e., a red light of equal intensity to the eye with a green one will appear darker as the intensities are equally lowered. This phenomenon disappears above a certain intensity (above 10 millilamberts). Table due to Nutting, Bulletin Bureau of Standards.

The intensity is given for the spectrum at  $0.535\mu$  (green).

| Intensity (meter-candles) = Ratio to preceding step =                                                          | .00024                                                                                                              | .00225                                                                                                                | .0360<br>16                                                                          | · 575                                                                                | 2.30                                                                                                                  | 9.22                                                                                                                     | 36.9<br>4 | 147.6 | 590.4 |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------|-------|-------|
| Wave-length, λ.                                                                                                |                                                                                                                     |                                                                                                                       |                                                                                      | Sensitiveness.                                                                       |                                                                                                                       |                                                                                                                          |           |       |       |
| 0.430 μ 0.450 0.470 0.490 0.505 0.520 0.535 0.535 0.575 0.590 0.605 0.625 0.650 0.670 λ, maximum sensitiveness | 0.081<br>0.33<br>0.63<br>0.96<br>1.00<br>0.88<br>0.61<br>0.26<br>0.074<br>0.025<br>0.008<br>0.004<br>0.000<br>0.503 | 0.093<br>0.30<br>0.59<br>(0.89)<br>1.00<br>0.86<br>0.62<br>0.30<br>0.102<br>0.034<br>0.012<br>0.004<br>0.000<br>0.504 | 0.127 0.29 0.54 (0.76) 1.00 0.86 0.63 0.34 0.122 0.054 0.024 0.011 0.003 0.001 0.504 | 0.128 0.31 0.58 (0.89) 1.00 0.94 0.72 0.41 0.168 0.091 0.056 0.027 0.007 0.002 0.508 | 0.114<br>0.23<br>0.51<br>(0.83)<br>0.99<br>0.99<br>0.91<br>0.62<br>(0.39)<br>0.27<br>0.173<br>0.098<br>0.025<br>0.007 | 0.114<br>0.175<br>0.29<br>0.50<br>(0.76)<br>(0.85)<br>(0.98)<br>0.84<br>(0.63)<br>0.49<br>0.35<br>0.20<br>0.060<br>0.017 |           |       |       |

#### TABLE 291. - Threshold Sensibility as Related to Field Brightness.

The eye perceives with ease and comfort a billion-fold range of intensities. The following data were obtained with the eye fully adapted to the sensitizing field, B, the field flashed off, and immediately the intensity, T, of a test spot (angular size at eye about  $5^{\circ}$ ) adjusted to be just visible. This table gives a measure of the brightness, T, necessary to just pick up objects when the eye is adapted to a brightness, B. Intensities are indicated log intensities in millilamberts. Blanchard, Physical Review, 11, p. 81, 1918.

| Log B                                                                                        | -7.0  | -6.0         | -5.0          | -4.0         | -3.0          | -2.0          | -1.0          | 0.0            | +1.0           | +2.0           | +3.0           |
|----------------------------------------------------------------------------------------------|-------|--------------|---------------|--------------|---------------|---------------|---------------|----------------|----------------|----------------|----------------|
| $\left\{ \begin{array}{ll} \operatorname{Log} T, \text{ white.} \\ T/B. \end{array} \right.$ |       | -5.81<br>1.5 | -5.42<br>0.38 | -4.87<br>.13 | -4.17<br>.068 | -3.30<br>.050 | -2.59<br>.026 | -2.02<br>.0096 | -1.42<br>.0038 | -0.75<br>.0018 | +0.28<br>.0019 |
| Log T, blue                                                                                  | -6.70 | -6.38        | -5.82         | -5.12        | -4.23         | -3.46         | -2.70         | -2.18          | -1.62          | _              |                |
| Log T, green                                                                                 | -6.42 | -6.20        | -5.62         | -5.00        | -4.23         | -3.39         | -2.60         | -2.08          | -1.62          | -0.90          |                |
| Log T, yellow                                                                                | _     | -5.47        | -5.17         | -4.61        | -4.03         | -3.33         | -2.57         | -I.97          | -1.62          | _              |                |
| Log T, red                                                                                   | _     | -            | -4.27         | -4.00        | -3.47         | -2.96         | -2.43         | -1.92          | -1.37          | -0.90          |                |

#### THE EYE AND RADIATION.

## TABLE 292. - Heterochromatic Threshold Sensibility.

The following table shows the decrease in sensitiveness of the eye for comparing intensities of different colors. The numbers in the body of the table correspond to the line marked T/B of Table 291. The intensity of the field was probably between 10 and 100 millilamberts (25 photons).

| Comparison color.                  |         | ο.693 μ | 0.640 μ | ο. 575 μ | 0.505 μ | ο.475 μ | ο. 43ο μ |
|------------------------------------|---------|---------|---------|----------|---------|---------|----------|
| Standard color: redyellowgreenblue | 0.693 μ | 0.044   | 0.088   | 0.165    | 0.180   | 0.197   | 0.150    |
|                                    | 0.575 μ | 0.174   | 0.160   | 0.032    | 0.166   | 0.174   | 0.134    |
|                                    | 0.505 μ | 0.211   | 0.180   | 0.138    | 0.030   | 0.116   | 0.126    |
|                                    | 0.475 μ | 0.168   | 0.180   | 0.130    | 0.130   | 0.068   | 0.142    |

## TABLE 293. - Contrast or Photometric Sensibility.

For the following table the eye was adapted to a field of o.r millilambert and the sensitizing field flashed off. A neutral gray test spot (angular size at eye,  $5 \times 2.5^\circ$ ) the two halves of which had the contrast indicated () transparent,  $\frac{1}{2}$  covered with neutral screen of transparency = contrast indicated) was then observed and the brightness of the transparent part measured necessary to just perceive the contrast after the lapse of the various times. One eye only used, natural pupil. Blanchard, Physical Review, 11, p. 88, 1918. Values are log brightness of brighter field in millilamberts.

| Time in seconds. | 0     | I     | 2     | 5     | 10    | 20    | 40    | 60    |
|------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Contrast: 0.00   | -2.80 | -3.47 | -3.82 | -4.30 | -4.49 | -4.60 | -4.89 | -5.03 |
|                  | -2.63 | -3.36 | -3.58 | -3.74 | -3.85 | -3.97 | -4.06 | -4.23 |
|                  | -2.40 | -3.00 | -3.13 | -3.22 | -3.21 | -3.33 | -3.46 | -3.48 |
|                  | -2.10 | -2.46 | -2.49 | -2.48 | -2.55 | -2.54 | -2.67 | -2.73 |
|                  | -1.20 | -1.57 | -1.67 | -1.69 | -1.59 | -1.63 | -1.73 | -1.78 |

#### TABLE 294. - Glare Sensibility.

When an eye is adapted to a certain brightness and is then exposed suddenly to a much greater brightness, the later may be called glaring if uncomfortable and instinctively avoided. Observers naturally differ widely. The data are the means of three observers, and are log brightnesses in milliamberts. The glare intensity may be taken as roughly 1700 times the cube root of the field intensity in milliamberts. Angle of glare spot, 4°. Blanchard, Physical Review, loc. cit.

| F |                          |              |              |              |              |     |              |             |             |     |  |  |  |
|---|--------------------------|--------------|--------------|--------------|--------------|-----|--------------|-------------|-------------|-----|--|--|--|
|   | Log. field<br>Log. glare | -6.0<br>1.35 | -4.0<br>1.90 | -2.0<br>2.60 | -1.0<br>2.90 | 0.0 | +1.0<br>3.60 | 2.0<br>3.90 | 3.0<br>4.18 | 4.0 |  |  |  |

#### TABLE 295. - Rate of Adaptation of Sensibility.

This table furnishes a measure of the rate of increase of sensibility after going from light into darkness, and the values were obtained immediately from the instant of turning off the sensitizing field. Both eyes were used, natural pupil, angular size of test spot, 4.0°, viewed at 35 cm. Blanchard, loc. cit. Retinal light persists only 10 to 20 m when one has been recently in darkness, then in a dimly lighted room; it persists fully an hour when a subject has been in bright sunlight for some time. A person who has worked much in the dark "gets his eyes" quicker than one who has not, but his final sensitiveness may be no greater.

| Sensitizing    |                                                    | Logarithmic thresholds in millilamberts after      |                                                    |                                                    |                                                    |                                                    |                                                    |                                                    |                                                    |                              |                |
|----------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------|----------------|
| field.         | o sec.                                             | ı sec.                                             | 2 Sec.                                             | 5 sec.                                             | 10 Sec.                                            | 20 Sec.                                            | 40 sec.                                            | 60 sec.                                            | 5 min.                                             | 30min.                       | 60 min.        |
| White, o. 1 ml | -2.20<br>-1.60<br>-0.90<br>-2.82<br>-2.69<br>-2.61 | -2.99<br>-2.30<br>-1.66<br>-3.92<br>-4.08<br>-3.84 | -3.27<br>-2.53<br>-2.00<br>-4.36<br>-4.39<br>-4.17 | -3.79<br>-3.08<br>-2.46<br>-4.91<br>-4.82<br>-4.41 | -4.15<br>-3.54<br>-2.64<br>-5.27<br>-5.11<br>-4.65 | -4.51<br>-3.94<br>-2.88<br>-5.53<br>-5.26<br>-4.78 | -4.82<br>-4.31<br>-3.20<br>-5.68<br>-5.43<br>-5.02 | -5.06<br>-4.61<br>-3.84<br>-5.81<br>-5.56<br>-5.09 | -5.52<br>-5.22<br>-4.76<br>-6.23<br>-5.80<br>-5.39 | -5.86<br>-5.83<br>-5.77<br>- | -6.04<br>-6.01 |

#### THE EYE AND RADIATION.

## TABLE 296. - Apparent Diameter of Pupil and Flux Density at Retina.

Flashlight measures of the pupil (both eyes open) viewed through the eye lens and adapted to various field intensities. For eye accommodated to 25 cm, ratio apparent to true pupil, 1.02, for the unaccommodated eye, 1.14. The pupil size varies considerably with the individual. It is greater with one eye closed; e.g., it was found to be for 0.01 millilambert, 6.7 and 7.2 mm; for 0.6 ml, 5.3 and 6.5; for 6.3 ml, 4.1 and 5.7; for 12.6 ml, 4.1 and 5.7 mm for both and one eye open respectively for a certain individual. At the extreme intensities the two values approach each other. The ratio of the extreme pupil openings is about  $\chi_0^2$ , whereas the light intensities investigated vary over 1,000,000-fold. (Blanchard and Reeves, partly unpublished data.)

| 77*.13                  | Diamet             | er, mm                | Effective       | Flux at retina,<br>lumens per mm²                                          |  |
|-------------------------|--------------------|-----------------------|-----------------|----------------------------------------------------------------------------|--|
| Field<br>millilamberts. | Observed.          | (1.14/1.02)<br>X Obs. | area, mm²       |                                                                            |  |
| 0.00001                 | 8 7.6              | 8.96<br>8.51          | 64<br>57        | 8.4 × 10 <sup>-12</sup><br>7.6 × 10 <sup>-10</sup>                         |  |
| 0.1<br>10 °             | 6.5<br>4.0<br>2.07 | 7.28<br>4.48<br>2.35  | 42<br>16<br>4-3 | 5.6 × 10 <sup>-8</sup><br>2.1 × 10 <sup>-6</sup><br>5.8 × 10 <sup>-5</sup> |  |

## TABLE 297. - Relative Visibility of Radiation.

This table gives the relation between luminous sensation (light) and radiant energy. The results of two methods are given: one from measures of the direct equality of brightness, which some consider the true method, as more direct, but criticized because of the difficulty of judging heterochromatic light (Hyde, Forsythe, Cady, A. J. 48, 87, 1918, 29 observers); the other (Coblentz, Emerson, Bul. Bureau of Standards, 14, 219, 1917, 130 observers) depends on the disappearance of flicker when two lights of different color and intensity are alternated rapidly. Color has a lower critical frequency than brightness and disappears first. Data determined for intensities above Purkinje effect. See Table 290. Ratio of light unit (lumen) to energy unit (watt) at 0.55 $\mu$ , 0.00162 (Ives, Coblentz, Kingsbury).

| λ                                                    | Visib                                                   | ility.                                               | λ                                                    | Visil                                                | bility.                                              | λ                                                    | Visil                                                        | oility.                                                      | λ                                             | Visit                                                   | oility.                                                   | λ                               | Visi                                    | bility.                          |
|------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|---------------------------------|-----------------------------------------|----------------------------------|
| μ                                                    | HFC                                                     | CE                                                   | μ                                                    | HFC                                                  | CE                                                   | μ                                                    | HFC                                                          | CE                                                           | μ                                             | HFC                                                     | CE                                                        | μ                               | HFC                                     | CE                               |
| .40<br>.41<br>.42<br>.43<br>.44<br>.45<br>.46<br>.47 | .049<br>.0362<br>.0041<br>.0115<br>.022<br>.036<br>.055 | .010<br>.017<br>.024<br>.029<br>.033<br>.041<br>.056 | .48<br>.49<br>.50<br>.51<br>.52<br>.53<br>.54<br>.55 | .138<br>.216<br>.328<br>.515<br>.698<br>.847<br>.968 | .125<br>.194<br>.316<br>.503<br>.710<br>.862<br>.954 | .56<br>.57<br>.58<br>.59<br>.60<br>.61<br>.62<br>.63 | .995<br>.944<br>.855<br>.735<br>.600<br>.464<br>.341<br>.238 | .998<br>.968<br>.898<br>.800<br>.687<br>.557<br>.427<br>.302 | .64<br>.65<br>.66<br>.67<br>.68<br>.69<br>.70 | .154<br>.094<br>.051<br>.026<br>.0125<br>.0062<br>.0031 | .194<br>.115<br>.0645<br>.0338<br>.0178<br>.0085<br>.0040 | .72<br>.73<br>.74<br>.75<br>.76 | .0274<br>.0336<br>.0318<br>.049<br>.045 | .0897<br>.0348<br>.0328<br>.0320 |

## TABLE 298. - Miscellaneous Eye Data.

Light passing to the retina traverses in succession (a) front surface of the cornea (curvature, 7.9 mm); (b) cornea (equivalent water path for energy absorption, o6 cm); (c.) back surface cornea[(curv., 7.9 mm); (d) aqueous humour (equiv. H<sub>2</sub>O, .34 cm, n = 1.337); (e) front surface lens (c, 10 mm); (f) lens (equiv. H<sub>2</sub>O, .42 cm, n = 1.345); (g) back surface lens (c, 6 mm); (h) vitreous humour (equiv. H<sub>2</sub>O, 1.46 cm, n = 1.337). An equivalent simple lens has its principal point 2.34 mm behind (a), nodal point 0.48 mm in front of (g), posterior principal focus 22.73 mm behind (a), anterior principal focus 12.83 mm. in front of (a), curvature, 5.125 mm. At the rear surface of the retina (.15 mm thick) are the rods (30 × 2µ) and cones (10 (6) outside fovea) µ long). Rods are more numerous, 2 to 3 between 2 cones, over 3.000,000 cones in eye. Macula lutea, yellow spot, on temporal side, 4 mm from center of retina, long axis 2 mm. Central depression, fovea centralis, 3 mm diameter, 7000 cones alone present, 6 × 2 or 3µ. In region of distinct vision (fovea centralis) smallest angle at which two objects are seen separate is 50° to 70° = 5.65 to 5.14µ at retina; 50 cones in 100µ here; 4µ between centers, 3µ to cone, 1µ to interval. Distance apart for separation greater as depart from fovea. No vision in blind spot, nasal side, 2.5 mm from center of eye, 15 mm in diam.

Persistence of vision as related to color (Allen, Phys. Rev. 11, 257, 1500) and intensity (Porter, Pr.-Roy. Soc. 70, 131, 1012) is measured by increasing speed of rotating sector until flicker dispapears: for color, 4µ, 031 sec.; .45µ, .020 sec.; 5µ, .015 sec.; .57µ, .012 sec.; .68µ, .014 sec.; .76µ, .018 sec.; for intensity, .06 meter-candle, .028 sec.; 1 mc, .020 sec.; 5µ, .015 sec.; 100 mc, .010 sec; 142 mc, .007 sec.

Sensibility to small differences in color has two pronounced maxima (in yellow and green) and two slight ones (extreme blue, extreme red). The sensibility to small differences in intensity is nearly independent of the intensity (Fechne

| I/I <sub>0</sub>                       | 1,000,000 | 100,000 | 10,000 | 1000                 | 100                          | 50                           | 10                   | 5                    | I                    | 0.1                  | Io in mc                            |
|----------------------------------------|-----------|---------|--------|----------------------|------------------------------|------------------------------|----------------------|----------------------|----------------------|----------------------|-------------------------------------|
| dI/I, white<br>.6ο μ<br>.5ο μ<br>.43 μ | .036      | .019    | .018   | .018<br>.020<br>.018 | .030<br>.028<br>.024<br>.025 | .032<br>.038<br>.025<br>.027 | .048<br>.061<br>.036 | .059<br>.103<br>.049 | .123<br>.212<br>.080 | ·377<br>·133<br>·137 | .00072<br>.0056<br>.00017<br>.00012 |

## PHOTOMETRIC DEFINITIONS AND UNITS.

Luminous flux, F = radiant power according to visibility, i.e., capacity to produce sensation of light. Unit, the lumen = flux emitted in a unit solid angle (steradian) by point source of one candle power.

Visibility,  $K_{\lambda}$ , of radiation of wave-length  $\lambda$  = ratio luminous flux to radiant power (energy) producing it. Mean visibility,  $K_m$ , over any range of  $\lambda$  or for whole visible spectrum of any source = ratio total flux (lumens) to total radiant power (erg/sec. or watts).

Luminous intensity, I, of (approximate) point source = solid angle density of luminous flux in direction considered =  $dF/d\omega$  or  $F/\omega$  if intensity is uniform.  $\omega$  is the solid angle. Unit, the candle.

Illumination on surface is the flux density on the surface = dF/dS or F/S when uniform. S is the area of the surface. Units, meter-candle, foot-candle, phot, lux.

(Lux = one lumen per m<sup>2</sup>; phot = one lumen per cm<sup>2</sup>.)

Brightness, b, of element of surface from a given point  $= dI/dS \cos \theta$ , where  $\theta$  is the angle between normal to surface and line of sight. Unit, candles per cm<sup>2</sup>. Normal brightness,  $b_0 = dI/dS =$  brightness in direction normal to surface. Unit, the lambert.

Specific luminous radiation, E' = luminous flux density emitted by a surface, or the flux emitted per unit of emissive area, expressed in lumens per cm<sup>2</sup>. For surfaces obeying Lambert's cosine law,  $E' = \pi b_0$ .

The lambert, the cgs unit of brightness, is the brightness of a perfectly diffusing surface radiating or reflecting one lumen per cm<sup>2</sup>. Equivalent to a perfectly diffusing surface with illumination of one phot. A perfectly diffusing surface emitting one lumen per ft<sup>2</sup> has a brightness of 1.076 millilamberts. Brightness in candles per cm<sup>2</sup> is reduced to lamberts by multiplying by  $\pi$ .

A uniform point source of one candle emits  $4\pi$  lumens.

One lumen is emitted by .07958 spherical candle power.

One lumen emitted per ft<sup>2</sup> = 1.076 millilamberts (perfect diffusion).

One spherical candle power emits 12.57 lumens.

One lux = 1 lumen incident per m² = .0001 phot = .1 milliphot.

One phot = 1 lumen incident per cm<sup>2</sup> = 10,000 lux = 1000 milliphots.

One milliphot = .001 phot = .929 foot-candle.

One foot-candle = 1 lumen incident per ft<sup>2</sup> = 1.076 milliphots = 10.76 lux.

One lambert = 1 lumen emitted per cm<sup>2</sup> of a perfectly diffusing surface.

One millilambert = .929 lumen emitted per ft<sup>2</sup> (perfect diffusion).

One lambert = .3183 candle per cm<sup>2</sup> = 2.054 candles per in<sup>2</sup>.

One candle per  $cm^2 = 3.1416$  lamberts.

One candle per  $in^2 = .4968$  lambert = 486.8 millilamberts.

Adapted from 1916 Report of Committee on Nomenclature and Standards of Illuminating Engineering Society. See Tr., Vol. 11, 1916.

SMITHSONIAN TABLES.

#### TABLE 300. - Photometric Standards.

No primary photometric standard has been generally adopted by the various governments. In Germany the Herner lamp is most used; in England the Pentane lamp and sperm candles are used; in France the Carcel lamp is preferred; in America the Pentane and Hefner lamps are used to some extent, but candles are more largely employed in gas photometry. For the photometry of electric lamps, and generally in accurate photometric work, electric lamps, standardized at a national standardizing institution, are commonly employed.

The "International candle" is the name recently employed to designate the value of the candle as maintained by coöperative effort between the national laboratories of England, France, and America; and the value of various photometric units in terms of this international candle is given in the following table (taken from Circular No. 15 of the Bureau of Standards).

- 1 International Candle = 1 Pentane Candle.
- 1 International Candle = 1 Bougie Decimale.
- I International Candle = I American Candle.
- 1 International Candle = 1.11 Hefner Unit.
- I International Candle = 0.104 Carcel Unit.

Therefore I Hefner Unit = 0.90 International Candle.

The values of the flame standards most commonly used are as follows:

- 1. Standard Pentane Lamp, burning pentane . . . . . 10.0 candles.
- 2. Standard Hefner Lamp, burning amyl acetate . . . . o.9 candles.
- 3. Standard Carcel Lamp, burning colza oil . . . . . . 9.6 candles.
- 4. Standard English Sperm Candle, approximately . . . . 1.0 candles.

TABLE 301. - Intrinsic Brightness of Various Light Sources.

|                                      | Barrows.                                     | Ives & Luckies                               | h                                              | National Electric<br>Lamp<br>Association.    |
|--------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------|----------------------------------------------|
|                                      | C. P. per Sq. In.<br>of surface<br>of light. | C. P. per Sq. In.<br>of surface<br>of light. | C. P. per Sq.<br>Mm. of sur-<br>face of light. | C. P. per Sq. In.<br>of surface<br>of light. |
| Sun at Zenith                        | 600,000                                      | _                                            | -                                              | 600,000                                      |
| Crater, carbon arc                   | 200,000                                      | 84,000                                       | 130.                                           | 200,000                                      |
| Open carbon arc                      | 10,000-50,000                                | 2"                                           | -5                                             | 10,000-50,000                                |
| Flaming arc                          | 5,000                                        | -                                            | -                                              | 5,000                                        |
| Magnetite arc                        | -                                            | 4,000                                        | 6.2                                            | 3,                                           |
| Nernst Glower                        | 800-1,000                                    | (115v.6 amp. d.c.) 3,010                     | . 4.7                                          | (1.5 W.p.c.) 2,200                           |
| Tungsten incandescent, 1.15 w. p. c. | -                                            | _ , , , ,                                    | -                                              | 1,000                                        |
| Tungsten incandescent, 1.25 w. p. c. | 1,000                                        | 1,000                                        | 1.64                                           | 875                                          |
| Tantalum incandescent, 2.0 w. p. c.  | 750                                          | 580                                          | 0.0                                            | 750                                          |
| Graphitized carbon filament, 2.5     |                                              |                                              |                                                |                                              |
| w. p. c                              | 625                                          | 750                                          | 1.2                                            | 625                                          |
| Carbon incandescent, 3.1 w. p. c.    | 480                                          | 485                                          | 0.75                                           | 480                                          |
| Carbon incandescent, 3.5 w. p. c.    | 375                                          | 400                                          | 0.63                                           | 375                                          |
| Carbon incandescent, 4.0 w. p. c     | 300                                          | 325                                          | 0.50                                           |                                              |
| Inclosed carbon arc (d. c.)          | 100-500                                      |                                              |                                                | 100-500                                      |
| Inclosed carbon arc (a. c.)          | -                                            | -                                            | -                                              | 75-200                                       |
| Acetylene flame (1 ft. burner)       | 75-100                                       | 53.0                                         | 0.082                                          | 75-100                                       |
| Acetylene flame (1/4 ft. burner)     | -                                            | 33.0                                         | 0.057                                          | -                                            |
| Welsbach mantle                      | 20-25                                        | - 31.9                                       | 0.048                                          | 20-50                                        |
| Welsbach (mesh)                      | -                                            | 56.0                                         | 0.067                                          | -                                            |
| Cooper Hewitt mercury vapor lamp     | 16.7                                         | 14.9                                         | 0.023                                          | 17                                           |
| Kerosene flame                       | 4-8                                          | 9.0                                          | 0.014                                          | 3-8                                          |
| Candle flame                         | 3-4                                          | -                                            | -                                              | 3-4                                          |
| Gas flame (fish tail)                | 3-8                                          | 2.7                                          | 0.004                                          | 3-8                                          |
| Frosted incandescent lamp            | 4-8                                          | _                                            | -                                              | 2-5                                          |
| Moore carbon-dioxide tube lamp .     | 0.6                                          | -                                            | -                                              | 0.3-1.75                                     |

Taken from Data, 1911.

TABLE 302. - Visibility of White Lights.

| Range.                   | Candle | Power. |
|--------------------------|--------|--------|
| nange.                   | 1      | 2      |
| ı sea-mile = 1855 meters | 0.47   | 0.41   |
| 2 " "                    | 1.9    | 1.6    |
| 5 " "                    | 8.11   | 10.    |

<sup>1</sup> Paterson and Dudding. <sup>2</sup> Deutsche Seewarte.

1 micro-calorie through 1 cm. at 1 m. =0.034 sperm candle = 0.0385 Hefner unit (no diaphragm) = 0.043 Hefner unit (diap. 14 × 50 mm.). Coblentz Bul. B. of S., 11, p. 87, 1914.

## BRIGHTNESS OF BLACK BODY, CROVA WAVE-LENGTH, MECHANICAL EQUIVALENT OF LIGHT, LUMINOUS INTENSITY AND EFFICIENCY OF BLACK BODY.

The values of L, the luminous intensity, are given in light watts/steroradian/cm2 of radiating surface =  $(1/\pi)$   $\int_0^\infty V_{\lambda} E_{\lambda} d\lambda$ , where  $V_{\lambda}$  is the visibility of radiation function.

Mechanical equivalent. The unit of power is the watt; of lumininous flux, the lumen. The ratio of these two quantities for light of maximum visibility,  $\lambda = 0.556~\mu$ , is the stimulus coefficient Vm; its reciprocal is the (least) mechanical equivalent of light, i.e., least since applicable to radiation of maximum visibility. A better term is "luminous equivalent of radiation of maximum visibility." One lumen =0.001496 watts (Hyde, Forsythe, Cady); or 1 watt of radiation of maximum visibility ( $\lambda = 0.556~\mu$ ) = 668 lumens.

White light has sometimes been defined as that emitted by a black body at 6000° K.

The Crova wave-length for a black body is that wave-length,  $\lambda$ , at which the luminous intensity varies by the same fractional part that the total luminous intensity varies for the same change in temperature.

TABLE 303. — Brightness, Crova Wavelength of Black Body, Mechanical Equivalent of Light.\*

TABLE 304. - Luminous, Total Intensity and Radiant Luminous Efficiency of Black Body.\*

| <u> </u>                                                                         |                                                                                                                                                      |                                                                                                                                                       |                                                                                                          |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Temp.                                                                            | Bright-<br>ness,<br>candles<br>per cm <sup>2</sup>                                                                                                   | Crova<br>wave-<br>length,<br>µ                                                                                                                        | Mech.<br>equiv.<br>watts<br>per l.                                                                       |
| 1700° 1750 1850 1850 1950 2000 2050 2150 2250 2250 2350 2450 2450 2500 2550 2600 | 5.1<br>7.6<br>11.3<br>16.3<br>23.1<br>32.2<br>44.3<br>60.0<br>80.1<br>105.7<br>137.6<br>177.<br>226.<br>284.<br>354.<br>438.<br>537.<br>651.<br>785. | 0.584<br>0.583<br>0.582<br>0.581<br>0.580<br>0.579<br>0.578<br>0.576<br>0.576<br>0.575<br>0.574<br>0.574<br>0.573<br>0.572<br>0.572<br>0.571<br>0.572 | 0.001478<br>0.001491<br>0.001498<br>0.001498<br>0.001497<br>0.001497<br>0.001497<br>0.001502<br>0.001511 |
| 2650<br>Mean.                                                                    | 939.                                                                                                                                                 | 0.569                                                                                                                                                 | 0.001496                                                                                                 |

| T, degrees absolute.                                                                            | Luminous intensity L watt/cm²                                                                                                                                                                                                                                                                                                                                                                                  | Total intensity σ <sub>0</sub> T <sup>4</sup> watt/cm <sup>2</sup>                                                                                                                           | Radiant<br>luminous<br>efficiency.                                                                                                                                   |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,200 1,600 1,700 1,800 1,900 2,000 2,100 2,200 2,300 2,400 2,500 3,000 4,000 5,000 6,000 7,000 | 2.34 × 10 <sup>-5</sup> 3.45 × 10 <sup>-3</sup> 8.46 × 10 <sup>-3</sup> 8.46 × 10 <sup>-3</sup> 1.88 × 10 <sup>-2</sup> 3.85 × 10 <sup>-2</sup> 7.34 × 10 <sup>-2</sup> 1.32 × 10 <sup>-1</sup> 2.26 × 10 <sup>-1</sup> 3.69 × 10 <sup>-1</sup> 5.79 × 10 <sup>-1</sup> 1.29 4.66 3.85 × 10 1.36 × 10 <sup>3</sup> 3.26 × 10 <sup>3</sup> 3.26 × 10 <sup>3</sup> 3.26 × 10 <sup>3</sup> 3.26 × 10 <sup>3</sup> | 3.762 1.189 1.515 X 10 1.905 X 10 2.305 X 10 2.305 X 10 3.529 X 10 4.250 X 10 5.077 X 10 6.020 X 10 7.087 X 10 8.291 X 10 1.470 X 10 4.645 X 10 1.34 X 10 2.351 X 10 4.356 X 10 3 4.356 X 10 | . 000006<br>.000290<br>.000558<br>.000687<br>.00163<br>.00253<br>.00374<br>.00532<br>.00727<br>.00962<br>.0124<br>.0156<br>.0317<br>.0829<br>.1201<br>.1386<br>.1385 |
| 8,000                                                                                           | 9.59 × 10 <sup>2</sup><br>1.84 × 10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                               | 7.432 × 103<br>1.814 × 104                                                                                                                                                                   | .1290                                                                                                                                                                |

<sup>\*</sup> Hyde, Forsythe, Cady, Phys. Rev. 13, p. 45,

Note. — Minimum energy necessary to produce the sensation of light: Ives,  $38 \times 10^{-10}$ ; Russell,  $7.7 \times 10^{-10}$ ; Reeves,  $19.5 \times 10^{-10}$ ; Buisson,  $12.6 \times 10^{-10}$  erg. sec. (Buisson, J. de Phys. 7, 68, 1917.)

TABLE 305. - Color of Light Emitted by Various Sources.\*

| Source.                                                                                                                                                                                 | Color,<br>per cent<br>white.     | Hue.                                                 | Source.                                                                                                                                                                                                                        | Color,<br>per cent<br>white.                      | Hue.                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|
| Sunlight Average clear sky Standard candle. Hefner lamp Pentane lamp. Tungsten glow lamp, 1, 25 wpc. Carbon Llow lamp, 3, 8 wpc. Nernst glower, 1, 50 wpc. N-filled tungsten, 1,00 wpc. | 60<br>13<br>14<br>15<br>35<br>25 | 472<br>593<br>593<br>592<br>588<br>592<br>587<br>586 | N-filled tungsten, o. 50 wpc. N-filled tungsten, o. 35 wpc. Mercury vapor arc. Helium tube. Neon tube. Crater of carbon arc, r. 8 amp. Crater of carbon arc, s. 2 amp. Crater of carbon arc, s. 0 amp. Acetylene flame (flat). | 45<br>53<br>70<br>32<br>6<br>59<br>62<br>67<br>36 | 584<br>584<br>490<br>598<br>605<br>585<br>585<br>583<br>586 |

<sup>\*</sup> Jones, L. A., Trans. Ill. Eng. Soc., Vol. 9 (1914).

<sup>\*</sup> Coblentz, Emerson, Bul. Bureau of Standards, 14, p. 255, IOI7.

## EFFICIENCY OF VARIOUS ELECTRIC LIGHTS.

| Bryant and Hake, Eng. Exp. Station,<br>Univ. of Ill.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Amperes.                                                                                                                                                              | Terminal<br>Watts.                                                                                                                                                                                          | Lumens.                                                                                                                                                          | Kw-hours<br>for 100,000<br>Lumen-<br>hours.                                                                                                                                                                                      | Total cost per 100,000 Lumen-hours at 10 cts. per Kw-hour.                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Regenerative dc., series arc Regenerative dc., multiple arc Magnetite dc., series arc Flame arc, dc., inclined electrodes Mercury arc, dc., multiple Flame arc, dc., inclined electrodes Flame arc, dc., inclined electrodes 'Luminous arc, dc., multiple Open arc, dc., series Magnetite arc, dc., series Flame arc, ac., vertical electrodes Flame arc, ac., inclined electrodes Open arc, dc., series Tungsten series Flame arc, ac., inclined electrodes Inclosed arc, dc., series Luminous arc, dc., multiple Tungsten, multiple Nernst, ac., 3-glower Nernst, dc., 3-glower Inclosed arc, ac., series Inclosed arc, ac., series Tantalum, dc., multiple Tantalum, ac., multiple Carbon, 3.1 w. p. c., multiple Carbon, 3.5 w. p. c., series Carbon, 3.5 w. p. c., series Carbon, 3.5 w. p. c., multiple Inclosed arc, dc., multiple Inclosed arc, dc., multiple Inclosed arc, dc., multiple Inclosed arc, dc., multiple Inclosed arc, ac., multiple Inclosed arc, ac., multiple Inclosed arc, ac., multiple Inclosed arc, ac., multiple | 5.5<br>5.5<br>6.6<br>10.0<br>3.5<br>8.0<br>6.6<br>9.6<br>4.0<br>10.0<br>10.0<br>6.6<br>6.6<br>4.0<br>0.545<br>1.87<br>7.5<br>6.6<br>————————————————————————————————— | 385<br>605<br>528<br>550<br>385<br>440<br>440<br>726<br>480<br>320<br>467<br>467<br>325<br>75<br>374<br>475<br>440<br>60<br>414<br>414<br>480<br>425<br>40<br>49.6<br>210<br>56<br>550<br>385<br>430<br>285 | 11,670 11,670 7,370 8,640 4,400 6,140 6,140 7,370 5,025 2,870 5,340 2,920 626 3,910 3,315 2,870 475 2,160 2,160 2,160 2,160 2,160 626 666 61,535 1,030 1,124 688 | 3.3<br>5.18<br>7.16<br>6.37<br>15.92<br>7.16<br>9.85<br>9.55<br>11.15<br>8.75<br>8.75<br>11.15<br>12.0<br>9.55<br>14.32<br>15.32<br>12.6<br>19.2<br>19.9<br>21.3<br>21.1<br>29.9<br>33.6<br>33.7<br>35.8<br>37.4<br>38.3<br>41.4 | 0.339 0.527 0.729 0.837 0.89 0.966 0.966 0.988 1.079 1.13 1.275 1.305 1.384 1.405 1.459 1.547 1.55 1.88 1.90 2.05 2.193 2.31 2.504 3.24 3.47 3.50 3.66 3.84 3.94 4.265 |

| Open flame gas burner Petroleum lamp Acetylene Incandescent gas (low pressure) Incandescent gas (high pressure) Nernst lamp Moore nitrogen vacuum tube Carbon incandescent (treated filament) Tungsten incandescent (vacuum) Carbon arc, open arc Mazda, type C Mazda, type C Magnetite arc, series Glass mercury arc Quartz mercury arc Enclosed white flame carbon arc """""""""""""""""""""""""""""""""""" | Ives, Phys. Rev., V, p. 390, 1915 (see also VI, p. 332, 1915); computed assuming I lumen = 0.00159 watt.                                                                                                                                                                                                                                                                                                                                          | Commercial Rating                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lumens<br>per<br>Watt.                                                                                                                                   | I.uminous<br>Watts Flux<br>: Watts In-<br>put or True<br>Efficiency.                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| " " " " " 10 ampere, A. C. 41.5 .066 .071                                                                                                                                                                                                                                                                                                                                                                     | Petroleum lamp Acetylene Incandescent gas (low pressure) Incandescent gas (high pressure) Nernst lamp Moore nitrogen vacuum tube Carbon incandescent (treated filament) Tungsten incandescent (vacuum) Carbon arc, open arc Mazda, type C Mazda, type C Magnetite arc, series Glass mercury arc Quartz mercury arc Enclosed white flame carbon arc """""" Open arc """""""  Enclosed yellow flame carbon arc """""""""""""""""""""""""""""""""""" | 1.0 liters per hour 1.350 lumens per B. t. u. per hr. 1.578 lumens per B. t. u. per hr. 220-v. 60-cycle, 113 ft. 4-watts per mean hor. C. P. 1.25 watts per hor. C. P. 9.6 amp. clear globe 500-watt multiple .7 w. p. c. 600 C. P20 amp5 w. p. c. 66 amp. direct current 40-70 volt; 3.5 amperes 174-197 volt; 4.2 amperes 10 ampere, A. C. 6.5 ampere, D. C. 10 ampere, A. C. 6.5 ampere, D. C. 10 ampere, A. C. 6.5 ampere, D. C. 10 ampere, A. C. | .26<br>.67<br>1.2<br>2.0<br>4.8<br>5.21<br>2.6<br>8.<br>11.8<br>15.<br>19.6<br>21.6<br>23.<br>42.<br>26.7<br>35.5<br>29.<br>27.7<br>31.4<br>34.2<br>41.5 | .0004<br>.0011<br>.0019<br>.0031<br>.0076<br>.0083<br>.0041<br>.013<br>.019<br>.024<br>.031<br>.034<br>.036<br>.067<br>.042<br>.057<br>.046<br>.044 |

#### PHOTOGRAPHIC DATA.

## TABLE 307. - Numerical Constants Characteristic of Photographic Plates.

Abscissae of figure are  $\log E = \log It$  (meter-

candles-seconds); Ordinates are densities, D = I/T;  $E = \exp(sure = I)$  (illumination in meter-can-

dles)  $\times t$  seconds; D, the density of deposit = t/T, where T is the ratio of the transmitted to incident intensity on developed plate.

i = inertia = intercept straight line portion of

curve on log E axis.  $S = \text{speed} = (\text{some constant})/i; \quad \gamma = \text{gamma} = 0$ 

S = speed = (some constant)/t;  $\gamma$  = gamma = tangent of angle a. L = latitude = projected straight line portion of characteristic curve on log E axis, expressed in exposure units = Anti log (b-a).

The curve illustrates the characteristic curve of a photographic placetic place.

photographic plate.



TYPICAL CHARACTERISTIC CURVE OF PHOTOGRAPHIC PLATE.

## TABLE 308. - Relative Speeds of Photographic Materials.

The approximate exposure may be obtained when the intensity of the image on the plate is known. Let L be the intensity in meter-candles; E, the exposure in seconds; P, the speed number from the following table; then  $E = 1,350,000/(L \times P)$  approximately.

| Plate.                                                                                                                                 | Relative speed.                      | Paper.                                                                                                                                 | Relative speed.                             |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Extremely high speed High speed. Medium speed. Rapid high contrast Medium speed high contrast Medium speed high contrast Lantern plate | 50,000<br>50,000<br>25,000<br>10,000 | Fast bromide Slow enlarging.  Rapid gas-light, soft grade. Rapid gas-light, medium contrasty. Rapid gas-light, contrasty. Professiona. | 1000.0<br>60.0<br>6.5<br>3.5<br>1.0<br>1.25 |

## TABLE 309. - Variation of Resolving Power with Plate and Developer.

The resolving power is expressed as the number of lines per millimeter which is just resolvable, the lines being opaque and separated by spaces of the same width. The developer used for the comparison of plates was Pyro-soda; the plate for the comparison of developers, Seed Lantern. The numbers are all in the same units. Huse, J. Opt. Soc. America, July, 1917.

| Plate.          | Albumen. | Resolution. | Process. | Lantern. | Medium       | High speed. |
|-----------------|----------|-------------|----------|----------|--------------|-------------|
| Resolving power | 125      | 81          | 67       | 62       | speed.<br>35 | 27          |

| Developer.                                                     | Resolving power.                       | Developer.                                                                                        | Resolving power.     | Developer.                                                       | Resolving power.                 |
|----------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------|----------------------------------|
| Pyro-caustic. Glycin. Hydroquinone. Pyro. MQ25. Metol. Nepera. | 77<br>69<br>64<br>64<br>64<br>63<br>62 | Pyrocatechin Pyro-metol Eikon-hydroquinone Ferrous oxalate Caustic hydroquinone. Eikonogen Kachin | 61<br>61<br>57<br>57 | Amidol Process hydroquinone. Ortol Rodinal X-ray powders. Edinol | 51<br>50<br>49<br>49<br>49<br>47 |

## TABLES 310-311.

## PHOTOGRAPHIC DATA.

## TABLE 310. - Photographic Efficiencies of Various Lights.

|                               |                    |                 | 3                             | Photographi                 | ic efficiency   | 7.                            |                             |
|-------------------------------|--------------------|-----------------|-------------------------------|-----------------------------|-----------------|-------------------------------|-----------------------------|
| Source.                       | Visual efficiency. |                 | (a)                           |                             |                 | (b)                           |                             |
| Doute.                        | per<br>watt.       | Ordinary plate. | Ortho-<br>chromatic<br>plate. | Pan-<br>chromatic<br>plate. | Ordinary plate. | Ortho-<br>chromatic<br>plate. | Pan-<br>chromatic<br>plate. |
| Sun                           | 150                | 181             | 100                           | 100<br>130                  | 100             | 100                           | 100                         |
| Sky<br>Acetylene              | 0.7                | 30              | 44                            | 52                          | 0.14            | 0.21                          | 0.24                        |
| " (screened)                  | 0.07               | 81              | 85                            | 89                          | 0.037           | 0.040                         | 0.042                       |
| Pentane                       | 0.045              | 18<br>600       | 28<br>500                     | 42<br>367                   | 0.053           | 0.086                         | 0.13                        |
| Mercury arc, quartz           | 40<br>35           | 218             | 195                           | 165                         | 50              | 46                            | 99<br>39                    |
| " crown glass                 | 37                 | 324             | 275                           | 249                         | 79              | 68                            | 62                          |
| Carbon arc, ordinary          | 12                 | 126             | 112                           | 104                         | IO              | 10                            | 8.5                         |
| " " white flame               |                    | 257             | 234                           | 215                         | 52              | 45                            | 2.0                         |
| enclosed                      |                    | 175<br>706      | 177                           | 165<br>744                  | 62              | 86                            | 60                          |
| Carbon arc, "Artisto"         | 18                 | 106             | 115                           | 82                          | 12              | 14                            | 10                          |
| Carbon glow-lamp              |                    | 23              | 32                            | 42                          | 0.37            | 0.52                          | 0.68                        |
| Carbon glow-lamp              | 3.16               | 25              | 35                            | 45                          | 0.51            | 0.74                          | 0.95                        |
| Tungsten vacuum lamp          |                    | 33              | 41                            | 50                          | 1.74            | 2.2                           | 2.7                         |
| vacuum lamp                   |                    | 37              | 45<br>62                      | 53                          | 2.4I<br>6.I     | 3.0<br>6.8                    | 3.5                         |
| " nitrogen lamp nitrogen lamp | 16.6               | 56<br>64        | 68                            | 70 76                       | 8.9             | 0.8                           | 7.7                         |
| " blue bulb                   | 8.0                | -               | _                             | 70                          | 5.5             | 5.2                           | 5.6                         |
| " blue bulb                   | II                 | 108             | 99                            | 106                         | 7.8             | 7.3                           | 7.9                         |
| Mercury arc (Cooper Hewitt)   | 23                 | 316             | 354                           | 273                         | 47              | 54.2                          | 42                          |

(a) Relative efficiencies based on equal illumination.
 (b) Relative efficiencies based on equal energy density.
 Taken from Jones, Hodgson, Huse, Tr. Ill. Eng. Soc. 10, p. 963, 1915.

TABLE 311. — Relative Intensification of Various Intensifiers.

| Bleaching solution.                             | Blackening solution.                | Reference                                                | Intensi-<br>fication. |
|-------------------------------------------------|-------------------------------------|----------------------------------------------------------|-----------------------|
| Mercuric bromide                                | Amidol developer                    | HgBr <sub>2</sub> solution (Monckhoven sol. A).*         |                       |
| Mercuric chloride                               | Ammonia                             | Bleach according to Ben-<br>nett; blackener.*            | 1.15                  |
| Potassium bichromate + hydro-<br>chloric acid   | Amidol developer<br>Schlippe's salt | Piper.* Debenham, B. J., † p. 186, 17.                   | 1.45                  |
| Lead ferricyanide                               | Sodium sulphide                     | B. J. Almanac.* B. J. Almanac.*                          | 2.50<br>2.28<br>3.50  |
| Potassium permanganate + hydro-<br>chloric acid | Sodium stannate                     |                                                          | 2.05                  |
| Potassium ferricyanide + potassium bromide.     | Sodium stannate Sodium sulphide     | Desalme, B. J.,† p. 215, '12.  Ordinary sepia developer. | 1.93                  |
| Mercuric iodide                                 | Paraminophenol developer            | HgI <sub>2</sub> according to Bennett.                   | 1.33                  |

See Nietz and Huse, J. Franklin Inst. March 3, 1918.

\* B. J. Almanac, see annual Almanac of British Journal of Photography.

† B. J. refers to British Journal of Photography.

## WAVE-LENGTHS OF FRAUNHOFER LINES.

For convenience of reference the values of the wave-lengths corresponding to the Fraunhofer lines usually designated by the letters in the column headed "index letters," are here tabulated separately. The values are in ten millionths of a millimeter, on the supposition that the D line value is 5896.155. The table is for the most part taken from Rowland's table of standard wave-lengths. lengths.

| Index Letter.        | Line due to — | Wave-length in centimeters X 108. | Index Letter.       | Line due to- | Wave-length in centimeters × 108. |
|----------------------|---------------|-----------------------------------|---------------------|--------------|-----------------------------------|
| A                    | {°            | 7621.28*<br>7594.06*              | G                   | { Fe<br>Ca   | 4308.081                          |
| a                    |               | 7164.725                          | g                   | Ca           | 4226.904                          |
| В                    | 0             | 6870.182†                         | h or H <sub>δ</sub> | Н            | 4102,000                          |
| C or H <sub>a</sub>  | Н             | 6563.045                          | Н                   | Ca           | 3968.625                          |
| α                    | 0             | 6278.303 ‡                        | K                   | Ca           | 3933.825                          |
| $D_1$                | Na            | 5896.155                          | L                   | Fe           | 3820.586                          |
| $D_2$                | Na            | 5890.186                          | M                   | Fe           | 3727.778                          |
| $D_8$                | He            | 587 5.985                         | N                   | Fe           | 3581.349                          |
| $E_1$                | ∫ Fe          | 5270.558                          | 0                   | Fe           | 3441.155                          |
| 221                  | (Ca           | 5270.438                          | P                   | Fe           | 3361.327                          |
| E <sub>2</sub>       | Fe            | 5269.723                          | Q                   | Fe           | 3286.898                          |
| b <sub>1</sub>       | Mg            | 5183.791                          | R                   | ∫ Ca         | 3181.387                          |
| b <sub>2</sub>       | Mg            | 5172.856                          |                     | (Ca          | 3179-453                          |
| b <sub>3</sub>       | { Fe          | 5169.220                          | S <sub>1</sub> )    | ( Fe         | 3100.787                          |
|                      | (Fe           | 5169.069                          | $S_2$               | Fe           | 3100.430                          |
| b4                   | { Fe          | 5167.678                          |                     | [ Fe         | 3100.046                          |
|                      | (Mg           | 5167.497                          | s                   | Fe           | 3047.725                          |
| F or H <sub>β</sub>  | Н             | 4861.527                          | Т                   | Fe           | 3020.76                           |
| d                    | Fe            | 4383.721                          | t                   | Fe           | 2994-53                           |
| G' or H <sub>y</sub> | Н             | 4340.634                          | U                   | Fe           | 2947.99                           |
| f                    | Fe            | 4325.939                          |                     |              |                                   |

<sup>\*</sup> The two lines here given for A are stated by Rowland to be: the first, a line "beginning at the head of A, outside edge"; the second, a "single line beginning at the tail of A."
† The principal line in the head of B.
‡ Chief line in the α group.
See Table 321, Rowland's Solar Wave-lengths (foot of page) for correction to reduce these values to standard system of wave-lengths, Table 314.

#### STANDARD WAVE-LENGTHS.

TABLE 313 .- Absolute Wave-length \* of Red Cadmium Line in Air, 760 mm. Pressure, 15° C.

6438.4722 Michelson, Travaux et Mém. du Bur. intern. des Poids et Mesures, 11, 1895. 6438.4700 Michelson, corrected by Benoit, Fabry, Perot, C. R. 144, 1082, 1907. (accepted primary standard) Benoit, Fabry, Perot, C. R. 144, 1082, 1907.

\* In Ångströms. 10 Ångströms = 1  $\mu\mu$  = 10-6 mm.

## TABLE 314 .- International Secondary Standards. Iron Arc Lines in Angströms.

Adopted as secondary standards at the International Union for Coöperation in Solar Research (transactions, 1910). Means of measures of Fabry-Buisson (1), Pfund (2), and Eversheim (3). Referred to primary standard = Cd. line,  $\lambda = 6438.4696$  Ångströms (serving to define an Ångström). 760 mm., 15° C. Iron rods, 7 mm. diam. length of arc, 6 mm.; 6 amp. for  $\lambda$  greater than 4000 Ångströms, 4 amp. for lesser wave-lengths; continuous current, + pole above the -, 220 volts; source of light, 2 mm. at arc's center. Lines adopted in 1910.

| Wave-length. |
|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 4282.408     | 4547.853     | 4789.657     | 5083.344     | 5405.780     | 561 5,661    | 6230.734     |
| 4315.089     | 4592.658     | 4878.225     | 5110.415     | 5434.527     | 5658.836     | 6265.145     |
| 4375.934     | 4602.947     | 4993:325     | 5167.492     | 5455.614     | 5763.013     | 6318.028     |
| 4427.314     | 4647.439     | 4919.007     | 5192.363     | 5497.522     | 6027.059     | 6335.341     |
| 4466.556     | 4691.417     | 5001.881     | 5232.957     | 5506.784     | 6065.492     | 6393.612     |
| 4494.572     | 4707.288     | 5012.073     | 5266.569     | 5569.633     | 6137.701     | 6430.859     |
| 4531.155     | 4736.786     | 5049.827     | 5371.495     | 5586.772     | 6191.568     | 6494.993     |

TABLE 315.—International Secondary Standards. Iron Arc Lines in Angströms.

Adopted in 1913. (4) Means of measures of Fabry-Buisson, Pfund, Burns and Eversheim.

| Wave-length.                                                     | Wave-length.                                             | Wave-length.                                             | Wave-length.                                             | Wave-length.                                             | Wave-length.                                             | Wave-length.                            |
|------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|
| 3370.789<br>3399.337<br>3485.34 <b>5</b><br>3513.821<br>3556.881 | 3606.682<br>3640.392<br>3676.313<br>3677.629<br>3724.380 | 3753.615<br>3805.346<br>3843.261<br>3850.820<br>3865.527 | 3906.482<br>3907.937<br>3935.818<br>3977.746<br>4021.872 | 4076.642<br>4118.552<br>4134.685<br>4147.676<br>4191.443 | 4233.615<br>5709.396<br>6546.250<br>6592.928<br>6678.004 | 67 50.250<br>5857.759 Ni<br>5892.882 Ni |

<sup>(1)</sup> Astrophysical Journal, 28, p. 169, 1908; (2) Ditto, 28, p. 197, 1908; (3) Annalen der Physik, 30, p. 815, 1909. See also Eversheim, *ibid.* 36, p. 1071, 1911; Buisson et Fabry, *ibid.* 38, p. 245, 1912; (4) Astrophysical Journal, 39, p. 93, 1914,

TABLE 316 .- Neon Wave-Lengths.

| In-                   | Wave                                                     | In-                   | Wave                                                     | In-                    | Wave                                                     | In-                   | Wave                                                     | In-              | Wave                                                     |
|-----------------------|----------------------------------------------------------|-----------------------|----------------------------------------------------------|------------------------|----------------------------------------------------------|-----------------------|----------------------------------------------------------|------------------|----------------------------------------------------------|
| tensity.              | length.                                                  | tensity.              | length.                                                  | tensity.               | length.                                                  | tensity.              | length.                                                  | tensity.         | length.                                                  |
| 5<br>6<br>6<br>6<br>5 | 3369.904<br>3417.906<br>3447.705<br>3454.197<br>3460.526 | 5<br>8<br>4<br>4<br>5 | 3515.192<br>3520.474<br>3593.526<br>3593.634<br>3600.170 | 2<br>10<br>6<br>8<br>4 | 5820.155<br>5852.488<br>5881.895<br>5944.834<br>5975.534 | 4<br>7<br>4<br>8<br>8 | 6217.280<br>6266.495<br>6304.789<br>6334.428<br>6382.991 | 5<br>8<br>3<br>9 | 6717.043<br>6929.468<br>7024.049<br>7032.413<br>7059.111 |
| 4                     | 3464.340                                                 | 5                     | 3633.664                                                 | 4                      | 6529.997                                                 | 10                    | 6402.245                                                 | 5                | 7173.939                                                 |
| 5                     | 3466.581                                                 | 8                     | 5330.779                                                 | 7                      | 6574.338                                                 | 9                     | 6506.528                                                 | 8                | 7245.167                                                 |
| 6                     | 3472.578                                                 | 7                     | 5341.096                                                 | 8                      | 6096.163                                                 | 4                     | 6532.883                                                 | 6                | 7438.902                                                 |
| 4                     | 3498.067                                                 | 6                     | 5400.562                                                 | 9                      | 6143.062                                                 | 5                     | 6598.953                                                 | 5                | 7488.885                                                 |
| 4                     | 3501.218                                                 | 4                     | 5764.419                                                 | 5                      | 6163.594                                                 | 8                     | 6678.276                                                 | 5                | 7535.784                                                 |

International Units (Angströms). Burns, Meggers, Merrill, Bull. Bur. Stds. 14, 765, 1918.

## TERTIARY STANDARD WAVE-LENGTHS. IRON ARC LINES.

For arc conditions see Table 314, p. 266. For lines of group c class 5 for best results the slit should be at right angles to the arc at its middle point and the current should be reversed several times during the exposure.

| Wave-lengths.                                                                                                                                                                                                                                                                  | Class.              | Inten-                                                                                           | Wave-lengths.                                                                                                                                                                                                                                                        | Class.                                                                                                    | Inten-<br>sity.                                 | Wave-lengths.                                                                                                                                                                                                                                             | Class.                                  | Inten-                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------|
| *2781.840<br>*2806.985<br>*2831.559<br>*2831.559<br>*2901.382<br>*2926.584<br>*2986.460                                                                                                                                                                                        | •                   | 4<br>7<br>3<br>3<br>4<br>5<br>3<br>4<br>4<br>2                                                   | 4337.052<br>4369.777<br>4415.128<br>4443.198<br>4461.658<br>4489.746<br>4528.620                                                                                                                                                                                     | b3<br>b3<br>b1<br>b3<br>a3<br>a3                                                                          | 5<br>3<br>8r<br>3<br>4<br>3                     | 5332.909<br>5341.032<br>5365.404<br>5405.780<br>5434.528<br>5473.913<br>5497.521                                                                                                                                                                          | a4<br>a4<br>a1<br>a<br>a<br>a<br>a      | 2<br>5<br>2<br>6<br>6<br>4<br>4                                                                  |
| *3000.453<br>*3053.070<br>*3100.838<br>*3154.202<br>*3217.389<br>*3257.603<br>*3307.238<br>*3347.932<br>*3389.748<br>*3476.705<br>*3506.502<br>*35553.741<br>*3617.789<br>*3659.521<br>*3705.567<br>*3749.487<br>*3820.430<br>*3859.913<br>*3922.917<br>*3956.682<br>*4009.718 |                     | 4<br>4<br>4<br>4<br>3<br>5<br>5<br>6<br>5<br>6<br>8<br>8<br>8<br>7<br>6<br>6<br>7<br>6<br>6<br>6 | 4619.297<br>4786.811<br>4871.331<br>4890.769<br>4924.773<br>4939.685<br>4973.113<br>4994.133<br>5041.076<br>5041.760<br>5051.641<br>5079.227<br>5079.743<br>5098.702<br>5123.729<br>5123.729<br>5127.366<br>5150.846<br>5151.917<br>5194.950<br>5202.341<br>5216.279 | C4<br>C4<br>C5<br>C5<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a<br>a | 4 38 7 3 3 2 3 3 4 4 3 3 4 4 3 4 3 5 5 5 5 8 38 | 5501.471<br>5506.784<br>‡5535.419<br>5563.612<br>5975.352<br>6027.059<br>6065.495<br>6136.624<br>6157.734<br>6165.370<br>6173.345<br>6200.323<br>6213.441<br>6219.290<br>6252.567<br>6254.269<br>6265.145<br>6297.802<br>6335.342<br>6430.859<br>6494.992 | a a a b b b b b b b b b b b b b b b b b | 4<br>3<br>2<br>3<br>2<br>3<br>4<br>5<br>4<br>4<br>5<br>5<br>6<br>4<br>5<br>6<br>5<br>6<br>5<br>6 |
| *4062.451<br>†4132.063<br>†4175.639<br>†4202.031<br>†4250.791                                                                                                                                                                                                                  | bi<br>b<br>bi<br>b2 | 5<br>4<br>7<br>4<br>7r<br>7                                                                      | 5227.191<br>5242.495<br>5270.356<br>5328.043<br>5328.537                                                                                                                                                                                                             | a4<br>a<br>a4<br>a1<br>a4                                                                                 | 8<br>3<br>8<br>7<br>4                           |                                                                                                                                                                                                                                                           |                                         |                                                                                                  |

† Means of St. John and Burns.

For class and pressure shifts see Gale and Adams, Astrophysical Journal, 35, p. 10, 1912. Class a: "This involves the well-known flame lines (de Watteville, Phil. Trans. A 204, p. 139. 1904), i.e. the lines relatively strengthened in low-temperature sources, such as the flame of the arc, the low-current arc, and the electric furnace. (Astrophysical Journal, 24, p. 185, 1906, 30, p. 86, 1909, 34, p. 37, 1911, 35, p. 185, 1912.) The lines of this group in the yellow-green show small but definite pressure displacements, the mean being 0.0036 Angström per atmosphere in the arc." Class b: "To this group many lines belong; in fact all the lines of moderate displacement under pressure are assigned to it for the present. These are bright and symmetrically widened under pressure, and show mean pressure displacements of 0.009 Angström per atmosphere for the lines of the present. in the region  $\lambda$  5975-6678 according to Gale and Adams. Group c contains lines showing much larger displacements. The numbers in the class column have the following meaning: I, symmetrically reversed; 2, unsymmetrically reversed; 3, remain bright and fairly narrow under pressure; 4, remain bright and symmetrical under pressure but become wide and diffuse; 5, remain

For further measures in International units see Kayser, Bericht über den gegenwärtigen Stand der Wellenlängenmessungen, International Union for Coöperation in Solar Research, 1913. For further spectroscopic data see Kayser's Handbuch der Spectroscopie.

<sup>†</sup> Means of St. John and Goos. Others are means of measures by all three. References: St. John and Ware, Astrophysical Journal, 36, 1912; 38, 1913; Burns, Z. f. wissen. Photog. 12, p. 207, 1913, J. de Phys. 1913, and unpublished data; Goos, Astrophysical Journal, 35, 1912; 37, 1913. The lines in the table have been selected from the many given in these references with a view to equal distribution and where possible of classes a and b.

#### REDUCTION OF WAVE-LENGTH MEASURES TO STANDARD CONDITIONS.

The international wave-length standards are measured in dry air at  $15^{\circ}$  C, 76 cm pressure. Density variations of the air appreciably affect the absolute wave-lengths when obtained at other temperatures and pressures. The following tables give the corrections for reducing measures to standard conditions, viz.:  $\delta = \lambda_0(n_0 - n_0^6)$   $(d - d_0)/d_0$  in tent-thousandths of an Angstrom, when the temperature  $t^0$  C, the pressure B in cm of Hg, and the wave-length  $\lambda$  in Angstroms are given; n and d are the indices of refraction and densities, respectively; the subscript  $_0$  refers to standard conditions, none, to the observed; the prime ' to the standard wave-length, none, to the new wave-length. The tables were constructed for the correction of wave-length measures in terms of the fundamental standard 6438.4066 A of the cadmium red radiation in dry air,  $15^{\circ}$  C, 76 cm pressure. The density factor is, therefore, zero for  $15^{\circ}$  C and 76 cm, and the correction always zero for  $\lambda = 6438$  A. As an example, find the correction required for  $\lambda$  when measured as 3000.0000 A in air at  $25^{\circ}$  C and 72 cm. Section (a) of table gives  $(d - d_0)/d_0 = -.08$  and for this value of the density factor section (b) gives the correction to  $\lambda$  of -0.038 A. Again in  $\lambda$  under the same atmospheric conditions, is measured as 8000.0000 A in terms of a standard  $\lambda'$  of wave-length 4000.000 A, say, the measurement will require a correction of (0.0020 + 0.0008) = +.0028 A. Taken from Meggers and Peters, Bulletin Bureau of Standards, 14, p. 728, 1918.

TABLE 318 (a). - 1000  $\times (d - d_0)/d_0$ .

| B cm                   | 60.0                                 | 62.5                                 | 65.0                                 | 67.5                                | 70                              | 71                              | 72                              | 73                              | 74                             | 75                          | 76                          | 77                             | 78                              |
|------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------|-----------------------------|-----------------------------|--------------------------------|---------------------------------|
| 9° C<br>11<br>13<br>15 | -192<br>-200<br>-206<br>-211<br>-216 | -160<br>-167<br>-172<br>-178<br>-184 | -126<br>-133<br>-139<br>-145<br>-151 | -92<br>-100<br>-106<br>-112<br>-118 | -59<br>-67<br>-73<br>-79<br>-86 | -46<br>-53<br>-60<br>-66<br>-73 | -32<br>-40<br>-46<br>-53<br>-60 | -19<br>-27<br>-33<br>-39<br>-47 | -5<br>-13<br>-20<br>-26<br>-34 | +8<br>0<br>-7<br>-13<br>-21 | +22<br>+13<br>+6<br>0<br>-8 | +35<br>+27<br>+20<br>+13<br>+5 | +48<br>+40<br>+33<br>+26<br>+19 |
| 19                     | -222                                 | -189                                 | -156                                 | -124                                | -92                             | -79                             | -66                             | -53                             | -40                            | -27                         | -14                         | -1                             | +12                             |
| 21                     | -227                                 | -195                                 | -163                                 | -130                                | -98                             | -85                             | -72                             | -59                             | -46                            | -33                         | -21                         | -8                             | +5                              |
| 23                     | -232                                 | -200                                 | -168                                 | -136                                | -104                            | -91                             | -78                             | -65                             | -52                            | -40                         | -27                         | -14                            | -1                              |
| 25                     | -238                                 | -206                                 | -174                                 | -143                                | -111                            | -98                             | -85                             | -72                             | -60                            | -47                         | -34                         | -22                            | -9                              |
| 27                     | -243                                 | -211                                 | -179                                 | -148                                | -116                            | -104                            | -91                             | -78                             | -66                            | -53                         | -40                         | -28                            | -15                             |
| 29                     | -248                                 | -216                                 | -185                                 | -154                                | -122                            | -109                            | -97                             | -84                             | -72                            | -59                         | -46                         | -34                            | -21                             |
| 31                     | -253                                 | -222                                 | -190                                 | -159                                | -128                            | -116                            | -103                            | -91                             | -78                            | -66                         | -54                         | -41                            | -29                             |
| 33                     | -258                                 | -227                                 | -196                                 | -165                                | -134                            | -121                            | -109                            | -97                             | -84                            | -72                         | -59                         | -47                            | -34                             |
| 35                     | -262                                 | -231                                 | -200                                 | -170                                | -139                            | -127                            | -114                            | -102                            | -90                            | -77                         | -65                         | -53                            | -41                             |

TABLE 318 (b).  $-\delta = \lambda_0(n_0 - n_0') (d - d_0)/d_0$ , in Ten-thousandth Angstroms.

|                                      |                                      |                                   |                |                                                      |                                                       | Wave                                                  | e-length                                               | s in An          | gstron                     | ns.                  |                            |                              |                                |                                 |                                 |
|--------------------------------------|--------------------------------------|-----------------------------------|----------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|------------------|----------------------------|----------------------|----------------------------|------------------------------|--------------------------------|---------------------------------|---------------------------------|
| $\frac{1000 \times d_0}{d_0}$        | 2000                                 | 2500                              | 3000           | 3500                                                 | 4000                                                  | 4500                                                  | 5000                                                   | 5500             | 6000                       | 6500                 | 7000                       | 7500                         | 8000                           | 9000                            | 10000                           |
|                                      |                                      |                                   |                |                                                      | Corr                                                  | ections                                               | in ten-1                                               | housan           | dth A                      | ngstro               | ms.                        |                              |                                |                                 |                                 |
| -260<br>-240<br>-220<br>-200         | -259<br>-239<br>-219<br>-199         | -166<br>-154<br>-141<br>-128      | -10<br>-9      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\frac{8}{1} - \frac{-5}{5}$                          | 7 - 41 $2 - 37$                                       | $\frac{1}{7}$ $-28$                                    | -17<br>-15       | $-7 \\ -7$                 | +1<br>+1<br>+1       | +9<br>+9<br>+8<br>+7       | +17<br>+16<br>+14<br>+13     | +24<br>+22<br>+20<br>+19       | +37<br>+35<br>+32<br>+29        | +50<br>+46<br>+42<br>+38        |
| -180<br>-160<br>-140<br>-120<br>-100 | -179<br>-159<br>-139<br>-119<br>-100 | -115<br>-102<br>-90<br>-77<br>-64 | -7<br>-6<br>-5 | 1 -5<br>2 -4<br>4 -3                                 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $     \begin{array}{ccccccccccccccccccccccccccccccccc$ | -11<br>-10<br>-8 | -6<br>-5<br>-4<br>-4<br>-3 | +1<br>+1<br>+0<br>+0 | +6<br>+6<br>+5<br>+4<br>+4 | +12<br>+10<br>+9<br>+8<br>+7 | +17<br>+15<br>+13<br>+11<br>+9 | +26<br>+23<br>+20<br>+17<br>+14 | +34<br>+31<br>+27<br>+23<br>+19 |
| -80<br>-60<br>-40<br>-20<br>0        | -80<br>-60<br>-40<br>-20             | -51<br>-38<br>-26<br>-13          | -2<br>-1       | 7 -1<br>8 -1<br>9 -                                  | 9 — I.<br>3 — e                                       | 1 -10<br>0 -1                                         | 7 -5                                                   | -4<br>-3<br>-1   | -2<br>-1<br>-r             |                      | +3<br>+2<br>+1<br>+1       | +5<br>+4<br>+3<br>+1         | +7<br>+6<br>+4<br>+2<br>0      | +12<br>+9<br>+6<br>+3<br>0      | +15<br>+11<br>+8<br>+4<br>0     |
| +20<br>+40                           | +20<br>+40                           | +13<br>+26                        |                |                                                      |                                                       | +3                                                    | +2+5                                                   | · +1             |                            | -o<br>-o             | -r<br>-r                   | -2<br>-3                     | -2<br>-4                       | -3<br>-6                        | _4<br>_8                        |

#### SPECTRA OF THE ELEMENTS.

The following figure gives graphically the positions of some of the more prominent lines in the spectra of some of the elements. Flame spectra are indicated by lines in the lower parts of the panels, arc spectra in the upper parts, and spark spectra by dotted lines.



The following wave-lengths are in Angstroms.

| Na<br>K ·<br>Li | 5889.965<br>5895.932<br>4044<br>4047<br>5802<br>7608<br>7702<br>4132<br>4602<br>6104<br>6707.846* | Tl<br>In<br>Hg | 4202<br>4216<br>5648<br>5724<br>6207<br>6299<br>5351<br>4102<br>4511<br>4046.8<br>4078.1<br>4358.3 | Cu          | 4023<br>4063<br>5105-543*<br>5153-251*<br>5218.202*<br>5700<br>5782.090*<br>5782.159*<br>4055<br>4212<br>4669<br>5209.081* | Mg<br>Sn<br>H | 5168<br>5173<br>5184<br>5529<br>4525<br>5563<br>5589<br>5799<br>6453<br>3970<br>4102<br>4340                                      |
|-----------------|---------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------|
|                 | 4593<br>5664<br>5945<br>6011<br>6213<br>6724<br>6974                                              | , see Ka       | 4916.4<br>4959.7<br>5460.742*<br>5769.598*<br>5790.659*<br>6152<br>6232                            | Zn<br>h der | 5465.489*<br>5472<br>5623<br>4680.138*<br>4722.164*<br>4810.535*<br>4912<br>4925<br>6103<br>6362.345*                      | Не            | 4861<br>6563<br>3187.743†<br>3888.646†<br>4026.189†<br>4471.477†<br>4713.143†<br>4021.029†<br>5015.675†<br>5875.678†<br>6678.140† |

## TABLE 320.

## SPECTRUM LINES OF THE ELEMENTS.

Table of brighter lines only abridged from more extensive table compiled from Kayser and containing 10,000 lines (Kayser's Handbuch der Spectroscopie, Vol. 6, 1912).

| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |      |                                                                                                                                                                                                                                                  |       |                                                                                                                                                                                                                                                                                                          |                                                                                     |                                                                                              |                                                                                                                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                          |                                                                                                                              |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------|
| Wave-<br>lengths,<br>inter-<br>national                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ele-                                                  | Ir   | tensitie                                                                                                                                                                                                                                         | s.    | Wave-<br>lengths,<br>inter-<br>national                                                                                                                                                                                                                                                                  | Ele-                                                                                | Iı                                                                                           | tensitie                                                                                                                                                              | es.                                          | Wave-<br>lengths,<br>inter-<br>national                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ele-<br>ment.                                                                                 | 1                                        | Intensit                                                                                                                     | ies   |
| Ang-<br>stroms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ment.                                                 | Arc. | Spark.                                                                                                                                                                                                                                           | Tube. | Ang-<br>stroms.                                                                                                                                                                                                                                                                                          | ment.                                                                               | Arc.                                                                                         | Spark.                                                                                                                                                                | Tube.                                        | Ang-<br>stroms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ment.                                                                                         | Arc.                                     | Spark.                                                                                                                       | Tube. |
| 3802.98 08.21 10.73 14.45 19.65 22.15 28.47 29.35 32.30 36.83 38.29 38.29 45.45 47.98 48.75 51.02 56.50 68.60 4.11 71.65 73.67 73.07 73.07 73.07 73.07 73.07 73.07 73.07 73.07 73.07 73.07 73.07 39.05 55 05.5 06.34 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.14 07.15 05.5 05.5 05.5 06.34 07.14 07.14 07.14 07.14 07.14 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 07.15 | Nb I Nh Ra Lu Rhh Rh | 15   | 4 — 20 20 20 15 10 15 15 10 15 15 10 10 15 15 10 10 15 10 10 15 10 10 12 15 15 10 10 12 15 15 10 10 12 15 15 10 10 12 15 15 10 10 12 15 15 15 10 10 12 15 15 15 10 12 15 15 15 10 12 12 15 15 15 10 12 12 15 15 15 15 15 15 15 15 15 15 15 15 15 | 10    | 3968. 48 72.01 74.71 76.85 80. 43 81.68 81.89 82.60 88.00 88.50 98.96 90.97 05.50 05.73 08.73 19.62 22.70 23.35 23.71 25.1 30.80 33.36 33.36 33.36 33.36 34.48 35.62 44.15 45.82 46.60 46.6 47.21 48.73 55.53 57.84 58.97 77.34 77.37 77.75 77.97 79.73 80.62 86.70 92.68 90.80 410.74 00.77 70.78 79.73 | Cauerth Embry Nylazrzyy Procuvse F. M. A. S. M. | 30<br>20<br>15<br>20<br>15<br>12<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 40<br>20<br>5<br>10<br>12<br>20<br>15<br>12<br>12<br>10<br>20<br>8<br>8<br>10<br>10<br>20<br>8<br>8<br>15<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10 | 4116.50 18.48 23.24 28.3 28.70 28.91 29.75 30.42 35.29 35.80 35.81 42.86 43.14 42.86 43.14 49.20 51.12 49.20 51.12 49.20 51.12 49.20 51.12 49.20 51.12 49.20 51.12 49.20 51.12 49.20 51.12 49.20 51.12 49.20 51.12 49.20 51.12 49.20 51.13 58.62 70 53.21 62.70 79.43 80.04 420.56 60.63 60.63 60.63 60.63 60.72 60.72 60.72 60.72 60.72 60.72 60.72 60.72 60.72 60.73 60.74 60.64 60.60 60.63 60.64 60.60 60.63 60.64 60.60 60.63 60.64 60.60 60.63 60.64 60.60 60.63 60.64 60.60 60.63 60.64 60.60 60.63 60.64 60.60 60.63 60.64 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 60.65 6 | VPLaYIRhuEddhos NbbYPrSZrrnbSAArSNbbmmSeGaYGePrXLurnbARbmeEmubPzrhDyDrSrRbbIPrreGeaXrrbPbXFSC | 15 15 15 15 15 15 15 15 15 15 15 15 15 1 | 5 10 15 8 10 50 10 10 5 4 4 4 8 8 10 • 15 4 5 10 20 20 10 15 10 9 15 10 9 15 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10 |       |

SMITHSONIAN TABLES.

## SPECTRUM LINES OF THE ELEMENTS.

| Wave-<br>lengths,<br>inter-                                                                                                                                                                                                                                                                                                                                                  | Ele-                                                             | I                                                                    | ntensity                                                                                   |       | Wave-<br>lengths,<br>inter-<br>national                                                                                                                                                                                                                                                                                                   | Ele-                                                                     | In                                                            | tensity.                                                                                                                             |       | Wave-<br>lengths,<br>inter-<br>national                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ele-                                                                                                                                                                                         | I                                            | ntensity | ٧.    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------|-------|
| national<br>Ang-<br>stroms.                                                                                                                                                                                                                                                                                                                                                  | ment.                                                            | Arc.                                                                 | Spark.                                                                                     | Tube. | Ang-<br>stroms.                                                                                                                                                                                                                                                                                                                           | ment.                                                                    | Arc                                                           | Spark.                                                                                                                               | Tube. | Ang-<br>stroms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ment.                                                                                                                                                                                        | Arc.                                         | Spark.   | Tube. |
| 4253.61 54.34 54.42 59.60 60.84 73.96 74.80 86.97 4301.11 02.12 02.28 03.61 05.49 05.78 07.92 08.1 119.60 25.77 25.78 26.36 30.47 33.77 40.67 43.69 48.01 49.65 55.47 75.58 68.30 74.51 74.81 74.94 79.77 81.66 82.8 83.55 84.73 86.9 93.17 95.24 99.74 98.03 4401.54 04.75 08.83 10.98 93.17 05.24 95.74 98.03 98.98 93.17 120.466 24.36 29.23 34.26 48.11 51.56 68.30 59.8 | YV Zro Moo See V Pb V X V XY Ni Fe V Pr I Mo Os Sm Pr I ENb Pt X | 12 15 15 12 10 11 12 20 10 10 11 12 12 12 12 12 12 12 12 12 12 12 12 | 12 8 20 5 10 10 15 15 15 15 10 10 10 11 12 12 10 10 11 15 15 15 15 15 15 15 15 15 15 15 15 | 10    | 4477.77 96.43 98.76 4510.15 22.59 24.74 54.97 55.52 72.74 73.99 74.26 85.47 89.35 94.99 4603.03 66.77 07.34 69.22 24.28 25.40 27.29 24.28 33.86 34.02 27.98 33.86 61.92 66.65 71.24 72.12 75.36 80.138 80.73 81.98 80.74 81.93 68.68 67 91.92 66.65 71.24 72.12 75.36 80.138 80.73 80.73 81.93 80.73 81.93 80.73 81.93 82.93 83.86 838.13 | Em<br>Ra<br>Zr<br>Br<br>I<br>Ni<br>Zn<br>Bi<br>Se<br>Tl<br>Br<br>Cl<br>I | 15   12   12   13   30   15   15   15   15   15   15   15   1 | 20   10   10   20   20   12   15   10   15   12   15   10   15   10   15   10   15   10   15   10   15   10   15   10   15   10   10 | 10    | 4994. I3 5°035.36 53.30 55.35.08 56.20 (I.10) 63.78 72.68 83.60 64.51 5206.05 90.08 24.70 56.95 92.23 95.62 5330.65 532.81 32.8 35.14 55.49 76.91 80.52 76.91 80.52 76.91 80.52 76.91 80.52 80.62 80.52 76.91 80.52 80.62 80.52 76.91 80.95 90.78 85504.26 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 80.52 8 | Lui W Lu Sr I Pdd Mg Cr C Cr AW Sr X Pd O Br Sn NYT I Nyo Se Se Pd X I Ag Lui Sr I Sr MW Sr Mo Pd NSn O Sa Pbs I As Y Pd V Mo A Raa R Nei Mho Nao Nao Nho Nho Nho Nho Nho Nho Nho Nho Nho Nh | 12 12 15 15 15 15 15 15 15 15 15 15 15 15 15 | 10 12    |       |

Note. — This table, somewhat unsatisfactory in its abridged form, is included with the hope to occupy its space later with a better table; e.g., no mercury lines appear since the scale of intensity used in the original table results in the intensity of all mercury lines falling below the critical value used in this table.

SMITHSONIAN TABLES.

#### STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

Wave-lengths are in Ångström units (10<sup>-7</sup> mm.), in air at 20° C and 76 cm. of mercury pressure. The intensities run from 1, just clearly visible on the map, to 1000 for the H and K lines; below 1 in order of faintness to 0000 as the lines are more and more difficult to see. This table contains

only the lines above 5.

N indicates a line not clearly defined, probably an undissolved multiple line; s, a faded appearing line; d, a double. In the "substance" column, where two or more elements are given, the line is compound; the order in which they are given indicates the portion of the line due to each element; when the solar line is too strong to be due wholly to the element given, it is represented, -Fe, for example; when commas separate the elements instead of a dash, the metallic lines coincide with the same part of the solar line, Fe, Cr, for example.

Capital letters next the wave-length numbers are the ordinary designations of the lines. A indi-

cates atmospheric lines, (wv), due to water vapor, (O), due to Oxygen.

| Substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wave-                 |            | Inten- | le to water vapo |            | Inten- | Wave-     | Sub- | Inten-      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|--------|------------------|------------|--------|-----------|------|-------------|
| 3047.7258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | Substance. |        | Wave-length.     | Substance. |        |           |      | sity.       |
| 3047.7258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |            |        |                  |            |        |           |      |             |
| 3047.7258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3037.5108             |            |        | 3372.947         |            |        |           |      | 6           |
| 3054,429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3047.725s             | Fe         |        |                  |            |        |           |      | 7           |
| 3057.5528   Ti, Fe   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |            | ,      | 3414.911         |            |        |           |      | 7 6         |
| 3059.2128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |            |        | 3423.848         |            | 8 4 3  |           |      |             |
| 3007.3698   Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |            |        | 0110 0600)       |            |        | 3555.079  |      | 9           |
| 3073.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2067 2608             |            |        | 3440.7025 0      |            |        |           |      | 20          |
| 3078.7698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3073.001              |            |        |                  |            | 6      |           |      | 10          |
| 3088.145s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3078.769s             | Ti, -      |        | 3444.020s        | Fe         | 8 N    |           |      | 20          |
| 3188.656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3088.145s             | Ti         |        | 3446.406         |            | 15     |           |      | 6           |
| 3236.703s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3134.230s             |            |        | 3449.583         |            |        | 3572.712  |      | 6           |
| 329.170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | -, Fe      |        |                  |            |        | 3578.832  |      | 10          |
| 3243.189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |            |        | 3458.601         |            | 8      | 3581.349s |      | 30          |
| 3243.189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3239.170              |            | 7      |                  |            | 6      | 3584.800  |      | 6           |
| 3247.688s         Cu         10         3475.594s         Fe         10         3585.859         Fe           3256.021         Fe?         6         3476.849s         Fe         8         3587.130         Fe           3207.834s         V         6         3483.923         Ni         6d?         3587.370         Co           3271.791         Ti, Fe         6d?         3490.733s         Fe         10 N         3593.636         Cr           3274.096s         Cu         10         3493.114         Ni         10 N         3594.784         Fe           3277.482         Co-Fe         7 d?         3497.982s         Fe         8         3597.854         Ni           3286.898         Fe         7 N         3500.996s         Ni         6d?         3605.479s         Cr           3295.951s         Fe, Mn         6         3510.466         Ni         8         3606.838s         Fe           3302.10s         Na         6         3513.965s         Fe         7         3612.882         Ni         6           3315.807         Ni         7 d?         3513.965s         Fe         7         3612.882         Ni         6 |                       |            |        |                  |            | 6      | 3505.105  |      |             |
| 3256.021   Fe?   6   3476.8498   Fe   8   3587.130   Fe   3267.8348   V   6   3483.923   Ni   6 d?   3587.370   Co   3271.129   Fe   6   3485.493   Fe   Co   6   3588.084   Ni   3271.791   Ti, Fe   6 d?   3490.7338   Fe   Io N   3593.636   Cr   3277.482   Co-Fe   7 d?   3497.9828   Fe   8   3597.854   Ni   3286.898   Fe   7 N   3500.9968   Ni   6 d?   3605.4798   Cr   3295.9518   Fe, Mn   6   3512.785   Co   6   3609.0088   Fe   3315.807   Ni   7 d?   3513.9658   Fe   7   3612.882   Ni   3318.1608   Ti   6   3512.785   Fe   7   3612.882   Ni   6   3320.391   Ni   7   3513.9658   Fe   7   3612.882   Ni   6   336.820   Mg   8 N   3524.4108   Fe   8   3619.539   Ni   3349.597   Ti   7   3524.677   Ni   20   3621.6128   Fe   3361.227   Ti   8   3526.183   Fe   6   3622.1478   Fe                                                                                                                                                                                                                                                                                                                                            | 3243.109<br>3247.688s |            |        |                  |            |        |           |      | 7 6         |
| 3267.8348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3256.021              |            |        |                  |            |        |           |      | 8           |
| 3271.129   Fe   6   3485.493   Fe   Co   6   3588.084   Ni   371.1791   Ti, Fe   6 d.?   3490.7338   Fe   10 N   3593.636   Cr   3277.482   Co-Fe   7 d.?   3497.9828   Fe   8   3597.854   Ni   3286.898   Fe   7 N   3500.9968   Ni   6 d.?   3605.4798   Cr   3295.9518   Fe, Mn   6   3512.785   Co   6   3609.0088   Fe   3302.5108   Na   6   3512.785   Co   6   3609.0088   Fe   3318.1608   Ti   6   3512.785   Fe   7   3612.882   Ni   6   3313.36820   Ni   7   3519.904   Ni   12   3617.9348   Fe   3336.820   Mg   8 N   3524.4108   Fe   8   3619.539   Ni   3349.597   Ti   7   3524.677   Ni   20   3621.6128   Fe   3301.327   Ti   8   3326.183   Fe   6   3622.1478   Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | V          | 6      | 3483.923         |            | 6d?    | 3587.370  |      |             |
| 3271.791   Ti, Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3271.129              |            |        | 3485.493         |            |        | 3588.084  |      | 7 6         |
| 3277.482         Co-Fe         7 d?         3497.982s         Fe         8         3597.854         Ni           3286.898         Fe         7 N         3500.996s         Ni         6 d?         3605.479s         Cr           3295.951s         Fe, Mn         6         3510.466         Ni         8         3606.838s         Fe           3302.510s         Na         6         3512.785         Co         6         3609.008s         Fe           3315.807         Ni         7 d?         3513.965s         Fe         7         3612.882         Ni         6           3320.391         Ni         7         3519.904         N         7         3618.919s         Fe           3336.820         Mg         8 N         3521.410s         Fe         8         3619.539         Ni           3349.597         Ti         7         3524.677         Ni         20         3621.612s         Fe           3301.327         Ti         8         3526.183         Fe         6         3622.147s         Fe                                                                                                                                    |                       |            |        | 3490.733s        |            | 10 N   | 3593.636  |      | 9           |
| 3286.898         Fe         7 N         3500.996s         Ni         6 d?         3605.479s         Cr           3295.951s         Fe, Mn         6         3510.466         Ni         8         3606.838s         Fe           3302.510s         Na         6         3512.785         Co         6         3609.008s         Fe           3315.807         Ni         7 d?         3513.965s         Fe         7         3612.882         Ni         6           3318.160s         Ti         6         3515.206         Ni         12         3617.934s         Fe           3320.391         Ni         7         3519.904         N         7         3618.919s         Fe           3336.820         Mg         8 N         3521.410s         Fe         8         3619.539         Ni           3349.597         Ti         7         3524.677         Ni         20         3621.612s         Fe           3301.327         Ti         8         3526.183         Fe         6         3622.147s         Fe                                                                                                                                        |                       |            |        |                  |            |        | 3594.784  |      | 9<br>6<br>8 |
| 3295.951s   Fe, Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3277.482              |            |        |                  |            |        |           |      |             |
| 3302.510s         Na         6         3512.785         Co         6         3609.008s         Fe         4           3315.807         Ni         7 d?         3513.965s         Fe         7         3612.882         Ni         6           3318.160s         Ti         6         3515.206         Ni         12         3617.934s         Fe           3320.391         Ni         7         3519.904         N         7         3618.919s         Fe           3336.820         Mg         8 N         3521.410s         Fe         8         3619.539         Ni           3349.597         Ti         7         3524.677         Ni         20         3621.612s         Fe           3361.327         Ti         8         3526.183         Fe         6         3622.147s         Fe                                                                                                                                                                                                                                                                                                                                                               |                       |            |        |                  |            |        | 3005.4798 |      | 7 6         |
| 3315,807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | No.        |        |                  |            |        | 3600.0308 |      | 20          |
| 3318.160s   Ti   6   3515.206   Ni   12   3617.934s   Fe   3320.391   Ni   7   3519.904   N   7   3618.919s   Fe   3336.820   Mg   8 N   3521.410s   Fe   8   3619.539   Ni   3349.597   Ti   7   3524.677   Ni   20   3621.612s   Fe   3361.327   Ti   8   3526.183   Fe   6   3622.147s   Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |            |        | 3512.705         |            | 1      | 2612 882  |      | 6 d?        |
| 3320.391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3318.160s             |            |        |                  |            |        | 3617.034S |      | 6           |
| 3336.820   Mg   8 N   3521.410s   Fe   8   3619.539   Ni   3349.597   Ti   7   3524.677   Ni   20   3621.612s   Fe   3361.327   Ti   8   3526.183   Fe   6   3622.1478   Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | Ni         | 7      |                  |            |        |           |      | 20          |
| 3349.597   Ti   7   3524.677   Ni   20   3621.6128   Fe   3361.327   Ti   8   3526.183   Fe   6   3622.1478   Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | Mg         | 8 N    |                  |            | 8      | 3619.539  |      | 8           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3349-597              | Ti         | 7      | 3524.677         |            |        |           |      | 6           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |            | 8      | 3526.183         |            |        |           |      | 6           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3365.908              | Ni         | 6      | 3526.988         | Co         | 6      | 3631.605s | Fe   | 15          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |            |        |                  |            | 0      |           |      |             |
| 3369.713 Fe, Ni 6 3533.156 Fe 6 3642.820 Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3309.713              | re, Mi     | 0      | 3533.150         | ге         | 0      | 3042.820  | 11   | 7           |

Corrections to reduce Rowland's wave-lengths to standards of Table 314 (the accepted standards, 1913). Temperature 15° C. pressure 760 mm.

15°C, pressure 760 mm.

The differences "(Fabry-Buisson-arc-iron)—(Rowland-solar-iron)" lines were plotted, a smooth curve drawn, and the following values obtained:

Wave-length 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700. Correction -.106 -.115 -.124 -.137 -.148 -.154 -.155 -.140

H. A. Rowland, "A preliminary table of solar-spectrum wave-lengths," Astrophysical Journal, 1-6, 1895-1897.

SMITHSONIAN TABLES.

## STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

| Wave-length.           | Substance.  | Inten-<br>sity. | Wave-length.           | Substance.       | Intensity. | Wave-length.            | Substance.  | Inten-<br>sity. |
|------------------------|-------------|-----------------|------------------------|------------------|------------|-------------------------|-------------|-----------------|
| 3647.988s              | Fe          | 12              | 3826.027 <b>s</b>      | Fe               | 20         | 4045.975s               | Fe          | 30              |
| 3651.247               | Fe,-        | 6               | 3827.980               | Fe               | 8          | 4055.7018               | Mn          | 6               |
| 3651.614               | Fe          | 7 6             | 3829.501s              | Mg               | 10         | 4057.668                | -           | 7               |
| 3676.457               | Fe, Cr      |                 | 3831.837               | Ni               | 6          | 4063.759s               | Fe          | 20              |
| 3680.069s              | Fe<br>Fe    | 7d?             | 3832.450s              | Mg<br>Fe         | 15         | 4068.137<br>4071.908s   | Fe-Mn<br>Fe | 6               |
| 3684.258s              | Ti          | rod?            | 3834.364<br>3838.435s  | Mg-C             |            | 4077.885s               | Sr          | 15              |
| 3685.339<br>3686.141   | Ti-Fe       | 6               | 3840.580s              | Fe-C             | 25<br>8    | 4102.000H8              | H. In       | 40N             |
| 3687.610s              | Fe          | 6               | 3841.195               | Fe-Mn            | 10         | 4121.4778               | Cr-Co       | 6d?             |
| 3689.614               | Fe          | 6               | 3845.606               | C-Co             | 8d?        | 4128.251                | Ce-V,-      | 6d              |
| 3701.234               | Fe          | 8               | 3850.118               | Fe-Cr            | 10         | 4132.235                | Fe-Co       | 10              |
| 3705.708s              | Fe          |                 | 3856.524s              | Fe               | 8          | 4137.156                | Fe          | 6               |
| 3706.175               | Ca, Mn      | 6d?             | 3857.805               | Cr-C             | 6d?        | 4140.089                | Fe          | 6               |
| 3709.389s              | Fe          | 8               | 3858.442               | Ni               | 7          | 4144.038                | Fe          |                 |
| 3716.5918              | Fe          | 7               | 3860.055s              | Fe-C             | 20         | 4167.438                | -           | 15              |
| 3720.084s              | Fe          | . 40            | 3865.674               | Fe-C             | 7 6        | 4187.204                | Fe          | 6               |
| 3722.692S              | Ni          | 10              | 3872.639               | Fe               |            | 4191.595                | Fe          | 6               |
| 3724.526               | Fe          | 6               | 3878.152               | Fe-C             | 8          | 4202.198s               | Fe          | 8               |
| 3732.545s              | Co-Fe       | 6               | 3878.720               | Fe               | 7Nd?       | 4226.904sg              | Ca          | 20 d?           |
| 3733.469s              | Fe-         | 7d?             | 3886.434s              | Fe               | 15         | 4233.772                | Fe          | 6               |
| 3735.0148              | Fe          | 40              | 3887.196               | Fe               | 7<br>8d    | 4236.112                | Fe          | 8               |
| 3737.281s              | Fe          | 30              | 3894.211               | 72.              |            | 4250.287s               | Fe          | 8               |
| 3738.466               | E- T:       | 6               | 3895.803               | Fe               | 7 8        | 4250.945s               | Fe          | 8 8             |
| 3743.508               | Fe-Ti<br>Fe | 6 8             | 3899.850               | Fe<br>Cr, Fe, Mo |            | 4254.505s               | Cr<br>Fe    |                 |
| 3745.717S              | Fe          | 6               | 3903.090               | Cr, re, Mo       | 10<br>8d   | 4260.640s               | Fe          | 10              |
| 3746.058s<br>3748.408s | Fe          | 10              | 3904.023<br>3905.660s  | Si               | 12         | 4271.9348               | Cr          | 7d?             |
| 3740.4008              | Fe          | 20              | 3905.0008              | Fe               | 10         | 4274.958s<br>4308.081sG | Fe          | 6               |
| 3749.631s<br>3753.732  | Fe-Ti       | 6d?             | 3920.410               | Fe               | 10         | 4325.939s               | Fe          | 8               |
| 3758.375s              | Fe          | 15              | 3923.054               | Fe               | 12d?       | 4340.634Hy              | H           | 20N             |
| 3759.447               | Ti          | 12d?            | 3928.075s              | Fe               | 8          | 4376.107s               | Fe          | 6               |
| 3760.196               | Fe          | 5               | 3930.450               | Fe               | 8          | 4383.720s               | Fe          | 15              |
| 3761.464               | Ti          | 7               | 3933.523               | -                | 8N         | 4404.9278               | Fe          | IO              |
| 3763.945s              | Fe          | 10              | 3933.825sK             | Ca               | 1000       | 4415.293s               | Fe          | 8               |
| 3765.689               | Fe,         | 6               | 3934.108               | Co, V-Cr         | 8N         | 4442.510                | Fe          | 6               |
| 3767.3418              | Fe          | 8               | 3944.160s              | Al               | 15         | 4447.892s               | Fe          | 6               |
| 3775.717               | Ni          | 7 6             | 3956.819               | Fe               |            | 4494.738s               | Fe          | 6               |
| 3783.674s              | Ni          |                 | 3957.177S              | Fe-Ca            | 7d?        | 4528.798                | Fe          | 8               |
| 3788.046s              | Fe          | 9               | 3961.674s              | Al               | 20         | 4534.139                | Ti-Co       | 6<br>6d?        |
| 3795.147s              | Fe          |                 | 3968.350               | -, Zr            | 6N         | 4549.808                | Ba          | 8               |
| 3798.655s              | Fe          | 6               | 3968.625sH             | Ca               | 700<br>6N  | 4554.2118               | Ti-         | 6               |
| 3799.693s              | Fe<br>Fe    | 7 6             | 3968.886               | Fe               | IO         | 4572.156s<br>4603.126   | Fe          | 6               |
| 3805.486s              | Mn-Fe       | 8d?             | 3969.413               | Co-Fe            | 6d?        | 4629.5218               | Ti-Co       | 6               |
| 3806.865               | Ni-re       | 6               | 3974.904<br>3977.891s  | Fe               | 6          | 4679.0278               | Fe          | 6               |
| 3807.293               | V-Fe        | 6               | 3977.8918<br>3986.903s | -                | 6          | 4703.1778               | Mg          | 10              |
| 3814.698               | V-1 C       | 8               | 4005.408               | Fe               | 7          | 4714.599s               | Ni          | 6               |
| 3815.987s              | Fe          | 15              | 4030.918s              | Mn               | rod?       | 4736.963                | Fe          | 6               |
| 3820.586sL             |             | 25              | 4033.2248              | Mn               | 8d?        | 4754.225S               | Mn          | 7 6             |
| 3824.591               | Fe          | 25              | 4034.644s              | Mn               | 6d         | 4783.613s               | Mn          | 6               |
|                        |             |                 |                        |                  |            |                         | 1           |                 |

Corrections to reduce Rowland's wave-lengths to standards of Table 314 (the accepted standards, 1913). Temperature  $15^{\circ}$  C, pressure 760 mm.:

Wave-length 3600, 3700, 3800, 3900, 4000, 4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, Correction -.155 -.140 -.141 -.144 -.148 -.152 -.156 -.151 -.157 -.172 -.176 -.179 -.179,

SMITHSONIAN TABLES.

## STANDARD SOLAR WAVE-LENGTHS. ROWLAND'S VALUES.

| Wave-length.            | Substance.  | Inten-<br>sity. | Wave-length.           | Substance.   | Inten-<br>sity. | Wave-length.                           | Sub-<br>stance. | Inten-<br>sity. |
|-------------------------|-------------|-----------------|------------------------|--------------|-----------------|----------------------------------------|-----------------|-----------------|
| 4861.527sF              | H<br>Fe     | 30<br>6         | 5948.765s              | Si<br>Fe     | 6               | 6563.045sC                             | H<br>Fe         | 40<br>6         |
| 4890.948s<br>4891.683   | Fe          | 8               | 5985.040s<br>6003.239s | Fe           | 6               | 6593.161s<br>6867.457 <b>s</b> B       | A(O)            | 6d?             |
| 4919.1748               | Fe          | 6               | 6008.785s              | Fe           | 6               | 6868.336 }s                            | A(O)            | 6               |
| 4920.685                | Fe          | 10              | 6013.7158              | Mn           | 6               | 6868.478 }s                            | A(O)            | 6               |
| 4957.785s               | Fe          | 8               | 6016.861s              | Mn           | 6               | 6869.1428                              | A(O)            | 7               |
| 5050.008s               | Fe          | 6               | 6022.016s              | Mn           | 6               | 6860.2528                              | A(O)            | 6               |
| 5167.497sb4             | Mg          | 15              | 6024.281s              | Fe           | 7               | 6870.116                               | A(O)            | 7 d             |
| 5171.778s               | Fe          | 6               | 6065.709s              | Fe           | 7 6             | 0070.249                               | A(O)            | 754             |
| 5172.856sb <sub>2</sub> | Mg          | 20              | 6102.392s              | Fe           |                 | 6871.180s                              | A(O)            | 8               |
| 5183.791sb <sub>1</sub> | Mg          | 30              | 6102.9378              | Ca           | 9 6             | 6871.532 <b>s</b>                      | A(O)            | 10              |
| 5233.1228               | Fe          | 7 6             | 6108.3348              | Ni           |                 | 6872.486s                              | A(O)            | 11              |
| 5266.738s               | Fe          | 6<br>8d?        | 6122.4348              | Ca<br>Fe     | 10              | 6873.080s                              | A(O)            | 12              |
| 5269.723sE              | Fe<br>Fe    | 6 6             | 6136.829s              | Fe           |                 | 6874.037 <b>s</b><br>6874.899 <b>s</b> | A(O)            | 12              |
| 5283.802s               | Fe          |                 | 6137.915<br>6141.938s  | Fe, Ba       | 7               | 6875.830s                              | A(O)<br>A(O)    | 13              |
| 5324.373s<br>5328.236   | Fe          | 7<br>8d?        | 6155.350               | rc, Da       | 7 7             | 6876.958s                              | A(O)            | 13              |
| 5340.121                | Fe          | 6               | 6162.390s              | Ca           | 15              | 6877.882s                              | A(O)            | 13              |
| 5341.213                | Fe          | 1               | 6169.249s              | Ca           | 15              | 6879.288s                              | A(O)            | 12              |
| 5367.669s               | Fe          | 7 6             | 6169.778s              | Ca           |                 | 6880.172s                              | A(O)            | 6               |
| 5370.166s               | Fe          | 6               | 6170.730               | Fe-Ni        | 7 6             | 6884.076s                              | A(O)            | 10              |
| 5383.578s               | Fe          | 6               | 6191.393s              | Ni           | 6               | 6886.000s                              | A(O)            | II              |
| 5397.344s               | Fe          | 7d?             | 6191.779s              | Fe           | 96              | 6886.990s                              | A(O)            | 12              |
| 5405.989s               | Fe          | 6               | 6200.5278              | Fe           | 6               | 6889.192s                              | A(O)            | 13              |
| 5424.290s               | Fe          | 6               | 6213.6445              | Fe           | 6               | 6890.151s                              | A(O)            | 14              |
| 5429.911                | Fe          | 6d?             | 6219.494s              | Fe           | 6               | 6892.618s                              | A(O)            | 14              |
| 5447.130s               | Fe          | 6d?             | 6230.943s              | V-Fe         | 8               | 6893.560s                              | A(O)            | 15              |
| 5528.6418               | Mg<br>Fe    | 8               | 6246.535s              | Fe           | 8               | 6896.289 <b>s</b>                      | A(O)            | 14              |
| 5569.848                | Fe          | 6               | 6252.773s              | -Fe<br>Ni-Fe | 7               | 6897.208s                              | A(O)            | 15              |
| 5573.075<br>5586.991    | Fe          |                 | 6256.572s<br>6301.718  | Fe Fe        |                 | 6900.199s<br>6901.117s                 | A(O)<br>A(O)    | 14              |
| 5588.985s               | Ca          | 7 6             | 6318.239               | Fe           | 7 6             | 6904.362s                              | A(O)            | 15              |
| 561 5.8778              | Fe          | 6               | 6335.554               | Fe           | 6               | 6905.2718                              | A(O)            | 14              |
| 5688.436s               | Na          | 6               | 6337.048               | Fe           | _               | 6908.783s                              | A(O)            | 13              |
| 5711.313s               | Mg          | 6               | 6358.898               | Fe           | 7 6             | 6909.676s                              | A(O)            | 13              |
| 5763.218s               | Fe          | 6               | 6393.820s              | Fe           |                 | 6913.448s                              | A(O)            | 11              |
| 5857.674s               | Ca          | 8               | 6400.2178              | Fe           | 7 8             | 6914.337s                              | A(O)            | II              |
| 5862.582s               | Fe          | 6               | 6411.865s              | Fe           | 7               | 6918.370s                              | A(O)            | 9               |
| 5890.186sD <sub>2</sub> | Na          | 30              | 6421.570s              | Fe           | 7 8             | 6919.250s                              | A(O)            | 9               |
| 5896.155 D <sub>1</sub> | Na          | 20              | 6439.293s              | Ca           |                 | 6923.553s                              | A(O)            | 9               |
| 5901.682s               | A(wv)       | 6               | 6450.033s              | Ca           | 6               | 6924.4278                              | A(O)            | 9               |
| 5914.430s               | -, A(wv)    | 6               | 6494.004s              | Ca           | 6               | 7191.755                               | A, -            | 6N              |
| 5919.860s<br>5930.406s  | A(wv)<br>Fe | 7 6             | 6495.213               | Fe<br>Ti-Fe  | 8               | 7206.692                               | -, A            | 6               |
| 3930.4008               | re          | 0               | 6546.479s              | 11-re        | 0               |                                        |                 |                 |
|                         |             |                 |                        |              |                 |                                        |                 |                 |

Corrections to reduce Rowland's wave-lengths to standards of Table 314 (the accepted standards, 1913). Temperature 15° C, pressure 760 mm.:

| Wave-length<br>Correction | 4800.<br>— .179 | 4900. | 5000.<br>— .173 |       | 5200.<br>— .166 | 5300.<br>— .172 | 5400.<br>— .212 | 5500.<br>—.217   | 5600.<br>— .218 | 5700.<br>— .213 | 5800.<br>— .209 |
|---------------------------|-----------------|-------|-----------------|-------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|
| Wave-length<br>Correction | 5800.           | 5900. | 6000.<br>— .213 | 6100. | 6200.           | 6300.           | 6400.           | 6500.<br>— .210. | 6600.           | 6700.           | 6800.           |

SMITHSONIAN TABLES.

#### SPECTRUM SERIES

In the spectra of many elements and compounds certain lines or groups of lines (doublets, triplets, etc.) occur in orderly sequence, each series with definite order of intensity (generally decreasing with decreasing wave-length), pressure effect, Zeeman effect, etc. Such series generally obey approximately a law of the form

$$\nu = \frac{1}{\lambda} = L - \frac{N}{(m+R)^2},$$

where  $\nu$  is the wave-number in vacuo (reciprocal of the wave-length  $\lambda$ ) generally expressed in waves per c.n; m is a variable integer, each integer giving a line of the series; L is the wave number of the limit of the series ( $m = \infty$ ); N, the "Universal Series Constant"; and R is a function of m, or a constant in some simple cases. Balmer's formula (1885) results if  $L = N/m^2$ , where n is another variable integer and R = 0. Rydberg's formula (1880) makes R a constant, and L is not known to be connected with N. Other formulae have been used with more success. Mogendorff (1906) requires R = constant/m, while Ritz (1903) has  $R = \text{constant}/m^2$ . Often no simple formula fits the case; either R must be a more complex function of m, or the shape of the formula is incorrect. Bohr's theory (see also Table 515) gives for Hydrogen

$$N = \{2\pi^2 m e^4 (M + m)\}/Mh^3,$$

where e and m are the charge and mass of an electron, M the atomic weight, and h, Planck's constant. The best value for N is 10,078.7 international units (Curtis, Birge, Astrophys. J. 32, 1910). The theory has been elaborated by Sommerfeld (Ann. der Phys. 1916), and the present indications are that N is a complex function varying somewhat from element to element.

element to element.

Among the series (of singles, doublets, etc.), there is apt to be one more prominent, its lines easily reversible, called the principal series, P(m). With certain relationships to this there may be two subordinate series, the first generally diffuse, D(m), and another, S(m). Related to these there is at times another, the Bergmann series B(m). m is the variable integer first used above and indicates the order of the line.

The following laws are in general true among these series: (1) In the P(m) the components of the lines, if double, triple, etc., are closer with increasing order; in the subordinate series the distance of the components (in vibration number) remains constant. (2) Further, in two related D(m) and S(m),  $\Delta \nu$  (vibration number difference) remains the same. (3) The limits (L) of the subordinate series, D(m) and S(m), are the same. (4)  $\Delta \nu$  of the subordinate series is the same  $\Delta \nu$  as for the first pair of the corresponding P(m). (5) The limits (L) of the components of the doublets (triplets, etc.) of the P(m) are the same. (6) The difference between the vibration numbers of the end of the P(m) and of the two corresponding subordinate series gives the vibration number of the first term of the P(m). The first line of the S(m) coincides with the first line of the P(m) (Rydberg-Schuster law).

In the spectrum of an element several of these families of series P(m), D(m), S(m), B(m) may be found. For further information see Baly's Spectroscopy and Konen's Das Leuchten der Gasen, 1913, S(m), S(m),

it becomes a constant term, viz. VS(1).

Then a single line system is represented as follows:

$$P'(m) = VS'(1) - VP'(m);$$
  $D'(m) = VP'(1) - VD'(m);$   $S'(m) = VP'(1) - VS'(m);$   $\{B'(m) = VD'(1) - VB'(m)\}.$ 

A system of double lines would be represented as follows:

$$\begin{array}{lll} P_1''(m) &= VS''(1) - VP_1''(m); & D_1''(m) &= VP''(1) - VD''(m); \\ P_2''(m) &= VS''(1) - VP_2''(m); & D_2''(m) &= VP''(1) - VD''(m); \\ S_1''(m) &= VP_1''(1) - VS''(m); & \{B_1''(m) &= VD''(1) - VB''(m)\}; \\ \{B_2''(m) &= VD''(1) - VB''(m); & \{B_2''(m) &= VD''(1) - VB''(m)\}; \end{array}$$

And similarly for a series of triplets, etc.

Series Spectra of the Elements. — The ordinary spectrum of H contains 3 series of the same kind: one in the; Schumann region,  $\nu = N(1/\tau^2 - 1/n^2)$ , n, 2, 3, ...; one in the visible,  $\nu = N(1/\tau^2 - 1/n^2)$ , n, 3, 4, 5, ...; and one in the infrared,  $\nu = N(1/\tau^2 - 1/n^2)$ , n, 4, 5, 6, ... He has three systems of series, one "enhanced," including the Pickering series formerly supposed to be due to H. The next two tables give some of the data for other elements.



SERIES SYSTEM OF POTASSIUM.

BMITHSONIAN TABLES.

## TABLE 323. - Limits of Some of the Series.

|         | $P_1(\infty)$ | $\begin{vmatrix} D_1(\infty) \\ = S_1(\infty) \end{vmatrix}$ | $B_1(\infty)$ | P₂(∞)            | $D_2(\infty) = S_2(\infty)$ | B <sub>2</sub> (∞) | $P_3(\infty)$ | $D_{3}(\infty)$ $= S_{3}(\infty)$ | B <sub>3</sub> (∞)         | R(∞)   |
|---------|---------------|--------------------------------------------------------------|---------------|------------------|-----------------------------|--------------------|---------------|-----------------------------------|----------------------------|--------|
| H<br>He | 48,764        | 27,429<br>27,173                                             | 12,186        | 48,764<br>38,453 | 27,419<br>{ 29,221          | 12,186             | 48,744        | 27,429                            | 12,186                     | _      |
| Li      | 32,031        | -7,273                                                       |               | 43,484           | 28,581                      | 12,202             | _             | _                                 | _                          | _      |
| Na      |               |                                                              | _             | *41,445          | { 24,472<br>24,489          | 12,274             | _             | _                                 |                            | _      |
| K       | _             | _                                                            |               | 35,006           | 21,963                      | 13,471             | -             | -                                 | -                          | _      |
| Rb      | _             | _                                                            | _             | 33,685           | 20,868                      | 14,330             | _             | _                                 | _                          | _      |
| Cs      | _             | -                                                            | -             | 31,407           | 19,674                      | 16,809<br>16,907   | _             | _                                 | _                          | -      |
| Cu      | -             |                                                              | _             | 62,306           | 31,523<br>31,771            | 12,372             | _             | -                                 | -                          | _      |
| Ag      | _             | _                                                            | -             | 61,093           | 30,621                      | 12,351             | -             | _                                 | _                          | -      |
| Mg      | _             | 26,613                                                       | _             | ?                | ?                           | 5                  | 20,467        | 39,752<br>39,793<br>39,813        | 13,707                     | -      |
| Ca      | _             | 27,510                                                       | _             | ?                | 60,423<br>60,646            | 28,929             | 17,761        | { 33,983<br>34,089                | 28,929<br>28,950           | 49,353 |
| Sr      | mg 400        | 25,745                                                       | _             | _                | 55,029<br>55,830            | _                  | _             | 34,142<br>31,026<br>31,420        | 28,964<br>27,605<br>27,705 | 45,895 |
| Ba      | _             | _                                                            |               | _                | { 49,926 51,616             | -                  | 3             | 31,607                            | 27,766                     | 48,318 |

For the series of Zn, Cd, Hg, Al, Sn, Tl, O, S, Sn, see original reference. \*48 lines have been measured in this series from 16,956 to 41,417.

## TABLE 324. — First Terms of Some of the Series. Vibration Number Differences of Pairs $\Delta \nu$ , and Triplets $\Delta \nu_1$ , $\Delta \nu_2$ .

For the P(m) and the S(m) is given only the first or second term, since the term with index 0 may be omitted as coinciding with the first term of the S(m) or P(m) respectively. Consequently the numbers always proceed from greater to smaller wave-lengths. Which is the common line can always be recognized from the vibration numbers. See figure on the preceding page. The vibration differences can be obtained from Table 323.

|                        | P(I) L                                                                                                                                                                                        | D(1) S(1)                                                                                                                                                                                                                 | B(1)                                                                 |                | P(1)     | D(1)                                                                                                         | S(I)                                                                                                              | B(1)                                                                          |                                                             | $\Delta \nu$                                                                                                   | $\Delta \nu_1$ | $\Delta \nu_2$ |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------|----------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------|----------------|
| He Li Na K Rb Cs Cu Ag | 4,857   II<br>9,231   II<br>14,993   II<br>16,973   II<br>13,043   II<br>13,043   II<br>12,857   II<br>12,877   II<br>11,178   II<br>30,783   II<br>30,783   II<br>30,472   II<br>30,551   II | 5,233 9,871 3,970 13,729 7,114 14,148 6,379 12,301 12,108 7,766 8,532 8,040 6,538 7,93 6,538 7,93 6,776 7,52 2,767 6,803 3,321 7,357 2,767 6,803 8,271 12,352 8,240 12,583 8,271 12,631 12,1352 1,352 34,135 5,739 34,043 | 5348<br>5351<br>5347<br>5416<br>6592<br>7437<br>9972<br>9875<br>5495 | Mg<br>Ca<br>Sr | 6650<br> | 11,763<br>11,541<br>5,019<br>5,125<br>5,177<br>19,390<br>9,959<br>9,159<br>3,842<br>3,655<br>3,260<br>12,176 | 19,346 19,326 19,285 19,828 25,414 25,191 16,381 16,329 23,715 23,518 41,721 14,533 141,721 14,533 141,135 20,261 | 6,720  22,153 21,834 21,820 21,799  20,591 20,533 20,435 13,804 13,523 12,645 | Hee Naa K Rb CS Cu Agg Mg Ca Sr Ba Zn Cd Hg Al In Tl O S Se | 1<br>17,58<br>237,552<br>249,921<br>91,223<br>801,1690<br>872?<br>2484?<br>——————————————————————————————————— |                |                |

## TABLE 325. - Index of Refraction of Glass.

Indices of refraction of optical glass made at the Bureau of Standards. Correct probably to 0.00001. The composition given refers to the raw material which went into the melts and does not therefore refer to the composition of the finished glass.

| Melt.                                                                                                                                                                                      | 123                                              | 241                                             | 135                                           | 116                                              | 188                                                | 151                                    | 163                                         | 76                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-----------------------------------------------|--------------------------------------------------|----------------------------------------------------|----------------------------------------|---------------------------------------------|---------------------------------------------------------|
| Wave-length.                                                                                                                                                                               | Ordinary<br>crown.                               | Borosili-<br>cate<br>crown.                     | Barium<br>flint.                              | Light<br>barium<br>crown.                        | Light flint.                                       | Dense<br>barium<br>crown.              | Medium<br>flint.                            | Dense flint.                                            |
| Hg 4046.8<br>Hg 4078.1<br>H 4340.7                                                                                                                                                         | 1.53189<br>1.53147<br>1.52818                    | 1.53817<br>1.53775<br>1.53468                   | 1.58851<br>1.58791<br>1.58327                 | 1.59137<br>1.59084<br>1.58698                    | 1.60507<br>1.60430<br>1.59860                      | 1.63675<br>1.63619<br>1.63189          | 1.65788<br>1.65692<br>1.64973               | 1.69005<br>1.68894<br>1.68079                           |
| Hg 4358.6<br>H 4861.5<br>Hg 4916.4                                                                                                                                                         | 1.52798<br>1.52326<br>1.52283                    | 1.53450<br>1.53008<br>1.52967                   | 1.58299<br>1.57646<br>1.57587                 | 1.58674<br>1.58121<br>1.58071                    | 1.59826<br>1.59029<br>1.58958                      | 1.63163<br>1.62548<br>1.62492          | 1.64931<br>1.63941<br>1.63854               | 1.68030<br>1.66911<br>1.66814                           |
| Hg 5461.0<br>Hg 5769.6<br>Hg 5790.5                                                                                                                                                        | 1.51929<br>1.51771<br>1.51760                    | 1.52633<br>1.52484<br>1.52475                   | 1.57105<br>1.56894<br>1.56881                 | 1.57657<br>1.57473<br>1.57460                    | 1.58380<br>1.58128<br>1.58112                      | 1.62033<br>1.61829<br>1.61817          | 1.63143<br>1.62834<br>1.62815               | 1.66016<br>1.65671<br>1.65650                           |
| Na 5893.2<br>Hg 6234.6<br>H 6563.0                                                                                                                                                         | 1.51714<br>1.51573<br>1.51458                    | 1.52430<br>1.52297<br>1.52188                   | 1.56819<br>1.56634<br>1.56482                 | 1.57406<br>1.57242<br>1.57107                    | 1.58038<br>1.57818<br>1.57638                      | 1.61756<br>1.61576<br>1.61427          | 1.62725<br>1.62458<br>1.62241               | 1.65548<br>1.65250<br>1.65007                           |
| Li 6708.2<br>K 7682.0                                                                                                                                                                      | 1.51412<br>1.51160                               | 1.52145                                         | 1.56423                                       | 1.57054<br>1.56762                               | 1.57567<br>1.57183                                 | 1.61369                                | 1.62157<br>1.61701                          | 1.64913<br>1.64405                                      |
|                                                                                                                                                                                            |                                                  |                                                 | (Percenta                                     | ge compositi                                     | on)                                                |                                        |                                             |                                                         |
| SiO <sub>2</sub><br>Na <sub>2</sub> O<br>K <sub>2</sub> O<br>B <sub>2</sub> O <sub>3</sub><br>BaO<br>ZnO<br>As <sub>2</sub> O <sub>3</sub><br>CaO<br>PbO<br>Sb <sub>2</sub> O <sub>3</sub> | 67.0<br>12.0<br>5.0<br>3.5<br>10.6<br>1.5<br>0.4 | 64.2<br>9.4<br>8.3<br>11.0<br>6.1<br>0.4<br>1.0 | 53.7<br>1.7<br>8.3<br>2.7<br>14.3<br>2.5<br>— | 48.0<br>2.0<br>6.1<br>4.0<br>29.5<br>10.0<br>1.4 | 53.9<br>1.0<br>7.6<br>—<br>—<br>0.3<br>2.0<br>35.2 | 37.0<br>2.7<br>5.0<br>47.0<br>7.7<br>— | 45.6<br>3.4<br>4.1<br>—<br>—<br>3.0<br>44.0 | 39.0<br>3.0<br>4.0<br>————————————————————————————————— |

TABLE 326. - Dispersion of Glasses of Table 325.

| Melt.                           | 123     | 241     | 135     | 116                | 188     | 151                | 163     | 76      |
|---------------------------------|---------|---------|---------|--------------------|---------|--------------------|---------|---------|
| $n_D$ $n_F - n_C$               | 0.00868 | 1.52430 | 1.56819 | 1.57406<br>0.01014 | 1.58038 | 1.61756<br>0.01121 | 1.62725 | 1.65548 |
| $\frac{n_D - 1}{n_F - n_C} = v$ | 59.6    | 63.9    | 48.8    | 56.6               | 41.7    | 55.1               | 36.9    | 34-4    |
| $n_D - n_F$ $n_F - n_{G'}$      | 0.00612 | 0.00578 | 0.00827 | 0.00715            | 0.00991 | 0.00792            | 0.01216 | 0.01363 |
| $n_D - n_C$                     | 0.00256 | 0.00242 | 0.00337 | 0.00299            | 0.00400 | 0.00329            | 0.00484 | 0.0054  |

## TABLE 327. - Glasses Made by Schott and Gen, Jena.

The following constants are for glasses made by Schott and Gen, Jena:  $n_h$ ,  $n_0$ ,  $n_p$ ,  $n_p$ ,  $n_0$ , are the indices of refraction in air for  $A = 0.7682\mu$ ,  $C = 0.6563\mu$ , D = 0.5893, F = 0.4861, G' = 0.4341.  $v = (n_D - 1)/(n_F - n_0)$ . Ultra-violet indices: Simon, Wied. Ann. 53, 1894. Infra-red: Rubens, Wied. Ann. 45, 1892. Table is revised from Landolt, Börnstein and Meyerhoffer, Kayser, Handburgh Schott and Sch buch der Spectroscopie, and Schott and Gen's list No. 751, 1909. See also Hovestadt's "Jena

| Catalogue Type = Designation = Melting Number= v =                                                               | O 546<br>Zinc-Crown.<br>1092<br>60.7                                                                                         | O 381<br>Higher Dis-<br>persion Crown.<br>1151<br>51.8                                                             | O 184<br>Light Silicate<br>Flint.<br>451<br>41.1                                                                   | O 102<br>Heavy Silicate<br>Flint.<br>469<br>33-7                                                                  | O 165<br>Heavy Silicate<br>Flint.<br>500<br>27.6                                                        | S 57 Heaviest Silicate Flint. 163 22.2                                            |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Cd .2837 Cd .2837 Cd .2980 Cd .3403 Cd .3610 H .4340µ H .4861 Na .5893 H .6563 K .7682 B .800µ 1.200 1.600 2.400 | 1.56759<br>1.56372<br>1.55723<br>1.54369<br>1.53897<br>1.52299<br>1.51698<br>1.51446<br>1.51143<br>1.503<br>1.5048<br>1.5048 | 1.57093<br>1.55262<br>1.54664<br>1.53312<br>1.53715<br>1.52002<br>1.51712<br>1.51368<br>1.5069<br>1.5024<br>1.4973 | 1.65397<br>1.63320<br>1.61388<br>1.59355<br>1.59515<br>1.57524<br>1.57119<br>1.56669<br>1.5585<br>1.5535<br>1.5487 | 1.71968<br>1.70536<br>1.67561<br>1.66367<br>1.64485<br>1.64440<br>1.63820<br>1.6373<br>1.6277<br>1.6217<br>1.6131 | 1.85487<br>1.83263<br>1.78800<br>1.77091<br>1.75130<br>1.74368<br>1.73530<br>1.7215<br>1.7151<br>1.7104 | 1.94493<br>1.91890<br>1.88995<br>1.87893<br>1.86702<br>1.8481<br>1.8396<br>1.8316 |

Percentage composition of the above glasses:

- O 546, SiO2, 65.4; K2O, 15.0; Na2O, 5.0; BaO, 9.6; ZnO, 2.0; Mn2O3, 0.1; As2O3, 0.4;

- S 57, SiO2, 21.9; PbO, 78.0; As2O5, O.I.

## TABLE 328. - Jena Glasses.

| No. and Type of Jena Glass.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n <sub>D</sub> for D                                                                                                                               | $n_{\rm F}-n_{\rm C}$                                                                                                                                  | $v = \frac{n_{\rm D} - 1}{n_{\rm F} - n_{\rm C}}$                                                                            | $n_{\mathrm{D}}-n_{\mathrm{A}}$                                                                                                                | $n_{\rm F}-n_{\rm D}$                                                                                                                           | $n_{G'}-n_{F}$                                                                                                                 | Specific<br>Weight.                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| O 225 Light phosphate crown O 802 Boro-silicate crown UV 3199 Ultra-violet crown O 114 Soft-silicate crown O 114 Soft-silicate crown O 104 Soft-silicate crown O 104 Soft-silicate crown O 104 Soft-silicate crown O 602 Brigh-dispersion crown UV 3248 Ultra-violet flint O 381 High-dispersion crown O 602 Baryt light flint S 389 Borate flint O 1026 Extra light flint O 154 Ordinary light flint O 104 Ordinary light flint O 104 Heavy flint O 102 Heavy flint O 105 S 386 Heavy flint S 57 Heaviest flint | 1.5159<br>1.4967<br>1.5035<br>1.5339<br>1.5151<br>1.5149<br>1.5332<br>1.5676<br>1.5686<br>1.5398<br>1.5710<br>1.5900<br>1.7174<br>1.7541<br>1.9170 | .00737<br>0765<br>0781<br>0909<br>0910<br>0943<br>0964<br>1026<br>1072<br>1102<br>1142<br>1327<br>1438<br>1599<br>1919<br>2434<br>2743<br>4289<br>4882 | 70.0<br>64.9<br>64.4<br>50.4<br>55.6<br>51.3<br>53.0<br>51.6<br>47.3<br>43.0<br>41.1<br>39.1<br>33.8<br>20.5<br>27.5<br>21.4 | .00485<br>0504<br>0514<br>0582<br>0577<br>0595<br>0611<br>0644<br>0675<br>0712<br>0711<br>0819<br>0882<br>9965<br>1152<br>1439<br>1607<br>2451 | .00515<br>0534<br>0546<br>0639<br>0642<br>0666<br>0680<br>0727<br>07759<br>0775<br>0810<br>0943<br>1022<br>1142<br>1372<br>1749<br>1974<br>3109 | .00407<br>0423<br>0432<br>0514<br>0521<br>0543<br>0553<br>0596<br>0618<br>0629<br>0669<br>0791<br>0861<br>1921<br>1730<br>2808 | 2.58<br>2.38<br>2.41<br>2.73<br>2.55<br>2.60<br>2.75<br>2.70<br>3.12<br>2.83<br>2.87<br>3.16<br>3.28<br>3.67<br>3.47<br>4.49<br>4.78<br>6.01<br>6.33 |

TABLE 329.— Change of Indices of Refraction for 1° C in Units of the Fifth Decimal Place.

| No. and Designation.                                                                                       | Mean<br>Temp. | С      | D     | F      | G′     | $\frac{-\Delta n}{n}$ 100 |
|------------------------------------------------------------------------------------------------------------|---------------|--------|-------|--------|--------|---------------------------|
| S 57 Heavy silicate flint O 154 Light silicate flint O 327 Baryt flint light O 225 Light phosphate crown . | 58.8°         | 1.204  | 1.447 | 2.090  | 2.810  | 0.0166                    |
|                                                                                                            | 58.4          | 0.225  | 0.261 | 0.334  | 0.407  | 0.0078                    |
|                                                                                                            | 58.3          | —0.008 | 0.014 | 0.080  | 0.137  | 0.0079                    |
|                                                                                                            | 58.1          | —0.202 | 0.190 | —0.168 | -0.142 | 0.0049                    |

TABLE 330. - Index of Refraction of Rock Salt in Air.

| λ(μ).                                                                                                                                                  | n.                                                                                                                                                                        | Obser-<br>ver.                          | λ(μ).                                                                                                                                   | n.                                                                                                                                                                                           | Observer.                         | λ(μ).                                                                                                                                                  | n.                                                                                                                                                                                                  | Obser-<br>ver. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 0.185409<br>.204470<br>.291368<br>.358702<br>.441587<br>.486149<br><br>.58902<br>.58932<br>.656304<br>.706548<br>.766529<br>.76824<br>.78576<br>.88396 | 1.89348<br>1.76964<br>1.61325<br>1.57932<br>1.55962<br>1.55338<br>1.553399<br>1.544340<br>1.544313<br>1.540672<br>1.538633<br>1.536712<br>1.53666<br>1.536138<br>1.534011 | M " " " " " L P L P P L P P P P P P P P | 0.88396<br>.972298<br>.98220<br>1.036758<br>1.1786<br>1.555137<br>1.7680<br>2.073516<br>2.35728<br>2.9466<br>3.5359<br>4.1252<br>4.1252 | 1.534011<br>1.532532<br>1.532435<br>1.531762<br>1.530372<br>1.530374<br>1.528211<br>1.527440<br>1.526554<br>1.525863<br>1.525849<br>1.524534<br>1.523173<br>1.521648<br>1.521625<br>1.518978 | L P L P L " P L " P L P L P P L P | 5.8932<br>6.4825<br>7.0718<br>7.6611<br>7.9558<br>8.8398<br>10.0184<br>11.7864<br>12.9650<br>14.1436<br>14.7330<br>15.3223<br>15.9116<br>20.57<br>22.3 | I.516014<br>I.515553<br>I.513628<br>I.513667<br>I.511062<br>I.506804<br>I.502035<br>I.494722<br>I.481816<br>I.471720<br>I.460547<br>I.454404<br>I.447494<br>I.447494<br>I.441032<br>I.3735<br>I.340 | PLPU           |

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - k\lambda^{2} - h\lambda^{4} \text{ or} = b^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - \frac{M_{3}}{\lambda_{3}^{2} - \lambda^{2}}$$
where  $a^{2} = 2.330165$   $\lambda_{2}^{2} = 0.02547414$   $b^{2} = 5.680137$   $M_{1} = 0.01278685$   $k = 0.0009285837$   $M_{3} = 12059.95$   $\lambda_{1}^{2} = 0.0148500$   $k = 0.00000286086$   $\lambda_{3}^{2} = 3600$ . (P)  $M_{2} = 0.005343924$ 

TABLE 331. - Change of Index of Refraction for 1° C in Units of the 5th Decimal Place.

| 0.202µ +3.134 Mi<br>.210 +1.570 "<br>.224 -0.187 "<br>.298 -2.727 " | 0.441µ -3.425 Mi<br>.508 -3.517 "<br>.643 -3.636 " | C line | 0.760µ |
|---------------------------------------------------------------------|----------------------------------------------------|--------|--------|
|---------------------------------------------------------------------|----------------------------------------------------|--------|--------|

Annals of the Astrophysical Observatory

Annals of the Astrophysical Observatory of the Smithsonian Institution, Vol. I, 1900.

Martens, Ann. d. Phys. 6, 1901, 8, 1902.

RN Rubens and Nichols, Wied. Ann. 60, 1897.

RN Rubens and Nichols, Wied. Ann. 60, 1897.

M Martens, Ann. d. Phys. 6, 1901, 8, 1902. Mi Micheli, Ann. d. Phys. 7, 1902.

TABLE 332. - Index of Refraction of Sylvite (Potassium Chloride) in Air.

| λ(μ).                                                                                                                                              | п                                                                                                                                                                    | Obser-<br>ver.                          | λ(μ).                                                                         | n.                                                                                                                                                                          | Observer.                                      | λ(μ).                                                                                          | n.                                                                                                                                                    | Obser-<br>ver.                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 0.185409<br>.200090<br>.21946<br>.257317<br>.281640<br>.308227<br>.358702<br>.394415<br>.467832<br>.508606<br>.58933<br>.67082<br>.78576<br>.88398 | 1.82710<br>1.71870<br>1.64745<br>1.58125<br>1.55836<br>1.54136<br>1.52115<br>1.51219<br>1.50044<br>1.49620<br>1.49044<br>1.48669<br>1.483282<br>1.481422<br>1.480084 | M " " " " " " " " " " " " " " " " " " " | 1.1786<br>1.7680<br>2.35728<br>2.9466<br>3.5359<br>4.7146<br>5.3039<br>5.8932 | 1.478311<br>1.47824<br>1.475890<br>1.47589<br>1.474751<br>1.473834<br>1.47394<br>1.473049<br>1.473049<br>1.471122<br>1.47129<br>1.470013<br>1.470011<br>1.468804<br>1.46880 | P<br>W<br>P<br>W<br>P<br>W<br>P<br>W<br>P<br>W | 8.2505<br>8.8398<br>10.0184<br>11.786<br>12.965<br>14.144<br>15.912<br>17.680<br>20.60<br>22.5 | 1.462726<br>1.46276<br>1.460858<br>1.46092<br>1.45672<br>1.45673<br>1.44941<br>1.44346<br>1.44385<br>1.43722<br>1.42617<br>1.41403<br>1.3882<br>1.369 | P<br>W<br>P<br>W<br>P<br>W<br>P<br>W<br>P<br>W<br>RN |

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} - k\lambda^{2} - h\lambda^{4} \text{ or} = b^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{M_{2}}{\lambda^{2} - \lambda_{2}^{2}} + \frac{M_{3}}{\lambda_{3}^{2} - \lambda^{2}}$$

$$a^{2} = 2.174967 \qquad \lambda_{2}^{2} = 0.0255550 \qquad b^{2} = 3.866619$$

$$M_{1} = 0.008344206 \qquad k = 0.000513495 \qquad M_{3} = 5569.715$$

$$\lambda_{1}^{2} = 0.0119082 \qquad h = 0.00000167587 \qquad \lambda_{3}^{2} = 3292.47 \qquad (P)$$

 $M_2 = 0.00698382$ W Weller, see Paschen's article. Other references as under Table 331, above.

## TABLES 333-336. INDEX OF REFRACTION.

## TABLE 333. - Index of Refraction of Fluorite in Air.

| λ (μ)                                                                                                                                                                 | n                                                                                                                                                                                                  | Obser-<br>ver | λ (μ)                                                                                                                                                                            | n                                                                                                                                                                                       | Obser-<br>ver | λ (μ)                                                                                                                                          | n                                                                                                                                                                   | Obser-<br>ver.                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 0.1856<br>.19881<br>.21441<br>.22645<br>.25713<br>.32525<br>.34555<br>.39681<br>.48607<br>.58930<br>.65618<br>.68671<br>.71836<br>.76040<br>.8840<br>1.1786<br>1.3756 | 1.50940<br>1.49629<br>1.48462<br>1.47762<br>1.46476<br>1.44987<br>1.44697<br>1.44214<br>1.43713<br>1.43393<br>1.43257<br>1.43200<br>1.43157<br>1.43201<br>1.42982<br>1.42787<br>1.42690<br>1.42641 | S             | 1.4733<br>1.5715<br>1.6206<br>1.7680<br>1.9153<br>1.9644<br>2.0626<br>2.1608<br>2.2100<br>2.3573<br>2.5537<br>2.6519<br>2.7502<br>2.9466<br>3.1430<br>3.2413<br>3.5359<br>3.8306 | 1.42641<br>1.42596<br>1.42596<br>1.42582<br>1.42507<br>1.42437<br>1.42359<br>1.42308<br>1.42288<br>1.42199<br>1.42016<br>1.41971<br>1.41826<br>1.41707<br>1.41612<br>1.41379<br>1.41120 | P             | 4.1252<br>4.4199<br>4.7146<br>5.0092<br>5.3036<br>5.5985<br>5.8932<br>6.4825<br>7.0718<br>7.6612<br>8.2505<br>8.8398<br>9.4291<br>51.2<br>61.1 | 1.40855<br>1.40559<br>1.40238<br>1.39898<br>1.39529<br>1.39142<br>1.38719<br>1.37819<br>1.36805<br>1.35680<br>1.34444<br>1.33079<br>1.31612<br>3.47<br>2.66<br>2.63 | P " " " " " " " " " " " " " " " " " " " |

$$n^{2} = a^{2} + \frac{M_{1}}{\lambda^{2} - \lambda_{1}^{2}} - \epsilon \lambda^{2} - f \lambda^{4} \text{ or } = b^{2} + \frac{M_{2}}{\lambda^{2} - \lambda^{2}} + \frac{M_{3}}{\lambda^{2} - \lambda_{r}^{2}}$$
where  $a^{2} = 2.03882$   $f = 0.00002916$   $M_{3} = 5114.65$ 
 $M_{1} = 0.0062183$   $b^{2} = 6.09651$   $\lambda_{r}^{2} = 1260.56$ 
 $\lambda_{1}^{2} = 0.007706$   $M_{2} = 0.0061386$   $\lambda_{y} = 0.0940\mu$ 
 $\epsilon = 0.0031999$   $\lambda_{y}^{2} = 0.00884$   $\lambda_{r} = 35.5\mu$  (P)

TABLE 334. - Change of Index of Refraction for 1°C in Units of the 5th Decimal Place. C line, -1.220; D, -1.206; F, -1.170; G, -1.142. (Pl)

TABLE 335. - Index of Refraction of Iceland Spar (CaCO3) in Air.

| λ (μ)                                                                 | $n_0$                                                                                  | $n_{e}$                                                                                          | Observer.           | λ (μ)                                                                 | $n_0$                                                                                  | $n_{\epsilon}$                                                                         | Observer. | λ (μ)                                                                                  | no                                                            | $n_{\theta}$                                                                      | Observer.              |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------|
| 0.198<br>.200<br>.208<br>.226<br>.298<br>.340<br>.361<br>.410<br>.434 | 1.9028<br>1.8673<br>1.8130<br>1.7230<br>1.7008<br>1.6932<br>1.6802<br>1.6755<br>1.6678 | 1.5780<br>1.5765<br>1.5664<br>1.5492<br>1.5151<br>1.5056<br>1.5022<br>1.4964<br>1.4943<br>1.4907 | M " " - C M C - M C | 0.508<br>•533<br>•589<br>•643<br>•656<br>•670<br>•760<br>•768<br>•801 | 1.6653<br>1.6628<br>1.6584<br>1.6550<br>1.6544<br>1.6537<br>1.6500<br>1.6497<br>1.6487 | 1.4896<br>1.4884<br>1.4864<br>1.4849<br>1.4846<br>1.4843<br>1.4826<br>1.4826<br>1.4822 | M         | 0.991<br>1.229<br>1.307<br>1.497<br>1.682<br>1.749<br>1.849<br>1.908<br>2.172<br>2.324 | 1.6438<br>1.6393<br>1.6379<br>1.6346<br>1.6313<br>-<br>1.6280 | 1.4802<br>1.4787<br>1.4783<br>1.4774<br>-<br>1.4764<br>-<br>1.4757<br>-<br>1.4739 | C 66 66 66 66 66 66 66 |

C Carvallo, J. de Phys. (3), 9, 1900. M Martens, Ann. der Phys. (4) 6, 1901, 8, 1902. P Paschen, Wied. Ann. 56, 1895.

Pl Pulfrich, Wied. Ann. 45, 1892. RA Rubens-Aschkinass, Wied. Ann. 67, 1899. S Starke, Wied. Ann. 60, 1897.

TABLE 336. - Index of Refraction of Nitroso-dimethyl-aniline. (Wood.)

| λ                                     | n                                         | λ                                         | n                                         | λ                             | n                                         | λ                             | n                                         | λ                             | 72                               |
|---------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------|-------------------------------------------|-------------------------------|-------------------------------------------|-------------------------------|----------------------------------|
| 0.497<br>.500<br>.506<br>.508<br>.516 | 2.140<br>2.114<br>2.074<br>2.025<br>1.985 | •.525<br>•.536<br>•.546<br>•.557<br>•.569 | 1.945<br>1.909<br>1.879<br>1.857<br>1.834 | 0.584<br>.602<br>.611<br>.620 | 1.815<br>1.796<br>1.783<br>1.778<br>1.769 | o.636<br>.647<br>.659<br>.669 | 1.647<br>1.758<br>1.750<br>1.743<br>1.723 | 0.713<br>.730<br>.749<br>.763 | 1.718<br>1.713<br>1.709<br>1.697 |

Nitroso-dimethyl-aniline has enormous dispersion in yellow and green, metallic absorption in violet. See Wood. Phil. Mag. 1903.

# TABLES 337-338. INDEX OF REFRACTION.

## TABLE 337. — Index of Refraction of Quartz (SiO<sub>2</sub>).

| Wave-<br>length.                                                                                             | Index<br>Ordinary<br>Ray.                                                                                                                   | Index<br>Extraordinary<br>Ray.                                                                                                  | Tempera-<br>ture ° C.                     | Wave-<br>length.                                                                                                | Index<br>Ordinary<br>Ray.                                                                                                    | Index<br>Extraordinary<br>Ray.         | Tempera-<br>ture ° C. |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------|
| ,193<br>,193<br>,198<br>,206<br>,214<br>,219<br>,231<br>,257<br>,274<br>,340<br>,396<br>,410<br>,486<br>,589 | 1.67 582<br>.65997<br>.65090<br>.64038<br>.63041<br>.62494<br>.61399<br>.59622<br>.58752<br>.56748<br>.55815<br>.55650<br>.54968<br>1.54424 | 1.68999<br>.67343<br>.66397<br>.65300<br>.64264<br>.63698<br>.62560<br>.60712<br>.59811<br>.57738<br>.56771<br>.56600<br>.55896 | 18 44 44 44 44 44 44 44 44 44 44 44 44 44 | μ<br>0.656<br>.686<br>.760<br>1.160<br>.969<br>2.327<br>.84<br>3.18<br>.63<br>.96<br>4.20<br>5.0<br>6.45<br>7.0 | 1.54189<br>.54099<br>.53917<br>.5329<br>.5216<br>.5156<br>.5039<br>.4944<br>.4799<br>.4679<br>.4569<br>.417<br>.274<br>1.167 | 1.55091<br>.54998<br>.54811<br>Rubens. | 18 ""                 |

Except Rubens' values, - means from various authorities.

TABLE 338. - Indices of Refraction for various Alums.\*

|   |                                                                              | ty.                                                                    | ိပ္ပ                                                      |                                                                     | I                                                                   | ndex of re                                                          | raction for                                                         | the Fraun                                                           | hofer lines                                               |                                                           |                                                                     |
|---|------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|
|   | R                                                                            | Density.                                                               | Temp.                                                     | a                                                                   | В                                                                   | С                                                                   | D                                                                   | E                                                                   | ъ                                                         | F                                                         | G                                                                   |
| I | Aluminium Alums. RAl(SO <sub>4</sub> ) <sub>2</sub> +12H <sub>2</sub> O.†    |                                                                        |                                                           |                                                                     |                                                                     |                                                                     |                                                                     |                                                                     |                                                           |                                                           |                                                                     |
|   | Na<br>NH <sub>3</sub> (CH <sub>3</sub> )<br>K<br>Rb<br>Cs<br>NH <sub>4</sub> | 1.667<br>1.568<br>1.735<br>1.852<br>1.961<br>1.631<br>2.329            | 17-28<br>7-17<br>14-15<br>7-21<br>15-25<br>15-20<br>10-23 | 1.43492<br>.45013<br>.45226<br>.45232<br>.45437<br>.45509<br>.49226 | 1.43563<br>.45062<br>.45303<br>.45328<br>.45517<br>.45599<br>.49317 | 1.43653<br>.45177<br>.45398<br>.45417<br>.45618<br>.45693<br>.49443 | 1.43884<br>.45410<br>.45645<br>.45660<br>.45856<br>.45939<br>.49748 | 1.44185<br>.45691<br>.45934<br>.45955<br>.46141<br>.46234<br>.50128 | 1.44231<br>.45749<br>.45996<br>.45999<br>.46203<br>.46288 | 1.44412<br>.45941<br>.46181<br>.46192<br>.46386<br>.46481 | 1.44804<br>.46363<br>.46609<br>.46618<br>.46821<br>.46923<br>.51076 |
|   |                                                                              | Chrome Alums. RCr(SO <sub>4</sub> ) <sub>2</sub> +12H <sub>2</sub> O.† |                                                           |                                                                     |                                                                     |                                                                     |                                                                     |                                                                     |                                                           |                                                           |                                                                     |
|   | Cs<br>K<br>Rb<br>NH <sub>4</sub><br>Tl                                       | 2.043<br>1.817<br>1.946<br>1.719<br>2.386                              | 6-12<br>6-17<br>12-17<br>7-18<br>9-25                     | 1.47627<br>.47642<br>.47660<br>.47911<br>.51692                     | 1.47732<br>.47738<br>.47756<br>.48014<br>.51798                     | 1.47836<br>.47865<br>.47868<br>.48125<br>.51923                     | 1.48100<br>.48137<br>.48151<br>.48418<br>.52280                     | 1.48434<br>.48459<br>.48486<br>.48744<br>.52704                     | 1.48491<br>.48513<br>.48522<br>.48794<br>.52787           | 1.48723<br>.48753<br>.48775<br>.49040<br>.53082           | 1.49280<br>.49309<br>.49323<br>.49594<br>.53808                     |
| I |                                                                              |                                                                        |                                                           | I                                                                   | ron Alums                                                           | . RFe(SC                                                            | ) <sub>4</sub> ) <sub>2</sub> +12H <sub>2</sub> (                   | D.†                                                                 |                                                           |                                                           |                                                                     |
|   | K<br>Rb<br>Cs<br>NH <sub>4</sub><br>Tl                                       | 1.806<br>1.916<br>2.061<br>1.713<br>2.385                              | 7-11<br>7-20<br>20-24<br>7-20<br>15-17                    | 1.47639<br>.47700<br>.47825<br>.47927<br>.51674                     | 1.47706<br>.47770<br>.47921<br>.48029<br>.51790                     | 1.47837<br>.47894<br>.48042<br>.48150<br>.51943                     | 1.48169<br>.48234<br>.48378<br>.48482<br>.52365                     | 1.48580<br>.48654<br>.48797<br>.48921<br>.52859                     | 1.48670<br>.48712<br>.48867<br>.48993<br>.52946           | 1.48939<br>.49003<br>.49136<br>.49286<br>.53284           | 1.49605<br>.49700<br>.49838<br>.49980<br>.54112                     |

<sup>\*</sup> According to the experiments of Soret (Arch. d. Sc. Phys. Nat. Genève, 1884, 1888, and Comptes Rendus, 1885).
† R stands for the different bases given in the first column.

For other alums see reference on Landolt-Börnstein-Roth Tabellen.

## INDEX OF REFRACTION.

## Selected Monorefringent or Isotropic Minerals.

The values are for the sodium D line unless otherwise stated and are arranged in the order of increasing indices. Selected by Dr. Edgar T. Wherry from a private compilation of Dr. E. S. Larsen of the U. S. Geological Survey.

| Mineral.                      | Formula.                                                                                                                                                                                                                                       | Index of refraction, $\lambda = 0.589\mu$ . |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|                               |                                                                                                                                                                                                                                                |                                             |
| Villiaumite<br>Cryolithionite | NaF<br>3NaF,3LiF,2AlFs                                                                                                                                                                                                                         | 1.328                                       |
| Opal                          | 3NaF.3LiF.2AlF3<br>SiO <sub>2</sub> .nH <sub>2</sub> O<br>CaF <sub>2</sub>                                                                                                                                                                     | 1.406-1.440<br>1.434                        |
| Alum                          | K.O AloO2. 4SO2. 24HoO                                                                                                                                                                                                                         | 1.456                                       |
| Sodalite                      | 3Na <sub>2</sub> U.3Al <sub>2</sub> U <sub>3</sub> .6SlU <sub>2</sub> .2NaCl<br>SiO <sub>2</sub>                                                                                                                                               | 1.483<br>1.486                              |
| Analcite                      | 3Na <sub>2</sub> O.3Al <sub>2</sub> O <sub>3</sub> .6SiO <sub>2</sub> .2NaCl<br>SiO <sub>2</sub><br>Na <sub>2</sub> O.Al <sub>2</sub> O <sub>3</sub> .4SiO <sub>2</sub> .2H <sub>2</sub> O<br>KCl                                              | 1.487                                       |
| Noselite                      | 5Na <sub>2</sub> O.3Al <sub>2</sub> O <sub>3</sub> .6SiO <sub>2</sub> .2SO <sub>3</sub><br>Like preceding + CaO                                                                                                                                | 1.495                                       |
| Hauynite                      | 4Na <sub>2</sub> O. <sub>3</sub> Al <sub>2</sub> O <sub>3</sub> .6SiO <sub>2</sub> .Na <sub>2</sub> S <sub>6</sub>                                                                                                                             | 1.496<br>1.500 ±                            |
| Pollucite                     | $K_2O.Al_2O_3.4SiO_2$<br>$2Cs_2O.2Al_2O_3.9SiO_2.H_2O$                                                                                                                                                                                         | I.500<br>I.525                              |
| Halite                        | NaCl                                                                                                                                                                                                                                           | 1.544                                       |
| Bauxite<br>Pharmacosiderite   | Al <sub>2</sub> O <sub>3</sub> .nH <sub>2</sub> O<br>3Fe <sub>2</sub> O <sub>3</sub> .2As <sub>2</sub> O <sub>5</sub> .3K <sub>2</sub> O.5H <sub>2</sub> O<br>MgO.Al <sub>2</sub> O <sub>3</sub>                                               | 1.570 ±<br>1.676                            |
| Spinel                        | MgO.Al <sub>2</sub> O <sub>3</sub><br>3(Ca, Mg, Mn)O.As <sub>2</sub> O <sub>5</sub>                                                                                                                                                            | I.723 ±<br>I.727                            |
| Periclasite                   | 3(Ca, Mg, Mn)O.As <sub>2</sub> O <sub>5</sub> MgO                                                                                                                                                                                              | 1.736                                       |
| Grossularite                  | 3CaO.Al <sub>2</sub> O <sub>3</sub> .3SiO <sub>2</sub><br>3(Mn, Fe)O.3BeO.3SiO <sub>2</sub> .MnS                                                                                                                                               | 1.736<br>1.739                              |
| Pyrope                        | 3MgO.Al <sub>2</sub> O <sub>3</sub> .3SiO <sub>2</sub><br>As <sub>2</sub> O <sub>3</sub>                                                                                                                                                       | I.745<br>I.755                              |
| Hessonite                     | 3CaO.(Al, Fe) <sub>2</sub> O <sub>3</sub> . <sub>3</sub> SiO <sub>2</sub><br>(Mg, Fe)O.Al <sub>2</sub> O <sub>3</sub><br><sub>3</sub> FeO.Al <sub>2</sub> O <sub>3</sub> . <sub>3</sub> SiO <sub>2</sub><br>FeO.Al <sub>2</sub> O <sub>3</sub> | 1.763                                       |
| Pleonaste                     | 3FeO.Al <sub>2</sub> O <sub>3</sub> .3SiO <sub>2</sub>                                                                                                                                                                                         | 1.770 ±<br>1.778<br>1.800 ±                 |
| Hercynite                     | FeO.Al <sub>2</sub> O <sub>3</sub><br>ZnO.Al <sub>2</sub> O <sub>3</sub>                                                                                                                                                                       | 1.800 ±                                     |
| Spessartite                   | 3MnO.Al <sub>2</sub> O <sub>3</sub> .3SiO <sub>2</sub><br>CaO                                                                                                                                                                                  | 1.811                                       |
| Uvarovite                     | 3CaO.Cr2O3.3SiO2                                                                                                                                                                                                                               | 1.830<br>1.838                              |
| Andradite                     | 3CaO.Fe <sub>2</sub> O <sub>3</sub> .3SiO <sub>2</sub><br>6CaO.3Ta <sub>2</sub> O <sub>5</sub> .CbOF <sub>3</sub>                                                                                                                              | 1.857                                       |
| Nantokite                     | CuCl                                                                                                                                                                                                                                           | 1.930                                       |
| Pyrochlore                    | Contains CaO, Ce <sub>2</sub> O <sub>3</sub> , TiO <sub>2</sub> , etc.<br><sub>3</sub> CaO.(Fe, Ti) <sub>2</sub> O <sub>3</sub> . <sub>3</sub> (Si, Ti)O <sub>2</sub><br>PbO.CuCl <sub>2</sub> .H <sub>2</sub> O                               | 1.960-2.000<br>1.980                        |
| Percylite                     | PbO.CuCl <sub>2</sub> .H <sub>2</sub> O<br>(Mg, Fe)O.(Al, Cr) <sub>2</sub> O <sub>3</sub>                                                                                                                                                      | 2.050<br>2.050 ±                            |
| Eulytite                      | <sup>2</sup> Bi <sub>2</sub> O <sub>3</sub> . <sub>3</sub> SiO <sub>2</sub><br>AgCl                                                                                                                                                            | 2.050                                       |
| Cerargyrite                   | Contains Hg, NH4, Cl, etc.                                                                                                                                                                                                                     | 2.065                                       |
| Chromite<br>Senarmontite      | FeO.Cr <sub>2</sub> O <sub>3</sub><br>Sb <sub>2</sub> O <sub>3</sub>                                                                                                                                                                           | 2.070<br>2.087                              |
| Embolite                      | Ag(Br, Cl)<br>MnO                                                                                                                                                                                                                              | 2.150 ±<br>2.160                            |
| Bunsenite                     | NiO                                                                                                                                                                                                                                            | 2.18 (Li light)                             |
| Lewisite                      | 5CaO.2TiO2.3Sb2O5<br>CuI.4AgI                                                                                                                                                                                                                  | 2,200                                       |
| Bromyrite                     | AgBr<br>Contains CaO, FeO, TiO <sub>2</sub> , etc.                                                                                                                                                                                             | 2.253                                       |
| Marshite                      | CuI                                                                                                                                                                                                                                            | 2.346                                       |
| Franklinite                   | (Zn, Fe, Mn)O.(Fe, Mn) <sub>2</sub> O <sub>3</sub><br>(Zn, Fe)S<br>CaO.TiO <sub>2</sub>                                                                                                                                                        | 2.360 (Li light)<br>2.370-2.470             |
| Perovskite<br>Diamond         | CaO.TiO <sub>2</sub>                                                                                                                                                                                                                           | 2.380                                       |
| Eglestonite                   | HgO.2HgCl                                                                                                                                                                                                                                      | 2.490 (Li light)                            |
| Hauerite                      | MnS <sub>2</sub><br>MnS                                                                                                                                                                                                                        | 2.690 (Li light)<br>2.700 (Li light)        |
| Cuprite                       | Cu <sub>2</sub> O                                                                                                                                                                                                                              | 2.849                                       |

SMITHSONIAN TABLES-

## Miscellaneous Monorefringent or Isotropic Solids.

| Substance.                                                                                                                                                                                                                                                                                                                                                    | Spectrum line.                         | Index of refraction.                                                                                                                                                                                                                                                                       | Authority.                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Albite glass Amber Ammonium chloride Anorthite glass Asphalt Bell metal Boric Acid, melted """ Borax, melted """ Camphor.  Canada balsam Ebonite Fuchsin """ Gelatin, Nelson no. r "various. Gum Arabic """ Obsidian Phosphorus. Pitch Potassium bromide """ Canada balsam Colophony Copal Mastic Peru balsam Selenium "" Sodium chlorate. Strontium nitrate. | DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD | 1.4890 1.546 1.6422 1.5755 1.635 1.621 1.0052 1.4623 1.4627 1.4624 1.4630 1.4702 1.532 1.5462 1.530 1.66 2.03 2.19 2.33 1.97 1.32 1.530 1.510-1.534 1.480 1.514 1.482-1.496 2.1442 1.531 1.5593 1.574 1.6666 1.619 1.528 1.528 1.535 1.528 1.535 1.535 1.593 2.01 2.08 2.73 2.93 2.01 2.08 | Larsen, 1909 Mühlheim Grailich Larsen, 1909 E. L. Nichols """" Beer Bedson and Williams """" Kohlrausch Mühlheim Mean Ayrton, Perry Mean """ Jones, 1911 "" Jamin Wollaston Various Gladstone, Dale Wollaston Jamin Wollaston Jamin Wollaston Baden Powell Wood "" "" "" Dussaud Fock |

#### TABLE 341.

#### INDEX OF REFRACTION.

#### Selected Uniaxial Minerals.

The values are arranged in the order of increasing indices for the ordinary ray and are for the sodium D line unless otherwise indicated. Selected by Dr. Edgar T. Wherry from a private compilation of Dr. Esper S. Larsen of the U. S. Geological Survey.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Index                                                                                                                                                                                                                                       | of refraction.                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Mineral.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Formula.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ordinary ray.                                                                                                                                                                                                                               | Extraordinary ray.                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| (a) Uniaxial Positive Minerals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| Ice. Sellaite. Chrysocolla Laubanite. Chrysocolla Laubanite. Chabazite. Douglasite. Hydronephelite. Apophyllite. Quartz. Coquimbite. Brucite. Alunite. Penninite. Cacoxenite. Eudialite. Dioptasite Phenacite. Phenacite. Willemite. Wesuvianite Xenotime Connellite. Benitoite. Ganomalite. Scheelite. Zircon. Powellite. Calomel. Cassiterite Zincite. Phosgenite Penfieldite Iodyrite. Tapiolite. Wurtzite. Derbylite. Greenockite. Rutile. Woissanite. Moissanite. Moissanite. Cinnabarite. | H <sub>2</sub> O MgF <sub>2</sub> CuO.SiO <sub>2.2</sub> H <sub>2</sub> O 2CaO.Al <sub>2</sub> O <sub>3.5</sub> SiO <sub>2.6</sub> H <sub>2</sub> O (Ca, Na <sub>2</sub> O.Al <sub>2</sub> O <sub>3.4</sub> SiO <sub>2.6</sub> H <sub>2</sub> O 2K.Cl.FeCl <sub>2.2</sub> H <sub>2</sub> O 2Na <sub>2</sub> O.3Al <sub>2</sub> O <sub>3.4</sub> SiO <sub>2.7</sub> H <sub>2</sub> O K <sub>2</sub> O.3CaO.16SiO <sub>2.7</sub> H <sub>2</sub> O K <sub>2</sub> O.3CaO.16SiO <sub>2.7</sub> OH <sub>2</sub> O SiO <sub>2</sub> Fe <sub>2</sub> O <sub>3.5</sub> SO <sub>3.9</sub> H <sub>2</sub> O MgO.H <sub>2</sub> O KAO.3Al <sub>2</sub> O <sub>4.4</sub> SO <sub>3.6</sub> H <sub>2</sub> O 5(Mg, Fe)O.Al <sub>2</sub> O <sub>2.3</sub> SiO <sub>2.4</sub> H <sub>2</sub> O 2Fe <sub>2</sub> O <sub>3.P</sub> C <sub>2</sub> O <sub>3.7</sub> 2H <sub>2</sub> O ON <sub>3</sub> O <sub>3.0</sub> C(ca, Fe)O.2c(Si, Zr)O <sub>2.</sub> NaCl CuO.SiO <sub>2.2</sub> H <sub>2</sub> O 2BeO.SiO <sub>2</sub> 2CeO F. CaO <sub>3.3</sub> Co <sub>2.2</sub> 2InO.SiO <sub>2.2</sub> CaO, Kl. Fe)O.4l <sub>2</sub> O <sub>3.5</sub> Co 2CaO, Mn, Fe)O.(Al, Fe)(OH, F)O.2SiO <sub>2.2</sub> Y <sub>2</sub> O <sub>3.P</sub> O <sub>3.5</sub> Co 2CuO.SO <sub>3.2</sub> CuCl <sub>2.2</sub> OH <sub>2</sub> O BaO.TiO <sub>2.3</sub> SiO <sub>2</sub> CaO.WO 2TO <sub>2.5</sub> SiO <sub>2</sub> CaO.WO 2TO <sub>2.5</sub> SiO <sub>2</sub> CaO.MoO <sub>3</sub> HgCl SnO <sub>2.2</sub> ZnO PbO.PbCl <sub>2.2</sub> Co 2Do.2PbCl <sub>2.2</sub> AgI FeO.(Ta, Cb) <sub>2</sub> O <sub>5.5</sub> ZnS 6FeO.Sb <sub>2</sub> O <sub>3.5</sub> TiO <sub>2</sub> CdS TiO <sub>2.2</sub> CSi HgS | 1.309 1.378 1.460 ± 1.475 1.480 ± 1.488 1.490 1.535 ± 1.544 1.550 1.572 1.576 1.582 1.606 1.654 1.654 1.676 1.694 1.716 ± 1.721 1.721 1.721 1.721 1.721 1.723 1.907 1.918 1.907 1.907 2.008 2.114 2.130 2.210 2.270 2.356 2.450 2.506 2.654 | 1.313 1.390 1.570 = 1.486 1.482 = 1.500 1.502 1.537 = 1.553 1.556 1.556 1.550 1.592 1.570 1.645 1.611 1.707 1.670 1.757 1.723 1.718 = 1.816 1.746 1.804 1.945 1.913 1.918 = 1.945 1.934 1.968 = 1.978 2.650 2.093 2.029 2.140 2.210 2.220 2.420 (Li light) 2.578 2.510 (Li light) 2.579 3.201 |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (b) Uniaxial Negative Minerals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| Chiolite Hanksite Thaumasite Hydrotalcite Cancrinite Milarite Kaliophilite Mellite Marialite Nephelite                                                                                                                                                                                                                                                                                                                                                                                          | 2NaF.AlF <sub>3</sub> 11Na <sub>2</sub> O. <sub>0</sub> SO <sub>3.2</sub> CO <sub>2</sub> .KCl 3CaO. CO <sub>2</sub> .SiO <sub>2</sub> .SO <sub>3.1</sub> 5H <sub>2</sub> O 6MgO. Al <sub>9</sub> O. <sub>2</sub> C.2.15H <sub>2</sub> O 4Na <sub>2</sub> O. CaO. <sub>4</sub> Al <sub>2</sub> O <sub>3.2</sub> CO <sub>2</sub> .OSiO <sub>2.3</sub> H <sub>2</sub> O K <sub>2</sub> O. 4CaO. <sub>2</sub> Al <sub>2</sub> O <sub>3.2</sub> CO <sub>2</sub> .OSiO <sub>2.3</sub> H <sub>2</sub> O K <sub>2</sub> O. Al <sub>2</sub> O <sub>3.2</sub> SiO <sub>2</sub> Al <sub>2</sub> O <sub>3.2</sub> SiO <sub>2</sub> Al <sub>2</sub> O <sub>3.2</sub> SiO <sub>2</sub> May = 3Na <sub>2</sub> O. <sub>3</sub> Al <sub>2</sub> O <sub>3.1</sub> 8SiO <sub>2.2</sub> NaCl Na <sub>2</sub> O.Al <sub>2</sub> O <sub>3.2</sub> SiO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.349<br>1.481<br>1.507<br>1.512<br>1.524<br>1.532<br>1.537<br>1.539<br>1.539                                                                                                                                                               | 1.342<br>1.461<br>1.468<br>1.498<br>1.496<br>1.529<br>1.533<br>1.511<br>1.537                                                                                                                                                                                                                 |  |  |  |  |  |  |  |

# TABLES 341-342.

#### INDEX OF REFRACTION.

#### TABLE 341 (Continued). - Selected Uniaxial Minerals.

| Mineral.                                                                                                                                                                                                                                                                                                          | T. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Index of refraction.                                                                                                                                                                       |                                                                                                                                                                                                 |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Mineral.                                                                                                                                                                                                                                                                                                          | Formula.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ordinary ray.                                                                                                                                                                              | Extraordinary ray.                                                                                                                                                                              |  |  |  |  |  |  |
| (b) Uniaxial Negative Minerals (continued).                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                                                                                                                 |  |  |  |  |  |  |
| Wernerite. Beryl. Torbernite Meionite. Melilite. Apatite. Calcite Gehlenite Tourmaline Dolomite. Magnesite Pyrochroite Corundum Smithsonite Rhodochrosite Javosite. Siderite. Pyromorphite Barysilite Mimetite Matlockite Stolzite. Geikielite Vanadinite. Wulfenite Octahedrite Massicotite Pyrargyrite Hematite | Me <sub>1</sub> Ma <sub>1</sub> ± 3BeO.Al <sub>2</sub> O <sub>3</sub> .6SiO <sub>2</sub> CuO.2UO <sub>3</sub> .P <sub>2</sub> O <sub>5</sub> .8H <sub>2</sub> O CuO.2UO <sub>3</sub> .P <sub>2</sub> O <sub>5</sub> .8H <sub>2</sub> O CuO.2UO <sub>3</sub> .P <sub>2</sub> O <sub>5</sub> .8H <sub>2</sub> O Contains Na <sub>2</sub> O, CaO, Al <sub>2</sub> O <sub>3</sub> , SiO <sub>2</sub> , etc. 9CaO.3P <sub>2</sub> O <sub>5</sub> .Ca(F, Cl) <sub>2</sub> CaO.CO <sub>2</sub> 2CaO.Al <sub>2</sub> O <sub>3</sub> .SiO <sub>2</sub> Contains Na <sub>2</sub> O, FeO, Al <sub>2</sub> O <sub>3</sub> , B <sub>2</sub> O <sub>3</sub> , SiO <sub>2</sub> , etc. CaO.MeO.2CO <sub>2</sub> MgO.CO <sub>2</sub> MnO.H <sub>2</sub> O Al <sub>2</sub> O <sub>3</sub> ZnO.CO <sub>2</sub> MnO.CO <sub>2</sub> MnO.CO <sub>2</sub> MnO.CO <sub>2</sub> MnO.CO <sub>2</sub> SpbO. <sub>3</sub> Pe <sub>2</sub> O <sub>5</sub> .PbCl <sub>2</sub> 3PbO.2SiO <sub>2</sub> 9PbO.3P <sub>2</sub> O <sub>5</sub> .PbCl <sub>2</sub> 3PbO.W <sub>3</sub> C PbO.PbCl <sub>2</sub> PbO.WO <sub>3</sub> (Mg, Fe)O.TiO <sub>2</sub> 9PbO.3V <sub>3</sub> O <sub>5</sub> .PbCl <sub>2</sub> PbO.MoO <sub>3</sub> TiO <sub>2</sub> PbO 3Ag <sub>2</sub> S.As <sub>2</sub> S <sub>3</sub> 3Ag <sub>2</sub> S.As <sub>2</sub> S <sub>3</sub> 3Ag <sub>2</sub> S.Sb <sub>2</sub> S <sub>3</sub> Fe <sub>2</sub> O <sub>3</sub> | 1.578 ± 1.581 ± 1.592 1.597 1.034 1.634 1.658 1.669 ± 1.682 1.700 1.703 1.768 1.818 1.818 1.820 1.875 2.050 2.250 2.250 2.250 2.250 2.250 2.250 2.2554 2.402 2.554 2.665 2.979 3.084 3.220 | 1.551 ± 1.575 ± 1.582 1.560 1.629 1.631 1.486 1.658 1.503 1.503 1.509 1.681 1.760 1.618 1.595 1.715 1.635 2.042 2.050 2.118 2.040 2.182 1.950 2.299 2.304 (Li light) 2.711 "" 2.881 "" 2.940 "" |  |  |  |  |  |  |

TABLE 342. - Miscellaneous Uniaxial Crystals.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Spectrum | Index of                                                                                                                 | refraction.                                                                                                                       |                                                                                       |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| Crystal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | line.    | Ordinary ray.                                                                                                            | Extraordinary ray.                                                                                                                | Authority.                                                                            |  |
| Ammonium arseniate NH <sub>4</sub> H <sub>2</sub> AsO <sub>4</sub> .  Benzil (C <sub>6</sub> H <sub>5</sub> CO) <sub>2</sub> . Corundum, Al <sub>2</sub> O <sub>3</sub> , sapphire, ruby. Ice at -8° C. """"  Ivory. Potassium arseniate K <sub>2</sub> H <sub>2</sub> As <sub>2</sub> O <sub>4</sub> . ""  Sodium arseniate Na <sub>3</sub> AsO <sub>4</sub> ,1 <sub>2</sub> H <sub>2</sub> O. "" nitrate Na <sub>1</sub> NO <sub>3</sub> . " phosphate Na <sub>2</sub> PO <sub>4</sub> 1 <sub>2</sub> H <sub>2</sub> O. Nickel sulphate NiSO <sub>4</sub> 6H <sub>2</sub> O. ""  Strychnine sulphate. |          | 1.5766<br>1.6588<br>1.769<br>1.308<br>1.297<br>1.5762<br>1.5674<br>1.5632<br>1.457<br>1.586<br>1.447<br>1.5109<br>1.5098 | 1.5217<br>1.6784<br>1.760<br>1.313<br>1.304<br>1.541<br>1.5252<br>1.5170<br>1.5146<br>1.466<br>1.453<br>1.4930<br>1.4844<br>1.599 | T. and C.* Mean Osann Meyer Kohlrausch T. and C. "" Mean " T. and C. "" Mean " Martin |  |

<sup>\*</sup> Topsöe and Christiansen.

#### TABLE 343.

#### INDEX OF REFRACTION.

#### Selected Biaxial Minerals.

The values are arranged in the order of increasing  $\beta$  index of refraction and are for the sodium D line except where noted. Selected by Dr. Edgaz T. Wherry from private compilation of Dr. Esper S. Larsen of the U. S. Geological Survey.

#### Selected Biaxial Minerals.

| Mineral.                                                                                                                                                                                                                                                               | Formula.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                                                                                                                              | ndex of refr                                                                                                                                                            | action.                                                                                                                                                                                   |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| minetat.                                                                                                                                                                                                                                                               | Pormula.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *a                                                                                                                                                             | nβ                                                                                                                                                                      | $n_{\gamma}$                                                                                                                                                                              |  |  |  |  |  |
| (a) BIAXIAL POSITIVE MINERALS (continued).                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                           |  |  |  |  |  |
| Zoisite                                                                                                                                                                                                                                                                | 4CaO.3Al2O3.6SiO2.H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.700                                                                                                                                                          | 1.702                                                                                                                                                                   | 1.706                                                                                                                                                                                     |  |  |  |  |  |
| Strengite                                                                                                                                                                                                                                                              | Fe <sub>2</sub> O <sub>3</sub> .P <sub>2</sub> O <sub>5</sub> . <sub>4</sub> H <sub>2</sub> O<br>Al <sub>2</sub> O <sub>2</sub> .H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.710                                                                                                                                                          | - 1.710                                                                                                                                                                 | 1.745                                                                                                                                                                                     |  |  |  |  |  |
| Diasporite                                                                                                                                                                                                                                                             | 2FeO.5Al <sub>2</sub> O <sub>3</sub> .4SiO <sub>2</sub> .H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.702                                                                                                                                                          | 1.722                                                                                                                                                                   | 1.750                                                                                                                                                                                     |  |  |  |  |  |
| Chrysoberyl                                                                                                                                                                                                                                                            | BeO.Al <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.730                                                                                                                                                          | 1.741                                                                                                                                                                   | 1.746                                                                                                                                                                                     |  |  |  |  |  |
| Azurite                                                                                                                                                                                                                                                                | 3CuO.2CO2.H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.730                                                                                                                                                          | 1.758                                                                                                                                                                   | 1.838                                                                                                                                                                                     |  |  |  |  |  |
| Scorodite                                                                                                                                                                                                                                                              | 3CuO.2CO <sub>2</sub> .H <sub>2</sub> O<br>Fe <sub>2</sub> O <sub>3</sub> .As <sub>2</sub> O <sub>5.4</sub> H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.765                                                                                                                                                          | 1.774                                                                                                                                                                   | 1.797                                                                                                                                                                                     |  |  |  |  |  |
| Olivenite                                                                                                                                                                                                                                                              | 4CuO.As <sub>2</sub> O <sub>5</sub> .H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.772                                                                                                                                                          | 1.810                                                                                                                                                                   | 1.863                                                                                                                                                                                     |  |  |  |  |  |
| Anglesite                                                                                                                                                                                                                                                              | PbO.SO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.877                                                                                                                                                          | 1.882                                                                                                                                                                   | 1.894                                                                                                                                                                                     |  |  |  |  |  |
| Titanite                                                                                                                                                                                                                                                               | CaO.TiO <sub>2</sub> .SiO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.900                                                                                                                                                          | 1.907                                                                                                                                                                   | 2.034                                                                                                                                                                                     |  |  |  |  |  |
| Claudetite                                                                                                                                                                                                                                                             | As <sub>2</sub> O <sub>3</sub><br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.871                                                                                                                                                          | 1.920                                                                                                                                                                   | 2.010                                                                                                                                                                                     |  |  |  |  |  |
| Sulfur                                                                                                                                                                                                                                                                 | PbCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.950                                                                                                                                                          | 2.043                                                                                                                                                                   | 2.240                                                                                                                                                                                     |  |  |  |  |  |
| Huebnerite                                                                                                                                                                                                                                                             | MnO.WO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.200                                                                                                                                                          | 2.217                                                                                                                                                                   | 2.200                                                                                                                                                                                     |  |  |  |  |  |
| Manganite                                                                                                                                                                                                                                                              | Mn <sub>2</sub> O <sub>3</sub> ,H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.240                                                                                                                                                          | 2.240                                                                                                                                                                   | 2.530 (Li)                                                                                                                                                                                |  |  |  |  |  |
| Raspite                                                                                                                                                                                                                                                                | PbO.WO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.270                                                                                                                                                          | 2.270                                                                                                                                                                   | 2.300                                                                                                                                                                                     |  |  |  |  |  |
| Mendipite                                                                                                                                                                                                                                                              | 2PbO.PbCl2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.240                                                                                                                                                          | 2.270                                                                                                                                                                   | 2.310                                                                                                                                                                                     |  |  |  |  |  |
| Tantalite                                                                                                                                                                                                                                                              | (Fe, Mn)O.Ta <sub>2</sub> O <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.260                                                                                                                                                          | 2.320                                                                                                                                                                   | 2.430 (Li)                                                                                                                                                                                |  |  |  |  |  |
| Wolframite                                                                                                                                                                                                                                                             | (Fe, Mn)O.WO <sub>3</sub><br>PbO.CrO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.310                                                                                                                                                          | 2.360                                                                                                                                                                   | 2.460 (Li)                                                                                                                                                                                |  |  |  |  |  |
| Crocoite                                                                                                                                                                                                                                                               | PbO.CrO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.310                                                                                                                                                          | 2.370                                                                                                                                                                   | 2.660 (Li)                                                                                                                                                                                |  |  |  |  |  |
| Pseudobrookite                                                                                                                                                                                                                                                         | 2Fe <sub>2</sub> O <sub>3</sub> .3TiO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.380                                                                                                                                                          | 2.390                                                                                                                                                                   | 2.420 (Li)                                                                                                                                                                                |  |  |  |  |  |
| Stibiotantalite                                                                                                                                                                                                                                                        | Sb <sub>2</sub> O <sub>3</sub> .Ta <sub>2</sub> O <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.374                                                                                                                                                          | 2.404                                                                                                                                                                   | 2.457                                                                                                                                                                                     |  |  |  |  |  |
| Montroydite                                                                                                                                                                                                                                                            | HgO<br>TiO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.370                                                                                                                                                          | 2.500                                                                                                                                                                   | 2.650 (Li)                                                                                                                                                                                |  |  |  |  |  |
| Brookite. Lithargite                                                                                                                                                                                                                                                   | PbO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.583                                                                                                                                                          | 2.586                                                                                                                                                                   | 2.74I<br>2.7IO                                                                                                                                                                            |  |  |  |  |  |
|                                                                                                                                                                                                                                                                        | (b) Biaxial Negative Minerals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                           |  |  |  |  |  |
| (V) DIAMAL NEGATIVE DILIVERALS.                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |                                                                                                                                                                         | 0                                                                                                                                                                                         |  |  |  |  |  |
| Mirabilite                                                                                                                                                                                                                                                             | Na <sub>2</sub> O.SO <sub>3</sub> .10H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.394                                                                                                                                                          | 1.396                                                                                                                                                                   | 1.398                                                                                                                                                                                     |  |  |  |  |  |
| Thomsenolite                                                                                                                                                                                                                                                           | NaF.CaF2.AlF3.H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.407                                                                                                                                                          | 1.414                                                                                                                                                                   | 1.415                                                                                                                                                                                     |  |  |  |  |  |
| Thomsenolite                                                                                                                                                                                                                                                           | NaF.CaF <sub>2</sub> .AlF <sub>3</sub> .H <sub>2</sub> O<br>Na <sub>2</sub> O.CO <sub>2</sub> ,10H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.407<br>1.405                                                                                                                                                 | 1.414                                                                                                                                                                   | 1.415                                                                                                                                                                                     |  |  |  |  |  |
| Thomsenolite. Natron Kalinite.                                                                                                                                                                                                                                         | NaF.CaF <sub>2</sub> .AlF <sub>3</sub> .H <sub>2</sub> O<br>Na <sub>2</sub> O.CO <sub>2</sub> .10H <sub>2</sub> O<br>K <sub>2</sub> O.Al <sub>2</sub> O <sub>3</sub> .4SO <sub>3</sub> .24H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.407<br>1.405<br>1.430                                                                                                                                        | 1.414<br>1.425<br>1.452                                                                                                                                                 | 1.415<br>1.440<br>1.458                                                                                                                                                                   |  |  |  |  |  |
| Thomsenolite. Natron Kalinite Epsomite                                                                                                                                                                                                                                 | NaF. CaF <sub>2</sub> . AlF <sub>3</sub> . H <sub>2</sub> O<br>Na <sub>2</sub> O. CO <sub>2</sub> . 10 H <sub>2</sub> O<br>K <sub>2</sub> O. Al <sub>2</sub> O <sub>3</sub> . 4SO <sub>3</sub> . 24 H <sub>2</sub> O<br>MgO. SO <sub>3</sub> . 7H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.407<br>1.405<br>1.430<br>1.433                                                                                                                               | 1.414<br>1.425<br>1.452<br>1.455                                                                                                                                        | 1.415<br>1.440<br>1.458<br>1.461                                                                                                                                                          |  |  |  |  |  |
| Thomsenolite Natron Kalinite Epsomite Sassolite                                                                                                                                                                                                                        | NaF. CaF <sub>2</sub> . AlF <sub>3</sub> . H <sub>2</sub> O<br>Na <sub>2</sub> O. CO <sub>2</sub> . 10 H <sub>2</sub> O<br>K <sub>2</sub> O. Al <sub>2</sub> O <sub>3</sub> . 4SO <sub>3</sub> . 24 H <sub>2</sub> O<br>MgO. SO <sub>3</sub> . 7H <sub>2</sub> O<br>B <sub>2</sub> O <sub>3</sub> . H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.407<br>1.405<br>1.430<br>1.433<br>1.340                                                                                                                      | 1.414<br>1.425<br>1.452<br>1.455<br>1.456                                                                                                                               | 1.415<br>1.440<br>1.458<br>1.461<br>1.459                                                                                                                                                 |  |  |  |  |  |
| Thomsenolite. Natron Kalinite Epsomite                                                                                                                                                                                                                                 | NaF. CaF <sub>2</sub> . AlF <sub>3</sub> . H <sub>2</sub> O<br>Na <sub>2</sub> O. CO <sub>2</sub> . 10 H <sub>2</sub> O<br>K <sub>2</sub> O. Al <sub>2</sub> O <sub>3</sub> . 4SO <sub>3</sub> . 24 H <sub>2</sub> O<br>MgO. SO <sub>3</sub> . 7H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.407<br>1.405<br>1.430<br>1.433                                                                                                                               | 1.414<br>1.425<br>1.452<br>1.455                                                                                                                                        | 1.415<br>1.440<br>1.458<br>1.461                                                                                                                                                          |  |  |  |  |  |
| Thomsenolite. Natron Kalinite Epsomite Sassolite Borax                                                                                                                                                                                                                 | NaF. CaF2, AlF2, H2O<br>Na2O. CO2, 10 H2O<br>K2O. Al2O3, 4SO3, 24 H2O<br>MgO. SO3, 7H2O<br>B2O3, H2O<br>Na2O. 2B2O3, 10 H2O<br>ZnO. SO3, 7H2O<br>MgO. Al2O3, 4SO3, 22 H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.407<br>1.405<br>1.430<br>1.433<br>1.340                                                                                                                      | 1.414<br>1.425<br>1.452<br>1.455<br>1.456<br>1.470<br>1.480                                                                                                             | 1.415<br>1.440<br>1.458<br>1.461<br>1.459<br>1.472                                                                                                                                        |  |  |  |  |  |
| Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite. Pickeringite Bloedite                                                                                                                                                                                | NaF. CaF <sub>2</sub> . AlF <sub>3</sub> . H <sub>2</sub> O<br>Na <sub>2</sub> O. CO <sub>2</sub> . 10 H <sub>2</sub> O<br>K <sub>2</sub> O. Al <sub>2</sub> O <sub>3</sub> . 45O <sub>3</sub> . 24 H <sub>2</sub> O<br>MgO. SO <sub>3</sub> . 7 H <sub>2</sub> O<br>B <sub>2</sub> O <sub>3</sub> . H <sub>2</sub> O<br>Na <sub>2</sub> O. 2B <sub>2</sub> O <sub>3</sub> . 10 H <sub>2</sub> O<br>ZnO. SO <sub>3</sub> . 7 H <sub>2</sub> O<br>MgO. Al <sub>2</sub> O <sub>3</sub> . 4SO <sub>3</sub> . 22 H <sub>2</sub> O<br>Na <sub>2</sub> O. MgO. 2SO <sub>3</sub> . 4H <sub>3</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.407<br>1.405<br>1.430<br>1.433<br>1.340<br>1.447<br>1.457<br>1.476<br>1.486                                                                                  | 1.414<br>1.425<br>1.452<br>1.455<br>1.456<br>1.470<br>1.480<br>1.480                                                                                                    | 1.415<br>1.440<br>1.458<br>1.461<br>1.459<br>1.472<br>1.484<br>1.483<br>1.489                                                                                                             |  |  |  |  |  |
| Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite. Pickeringite Bloedite                                                                                                                                                                                | NaF. CaF <sub>2</sub> . AlF <sub>3</sub> . H <sub>2</sub> O<br>Na <sub>2</sub> O. CO <sub>2</sub> . 10 H <sub>2</sub> O<br>K <sub>2</sub> O. Al <sub>2</sub> O <sub>3</sub> . 45O <sub>3</sub> . 24 H <sub>2</sub> O<br>MgO. SO <sub>3</sub> . 7 H <sub>2</sub> O<br>B <sub>2</sub> O <sub>3</sub> . H <sub>2</sub> O<br>Na <sub>2</sub> O. 2B <sub>2</sub> O <sub>3</sub> . 10 H <sub>2</sub> O<br>ZnO. SO <sub>3</sub> . 7 H <sub>2</sub> O<br>MgO. Al <sub>2</sub> O <sub>3</sub> . 4SO <sub>3</sub> . 22 H <sub>2</sub> O<br>Na <sub>2</sub> O. MgO. 2SO <sub>3</sub> . 4H <sub>3</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.407<br>1.405<br>1.430<br>1.433<br>1.340<br>1.447<br>1.457<br>1.457<br>1.456<br>1.486                                                                         | 1.414<br>1.425<br>1.452<br>1.455<br>1.456<br>1.470<br>1.480<br>1.480<br>1.488<br>1.492                                                                                  | 1.415<br>1.440<br>1.458<br>1.461<br>1.459<br>1.472<br>1.484<br>1.483<br>1.489<br>1.542                                                                                                    |  |  |  |  |  |
| Thomsenolite. Natron Kalinite Epsomite Sassolite. Borax Goslarite Pickeringite Bloedite Trona. Thermonatrite.                                                                                                                                                          | NaF. CaF <sub>2</sub> . AlF <sub>3</sub> . H <sub>2</sub> O<br>Na <sub>2</sub> O. CO <sub>2</sub> . 10H <sub>2</sub> O<br>K <sub>2</sub> O. Al <sub>2</sub> O <sub>3</sub> . 4SO <sub>3</sub> . 24H <sub>2</sub> O<br>MgO. SO <sub>3</sub> . 7H <sub>2</sub> O<br>B <sub>2</sub> O <sub>3</sub> . H <sub>2</sub> O<br>Na <sub>2</sub> O <sub>2</sub> . 2B <sub>2</sub> O <sub>3</sub> . 10H <sub>2</sub> O<br>ZnO. SO <sub>3</sub> . 7H <sub>2</sub> O<br>MgO. Al <sub>2</sub> O <sub>3</sub> . 4SO <sub>3</sub> . 22H <sub>2</sub> O<br>Na <sub>2</sub> O. MgO. 2SO <sub>3</sub> . 4H <sub>2</sub> O<br>3Na <sub>2</sub> O. 4CO <sub>2</sub> . 5H <sub>2</sub> O<br>Na <sub>2</sub> O. CO <sub>3</sub> . 4H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.407<br>1.405<br>1.430<br>1.433<br>1.340<br>1.447<br>1.457<br>1.476<br>1.486<br>1.410                                                                         | 1.414<br>1.425<br>1.452<br>1.455<br>1.456<br>1.470<br>1.480<br>1.480<br>1.488<br>1.492<br>1.495                                                                         | 1.415<br>1.440<br>1.458<br>1.461<br>1.459<br>1.472<br>1.484<br>1.483<br>1.489<br>1.542<br>1.518                                                                                           |  |  |  |  |  |
| Thomsenolite. Natron . Kalinite . Epsomite . Sassolite . Borax . Goslarite . Pickeringite . Bloedite . Trona . Thermonatrite . Stilbite .                                                                                                                              | NaF. CaF2. AlF3. H <sub>2</sub> O<br>Na <sub>2</sub> O. CO <sub>2</sub> . 10 H <sub>2</sub> O<br>K <sub>2</sub> O. Al <sub>2</sub> O <sub>3</sub> .4SO <sub>3</sub> . 24H <sub>2</sub> O<br>MgO. SO <sub>3</sub> . 7H <sub>2</sub> O<br>B <sub>2</sub> O <sub>4</sub> . H <sub>2</sub> O<br>Na <sub>2</sub> O. 2B <sub>2</sub> O <sub>3</sub> . 10 H <sub>2</sub> O<br>ZnO. SO <sub>4</sub> . 7H <sub>2</sub> O<br>MgO. Al <sub>2</sub> O <sub>4</sub> . 4SO <sub>3</sub> . 22H <sub>2</sub> O<br>Na <sub>2</sub> O. MgO. 2SO <sub>3</sub> . 4H <sub>2</sub> O<br>3Na <sub>2</sub> O. 4CO <sub>2</sub> . 5H <sub>2</sub> O<br>Na <sub>2</sub> O. CO <sub>2</sub> . H <sub>2</sub> O<br>(Ca, Na <sub>2</sub> O. Al <sub>2</sub> O <sub>3</sub> .6SiO <sub>2</sub> .5H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.407<br>1.405<br>1.430<br>1.433<br>1.340<br>1.447<br>1.457<br>1.476<br>1.486<br>1.410<br>1.420                                                                | 1.414<br>1.425<br>1.455<br>1.455<br>1.456<br>1.470<br>1.480<br>1.488<br>1.492<br>1.495<br>1.498                                                                         | 1.415<br>1.440<br>1.458<br>1.461<br>1.459<br>1.472<br>1.484<br>1.483<br>1.489<br>1.542<br>1.518<br>1.500                                                                                  |  |  |  |  |  |
| Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite Pickeringite Bloedite Trona Thermonatrite. Stilbite Niter                                                                                                                                             | NaF. CaF2, AlF3, H2O Na2O. CO2, 10 H2O K2O. Al2O3, 4SO3, 24 H2O MgO. SO3, 7H2O B2O3, H4O Na2O. 2B2O3, 10 H2O ZnO. SO3, 7H2O MgO. Al2O3, 4SO3, 22 H2O Na2O. MgO. 2SO3, 4H2O Na2O. MgO. 2SO3, 4H2O Na2O. MgO. 2SO3, 4H2O Na2O. CO2, H2O Ca, Na2O. Al2O3, 6SiO2, 5H2O K2O. Na2O. Al2O3, 6SiO2, 5H2O K2O. NyOs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.407<br>1.405<br>1.430<br>1.433<br>1.340<br>1.447<br>1.457<br>1.476<br>1.486<br>1.410<br>1.420<br>1.420<br>1.434                                              | 1.414<br>1.425<br>1.455<br>1.456<br>1.470<br>1.480<br>1.488<br>1.492<br>1.495<br>1.495                                                                                  | 1.415<br>1.440<br>1.458<br>1.461<br>1.459<br>1.472<br>1.484<br>1.483<br>1.489<br>1.542<br>1.518<br>1.500<br>1.506                                                                         |  |  |  |  |  |
| Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite Pickeringite Bloedite Trona Thermonatrite Stilbite Niter Kainite.                                                                                                                                     | NaF. CaF2. AlF3. H <sub>2</sub> O<br>Na <sub>2</sub> O. CO <sub>2</sub> . 10 H <sub>2</sub> O<br>K <sub>2</sub> O. Al <sub>2</sub> O <sub>3</sub> .4SO <sub>3</sub> . 24H <sub>2</sub> O<br>MgO. SO <sub>3</sub> . 7H <sub>2</sub> O<br>B <sub>2</sub> O <sub>3</sub> . H <sub>2</sub> O<br>Na <sub>2</sub> O. 2B <sub>2</sub> O <sub>3</sub> . 10 H <sub>2</sub> O<br>ZnO. SO <sub>3</sub> . 7H <sub>2</sub> O<br>MgO. Al <sub>2</sub> O <sub>4</sub> . 4SO <sub>3</sub> . 22H <sub>2</sub> O<br>Na <sub>2</sub> O. MgO. 2SO <sub>3</sub> . 4H <sub>2</sub> O<br>3Na <sub>2</sub> O. 4CO <sub>2</sub> . 5H <sub>2</sub> O<br>Na <sub>2</sub> O. CO <sub>3</sub> . H <sub>2</sub> O<br>(Ca, Na <sub>2</sub> O. Al <sub>2</sub> CO <sub>3</sub> . 6SiO <sub>2</sub> . 5H <sub>2</sub> O<br>K <sub>2</sub> O. N <sub>2</sub> O <sub>5</sub> . SCI. 3H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.407<br>1.405<br>1.430<br>1.433<br>1.340<br>1.447<br>1.457<br>1.466<br>1.410<br>1.420<br>1.494<br>1.334<br>1.494                                              | 1.414<br>1.425<br>1.452<br>1.455<br>1.455<br>1.470<br>1.480<br>1.480<br>1.488<br>1.492<br>1.495<br>1.498                                                                | 1.415<br>1.440<br>1.458<br>1.461<br>1.459<br>1.472<br>1.484<br>1.483<br>1.489<br>1.542<br>1.518<br>1.506<br>1.506<br>1.516                                                                |  |  |  |  |  |
| Thomsenolite. Natron Kalinite Epsomite Sassolite Borax Goslarite. Pickeringite Bloedite Trona Thermonatrite Stilbite Niter. Kainite. Gaylussite                                                                                                                        | NaF. CaF2. AlF3. H <sub>2</sub> O<br>Na <sub>2</sub> O. CO <sub>2</sub> . 10 H <sub>2</sub> O<br>K <sub>2</sub> O. Al <sub>2</sub> O <sub>3</sub> .4SO <sub>3</sub> . 24H <sub>2</sub> O<br>MgO. SO <sub>3</sub> . 7H <sub>2</sub> O<br>B <sub>2</sub> O <sub>3</sub> . H <sub>2</sub> O<br>Na <sub>2</sub> O. 2B <sub>2</sub> O <sub>3</sub> . 10 H <sub>2</sub> O<br>ZnO. SO <sub>3</sub> . 7H <sub>2</sub> O<br>MgO. Al <sub>2</sub> O <sub>4</sub> . 4SO <sub>3</sub> . 22H <sub>2</sub> O<br>Na <sub>2</sub> O. MgO. 2SO <sub>3</sub> . 4H <sub>2</sub> O<br>3Na <sub>2</sub> O. 4CO <sub>2</sub> . 5H <sub>2</sub> O<br>Na <sub>2</sub> O. CO <sub>3</sub> . H <sub>2</sub> O<br>(Ca, Na <sub>2</sub> O. Al <sub>2</sub> CO <sub>3</sub> . 6SiO <sub>2</sub> . 5H <sub>2</sub> O<br>K <sub>2</sub> O. N <sub>2</sub> O <sub>5</sub> . SCI. 3H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.407<br>1.405<br>1.433<br>1.340<br>1.447<br>1.457<br>1.476<br>1.486<br>1.410<br>1.420<br>1.494<br>1.334<br>1.494                                              | 1.414<br>1.425<br>1.455<br>1.456<br>1.470<br>1.480<br>1.480<br>1.488<br>1.492<br>1.495<br>1.498<br>1.505<br>1.505                                                       | 1.415<br>1.440<br>1.458<br>1.451<br>1.459<br>1.472<br>1.484<br>1.483<br>1.489<br>1.542<br>1.518<br>1.500<br>1.506<br>1.516                                                                |  |  |  |  |  |
| Thomsenolite. Natron. Kalinite Epsomite Sassolite. Borax Goslarite. Pickeringite Bloedite Trona. Thermonatrite. Stilbite Niter. Kainite. Gaylussite Scolecite                                                                                                          | NaF. CaF2. AlF2. H2O Na2O. CO2. 10 H2O K2O. Al2O3. 45C03. 24H2O MgO. SO3. 7H2O B2O3. H2O Na2O. 2B2O3. 10 H2O ZnO. SO3. 7H2O NgO. Al2O3. 45C03. 22 H2O Na2O. MgO. Al2O3. 45C03. 22 H2O Na2O. MgO. Al2O3. 45C03. 45C0 Na2O. MgO. 2SO3. 4H2O 3Na2O. 4CO2. 5H2O Ca, Na2O. Al2O3. 6SiO2. 5H2O K2O. N2O MgO. SO3. KCl. 3H2O Na2O. CO2. CO2. 5H2O CaO. Al2O3. 3SiO2. 3H2O CaO. Al2O3. 3SiO2. 3H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.407<br>1.405<br>1.430<br>1.433<br>1.340<br>1.447<br>1.457<br>1.476<br>1.486<br>1.410<br>1.420<br>1.494<br>1.334<br>1.494<br>1.444<br>1.512                   | 1.414<br>1.425<br>1.455<br>1.455<br>1.456<br>1.470<br>1.480<br>1.480<br>1.488<br>1.492<br>1.495<br>1.505<br>1.505<br>1.505                                              | 1.415<br>1.440<br>1.458<br>1.461<br>1.459<br>1.472<br>1.484<br>1.483<br>1.483<br>1.500<br>1.518<br>1.500<br>1.506<br>1.516<br>1.523<br>1.519                                              |  |  |  |  |  |
| Thomsenolite Natron Kalinite Epsomite Sassolite Borax Goslarite Pickeringite Bloedite Trona Thermonatrite Stilbite Niter Kainite Gaylussite Gaylussite Scolecite Laumontite                                                                                            | NaF. CaF2. AlF3. H2O Na2O. CO2.10 H2O K2O. Al2O3.4SO3.24 H2O MgO. SO3.7 H2O B2O3. H4O Na2O. 2B2O3.10 H2O Na2O. 2B2O3.10 H2O MgO. Al2O3.4SO3.22 H2O Na2O. MgO. 2SO3. AH2O Na2O. MgO. 2SO3. AH2O Na2O. CO2. H2O (Ca, Na2O. Al2O3.6SiO2.5H2O K2O. Na2O. Co2. SH2O Na2O. CaO. 3. SiO3. S | 1.407<br>1.405<br>1.433<br>1.340<br>1.447<br>1.457<br>1.476<br>1.486<br>1.410<br>1.420<br>1.494<br>1.334<br>1.494                                              | 1.414<br>1.425<br>1.455<br>1.456<br>1.470<br>1.480<br>1.480<br>1.488<br>1.492<br>1.495<br>1.498<br>1.505<br>1.505                                                       | 1.415<br>1.440<br>1.458<br>1.461<br>1.459<br>1.472<br>1.484<br>1.483<br>1.489<br>1.542<br>1.518<br>1.500<br>1.506<br>1.516                                                                |  |  |  |  |  |
| Thomsenolite. Natron. Kalinite Epsomite Sassolite. Borax Goslarite. Pickeringite Bloedite Trona. Thermonatrite. Stilbite Niter. Kainite. Gaylussite Scolecite                                                                                                          | NaF. CaF2, AlF2, H2O Na2O.CO2, 10H2O K2O.Al2O3,4SO3, 24H2O MgO.SO3,7H2O B2O3, H2O Na2O.2B2O3, 10H2O ZnO.SO3,7H2O MgO.Al2O3,4SO3, 22H2O Na2O.MgO.2SO3,4H2O Na2O.MgO.2SO3,4H2O Na2O.MgO.2SO3,4H2O Na2O.CO2, H2O Ca, Na2O.Al2O3,6SiO2,5H2O K2O.N2O5 MgO.SO3, KC1,3H2O Na2O.CO2,2CO2,5H2O CaO.Al2O3,3SiO2,3H2O CaO.Al2O3,3SiO2,3H2O CaO.Al2O3,4SiO2,3H2O CaO.Al2O3,4SiO2,3H2O CaO.Al2O3,4SiO2,3H2O CaO.Al2O3,4SiO2,4H2O CaO.Al2O3,6SiO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.407<br>1.405<br>1.430<br>1.433<br>1.340<br>1.447<br>1.457<br>1.476<br>1.486<br>1.410<br>1.420<br>1.494<br>1.334<br>1.494<br>1.444<br>1.512<br>1.518<br>1.518 | 1.414<br>1.425<br>1.455<br>1.455<br>1.456<br>1.470<br>1.480<br>1.488<br>1.492<br>1.495<br>1.498<br>1.505<br>1.505<br>1.510<br>1.524<br>1.524                            | 1.415<br>1.440<br>1.458<br>1.450<br>1.459<br>1.472<br>1.483<br>1.483<br>1.500<br>1.518<br>1.500<br>1.506<br>1.523<br>1.525<br>1.525<br>1.525                                              |  |  |  |  |  |
| Thomsenolite Natron Kalinite Epsomite Sassolite Borax Goslarite Pickeringite Bloedite Trona Thermonatrite Stilbite Niter Kainite Gaylussite Scolecite Laumontite Orthoclase Microcline                                                                                 | NaF. CaF2, AlF2, H2O Na2O.CO2, 10H2O K2O.Al2O3,4SO3, 24H2O MgO.SO3,7H2O B2O3, H2O Na2O.2B2O3, 10H2O ZnO.SO3,7H2O MgO.Al2O3,4SO3, 22H2O Na2O.MgO.2SO3,4H2O Na2O.MgO.2SO3,4H2O Na2O.MgO.2SO3,4H2O Na2O.CO2, H2O Ca, Na2O.Al2O3,6SiO2,5H2O K2O.N2O5 MgO.SO3, KC1,3H2O Na2O.CO2,2CO2,5H2O CaO.Al2O3,3SiO2,3H2O CaO.Al2O3,3SiO2,3H2O CaO.Al2O3,4SiO2,3H2O CaO.Al2O3,4SiO2,3H2O CaO.Al2O3,4SiO2,3H2O CaO.Al2O3,4SiO2,4H2O CaO.Al2O3,6SiO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.407<br>1.405<br>1.430<br>1.433<br>1.340<br>1.447<br>1.457<br>1.476<br>1.486<br>1.410<br>1.420<br>1.494<br>1.334<br>1.494<br>1.512<br>1.513<br>1.513          | 1.414<br>1.425<br>1.452<br>1.455<br>1.456<br>1.470<br>1.480<br>1.488<br>1.492<br>1.495<br>1.505<br>1.505<br>1.505<br>1.510<br>1.524<br>1.524<br>1.524                   | 1.415<br>1.440<br>1.458<br>1.450<br>1.450<br>1.450<br>1.472<br>1.483<br>1.480<br>1.512<br>1.518<br>1.500<br>1.516<br>1.516<br>1.525<br>1.525<br>1.525<br>1.530                            |  |  |  |  |  |
| Thomsenolite Natron Kalinite Epsomite Sassolite Borax Goslarite Pickeringite Bloedite Trona Thermonatrite Stilbite Niter Kainite Gaylussite Scolecite Laumontite Orthoclase                                                                                            | NaF. CaF2. AlF3. H2O NagO. CO2.10 H2O K2O. Al2O3.4SO3.24 H2O MgO. SO3.7 H2O B2O3. H4O NagO. 2B2O3.10 H2O NagO. 2B2O3.10 H2O MgO. Al2O3.4SO3.22 H2O MgO. Al2O3.4SO3.22 H2O NagO. Al2O3.4SO3.22 H2O NagO. Al2O3.4SO3.22 H2O NagO. CO2. H2O (Ca, NagO. Al2O3.6SiO2.5 H2O NagO. SO3. KCl. 3H2O NagO. CaO. 2CO2.5 H2O CaO. Al2O3.3SiO3.3 H2O CaO. Al2O3.4SiO3.4 H2O Same as preceding (Nag. NagO. Al2O3.4SiO2.4 H2O Same as preceding (Nag. NagO. SO3.4 H2O Same as preceding (Nag. NagO. Co. Co. SO3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.407<br>1.405<br>1.433<br>1.330<br>1.437<br>1.447<br>1.476<br>1.486<br>1.410<br>1.420<br>1.420<br>1.434<br>1.334<br>1.512<br>1.513<br>1.512<br>1.513<br>1.512 | 1.414<br>1.425<br>1.455<br>1.455<br>1.456<br>1.470<br>1.480<br>1.480<br>1.480<br>1.492<br>1.495<br>1.505<br>1.505<br>1.505<br>1.506<br>1.524<br>1.524<br>1.529<br>1.532 | 1.415<br>1.440<br>1.458<br>1.450<br>1.459<br>1.472<br>1.484<br>1.483<br>1.542<br>1.506<br>1.521<br>1.506<br>1.521<br>1.525<br>1.526<br>1.526<br>1.531<br>1.531                            |  |  |  |  |  |
| Thomsenolite Natron Kalinite Epsomite Sassolite Borax Goslarite Pickeringite Bloedite Trona Thermonatrite Stilbite Niter Kainite Gaylussite Scolecite Laumontite Orthoclase Microcline Anorthoclase Glauberite Cordierite                                              | NaF. CaF2. AlF3. H2O Na2O. CO2.10H2O K2O. Al2O3.4SO3.24H2O MgO. SO3.7H2O B2O3.H4O Na2O. 2B2O3.10H2O ZnO. SO3.7H2O MgO. Al2O3.4SO3.22H2O Na2O. MgO. 2SO3. AH2O Na2O. MgO. 2SO3. AH2O Na2O. MgO. 2SO3. AH2O Na2O. CO2. H2O Ca, Na2O. Al2O3.6SiO2.5H2O K2O. N2O5 MgO. SO3. KCl. 3H2O Na2O. CaO. Al2O3.6SiO3.3H2O CaO. Al2O3. SiO3.3H2O K2O. Al2O3. SiO3. SiO3. Na2O. CaO. 2SO3 Al2O3. SiO3. SiO3. Na2O. CaO. 2SO3 Al2O3. SiO3. Al2O3. SiO3. Na2O. CaO. 2SO3 Al4Mg, Fe)O. Al4O3. SiO3. H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.407<br>1.405<br>1.430<br>1.433<br>1.340<br>1.447<br>1.457<br>1.476<br>1.486<br>1.410<br>1.420<br>1.494<br>1.334<br>1.512<br>1.513<br>1.518                   | 1.414<br>1.425<br>1.452<br>1.455<br>1.456<br>1.470<br>1.480<br>1.480<br>1.490<br>1.495<br>1.505<br>1.505<br>1.505<br>1.519<br>1.524<br>1.524<br>1.522<br>1.532<br>1.532 | 1.415<br>1.440<br>1.458<br>1.450<br>1.450<br>1.450<br>1.472<br>1.483<br>1.483<br>1.542<br>1.518<br>1.500<br>1.500<br>1.500<br>1.523<br>1.525<br>1.525<br>1.525<br>1.530<br>1.531<br>1.530 |  |  |  |  |  |
| Thomsenolite. Natron . Kalinite . Epsomite . Sassolite . Borax . Goslarite . Pickeringite . Bloedite . Trona . Thermonatrite . Stilbite . Niter . Kainite . Gaylussite . Scolecite . Laumontite . Laumontite . Microcline . Anorthoclase . Anorthoclase . Glauberite . | NaF. CaF2. AlF3. H2O NagO. CO2.10 H2O K2O. Al2O3.4SO3.24 H2O MgO. SO3.7 H2O B2O3. H4O NagO. 2B2O3.10 H2O NagO. 2B2O3.10 H2O MgO. Al2O3.4SO3.22 H2O MgO. Al2O3.4SO3.22 H2O NagO. Al2O3.4SO3.22 H2O NagO. Al2O3.4SO3.22 H2O NagO. CO2. H2O (Ca, NagO. Al2O3.6SiO2.5 H2O NagO. SO3. KCl. 3H2O NagO. CaO. 2CO2.5 H2O CaO. Al2O3.3SiO3.3 H2O CaO. Al2O3.4SiO3.4 H2O Same as preceding (Nag. NagO. Al2O3.4SiO2.4 H2O Same as preceding (Nag. NagO. SO3.4 H2O Same as preceding (Nag. NagO. Co. Co. SO3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.407<br>1.405<br>1.433<br>1.330<br>1.437<br>1.447<br>1.476<br>1.486<br>1.410<br>1.420<br>1.420<br>1.434<br>1.334<br>1.512<br>1.513<br>1.512<br>1.513<br>1.512 | 1.414<br>1.425<br>1.455<br>1.455<br>1.456<br>1.470<br>1.480<br>1.480<br>1.480<br>1.492<br>1.495<br>1.505<br>1.505<br>1.505<br>1.506<br>1.524<br>1.524<br>1.529<br>1.532 | 1.415<br>1.440<br>1.458<br>1.450<br>1.459<br>1.472<br>1.484<br>1.483<br>1.542<br>1.506<br>1.521<br>1.506<br>1.521<br>1.525<br>1.526<br>1.526<br>1.531<br>1.531                            |  |  |  |  |  |

#### Selected Biaxial Minerals.

| Mineral.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Index of refraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Mineral.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Formula.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $n_{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nβ                                                                                                                                                                                                                                                                                                                                  | $n_{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iued).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Beryllonite. Kaolinite Biotite Autunite. Autunite. Anorthite. Lanthanite. Pyrophyllite. Talc. Hopeite Muscovite. Amblygonite Lepidolite. Phlogopite. Tremolite. Actinolite. Wollastonite Lazulite Danburite. Glaucophanite. Andalusite. Hornblende Datolite Erythrite Strontianite. Witherite. Aragonite. Axanite. Dumortierite. Cyanite. Epidote Atacamite Fayalite. Caledonite. Malachite. Lanristie. Lanarkite Leanristie. Laurionite. Malachite. Laurionite. Matlockite. Baddeleyite. Lepidocrocite. Limonite. Matlockite. Baddeleyite. Lepidocrocite. Limonite. Valentinite. Valentinite. Valentinite. Valentinite. Valentinite. Valentinite. Turgite. Realgar. Terlinguaite. Hutchinsonite. Stibnite. | (b) BIAXIAL NEGATIVE CRYSTALS (continually continually | 1.552 1.561 1.541 1.553 1.576 1.520 1.552 1.530 1.572 1.560 1.572 1.560 1.570 1.560 1.602 1.603 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.632 1.678 1.712 1.831 1.824 1.678 1.712 1.831 1.824 1.930 1.830 1.870 1.804 2.040 2.130 1.930 2.170 2.210 2.210 2.450 2.450 2.450 2.450 2.350 3.078 3.104 | 1.558 1.563 1.574 1.575 1.584 1.587 1.588 1.589 1.590 1.593 1.598 1.623 1.623 1.623 1.634 1.638 1.642 1.638 1.642 1.661 1.662 1.662 1.663 1.661 1.866 1.720 1.868 1.720 1.868 1.720 1.866 1.866 1.720 1.866 1.866 1.866 1.866 1.866 1.990 2.000 2.116 2.150 2.190 2.210 2.350 2.350 2.350 2.550 2.550 2.550 2.550 2.550 2.550 2.550 | 1.561 1.565 1.574 1.577 1.588 1.613 1.600 1.500 1.500 1.500 1.507 1.606 1.631 1.636 1.631 1.636 1.631 1.636 1.638 1.643 1.653 1.643 1.653 1.643 1.653 1.658 1.643 1.658 1.768 1.688 1.768 1.880 1.728 1.880 1.728 1.500 2.550 (Li) 2.350 |  |  |

### TABLE 344. - Miscellaneous Biaxial Crystals.

| Crystal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spectrum<br>line.                                                                                                                      |                                                                                                                                                                 | ex of refract                                                                                                                                                                     | Authority.                                                                                                                   |                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        | na                                                                                                                                                              | $n\beta$                                                                                                                                                                          | $-n\gamma$                                                                                                                   |                                                                                                                                                     |
| Ammonium oxalate, (NH4)2C2O4.H2O Ammonium acid tartrate, (NH4)H(C4H406). Ammonium tartrate, (NH4)2C4H4O6. Antipyrin, C11H12NO2 Citric acid, C4H3O7.H2O. Codein, C12H21NO2.H2O. Magnesium carbonate, MgCO5.3H2O "sulphate, MgSO4.7H2O "chromate, K2CrO7 "chromate, K2CrO7 "intrate, KNO2 "sulphate, K2SO4 "" Racemic acid, C4H6O6.H2O. Resorcin, C4H6O2. Sodium bichromate, N32Cr2O7.2H2O "acid tartrate, NaH(C4H4O6).2H2O Sugar (cane), C2H22O11 "" Tartaric acid, C4H6O6 (right-) Zinc sulphate, ZnSO4.7H2O "" "" Tartaric acid, C4H6O6 (right-) Zinc sulphate, ZnSO4.7H2O "" "" "" Tartaric acid, C4H6O6 (right-) Zinc sulphate, ZnSO4.7H2O "" "" "" "" "" "" "" "" "" "" "" "" | D<br>D<br>D<br>D<br>D<br>Cd, 0. 226μ<br>H, 0.656μ<br>D<br>D<br>red<br>D<br>F<br>D<br>C<br>yellow<br>D<br>D<br>red<br>TI<br>D<br>D<br>L | 1.4381 1.5188 1.5697 1.4932 1.5390 1.4932 1.432 1.4307 1.7202 1.6873 1.3346 1.4976 1.4932 1.4911 1.5379 1.5379 1.5379 1.5379 1.5379 1.4953 1.4953 1.4620 1.4544 | 1.5475 1.5614 1.581 1.6935 1.4977 1.5435 1.501 1.455 1.5266 1.4532 1.7380 1.7254 1.722 1.5056 1.4946 1.4928 1.526 1.555 1.5639 1.5332 1.5685 1.5639 1.53333 1.4860 1.48861 1.4776 | 1.5950 1.5910 1.7324 1.5089 1.526 1.461 1.5326 1.4584 1.8197 1.7305 1.5064 1.5929 1.4959 1.7510 1.5716 1.56046 1.4807 1.4812 | Brio T. and C.* Cloisaux Liweh Schrauf Grailich Genth Means Borel " Dufet T. and C. Mallard Schrauf T. and C. " " " " " " " " " " " " " " " " " " " |
| **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Topsöe and Chris                                                                                                                       | stiansen.                                                                                                                                                       |                                                                                                                                                                                   |                                                                                                                              |                                                                                                                                                     |

TABLE 345. — Miscellaneous Liquids (see also Table 346), Liquefied Gases, Oils, Fats and Waxes.

|                                                             | Reference.                            |
|-------------------------------------------------------------|---------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$      | e e dde ddde de de e de e e e e e e e |
| Lard 15.5   1.4702-1.4720   d   Mutton tallow   60   1.4510 |                                       |

References: (a) Martens; (b) Bleekrode, Pr. Roy. Soc. 37, 339, 1884; (c) Liveing, Dewar, Phil. Mag., 1892–3; (d) Tolman, Munson, Bul. 77, B. of C., Dept. Agriculture, 1905; (e) Seeker, Van Nostrand's Chemical Annual. For the oils of reference d, the average temperature coefficient is 0.000365 per °C.

#### TABLE 346.

#### INDEX OF REFRACTION.

#### Indices of Refraction of Liquids Relative to Air.

| ľ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                    |                                                                                 |                                                               | Indi                                                                                                                                                                              | ces of refra                                                                                                                                                                                      | ction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                      | Author-                                                                                                                            |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| ı | Substance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Den-<br>sity.                                                                                                                                                        | Temp.                                                                           | ο.397 <i>μ</i><br>Η                                           | 0.434µ<br>G'                                                                                                                                                                      | 0.486µ<br>F                                                                                                                                                                                       | ο. 589μ<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.656µ<br>C                                                                                                                                                                          | ity.                                                                                                                               |
|   | Acetaldehyde, CH <sub>3</sub> CHO. Acetone, CH <sub>3</sub> COCH <sub>3</sub> . Aniline, C <sub>3</sub> H <sub>3</sub> .NH <sub>2</sub> . Alcohol, methyl, CH <sub>3</sub> .OH.  " dn/dt. " n-propyl C <sub>3</sub> H <sub>3</sub> .OH " (c <sub>4</sub> H <sub>6</sub> .OH). " dn/dt. " n-propyl C <sub>3</sub> H <sub>7</sub> .OH Benzene, C <sub>4</sub> H <sub>6</sub> . " (c <sub>4</sub> H <sub>6</sub> .OH). " tetrachloride, CG <sub>4</sub> . " tetrachloride, CG <sub>4</sub> . Chinolin, C <sub>9</sub> H <sub>7</sub> N. Chloral, CCl <sub>3</sub> .CHO Chioroform, CHCl <sub>3</sub> . Decane, C <sub>10</sub> H <sub>2</sub> S. Ether, ethyl, C <sub>3</sub> H <sub>6</sub> .O.C <sub>3</sub> H <sub>6</sub> . " dn/dt. Ethyl nitrate, C <sub>4</sub> H <sub>5</sub> .O.NO <sub>3</sub> . Formic acid, H.CO <sub>2</sub> H. Glycerine, C3H <sub>5</sub> O <sub>3</sub> . Hexane, CH <sub>3</sub> (CH <sub>2</sub> ) <sub>4</sub> CH <sub>3</sub> . Mexane, CH <sub>3</sub> (CH <sub>2</sub> ) <sub>4</sub> CH <sub>4</sub> . Methyl iodide, CH <sub>3</sub> 1. " dn/dt. Naphthalene, C <sub>10</sub> H <sub>3</sub> . Nicotine, C <sub>10</sub> H <sub>13</sub> N <sub>2</sub> . Octane, CH <sub>3</sub> (CH <sub>2</sub> ) <sub>6</sub> CH <sub>3</sub> Oil, almond anise seed "" bitter almond cassia. | 0.780 0.791 1.022 0.794 0.868 0.800 0.804 0.880 1.487 1.293 1.291 1.090 1.512 1.480 0.728 0.715 1.109 1.210 1.210 1.210 1.200 0.660 0.670 0.602 0.707 0.92 0.99 1.06 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 | I.3399 I.7289 I.7775 I.6994 I.463 I.8027 I.8027 I.6084 I.7039 | 1.3394 1.3678 1.6204 1.3362 1.3773 1.37000004 1.3938 1.52360007 1.7041 1.6920 1.6748 1.4720 1.4679 1.458 1.4200 1.36070006 1.395 1.3804 1.4928 1.4828 1.4828 1.4828 1.4828 1.4959 | 1.3359 1.3639 1.3639 1.3634 1.3331 1.3739 1.36660004 1.3901 1.51320006 1.6819 1.6688 1.6523 1.4676 1.4624 1.4530 1.4150 1.3764 1.4784 1.3799 1.4007 1.76920007 1.4046 1.4847 1.5743 1.5023 1.5023 | 1.3316<br>(1.3593)<br>1.3693<br>1.3290<br>1.3695<br>1.3618<br>0004<br>1.3854<br>1.5012<br>0006<br>6.0582<br>1.6433<br>1.6276<br>1.4557<br>1.4467<br>1.4108<br>1.3538<br>0006<br>1.3853<br>1.3714<br>1.4730<br>1.3754<br>1.4730<br>1.3754<br>1.7417<br>0007<br>1.5245<br>1.5245<br>1.5275<br>1.4730<br>1.3754<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945<br>1.3945 | 1.3298 1.3573 1.5793 1.3777 1.3607 1.3605 1.0004 1.3834 1.4065 1.0336 1.6495 1.0536 1.4570 1.4530 1.4443 1.4088 1.3515 1.0006 1.3734 1.4756 1.3734 1.4755 1.5508 1.398 1.3987 1.4755 | Means  ''  ''  Means  ''  Means  ''  Id  Ic  Means  Ie  Means  ''  Id  Ic  Means  Ie  Means  Ie  Ie  Ie  Ie  Ie  Ie  Ie  Ie  Ie  I |
|   | cinnamon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.05<br>0.92<br>0.87<br>0.87                                                                                                                                         | 22.5<br>23.5<br>0<br>10.6<br>20.7                                               | 1.7039<br>1.6985<br>—<br>—<br>—<br>1.4939<br>1.4913           |                                                                                                                                                                                   | 1.0389<br>1.6314<br>1.6508<br>1.4825<br>1.4644<br>1.4817                                                                                                                                          | 1.0104<br>1.6026<br>1.6188<br>1.4763<br>1.4573<br>1.4744<br>1.4721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0007<br>1.5930<br>1.6077<br>1.4738<br>1.4545<br>1.4715                                                                                                                             | 5<br>7<br>7<br>8<br>6<br>6<br>9                                                                                                    |
|   | Pentane, CH <sub>2</sub> (CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub> . Phenol, C <sub>6</sub> H <sub>5</sub> OH  Styrene, C <sub>6</sub> H <sub>6</sub> CH.CH <sub>2</sub> Thymol, Q <sub>1</sub> OH <sub>1</sub> O Toluene, CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> Water, H <sub>2</sub> O.  ""  ""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.625<br>1.060<br>1.021<br>0.910<br>0.982<br>0.86                                                                                                                    | 15.7<br>40.6<br>82.7<br>16.6<br>20<br>20<br>0<br>40<br>80                       | I.3435<br>I.3444<br>I.3411<br>I.3332                          | 1.3645<br>1.5684<br>1.5816<br>                                                                                                                                                    | 1.3610<br>1.5558<br>1.5356<br>1.5659<br>1.5386<br>1.5070<br>1.3372<br>1.3380<br>1.3349<br>1.3270                                                                                                  | 1.3581<br>1.5425<br>1.5485<br>1.4055<br>1.3338<br>1.3337<br>1.3230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.3570<br>1.5369<br>1.5174<br>1.5419<br>1.5228<br>1.4911<br>1.3312<br>1.3319<br>1.3290<br>1.3313                                                                                     | ie ig ih ii ih io Means " "                                                                                                        |

References: 1, Landolt and Börnstein (a, Landolt; b, Korten; c, Brühl; d, Haagen; e, Landolt, Jahn; f, Nasini, Bernheimer; g, Eisenlohr; h, Eykman; i, Auwers, Eisenlohr); 2, Korten; 3, Walter; 4, Ketteler; 5, Landolt; 6, Olds; 7, Baden Powell; 8, Willigen; 9, Fraunhofer; 10, Brühl.

# Indices of Refraction relative to Air for Solutions of Salts and Acids.

|                                         |                                                                      |                        |                                                                                |                                                                | 1                                                                   | Total                                                         |                                                              |                        |                                                 | -                             |                                                                                |
|-----------------------------------------|----------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|------------------------|-------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------|
|                                         | 5                                                                    | Substanc               | ce.                                                                            | Density.                                                       | Temp. C.                                                            |                                                               | 1                                                            | action for             | 1                                               | 1                             | Authority.                                                                     |
| 1                                       | -                                                                    |                        |                                                                                |                                                                |                                                                     | C                                                             | D                                                            | F                      | Ну                                              | Н                             |                                                                                |
| 11-                                     |                                                                      |                        |                                                                                | 1                                                              | (a) S                                                               | SOLUTIONS                                                     | IN WAT                                                       | ER.                    |                                                 |                               |                                                                                |
| Ш                                       | Ammonium chloride Calcium chloride " "                               |                        | 1.067<br>.025<br>.398<br>.215                                                  | 27°.05<br>29.75<br>25.65<br>22.9                               | 1.37703<br>.34850<br>.44000<br>.39411                               | .35050<br>.44279<br>.39652                                    | .35515<br>.44938<br>.40206                                   | -                      | .36243<br>.46001<br>.41078                      | 66                            |                                                                                |
| II N<br>P                               | Nítric acid Potash (caustic) Potassium chloride . no                 |                        | double                                                                         | 25.8<br>20.75<br>18.75<br>11.0<br>solution<br>normal<br>normal | .37152<br>1.40817<br>.39893<br>.40052<br>.34087<br>.34982<br>.35831 |                                                               | 1.41774<br>.40857<br>.40808<br>.34719<br>.35645              | -                      | .38666<br>1.42816<br>.41961<br>.41637           | " " Fraunhofer. Bender. "     |                                                                                |
|                                         |                                                                      | caustic<br>chlor<br>"  |                                                                                | 1.376<br>.189<br>.109                                          | 21.6<br>18.07<br>18.07<br>18.07                                     | 1.41071<br>.375 <sup>62</sup><br>.3575 <sup>1</sup><br>.34000 | 1.41334<br>•37789<br>•35959<br>•34191                        | .38322                 | -<br>1.38746<br>.36823<br>.34969                | 1.42872<br>-<br>-<br>-        | Willigen.<br>Schutt.                                                           |
|                                         | Sodium nitrate Sulphuric acid " " " " " "                            |                        | 1.358<br>.811<br>.632<br>.221<br>.028                                          | 22.8<br>18.3<br>18.3<br>18.3<br>18.3                           | 1.38283<br>·43444<br>·42227<br>·36793<br>·33663                     | 1.38535<br>.43669<br>.42466<br>.37009<br>.33862               | 1.39134<br>.44168<br>.42967<br>.37468<br>.34285              | 1111                   | 1.40121<br>.44883<br>.43694<br>.38158<br>.34938 | Willigen.                     |                                                                                |
| Zi                                      | nc ch                                                                | loride<br>"            | •                                                                              | 1.359                                                          | 26.6<br>26.4                                                        | 1.39977<br>.37292                                             | 1.40222°<br>-37515                                           | 1.40797 -<br>.38026 -  |                                                 | 1.41738<br>.38845             | 66                                                                             |
|                                         |                                                                      |                        |                                                                                |                                                                | (b) Solut                                                           | rions in l                                                    | ETHYL A                                                      | LCOHOL.                |                                                 |                               |                                                                                |
|                                         | "                                                                    | lcohol<br>"            | rly sat-                                                                       | 0.789                                                          | <sup>2</sup> 5.5<br><sub>27.6</sub>                                 | 1.35791                                                       | 1.35971<br>·35556                                            | 1.36395<br>.35986      | -                                               | 1.37094<br>.36662             | Willigen.                                                                      |
|                                         | urate<br>yanin                                                       |                        | ated) .                                                                        | _                                                              | 16.0<br>16.0                                                        | .3918                                                         | .398                                                         | .361<br>.3705          | Ξ                                               | ·3759<br>.3821                | Kundt.                                                                         |
|                                         | 4.5                                                                  | per ce                 | nt. soluti                                                                     | ion $\mu_A =$ solution l                                       | 1.4593, μ<br>he gives μ                                             | $a_B = 1.46$ $a_A = 1.49$                                     | 95, μ <sub>F</sub> (g<br>)02, μ <sub>F</sub> ({              | reen) ==<br>green) ==  | 1.4514, µ<br>: 1.4497,                          | (blue                         | n gives for<br>) = 1.4554.<br>) = 1.4597.                                      |
|                                         | 1                                                                    |                        | (c                                                                             | ) Solutio                                                      | NS OF POT                                                           |                                                               |                                                              | NATE IN                | WATER.*                                         |                               |                                                                                |
| ler                                     | ave-<br>ngth<br>cms.                                                 | Spec-<br>trum<br>line. | Index<br>for<br>1 % sol.                                                       | Index<br>for<br>2 % sol.                                       | Index<br>for<br>3 % sol.                                            | for of                                                        | ength t                                                      | rum f                  | or fe                                           | or f                          | dex for for 4 % sol.                                                           |
| 555555555555555555555555555555555555555 | 68.7<br>65.6<br>61.7<br>69.4<br>88.9<br>66.8<br>65.3<br>62.7<br>62.2 | B<br>C<br>D<br>E       | 1.3328<br>.3335<br>.3343<br>.3354<br>.3353<br>.3362<br>.3366<br>.3363<br>.3362 | 1.3342<br>.3348<br>.3365<br>.3373<br>.3372<br>.3387<br>.3395   | 1.3365<br>.3381<br>.3393<br>-3412<br>.3417<br>-3388                 | ·3391<br>·3410<br>·3426<br>·3426<br>·3445<br>·3438            | 51.6<br>50.0<br>48.6<br>48.0<br>46.4<br>44.7<br>43.4<br>42.3 | F 3.3 3.3 3.3 3.3 3.3. | 374 3.3<br>377 381 3.3<br>397 3.4<br>407 3.4    | 395 ·3.<br>402 ·3.<br>421 ·3. | 386 1.3404<br>3408<br>398 .3413<br>414 .3423<br>426 .3439<br>3452<br>457 .3468 |

<sup>\*</sup> According to Christiansen.

#### Indices of Refraction of Gases and Vapors.

A formula was given by Biot and Arago expressing the dependence of the index of refraction of a gas on pressure and temperature. More recent experiments confirm their conclusions. The formula is  $n_t - \mathbf{i} = \frac{n_0 - \mathbf{i}}{\mathbf{i} + at} \frac{p}{f_0}$ , where  $n_t$  is the index of refraction for temperature t,  $n_0$  for temperature zero,  $\alpha$  the coefficient of expansion of the gas with temperature, and p the pressure of the gas in millimeters of mercury. For air see Table 349.

|                                                               | (a) Indices of refraction.                                                             |                                           |                                                                               |                                                                               |                                                                                           |                                                                                            |                                                                             |                                                                               |  |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| Spectrum 10 <sup>3</sup> (n-1) Spectrum 10 <sup>3</sup> (n-1) |                                                                                        |                                           |                                                                               | Wave-                                                                         |                                                                                           | (n-1                                                                                       | ) 103.                                                                      |                                                                               |  |  |
| line.                                                         | Air.                                                                                   | line.                                     | Air.                                                                          | length.                                                                       | Air.                                                                                      | О.                                                                                         | N.                                                                          | H.                                                                            |  |  |
| A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>K<br>L                | .2905<br>.2911<br>.2914<br>.2922<br>.2933<br>.2943<br>.2962<br>.2978<br>.2980<br>.2987 | M<br>N<br>O<br>P<br>Q<br>R<br>S<br>T<br>U | .2993<br>.3003<br>.3015<br>.3023<br>.3031<br>.3043<br>.3053<br>.3064<br>.3075 | .4861<br>.5461<br>.5790<br>.6563<br>.4360<br>.5462<br>.6709<br>6.709<br>8.678 | .2951<br>.2936<br>.2930<br>.2919<br>.2971<br>.2937<br>.2918<br>.2881<br>.2888<br>Cuthbert | .2734<br>.2717<br>.2710<br>.2698<br>.2743<br>.2704<br>.2683<br>.2643<br>.2650<br>sons; the | .3012<br>.2998<br>.2982<br>.2982<br>.02<br>.4506<br>.4471<br>.4804<br>.4579 | .1406<br>.1397<br>.1393<br>.1387<br>.1418<br>.1397<br>.1385<br>.1361<br>.1361 |  |  |

(b) The following are compiled mostly from a table published by Brühl (Zeits. für Phys. Chem. vol. 7, pp. 25-27). The numbers are from the results of experiments by Biot and Arago, Dulong, Jamin, Ketteler, Lorenz, Mascart, Chappius, Rayleigh, and Rivière and Prytz. When the number given rests on the authority of one observer the name of that observer is given. The values are for 0° Centigrade and 760 mm. pressure.

| Substance.                                       | Kind of light.                    | Indices of refraction and authority.                                                                   | Substance.                                 | Kind of light.                | Indices of refraction and authority.                                                                  |
|--------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------|
| Acetone Ammonia                                  | D<br>white<br>D<br>D<br>D         | 1.001079-1.001100<br>1.000381-1.000385<br>1.000373-1.000379<br>1.000281 Rayleigh.<br>1.001700-1.001823 | Hydrogen  Hydrogen sul-{ phide }  Methane  | white D D D white             | 1.000138-1.000143<br>1.000132 Burton.<br>1.000644 Dulong.<br>1.000623 Mascart.<br>1.000443 Dulong.    |
| Bromine Carbon dioxide "Carbon disul- phide }    | D<br>white<br>D<br>white<br>D     | 1.001132 Mascart.<br>1.000449-1.000450<br>1.000448-1.000454<br>1.001500 Dulong.<br>1.001478-1.001485   | Methyl alcohol. Methyl ether Nitric oxide. | D<br>D<br>D<br>white<br>D     | 1.000444 Mascart.<br>1.000549-1.000623<br>1.000891 Mascart.<br>1.000303 Dulong.<br>1.000297 Mascart.  |
| Carbon mon-<br>oxide {<br>Chlorine<br>Chloroform | white<br>white<br>white<br>D<br>D | 1.000340 Dulong.<br>1.000335 Mascart.<br>1.000772 Dulong.<br>1.000773 Mascart.<br>1.001436-1.001464    | Nitrogen  Nitrous oxide  Oxygen            | white D white white           | I.000295-I.000300<br>I.000296-I.000298<br>I.000503-I.000507<br>I.000516 Mascart.<br>I.000272-I.000280 |
| Cyanogen  Ethyl alcohol . Ethyl ether Helium     | white<br>D<br>D<br>D<br>D         | 1.000834 Dulong.<br>1.000784-1.000825<br>1.000871-1.000885<br>1.001521-1.001544<br>1.000036 Ramsay.    | Pentane                                    | D<br>D<br>white<br>D<br>white | 1.000271-1.000272<br>1.001711 Mascart.<br>1.000665 Dulong.<br>1.000686 Ketteler.<br>1.000261 Jamin.   |
| Hydrochloric { acid }                            | white<br>D                        | 1.000449 Mascart.<br>1.000447 "                                                                        | "                                          | D                             | 1.000249-1.000259                                                                                     |

#### TABLE 349. - Index of Refraction of Air (15°C, 76 cm).

Corrections for reducing wave-lengths and frequencies in air (15° C, 76 cm) to vacuo.

The indices were computed from the Cauchy formula  $(n-1)10^7=2726.43+12.288/(\lambda^2\times 10^{-8})+0.3555/(\lambda^4\times 10^{-18})$ . For  $^{\circ}$  C and  $^{\circ}$  6 cm the constants of the equation become 2875.66, 13.412 and 0.3777 respectively, and for  $30^{\circ}$  C and  $^{\circ}$  6 cm, 2580.72, 12.259 and 0.2576. Sellmeier's formula for but one absorption band closely fits the observations:  $n^2=1+0.00057378\lambda^2/(\lambda^2-59260)$ . If n=1 were strictly proportional to the density, then (n-1)e/(n-1)t would equal 1+at where a should be 0.00367. The following values of a were found to hold: a = 0.03672 a =1918.

| Wave-<br>length,<br>\(\lambda\)<br>Ang-<br>stroms. | Dry air (n - 1) × 10 <sup>7</sup> 15° C 76 cm | Vacuo correction for $\lambda$ in air $(n\lambda - \lambda)$ . Add. | Frequency waves per cm 1 \(\frac{1}{\lambda}\) in air.   | Vacuo correction for $\frac{\mathbf{I}}{\lambda}$ in air $\left(\frac{\mathbf{I}}{n\lambda} - \frac{\mathbf{I}}{\lambda}\right)$ . Subtract. | Wave-<br>length,<br>\(\lambda\)<br>Ang-<br>stroms. | Dry air<br>(n - 1)<br>× 10 <sup>7</sup><br>15° C<br>76 cm | Vacuo correction for $\lambda$ in air $(n\lambda - \lambda)$ Add. | Frequency waves per cm 1 \(\bar{\lambda}\) in air.       | Vacuo correction for $\frac{1}{\lambda}$ in air $\left(\frac{1}{n\lambda} - \frac{1}{\lambda}\right)$ . Subtract. |
|----------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 2000<br>2100<br>2200<br>2300<br>2400               | 3256<br>3188<br>3132<br>3086<br>3047          | 0.651<br>0.670<br>0.689<br>0.710<br>0.731                           | 50,000<br>47,619<br>45,454<br>43,478<br>41,666           | 16.27<br>15.18<br>14.23<br>13.41<br>12.69                                                                                                    | 5500<br>5600<br>5700<br>5800<br>5900               | 2771<br>2769<br>2768<br>2766<br>2765                      | 1.524<br>1.551<br>1.578<br>1.604<br>1.631                         | 18,181<br>17,857<br>17,543<br>17,241<br>16,949           | 5.04<br>4.94<br>4.85<br>4.77<br>4.68                                                                              |
| 2500<br>2600<br>2700<br>2800<br>2900               | 2986<br>2962<br>2941<br>2923                  | 0.754<br>0.776<br>0.800<br>0.824<br>0.848                           | 40,000<br>38,461<br>37,037<br>35,714<br>34,482<br>33,333 | 11.48<br>10.97<br>10.50<br>10.08                                                                                                             | 6100<br>6200<br>6300<br>6400                       | 2762<br>2761<br>2760<br>2759                              | 1.035<br>1.685<br>1.712<br>1.739<br>1.766                         | 16,393<br>16,129<br>15,873<br>15,625                     | 4.53<br>4.45<br>4.38<br>4.31                                                                                      |
| 3100<br>3200<br>3300<br>3400                       | 2893<br>2880<br>2869<br>2859                  | 0.897<br>0.922<br>0.947<br>0.972                                    | 32,258<br>31,250<br>30,303<br>29,411<br>28,571           | 9.33<br>9.00<br>8.69<br>8.41                                                                                                                 | 6600<br>6700<br>6800<br>6900                       | 2757<br>2756<br>2755<br>2754<br>2753                      | 1.819<br>1.846<br>1.873<br>1.900                                  | 15,151<br>14,925<br>14,705<br>14,492<br>14,285<br>14,084 | 4.18<br>4.11<br>4.05<br>3.99<br>3.93<br>3.88                                                                      |
| 3600<br>3700<br>3800<br>3900<br>4000<br>4100       | 2842<br>2835<br>2829<br>2823<br>2817<br>2812  | 1.023<br>1.049<br>1.075<br>1.101<br>1.127<br>1.153                  | 27,777<br>27,027<br>26,315<br>25,641<br>25,000<br>24,390 | 7.89<br>7.66<br>7.44<br>7.24<br>7.04<br>6.86                                                                                                 | 7100<br>7200<br>7300<br>7400<br>7500<br>7600       | 2752<br>2751<br>2751<br>2750<br>2749<br>2740              | 1.954<br>1.981<br>2.008<br>2.035<br>2.062<br>2.080                | 13,888<br>13,698<br>13,513<br>13,333<br>13,157           | 3.66<br>3.66<br>3.62                                                                                              |
| 4200<br>4300<br>4400<br>4500<br>4600               | 2808<br>2803<br>2799<br>2796<br>2792          | 1.153<br>1.179<br>1.205<br>1.232<br>1.258<br>1.284                  | 23,809<br>23,255<br>22,727<br>22,222<br>21,739           | 6.68<br>6.52<br>6.36<br>6.21<br>6.07                                                                                                         | 7700<br>7800<br>7900<br>8000<br>8100               | 2748<br>2748<br>2747<br>2746<br>2746                      | 2.116<br>2.143<br>2.170<br>2.197<br>2.224                         | 12,987<br>12,820<br>12,658<br>12,500<br>12,345           | 3·57<br>3·52<br>3·48<br>3·43<br>3·39                                                                              |
| 4700<br>4800<br>4900<br>5000<br>5100               | 2789<br>2786<br>2784<br>2781<br>2779          | 1.311<br>1.338<br>1.364<br>1.391<br>1.417                           | 21,276<br>20,833<br>20,406<br>20,000<br>19,607           | 5.93<br>5.80<br>5.68<br>5.56<br>5.45                                                                                                         | 8250<br>8500<br>8750<br>9000<br>9250               | 2745<br>2744<br>2743<br>2742<br>2741                      | 2.265<br>2.332<br>2.400<br>2.468<br>2.536                         | 12,121<br>11,764<br>11,428<br>11,111<br>10,810           | 3.33<br>3.23<br>3.13<br>3.05<br>2.96                                                                              |
| 5200<br>5300<br>5400                               | 2777<br>2775<br>2773                          | 1.444<br>1.471<br>1.497                                             | 19,230<br>18,867<br>18,518                               | 5·34<br>5·23<br>5·13                                                                                                                         | 9500<br>9750<br>10000                              | 2740<br>2740<br>2739                                      | 2.604<br>2.671<br>2.739                                           | 10,526<br>10,256<br>10,000                               | 2.88<br>2.81<br>2.74                                                                                              |

# MEDIA FOR DETERMINATIONS OF REFRACTIVE INDICES WITH THE MICROSCOPE.

#### TABLE 350. — Liquids, $n_D (0.589\mu) = 1.74$ to 1.87.

In 100 parts of methylene iodide at 20° C, the number of parts of the various substances indicated in the following table can be dissolved, forming saturated solutions having the permanent refractive indices specified. When ready for use the liquids can be mixed by means of a dropper to give intermediate refractions. Commercial iodoform (CHI3) powder is not suitable, but crystals from a solution of the powder in ether may be used, or the crystalized product may be bought. A fragment of tin in the liquids containing the  $\mathrm{SnI}_4$  will prevent discoloration.

| CHI <sub>3</sub> . | SnI <sub>4</sub> .                           | AsI <sub>8</sub> .   | SbI <sub>3</sub> .      | S.      | n <sub>na</sub> at 20°.                                              |
|--------------------|----------------------------------------------|----------------------|-------------------------|---------|----------------------------------------------------------------------|
| 40<br>35           | 25<br>25<br>30<br>27<br>27<br>27<br>31<br>31 | 13<br>16<br>14<br>16 | 12<br>12<br>7<br>8<br>8 | 6<br>10 | 1.764<br>1.783<br>1.806<br>1.820<br>1.826<br>1.842<br>1.853<br>1.868 |

#### TABLE 351. — Resin-like Substances, $n_D$ (0.589 $\mu$ ) = 1.68 to 2.10.

Piperine, one of the least expensive of the alkaloids, can be obtained very pure in straw-colored crystals. When melted it dissolves the tri-iodides of arsenic and antimony very freely. The solutions are fluid at slightly above 100° and when cold, resin-like. A solution containing 3 parts antimony iodide to one part of arsenic iodide with varying proportions of piperine is easier to manipulate than one containing either iodide alone. The following table gives the necessary data concerning the composition and refractive indices for sodium light. In preparing, the constituents, in powder of about 1 mm. grain, should be weighed out and then fused over, not in, a low flame. Three-inch test tubes are suitable.

| Per cent Iodides.   | 00.   | 10.   | 20.   | 30.   | 40.   | 50.   | 60.   | 70.   | 80.   |
|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Index of refraction | 1.683 | 1.700 | 1.725 | 1.756 | 1.794 | 1.840 | 1.897 | 1.968 | 2.050 |

#### TABLE 352. — Permanent Standard Resinous Media, $n_D$ (0.589 $\mu$ ) = 1.546 to 1.682.

Any proportions of piperine and rosin form a homogeneous fusion which cools to a transparent resinous mass. The following table shows the refractive indices of various mixtures. On account of the strong dispersion of piperine the refractive indices of minerals apparently matched with those of mixtures rich in this constituent are 0.005 to 0.01 too low. To correct this error a screen made of a thin film of 7 per cent antimony iodide and 93 per cent piperine should be used over the eye-piece. Any amber-colored rosin in lumps is suitable.

| Per cent Rosin.     | 00.   | 10.   | 20.   | 30.   | 40.   | 50.   | 60.   | 70.   | 80.   | 90.   | 100.  |
|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Index of refraction | 1.683 | 1.670 | 1.657 | 1.643 | 1.631 | 1.618 | 1.604 | 1.590 | 1.575 | 1.560 | 1.544 |

All taken from Merwin, Jour. Wash. Acad. of Sc. 3, p. 35, 1913.

# TABLE 353. OPTICAL CONSTANTS OF METALS.

TABLE 353.

Two constants are required to characterize a metal optically, the refractive index, n, and the absorption index, k, the latter of which has the following significance: the amplitude of a wave after travelling one wave-length,  $\lambda^1$  measured in the metal, is reduced in the ratio  $1:e^{-2\pi k}$  or for any distance d,  $1:e^{-\frac{2\pi d k}{\lambda^1}}$ ; for the same wave-length measured in air this ratio becomes  $1:e^{-\frac{2\pi d n k}{\lambda^1}}$ . nk is sometimes called the extinction coefficient. Plane polarized light reflected from a polished metal surface is in general elliptically polarized because of the relative change in phase between the two rectangular components vibrating in and perpendicular to the plane of incidence. For a certain angle,  $\phi$  (principal incidence) the change is  $90^\circ$  and if the plane polarized incident beam has a certain azimuth  $\overline{\psi}$  (Principal azimuth) circularly polarized light results. Approximately, (Drude, Annalen der Physik, 36, p. 546, 1889),

$$k = \tan 2\overline{\psi} \; (1 - \cot^2 \overline{\phi}) \; \text{and} \; n = \frac{\sin \, \overline{\phi} \; \tan \, \overline{\phi}}{(1 + k^2)^{\frac{1}{2}}} \; (1 + \tfrac{1}{2} \cot^2 \overline{\phi}).$$

For rougher approximations the factor in parentheses may be omitted. R = computed percentage reflection.

(The points have been so selected that a smooth curve drawn through-them very closely indicates the characteristics of the metal.)

|        |       |              | 1              | 1              |              | Compi        | d            |             |                 |
|--------|-------|--------------|----------------|----------------|--------------|--------------|--------------|-------------|-----------------|
| Me     | etal. | À            | 6              | T T            |              |              |              |             | Authority.      |
|        |       |              |                | , r            | n            | k            | nk           | R           | - Indianately i |
|        |       | μ            |                |                |              |              |              | %           | •               |
| Coba   | lt    | 0.231        | 640311         | 29°39          | 1.10         | 1.30         | 1.43         | 32.         | Minor.          |
|        |       | .275         | 70 22          | 29 59          | 1.41         | 1.52         | 2.14         | 46.         | 66              |
|        |       | .500         | 77 5           | 3 1 53         | 1.93         | 1.93         | 3.72         | 66.         | 46              |
|        |       | .650         | 79 0<br>81 45  | 31 25          | 3.63         | 1.87         | 4.40         | 69.         | Ingersoll.      |
|        |       | 1.50         | 83 21          | 26 18          | 5.22         | 1.20         | 5.73<br>6.73 | 73-         | 66              |
| ,      |       | 2.25         | 83 48          | 26 5           | 5.65         | 1.27         | 7.18         | 76.         | - 46            |
| Copp   | er    | .231         | 65 57          | 26 14          | 1.39         | 1.05         | 1.45         | 29.         | Minor.          |
|        |       | -347         | 65 6           | 28 16          | 1.19         | 1.23         | 1.47         | 32.         | "               |
|        |       | .500         | 70 44<br>74 16 | 33 46<br>41 30 | 0.44         | 2.13<br>7.4  | 3.26         | 56.         | Ingersoll.      |
|        |       | .870         | 78 40          | 42 30          | 0.35         | 11.0         | 3.85         | 91.         | "               |
|        |       | 1.75         | 84 4           | 42 30          | 0.83         | 11.4         | 9.46         | 96.         | 66              |
|        |       | 2.25         | 85 13          | 42 30          | 1.03         | 11.4         | 21.7         | 97.         | FörstFréed.     |
|        |       | 4.00<br>5.50 | 87 20<br>88 00 | 42 30<br>41 50 | 1.87<br>3.16 | 9.0          | 21.3         |             | r orstr reed.   |
| Gold   |       | 1.00         | 81 45          | 44 00          | 0.24         | 28.0         | 6.7          |             | 66 66           |
|        |       | 2.00         | 85 30          | 43 56          | 0.47         | 26.7         | 12.5         |             | 66 66           |
|        |       | 3.00         | 87 05<br>88 15 | 43 50          | 0.80         | 24.5         | 19.6         |             | 66 66           |
| Iridia | ım    | 1.00         | 88 15<br>82 10 | 43 25<br>29 15 | 3.85         | 18.1         | 33.<br>6.2   |             | 66 66           |
| Trical | ****  | 2.00         | 83 10          | 29 40          | 4.30         | 1.66         | 7.1          |             | 66 66           |
| N.     |       | 3.00         | 81 40          | 30 40          | 3.33         | 1.79         | 6.0          |             | 66 66           |
| Nick   | .1    | 5.00         | 79 00          | 32 20          | 2 27         | 2.03         | 4.6          |             |                 |
| Nick   | e1    | 0.420        | 72 20<br>76 I  | 31 42<br>31 41 | 1.41         | 1.79<br>1.86 | 2.53<br>3.33 | 54.<br>62.  | Tool.<br>Drude. |
|        |       | 0.750        | 78 45          | 32 6           | 2.19         | 1.99         | 4.36         | 70.         | Ingersoll.      |
|        |       | 1.00         | 80 33          | 32 2           | 2.63         | 2.00         | 5.26         | 74.         | "               |
| Platin |       | 2.25         | 84 21          | 33 30          | 3.95         | 2.33         | 9.20         | 85.         | FörstFréed.     |
| Platti | num   | 2.00         | 75 30<br>74 30 | 37 00<br>39 50 | 0.70         | 3.25<br>5.06 | 3·7<br>3·5   |             | rorstrreed.     |
|        |       | 3.00         | 73 50          | 41 00          | 0.52         | 6.52         | 3.4          |             | 46 46           |
| 0.11   |       | 5.00         | 72 00          | 42 10          | 0.34         | 9.01         | 3.1          |             | 66 66           |
| Silver | r     | 0.226        | 62 41          | 22 16          | 1.41         | 0.75         | 1.11         | 18.         | Minor.          |
|        |       | .293         | 63 14<br>52 28 | 18 56<br>15 38 | 1.57         | o.62<br>o.38 | 0.97         | 17.         | 44              |
|        |       | .332         | 52 I           | 37 2           | 0.41         | 1.61         | 0.65         | 32.         | 46              |
| 1      |       | •395         | 66 36          | 43 6           | 0.16         | 12.32        | 1.91         | 87.         | 66              |
|        |       | .500         | 72 31          | 43 29          | 0.17         | 17.1<br>20,6 | 3.64         | 93.         | 66              |
|        |       | .750         | 75 35<br>79 26 | 43 47          | 0.10         | 30.7         | 5.16         | 95.         | Ingersoll.      |
|        |       | 1.00         | 82 0           | 44 2           | 0.24         | 29.0         | 6.96         | 98.         | "               |
|        |       | 1.50         | 84 42          | 43 48          | 0.45         | 23.7         | 10.7         | 98.         |                 |
|        |       | 3.00         | 86 18          | 43 34 42 40    | 1.65         | 19.9         | 15.4         | 99.         | FörstFréed.     |
|        |       | 4.50         | 88 20          | 41 10          | 4.49         | 7.42         | 33.3         |             | 66 66           |
| Steel  |       | 0.226        | 66 51          | 28 17          | 1.30         | 1.26         | 1.64         | 35-         | Minor.          |
|        |       | .257         | 68 35          | 28 45          | 1.38         | 1.35         | 1.86         | 40.         | 46              |
|        |       | .325         | 69 57<br>75 47 | 30 9<br>29 2   | 2.00         | 1.53         | 3.14         | 45·<br>57·  | 44              |
|        |       | .650         | 77 48          | 27 9           | 2.70         | 1.33         | 3.59         | 59.         | Ingersoll.      |
|        |       | 1.50         | 81 48          | 28 51          | 3.71         | 1.55         | 5.75         | 73 ·<br>80. | 66              |
|        |       | 2.25         | 83 22          | 30 36          | 4.14         | 1.79         | 7.41         | 80.         |                 |
|        |       | _            |                |                | -            |              |              | _           |                 |

Drude, Annalen der Physik und Chemie, 39, p. 481, 1890; 42, p. 186, 1891; 64, p. 159, 1898. Minor, Annalen der Physik, 10, p. 581, 1903. Tool, Physical Review, 31, p. 1, 1910. Ingersoll, Astrophysical Journal, 32, p. 265, 1910; Försterling and Fréedericksz, Annalen der Physik, 40, p. 201, 1913.

#### OPTICAL CONSTANTS OF METALS.

TABLE 354.

| Metal.                                                                             | λ.                                                                                                                                                         | n.                                                                                                                                                           | k.                                                                                                                                                        | R.                                                                                                             | Ref.                                                                                                            | Metal.                                                                                                                           | λ.                                                                            | n.                                                        | k.                                              | R.                                                          | Ref.                                    |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|-----------------------------------------|
| Al.* Sb.* Bi.†‡ Cd.* Cr.* Cb.* Au.†  I. crys. Ir.* Fe.§  Pb.* Mg.* Mn.* Hg. (liq.) | μ<br>0.589<br>-589<br>-589<br>-579<br>-579<br>-257<br>-441<br>-589<br>-589<br>-589<br>-589<br>-589<br>-589<br>-589<br>-589<br>-589<br>-589<br>-589<br>-688 | 1.44<br>3.04<br>2.26<br>1.13<br>2.97<br>1.80<br>0.92<br>1.18<br>0.47<br>3.34<br>2.13<br>1.01<br>1.28<br>1.51<br>2.01<br>0.37<br>2.49<br>0.68<br>1.01<br>1.62 | 5.32<br>4.94<br>-<br>5.01<br>4.85<br>2.11<br>1.14<br>1.85<br>2.83<br>0.57<br>4.87<br>0.88<br>1.37<br>1.63<br>3.48<br>4.42<br>3.49<br>2.26<br>3.42<br>4.41 | 83<br>70<br>85<br>70<br>41<br>28<br>42<br>82<br>30<br>75<br>16<br>28<br>33<br>62<br>93<br>66<br>74<br>75<br>77 | 1<br>1<br>2<br>1<br>3<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>1<br>1<br>3<br>4<br>4<br>4<br>4<br>4<br>4 | Rh.* Se.‡  Na. (liq.) Ta.* Sn.* W.* V.* Zn.*                                                                                     | rption ir                                                                     | dex, R                                                    | =refl                                           | ection.                                                     |                                         |
| Fd.*<br>Pt.†<br>Ni.*                                                               | .579<br>.257<br>.441<br>.589<br>.668<br>.275<br>.441<br>.589                                                                                               | 1.62<br>1.17<br>1.94<br>2.63<br>2.91<br>1.09<br>1.16<br>1.30                                                                                                 | 3.41<br>1.65<br>3.16<br>3.54<br>3.66<br>1.16<br>1.23<br>1.97                                                                                              | 65<br>37<br>58<br>59<br>59<br>24<br>25<br>43                                                                   | 3<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                            | (1) Drude<br>used, Ann.<br>36, p. 824,<br>deutsch. Pl<br>Meier, Ann<br>(5) Wood,<br>Ingersoll, se<br>* solid, †<br>as film in va | der Phys<br>1889; (<br>nysik. G<br>ales der<br>Phil. M<br>• Table<br>electrol | ik und<br>3) v. V.<br>es. 12,<br>Physi<br>ag. (6)<br>205. | Chemi<br>Warten<br>p. 10<br>k, 10, p<br>, 3, 60 | e, 34, p. berg, \(\begin{aligned} 5, 1910 c. 581, 1 7, 1902 | 477,<br>Verh.<br>; (4)<br>903;<br>; (6) |

TABLE 355 .- Reflecting Power of Metals. (See page 298.)

| Wave-<br>length                                            | Al.                                        | Sb.                                    | Cd.                              | Co.                              | Graph-                                       | Ir.                                   | Mg.                                         | Mo.                                                | Pd.                              | Rh.                                          | Si.                                          | Ta.                                         | Te.                                        | Sn.                                   | W                                                  | Va.                                         | Zn.                                  |
|------------------------------------------------------------|--------------------------------------------|----------------------------------------|----------------------------------|----------------------------------|----------------------------------------------|---------------------------------------|---------------------------------------------|----------------------------------------------------|----------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------|----------------------------------------------------|---------------------------------------------|--------------------------------------|
| μ                                                          |                                            |                                        |                                  |                                  |                                              |                                       |                                             | Pe                                                 | er cen                           | ts.                                          |                                              |                                             |                                            |                                       |                                                    |                                             |                                      |
| .5<br>.6<br>.8<br>1.0<br>2.0<br>4.0<br>7.0<br>10.0<br>12.0 | -<br>-<br>71<br>82<br>92<br>96<br>98<br>98 | 53<br>54<br>55<br>60<br>68<br>71<br>72 | 72<br>87<br>96<br>98<br>98<br>99 | 67<br>72<br>81<br>93<br>97<br>97 | 22<br>24<br>25<br>27<br>35<br>48<br>54<br>59 | -<br>78<br>87<br>94<br>95<br>96<br>96 | 72<br>73<br>74<br>74<br>77<br>84<br>91<br>— | 46<br>48<br>52<br>58<br>82<br>90<br>93<br>94<br>95 | 72<br>81<br>88<br>94<br>97<br>97 | 76<br>77<br>81<br>84<br>91<br>92<br>94<br>95 | 34<br>32<br>29<br>28<br>28<br>28<br>28<br>28 | 38<br>45<br>64<br>78<br>90<br>93<br>94<br>- | -<br>49<br>48<br>50<br>52<br>57<br>68<br>- | -<br>54<br>61<br>72<br>81<br>84<br>85 | 49<br>51<br>56<br>62<br>85<br>93<br>95<br>96<br>96 | 57<br>58<br>60<br>61<br>69<br>79<br>88<br>- | -<br>-<br>80<br>92<br>97<br>98<br>98 |

Coblentz, Bulletin Bureau of Standards, 2, p. 457, 1906, 7, p. 107, 1911. The surfaces of some of the samples were not perfect so that the corresponding values have less weight. The methods for polishing the various metals are described in the original articles. The following more recent values are given by Coblentz and Emerson, Bul. Bur. Stds. 14, p. 207, 1917, Stellite, an exceedingly hard and untarnishable alloy of Co, Cr, Mo, Mn, and Fe (C, S1, S, P) was obtained from the Haynes Stellite Co, Kokomo, Ludiana. Indiana.

.576 .900 .689 ·900 ·943 ·747 Wave-length,  $\mu$ , .15 .20 I.00 4.00 Tungsten, Stellite, .948 - - - ·50 ·32 ·42 ·50 ·64 •943 •**792** .880 According to Fresnel the amount of light reflected by the surface of a transparent medium  $= \frac{1}{2} \left\{ \frac{\sin^2{(i-r)}}{\sin^2{(i+r)}} + \frac{\tan^2{(i-r)}}{\tan^2{(i+r)}} \right\}; A \text{ is the amount polarized in the plane of incidence; } B \text{ is that polarized perpendicular to this; } i \text{ and } r \text{ are the angles of incidence and refraction.}$ 

TABLE 356. — Light reflected when  $i=0^\circ$  or Incident Light is Normal to Surface.

| n.                                        | $\frac{1}{2}(A+B)$ .                         | n.                                     | $\frac{1}{2}(A+B)$ .                         | 74.                                    | $\frac{1}{2}(A+B)$ .                               | п.                  | $\frac{1}{2}(A+B)$ .                       |
|-------------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------------------|---------------------|--------------------------------------------|
| 1.00<br>1.02<br>1.05<br>1.1<br>1.2<br>1.3 | 0.00<br>0.01<br>0.06<br>0.23<br>0.83<br>1.70 | 1.4<br>1.5<br>1.6<br>1.7<br>1.8<br>1.9 | 2.78<br>4.00<br>5.33<br>6.72<br>8.16<br>9.63 | 2.0<br>2.25<br>2.5<br>2.75<br>3.<br>4. | 11.11<br>14.06<br>18.37<br>22.89<br>25.00<br>36.00 | 5.83<br>10.<br>100. | 44·44<br>50.00<br>66.67<br>96.08<br>100.00 |

TABLE 357.—Light reflected when n is near Unity or equals 1+dn.

|                                                |                                                                                                                     |                                                                                                            |                                                                                                                         | quais 1 T                                                                                                                                |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| i.                                             | А.                                                                                                                  | В.                                                                                                         | $\frac{1}{2}(A+B).$                                                                                                     | $\frac{A-B}{A+B}$ .*                                                                                                                     |
| 0° 5 10 15 20 25 30 35 40 45 50 65 70 75 80 85 | 1.000 1.015 1.063 1.149 1.282 1.482 1.78 2.221 2.904 4.000 5.857 9.239 16.000 31.346 73.079 222.85 1099.85 17330.64 | 1.000 -985 -939 -862 -752 -612 -444 -260 -088 -000 -176 1.081 -4.000 12.952 -42.884 167.16 971.21 16808.08 | 1.000 1.000 1.001 1.005 1.017 1.047 1.111 1.240 1.496 2.000 3.016 5.160 10.000 22.149 57.981 195.00 1035.53 17069.36 00 | 0.0<br>1.5<br>6.2<br>14.3<br>26.0<br>41.5<br>60.0<br>79.1<br>94.5<br>100.0<br>94.5<br>79.1<br>60.0<br>41.5<br>26.0<br>14.3<br>6.2<br>1.5 |

TABLE 358.—Light reflected when n = 1.55.

| i,    | r.      | А.     | В,     | dA.t  | dB.†  | $\frac{1}{2}(A+B)$ , | $\frac{A-B}{A+B}$ * |
|-------|---------|--------|--------|-------|-------|----------------------|---------------------|
| 0 /   | 0 /     |        |        |       |       |                      |                     |
| 0     | 0 0.0   | 4.65   | 4.65   | 0.130 | 0.130 | 4.65                 | 0.0                 |
| 5     | 3 13.4  | 4.70   | 4.61   | .131  | .129  | 4.65                 | 1.0                 |
| 10    | 6 25.9  | 4.84   | 4.47   | -135  | .126  | 4.66                 | 4.0                 |
| 15    | 9 36.7  | 5.09   | 4.24   | .141  | .121  | 4.66                 | 9.1                 |
| 20    | 12 44.8 | 5.45   | 3.92   | .1 5O | .114  | 4.68                 | 16.4                |
| 25    | 15 49-3 | 5.95   | 3.50   | .161  | .105  | 4-73                 | 25.9                |
| 30    | 18 49.1 | 6.64   | 3.00   | ·175  | •094  | 4.82                 | 37.8                |
| 35    | 21 43.1 | 7.55   | 2.40   | .191  | .081  | 4.98                 | 51.7                |
| 40    | 24 30.0 | 8.77   | 1.75   | .210  | .066  | 5.26                 | 66.7                |
| 45    | 27 8.5  | 10.38  | 1.08   | .233  | -049  | 5.73                 | 81.2                |
| 50    | 29 37.1 | 12.54  | 0.46   | .263  | .027  | 6.50                 | 92.9                |
| 55    | 31 54.2 | 15.43  | 0.05   | .303  | -007  | 7.74                 | 99.3                |
| 60    | 33 58.1 | 19.35  | 0.12   | -342  | 013   | 9.73                 | 98.8                |
| 65    | 35 47.0 | 24.69  | 1.13   | -375  | 032   | 12.91                | 91.2                |
| 70    | 37 19.1 | 31.99  | 4,00   | .400  | 050   | 18.00                | 77-7                |
| 75    | 38 32.9 | 42,00  | 10.38  | .410  | 060   | 26.19                | 61.8                |
| 80    | 39 26.8 | 55.74  | 23.34  | .370  | 069   | 39 54                | 41.0                |
| 82 30 | 39 45.9 | 64.41  | 34.04  | -320  | 067   | 49.22                | 30.8                |
| 85 0  | 39 59.6 | 74.52  | 49.03  | .250  | 061   | 61.77                | 20.6                |
| 86 o  | 40 3.6  | 79.02  | 56.62  | -209  | 055   | 67.82                | 16.5                |
| 87 0  | 40 6.7  | 83.80  | 65.32  | .163  | 046   | 74.56                | 12.4                |
| 88 •  | 40 8.9  | 88.88  | 75.31  | 8116  | 036   | 82.10                | 8.3                 |
| 89 0  | 40 10.2 | 94.28  | 86.79  | .063  | 022   | 90-54                | 4.1                 |
| 90 0  | 40 10.7 | 100.00 | 100.00 | •000  | 000   | 100.00               | 0.0                 |

Angle of total polarization =  $57^{\circ}$  10'.3, A = 16.99.

<sup>\*</sup> This column gives the degree of polarization.

† Columns 5 and 6 furnish a means of determining A and B for other values of n. They represent the change in these quantities for a change of n of o.or.

Taken from E. C. Pickering's "Applications of Fresnel's Formula for the Reflection of Light."

#### TABLES 359-360.

#### REFLECTING POWER OF METALS.

TABLE 359. — Perpendicular Incidence and Reflection. (See also Tables 352-355.)

The numbers give the per cents of the incident radiation reflected.

|                                                                              |                                              |                                              | _                                                                                    |                                                                                      | _                                                                            |                                                                                      |                                              |                                                                                      |                                                                              |                                                                                      |                                                                                |                                                      |                                                                              |
|------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------|
| Wave-length, µ.                                                              | Silver-backed Glass,                         | Mercury-backed Glass.                        | Mach's Magnalium.                                                                    | Brandes-Schünemann Alloy. 32Cn+34Sn+29Ni+5Fe.                                        | Ross' Speculum Metal. 68.2Cu+31.8Sn.                                         | Nickel,<br>Electrolytically Deposited.                                               | Copper.<br>Electrolytically Deposited.       | Steel,<br>Untempered,                                                                | Copper.<br>Commercially Pure.                                                | Platinum,<br>Electrolytically Deposited,                                             | Gold,<br>Electrolytically Deposited.                                           | Brass.<br>(Trowbridge),                              | Silver.<br>Chemically Deposited,                                             |
| .251<br>.288<br>.305<br>.316<br>.326<br>.338<br>.357<br>.385                 |                                              |                                              | 67.0<br>70.6<br>72.2<br>75.5<br>81.2<br>83.9                                         | 35.8<br>37.1<br>37.2<br>-<br>39.3<br>-<br>43.3<br>44.3                               | 29.9<br>37.7<br>41.7<br>-<br>-<br>51.0<br>53.1                               | 37.8<br>42.7<br>44.2<br>-<br>45.2<br>46.5<br>48.8<br>49.6                            | -                                            | 32.9<br>35.0<br>37.2<br>40.3<br>45.0<br>47.8                                         | 25.9<br>24.3<br>25.3<br>-<br>24.9<br>-<br>27.3<br>28.6                       | 33.8<br>38.8<br>39.8<br>-<br>41.4<br>-<br>43.4<br>45.4                               | 38.8<br>34.0<br>31.8<br>-<br>28.6<br>-<br>27.9<br>27.1                         |                                                      | 34.1<br>21.2<br>9.1<br>4.2<br>14.6<br>55.5<br>74.5<br>81.4                   |
| .420<br>.450<br>.500<br>.550<br>.600<br>.650                                 | 85.7<br>86.6<br>88.2<br>88.1<br>89.1<br>89.6 | 72.8<br>70.9<br>71.2<br>69.9<br>71.5<br>72.8 | 83.3<br>83.4<br>83.3<br>82.7<br>83.0<br>82.7<br>83.3                                 | 47.2<br>49.2<br>49.3<br>48.3<br>47.5<br>51.5<br>54.9                                 | 56.4<br>60.0<br>63.2<br>64.0<br>64.3<br>65.4<br>66.8                         | 56.6<br>59.4<br>60.8<br>62.6<br>64.9<br>66.6<br>68.8                                 | 48.8<br>53.3<br>59.5<br>83.5<br>89.0<br>90.7 | 51.9<br>54.4<br>54.8<br>54.9<br>55.4<br>56.4<br>57.6                                 | 32.7<br>37.0<br>43.7<br>47.7<br>71.8<br>80.0<br>83.1                         | 51.8<br>54.7<br>58.4<br>61.1<br>64.2<br>66.5<br>69.0                                 | 29.3<br>33.1<br>47.0<br>74.0<br>84.4<br>88.9<br>92.3                           | - 1 - 1 - 1 - 1                                      | 86.6<br>90.5<br>91.3<br>92.7<br>92.6<br>94.7<br>95.4                         |
| .800<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>7.0<br>9.0<br>11.0<br>14.0 | 111111111111111111111111111111111111111      |                                              | 84.3<br>84.1<br>85.1<br>86.7<br>87.4<br>88.7<br>89.0<br>90.0<br>90.6<br>90.7<br>92.2 | 63.1<br>69.8<br>79.1<br>82.3<br>85.4<br>87.1<br>87.3<br>88.6<br>90.3<br>90.2<br>90.3 | 70.5<br>75.0<br>80.4<br>86.2<br>88.5<br>89.1<br>90.1<br>92.2<br>92.9<br>93.6 | 69.6<br>72.0<br>78.6<br>83.5<br>88.7<br>91.1<br>94.4<br>94.3<br>95.6<br>95.9<br>97.2 |                                              | 58.0<br>63.1<br>70.8<br>76.7<br>83.0<br>87.8<br>89.0<br>92.9<br>92.9<br>94.0<br>96.0 | 88.6<br>90.1<br>93.8<br>95.5<br>97.1<br>97.3<br>97.9<br>98.3<br>98.4<br>97.9 | 70.3<br>72.9<br>77.7<br>80.6<br>88.8<br>91.5<br>93.5<br>95.5<br>95.4<br>95.6<br>96.4 | 94.9<br>-<br>97.3<br>96.8<br>-<br>96.9<br>97.0<br>98.3<br>98.0<br>98.3<br>97.9 | 91.0<br>93.7<br>95.7<br>95.9<br>97.0<br>97.8<br>96.6 | 96.8<br>97.0<br>98.2<br>97.8<br>98.1<br>98.5<br>98.1<br>98.5<br>98.7<br>98.8 |

Based upon the work of Hagen and Rubens, Ann. der Phys. (1) 352, 1900; (8) 1, 1902; (11) 873, 1903. Taken partly from Landolt-Börnstein-Meyerhoffer's Physikalisch-chemische Tabellen.

TABLE 360. — Percentage Diffuse Reflection from Miscellaneous Substances.

|                                    |                                 | La         | mp-bla                  | cks.                    |                          |                          | leaves.    | ei ei             |                               |                              | Paper.           | ai.                            |          | ret.          |             |            |
|------------------------------------|---------------------------------|------------|-------------------------|-------------------------|--------------------------|--------------------------|------------|-------------------|-------------------------------|------------------------------|------------------|--------------------------------|----------|---------------|-------------|------------|
| Wave-<br>length                    | Paint.                          | Rosin.     | Sperm candle.           | Acetylene               | Camphor.                 | Pt. black electrol.      | Green leav | Lead oxide.       | Al. oxide.                    | Zinc oxide.                  | White Pay        | Lead carbonate.                | Asphalt. | Black velvet. | Black felt. | Red brick. |
| *.60<br>*.95<br>4.4<br>8.8<br>24.0 | 3.2<br>3.4<br>3.2<br>3.8<br>4.4 | 1.3<br>1.3 | 1.1<br>.9<br>1.3<br>4.0 | 0.6<br>.8<br>I.2<br>2.I | 1.3<br>1.2<br>1.6<br>5.7 | I.I<br>I.4<br>2.I<br>4.2 | 25.        | 52.<br>51.<br>26. | 84.<br>88.<br>21.<br>2.<br>6. | 82.<br>86.<br>8.<br>3.<br>5. | 75·<br>18.<br>5· | 89.<br>93.<br>29.<br>11.<br>7. | 15.      | 3.7<br>2.7    | 14.         | 30.        |

<sup>\*</sup>Not monochromatic (max.) means from Coblentz, J. Franklin Inst. 1912. Bulletin Bureau of Standards, 9, p. 283, 1912, contains many other materials.

#### REFLECTING POWER OF PIGMENTS.

#### TABLE 361. - Percentage Reflecting Power of Dry Powdered Pigments.

Taken from "The Physical Basis of Color Technology," Luckiesh, J. Franklin Inst., 1917. The total reflecting power depends on the distribution of energy in the illuminant and is given in the last three columns for noon sun, blue sky, and for a 7.9 lumens/watt tungsten filament.

| Spectrum color.                                                                         | Vio-<br>let.              | Bl                        | ue.                        |                            | Green                      |                            | Yell                       | low.                       | (                          | )rang                      | e.                         |                            | Red.                       |                            | sun.                       | light.                     | ungsten.<br>lamp.          |
|-----------------------------------------------------------------------------------------|---------------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Wave-length in μ                                                                        | 0.44                      | 0.46                      | 0.48                       | 0.50                       | 0.52                       | 0.54                       | 0.56                       | 0.58                       | 0.60                       | 0.62                       | 0.64                       | 0.66                       | 0.68                       | 0.70                       | Noon                       | X                          | Tung                       |
| American vermilion Venetian red Tuscan red Indian red Burnt sienna                      | 8<br>5<br>7<br>8<br>4     | 6<br>5<br>7<br>7<br>4     | 5<br>7<br>7<br>4           | 5<br>5<br>8<br>7<br>4      | 6<br>5<br>8<br>7<br>5      | 6<br>6<br>8<br>7<br>6      | 9<br>7<br>8<br>7<br>9      | 11<br>12<br>12<br>11<br>14 | 24<br>19<br>16<br>15<br>18 | 39<br>24<br>18<br>18<br>20 | 53<br>28<br>20<br>20<br>21 | 61<br>30<br>22<br>22<br>23 | 66<br>32<br>23<br>23<br>24 | 65<br>32<br>24<br>24<br>25 | 14<br>11<br>10<br>11       | 12<br>10<br>10<br>9        | 12<br>13<br>12<br>11<br>13 |
| Raw sienna                                                                              | 12<br>22<br>8<br>20<br>5  | 13<br>22<br>9<br>20<br>5  | 13<br>23<br>7<br>21<br>6   | 13<br>27<br>7<br>24<br>8   | 18<br>40<br>10<br>32<br>18 | 26<br>53<br>19<br>42<br>48 | 35<br>63<br>30<br>53<br>66 | 43<br>71<br>46<br>63<br>75 | 46<br>75<br>60<br>64<br>78 | 46<br>74<br>62<br>61<br>79 | 45<br>73<br>66<br>60<br>81 | 44<br>73<br>82<br>59<br>81 | 45<br>73<br>81<br>59<br>81 | 43<br>72<br>80<br>59<br>81 | 33<br>58<br>33<br>49<br>54 | 30<br>55<br>29<br>46<br>50 | 37<br>63<br>40<br>53<br>63 |
| Chrome yellow light Chrome green light Chrome green medium Cobalt blue Ultramarine blue | 13<br>10<br>7<br>59<br>67 | 13<br>10<br>7<br>58<br>54 | 18<br>14<br>10<br>49<br>38 | 30<br>23<br>21<br>35<br>21 | 56<br>26<br>21<br>23<br>10 | 82<br>23<br>17<br>15<br>6  | 88<br>20<br>13<br>11<br>4  | 89<br>17<br>11<br>10<br>3  | 90<br>14<br>9<br>10<br>3   | 89<br>11<br>7<br>10<br>4   | 88<br>9<br>6<br>11<br>5    | 87<br>8<br>6<br>15<br>7    | 85<br>7<br>6<br>20<br>10   | 84<br>6<br>5<br>25<br>17   | 76<br>19<br>14<br>16<br>7  | 70<br>19<br>14<br>18<br>10 | 82<br>18<br>12<br>13<br>6  |

TABLE 362. - Infra-red Diffuse Percentage Reflecting Powers of Dry Pigments.

| Wave-<br>length<br>in $\mu$          | Co2O3                   | CuO           | Cr2O3                    | PbO                  | Fe <sub>2</sub> O <sub>3</sub> | Y2O3                 | PbCrO4             | Al <sub>2</sub> O <sub>3</sub> | ThO2                | CnO                     | MgO                | CaO                | ZrO <sub>2</sub>         | PbCO3                     | MgCO3                    | White lead paint. | Zn oxide<br>paint. |
|--------------------------------------|-------------------------|---------------|--------------------------|----------------------|--------------------------------|----------------------|--------------------|--------------------------------|---------------------|-------------------------|--------------------|--------------------|--------------------------|---------------------------|--------------------------|-------------------|--------------------|
| 0.60*<br>0.95*<br>4.4<br>8.8<br>24.0 | 3<br>4<br>14<br>13<br>6 | 24<br>15<br>4 | 27<br>45<br>33<br>5<br>8 | 52<br>51<br>26<br>10 | 26<br>41<br>30<br>4<br>9       | 74<br>34<br>11<br>10 | 70<br>41<br>5<br>7 | 84<br>88<br>21<br>20<br>6      | 86<br>47<br>7<br>10 | 82<br>86<br>8<br>3<br>5 | 86<br>16<br>2<br>9 | 85<br>22<br>4<br>6 | 86<br>84<br>23<br>5<br>5 | 88<br>93<br>29<br>10<br>7 | 85<br>89<br>11<br>4<br>9 | 76<br>79<br>—     | 68<br>72<br>—      |

\*Non-monochromatic means from Coblentz, Bul. Bureau Standards 0, p. 283, 1012.

For the Reflecting (and transmissive) power of ROUGHENED SURFACES at various angles of incidence, see Corton, Physical Review, 7, p. 66, 1916. A surface of plate glass, ground uniformly with the finest emery and then silvered, used at an angle of 75, reflected 90 per cent at 4\mu, approached 100 for longer waves, only 10 at 1\mu, less than 5 in the visible red and approached o for shorter waves. Similar results were obtained with a plate of rock salt for transmitted energy when roughened merely by breathing on it. In both cases the finer the surface, the more suddenly it cuts off the short waves.

#### REFLECTING POWER.

#### TABLE 363. - Reflecting Power of Powders (White Light).

Various pure chemicals, very finely powdered and surface formed by pressing down with glass plate. White (noon sunlight) light. Reflection in per cent. Nutting, Jones, Elliott, Tr. Ill. Eng. Soc. 9, 593, 1914.

| Barium sulphate   | 81.1 | " (block)        | 88.0 | Sodium chloride | 77.0  |
|-------------------|------|------------------|------|-----------------|-------|
| Borax             | 81.0 | Magnesium oxide  | 85.7 | StarchSugar.    |       |
| Calcium carbonate | 83.8 | Salicylic acid   | 81.1 | Tartaric acid   | 79. 1 |
| Citric acid       | 81.5 | Sodium carbonate | 81.8 |                 |       |

#### TABLE 364. - Variation of Reflecting Power of Surfaces with Angle.

Illumination at normal incidence, 14 watt tungsten lamp, reflection at angles indicated with normal. Ill. Eng. Soc., Glare Committee, Tr. Ill. Eng. Soc. 11, p. 92, 1916.

| Angle of observation.                                                                                                                                                                                                | o°                                                                          | 10                  | 3° | 5°                                                                           | 10°                                                                          | 15°                                                                          | 30°                                                                          | 45°                                                                  | 60°                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------|----|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Magnesium carbonate block Magnesium oxide. Matt photographic paper White blotter Pot opal, ground. Flashed opal, not ground Glass, fine ground. Glass, course ground. Matt varnish on foil. Mirror with ground face. | 0.88<br>0.80<br>0.78<br>0.76<br>0.69<br>II.3<br>0.29<br>0:23<br>0.83<br>4.9 | o.69 II.3 o.29 o.22 |    | 0.88<br>0.80<br>0.78<br>0.76<br>0.69<br>0.31<br>0.29<br>0.20<br>0.72<br>4.55 | 0.88<br>0.80<br>0.78<br>0.76<br>0.69<br>0.22<br>0.27<br>0.19<br>0.62<br>3.86 | 0.87<br>0.80<br>0.78<br>0.76<br>0.69<br>0.21<br>0.20<br>0.16<br>0.49<br>3.03 | 0.83<br>0.77<br>0.78<br>0.73<br>0.68<br>0.20<br>0.14<br>0.11<br>0.28<br>0.78 | 0.72<br>0.75<br>0.76<br>0.70<br>0.66<br>0.20<br>0.13<br>0.11<br>0.21 | 0.68<br>0.66<br>0.72<br>0.67<br>0.64<br>0.18<br>0.12<br>0.12<br>0.16 |

The following figures, taken from Fowle, Smithsonian Misc. Col. 58, No. 8, indicate the amount of energy scattered on each side of the directly reflected beam from a silvered mirror; the energy at the center of the reflected beam was taken as 100,000, and the angle of incidence was about 3°.

| Angle of reflection, 3° ± | 0′ | 8′<br>600 | 10'<br>244 | 15' | 20'<br>107 | 30'<br>66 | 45'<br>33 | 60'<br>22 | 100' |
|---------------------------|----|-----------|------------|-----|------------|-----------|-----------|-----------|------|
|---------------------------|----|-----------|------------|-----|------------|-----------|-----------|-----------|------|

Wave-length of max. energy of Nernst lamp used as source about 2µ.

#### TABLE 365. — Infra-red Reflectivity of Tungsten (Temperature Variation).

Three tungsten mirrors were used,—a polished Coolidge X-ray target and two polished flattened wires mounted in evacuated soft-glass bulbs with terminals for heating electrically. Weniger and Pfund, J. Franklin Inst.

| Wave-<br>length                                      | Absolute reflec-<br>tivity at room<br>temperature |                                      |                                     | se in reflectiv<br>m temperatu         |                                                         |
|------------------------------------------------------|---------------------------------------------------|--------------------------------------|-------------------------------------|----------------------------------------|---------------------------------------------------------|
| in μ.                                                | in per cent.                                      | 1377° K                              | 1628° K                             | 1853° K                                | 2056° K                                                 |
| 0.67<br>0.80<br>1.27<br>1.90<br>2.00<br>2.90<br>4.00 | 51<br>55<br>70<br>83<br>85<br>92<br>93            | +6.0<br>-0.0<br>-6.6<br>-7.5<br>-7.7 | +7.4<br>0.0<br>-8.2<br>-9.3<br>-9.4 | +8.7<br>-0.0<br>-9.6<br>-10.9<br>-11.1 | +9.8<br>+8.2<br>0.0<br>-11.0<br>-12.3<br>-12.5<br>-12.5 |

See also Weniger and Pfund, Phys. Rev. 15, p. 427, 1919.

#### TRANSMISSIBILITY OF RADIATION BY DYES.

Percentage transmissions of aqueous solutions taken from The Physical Basis of Color-Technology, Luckiesh, J. Franklin Inst. 184, 1917.

| Spectrum color →                                                                                                                                                                                                                                           | Violet.                                                  | Blue.                                                                                | Green                                                                           |                                                                              | Yellow.                                                                                                             | C                                                                              | range                                                                            |                                                                                        |                                                                                  | Red.                                                                             |                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Wave-length in $\mu \rightarrow$                                                                                                                                                                                                                           | • 44                                                     | .46 .48                                                                              | .50 .52                                                                         | - 54                                                                         | . 56 . 58                                                                                                           | .60                                                                            | .62                                                                              | .64                                                                                    | . 66                                                                             | . 68                                                                             | .70                                                                        |
| Carmen ruby opt Amido naphthol red Coccinine Erythrosine. Hematoxyline. Alizarinered. Acid rosolic (pure). Rapid filter red. Aniline red fast extra A. Pinatype red fast Eosine Rose bengal Cobalt nitrate.                                                | 6<br>1<br>4<br>-<br>80<br>69                             | 3 7 1 2 3 1 — — — — — — — — — — — — — — — — — —                                      | 13 14 3 4                                                                       |                                                                              | 4 1 53 13 25 11 22 2 38 10 47 12 34 1 54 14 82 67 82                                                                | 4<br>56<br>90<br>44<br>39<br>78<br>86<br>55<br>11<br>87<br>96<br>87            | 4<br>38<br>96<br>95<br>54<br>54<br>88<br>95<br>72<br>35<br>93<br>97              | 18<br>75<br>98<br>96<br>63<br>65<br>90<br>96<br>84<br>55<br>92<br>98                   | 37<br>92<br>98<br>96<br>73<br>72<br>91<br>96<br>88<br>65<br>92<br>98             | 49<br>96<br>98<br>96<br>78<br>77<br>92<br>96<br>90<br>68<br>92<br>98             | 60<br>96<br>98<br>96<br>82<br>79<br>92<br>96<br>92<br>69<br>92<br>98       |
| Tartrazine Chrysoidin. Aurantia Aniline yellow phosphine. Fluorescein Aniline yellow fast S. Methyl orange indicator. Uranine. Uranine naphthaline Orange B naphthol Safranine. Martius gelb. Naphthol yellow. Potassium bichromate, sat. Cobalt chromate. | 15<br>15<br>15<br>17                                     |                                                                                      | 7                                                                               | 52<br>3<br>20<br>91<br>84<br>—<br>96<br>77<br>1<br>—<br>84<br>91<br>10<br>90 | 75 86<br>-23 53<br>43 60<br>97 98<br>96 96<br>1 31<br>97 97<br>82 83<br>43 88<br>- 91 94<br>96 97<br>96 84<br>92 93 | 91<br>2<br>82<br>67<br>98<br>96<br>70<br>97<br>84<br>95<br>3<br>95<br>98<br>88 | 95<br>23<br>92<br>75<br>98<br>96<br>79<br>97<br>85<br>96<br>27<br>95<br>98<br>89 | 96<br>50<br>96<br>81<br>98<br>96<br>80<br>97<br>86<br>97<br>64<br>95<br>98<br>89<br>96 | 97<br>71<br>96<br>85<br>98<br>96<br>81<br>97<br>86<br>97<br>85<br>98<br>89<br>96 | 98<br>79<br>96<br>86<br>98<br>96<br>81<br>97<br>87<br>97<br>93<br>95<br>98<br>89 | 98<br>79<br>96<br>87<br>98<br>96<br>81<br>97<br>87<br>97<br>93<br>98<br>98 |
| Naphthol green Brilliant green Filter blue green. Malachite green Saurgrün Methylengrün Aniline green naphthol B. Neptune green Cupric chloride.                                                                                                           | 2<br>4<br>. 35<br>3<br>28<br>2<br>77                     | 4 7<br>39 69<br>49 64<br>12 20<br>29 57<br>31 32<br>6 14<br>40 63<br>84 89           | 21 30<br>52 23<br>70 60<br>8 1<br>57 39<br>26 17<br>24 34<br>41 13<br>92 92     | 36<br>4<br>37<br>19<br>7<br>40<br>1<br>89                                    | 29 16<br>13 2<br>4 1<br>2 1<br>32 14<br>80 67                                                                       | 7<br>-<br>-<br>-<br>4<br>52                                                    | 2<br>-<br>-<br>-<br>1<br>36                                                      | I 19                                                                                   | -<br>-<br>-<br>-<br>-<br>6                                                       | 23<br>12<br>4<br>3<br>—                                                          | 64<br>50<br>30<br>28<br>5                                                  |
| Turnbull's blue. Victoria blau. Prussian blue (soluble). Wasser blau Resorcine blue Toluidin blau Patent blue. Dianil blue Filter blue. Aniline blue, methyl                                                                                               | 58<br>52<br>66<br>89<br>25<br>66<br>83<br>77<br>84<br>92 | 60 56<br>23 9<br>71 76<br>75 51<br>18 6<br>31 13<br>91 84<br>69 59<br>70 66<br>88 78 | 51 38<br>1 —<br>60 60<br>26 7<br>2 1<br>3 1<br>76 65<br>48 35<br>44 27<br>52 27 | 28<br>                                                                       | 18 9<br>32 20<br>— — — — — — — — 224 8<br>15 9<br>14 19<br>3 2                                                      | 5<br>12<br>1<br>1<br>-<br>2<br>5<br>36<br>2                                    | 3<br>1<br>7<br>2<br>2<br>2<br>—<br>5<br>5<br>6<br>4                              | 1<br>4<br>5<br>6<br>14<br>1<br>7<br>74<br>8                                            | 21<br>3<br>18<br>41<br>4<br>6<br>14<br>81<br>16                                  | 49<br>3<br>37<br>64<br>16<br>42<br>29<br>88<br>25                                | 73<br>60<br>72<br>40<br>78<br>53<br>92<br>45                               |
| Magenta Gentiana violet. Rosazeine Iodine (dense) Rhodamine B Acid violet. Cyonine in alcohol. Xylene red Methyl violet B                                                                                                                                  | 21<br>89<br>50<br>-<br>. 81<br>84<br>7<br>39<br>25       | 8 2<br>83 64<br>28 2<br>- 71 45<br>76 68<br>1 -<br>23 1<br>4 -                       | 1 — 44 26 — — 13 2 50 33 — — —                                                  | 19<br><br>26<br>                                                             | 1 22<br>15 10<br>— 6<br>— 23<br>27 34<br>— 1                                                                        | 73<br>13<br>55<br>83<br>49<br>27                                               | 93<br>42<br>90<br>                                                               | 97<br>75<br>98<br>1<br>96<br>84<br>—<br>97<br>3                                        | 97<br>92<br>98<br>93<br>96<br>96<br>1<br>97<br>26                                | 97<br>93<br>98<br>11<br>95<br>96<br>13<br>97<br>63                               | 97<br>94<br>98<br>23<br>94<br>96<br>23<br>96<br>89                         |

For the infra-red transmission (to  $12\mu$ ) and reflection powers of a number of aniline dyes, see Johnson and Spence, Phys. Rev. 5, p. 349, 1915.

#### TRANSMISSIBILITY OF RADIATION BY JENA GLASSES.

#### **TABLE 367.**

Coefficients, a, in the formula  $I_t = I_0 a^t$ , where  $I_0$  is the Intensity before, and  $I_t$  after, transmission through the thickness t. Deduced from observations by Müller, Vogel, and Rubens as quoted in Hovestadt's Jena Glass (English translation).

|                                                                                                                                                         |                                               |                                       |                                               | Сое    | fficient                                      | of tra                     | ansmi                        | ssion,                                        | a.                                            |                                               |                                             |                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------|-----------------------------------------------|--------|-----------------------------------------------|----------------------------|------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------|---------------------------------------------|
| Unit t=1 dm.                                                                                                                                            | .375 µ                                        | 390 µ                                 | .400 /                                        | u .434 | μ .43                                         | 6 μ                        | •455                         | 47                                            | 7 μ .5                                        | ;ο3 μ                                         | .580 µ                                      | .677 μ                                      |
| O 340, Ord. light flint<br>O 102, H'vy silicate flint<br>O 93, Ord. ""<br>O 203, "" crown<br>O 598, (Crown)                                             | .388                                          | .456<br>.025<br>-<br>.583             | .463                                          | .50    | 52 .59<br>7<br>57 .8                          | 80<br>66<br>14<br>06<br>97 | .834<br>.663<br>.807<br>.822 | .8                                            | 99 ·<br>60 ·                                  | 880<br>782<br>871<br>872<br>776               | .878<br>.828<br>.903<br>.872<br>.818        | .939<br>.794<br>.943<br>.903<br>.860        |
| Unit t=1 cm.                                                                                                                                            | 0.7 μ                                         | 0.95 μ                                | 1.1 μ                                         | 1.4 μ  | 3.7 µ                                         | 2.0                        | μ 2                          | .3 μ                                          | 2.5 μ                                         | 2.7 P                                         | 2.9 μ                                       | 3.1 µ                                       |
| S 204, Borate crown S 179, Med. phosp. cr. O 1143, Dense, bor. sil. cr. O 1092, Crown O 1151, " O 451, Light flint O 469, Heavy " O 500, " " S 163, " " | 1.00<br><br>.98<br>.99<br>.98<br>1.00<br>1.00 | .99<br>.98<br>-<br>.96<br>-<br>-<br>- | .94<br>.95<br>.97<br>.95<br>.99<br>.99<br>.98 | .90    | .85<br>.84<br>.95<br>.99<br>.98<br>.98<br>.99 |                            | 7 3                          | .69<br>.49<br>.90<br>.82<br>.90<br>.92<br>.98 | .43<br>.87<br>.84<br>.71<br>.79<br>.84<br>.97 | .29<br>.18<br>.71<br>.60<br>.75<br>.78<br>.90 | -<br>+47<br>.48<br>.45<br>.54<br>.66<br>.74 | -<br>.27<br>.29<br>.32<br>.34<br>.50<br>.53 |

#### TABLE 368.

Note: With the following data, t must be expressed in millimeters; i. e. the figures as given give the transmissions for thickness of 1 mm.

|                                                              |            |            |                   |            |                   | Wave   | -length | in μ.  |        |         |         |        |        |
|--------------------------------------------------------------|------------|------------|-------------------|------------|-------------------|--------|---------|--------|--------|---------|---------|--------|--------|
| No. and Type of Glass.                                       |            |            | Visibl            | e Spec     | trum.             |        |         |        | Ultr   | a-viole | t Spect | rum.   |        |
|                                                              | .644 µ     | .578 µ     | .546 µ            | .509 µ     | .480 µ            | .436 µ | .405 µ  | .384 μ | .361 µ | .340 µ  | .332 µ  | .309 µ | .28ο μ |
| F 3815 Dark neutral<br>F 4512 Red filter                     | ·35        | ·35        | -37               | -35        | ·34               | .30    | .15     | .06    |        |         |         |        |        |
| F 2745 Copper ruby<br>F 4313 Dark yellow                     | .72        | ·39<br>·97 | ·47<br>·93        | .47        | .09               | .43    | .43     |        |        |         |         |        |        |
| F 4351 Yellow<br>F 4937 Bright yellow<br>F 4930 Green filter | .98<br>1.0 | .97<br>1.0 | .96<br>1,0<br>.64 | .93<br>.99 | •44<br>•74<br>•44 | .15    | .31     | .28    | .22    | .18     | .14     | .06    |        |
| F 3873 Blue filter<br>F 3654 Cobalt glass,                   | -          | -          | -                 | .18        | .50               | •73    | .69     | .59    | .36    | .10     |         |        |        |
| transparent for outer<br>red<br>F 3653 Blue, ultraviolet     | -          | -          |                   | .15        | ·44               | .85    |         | 1.0    | 1.0    | 1.0     | 1.0     | .58    | .18    |
| F 3728 Didymium, str'g<br>bands                              | .99        | .72        | •99               | .96        | •95               | .96    | •99     | -99    | .89    | .89     | .77     | • •54  |        |

This and the following table are taken from Jenaer Glas für die Optik, Liste 751, 1909

TABLE 369. - Transmissibility by Jena Ultra-violet Glasses.

| No. and Type of Glass.                             | Thickness.                                | 0.397 μ                                      | 0.383 μ                                      | 0.361 μ                                      | ο.346 μ                                      | 0.325 μ                                      | 0.309 μ                      | 0.280 μ |
|----------------------------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------|---------|
| UV 3199 Ultra-violet " " " " " " " " " " " " " " " | I mm. 2 mm. 1 dm. 1 mm. 2 mm. 1 dm. 1 dm. | 1.00<br>0.99<br>0.95<br>1.00<br>0.98<br>0.96 | 1.00<br>0.99<br>0.95<br>1.00<br>0.98<br>0.87 | 1.00<br>0.99<br>0.89<br>1.00<br>0.98<br>0.79 | 1.00<br>0.97<br>0.70<br>1.00<br>0.92<br>0.45 | 1.00<br>0.90<br>0.36<br>0.98<br>0.78<br>0.08 | 0.95<br>0.57<br>0.91<br>0.38 | 0.56    |

#### TRANSMISSIBILITY OF RADIATION BY GLASSES.

The following data giving the percentage transmission of radiation of various substances, mostly glasses, are selected from Spectroradiometric Investigation of the Transmission of Various substances, Coblentz, Emerson and Long, Bul. Bureau Standards, 14, p. 653, 1918.

|                                                    |             |     |     | _   |          |          | _       | _       | _   | _   |     |
|----------------------------------------------------|-------------|-----|-----|-----|----------|----------|---------|---------|-----|-----|-----|
|                                                    |             |     |     |     | Trans    | mission  | per c   | ents.   |     |     |     |
|                                                    | Thick-      |     |     |     |          |          |         |         |     |     |     |
| Glass or substance, manufacturer.                  | ness,<br>mm |     |     |     | Wa       | ve-leng  | gths in | $\mu$ . |     |     | - 1 |
|                                                    | 111111      | 0.5 | 1.0 | 1.5 | 2.0      | 2.5      | 3.0     | 3.5     | 4.0 | 4.5 | 5.0 |
|                                                    |             |     |     |     |          |          |         | 3.3     | 4.0 | 4.5 | 3.0 |
| Purple fluorite                                    | 4.08        |     |     |     | 47       | 48       | 48      | 57      | 60  | 62  | 62  |
| Gold film on Crooke's glass                        | 4.90        | 22  | 3   | 2   | 47<br>I  | 40<br>I  | 40<br>I | 3/      | 0   | 0   | 0   |
| " " crown glass                                    |             | 34  | 8   | 3   | 2        | I        | I       | 0       | 0   | 0   | 0   |
| Molybdenite                                        | .007        | 0   | 41  | 43  | 44       | 46       | 46      | 47      | 48  | 48  | 48  |
| $Cr_2(SO_4)_3.18 H_2O$                             | . 24        | 0   | 83  | 63  | 37       | II       | 0       | 0       | 0   | 0   | 0   |
| Chrome alum, 10 g to 100 g H <sub>2</sub> O        |             | _   | 73  | 0   | 0        | _        | _       | _       | -   | -   | -   |
| CoCl <sub>2</sub> , 10 g to 100 g H <sub>2</sub> O | 10          | _   | 50  | 0   | 0        | _        |         | _       | -   |     | -   |
| GLASSES:                                           |             |     |     | 6.  |          | -6       |         |         | -6  |     |     |
| Copper ruby, flashed                               | 1.95        | _   | 50  | 64  | 72       | 76       | 40      | 33      | 36  | 7   | 0   |
| Schott's red, No. 2745                             | 5.90        |     | 83  | 80  | 72<br>80 | 75       | 10      | IO      | 0   | 0   | 0   |
| G <sub>34</sub> , Corning, orange                  | 3.15        |     | 50  | 62  | 67       | 68       | 15      | 3       | I   | 0   | 0   |
| Pyrex, Corning                                     | 1.55        | 90  | 00  | 00  | QI       | 87       | 35      | 13      | 7   | 2   | 0   |
| Noviol, B, Corning, yellow                         | 2.88        | 80  | 75  | 60  | 82       | 75       | 23      | 4       | 4   | 0   | 0   |
| Novieweld3, Corning, dk-yellow                     | 2.2         | 12  | ī   | 2   | 6        | 13       | 6       | 7       | 7   | I   | 0   |
| Schott's 43111, green                              | 3.43        | 50  | 4   | 53  | 79       | 83       | 25      | 9       | 0   | 0   | 0   |
| G1710N, green, Corning                             | 5.11        | _   | I   | 23  | 53       | 68       | 20      | 9       | 8   | 0   | 0   |
| G174J, Corning, heat abs'b'g                       | 2.6         |     | 2   | 4   | 12       | 19       | II      | 4       | 6   | 0   | 0   |
| G124JA, Corning                                    | 1.5         | 52  | 0   | I   | 5        | 10       | 3       | 5       | 6   | 0   | 0   |
| Cobalt blue                                        | 2.43        | _   | 74  | 43  | 63       | 79       | 36      | 27      | 28  | 0   | 0   |
| G4013, Corning, blue                               | 2.58        |     | 0   | 15  | 50       | 31<br>61 | II      | 5       | 4 2 | 0   | 0   |
| G <sub>5</sub> 84, Corning, blue                   | 3.70        |     | 0   | 24  | 60       | 75       | 45      | 20      | 20  | T   | 0   |
| Gi711Z, Corning, blue                              | 3.23        | _   | 23  | 60  | 74       | 78       | 45      | 13      | 12  | ī   | 0   |
| Amethyst, C, Corning                               | 2.11        | 55  | 91  | 91  | 91       | 88       | 42      | 20      | 25  | 7   | 0   |
| G172BW5. Corning, red-purple                       | 4.43        |     | 0   | 0   | 2        | 5        | 6       | 8       | 12  | 2   | 0   |
| Crookes' A, A. O. Co                               | 1.96        | 90  | 92  | 91  | 90       | 83       | 38      | 23      | 27  | 5   | 0   |
| " sage green 30, A. O. Co                          | 1.98        | 50  | 0   | 0   | 4        | II       | 8       | 8       | II  | 3   | 0   |
| Lab. 58, A. O. Co                                  | 2.04        | 72  | 86  | 91  | 91       | 89       | 51      | 35      | 38  | 7   | 0   |
| Fieurzal B, A. O. Co                               | 2.04        | 59  | 76  | 80  | 82       | 81       | 30      | 20      | 25  | 2   | 0   |
| Akopos green, J. K. O. Co                          | 1.58        | 76  | 91  | 91  | 91       | 90       | 70      | 52      | 51  | 10  | 0   |
|                                                    |             |     |     |     |          |          |         |         | -   |     |     |

Manufacturers: Corning Glass Works, Corning, N. Y.; A. O. Co., American Optical Co., Southbridge, Mass.; J. K. O. Co., Julius King Optical Co., New York City. For other glasses see original reference. See also succeeding table, which contains data for many of the same glasses.

TABLE 371. — Transmission of the Radiations from a Gas-filled Tungsten Lamp, the Sun, a Magnetite Arc, and from a Quartz Mercury Vapor Lamp (no Globe) through Various Substances, especially Colored Glasses.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       | Thiele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                            | ransmissio                                                                                                                                                                                         | n, per cen              | t.                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Trade name.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Source.*                                                                                                                                                                                                                                              | Thick-<br>ness<br>in mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gas-<br>filled<br>tung-<br>sten.                                                                                                                             | Quartz<br>mercury<br>vapor.†                                                                                                                                                                       | Mag-<br>netite<br>arc.† | Solar<br>radia-<br>tion.                                                                                                                                                   |
| Greenish-yellow  """  """  """  """  Smoky green  Yellow-green  """  Amber  Orange  Yellow-green  Bue-green  Blue-green  ""  Gold plate  ""  Colorless  Amethyst  Purple  Blue-green  Blue-green  Blue-green  ""  Colorless  ""  Amethyst  Purple  Blue-green  Blue-green  Blue-green  Colorless  ""  Colorless  ""  Blue-green  Blue-green | Fieuzal, B Fieuzal, 63 Fieuzal, 64 Euphos Euphos, B Akopos green Hallauer, 65 Hallauer, 65 Hallauer, 64 Roysield, 36% Noviweld, 36% Noviweld, shade 44 Noviweld, shade 6 Noviweld, shade 6 Noviweld, shade 7 Saniweld, dark G 34 Noviol, shade B Noviol, shade C Ferrous No. 30 No. 61 Lab. No. 59 G 124 JA Smoke, C Smoke, C Smoke, D Crookes, A Crookes, B Pfund Lab. No. 58 Lab. No. 57 Shade C Electric smoke G 55 A 62 Shade D G 53 G 77 Electric smoke G 55 A 62 Shade D G 53 G 77 Electric smoke G 55 Selenium Flashed Window Crown Mica Mica Mica Mica Water | A. O. C. C. C. C. C. C. G. W. W. C. C. G. G. W. W. C. C. G. G. | 2.04<br>1.80<br>1.65<br>3.12<br>1.58<br>2.36<br>1.35<br>2.14<br>2.20<br>2.17<br>3.12<br>1.32<br>1.35<br>2.20<br>2.17<br>3.12<br>1.32<br>1.35<br>2.20<br>2.17<br>3.12<br>1.35<br>2.20<br>2.17<br>3.12<br>1.35<br>2.20<br>2.17<br>3.12<br>1.35<br>2.20<br>2.17<br>3.12<br>1.35<br>2.20<br>2.17<br>3.12<br>1.35<br>2.20<br>2.17<br>3.12<br>1.35<br>2.20<br>2.17<br>3.12<br>1.35<br>2.20<br>2.17<br>3.12<br>1.35<br>2.20<br>2.10<br>1.95<br>2.10<br>2.20<br>2.10<br>1.95<br>2.10<br>2.20<br>2.10<br>2.20<br>2.10<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>2.20<br>3.21<br>3.21<br>3.21<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20<br>3.20 | 71.6 75.5 75.7 78.9 78.8 84.6 70.3 58.7 0.4 1.6 0.9 5.3 56.9 74.1 5.3 82.7 3.7 5.3 65.3 75.7 2.6 83.3 82.8 36.6 17.4 37.6 20.9 46.6 24.9 37.6 24.9 37.6 34.2 | 26.9 34.3 22.0 25.0 24.7 29.5 17.7 25.9 0.2 1.2 0.4 0.2 15.2 10.6 17.0 17.5 28.6 17.3 21.5 31.2 16.0 17.3 21.5 31.2 16.0 20.7 3.0 46.1 32.0 46.1 32.0 47.0 48.5 59.5 64.9 4.8 59.5 64.9 43.1 ‡54.0 | 46.0 55.0               | 63 72 — 64 74 555 — 9 — 50 47 81 75 72 19 60 43 89 69 12 88 — 11 16 — 41 48 46 82 92 — 41 48 48 46 — 41 48 48 46 — 41 48 48 46 — 41 48 48 48 48 48 48 48 48 48 48 48 48 48 |

<sup>\*</sup>A. O. C., Amer. Optical Co., Southbridge, Mass.; C. G. W., Corning Glass Works, Corning, N. Y.; B. & L., Bausch & Lomb, Rochester, N. Y.; J. K., Julius King Optical Co., New York City; F. H. E., F. H. Edmonds, optician, Washington, D. C.; B. S., Bureau of Standards; scrap material, source unknown.

† Infra-red radiation absorbed by quartz cell containing r cm layer of water. Taken from Coblentz-Emerson & Long, Bul. Bureau Standards, 14, 653, 1918.

‡ Transmission of r cm cell having glass windows.

#### TRANSMISSIBILITY OF RADIATION.

#### Transmissibility of the Various Substances of Tables 330 to 338.

Alum: Ordinary alum (crystal) absorbs the infra-red.

Metallic reflection at 9.05 \mu and 30 to 40 \mu.

Rock-salt: Rubens and Trowbridge (Wied. Ann. 65, 1898) give the following transparencies for a 1 cm. thick plate in %:

| λ | 9    | 10   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19  | 20.7 | 23.7μ |
|---|------|------|------|------|------|------|------|------|------|-----|------|-------|
| % | 99.5 | 99.5 | 99.3 | 97.6 | 93.1 | 84.6 | 66.1 | 51.6 | 27.5 | 9.6 | 0.6  | 0.    |

Pflüger (Phys. Zt. 5. 1904) gives the following for the ultra-violet, same thickness:  $280\mu\mu$ , 95.5%; 231, 86%; 210, 77%; 186, 70%.

Metallic reflection at 0.110\mu, 0.156, 51.2, and 87\mu.

Sylvite: Transparency of a 1 cm. thick plate (Trowbridge, Wied. Ann. 60, 1897).

| λ | 9    | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17  | 18  | 19  | 20.7 - | 23.7μ |
|---|------|------|------|------|------|------|------|------|-----|-----|-----|--------|-------|
| % | 100. | 98.8 | 99.0 | 99.5 | 99.5 | 97.5 | 95.4 | 93.6 | 92. | 86. | 76. | 58.    | 15.   |

Metallic reflection at 0.114µ, 0.161, 61.1, 100.

Fluorite: Very transparent for the ultra-violet nearly to 0.1 µ.

Rubens and Trowbridge give the following for a 1 cm. plate (Wied. Ann. 60, 1897):

| λ | 8μ   | 9    | 10   | 11  | 12μ |
|---|------|------|------|-----|-----|
| % | 84.4 | 54.3 | 16.4 | 1.0 | 0   |

Metallic reflection at 24μ, 31.6, 40μ.

Iceland Spar: Merritt (Wied. Ann. 55, 1895) gives the following values of & in the formula  $i = i_0 e^{-kd}$  (d in cm.):

For the ordinary ray:

| λ | 1.02 | 1.45 | 1.72 | 2.07 | 2.11 | 2.30 | 2.44 | 2.53 | 2.60 | 2.65 | 2.74μ |
|---|------|------|------|------|------|------|------|------|------|------|-------|
| k | 0.0  | 0.0  | 0.03 | 0.13 | 0.74 | 1.92 | 3.00 | 1.92 | 1.21 | 1.74 | 2.36  |

| λ | 2.83 | 2.90 | 2.95 | 3.04 | 3.30 | 3.47 | 3.62 | 3.80 | 3.98 | 4.35 | 4.52 | 4.83µ |
|---|------|------|------|------|------|------|------|------|------|------|------|-------|
| k | 1.32 | 0.70 | 1.80 | 4.71 | 22.7 | 19.4 | 9.6  | 18.6 | ∞    | 6.6  | 14.3 | 6.1   |

For the extraordinary ray:

|   | λ | 2.49 | 2.87 | 3.00 | 3.28 | 3.38 | 3.59 | 3.76 | 3.90 | 4.02 | 4.41 | 4.67μ |
|---|---|------|------|------|------|------|------|------|------|------|------|-------|
| ı | k | 0.14 | 0.08 | 0.43 | 1.32 | 0.89 | 1.79 | 2.04 | 1.17 | 0.89 | 1.07 | 2.40  |

| λ | 4.91 | 5.04 | 5.34 | 5.50μ |
|---|------|------|------|-------|
| k | 1.25 | 2.13 | 4.41 | 12.8  |

Quartz: Very transparent to the ultra-violet; Pflüger gets the following transmission values for a plate 1 cm. thick: at 0.222\mu, 94.2\%; 0.214, 92; 0.203, 83.6; 0.186, 67.2\%.

Merritt (Wied. Ann. 55, 1895) gives the following values for k (see formula under Iceland Spar):
For the ordinary ray:

| λ | 2.72 | 2.83 | 2.95 | 3.07 | 3.17 | 3.38 | 3.67 | 3.82 | 3.96 | 4.12 | 4.50μ |
|---|------|------|------|------|------|------|------|------|------|------|-------|
| k | 0.20 | 0.47 | 0.57 | 0.31 | 0.20 | 0.15 | 1.26 | 1.61 | 2.04 | 3.41 | 7.30  |

For the extraordinary ray:

| λ | 2.74 | 2.89 | 3.00 | 3.08 | 3.26 | 3.43 | 3.52 | 3.59 | 3.64 | 3.74 | 3.91 | 4.19 | 4.36μ |
|---|------|------|------|------|------|------|------|------|------|------|------|------|-------|
| k | 0.0  | 0.11 | 0.33 | 0.26 | 0.11 | 0.51 | 0.76 | 1.88 | 1.83 | 1.62 | 2.22 | 3.35 | 8.0   |

For  $\lambda > 7$   $\mu$ , becomes opaque, metallic reflection at 8.50 $\mu$ , 9.02, 20.75-24.4 $\mu$ , then transparent again.

The above are taken from Kayser's "Handbuch der Spectroscopie," vol. iii.

#### TABLES 373-374.

#### TRANSMISSIBILITY OF RADIATION.

#### TABLE 373. - Color Screens.

The following light-filters are quoted from Landolt's "Das optische Drehungsvermögen, etc." 1898. Although only the potassium salt does not keep well it is perhaps safer to use freshly prepared solutions.

| Color.                                               | Thick-<br>ness.<br>mm.                                         | Water solutions of                                                                                                                                                                                                                                                                                                       | Grammes of substance in 100 c.cm.                                         | Optical centre of band.                        | Transmission.                                                                                                                             |
|------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Red " Yellow " Green " Bright { blue { Dark { blue { | 20<br>20<br>20<br>15<br>15<br>20<br>20<br>20<br>20<br>20<br>20 | Crystal-violet, 5BO Potassium monochromate Nickel-sulphate, NiSO <sub>4</sub> -7aq. Potassium monochromate Potassium permanganate Copper chloride, CuCl <sub>2</sub> .2aq. Potassium monochromate Double-green, SF Copper-sulphate, CuSO <sub>4</sub> .5aq. Crystal-violet, 5BO Copper sulphate, CuSO <sub>4</sub> .5aq. | 0.005<br>10.<br>30.<br>10,<br>0.025<br>60.<br>10.<br>0.02<br>15.<br>0.005 | 0.6659<br>0.5919<br>0.5330<br>0.4885<br>0.4482 | { begins about 0.718μ.<br>{ ends sharp at 0.639μ.<br>0.614-0.574μ,<br>0.540-0.505μ<br>{ 0.526-0.494 and<br>{ 0.494-0.458μ<br>0.478-0.410μ |

#### TABLE 374. - Color Screens.

The following list is condensed from Wood's Physical Optics:

Methyl violet, 4R (Berlin Anilin Fabrik) very dilute, and nitroso-dimethyl-aniline transmits 0.365μ. Methyl violet + chinin-sulphate (separate solutions), the violet solution made strong enough to blot out 0.4359µ, transmits 0.4047 and 0.4048, also faintly 0.3984.

Cobalt glass + aesculin solution transmits 0.4359µ.

Guinea green B extra (Berlin) + chinin sulphate transmits 0.4916\mu.

Neptune green (Bayer, Elberfeld) + chrysoidine. Dilute the latter enough to just transmit 0.5790 and 0.5461; then add the Neptune green until the yellow lines disappear.

Chrysoidine + eosine transmits 0.5790\mu. The former should be dilute and the eosine added until

the green line disappears.

Silver chemically deposited on a quartz plate is practically opaque except to the ultra-violet region 0.3160-0.3260 where 90% of the energy passes through. The film should be of such thickness

that a window backed by a brilliantly lighted sky is barely visible.

In the following those marked with a \* are transparent to a more or less degree to the ultra-violet: \* Cobalt chloride: solution in water, — absorbs 0.50-.53 $\mu$ ; addition of CaCl<sub>2</sub> widens the band to 0.47-.50. It is exceedingly transparent to the ultra-violet down to 0.20. If dissolved in methyl alcohol + water, absorbs 0.50-.53 and everything below 0.35. In methyl alcohol alone 0.485-0.555 and below 0.40µ.

Copper chloride: in ethyl alcohol absorbs above 0.585 and below 0.535; in alcohol + 50% water,

above 0.595 and below 0.37μ.

Neodymium salts are useful combined with other media, sharpening the edges of the absorption bands. In solution with bichromate of potash, transmits 0.535-.565 and above 0.60µ, the bands very sharp (a useful screen for photographing with a visually corrected objective).

Praseodymium salts: three strong bands at 0.482, .468, .444. In strong solutions they fuse into a

sharp band at 0.435-.485µ. Absorption below 0.34.

Picric acid absorbs 0.36-.42\mu, depending on the concentration. Potassium chromate absorbs 0.40-.35, 0.30-.24, transmits 0.23µ.

\* Potassium permanganate: absorbs 0.555-.50, transmits all the ultra-violet. Chromium chloride: absorbs above 0.57, between 0.50 and .39, and below 0.33µ. These limits vary with the concentration.

Aesculin: absorbs below 0.363µ, very useful for removing the ultra-violet.

\* Nitroso-dimethyl-aniline: very dilute aqueous solution absorbs 0.49-.37 and transmits all the ultra-violet.

Very dense cobalt glass + dense ruby glass or a strong potassium bichromate solution cuts off everything below 0.70 and transmits freely the red.

Iodine: saturated solution in CS<sub>2</sub> is opaque to the visible and transparent to the infra-red.

#### TRANSMISSIBILITY OF RADIATION.

TABLE 375. - Color Screens. Jena Glasses.

|                                                                                       | Kind of Glass.                | Maker's<br>No                                                                                                                                                                     | Color.                                                                                                                                                                         | Region Transmitted.    | Thick-<br>ness.<br>mm. |
|---------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|
| I 1a 2 2a                                                                             | Copper-ruby Gold-ruby Uranium | 1                                                                                                                                                                                 |                                                                                                                                                                                | ( Dad wallow, in al. 1 | 1.7                    |
| 3<br>4<br>4a<br>4b<br>5<br>6<br>7<br>8<br>10<br>11<br>"<br>12<br>13<br>14<br>15<br>16 | Nickel                        | 440 <sup>III</sup> 414 <sup>III</sup> 433 <sup>III</sup> 433 <sup>III</sup> 432 <sup>III</sup> 436 <sup>III</sup> 436 <sup>III</sup> 438 <sup>III</sup> 2742 447 <sup>III</sup> " | Bright yellow-brown  Yellow-green Greenish-yellow Green Yellow-green Grass-green Dark green "  Blue, as CuSO4 Blue, as cobalt glass " "  Blue Grave no recogn Graven no recogn | Yellowish-green        | 5.                     |

See "Über Farbgläser für wissenschaftliche und technische Zwecke," by Zsigmondy, Z. für Instrumentenkunde, 21, 1901 (from which the above table is taken), and "Uber Jenenser Lichtfilter," by Grebe, same volume.

(The following notes are quoted from Everett's translation of the above in the English edition of Hovestadt's "Jena Glass.")

Division of the spectrum into complementary colors:

Division of the spectrum into complementary colors:

1st by 2728 (deep red) and 2742 (blue, like copper sulphate).

2nd by 454<sup>III</sup> (bright yellow) and 447<sup>III</sup> (blue, like cobalt glass).

3rd by 433<sup>III</sup> (greenish-yellow) and 424<sup>III</sup> (blue).

Thicknesses necessary in above: 2728, 1.6-1.7 mm.; 2742, 5; 454<sup>III</sup>, 16; 447<sup>III</sup>, 1.5-2.0; 433<sup>III</sup>,

2.5-3.5; 424<sup>III</sup>, 3 mm.

Three-fold division into red, green and blue (with violet):

2728, 1.7 mm.; 414<sup>III</sup>, 10 mm.; 447<sup>III</sup>, 1.5 mm., or by

2728, 1.7 mm.; 436<sup>III</sup>, 2.6 mm.; 447<sup>III</sup>, 1.8 mm.

Grebe found the three following glasses specially suited for the additive methods of three-color

Grebe found the three following glasses specially suited for the additive methods of three-color

2745, red; 438<sup>III</sup>, green; 447<sup>III</sup>, blue violet; corresponding closely to Young's three elementary color sensations.

Most of the Jena glasses can be supplied to order, but the absorption bands vary somewhat in different meltings.

See also "Atlas of Absorption Spectra," Uhler and Wood, Carnegie Institution Publications, 1907.

#### TABLE 376 .- Water.

Values of a in  $I = I_0 e^{ad}$ , d in c. m.  $I_0$ ; I, intensity before and after transmission.

| Wave-length μ, | .186   | .193  | .200  | .210  | .220  | .230  | .240  | .260  | .300  | .415   |
|----------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| a              | .0688  | .0165 | .009  | .0061 | .0057 | .0034 | .0032 | .0025 | .0015 | .00035 |
| Wave-length μ, | .430   | .450  | .487  | .500  | .550  | .600  | .650  | .779  | .865  | -945   |
| a              | .00023 | .0002 | .0001 | .0002 | .0003 | .0016 | .0025 | .272  | .296  | .538   |

First 9; Kreusler, Drud. Ann. 6, 1901; next Ewan, Proc. R. Soc. 57, 1894, Aschkinass, Wied Ann.

55, 1895; last 3, Nichols. Phys. Rev. 1, 1. See Rubens, Ladenburg, Verh. D. Phys. Ges., p. 19, 1909, for extinction coefs., reflective power and index of refraction, 1 4 to 18 4.

#### TRANSMISSION PERCENTAGES OF RADIATION THROUGH MOIST AIR.

(For bodies at laboratory temperatures; for transmission of shorter-wave energy, see Table 553.)

The values of this table will be of use for finding the transmission of energy through air containing a known amount of water vapor. An approximate value for the transmission may be had if the amount of energy from the source between the wave-lengths of the first column is multiplied by the corresponding transmission coefficients of the subsequent columns. The values for the wave-lengths greater than  $18\mu$  are tentative and doubtful. Fowle, Water-vapor Transparency, Smithsonian Misc. Collections, 68, No. 8, 1917; Fowle, The Transparency of Aqueous Vapor, Astrophysical J. 42, p. 394, 1915.

| Range of wave-lengths.                                                                                                           |                                                                                |                                                                 |                                                                                                         | Precip                                                                                                            | itable v                                                                                                                            | vater in                                                                                                               | centime                                                   | eters.                                                    |                          |                          |                                       |                          |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--------------------------|--------------------------|---------------------------------------|--------------------------|
| μ μ                                                                                                                              | .001 .00                                                                       | .006                                                            | .01                                                                                                     | .03                                                                                                               | .06                                                                                                                                 | 10                                                                                                                     | . 25                                                      | . 50                                                      | 1.0                      | 2.0                      | 6.0                                   | 10.0                     |
| 0.75 to 1.0 1.0 1.25 1.25 1.5 1.5 2.0 2 3 3 4 4 5 5 6 6 7 7 8 8 9 10 10 11 12 12 13 *13 14 *14 15 *15 16 16 17 17 18 18 $\infty$ | 92 8<br>95 8<br>85 5<br>94 8<br>100 10<br>100 10<br>100 10<br>100 10<br>100 10 | 92 87 84 84 83 76 85 4 50 00 100 00 100 00 100 00 100 00 100 00 | 100<br>99<br>96<br>98<br>84<br>78<br>71<br>68<br>31<br>68<br>31<br>68<br>99<br>100<br>100<br>100<br>100 | 99<br>99<br>92<br>97<br>77<br>77<br>72<br>65<br>56<br>24<br>57<br>98<br>100<br>100<br>100<br>99<br>97<br>80<br>70 | 99<br>98<br>84<br>94<br>70<br>66<br>60<br>60<br>51<br>8<br>46<br>96<br>100<br>100<br>100<br>100<br>100<br>25<br>55<br>50<br>25<br>0 | 98<br>97<br>80<br>88<br>64<br>63<br>53<br>53<br>47<br>4<br>35<br>94<br>100<br>100<br>100<br>98<br>97<br>90<br>90<br>20 | 97<br>95<br>66<br>79<br>————————————————————————————————— | 95<br>92<br>57<br>73<br>————————————————————————————————— | 93<br>89<br>51<br>70<br> | 90<br>85<br>44<br>66<br> | 83<br>74<br>31<br>60<br>———<br>0<br>0 | 78<br>60<br>28<br>57<br> |

<sup>\*</sup>These places require multiplication by the following factors to allow for losses in CO<sub>2</sub> gas. Under average sea-level outdoor conditions the CO<sub>2</sub> (partial pressure = 0.0003 atmos.) amounts to about 0.6 gram per cu. m. Paschen gives 3 times as much for indoor conditions.

In the above table italicized figures indicate extrapolated values.

F. Paschen gives (Annalen d. Physik u. Chemie, 51, p. 14, 1894) the absorption of the radiation from a blackened strip at 500° C by a layer 33 centimeters thick of water vapor at 100° C and atmospheric pressure as follows:

Wave-length..... 2.20-3.10µ 5.33-7.67H 7.67-10(?) µ Percentage absorption..... 94-13

The following table, due to Rubens and Aschkinass (Annalen d. Physik u. Chemie, 64, p. 598, 1898), gives the absorption of radiation from a zircon burner by a layer 75 centimeters thick of water vapor saturated at 100° C. This amount of vapor is about equivalent to a layer of water 0.45 millimeter thick or to 1.5% of the water in a total vertical atmospheric column whose dew point at sea-level is 10° C. The region of spectrum examined includes most of the region of terrestrial radiation.

| Wave-length                       | 7.0µ  | 8.0µ  | 9.0-12.0μ | 12.4µ | 12.8µ | 13.4µ | 14.0µ |
|-----------------------------------|-------|-------|-----------|-------|-------|-------|-------|
| Percentage absorption             | 75    | 40    | 6         | 20    |       | 28    | 22    |
| Wave-length Percentage absorption | 14.3µ | 15.0µ | 15.7µ     | 16.0μ | 17.5µ | 18.3µ | 20.0µ |
|                                   | 43    | 35    | 65        | 52    | 88    | 80    | 100   |

<sup>15 16, 17</sup> These places require multiplication by 0.90 and 0.70 respectively for one air mass and 0.85 and 0.65 for two air masses to allow for ozone absorption when the radiation comes from a celestial body.

#### REFLECTION AND ABSORPTION OF LONG-WAVE RADIATIONS.

TABLE 378. - Long-wave Absorption by Gases.

Unless otherwise noted, gases were contained in a 20 cm long tube. Rubens, Wartenberg, Verh. d. Phys. Ges. 13, p. 796, 1911.

|                                                                                                                                                                       | CID                                                |                                                        | Percen                                                                 | tage abs                                                       | orption.                                                               |                                                           |                                                                                                                                                                                                                                                             | cm                                                      |                                                                       | Percen                                                                | tage abso                                                              | orption.                                                                 |                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Gas. Gas.                                                                                                                                                             |                                                    |                                                        |                                                                        |                                                                |                                                                        | gλ,<br>lamp.                                              | Gas.                                                                                                                                                                                                                                                        | Pressure, cr                                            |                                                                       |                                                                       |                                                                        |                                                                          | gλ.<br>lamp.                                                             |
| Gas.                                                                                                                                                                  | Press                                              | 23μ                                                    | 52μ                                                                    | 110μ                                                           |                                                                        | Fil-<br>tered,<br>314µ                                    | Gas.                                                                                                                                                                                                                                                        | Pres                                                    | 23μ                                                                   | 52μ                                                                   | 110μ                                                                   |                                                                          | Fil-<br>tered,<br>314µ                                                   |
| H <sub>2</sub> Cl <sub>2</sub> Br <sub>2</sub> SO <sub>2</sub> CO <sub>2</sub> CO <sub>2</sub> CO <sub>3</sub> N <sub>2</sub> O N <sub>2</sub> O NO (CN) <sub>2</sub> | 76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76 | 100<br>100<br>100<br>22.6<br>100<br>100<br>99.6<br>100 | 100<br>99.6<br>100<br>76.9<br>100<br>110<br>11.6<br>96.8<br>94<br>97.8 | 100<br>99.5<br>100<br>12.7<br>100<br>94.1<br>5.4<br>98.4<br>99 | 100<br>98.5<br>100<br>6<br>100<br>92.1<br>10.3<br>93.3<br>87.3<br>99.3 | 97.6<br>100<br>4.8<br>100<br>91.6<br>21.4<br>90.8<br>85.5 | NH <sub>3</sub><br>CH <sub>4</sub><br>C <sub>2</sub> H <sub>2</sub><br>C <sub>2</sub> H <sub>6</sub><br>C <sub>2</sub> H <sub>6</sub> O.<br>C <sub>4</sub> H <sub>10</sub> O.<br>C <sub>5</sub> H <sub>12</sub><br>CH <sub>3</sub> Cl<br>H <sub>2</sub> O * | 76<br>76<br>76<br>76<br>26<br>6<br>51<br>46<br>14<br>76 | 83.1<br>91<br>99.5<br>99<br>97.8<br>85.4<br>26.8<br>66†<br>98<br>39.6 | 0.5<br>94.3<br>87.4<br>96.4<br>100<br>5.4<br>46<br>44.5<br>100<br>0.7 | 99.2<br>99.2<br>97.3<br>92.8<br>100<br>58<br>34<br>88.8<br>100<br>19.6 | 43·3<br>100<br>97·9<br>100<br>99·5<br>52·4<br>21.8<br>87<br>95·4<br>33.6 | 66.7<br>100<br>100<br>100<br>100<br>49.9<br>10.7<br>84.2<br>94.7<br>49.2 |

<sup>\*</sup> Tube 40 cm long.

#### TABLE 379. — Properties with Wave-lengths $108 \pm \mu$ .

Rubens and Woods, Verh. d. Phys. Ges. 13, p. 88, 1911.

With quartz, 1.7 cm thick: 60 to 80µ, absorption very great; 63µ, 99%; 82µ, 97.5; 97µ, 83.

| With quartz, 1.7 cm times: 00 to δομ, absorption very great; σ3μ, 99%; δ2μ, 97.5; 97μ, δ3.                                                                                     |                                                                                                                                                                                  |        |                                                        |                  |                                                                 |                             |                                      |        |                                |                 |       |                                     |                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------|------------------|-----------------------------------------------------------------|-----------------------------|--------------------------------------|--------|--------------------------------|-----------------|-------|-------------------------------------|-------------------------------------------|
|                                                                                                                                                                                |                                                                                                                                                                                  |        |                                                        | (a) P            | ERCENTA                                                         | GE REF                      | LECTION.                             |        |                                |                 |       |                                     |                                           |
| Wave-length.                                                                                                                                                                   | Iceland<br>spar.                                                                                                                                                                 | Mark   | ble. Roc sal                                           |                  | Sylvite                                                         | KBr                         | Kl                                   | Flu    |                                | Glass           | .   v | Vater.                              | Alcohol.                                  |
| $\lambda = 82\mu *$ $\lambda = 108\mu \dagger .$                                                                                                                               |                                                                                                                                                                                  | 43.    | 8 25                                                   |                  | 36.0<br>19.3                                                    | 82.6<br>31.1                | 29.6<br>35.5                         | 19.    |                                | 19.2            |       | 9.6<br>11.6                         | 1.6                                       |
| *                                                                                                                                                                              | Restrahl                                                                                                                                                                         | ung fr | rom KBr.                                               |                  |                                                                 |                             | † Isolated                           | with o | quari                          | z lens.         | 11    |                                     | 1                                         |
| (b) Percentage Transparency. Uncorrected for reflections.                                                                                                                      |                                                                                                                                                                                  |        |                                                        |                  |                                                                 |                             |                                      |        |                                |                 |       |                                     |                                           |
| Solid. Thickness. Transparency. Liquid. Thickness. precipitable liquid. Transparency.                                                                                          |                                                                                                                                                                                  |        |                                                        |                  |                                                                 |                             |                                      |        |                                |                 |       |                                     |                                           |
| Paraffin.       3.03         Mica       0.055         Hard rubber       0.40         Quartz    axis       2.00         Quartz, amorph.       3.85         Rock salt       0.21 |                                                                                                                                                                                  |        |                                                        | 3 6              | 7.0<br>6.6<br>9.0<br>2.6<br>0                                   | ene<br>l alcohol<br>l ether |                                      | 0.0    | 00<br>158<br>158<br>029<br>044 |                 |       | 56.8<br>7.9<br>37.1<br>25.8<br>13.6 |                                           |
| Fluorite Diamond Quartz L ax                                                                                                                                                   |                                                                                                                                                                                  |        | 0.59<br>1.26<br>2.00<br>4.03<br>7.26<br>11.74<br>14.66 | 8<br>6<br>4<br>3 | 5.3 Vapors: .5.3 Alcohol1.3 Ether6.4 Benzene .9.8 Water5.5 CO2. |                             |                                      |        | 2.0<br>2.0<br>4.0<br>2.0       | 00              | 0.0   | 63                                  | 88<br>33.5<br>100<br>19.6<br>100          |
|                                                                                                                                                                                | •                                                                                                                                                                                |        | (c) T                                                  | RANSP/           | RENCY                                                           | OF BLAC                     | k Absorbi                            | ERS.   |                                |                 | ۰     |                                     |                                           |
| Met                                                                                                                                                                            | Method and wave-length.  Black silk paper, o.11 mm thick.  Black card-black paper, o.4 mm thick.  Candle lamp-black paper, o.4 mm thick.  Candle lamp-black paper, o.4 mm thick. |        |                                                        |                  |                                                                 |                             |                                      |        |                                |                 |       |                                     |                                           |
| Rock salt "restrahlung" 52                                                                                                                                                     |                                                                                                                                                                                  |        |                                                        |                  |                                                                 |                             | 0<br>0<br>1.4<br>3.2<br>15.1<br>33.5 |        |                                | 0 0 0 0 0 0 1.6 |       | 3                                   | 0.5<br>8.6<br>6.0<br>37.6<br>76.7<br>01.3 |

<sup>†</sup> Pentane vapor, pressure 36 cm.

#### 310 TABLES 380, 381 .- ROTATION OF PLANE OF POLARIZED LIGHT.

TABLE 380.—Tartaric Acid; Camphor; Santonin; Santonic Acid; Cane Sugar.

A few examples are here given showing the effect of wave-length on the rotation of the plane of polarization. The rotations are for a thickness of one decimeter of the solution. The examples are quoted from Laudolt & Börnstein's "Phys. Chem. Tab." The following symbols are used:—

p=number grams of the active substance in 100 grams of the solution. c= " solvent " cubic centimeter " 9= active

Right-handed rotation is marked +, left-handed -.

| Line of spectrum.                                                                                                                               | Wave-length<br>according to<br>Angström in<br>cms. × 106.                              | Tartaric acid,* $C_4H_6O_6$ ,<br>dissolved in water.<br>q = 50  to  95,<br>temp. $= 24^{\circ}$ C.                                                                                  | Camphor,* dissolved i  q = 50 temp. =                                  | n alcohol.                                          | Santonin,† (dissolved in constant) q = 75 to temp. =                                            | hloroform.                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| $\begin{array}{c} \mathbf{B} \\ \mathbf{C} \\ \mathbf{D} \\ \mathbf{E} \\ \mathbf{b_1} \\ \mathbf{b_2} \\ \mathbf{F} \\ \mathbf{e} \end{array}$ | 68.67<br>65.62<br>58.92<br>52.69<br>51.83<br>51.72<br>48.61<br>43.83                   | $\begin{array}{c} + 2^{\circ}.748 + 0.09446  q \\ + 1.950 + 0.13030  q \\ + 0.153 + 0.17514  q \\ - 0.832 + 0.19147  q \\ - 3.598 + 0.23977  q \\ - 9.657 + 0.31437  q \end{array}$ | 38°.549 —<br>51.945 —<br>74.331 —<br>79.348 —<br>99.601 —<br>149.696 — | 0.0964 q<br>0.1343 q<br>-<br>0.1451 q<br>0.1912 q   | - 140°.1 +<br>- 149.3 +<br>- 202.7 +<br>- 285.6 +<br>- 302.38 +<br>- 365.55 +<br>- 534.98 +     | 0.1555 q<br>0.3086 q<br>0.5820 q<br>0.6557 q                                                    |
|                                                                                                                                                 |                                                                                        | Santonin,† $C_{15}H_{18}O_3$ , * dissolved in alcohol. $c = 1.782$ . temp. = 20° C.                                                                                                 | Santonin,†  dissolved in alcohol.  c = 4.046. temp. = 20° C.           | dissolved in chloroform  c=3.1-30.5.  temp.= 20° C. | Santonic acid,† $C_{15}H_{20}O_4,$ dissolved in chloroform. $c=27.192.$ temp. = $20^{\circ}$ C. | Cane sugar,‡ C <sub>12</sub> H <sub>22</sub> O <sub>13</sub> , dissolved in water. p= 10 to 30. |
| B<br>C<br>D<br>E<br>b <sub>1</sub><br>b <sub>2</sub><br>F<br>e<br>G                                                                             | 68.67<br>65.62<br>58.92<br>52.69<br>51.83<br>51.72<br>48.61<br>43.83<br>43.07<br>42.26 | 110.4° 118.8 161.0 222.6 237.1 261.7 380.0                                                                                                                                          | 442° 504 693 991 1053 - 1323 2011 - 2381                               | 484° 549 754 1088 1148 - 1444 2201 - 2610           | - 49° - 57 - 74 - 105 - 112 - 137 - 197 - 230                                                   | 47°.56<br>52.70<br>60.41<br>84.56<br>-<br>87.88<br>101.18<br>-<br>131.96                        |
|                                                                                                                                                 |                                                                                        | * Arndtsen, "Ann. Ch                                                                                                                                                                | im. Phys." (3)                                                         | 54, 1858.                                           |                                                                                                 |                                                                                                 |

#### TABLE 381. - Sodium Chlorate; Quartz.

| Sodium                                                          | chlorate (G                                                                                                                                                                      | uye, C. R.                                                                                                                                    | 108, 1889).                                                                                                                                                          | Quarta                                                | z (Soret & S                                                                                                                  | arasin, Arch.                                                                                                                              | de Gen.                                                                                                                                                                                                  | 1882, or C. R                                                                                                                                      | . 95, 1882).*                                                                                                                                             |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spec-<br>trum<br>line.                                          | Wave-<br>length.                                                                                                                                                                 | Temp.<br>C.                                                                                                                                   | Rotation<br>per inm.                                                                                                                                                 | Spec-<br>trum<br>line.                                | Wave-<br>length.                                                                                                              | Rotation<br>per mm.                                                                                                                        | Spec-<br>trum<br>line.                                                                                                                                                                                   | Wave-<br>length.                                                                                                                                   | Rotation<br>per mm.                                                                                                                                       |
| B C D E F G G H L M N P Q R T Cd <sub>17</sub> Cd <sub>18</sub> | 71.769<br>67.889<br>65.073<br>59.085<br>53.233<br>48.912<br>45.532<br>42.834<br>40.714<br>38.412<br>37.352<br>35.818<br>33.931<br>32.341<br>30.645<br>29.918<br>28.270<br>25.038 | 15°.0<br>17.4<br>20.6<br>18.3<br>16.0<br>11.9<br>10.1<br>14.5<br>13.3<br>14.0<br>10.7<br>12.9<br>12.1<br>11.9<br>13.1<br>12.8<br>12.2<br>11.6 | 2°.068<br>2.318<br>2.599<br>3.104<br>3.841<br>4.587<br>5.331<br>6.005<br>6.754<br>7.654<br>8.100<br>8.861<br>9.801<br>10.787<br>11.921<br>12.424<br>13.426<br>14.965 | A a B C D <sub>1</sub> D <sub>2</sub> E F G h H K L M | 76.04<br>71.836<br>68.671<br>65.621<br>58.891<br>52.691<br>48.607<br>43.072<br>41.012<br>39.681<br>39.333<br>38.196<br>37.262 | 12°.668<br>14.3°04<br>15.746<br>17.318<br>21.684<br>21.727<br>27.543<br>32.773<br>42.604<br>47.481<br>51.193<br>52.155<br>55.625<br>58.894 | Cd <sub>9</sub><br>N<br>Cd <sub>10</sub><br>O<br>Cd <sub>11</sub><br>P<br>Q<br>Cd <sub>12</sub><br>R<br>Cd <sub>18</sub><br>Cd <sub>23</sub><br>Cd <sub>24</sub><br>Cd <sub>25</sub><br>Cd <sub>26</sub> | 36.090<br>35.818<br>34.655<br>34.406<br>34.015<br>33.600<br>32.858<br>32.470<br>31.798<br>27.467<br>25.713<br>23.125<br>22.645<br>21.935<br>21.431 | 63°.628<br>64.459<br>69.454<br>70.587<br>72.448<br>74.571<br>78.579<br>80.459<br>84.972<br>121.052<br>143.266<br>190.426<br>201.824<br>220.731<br>235.972 |

<sup>\*</sup> The paper is quoted from a paper by Ketteler in "Wied. Ann." vol. 21, p. 444. The wave-lengths are for the Fraunholer lines, Angström's values for the ultra violet sun, and Cornu's values for the cadmium lines.

<sup>†</sup> Narini, "R. Acc. dei Lincei," (3) 13, 1882. ‡ Stefan, "Sitzb. d. Wien. Akad." 52, 1865.

Abbreviations: int'n'l, international; emu, electromagnetic units; esu, electrostatic units; egs, centimeter-gram-second units. (Taken from Circular 60 of U. S. Bureau of Standards, 1916, Electric Units and Standards.)

#### RESISTANCE:

international ohm =

1.00052 absolute ohms

1.0001 int'n'l ohms (France, before 1911)

1,00016 Board of Trade units (England, 1903)

1.01358 B. A. units

1.00283 "legal ohms" of 1884

1.06300 Siemens units

I absolute ohm =

o. 99948 int'n'l ohms 1 "practical" emu

109 cgs emu

1.1124 × 10-12 cgs esu

#### CURRENT:

r international ampere =

o. 99991 absolute ampere

1.00084 int'n'l amperes (U.S. before 1911) 1.00130 int'n'l amperes (England, before

1906)

1.00106 int'n'l amperes (England, 1906-

1.00010 int'n'l amperes (England, 1909-

1.00032 int'n'l amperes (Germany, before 1911)

1.0002int'n'lamperes (France, before 1911)

I absolute ampere =

I 00009 int'n'l amperes

I "practical" emu

o. I cgs emu

 $2.0082 \times 10^{9} \text{ cgs esu}$ 

#### ELECTROMOTIVE FORCE:

r international volt =

1.00043 absolute volts 1.00084 int'n'l volts (U. S. before 1911)

1.00130 int'n'l volts (England, before 1906)

1.00106 int'n'l volts (England, 1906-08)

1.00010 int'n'l volts (England, 1909-10)

1.00032 int'n'l volts (Germany, before 1911)

1.00032 int'n'l volts (France, before 1911)

I absolute volt =

0.99957 int'n'l volt

practical" emu

108 cgs emu

o. 0033353 cgs esu

#### QUANTITY OF ELECTRICITY:

(Same as current equivalents.)

i international coulomb =

1/3600 ampere-hour

1/96500 faraday

#### CAPACITY:

r international farad = o. 99948 absolute farad

I absolute farad =

1.00052 int'n'l farads

I "practical" emu

10-9 cgs emu

 $8.9892 \times 10^{11} \text{ cgs esu}$ 

#### INDUCTANCE:

international henry = 1.00052 absolute henries

1 absolute henry =

o. 99948 int'n'l henry practical" emu

109 emu

1.1124 × 10<sup>-12</sup> cgs esu

#### ENERGY AND POWER:

(standard gravity = 980.665 cm/sec/sec.)

I international joule =

1.00034 absolute joules

r absolute joule =

o. 99966 int'n'l joule

107 ergs

o. 737560 standard foot-pound

o. 101972 standard kilogram-meter

o. 277778 × 10-6 kilowatt-hour

#### RESISTIVITY:

1 ohm-cm = 0.393700 ohm-inch

= 10,000 ohm (meter, mm²)

= 12,732.4 ohm (meter, mm)

= 393,700 microhm-inch

= 1,000,000 microhm-cm

= 6,015,290 ohm (mil, foot)

1 ohm (meter, gram) = 5710.0 ohm (mile, pound)

#### MAGNETIC QUANTITIÉS:

r int'n'l gilbert = 0.99991 absolute gilbert

I absolute gilbert = I. 00000 int'n'l gilberts

1 int'n'l maxwell = 1.00043 absolute maxwells I absolute maxwell = 0.99957 int'n'l maxwell

= 0.7958 ampere-turn I gilbert

ı gilbert per cm =0. 7958 ampere-turn per

= 2.021 ampere-turns per

inch 1 maxwell

= 10<sup>-8</sup> volt-second

1 maxwell per cm2 = 6.452 maxwells per in2

#### COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS.

The electromotive forces given in this table approximately represent what may be expected from a cell in good working order, but with the exception of the standard cells all of them are subject to considerable variation.

| (a) Dougle Fillin Cris |                  |                                                                                                                                                                |                |                                                                                               |        |  |  |  |  |  |  |  |
|------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------|--------|--|--|--|--|--|--|--|
|                        |                  | (a) Double Fluid Ca                                                                                                                                            | ILLS.          | -                                                                                             |        |  |  |  |  |  |  |  |
| Name of cell.          | Negative pole.   | Solution.                                                                                                                                                      | Positive pole. | Solution.                                                                                     | E.M.F. |  |  |  |  |  |  |  |
| Bunsen                 | Amalgamated zinc | { 1 part H <sub>2</sub> SO <sub>4</sub> to }<br>12 parts H <sub>2</sub> O . }                                                                                  | Carbon         | Fuming HNO <sub>8</sub> .                                                                     | 1.94   |  |  |  |  |  |  |  |
| "                      | 66 66 *          | 66                                                                                                                                                             | 66             | HNO <sub>8</sub> , density 1.38                                                               | 1.86   |  |  |  |  |  |  |  |
| Chromate.              | 66 66            | $ \left\{ \begin{array}{l} \text{12 parts } K_2Cr_2O_7 \\ \text{to 25 parts of} \\ H_2SO_4 \text{ and 100} \\ \text{parts } H_2O \end{array} \right \right\} $ | 66             | { 1 part H <sub>2</sub> SO <sub>4</sub> to }<br>{ 12 parts H <sub>2</sub> O . }               | 2.00   |  |  |  |  |  |  |  |
| 66 .                   | 66 66            | { 1 part H <sub>2</sub> SO <sub>4</sub> to }<br>12 parts H <sub>2</sub> O . }                                                                                  | . 66           | { 12 parts K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> }<br>to 100 parts H <sub>2</sub> O } | 2.03   |  |  |  |  |  |  |  |
| Daniell* .             | 66 66            | { 1 part H <sub>2</sub> SO <sub>4</sub> to }<br>4 parts H <sub>2</sub> O . }                                                                                   | Copper         | Saturated solution of CuSO <sub>4</sub> +5H <sub>2</sub> O                                    | 1.06   |  |  |  |  |  |  |  |
| "                      | 66 66            | { 1 part H <sub>2</sub> SO <sub>4</sub> to }<br>12 parts H <sub>2</sub> O . }                                                                                  | 46             | 66                                                                                            | 1.09   |  |  |  |  |  |  |  |
| 66                     | 66 66            | $ \left\{ \begin{array}{l} 5\% & \text{solution of } \\ \text{ZnSO}_4 + 6\text{H}_2\text{O} \end{array} \right\} $                                             | 66             | 66                                                                                            | 1.08   |  |  |  |  |  |  |  |
| "                      | 66 66            | { 1 part NaCl to }<br>{ 4 parts H <sub>2</sub> O . }                                                                                                           | 66             | 44                                                                                            | 1.05   |  |  |  |  |  |  |  |
| Grove                  | 66 . 66          | { 1 part H <sub>2</sub> SO <sub>4</sub> to }<br>12 parts H <sub>2</sub> O . }                                                                                  | Platinum       | Fuming HNO8                                                                                   | 1.93   |  |  |  |  |  |  |  |
| 66                     | 66 66            | Solution of ZnSO <sub>4</sub>                                                                                                                                  | 66             | HNO <sub>8</sub> , density 1.33                                                               | 1.66   |  |  |  |  |  |  |  |
| 66                     | 66 46            | { H <sub>2</sub> SO <sub>4</sub> solution, }<br>density 1.136. }                                                                                               | 66             | Concentrated HNO <sub>3</sub>                                                                 | 1.93   |  |  |  |  |  |  |  |
| "                      | 66 66            | { H <sub>2</sub> SO <sub>4</sub> solution, } density 1.136 . }                                                                                                 | 66             | HNO <sub>8</sub> , density 1.33                                                               | 1.79   |  |  |  |  |  |  |  |
| 66                     | 66 66            | { H <sub>2</sub> SO <sub>4</sub> solution, } density 1.06 . }                                                                                                  | 66             | "                                                                                             | 1.71   |  |  |  |  |  |  |  |
| "                      | 66 66            | { H <sub>2</sub> SO <sub>4</sub> solution, } density 1.14 . }                                                                                                  | 44             | HNO <sub>8</sub> , density 1.19                                                               | 1.66   |  |  |  |  |  |  |  |
| "                      | 66 66            | { H <sub>2</sub> SO <sub>4</sub> solution, } density 1.06 . }                                                                                                  | 66             | 66 66 66                                                                                      | 1.61   |  |  |  |  |  |  |  |
| "                      | 66 66            | NaCl solution                                                                                                                                                  | "              | " density 1.33                                                                                | 1.88   |  |  |  |  |  |  |  |
| Marié Davy             | 44 44            | { 1 part H <sub>2</sub> SO <sub>4</sub> to }                                                                                                                   | Carbon         | Paste of protosulphate of mercury and water                                                   | 1.50   |  |  |  |  |  |  |  |
| Partz                  | * 66 66          | Solution of MgSO <sub>4</sub>                                                                                                                                  | 66             | Solution of K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>                                     | 2.06   |  |  |  |  |  |  |  |

<sup>\*</sup> The Minotto or Sawdust, the Meidinger, the Callaud, and the Lockwood cells are modifications of the Daniell, and hence have about the same electromotive force.

#### COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS.

| Name of cell.      | Negative pole.           | Solution.                                                                                                                     | Positive pole.                                                                       | E. M. F.<br>in volts.                       |
|--------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------|
|                    |                          | (b) Single Fluid Cells.                                                                                                       |                                                                                      |                                             |
| Leclanche          | Amal. zinc               | Solution of sal-ammo-                                                                                                         | Carbon. Depolarizer: manganese peroxide with powdered carbon                         | 1.46                                        |
| Chaperon           | 66 66                    | Solution of caustic potash                                                                                                    | Copper. Depolar-                                                                     | 0.98                                        |
| Edison-Lelande .   | " "                      | 123 % solution of sal-                                                                                                        | (Silver. Depolari-                                                                   | 0.70                                        |
| Chloride of silver | Zinc                     | ammoniac                                                                                                                      | zer: silver chl'ride Carbon                                                          | 1.02                                        |
| Law                |                          | 15 % " "<br>[1 pt. ZnO, 1 pt. NH4Cl,]                                                                                         | Carbon                                                                               | 1.37                                        |
| Dry cell (Gassner) | 44                       | 3 pts. plaster of paris, 2 pts. ZnCl <sub>2</sub> , and water to make a paste                                                 | 66                                                                                   | 1.3                                         |
| Poggendorff        | Amal.zinc                | / Or porasp                                                                                                                   | 66                                                                                   | 1.08                                        |
| · · · · ·          | 66 66                    | 12 parts K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> + 25 parts H <sub>2</sub> SO <sub>4</sub> + 100 parts H <sub>2</sub> O | "                                                                                    | 2.01                                        |
| J. Regnault        | 66 66                    | $\left\{\begin{array}{c} \text{I part } H_2SO_4 + \\ \text{I2 parts } H_2O + \end{array}\right\}$                             | Cadmium                                                                              | 0.34                                        |
| Volta couple       | Zinc                     | $( \begin{array}{cccc} I & part & CaSO_4 & . & . \\ H_2O & . & . & . & . \end{array} )$                                       | Copper                                                                               | 0.98                                        |
|                    |                          | (c) STANDARD CELLS.                                                                                                           |                                                                                      |                                             |
| Weston normal .    | {Cadmi'm}<br>{ am'lgam}  | { Saturated solution of } CdSO <sub>4</sub>                                                                                   | Mercury. Depolarizer: paste of Hg <sub>2</sub> SO <sub>4</sub> and CdSO <sub>4</sub> | 1.0183*<br>at 20° C                         |
| Clark standard .   | { Zinc } am'lgam         | { Saturated solution of } ZnSO <sub>4</sub> }                                                                                 | Depolarizer: paste of Hg <sub>2</sub> SO <sub>4</sub> and ZnSO <sub>4</sub>          | 1.434‡<br>at 15°C                           |
|                    |                          | (d) SECONDARY CELLS.                                                                                                          |                                                                                      |                                             |
| Lead accumulator   | Lead                     | { H <sub>2</sub> SO <sub>4</sub> solution of density 1.1 }                                                                    | PbO <sub>2</sub>                                                                     | 2.2†<br>(1.68 to                            |
| Regnier (1)        | Copper .                 | $CuSO_4 + H_2SO_4$                                                                                                            |                                                                                      | 0.85, av-                                   |
| " (2)<br>Main      | Amal. zinc<br>Amal. zinc | ZnSO <sub>4</sub> solution H <sub>2</sub> SO <sub>4</sub> density ab't 1.1                                                    | " in H <sub>2</sub> SO <sub>4</sub> .                                                | ( erage 1.3.<br>2.36<br>2.50<br>( 1.1, mean |
| Edison             | Iron                     | KOH 20 % solution .                                                                                                           | A nickel oxide .                                                                     | of full discharge.                          |

 $\dagger$  F. Streintz gives the following value of the temperature variation  $\frac{dE}{dt}$  at different stages of charge :

E. M. F. 1.9223 1.9828 2.0031 2.0084 2.0105 2.0779 2.2070 dE/dt×10<sup>6</sup> 140 228 335 285 255 130 23

Dolezalek gives the following relation between E. M. F and acid concentration: Per cent  $H_2SO_4$  64.5 52.2 35.3 21.4 5.2 E.M.F.,  $o^{\circ}$  C 2.37 2.25 2.10 2.00 1.89

<sup>\*</sup> The temperature formula is  $E_t = E_{20} - 0.0000406$  (t-20) - 0.0000005  $(t-20)^3 + 0.0000001$   $(t-20)^3$ . † The value given for the Clark cell is the old one adopted by the Chicago International Electrical Congress in 1893. The temperature formula is  $E_t = E_{15} - 0.00119$  (t-15) - 0.000007  $(t-15)^3$ .

#### CONTACT DIFFERENCE OF

Solids with Liquids and

Temperature of substances

|                                                                                                          | Carbon.                                             | Copper.                         | Iron,         | Lead.                  | Platinum.        | . Tin.        | Zinc.         |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------|---------------|------------------------|------------------|---------------|---------------|
| Distilled water                                                                                          | (.or to (.17) — — — — — — — — — — — — — — — — — — — | .269 to .100127 .103 .070475396 | .148653605652 | .171139189120 { .72 to | - 2856 - 246 856 | .177225334364 |               |
| Concentrated nitric acid . Mercurous sulphate paste . Distilled water containing trace of sulphuric acid | (.8 <sub>5</sub> )                                  | -                               | -             | 1.252                  | 1.6<br>.672<br>- | -             | -<br>-<br>241 |

<sup>\*</sup> Everett's " Units and Physical Constants: " Table of

#### POTENTIAL IN VOLTS.

#### Liquids with Liquids in Air.\*

during experiment about 16° C.

| 5                                                        |                   |        |          |                  |                                         |                                                  |                                                     |                                                  |                                                  |                     |
|----------------------------------------------------------|-------------------|--------|----------|------------------|-----------------------------------------|--------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------|
|                                                          | Amalgamated zinc. | Brass. | Mercury. | Distilled water. | Alum solution:<br>saturated at 160.5 C. | Copper sulphate solution:<br>saturated at 15° C. | Zinc sulphate solution:<br>sp. gr. 1.25 at 16°.9 C. | Zinc sulphate solution:<br>saturated at 15°.3 C. | One part distilled water + 3 pts. 2inc sulphate. | Strong nitric acid. |
|                                                          |                   |        |          |                  |                                         |                                                  |                                                     |                                                  |                                                  |                     |
| Distilled water                                          | .100              | .231   | -        | -                | -                                       | 043                                              | _                                                   | .164                                             | -                                                | -                   |
| Alum solution: saturated at 16°.5 C                      | -                 | 014    | -        | -                | -                                       | -                                                | -                                                   | -                                                | -                                                | -                   |
| Copper sulphate solution: 1<br>sp. gr. 1.087 at 16°.6 C. | -                 | -      | -        | -                | 11-                                     | -                                                | .090                                                | -                                                | -                                                | -                   |
| Copper sulphate solution: { saturated at 15° C }         | _                 | _      | -        | 043              | -                                       | -                                                | -                                                   | .095                                             | .102                                             | -                   |
| Sea salt solution: sp. gr. 1                             | _                 | 435    | _        | _                | _                                       | _                                                | _                                                   | _                                                | -                                                | -                   |
| Sal-ammoniac solution:                                   | _                 | 348    | _        | _                | _                                       | _                                                | -                                                   | _                                                | _                                                | -                   |
| saturated at 15°.5 C { Zinc sulphate solution:}          | _                 | -      | _        | _                | _                                       | _ 1                                              | _                                                   | _                                                | _                                                | _                   |
| sp. gr. 1.125 at 16°.9 C. Sinc sulphate solution:        | -,284             |        |          | 200              | _                                       | 095                                              | _                                                   | _                                                | _                                                | _                   |
| saturated at 15°.3 C \ One part distilled water + \      | 204               |        |          | .200             |                                         | 93                                               |                                                     |                                                  |                                                  |                     |
| 3 parts saturated zinc sulphate solution                 | -                 | -      | -        | -                | -                                       | 102                                              | -                                                   | -                                                | -                                                | -                   |
| Strong sulphuric acid in distilled water:                |                   |        |          |                  |                                         |                                                  |                                                     |                                                  |                                                  |                     |
| 1 to 20 by weight                                        | -                 | -      | -        | -                | -                                       | -                                                | -                                                   | -                                                | -                                                | -                   |
| I to 10 by volume                                        | 358               | -      | -        | -                | -                                       |                                                  | -                                                   | -                                                | -                                                | -                   |
| 1 to 5 by weight                                         | -429              | -      | -        | -                | -                                       | -                                                | -                                                   | -                                                | -                                                | -                   |
| 5 to 1 by weight                                         | -                 | 016    | -        | -                | -                                       | -                                                | -                                                   | -                                                | -                                                | -                   |
| Concentrated sulphuric acid                              | .848              | -      | -        | 1.298            | 1.456                                   | 1.269                                            | -                                                   | 1.699                                            | -                                                | -                   |
| Concentrated nitric acid .                               |                   |        | -        | -                | -                                       | -                                                | -                                                   | -                                                | -                                                | -                   |
| Mercurous sulphate paste . Distilled water containing )  | -                 | -      | -475     | -                | -                                       | -                                                | -                                                   | -                                                | _                                                | -                   |
| trace of sulphuric acid.                                 | -                 | -      | -        | _                | -                                       | -                                                | -                                                   | -                                                | -                                                | .078                |
|                                                          |                   |        |          |                  |                                         |                                                  | -                                                   |                                                  | 1                                                |                     |

Ayrton and Perry's results, prepared by Ayrton.

# DIFFERENCE OF POTENTIAL BETWEEN METALS IN SOLUTIONS OF SALTS.

The following numbers are given by G. Magnanini\* for the difference of potential in hundredths of a volt between zinc in a normal solution of sulphuric acid and the metals named at the head of the different columns when placed in the solution named in the first column. The solutions were contained in a U-tube, and the sign of the difference of potential is such that the current will flow from the more positive to the less positive through the external circuit.

| Stren                                                | gth of the solution in<br>am molecules per<br>liter.                                                                                                                                                                                                           | Zinc. f                                                                | Cadmium.†                                                            | Lead.                                                                | Tin.                                                                | Copper.                                                                 | Silver.                                                            |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|
| No. of molecule                                      |                                                                                                                                                                                                                                                                |                                                                        | Differe                                                              | ence of poter                                                        | ntial in centiv                                                     | olts.                                                                   |                                                                    |
| 0.5<br>1.0<br>1.0<br>0.5<br>1.0<br>1.0<br>0.5<br>0.5 | H <sub>2</sub> SO <sub>4</sub><br>NaOH<br>KOH<br>Na <sub>2</sub> SO <sub>4</sub><br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>KNO <sub>3</sub><br>NaNO <sub>3</sub><br>K <sub>2</sub> CrO <sub>4</sub><br>K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> | 0.0<br>-32.1<br>-42.5<br>1.4<br>-5.9<br>11.8‡<br>11.5<br>23.9‡<br>72.8 | 36.6<br>19.5<br>15.5<br>35.6<br>24.1<br>31.9<br>32.3<br>42.8<br>61.1 | 51.3<br>31.8<br>32.0<br>50.8<br>45.3<br>42.6<br>51.0<br>41.2<br>78.4 | 51.3<br>0.2<br>-1.2<br>51.4<br>45.7<br>31.1<br>40.9<br>40.9<br>68.1 | 100.7<br>80.2<br>77.0<br>101.3<br>38.8<br>81.2<br>95.7<br>94.6<br>123.6 | 121.3<br>95.8<br>104.0<br>120.9<br>64.8<br>105.7<br>114.8<br>121.0 |
| 0.5<br>0.25<br>0.167<br>1.0                          | K <sub>2</sub> SO <sub>4</sub> (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> K <sub>4</sub> FeC <sub>6</sub> N <sub>6</sub> K <sub>6</sub> Fe <sub>2</sub> (CN) <sub>12</sub> KCNS N <sub>2</sub> NO <sub>8</sub>                                            | 1.8<br>-0.5<br>-6.1<br>41.0§<br>-1.2<br>4.5                            | 34·7<br>37·1<br>33·6<br>80·8<br>32·5<br>35·2                         | 51.0<br>53.2<br>50.7<br>81.2<br>52.8<br>50.2                         | 40.9<br>57.6‡<br>41.2<br>130.9<br>52.7<br>49.0                      | 95.7<br>101.5<br>—‡<br>110.7<br>52.5<br>103.6                           | 114.8<br>125.7<br>87.8<br>124.9<br>72.5<br>104.6?                  |
| 0.5<br>0.125<br>1.0<br>0.2<br>0.167                  | Sr(NO <sub>3</sub> ) <sub>2</sub> Ba(NO <sub>3</sub> ) <sub>2</sub> KNO <sub>3</sub> KClO <sub>3</sub> KBrO <sub>3</sub>                                                                                                                                       | 14.8<br>21.9<br>— ‡<br>15–10‡<br>13–20‡                                | 38·3<br>39·3<br>35·6<br>39·9<br>40·7                                 | 50.6<br>51.7<br>47.5<br>53.8<br>51.3                                 | 48.7<br>52.8<br>49.9<br>57.7<br>50.9                                | 103.0<br>109.6<br>104.8<br>105.3<br>111.3                               | 119.3<br>121.5<br>115.0<br>120.9<br>120.8                          |
| 1.0<br>1.0<br>1.0<br>1.0                             | NH4Cl<br>KF<br>NaCl<br>KBr<br>KCl                                                                                                                                                                                                                              | 2.9<br>2.8<br>—<br>2.3                                                 | 32.4<br>22.5<br>31.9<br>31.7<br>32.1                                 | 51.3<br>41.1<br>51.2<br>47.2<br>51.6                                 | 50.9<br>50.8<br>50.3<br>52.5<br>52-6                                | 81.2<br>61.3<br>80.9<br>73.6<br>81.6                                    | 101.7<br>61.5<br>101.3<br>82.4<br>107.6                            |
| 0.5<br>-   <br>1.0<br>0.5<br>0.5                     | Na <sub>2</sub> SO <sub>3</sub><br>NaOBr<br>C <sub>4</sub> H <sub>6</sub> O <sub>6</sub><br>C <sub>4</sub> H <sub>6</sub> O <sub>6</sub><br>C <sub>4</sub> H <sub>4</sub> KNaO <sub>6</sub>                                                                    | -8.2<br>18.4<br>5.5<br>4.1<br>-7.9                                     | 28.7<br>41.6<br>39.7<br>41.3<br>31.5                                 | 41.0<br>73.1<br>61.3<br>61.6<br>51.5                                 | 31.0<br>70.6 ‡<br>54.4\$<br>57.6<br>42-47                           | 68.7<br>89.9<br>104.6<br>110.9<br>100.8                                 | 103.7<br>99.7<br>123.4<br>125.7<br>119.7                           |

<sup>\* &</sup>quot;Rend. della R. Acc. di Roma," 1890.

<sup>†</sup> Amalgamated.

<sup>‡</sup> Not constant.

<sup>§</sup> After some time.

<sup>||</sup> A quantity of bromine was used corresponding to NaOH = 1.

#### THERMOELECTRIC POWER.

The thermoelectric power of a circuit of two metals is the electromotive force produced by one degree C difference of temperature between the junctions. The thermoelectric power varies with the temperature, thus: thermoelectric power Q = dE/di = A + Bi, where A is the thermoelectric power at o C, B is a constant, and t is the mean temperature of the junctions. The neutral point is the temperature at which dE/dt = 0, and its value is -A/B. When a current is caused to flow in a circuit of two metals originally at a uniform temperature, heat is liberated at one of the junctions and absorbed at the other. The rate of production or liberation of heat at each junction, or Peltier effect, is given in calories per second, by multiplying the current by the coefficient of the Peltier effect. This coefficient in calories per coulomb =  $QT/\mathcal{F}$ , in which Q is in volts per degree C, T is the absolute temperature of the junction, and  $\mathcal{F}=4.19$ . Heat is also liberated or absorbed in each of the metals as the current flows through portions of varying temperature. The rate of production or liberation of heat in each metal, or the Thomson effect, is given in calories per second by multiplying the current by the coefficient of the Thomson effect, in calories per coulomb  $BT\theta/\mathcal{F}$ , in which B is in volts per degree C, T is the mean absolute temperature of the junctions, and B is the difference of temperature of the junctions. (BT) is Sir W. Thomson's "Specific Heat of Electricity." The algebraic signs are so chosen in the following table that when A is positive, the current flows in the metal considered from the hot junction to the cold. When B is positive, Q increases (algebraically) with the temperature. The values of A, B, and thermoelectric power in the following table are with respect to lead as the other metal of the thermoelectric circuit. The thermoelectric power in the following table are with respect to lead as the other metal of the thermoelectric circuit. The table has been compiled from the results of Bec

are given by Becquerel in the reference given below.

| Substance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A<br>Microvolts.                                              | B<br>Microvolts. | Thermoelec<br>at mean<br>junctions (n                                                                         | temp. of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Neutral point $-\frac{A}{B}$                  | Author-                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |                  | 20° C                                                                                                         | 50° C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |                                       |
| Aluminum. Antimony, comm'l pressed wire.  "axial. "equatorial Argentan. ""  Arsenic. Bismuth, comm'l pressed wire. "pure "" "equatorial.  Cadmium. Cobalt. Constantan. Copper. "galvanoplastic. Gallium Gold. Iron. "pianoforte wire. "commercial. "commercial. "galvanoplastic. Gallium Gold. Iron. "pianoforte wire. "commercial. "commercial. "commercial. "galvanoplastic. Gallium Molybdenum Molybdenum Mercury. Nickel "(-18° to 175°). "(250°-300°). "(above 340°). | +2.63<br>+1.34<br>+2.80<br>+17.15<br>-2.22<br>-21.8<br>-83.57 | +0.0039          | -0.68<br>+6.0<br>+22.6<br>+22.6<br>+26.4<br>-12.95<br>-33.56<br>-97.0<br>-80.0<br>-65.0<br>-45.0<br>+3.48<br> | -0.56 -14.47 -12.7 -1.2.7 -1.2.45 +8.9 -19.3 +1.81 -1.30 +14.74 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10 -1 | +195 -236 -36 -62 -143 -143 -1436 -1436 -1431 | TM" "TBM" "TBS'M TM" STTTMB" TSMBBT"" |

TABLE 386 .- Thermoelectric Power (continued).

| Substance.                                                                                                                                                                                                        | A<br>Microvolts. | B<br>Microvolts.  | Thermoelec<br>at mean<br>junctions (r | temp. of            | Neutral point $-\frac{A}{B}$ . | Au-<br>thority.         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|---------------------------------------|---------------------|--------------------------------|-------------------------|
| Palladium Phosphorus (red) Platinum  " (hardened)  " (malleable)  " wire  " another specimen Platinum-iridium alloys: 85% Pt + 15% Ir 90% Pt + 10% Ir 95% Pt + 5% Ir Selenium Silver  " (pure hard)  " wire Steel | +5.90 +6.15      | -<br>-<br>-0.0074 | -6.9<br>+29.9<br>+0.9<br>+2.42<br>818 | -7.96<br>-<br>+2.20 |                                | T M " T " " M T M B T T |
| Tantalum                                                                                                                                                                                                          | -                |                   | -2.6<br>+500.<br>+160.                | -<br>-<br>-         | -<br>-<br>-                    | H                       |
| Thallium                                                                                                                                                                                                          | -                | -                 | +0.8                                  | +0.33               | -                              | H<br>M                  |
| Tungsten                                                                                                                                                                                                          | -                | +0.0055           | -0.33<br>-2.0<br>+2.79<br>+3.7        | -0.16<br>+3.51      | 78<br><br>98                   | T<br>T<br>M             |

Ed. Becquerel, "Ann. de Chim. et de Phys." [4] vol. 8. S. Bureau of Standards.

M Matthiesen, "Pogg. Ann." vol. 103, reduced by Fleming Jenkin.

T Tait, "Trans. R. S. E." vol. 27, reduced by Mascart.

H Haken, Ann. der Phys. 32, p. 291, 1910. (Electrical conductivity of Teβ=0.04, Tea 1.7 e. m. units.) Swisher, 191/.

#### TABLE 387 .- Thermoelectric Power of Alloys.

The thermoelectric powers of a number of alloys are given in this table, the authority being Ed. Becquerel. They are relative to lead, and for a mean temperature of 50° C. In reducing the results from copper as, a reference metal, the thermoelectric power of lead to copper was taken as—1.9.

| Substance.                              | Relative quantity.      | Thermoelec-<br>tric power in<br>microvolts. | Substance.                        | Relative quantity. | Thermoelec-<br>tric power in<br>microvolts, | Substance.                     | Relative quantity. | Thermoelec-<br>tric power in<br>microvolts. |
|-----------------------------------------|-------------------------|---------------------------------------------|-----------------------------------|--------------------|---------------------------------------------|--------------------------------|--------------------|---------------------------------------------|
| Antimony<br>Cadmium                     | 806 }                   | 227                                         | Antimony<br>Zinc                  | 2                  | 43                                          | Bismuth<br>Antimony            | 4 }                | -51.4                                       |
| Antimony<br>Cadmium<br>Zinc<br>Antimony | 4 }<br>2 }<br>1 }       | 146                                         | Tin Antimony Cadmium Zinc         | 12 10 3            | 35                                          | Bismuth<br>Antimony<br>Bismuth | 8 }                | -63.2<br>-68.2                              |
| Cadmium<br>Bismuth<br>Antimony          | 696 }<br>121 }<br>806 } | 137                                         | Antimony<br>Tellurium<br>Antimony | 10 }               | 10.2                                        | Antimony Bismuth Antimony      | 12 1               | <b>—66.9</b>                                |
| Zinc<br>Antimony<br>Zinc                | 806 )<br>406 }          | 95<br>8.1                                   | Bismuth Antimony                  | 1 }                | 8.3                                         | Bismuth<br>Tin                 | 2 }                | 60                                          |
| Bismuth Antimony Cadmium                | 4 2                     |                                             | Iron Antimony Magnesium           | 8 1                | 1.4                                         | Bismuth Selenium Bismuth       | 10 ( 1 )           | -24.5                                       |
| Lead<br>Zinc<br>Antimony                | 1 1 1 4 1               | 76                                          | Antimony<br>Lead                  | 8 }                | -0.4                                        | Zinc Bismuth Arsenic           | 12 }               | -31.1<br>-46.0                              |
| Cadmium<br>Zinc<br>Tin                  | 2<br>I<br>I             | 46                                          | Bismuth Bismuth Antimony          | 2 }<br>1 }         | —43.8<br>—33.4                              | Bismuth Bismuth sulphide       | 1 }                | 68.1                                        |

## TABLE 388. — Thermoelectric Power against Platinum.

One junction is supposed to be at o°C; + indicates that the current flows from the o° junction into the platinum. The rhodium and iridium were rolled, the other metals drawn.\*

| Tempera-<br>ture, ° C.                                                                                   | Au.                                                                                                | Ag.                                                          | 90%Pt+<br>10%Pd.                                                                                         | 10%Pt+<br>90%Pd.                                                                                     | Pd.                                                                                               | 90%Pt+<br>10%Rh. | 90%Pt+<br>10%Ru.                                                                                                            | Ir.                                                                                                                          | Rh.                                                                                                                 |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| -185<br>-80<br>+100<br>+200<br>+300<br>+400<br>+500<br>+600<br>+700<br>+800<br>+1000<br>+1100<br>+(1300) | -0.15<br>-0.31<br>+0.74<br>+1.8<br>+3.0<br>+4.5<br>+6.1<br>+7.9<br>+9.9<br>+12.0<br>+14.3<br>+16.8 | -0.16 -0.30 +0.72 +1.7 +3.0 +4.5 +6.2 +8.2 +10.6 +13.2 +16.0 | -0.11<br>-0.09<br>+0.26<br>+0.62<br>+1.0<br>+1.5<br>+1.9<br>+2.4<br>+2.9<br>+3.4<br>+3.8<br>+4.3<br>+4.3 | +0.24<br>+0.15<br>-0.19<br>-0.31<br>-0.37<br>-0.18<br>+0.12<br>+0.61<br>+1.2<br>+2.1<br>+3.1<br>+4.2 | +0.77<br>+0.39<br>-0.56<br>-1.20<br>-2.0<br>-2.8<br>-3.8<br>-4.9<br>-6.3<br>-7.9<br>-9.6<br>-11.5 |                  | -0.53<br>-0.39<br>+0.73<br>+1.6<br>+2.6<br>+3.6<br>+4.6<br>+5.7<br>+6.9<br>+8.0<br>+9.2<br>+10.4<br>+11.6<br>+14.2<br>+16.9 | -0.28<br>-0.32<br>+0.65<br>+1.5<br>+2.5<br>+3.6<br>+4.8<br>+6.1<br>+7.6<br>+9.1<br>+10.8<br>+12.6<br>+14.5<br>+18.6<br>+23.1 | -0.24<br>-0.31<br>+0.65<br>+1.5<br>+2.6<br>+3.7<br>+5.1<br>+6.5<br>+8.1<br>+9.9<br>+11.7<br>+15.8<br>+20.4<br>+25.6 |

<sup>\*</sup> Holborn and Day.

TABLE 389. - Thermal E. M. P. of Platinum-Rhodium Alloys Against Pure Platinum, in Millivolts.\*

|                                                                          |                                                                                                                      |                                                                                                                                  |                                                                                                                                             | 10 p. ct.                                                                                                                                   |                                                                                                                                    |                                                                                                                            |                                                                                                                       |                                                                                                    |                                                                                                    |                                                                                                           |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| t                                                                        | ı p. ct.                                                                                                             | 5 p. ct.                                                                                                                         | Low.                                                                                                                                        | High.                                                                                                                                       | Stan-<br>dard.                                                                                                                     | 15 p. ct.                                                                                                                  | 20 p. ct.                                                                                                             | 30 p. ct.†                                                                                         | 40 p. ct.†                                                                                         | 100 p. ct.‡                                                                                               |
| 100° 200 300 400 500 600 700 800 1000 1100 1200 1300 1400 1500 1600 1700 | 0.21<br>0.42<br>0.63<br>0.84<br>1.05<br>1.25<br>1.45<br>1.85<br>2.05<br>2.25<br>2.45<br>2.86<br>3.26<br>3.26<br>3.46 | 0.55<br>1.18<br>1.85<br>2.53<br>3.22<br>3.92<br>4.62<br>5.33<br>6.05<br>6.79<br>7.53<br>8.296<br>9.82<br>10.56<br>11.31<br>12.05 | 0.63<br>1.41<br>2.28<br>3.21<br>4.17<br>5.16<br>6.19<br>7.25<br>8.35<br>9.47<br>10.64<br>11.82<br>13.02<br>14.22<br>15.43<br>10.63<br>17.83 | 0.64<br>1.43<br>2.32<br>3.26<br>4.23<br>5.24<br>6.28<br>7.35<br>8.46<br>9.60<br>10.77<br>11.97<br>13.18<br>14.39<br>15.61<br>16.82<br>18.03 | 0.64<br>1.43<br>2.32<br>3.25<br>4.23<br>5.23<br>6.27<br>7.33<br>8.43<br>9.57<br>10.74<br>11.93<br>13.13<br>14.34<br>15.55<br>16.75 | 0.65<br>1.50<br>2.41<br>3.45<br>4.55<br>5.71<br>6.94<br>8.23<br>9.57<br>10.96<br>12.40<br>13.87<br>16.98<br>18.41<br>19.94 | 3.50<br>4.60<br>5.83<br>7.18<br>8.60<br>10.09<br>11.65<br>13.29<br>14.96<br>16.65<br>18.39<br>20.15<br>21.90<br>23.65 | 2.34<br>3.50<br>4.74<br>6.06<br>7.49<br>9.01<br>10.67<br>12.42<br>14.33<br>16.39<br>18.51<br>20.67 | 2.45<br>3.64<br>4.93<br>6.31<br>7.80<br>9.37<br>11.09<br>12.94<br>14.99<br>17.13<br>19.51<br>21.73 | 0.65<br>1.51<br>2.57<br>3.76<br>5.08<br>6.55<br>8.14<br>9.87<br>11.74<br>13.74<br>15.87<br>18.10<br>20.46 |
| 1755                                                                     | 3.56                                                                                                                 | 12.44                                                                                                                            | 18.49                                                                                                                                       | 18.70                                                                                                                                       | 18.61                                                                                                                              | 22.31                                                                                                                      | 24.55                                                                                                                 |                                                                                                    | • • • •                                                                                            |                                                                                                           |

<sup>\*</sup> Carnegie Institution, Pub. 157, 1911.

<sup>‡</sup> Holborn and Day, mean value, 1899.

<sup>†</sup> Holborn and Wien, 1892.

## THERMOELECTRIC PROPERTIES: PRESSURE EFFECTS. TABLE 390. - Thermoelectric Power; Pressure Effects.

The following values of the thermoelectric powers under various pressures are taken from Bridgman, Pr. Am. Acad. Arts and Sc. 53, p. 269, 1018. A positive emf means that the current at the hot junction flows from the uncompressed to the compressed metal. The cold junction is always at  $o^{\circ}$  C. The last two columns give the constants in the equation E = thermoelectric force against lead  $(o^{\circ}$  to  $100^{\circ}$  C) =  $(4i + Bf^{\circ}) \times 10^{-8}$  volts, at atmospheric pressure, a positive emf meaning that the current flows from lead to the metal under consideration at the hot junction.

|        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The                                                                                                                        | Thermo-electric force, volts × 109                                                                                                          |                                                                                                                                                |                                                                                                                                                        |                                                                                                                                      |                                                                                                                                                       |                                                                                                                                                              |                                                                                                                                                               |                                                                            |  |  |  |  |
|--------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
|        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                            | Pr                                                                                                                                          | essure, k                                                                                                                                      | g/cm²                                                                                                                                                  |                                                                                                                                      |                                                                                                                                                       |                                                                                                                                                              |                                                                                                                                                               | rmula                                                                      |  |  |  |  |
| Metal. | 20    | 2000 4000 8000 12,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                            |                                                                                                                                             |                                                                                                                                                |                                                                                                                                                        |                                                                                                                                      |                                                                                                                                                       |                                                                                                                                                              |                                                                                                                                                               | ficients.                                                                  |  |  |  |  |
|        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                            | Te                                                                                                                                          | mperatu                                                                                                                                        | re, ° C                                                                                                                                                |                                                                                                                                      |                                                                                                                                                       |                                                                                                                                                              |                                                                                                                                                               |                                                                            |  |  |  |  |
|        | 50°   | 100°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50°                                                                                                                        | 100°                                                                                                                                        | 50°                                                                                                                                            | 100°                                                                                                                                                   | 20°                                                                                                                                  | 50°                                                                                                                                                   | 100°                                                                                                                                                         | A                                                                                                                                                             | В                                                                          |  |  |  |  |
| Bi †   | 6,200 | 14,100<br>10,870<br>7,120<br>5,950<br>4,380<br>3,600<br>1,680<br>1,670<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050<br>1,050 | 13,000<br>9,380<br>4,620<br>5,800<br>4,400<br>3,600<br>1,500<br>1,720<br>905<br>+580<br>-91<br>+187<br>+58<br>-242<br>-181 | 28,500<br>20,290<br>14,380<br>11,810<br>8,800<br>7,310<br>4,900<br>3,400<br>3,720<br>3,250<br>2,051<br>1,216<br>278<br>+165<br>-452<br>-362 | 26,100<br>17,170<br>10,960<br>11,530<br>8,630<br>7,370<br>4,690<br>3,230<br>5,300<br>1,860<br>1,791<br>1,124<br>32<br>22<br>375<br>+70<br>-489 | 58,100<br>37,630<br>28,740<br>23,790<br>17,690<br>14,350<br>10,120<br>7,190<br>5,820<br>4,210<br>3,974<br>2,420<br>929<br>9555<br>+292<br>-894<br>-791 | 14,400<br>8,780<br>6,680<br>6,750<br>5,090<br>3,880<br>+1,900<br>-990<br>+880<br>+990<br>+596<br>-68<br>+146<br>-182<br>-308<br>-259 | 38,500<br>23,750, 19,180<br>17,200<br>12,970<br>11,030<br>7,050<br>5,140<br>4,950<br>20<br>281<br>2,627<br>1,616<br>312<br>562<br>+10<br>-719<br>-648 | 87,400<br>52,460<br>45,560<br>35,470<br>26,520<br>15,140<br>11,440<br>10,560<br>7,680<br>6,330<br>5,760<br>3,546<br>1,962<br>833<br>+390<br>-1,314<br>-1,296 | +1.659<br>+12.002<br>-34.76<br>-5.496<br>-3.092<br>+1.594<br>-17.61<br>+2.556<br>+16.18<br>-2.899<br>+2.777<br>-0.416<br>+5.892<br>+0.230<br>+1.366<br>-0.095 | 00495<br>00134 <sup>1</sup><br>+.1619<br>0397<br>01760<br>01334<br>+.01705 |  |  |  |  |

\* Identical wire of Table 308. † Another wire of same sample. ‡ Different sample. \$ Results too irregular for interpolation for values at other temperature and pressures; see original article. -.0.5668; (2) -.0.4868, annealed ingot iron; (3) -.0.61669; (4) -.0.418; (5) -.0.4258; (6) -.0.41128.

### TABLE 391. - Peltier and Thomson Heats: Pressure Effects.

The following data indicate the magnitude of the effect of pressure on the Peltier and Thomson heats. They refer to the same samples as for the last table. The Peltier heat is considered positive if heat is absorbed by the positive current from the surroundings on flowing from uncompressed to compressed metal. A positive  $d^2E/d^2$  means a larger Thomson heat in the compressed metal, and the Thomson heat is itself considered positive if heat is absorbed by the positive current in flowing from cold to hot metal. Same reference and notes as for preceding table.

|         |                                                                                | 106 >                    | Peltier                                                                                               | heat,                                                         | mb.                                |                                      |                                                                                  | 108 X                               | Thoms<br>Joules,            | on hea                                                       | it,<br>mb/° C                                                                |      |
|---------|--------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------|--------------------------------------|----------------------------------------------------------------------------------|-------------------------------------|-----------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|------|
| Metal.  |                                                                                | P                        | ressure                                                                                               | kg/cm <sup>5</sup>                                            |                                    |                                      |                                                                                  | P                                   | ressur                      | e kg/c                                                       | m²                                                                           |      |
| Wictai. |                                                                                | 6000                     |                                                                                                       |                                                               | 12,000                             |                                      |                                                                                  | 5000                                |                             |                                                              | 12,00                                                                        | 0    |
|         |                                                                                | T                        | empera                                                                                                | ture ° (                                                      |                                    |                                      |                                                                                  | Te                                  | mpera                       | ture °                                                       | С                                                                            |      |
|         | o°                                                                             | 50°                      | 100°                                                                                                  | o°                                                            | 50°                                | 1000                                 | o°                                                                               | 50°                                 | 100°                        | o°                                                           | 50°                                                                          | 100° |
| \$ Bi † | +98<br>+66<br>+19<br>+46<br>+35<br>+23<br>+17<br>+11<br>+13<br>-11<br>+7<br>+6 | +71<br>+57<br>+43<br>+37 | +190<br>+124<br>+118<br>+70<br>+52<br>+35<br>+23<br>+23<br>+15<br>+16<br>+14<br>+8<br>+8<br>+0<br>+17 | +190<br>+112<br>+81<br>+90<br>+68<br>+45<br>+36<br>+24<br>+25 | +171<br>+148<br>+114<br>+86<br>+76 | +412<br>+229<br>+221<br>+140<br>+103 | +38<br>+109<br>+5<br>+3<br>+48<br>+9<br>+4<br>+79<br>+2<br>+4<br>+6<br>+11<br>+6 | +48<br>+28<br>+74<br>+6<br>+4<br>-6 | +4<br>-18<br>+6<br>+8<br>+6 | +63<br>+79<br>+105<br>+13<br>+96<br>+96<br>+16<br>+7<br>-347 | +63<br>+92<br>+14<br>+9<br>+17<br>+14<br>+15<br>+8<br>+6<br>+3<br>+16<br>-11 | +50  |

\* † ‡ § Same significance as in preceding table.

### TABLE 392. - Peltier Effect.

The coefficient of Peltier effect may be calculated from the constants A and B of Table 386, as there shown. With Q (see Table 386) in microvolts per  $^{\circ}$  C. and T= absolute temperature (K), the coefficient of Peltier effect=  $\frac{QT}{C}$  cal. per coulomb=0.00086 QT cal. per ampere-hour= $\frac{QT}{1000}$ the coefficient of Petter effect=  $\frac{2}{42}$  cal. per coulomb=0.00086 QT cal. per ampere-hour=QT/1000 millivolts (=millipoules per coulomb). Experimental results, expressed in slightly different units, are here given. The figures are for the heat production at a junction of copper and the metal named, in calories per ampere-hour. The current flowing from copper to the metal named, a positive sign indicates a warming of the junction. The temperature not being stated by either author, and Le Roux not giving the algebraic signs, these results are not of great value.

|            |         |                      |             | Calorie  | s per amp | ere-hou           | r.    |      |      |    | Calories per ampere-hour. |  |  |  |  |  |  |  |  |  |  |  |  |
|------------|---------|----------------------|-------------|----------|-----------|-------------------|-------|------|------|----|---------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| Jahn*      | 1 Sb. ‡ | Sb. com-<br>mercial. | l Bi. pure. | - Bi. \$ | ÿ<br>—.62 | German<br>Silver. | -3.61 | 4.36 | o.32 | 4I | 58                        |  |  |  |  |  |  |  |  |  |  |  |  |
| Le Roux† . | 13.02   | 4.8                  | 19.1        | 25.8     | 0.46      | 2.47              | 2.5   | -    | -    | -  | -39                       |  |  |  |  |  |  |  |  |  |  |  |  |

\* "Wied. Ann." vol. 34, p. 767.
† "Ann. de Chim. et de Phys." (4) vol. 10, p. 201.
‡ Becquerel's antimony is 806 parts Sb + 406 parts Zn + 121 parts Bi.
§ Becquerel's bismuth is 10 parts Bi + 1 part Sb.

TABLE 393. - Peltier Effect, Fe-Constantan, Ni-Cu, 0 - 560° C.

| Temperature.  | 00   | 200  | 1300 | 240 <sup>0</sup> | 3200 | 560° |                     |
|---------------|------|------|------|------------------|------|------|---------------------|
| Fe-Constantan | 3.1  | 3.6  | 4.5  | 6.2              | 8.2  | 12.5 | in Gram. Cal. X-108 |
| Ni-Cu         | 1.92 | 2.15 | 2.45 | 2.06             | 1.91 | 2.38 | per coulomb.        |

TABLE 394. - Peltier Electromotive Force in Millivolts.

| Metal<br>against<br>Copper. | Sb.   | Fe.   | Cd. | Zn. | Ag.  | An.  | Pb.  | Sn.  | Al.  | Pt.   | Pd.   | Ŋ.    | Bi.   |
|-----------------------------|-------|-------|-----|-----|------|------|------|------|------|-------|-------|-------|-------|
| Le Roux .                   | -5.64 | -2.93 | 53  | 45  | -    | -    | -    | -    | -    | -     | -     | 040   | +22.3 |
| Jahn                        | -     | -3.68 | 72  | 68  | 48   | -    | -    | -    | -    | +.37  | -     | +5.07 | -     |
| Edlund                      | -     | -2.96 | 16  | 01  | +.03 | +-33 | +.50 | +.56 | +.70 | +1.02 | +2.17 | -     | +17.7 |
| Caswell                     | -     | -     | -   | -   | +.03 | -    | -    | -    | +.70 | +.85  |       | +6.0  | +16.1 |

Le Roux, 1867; Jahn, 1888; Edlund, 1870-71; Caswell, Phys. Rev. 33, p. 381, 1911.

#### TABLES 395-396.

# TABLE 395. THE TRIBO-ELECTRIC SERIES.

In the following table it is so arranged that any material in the list becomes positively electrified when rubbed by one lower in the list. The phenomenon depends upon surface conditions and circumstances may alter the relative positions in the list.

| I Asbestos (sheet).  Rabbit's fur, hair, (Hg).  Glass (combn. tubing).  Vitreous silica, opossum's fur.  Glass (fusn.).  Mica.  Wool.  Glass (pol.), quartz (pol.), glazed porcelain.  Glass (broken edge), ivory.  Calcite.  Cat's fur.  Cat's fur.  Ca, Mg, Pb, fluor spar, borax. | 13 Silk.  14 Al, Mn, Zn, Cd, Cr, felt, hand, wash-leather. 15 Filter paper. 16 Vulcanized fiber. 17 Cotton. 18 Magnalium. 19 K-alum, rock-salt, satin spar. 20 Woods, Fe. 21 Unglazed porcelain, salammoniac. 22 K-bichromate, paraffin, tinned-Fe. 23 Cork, ebony. | 24 Amber. 25 Slate, chrome-alum. 26 Shellac, resin, sealing-wax. 27 Ebonite. 28 Co, Ni, Sn, Cu, As, Ri, Sb, Ag, Pd, C, Te, Eureka, straw, copper sulphate, brass. 29 Para rubber, iron alum. 30 Guttapercha. 31 Sulphur. 32 Pt, Ag, Au. 33 Celluloid. 34 Indiarubber. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Shaw, Pr. Roy. Soc. 94, p. 16, 1917; the original article shows the alterations in the series sequence due to varied conditions.

#### TABLE 396

## AUXILIARY TABLE FOR COMPUTING WIRE RESISTANCES.

For computing resistance in ohms per meter from resistivity,  $\rho$ , in michroms per cm. cube (see Table 397, etc.).  $\epsilon$ . g. to compute for No. 23 copper wire when  $\rho = 1.724$ : I meter = 0.0387 + .0071 + .0008 + .0002 = 0.0668 ohms; for No. II lead wire when  $\rho = 20.4$ ; I meter = 0.0479 + .0010 = 0.0489 ohms. The following relation allows computation for wires of other gage numbers: resistance in ohms per meter of No. N = 2(n-3) within I %:  $\epsilon$ . g. resistance of meter of No. 18 = 2 × No. 15.

|              |       |                            |                |        |                     | ρiı                 | micro-o                     | hms per c      | m. cube.   |                |        |                   |
|--------------|-------|----------------------------|----------------|--------|---------------------|---------------------|-----------------------------|----------------|------------|----------------|--------|-------------------|
| Gage.<br>No. | Diam. | Section inm <sup>3</sup> . | 1.             | 2.     | 3.                  | 4.                  | 5.                          | 6.             | 7.         | 8.             | 9.     | 10.               |
|              |       |                            |                |        |                     | Resistan            | ce of wir                   | e i meter      | long in oh | ms.            |        |                   |
| 0000         | 11.7  | 107.2                      | .04933         | .03187 | .03280              | .08373              | .03466                      | .08560         | .03653     | .03746         | -03840 | .0393             |
| 00           | 9.27  | 67.43                      | .03148         | .03297 | .03445              | .03593              | .03742                      | .03890         | .02104     | .02119         | .02133 | .0214             |
| I            | 7.35  | 42.4I                      | .03236         | .03472 | .03707              | .03943              | .02118                      | .02141         | .02165     | .02189         | .02212 | .0223             |
| 3            | 5.83  | 26.67                      | .03375         | .03750 | .02112              | .02150              | .02187                      | .02225         | .02262     | .02300         | •02337 | ·O237             |
| 5            | 4.62  | 16.77                      | .03596         | .02119 | .02179              | .02239              | .02298                      | .02358         | .02417     | .02477         | .02537 | •0259             |
| 7            | 3.66  | 10.55                      | .03948         | .02190 | .02284              | .02379              | .02474                      | .02569         | .02664     | .02758         | .02853 | •0294             |
| 9            | 2.91  | 6.634                      | .02151         | .02301 | ·0 <sub>2</sub> 452 | .0 <sub>2</sub> 603 | .02754                      | .02904         | .0106      | .0121          | .0136  | .0151             |
| II           | 2.30  | 4.172                      | .02240         | .02479 | .02719              | .02959              | .0120                       | .0144          | .0168      | .0192          | .0216  | .0240             |
| 13           | 1.83  | 2.624                      | .02381         | .02762 | .0114               | .0152               | 1010.                       | •0229          | .0267      | .0305          | .0343  | .0381             |
| 15           | 1.45  | 1.650                      | .02606         | .0121  | .0182               | .0242               | .0303                       | •0364          | .0424      | .0485          | .0545  | •0606             |
| 17           | 1.15  | 1.038                      | .02963         | .0193  | .0289               | .0385               | .0482                       | -0578          | .0674      | .0771          | .0867  | .096              |
| 19           | .912  | .6527                      | .0153          | .0306  | .0460               | .0613               | .0766                       | .0919          | .1072      | .1226          | •1379  | .153:             |
| 21           | -723  | .4105                      | .0244          | .0487  | .0731               | .0974               | .1218                       | .1462          | .1705      | .1949          | .2192  | .2436             |
| 23           | -573  | .2582                      | .0387          | .0775  | .1162               | .1549               | .1936                       | .2324          | .2711      | .3098          | .3486  | ·3 <sup>8</sup> 7 |
| 25           | •455  | .1624                      | .0616          | .1232  | .2938               | .2463               | .3079<br>.4 <sup>8</sup> 97 | -3695          | .4310      | .4926<br>•7835 | .8815  | .6158             |
| 27           | .361  | .0642                      | .0979<br>.1557 | .1959  | .4671               | .6228               | .7786                       | •5877          | 1.090      | 1.246          | 1.401  | •9794<br>1.557    |
| 31           | .200  | .0404                      | .2476          | .4952  | .7428               | .0220               | 1.238                       | •9343<br>1.486 | 1.733      | 1.240          | 2.228  | 2.476             |
| 33           | .180  | .0254                      | •3937          | .7874  | 1.181               | 1.575               | 1.230                       | 2.362          | 2.756      | 3.150          | 3.543  | 3.937             |
| 35           | .143  | .0160                      | .6262          | 1.252  | 1.879               | 2.505               | 3.131                       | 3.757          | 4.383      | 5.000          | 5.636  | 6.262             |
| 37           | .113  | .00100                     | .9950          | 1,990  | 2.085               | 3.980               | 4.975                       | 5.970          | 6.965      | 7.960          | 8.955  | 9.950             |
| 39           | ,090  | .0063                      | 1.583          | 3.166  | 4.748               | 6.331               | 7.914                       | 9.497          | 11.08      | 12.66          | 14.25  | 15.83             |
| 40           | .080  | .0050                      | 1.996          | 3.992  | 5.988               | 7.984               | 9.980                       | 11.98          | 13.97      | 15.97          | 17.96  | 19.96             |

## RESISTIVITY OF METALS AND SOME ALLOYS.

The resistivities are the values of  $\rho$  in the equation  $R=\rho l/s$ , where R is the resistance in microhms of a length l cm of uniform cross section s cm². The temperature coefficient is  $a_t$  in the formula  $R_t=R_t|_{t}+a_t(t-t_t)|_{t}$ . The information of column 2 does not necessarily apply to the temperature coefficient. See also next table for temperature coefficients of to 100°C.

|                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            | Tempera- |                                                                                                                                                                                   |                                                                                                             | Temperatu                                                                                                                                     | ire coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Substance.                                                                                                                                                                                                                                                                        | Remarks.                                                                                                                                                                                                                                                                                                   | ture,    | Microhm-<br>cm                                                                                                                                                                    | Refer-<br>ence.                                                                                             | i <sub>a</sub>                                                                                                                                | a <sub>s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reference.                                                                 |
| Advance. Aluminum  " " " " " Antimony. " " Arsenic. Bismuth " " Brass. Cadmium " " Caesium " " Calcium Calido. Chromium Climax Cobalt. Constantan " " " Copper " " " " Eureka Excello Gallium German silver Gold Gallium German silver Gold " " " " " " " " " " " " " " " " " " " | see constantan see p. 334 c. p.  " " " " " liquid  drawn " liquid  solid liquid  99.57 pure see constantan  90.8 pure 60% Cu, 40% Ni  annealed hard-drawn electrolytic  pure very pure, ann'ld see constantan  18% Ni 99.9 pure pure, drawn 99.9 pure see constantan " " " " " " " " " " " " " " " " " " " |          | 2.828 0.64 1.53 2.62 3.86 8.0 41.7 10.5 120. 35. 119. 2.72 7.54 9.82 34.1 5.25 19. 22.2 36.6 4.6 1.724 1.77 0.144 2.92 4.10 1.692 92. 53. 33. 0.68 2.22 2.447 8.37 8.37 8.37 8.37 | - 1 3 3 3 3 3 3 5 5 6 7 8 9 9 5 5 10 9 9 11 11 13 13 14 15 5 16 5 - 1 1 17 17 17 17 17 17 17 17 17 17 17 17 | 18° — 18° — 18° 25 100 500 — 20 — 20 — 20 — 20 — 21 25 100 200 200 500 20 see col. 2 """ "" "" 1000 1000 — 20 — 20 — 20 — 20 — 20 — 20 — 20 — | # 1.0030  # 1.0030  # 1.0030  # 1.0030  # 1.0030  # 1.0036  # 1.0036  # 1.0036  # 1.0036  # 1.0036  # 1.0036  # 1.0036  # 1.0037  # 1.000020  # 1.00382  # 1.00382  # 1.00382  # 1.0052  # 1.00042  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004  # 1.0004 | ence.  2 4 4 4 5 5 5 5 5 6 1 1 1 1 5 4 4 4 4 4 4 5 5 4 4 4 4 1 5 5 4 4 4 4 |

## RESISTIVITY OF METALS AND SOME ALLOYS.

|                                                                                                                                                       |                                                                                                                                                                                                                                                       | Tempera-                                                   | Miarah                                                                                                                                                                                                                                                                                                                                                                | Pofor                                     | Temperatu                                                                        | re coefficient.                                                                                                                                                                                                 |                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Substance.                                                                                                                                            | Remarks.                                                                                                                                                                                                                                              | ture,                                                      | cm                                                                                                                                                                                                                                                                                                                                                                    | ence,                                     | t <sub>s</sub>                                                                   | $a_s$                                                                                                                                                                                                           | Refer-<br>ence.                            |
| Substance.  Iron.  ""  "steel.  ""  ""  Lead.  ""  Lithium.  ""  Magnesium.  Manganese. Manganin.  ""  Mercury.  ""  Molybdenum.  ""  Molybdenum.  "" | Remarks.  99.98% pure pure, soft  """ """ """ """ """ E. B. B. B. B. Siemens-Martin manganese 35% Ni, "invar." piano wire piano wire piano wire ", yellow ", yellow ", soft  cold pressed """ """ """ """ solid """ """ """ """ """ """ """ """ """ " | ture,                                                      | Microhm-cm  10. 0.652 5.32 8.85 17.8 21.5 17.8 21.5 11.9 18. 70. 81. 11.8 45.7 20.5 15.9 22. 4.6 28.0 94. 1.34 8.55 12.7 4.36 994. 1.34 95.78 6.97 1.30 95.78 6.97 11.00 2.97 4.35 6.97 15.04 21.3 25.5 6.97 15.04 21.3 25.5 6.97 15.04 21.3 25.5 6.97 15.04 21.3 25.5 6.97 15.04 21.3 25.5 6.97 15.04 21.3 25.5 6.97 15.04 21.3 25.5 6.97 15.04 21.3 25.5 6.97 15.05 |                                           | 20 00 25 100 500 1000 20 see col. 2 """" """" 0 see col. 2 """" 10 see col. 2 18 | # + .0050 + .0052 + .0052 + .0052 + .0052 + .0053 + .0016 + .0033 + .0016 + .0033 + .0039 + .0044 + .0036 + .0045 + .0045 + .00006600006600006700016 + .0008800088000880008800088000880008800088000880008800088 | Reference.  51 4 4 4 4 55 5 5              |
| Monel metal Nichrome Nickel " " " " " "                                                                                                               |                                                                                                                                                                                                                                                       | 20.<br>20.<br>20.<br>-182.5<br>-78.2<br>0.<br>94.9<br>400. | 42.<br>100.<br>7.8<br>1.44<br>4.31<br>6.93<br>11.1<br>60.2                                                                                                                                                                                                                                                                                                            | 5<br>5<br>5<br>28<br>28<br>28<br>28<br>28 | 1000<br>20<br>20<br>20<br>0<br>0<br>25<br>100<br>500<br>1000                     | +.0048<br>+.0020<br>+.0004<br>+.006<br>+.0062<br>+.0043<br>+.0043<br>+.0030<br>+.0037                                                                                                                           | 4<br>4<br>5<br>5<br>5<br>24<br>4<br>4<br>4 |

## RESISTIVITY OF METALS AND SOME ALLOYS.

|                                                                                                                                                                                                                          |                                                                                | Tempera-                                                                                           | Michae                                                                                                                                                                                                                                                                                  | Defer                                                  | Temp                                           | perature coeff                 | icient.         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------|--------------------------------|-----------------|
| Substance                                                                                                                                                                                                                | Remarks.                                                                       | ature,<br>°C                                                                                       | cm                                                                                                                                                                                                                                                                                      | ence.                                                  | t <sub>a</sub>                                 | a <sub>s</sub>                 | Refer-<br>ence. |
| Substance  Osmium Palladium.  ""  Platinum.  ""  Potassium.  ""  Rhodium.  ""  Silicium. Silver.  ""  Sodium.  ""  ""  Strontium. Tantalum. Tantalum. Thallium. ""  ""  ""  Therlo. Tin. ""  ""  ""  Titanium. Tungsten. | Remarks.                                                                       | Tempera- ature, ° C  20. 20. 21. 20. 21. 20. 22. 20. 20. 20. 20. 20. 20. 20. 20                    | Michrom-cm  60.2 11. 2.78 7.17 10.21 13.79 10. 2.444 6.87 10.96 14.85 26. 4.0 6.1 8.4 0.70 3.09 4.69 6.60 2.5 11.6 13.4 19.6 58.   1.629 0.390 1.021 1.468 2.062 2.608 3.77 1.0 2.8 4.3 5.4 10.2 24.8 15.5 200,000 4.08 11.5 3.40 8.8 17.60 24.7 47.7 11.5 3.40 8.8 13.0 18.2 3.2 5.551 | Reference.  3 5 17 17 17 17 17 17 17 17 17 17 17 17 17 |                                                |                                | Refer-          |
| Zinc.                                                                                                                                                                                                                    | 1000° K<br>1500° K<br>2000° K<br>3000° K<br>3500° K<br>3500° K<br>4 """<br>""" | 727.<br>1227.<br>1727.<br>1727.<br>2727.<br>3227.<br>-183.<br>-78.<br>0.<br>92.45<br>191.5<br>440. | 5.51<br>41.4<br>59.4<br>98.9<br>118.<br>1.62<br>3.34<br>5.75<br>8.00<br>10.37<br>37.2                                                                                                                                                                                                   | 29<br>29<br>29<br>29<br>29<br>17<br>17<br>17<br>17     | 500<br>1000<br>——————————————————————————————— | +.0045<br>+.0057<br>+.0089<br> | 5               |

References to Table 397: (1) See page 334; (2) Jäger, Diesselhorst, Wiss. Abh. D. Phys. Tech. Reich. 3, p. 269, 1900; (3) Nicolai, 1907; (4) Somerville, Phys. Rev. 31, p. 261, 1910; 33, p. 77, 1911; (5) Circular 74 of Bureau of Standards, 1918; (6) Eucken, Gelhoff; (7) de la Rive; (8) Matthiessen; (9) Jäger, Diesselhorst; (10) Lees, 1908; (11) Mean; (12) Guntz, Broniewski; (13) Hackspill; (14) Swisher, 1917; (15) Shukow; (16) Reichardt, 1901; (17) Dewar, Fleming, Dickson, 1808; (18) Wolff, Dellinger, 1910; (19) Erhardt, 1881; (20) Broniewski, Hackspill, 1911; (21) Dewar, Fleming, 1893; 1896; (22) Circular 58, Bureau of Standards, 1910; (23) Strouhal, Barus, 1883; (24) Vincentini, Omodei, 1890; (25) Bernini, 1905; (26) Glazebrook, Phil. Mag. 20, p. 343, 1885; (27) Grimaldi, 1888; (28) Fleming, 1900; (29) Langmuir, Gen. Elec. Rev. 19, 1916.

#### TABLE 398. - Resistance of Metals under Pressure.

The average temperature coefficients are per ° C between o° and roo° C. The instantaneous pressure coefficients The average temperature coefficients are per C between 0 and 100 C. The instantaneous pressure coefficients are the values of the derivative  $(1/r)[dr/dp]_t$ , where r is the observed resistance at the pressure p and temperature t. The average coefficient is the total change of resistance between 0 and 12,000 kg/cm<sup>2</sup> divided by 12,000 and the resistance at atmospheric pressure and the temperature in question. Table taken from Proc. Nat. Acad. 3, p. 11, 1017. For coefficients at intermediate temperatures and pressures, see more detailed account in Proc. Amer. Acad. 52, p. 573, 1917. Sn. Cd, Zn, Kahlbaum's "K" grade; Tl, Bi, electrolytic, high purity; Pb, Ag, Au, Cu, Fe, Pt, of exceptional purity. Al better than ordinary, others only of high grade commercial purity.

|                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                    |                                                                                                                                                                                                                                       |                                                                                | Pressure                                                                                                                                | e coefficients.                                                                                                                  |                                                                                                                                                                                                                                    |                                                                                                                                                        |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                    | Average ten                                                                                                                                                                                                         | ient                                                                                                                                                                               | I                                                                                                                                                                                                                                     | nstantaneo                                                                     | us coefficien                                                                                                                           | t.                                                                                                                               | Average                                                                                                                                                                                                                            | coefficient                                                                                                                                            |
|                                                                                    | 0 10 10                                                                                                                                                                                                             |                                                                                                                                                                                    | At                                                                                                                                                                                                                                    | o° C                                                                           | At 1                                                                                                                                    | 00° C                                                                                                                            | o to 12,0                                                                                                                                                                                                                          | ooo kg/cm²                                                                                                                                             |
|                                                                                    | At o kg                                                                                                                                                                                                             | At 12,000 kg                                                                                                                                                                       | o kg                                                                                                                                                                                                                                  | 12,000 kg                                                                      | o kg                                                                                                                                    | 12,000 kg                                                                                                                        | At o°                                                                                                                                                                                                                              | At 100°                                                                                                                                                |
| In. Sn. Tl. Cd Pb. Zn. Al. Ag. Au. Cu. Ni. Co Fe. Pd. Pt. Mo. Ta W. Mg. Sb. Bi. Te | . 00447<br>.00517<br>.00424<br>.00421<br>.00416<br>.00434<br>.004074<br>.003068<br>.004293<br>.004673<br>.003678<br>.003678<br>.003678<br>.003678<br>.003678<br>.003678<br>.003678<br>.003678<br>.003678<br>.003678 | + .00383<br>.00441<br>.00499<br>.00418<br>.00412<br>.00420<br>.00435<br>.004069<br>.003964<br>.003964<br>.003964<br>.003185<br>.003873<br>.004840<br>.002067<br>.003218<br>.003873 | 041226 041044 041319 041043 04142 040540 040540 040540 040540 040540 040540 040540 040540 040540 040540 040540 040540 040540 040540 040540 040540 040540 040540 040540 040540 040540 040540 040540 041540 041540 041540 041540 041540 | 041016 .04036 .041180 .04037 .041220 .04025 .04035 .04037 .04021 .04021 .04021 | 041510‡ .041062 .041456 .041106 .041483 .040524 .040397 .040355 .040304 .040184 .040184 .040180 .040247 .040180 .040190 .040130 .040130 | 041072\$ .040073 .041200 .040887 .041237 .040293 .040292 .040175 .040292 .040175 .040282 .040182 .040182 .040182 .040182 .040183 | 041021<br>.040920<br>.041151<br>.040894<br>.041212<br>.040470<br>.040382<br>.040383<br>.040183<br>.040147<br>.040087<br>.040226<br>.040100<br>.040183<br>.040123<br>.040123<br>.040123<br>.040124<br>.040124<br>.040124<br>.040124 | .040951<br>.041026<br>.040027<br>.041025<br>.040454<br>.040336<br>.040202<br>.040177<br>.040158<br>.040073<br>.040255<br>.040184<br>.040184<br>.040126 |

† 0° to 24°. † Extrapolated from 50°. § Extrapolated from 75°.

Additional data from P. Nat. Acad. Sc., 6, 505, 1920. Data are  $10,000 \times \text{mean}$  pressure coefficient, 0 - 12,000 kg, and  $10,000 \times \text{instantaneous}$  pressure coefficient at 0 kg. 1 = liquid; s = solid.

| Li, s, o°   | +.0772 | + .068            | Ca, oo     | +.106  | +.129 | Ti, o°       | 生.001? |        |
|-------------|--------|-------------------|------------|--------|-------|--------------|--------|--------|
| Li, 1, 240° | +.093  | + .093            | Sr, oo     | + .680 | +.502 | Zr, o°       | 0040   | 004    |
| Na, s, oo   | 345    | 663               | Hg, s, oo  | 236b   |       | Bi, 1, 275°  | 101C   | 123    |
| Na, 1, 2000 | 436    | 922               | Hg, l, 25° | 219    | 334   | W, 0°        | 0135   | 014    |
| K, s, 25°   | 604    | — 1.86            | Ga, s, oo  | 0247   |       | La, oo       | 0331   | 039    |
| K, 1, 165°  | 809a   | <del>- 1.68</del> | Ga, 1, 30° | 0531   | 064   | P, black, oo | 81     | - 2.00 |

a, 0 - 9,000 kg; b, 7,640 - 12,000 kg; c, 0 - 7,000 kg. The Ga, Na, K, Mg, Hg, Bi, W, P, of exceptional purity.

### TABLE 399. - Resistance of Mercury and Manganin under Pressure.

Mercury, pure and free from air and with proper precautions, makes a reliable secondary electric-resistance pressure gage. For construction and manipulation see "The Measurement of High Hydrostatic Pressure; a Secondary Mercury Resistance Gauge," Pr. Am. Acad. 44, p. 221, 1919.

| Pressure, kg/cm <sup>2</sup> | _      | 500    | 1000   | 1500   | 2000   | 2500   | 3000   | 4000   | 5000   | 6000                                 | 6500   |
|------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------------------------------------|--------|
| R(p, 25°)                    | I.0000 | 0.9836 | 0.9682 | 0.9535 | 0.9394 | 0.9258 | 0.9128 | 0.8882 | 0.8652 | o.7896<br>o.8438<br>o.8616<br>o.9086 | 0.8335 |

\*This line gives the Specific Mass Resistance at 25°, the other lines the specific volume resistance. The use of mercury as above has the advantage of being perfectly reproducible so that at any time a pressure can be measured without recourse to a fundamental standard. However, at o° C mercury freezes at 7500 kg/cm². Manganin is suitable over a much wider range. Over a temperature range o to 50° C the pressure resistance relation is linear within 1/10 per cent of the change of resistance up to 13,000 kg/cm². The coefficient varies slightly with the sample. Bridgman's samples (German) had values of  $(\Delta R/\rho R_0) \times$  10° from 2295 to 2325. These are + instead of -, as with most of the above metals. See "The Measurement of Hydrostatic Pressure up to 20,000 Kilograms per Square Centimeter," Bridgman, Pr. Am. Acad. 47, p. 321, 1911.

# CONDUCTIVITY AND RESISTIVITY OF MISCELLANEOUS ALLOYS.

TEMPERATURE COEFFICIENTS.

Conductivity in mhos or  $\frac{1}{\text{ohms per cm}^2} = \gamma_t = \gamma_0 (1 - at + bt^2)$  and resistivity in microhms-cm  $=\rho_t=\rho_0(1+at-bt^2).$ 

| Metals and alloys.                     | Composition by weight.                                                                                                                                                                                                  | 70<br>104                   | a×106                 | Po                    | Authority. |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------|-----------------------|------------|
| Gold-copper-silver.                    | 58.3 Au + 26.5 Cu + 15.2 Ag<br>66.5 Au + 15.4 Cu + 18.1 Ag<br>7.4 Au + 78.3 Cu + 14.3 Ag                                                                                                                                | 7.58<br>6.83<br>28.c6       | 574*<br>529†<br>1830‡ | 13.2<br>14.6<br>3.6   | I          |
| Nickel-copper-zinc .                   | {12.84 Ni + 30.59 Cu + 6.57 Zn by volume }                                                                                                                                                                              | 4.92                        | 444§                  | 20.3                  | I          |
| Brass                                  | Various                                                                                                                                                                                                                 | 12.2-15.6<br>12.16<br>14.35 | 1-2×10 <sup>3</sup>   | 6.4-8.4<br>8.2<br>7.0 | 3 3        |
| German silver                          | Various                                                                                                                                                                                                                 | 3-5                         | -                     | 2033.                 | 2          |
|                                        | {14.03 Ni +.30 Fe with trace of cobalt and manganese.}                                                                                                                                                                  | 3.33                        | 360                   | 30.                   | 4          |
| Aluminum bronze .                      |                                                                                                                                                                                                                         | 7.5-8.5                     | 5-7×10°               | 12-13                 | 2          |
| Phosphor bronze .                      |                                                                                                                                                                                                                         | 10-20                       | -                     | 5-10                  | 2          |
| Silicium bronze                        |                                                                                                                                                                                                                         | 41                          | -                     | 2.4                   | 5          |
| Manganese-copper.<br>Nickel-manganese- | 30 Mn + 70 Cu                                                                                                                                                                                                           | 1.00                        | 40                    | 100.                  | 4          |
| copper                                 | 3 Ni + 24 Mn + 73 Cu                                                                                                                                                                                                    | 2.10                        | <del>-30</del>        | 48.                   | 4          |
| Nickelin                               | \[ \begin{pmatrix} \lambda 18.46 \text{ Ni + 61.63 Cu +} \\ 19.67 \text{ Zn + 0.24 Fe +} \\ 0.19 \text{ Co + 0.18 Mn} \\ \dots \end{pmatrix} \] \[ \begin{pmatrix} \lambda 19.42 \text{ Cu +} \\ \dots \end{pmatrix} \] | 3mOI                        | 300                   | 33.                   | 4          |
| Patent nickel                          | $ \left\{ \begin{array}{l} 0.42 \text{ Fe} + 0.23 \text{ Zn} + \\ 0.13 \text{ Mn} + \text{trace of cobalt} \end{array} \right\} $                                                                                       | 2.92                        | 190                   | 34.                   | 4          |
| Rheotan                                | 53.28 Cu + 25.31 Ni +<br>16.89 Zn + 4.46 Fe +<br>0.37 Mn                                                                                                                                                                | 1.90                        | 410                   | 53.                   | 4          |
| Copper-manganese-<br>iron              | 91 Cu + 7.1 Mn + 1.9 Fe .                                                                                                                                                                                               | 4.98                        | 120                   | 20.                   | 5          |
| iron                                   | 70.6 Cu + 23.2 Mn + 6.2 Fe.                                                                                                                                                                                             | 1.30                        | 22                    | 77.                   | 6          |
| Copper-manganese-<br>iron              | 69.7 Cu + 29.9 Ni + 0.3 Fe.                                                                                                                                                                                             | 2.60                        | 120                   | 38.                   | 7          |
| Manganin Constantan                    | 84 Cu + 12 Mn + 4 Ni 60 Cu + 40 Ni                                                                                                                                                                                      | 2.3 2.04                    | 6 8                   |                       | 8          |
|                                        |                                                                                                                                                                                                                         |                             |                       |                       |            |

<sup>&</sup>lt;sup>1</sup> Matthiessen. <sup>2</sup> W. Siemens. <sup>5</sup> Van der Ven. <sup>7</sup> Feussner. <sup>8</sup> Various. <sup>4</sup> Feussner and Lindeck. <sup>6</sup> Blood. <sup>8</sup> Jaeger-Diesselhorst.

<sup>\*, †, ‡,</sup>  $\S$ , b × 10°=924, 93, 7280, 51, respectively.

### CONDUCTING POWER OF ALLOYS.

This table shows the conducting power of alloys and the variation of the conducting power with temperature.\* The values of  $C_0$  were obtained from the original results by assuming silver  $=\frac{10^6}{1.585}$  mhos. The conductivity is taken as  $C_6 = C_0 (1-at+bt^2)$ , and the range of temperature was from  $0^\circ$  to  $100^\circ$  C.

The table is arranged in three groups to show (1) that certain metals when melted together produce a solution which has a conductivity equal to the mean of the conductivities of the components, (2) the behavior of those metals alloyed with others, and (3) the behavior of the other metals alloyed together.

It is pointed out that, with a few exceptious, the percentage variation between of and 100° can be calculated from the

it is pointed out that, with a few exceptions, the percentage variation between 0° and 100° can be calculated from the formula  $P = P_{\sigma l} \frac{l}{l}$ , where l is the observed and l' the calculated conducting power of the mixture at 100° C., and  $P_{\sigma}$  is the calculated mean variation of the metals mixed.

| Alloys.                                                                                           | Weight %                                                 | Vo lume %                                                 | <u>C</u> <sub>0</sub>                                   | a × 10 <sup>6</sup>                                  | δ × 10 <sup>9</sup>                                   | Variation                                                   | per 100° C.                                                 |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| . Anoys.                                                                                          | of first                                                 | named.                                                    | 104                                                     | a × 10°                                              | 0 × 10°                                               | Observed.                                                   | Calculated.                                                 |
|                                                                                                   | er bo                                                    | Gı                                                        | ROUP 1.                                                 |                                                      |                                                       |                                                             |                                                             |
| Sn <sub>6</sub> Pb                                                                                | 77.04<br>82.41<br>78.06<br>64.13<br>24.76<br>23.05       | 83.96<br>83.10<br>77.71<br>53.41<br>26.06<br>23.50        | 7.57<br>9.18<br>10.56<br>6.40<br>16.16<br>13.67<br>5.78 | 3890<br>4080<br>3880<br>3780<br>3780<br>3850<br>3500 | 8670<br>11870<br>8720<br>8420<br>8000<br>9410<br>7270 | 30.18<br>28.89<br>30.12<br>29.41<br>29.86<br>29.08<br>27.74 | 29.67<br>30.03<br>30.16<br>29.10<br>29.67<br>30.25<br>27.60 |
|                                                                                                   | . 7                                                      | G                                                         | ROUP 2.                                                 |                                                      |                                                       | 77.                                                         |                                                             |
| Lead-silver (Pb <sub>20</sub> Ag) .<br>Lead-silver (PbAg) .<br>Lead-silver (PbAg <sub>2</sub> ) . | 95.05<br>48.97<br>32.44                                  | 94.64<br>46.90<br>30.64                                   | 5.60<br>8.03<br>13.80                                   | 3630<br>1960<br>1990                                 | 7960<br>3100<br>2600                                  | 28.24<br>16.53<br>17.36                                     | 19.96<br>7.73<br>10.42                                      |
| Tin-gold $(Sn_{12}Au)$ $(Sn_{5}Au)$                                                               | 77-94<br>59-54                                           | 90.32<br>79.54                                            | 5.20 <sup>1</sup><br>3.03                               | 3080<br>2920                                         | 6640<br>6300                                          | 24.20                                                       | 14.83<br>5.95                                               |
| Tin-copper                                                                                        | 92.24<br>80.58<br>12.49<br>10.30<br>9.67<br>4.96<br>1.15 | 93.57<br>83.60<br>14.91<br>12.35<br>11.61<br>6.02<br>1.41 | 7.59<br>8.05<br>5.57<br>6.41<br>7.64<br>12.44<br>39.41  | 3680<br>3330<br>547<br>666<br>691<br>995<br>2670     | 8130<br>6840<br>294<br>1185<br>304<br>705<br>5070     | 28.71<br>26.24<br>5.18<br>5.48<br>6.60<br>9.25<br>21.74     | 19.76<br>14.57<br>3.99<br>4.46<br>5.22<br>7.83<br>20.53     |
| Tin-silver                                                                                        | 91.30<br>53.85                                           | 96. <b>5</b> 2<br>75.51                                   | 7.81<br>8.65                                            | 3820<br>3770                                         | 8190<br>8550                                          | 30.00<br>29.18                                              | 23.31<br>11.89                                              |
| Zinc-copper †                                                                                     | 36.70<br>25.00<br>16.53<br>8.89<br>4.06                  | 42.06<br>29.45<br>23.61<br>10.88<br>5.03                  | 13.75<br>13.70<br>13.44<br>29.61<br>38.09               | 1370<br>1270<br>1880<br>2040<br>2470                 | 1340<br>1240<br>1800<br>3030<br>4100                  | 12.40<br>11.49<br>12.80<br>17.41<br>20.61                   | 11.29<br>10.08<br>12.30<br>17.42<br>20.62                   |

Note. — Barus, in the "Am. Jour. of Sci." vol. 36, has pointed out that the temperature variation of platinum alloys containing less than 10% of the other metal can be nearly expressed by an equation  $y = \frac{n}{x} - m$ , where y is the temperature coefficient and x the specific resistance, m and n being constants. If  $\alpha$  be the temperature coefficient at x = 00° C, and s the corresponding specific resistance, x = 01° C and s the corresponding specific resistance.

For platinum alloys Barus's experiments gave m = -.000194 and n = .0378. For steel m = -.000303 and n = .0620.

Matthiessen's experiments reduced by Barus gave for

Gold alloys m = -.000045, n = .00721. Silver "m = -.000112, n = .00538. Copper "m = -.000386, n = .00055.

<sup>\*</sup> From the experiments of Matthiessen and Vogt, "Phil. Trans. R. S." v. 154. † Hard-drawn.

TABLE 401. - Conducting Power of Alloys.

|                       |                | Gı             | ROUP 3.      |              |              |           |              |
|-----------------------|----------------|----------------|--------------|--------------|--------------|-----------|--------------|
|                       |                |                | 3.           |              |              |           |              |
| Alloys.               | Weight %       | Volume %       | <u>C</u> o   | a×106        | δ × 109      | Variation | per 100° C.  |
|                       | of first       | named.         | 104          | " ~ 10°      | 0 × 10°      | Observed. | Calculated.  |
| Gold-copper †         | 99.23          | 98.36          | 35.42        | 2650         | 4650         | 21.87     | 23.22        |
| 1                     | 90.55          | 81.66          | 10.16        | 749          | 81           | 7.41      | 7.53         |
| Gold-silver †         | 87.95          | 79.86          | 13.46        | 1090         | 793          | 10.09     | 9.65         |
|                       | 87.95<br>64.80 | 79.86<br>52.08 | 13.61        | 1140         | 1160         | 10.21     | 9.59         |
| *                     | 64.80          | 52.08          | 9.48         | 673          | 246<br>495   | 6.49      | 6.58<br>6.42 |
| " " †                 | 31.33          | 19.86          | 13.69        | 885          |              | 8.23      | 8.62         |
| " " *                 | 31.33          | 19.86          | 13.73        | 908          | 531<br>641   | 8.44      | 8.31         |
| Gold-copper †         | 34.83          | 19.17          | 12.94        | 864          | 570          | 8.07      | 8.18         |
| " " †                 | 1.52           | 0.71           | 53.02        | 3320         | 7300         | 25.90     | 25.86        |
| Platinum-silver †     | 33-33          | 19.65          | 4.22         | 330          | 208          | 3.10      | 3.21         |
| 66 66 +               | 9.81           | 5.05           | 11.38        | 774          | 656          | 7.08      | 7.25         |
|                       | 5.00           | 2.51           | 19.96        | 1240         | 1150         | 11.29     | 11.88        |
| Palladium-silver †    | 25.00          | 23.28          | 5.38         | 324          | 154          | 3.40      | 4.21         |
| Copper-silver †       | 98.08          | 98.35          | 56.49        | 3450         | 7990         | 26.50     | 27.30        |
| " " †                 | 94.40          | 95.17          | 51.93        | 3250         | 6940         | 25.57     | 25.41        |
| " " †                 | 76.74<br>42.75 | 77.64          | 44.06        | 3030<br>2870 | 6070<br>5280 | 24.29     | 21.92        |
| " " †                 | 7.14           | 8.25           | 50.65        | 2750         | 4360         | 23.17     | 25.57        |
| " " †                 | 1.31           | 1.53           | 50.30        | 4120         | 8740         | 26.51     | 29.77        |
| Iron-gold †           | 13.59          | 27.93          | 1.73         | 3490         | 7010         | 27.92     | 14.70        |
| " " †                 | 9.80           | 21.18          | 1.26         | 2970         | 1220         | 17.55     | 11.20        |
|                       | 4.76           | 10.96          | 1.46         | 487          | 103          | 3.84      | 13.40        |
| Iron-copper †         | 0.40           | 0.46           | 24.51        | 1550         | 2090         | 13.44     | 14.03        |
| Phosphorus-copper † . | 2.50           | -              | 4.62         | 476          | 145          | -         | -            |
| " †.                  | 0.95           | -              | 14.91        | 1320         | 1640         | -         | -            |
| Arsenic-copper †      | 5.40           | ' =            | 3.97<br>8.12 | 516          | 989          | ~         | -            |
| " " †                 | 2.80           | -              |              | 736          | 446          | -         | -            |
| " " †                 | trace          | 1-3            | 38.52        | 2640         | 4830         |           |              |
|                       |                | 1              |              |              |              |           |              |

\* Annealed.

† Hard-drawn.

TABLE 402. — Allowable Carrying Capacity of Rubber-covered Copper Wires.

(For inside wiring - Nat. Board Fire Underwriters' Rules.)

| B+S Gage | 18 | 16 | 14 | 12 | 10 | 8  | 6  | 5  | 4  | 3  | 2  | I   | 0   | 00  | 6000 |
|----------|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|------|
| Amperes  | 3  | 6  | 12 | 17 | 24 | 33 | 46 | 54 | 65 | 76 | 90 | 107 | 127 | 150 | 210  |

500,000 circ. mills, 390 amp.; 1,000,000 c. m., 650 amp.; 2,000,000 c. m., 1,050 amp. For insulated al. wire, capacity = 84% of cu. Preece gives as formula for fusion of bare wires  $I = ad^{\frac{3}{2}}$ , where d = diam. in inches, a for cu. is 10,244; al., 7585; pt., 5172; German silver, 5230; platinoid, 4750; Fe, 3148; Pb., 1379; alloy 2 pts. Pb., 1 of Sn., 1318.

## RESISTIVITIES AT HIGH AND LOW TEMPERATURES.

The electrical resistivity ( $\rho$ , ohms per cm. cube) of good conductors depends greatly on chemical purity. Slight contamination even with metals of lower  $\rho$  may greatly increase  $\rho$ . Solid solutions of good conductors generally have higher  $\rho$  than components. Reverse is true of bad conductors. In solid state allotropic and crystalline forms greatly modify  $\rho$ . For liquid metals this last cause of variability disappears. The + temperature coefficients of pure metals is of the same order as the coefficients of expansion of gases. For temperature resistance (t,  $\rho$ ) plot at low temperatures the graph is convex towards the axis of t and probably approaches tangency to it. However for extremely low temperatures Onnes finds very sudden and great drops in  $\rho$ . e.g. for Mercury,  $\rho_3$ ,6K  $<4 \times 10^{-10} \rho_0$  and for Su.,  $\rho_3$ ,9K  $<10^{-10} \rho_0$ . The t,  $\rho$  graph for an alloy may be nearly parallel to the t axis, cf. constantan; for poor conductors  $\rho$  may decrease with increasing t. At the melting-points there are three types of behavior of good conductors: those about doubling  $\rho$  and then possessing nearly linear t,  $\rho$  graphs (Al., Cu., Sn., Au., Ag., Pb.); those where  $\rho$  suddenly increases and then the temperature is only approximately constant; (Hg., Na., K.); those where  $\rho$  suddenly increases (Sb., Bi.). The values from different authorities do not necessarily fit because of different samples of metals. The Shimank values (1 given to tenths of 0) are for material of theoretical purity and are determined by the  $\alpha$  rule (see his paper, also Nernst, Ann. d Phys. 35, p. 403, 1911 for temperature resistance thermometry). The Shimank and Pirrani values are originally given as ratios to  $\rho_0$ . (Ann. d. Phys. 45, p. 706, 1914, 46, p. 176, 1915.) Resistivities are in ohms per cm. cube unless stated.

|                                                                              |                                                                                                                                                      | 1                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                           | 1                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                        |                                                                                                                                                      |                                                                                                                                       |                                                                                                                       |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                                                                              | Gold.                                                                                                                                                |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Copper.                                                                                                                                              |                                                                                                                                           |                                                                                                                                          | Silver.                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                      | Zinc.                                                                                                                                 |                                                                                                                       |
| °C.                                                                          | Pt                                                                                                                                                   | P <sub>t</sub>                                                                                                                | °C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pt                                                                                                                                                   | Pt Po                                                                                                                                     | ° C.                                                                                                                                     | Ρt                                                                                                                                                 | $\frac{\rho_{t}}{\rho_{o}}$                                                                                                                            | °C.                                                                                                                                                  | ρt                                                                                                                                    | Pt Po                                                                                                                 |
| -252.8 -200192.5 -15077.6 -50. 0, 100750. 1000. 1063. 1200. 1400. 1500.      | 0.018<br>.601<br>.520<br>.997<br>1.400<br>1.564<br>1.813<br>2.247<br>2.97<br>3.83<br>6.62<br>9.35<br>12.54<br>13.50<br>30.82<br>32.8<br>35.6<br>37.0 | .0081<br>.267<br>.231<br>.444<br>.623<br>.696<br>1.00<br>1.32<br>1.70<br>2.94<br>4.16<br>5.58<br>6.01<br>13.7<br>14.6<br>15.8 | -258.6<br>-252.8<br>-251.1<br>-206.6<br>-192.9<br>-150.<br>-50.<br>0.<br>0.<br>200.<br>750.<br>100.<br>200.<br>750.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100. | 0.014<br>.016<br>.028<br>.163<br>.249<br>.567<br>.904<br>1.578<br>2.28<br>2.96<br>7.03<br>9.42<br>10.20<br>21.30<br>22.30<br>22.30<br>22.36<br>24.62 | .0091<br>.0103<br>.0178<br>.1035<br>.1580<br>.359<br>.786<br>1.00<br>1.44<br>1.88<br>3.22<br>4.46<br>5.97<br>13.5<br>14.1<br>15.1<br>15.1 | -258.6<br>-252.8<br>-189.5<br>-200.<br>-150.<br>-100.<br>8 -50.<br>0.<br>100.<br>200.<br>400.<br>750.<br>960.<br>1000.<br>1200.<br>1400. | 0.009<br>.014<br>.334<br>.357<br>.638<br>.916<br>1.040<br>1.212<br>1.506<br>2.15<br>2.80<br>6.65<br>8.4<br>16.0<br>17.01<br>19.36<br>21.72<br>23.0 | .0057<br>.0090<br>.222<br>.237<br>.424<br>.608<br>.690<br>.805<br>1.03<br>1.43<br>1.86<br>2.30<br>4.42<br>5.58<br>11.0<br>11.3<br>12.9<br>14.4<br>15.3 | -252.9<br>-200.<br>-191.1<br>-150.<br>-100.<br>- 77.8<br>- 50.<br>0.<br>100.<br>300.<br>415.<br>427.<br>450.<br>500.<br>600.<br>700.<br>800.<br>850. | .0511<br>1.39<br>1.23<br>2.00<br>3.97<br>4.04<br>5.75<br>7.95<br>13.25<br>17.00<br>37.30<br>37.30<br>35.60<br>35.60<br>35.60<br>35.74 | .0089<br>.242<br>.214<br>.348<br>.504<br>.691<br>.703<br>1.38<br>2.30<br>6.49<br>6.49<br>6.36<br>6.25<br>0.19<br>6.21 |
|                                                                              | Mercury                                                                                                                                              |                                                                                                                               | Potassium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      |                                                                                                                                           |                                                                                                                                          | Sodium.                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                      | Iron.                                                                                                                                 |                                                                                                                       |
| °C.                                                                          | Pt                                                                                                                                                   | P <sub>t</sub>                                                                                                                | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pt                                                                                                                                                   | $\frac{\rho_t}{\rho_o}$                                                                                                                   | °C.                                                                                                                                      | ρt                                                                                                                                                 | Pt Po                                                                                                                                                  | °C.                                                                                                                                                  | Pt                                                                                                                                    | $\frac{\rho_t}{\rho_0}$                                                                                               |
| -200.<br>-150.<br>-100.<br>-50.<br>-30.<br>0.<br>50.<br>100,<br>200.<br>300. | 5.38<br>10.30<br>15.42<br>21.4<br>91.7<br>94.1<br>98.3<br>103.1<br>114.0<br>127.0                                                                    | .057<br>.109<br>.164<br>.227<br>.975<br>1.000<br>1.045<br>1.096<br>1.212                                                      | -200.<br>-150.<br>-100.<br>-50.<br>0.<br>20.<br>60.<br>65.<br>100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.720<br>2.654<br>3.724<br>5.124<br>7.000<br>7.116<br>8.790<br>13.40<br>15.31<br>16.70                                                               | .246<br>.379<br>.532<br>.732<br>1.00<br>1.016<br>1.256<br>1.914<br>2.187                                                                  | -200.<br>-150.<br>-100.<br>-50.<br>0.<br>20.<br>93.5<br>100.<br>120.                                                                     | 0.605<br>1.455<br>2.380<br>3.365<br>4.40<br>4.873<br>6.290<br>9.220<br>9.724<br>10.34                                                              | .137<br>.330<br>.541<br>.764<br>1.000<br>1.107<br>1.429<br>2.095<br>2.209<br>2.349                                                                     | -252.7<br>-200.<br>-192.5<br>-100.<br>- 75.1<br>- 50.<br>- 0.<br>100.<br>200.<br>400.                                                                | 0.011<br>2.27<br>.844<br>5.92<br>6.43<br>8.15<br>10.68<br>16.61<br>24.50<br>43.29                                                     | .0010<br>.212<br>.079<br>.554<br>.602<br>.763<br>1.00<br>1.554<br>2.293<br>4.052                                      |
|                                                                              | Manganin                                                                                                                                             |                                                                                                                               | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | erman Sil                                                                                                                                            | ver.                                                                                                                                      |                                                                                                                                          | Constanta                                                                                                                                          | n-                                                                                                                                                     | 90 %                                                                                                                                                 | Pt. 10                                                                                                                                | % Rh.                                                                                                                 |
| °C.                                                                          | Pt                                                                                                                                                   | $\frac{\rho_{\rm t}}{\rho_{\rm o}}$                                                                                           | °C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ρt                                                                                                                                                   | $\frac{\rho_{\rm t}}{\rho_{\rm o}}$                                                                                                       | °C.                                                                                                                                      | Pt                                                                                                                                                 | $\frac{\rho_{\rm t}}{\rho_{\rm o}}$                                                                                                                    | °C.                                                                                                                                                  | Ρt                                                                                                                                    | $\frac{\rho_{\rm t}}{\rho_{\rm o}}$                                                                                   |
| -200,<br>-150,<br>-100,<br>-50,<br>0,<br>100,<br>400,                        | 37.8<br>38.2<br>38.5<br>38.7<br>38.8<br>38.9<br>38.3                                                                                                 | .974<br>.985<br>.992<br>.997<br>1.000<br>1.003<br>.987                                                                        | -200.<br>-150.<br>-100.<br>-50.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.9<br>28.7<br>29.3<br>29.7<br>30.0<br>33.1                                                                                                         | .930<br>.957<br>.977<br>.990<br>1.000                                                                                                     | -200.<br>-150.<br>-100.<br>-50.<br>0.<br>100.<br>400.                                                                                    | 42.4<br>43.0<br>43.5<br>43.9<br>44.1<br>44.6<br>44.8                                                                                               | .961<br>•975<br>.986<br>•995<br>1.000<br>1.012                                                                                                         | -200.<br>-150.<br>-100.<br>50.<br>0.<br>100.                                                                                                         | 14.49<br>16.29<br>18.05<br>19.66<br>21.14<br>24.20                                                                                    | .685<br>.770<br>.854<br>.930<br>1.000                                                                                 |

Au. below o°, Niccolai, Lincei Rend. (5), 16, p. 757, 906, 1907; above, Northrup, Jour. Franklin Inst. 177, p. 85, 1914. Cu. below, Niccolai, l. c. above, Northrup, ditto, 177, p. 1, 1914. Ag. below, Niccolai, l. c. above Northrup, ditto, 178, p. 85, 1914. Zn. below, Dewar, Fleming, Phil. Mag. 36, p. 271, 1893; above, Northrup, 175, p. 153, 1913. Hg. below Dewar, Fleming, Proc. Roy. Soc. 66, p. 76, 1900; above, Northrup, see Cd. K. below Guntz, Broniewski, C. R. 147, p. 1474, 1908, 148, p. 204, 1909. Above, Northrup, Tr. Am. Electroch. Soc. p. 185, 1911. Na, below, means, above, see K. Fe., Manganin, Constantan. Niccolai, l.c. German Silver, 90% Pt. 90% Rh., Dewar and Fleming — Phil. Mag. 36, p. 271, 1893.

## TABLE 403 (continued).

## RESISTIVITIES AT HIGH AND LOW TEMPERATURES.

(Ohms per cm. cube unless stated otherwise.)

|                                                                             | Platinun                                                                                                    | a.                                                                                                            |                                                                                                                     | Lead.                                                                    |                                                                                                                 |                                                                                                       | Bismuth.                                                                                                               |                                                                                                              |                                                                                                              | Cadmiun                                                                                                    | 1.                                                                                                    |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| °C.                                                                         | Ρt                                                                                                          | $\frac{\rho_t}{\rho_0}$                                                                                       | °C.                                                                                                                 | Pt                                                                       | $\frac{\rho_t}{\rho_o}$                                                                                         | °C.                                                                                                   | Pt                                                                                                                     | Pt Po                                                                                                        | °C.                                                                                                          | Pt                                                                                                         | Po                                                                                                    |
| -265, -253, -233, -153, -73, 0, 100, 200, 400, 800, 1000, 1200, 1400, 1600, | 0.10<br>.15<br>.54<br>4.18<br>7.82<br>11.05<br>14.1<br>17.9<br>25 4<br>40.3<br>47.0<br>52.7<br>58.0<br>63.0 | .0092<br>.014<br>.049<br>.378<br>.708<br>1.00<br>1.28<br>1.62<br>2.30<br>3.65<br>4.25<br>4.77<br>5.25<br>5.70 | -252.9<br>-203.<br>-192.8<br>-103.<br>- 75.8<br>- 53.<br>0.<br>100.<br>200.<br>319.<br>333.<br>400.<br>600.<br>800. | 0.59 4.42 5.22 11.8 13.95 15.7 19.8 27.8 38.0 50.0 95.0 98.3 107.2 116.2 | .0298<br>.223<br>.264<br>.598<br>.705<br>.792<br>1.00<br>1.403<br>1.919<br>2.52<br>4.80<br>4.96<br>5.41<br>5.86 | -200.<br>-150.<br>-100.<br>- 50.<br>0.<br>17.<br>100.<br>200.<br>259.<br>263.<br>300.<br>500.<br>700. | 34.8<br>55.3<br>75.6<br>94.3<br>110.7<br>120.0<br>156.5<br>214.5<br>267.0<br>127.5<br>128.9<br>139.9<br>150.8<br>153.5 | .314<br>.499<br>.683<br>.852<br>1.00<br>1.083<br>1.413<br>1.037<br>2.411<br>1.150<br>1.164<br>1.263<br>1.361 | -252.9<br>-200.<br>-190.2<br>-183.1<br>-139.2<br>-100.<br>0.<br>300.<br>325.<br>350.<br>400.<br>500.<br>700. | 0.17<br>1.66<br>2.00<br>2.22<br>3.60<br>4.80<br>7.75<br>16.50<br>33.70<br>33.70<br>33.70<br>35.12<br>35.78 | .0218<br>.214<br>.258<br>.286<br>.464<br>.619<br>1.00<br>2.13<br>4.35<br>4.35<br>4.35<br>4.40<br>4.62 |
|                                                                             | Tin.                                                                                                        |                                                                                                               | Car                                                                                                                 | rbon, Grap                                                               | hite.*                                                                                                          |                                                                                                       | Fused s                                                                                                                | silica.                                                                                                      | Al                                                                                                           | undum                                                                                                      | cement.                                                                                               |
| °C.                                                                         | ρt                                                                                                          | Pt                                                                                                            | °C.                                                                                                                 | ρ in ohms                                                                | , cm. cube.                                                                                                     | °C.                                                                                                   | $\rho = m$                                                                                                             | egohms c                                                                                                     | m. °C                                                                                                        |                                                                                                            | in ohms<br>m. cube.                                                                                   |
| -200.<br>-100.<br>0.<br>200.<br>225.<br>235.<br>750.                        | 2.60<br>7.57<br>13.05<br>20.30<br>22.00<br>47.60<br>61.22                                                   | .199<br>.580<br>1.00<br>1.55<br>1 69<br>3.65<br>4.69                                                          | 0,<br>500,<br>1000,<br>1500,<br>2000,<br>2500,                                                                      | Carbon 0.0035 .0027 .0021 .0015 .0011                                    | Graphite 0.00080 .00083 .00087 .00090 .00100                                                                    | 15.<br>230.<br>300.<br>350.<br>450.<br>700.<br>850.                                                   | 4                                                                                                                      | 200,000<br>200,000<br>30,000<br>800<br>30<br>about 20                                                        | 80<br>90<br>100<br>110                                                                                       | o.<br>o.<br>o.                                                                                             | >9×10 <sup>6</sup> 30×00. 13/00. 7600. 6500. 2300. 190.                                               |

Pt. low, Nernst, l. c. high, Pirrani, Ber. Deutsch. Phys. Ges. 12, p. 305, Pb. low, Schimank, Nernst, l. c. high. Northrup, see Zn. Bi. low, means, high, Northrup, see Zn. Cd. low, Euchen, Gehlhoff, Verh. Deutsch. Phys. Ges. 14, p. 169, 1912, high, Northrup, see Zn. Sn. low, Dewar, Fleming, high, Northrup, see Zn. Carbon, graphite, Metallurg, Ch. Eng. 13, p. 23, 1915. Silica, Campbell, Nat. Phys. Lab. 11, p. 207, 1914. Alundum, Metallurg. Ch. Eng. 12, p. 207, 1914.

125, 1914. \* Diamond 1030° C, ρ >107; 1380°, 7.5 × 105, v. Wartenberg, 1912.

#### TABLE 404.-Volume and Surface Resistivity of Solid Dielectrics.

The resistance between two conductors insulated by a solid dielectric depends both upon the surface resistance and the volume resistance of the insulator. The volume resistivity,  $\rho$ , is the resistance between two opposite faces of a centimeter cube. The surface resistivity,  $\sigma$ , is the resistance between two opposite edges of a centimeter square of the surface. The surface resistivity usually varies through a wide range with the humidity. (Curtis, Bul. Bur. Standards, 11, 350, 1915, which see for discussion and data for many additional materials.)

| Material.                                                                                                                                                                                                                                                       | σ; megolims<br>50% humidity.                                                                                                                                                                                                                              | σ; megohms<br>70% humidity.                                                                                                                                                                                                                   | σ; megohms<br>90% humidity.                                                                                                                                                                                                                                                                                                                           | Megohms-cms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Amber Beeswax, yellow Celluloid Fiber, red Glass, plate "Kavalier Hard rubber, new Ivory Khotinsky cement Marble, Italian Mica, colorless Paraffin (parowax) Porcelain, unglazed Quartz, fused Rosin Sealing wax Shellac Slate Sulphur Wood, parafined mahogany | 6 × 108<br>6 × 108<br>5 × 104<br>2 × 104<br>5 × 106<br>3 × 109<br>5 × 103<br>7 × 108<br>3 × 109<br>5 × 103<br>2 × 107<br>9 × 109<br>6 × 105<br>3 × 106<br>6 × 105<br>2 × 107<br>9 × 109<br>6 × 109<br>6 × 109<br>6 × 109<br>6 × 109<br>7 × 109<br>4 × 106 | 2 × 108<br>6 × 108<br>2 × 104<br>3 × 103<br>6 × 10<br>4 × 108<br>1 × 108<br>1 × 108<br>2 × 102<br>4 × 105<br>7 × 109<br>7 × 108<br>2 × 108<br>3 × 108<br>3 × 108<br>3 × 108<br>3 × 108<br>3 × 108<br>3 × 108<br>5 × 108<br>3 × 108<br>5 × 108 | 1 × 10 <sup>5</sup> 5 × 10 <sup>8</sup> 2 × 10 <sup>8</sup> 2 × 10 <sup>8</sup> 2 × 10 <sup>2</sup> 2 × 10 1 × 10 <sup>8</sup> 3 × 10 5 × 10 <sup>5</sup> 2 × 10 8 × 10 <sup>5</sup> 5 × 10 5 × 10 <sup>5</sup> 2 × 10 8 × 10 <sup>3</sup> 6 × 10 <sup>9</sup> 5 × 10 1 × 10 <sup>8</sup> 9 × 10 <sup>7</sup> 7 × 10 <sup>8</sup> 7 × 10 <sup>8</sup> | 5 × 10 <sup>10</sup> 2 × 10 <sup>9</sup> 2 × 10 <sup>4</sup> 5 × 10 <sup>8</sup> 2 × 10 <sup>7</sup> 8 × 10 <sup>9</sup> 1 × 10 <sup>12</sup> 2 × 10 <sup>2</sup> 2 × 10 <sup>9</sup> 1 × 10 <sup>13</sup> 1 × 10 <sup>10</sup> 3 × 10 <sup>8</sup> 5 × 10 <sup>11</sup> 5 × 10 <sup>10</sup> 8 × 10 <sup>9</sup> 1 × 10 <sup>10</sup> 1 × 10 <sup>2</sup> 1 × 10 <sup>11</sup> 4 × 10 <sup>7</sup> |

## TABLE 405 .- Variation of Electrical Resistance of Glass and Porcelain with Temperature.

The following table gives the values of a, b, and c in the equation

 $\log R = a + bt + ct^2,$ 

where R is the specific resistance expressed in ohms, that is, the resistance in ohms per centimeter of a rod one square centimeter in cross section.\*

| No. | Kind of glass.                  |             | Density. | а     | b        |      | •      | c     | Range of<br>temp.<br>Centigrade. |
|-----|---------------------------------|-------------|----------|-------|----------|------|--------|-------|----------------------------------|
| I   | Test-tube glass                 |             |          | 13.80 | 6 —.0.   | 44   | .00    | 0065  | 0°-250°                          |
| 2   | 66 66 66                        |             | 2.458    | 14.2  | 40       | 55   | .00    | 01    | 37-131                           |
| 3   | Bohemian glass                  |             | 2.43     | 16.2  | I —.o.   | 43   | .00    | 00394 | 60-174                           |
| 4   | Lime glass (Japanese manu       | ıfacture) . | 2.55     | 13.1. | 40       | 31   | 000021 |       | 10-85                            |
| 5   | 66 66 66                        | *           | 2.499    | 14.00 | 020      | 25   | 00     | 006   | 35-95                            |
| 6   | Soda-lime glass (French fla     | ask) .      | 2.533    | 14.58 | 30       | 49   | .00    | 0075  | 45-120                           |
| 7   | Potash-soda lime glass .        |             | 2.58     | 16.34 | 404      | 425  | .00    | 00364 | 66-193                           |
| 8   | Arsenic enamel flint glass      |             | 3.07     | 18.17 | 7 -0     | 055  |        | 8800  | 105-135                          |
| 9   | Flint glass (Thomson's ele jar) | ctrometer   | 3.172    | 18.02 | 210      | 36   | 000009 |       | 100-200                          |
| 10  | Porcelain (white evaporation    | ng dish) .  | -        | 15.6  | 502      | 12   | .00    | 005   | 68-290                           |
|     | Composition                     | OF SOME OF  | THE ABOV | B SPE | CIMENS O | F GL | ASS.   |       |                                  |
|     | Number of specimen =            | 3           | 4        |       | 5        |      | 7      | 8     | 9                                |
| Sil | ica                             | 61.3        | 57.2     |       | 70.05    | 7.5  | 3.65   | 54.2  | 55.18                            |
| Po  | tash                            | 22.9        | 21.1     |       | 1.44     | 7    | .92    | 10.5  | 13.28                            |
| So  | da                              | Lime, etc.  | Lime, e  | tc.   | 14.32    | 6    | .92    | 7.0   | -                                |
| Le  | ad oxide                        | by diff.    | by dif   | f.    | 2.70     |      | -      | 23.9  | 31.01                            |
| Lin | me                              | 15.8        | 16.7     |       | 10.33    | 8    | .48    | 0.3   | 0.35                             |
| Ma  | ignesia                         | -           | -        |       | -        | C    | .36    | 0.2   | 0.06                             |
| Ar  | senic oxide                     | -           | -        |       | -        |      | -      | 3.5   | -                                |
| Alı | ımina, iron oxide, etc          | -           | -        |       | 1.45     | 0    | .70    | 0.4   | 0.67                             |

<sup>\*</sup> T. Gray, "Phil. Mag." 1880, and "Proc. Roy. Soc." 1882.

TABLE 405a. - Temperature Resistance Coefficients of Glass, Porcelain and Quartz dr/dt.

| Temperature.                 | 450°      | 500°        | 575°         | 600°     | 700 <sup>0</sup> | 750°                 | 800°                 | 9000           | 10000               |
|------------------------------|-----------|-------------|--------------|----------|------------------|----------------------|----------------------|----------------|---------------------|
| Glass<br>Porcelain<br>Quartz | —32.<br>— | <u>—</u> 6. | -1.5<br>-16. | 8<br>9.8 | -0.17<br>-2.8    | -0.1<br>-1.6<br>-10. | -0.06<br>70<br>-6.40 | -0.30<br>-2.60 | -<br>-0.12<br>-1.00 |

Somerville, Physical Review, 31, p. 261, 1910.

## TABULAR COMPARISON OF WIRE GAGES.

|    | Gage<br>No.       | American<br>wire gage<br>(B. & S.)<br>mils.† | American<br>wire gage<br>(B. & S.)<br>mm.† | Steel wire<br>gage *<br>- mils. | Steel wire gage*     | Stubs'<br>steel wire<br>gage<br>mils. | (British)<br>standard<br>wire gage<br>mils. | Birming-<br>ham wire<br>gage<br>(Stubs')<br>mils. | Gage<br>No. |
|----|-------------------|----------------------------------------------|--------------------------------------------|---------------------------------|----------------------|---------------------------------------|---------------------------------------------|---------------------------------------------------|-------------|
|    | 7-0<br>6-0        |                                              |                                            | 490.0<br>461.5                  | 12.4                 |                                       | 500.<br>464.                                |                                                   | 7-0<br>6-0  |
| 1  | 5-0               |                                              |                                            | 430.5                           | 10.9                 |                                       | 432.                                        |                                                   | 5.0         |
|    | 4-0<br>3-0<br>2-0 | 460.<br>410.<br>365.                         | 11.7<br>10.4<br>9.3                        | 393.8<br>362.5<br>331.0         | 10.0<br>9.2<br>8.4   |                                       | 400.<br>372.                                | 454.<br>425.<br>380.                              | 4-0<br>3-0  |
| 1  | 0                 | 325.                                         | 8.3                                        | 306.5                           | 7.8                  |                                       | 348.                                        | 340.                                              | 2-0         |
|    | I<br>2            | 289.<br>258.                                 | 7·3<br>6·5                                 | 283.0<br>262.5                  | 7.2<br>6.7           | 227.<br>219.                          | 300.<br>276.                                | 300.                                              | 1 2         |
|    | 3                 | 229.                                         | 5.8                                        | 243.7                           | 6.2                  | 212.                                  | 252.                                        | 250.                                              | 3           |
| 1  | 4 5               | 204.<br>182.                                 | 5.2<br>4.6                                 | 225.3                           | 5.7<br>5.3           | 207.                                  | 232.                                        | 238.                                              | 4 5         |
|    | 6                 | 162.                                         | 4.1                                        | 192.0                           | 4.9                  | 201.                                  | 192.                                        | 203.                                              | 6           |
|    | 7 8               | 144.                                         | 3.7                                        | 177.0                           | 4.5                  | 199.                                  | 176.                                        | 180.                                              | 7 8         |
|    | 9                 | 114.                                         | 3.3<br>2.91                                | 148.3                           | 4.I<br>3.77          | 197.                                  | 160.<br>144.                                | 165.                                              | 8           |
|    | 10                | 102.                                         | 2.59                                       | 135.0                           | 3.43                 | 191.                                  | 128.                                        | 134.                                              | 10          |
| H  | 11                | 91.<br>81.                                   | 2.30                                       | 120.5                           | 3.06                 |                                       | 116.                                        | 120.                                              | II          |
|    | 12                | 72.                                          | 2.05<br>1.83                               | 91.5                            | 2.68                 | 185.                                  | 104.                                        | 109.                                              | 12          |
|    | 14                | 64.                                          | 1.63                                       | 91.5<br>80.0                    | 2.03                 | 180.                                  | 92.<br>80.                                  | 95.<br>83.                                        | 14          |
|    | 15                | 57.                                          | 1.45                                       | 72.0<br>62.5                    | 1.83                 | 178.                                  | 72.<br>64.                                  | 72.<br>65.                                        | 15          |
|    | 17                | 45.                                          | 1.15                                       | 54.0                            | 1.37                 | 172.                                  | 56.                                         | 58.                                               | 17          |
|    | 18                | 40.                                          | 1.02                                       | 47.5                            | 1.21                 | 168.                                  | 48.                                         | 49.                                               | 18          |
| 1  | 19                | 36.<br>32.                                   | 18.                                        | 41.0<br>34.8                    | 0.88                 | 164.                                  | 40.<br>36.                                  | 35.                                               | 20          |
| 1  | 21                | 28.5                                         | .72                                        | 31.7                            | .81                  | 157.                                  | 32.                                         | 32.                                               | 21          |
|    | 22                | 25.3                                         | .62                                        | 28.6<br>25.8                    | .73<br>.66           | 155.                                  | 28.                                         | 28.                                               | 22          |
|    | 24                | 20.1                                         | .51                                        | 23.0                            | .58                  | 151.                                  | 22.                                         | 23.                                               | 24          |
| 11 | 25<br>26          | 17.9                                         | •45                                        | 20.4<br>18.1                    | .52                  | 148.                                  | 20.                                         | 20.                                               | 25          |
|    |                   | 15.9                                         | .36                                        | 17.3                            | .46                  | 146.                                  | 18.                                         | 18.                                               | 26          |
|    | 27                | 12.6                                         | .32                                        | 16.2                            | .411                 | 139.                                  | 14.8                                        | 10.                                               | 27          |
|    | 29                | 11.3                                         | .29                                        | 15.0                            | 381                  | 134.                                  | 13.6                                        | 13.                                               | 29          |
|    | 30<br>31          | 10.0                                         | .25                                        | 14.0                            | .356<br>.335         | 127.                                  | 12.4                                        | 12.                                               | 30<br>31    |
|    | 32                | 8.0                                          | .202                                       | 12.8                            | .325                 | 115.                                  | 10.8                                        | 9.                                                | 32          |
|    | 33<br>34          | 7.1<br>6.3                                   | .180                                       | 11.8                            | .300                 | 112.                                  | 10.0                                        | 8.                                                | 33          |
|    | 35                | 5.6                                          | .143                                       | 9.5                             | .241                 | 108.                                  | 9.2<br>8.4                                  | 7·<br>5·                                          | 34          |
|    | 36                | 5.0                                          | .127                                       | 9.0                             | .229                 | 106.                                  | 7.6                                         | 4.                                                | 36          |
|    | 37<br>38          | 4.5                                          | .113                                       | 8.5<br>8.0                      | .216                 | 101.                                  | 6.8<br>6.0                                  |                                                   | 37<br>38    |
|    | 39                | 3.5<br>3.1                                   | .090<br>.080                               | 7.5<br>7.0<br>6.6               | .191<br>.178<br>.168 | 99.<br>97.                            | 5.2<br>4.8                                  | 1                                                 | . 39        |
|    | 41                |                                              |                                            |                                 |                      | 95.                                   | 4.4                                         |                                                   | 41          |
|    | 42                | 13                                           |                                            | 6.2                             | .157                 | 92.<br>88.                            | 4.0<br>3.6                                  |                                                   | 42<br>43    |
|    | 44                |                                              |                                            | 5.8                             | .147                 | 85.                                   | 3.2                                         | _                                                 | 44          |
|    | 45<br>46          |                                              |                                            | 5.2                             | .140                 | 79.                                   | 2.4                                         |                                                   | 45<br>46    |
|    | 47                |                                              |                                            | 5.0<br>4.8                      | .127                 | 77.                                   | 2.0                                         |                                                   | 47          |
|    | 48<br>49          |                                              |                                            | 4.8                             | .122                 | 75·<br>72.                            | 1.6                                         |                                                   | 48          |
|    | 50                |                                              |                                            | 4:4                             | .112                 | 69.                                   | 1.0                                         |                                                   | 50          |

The Steel Wire Gage is the same gage which has been known by the various names: "Washburn and Moen," "Roebling," "American Steel and Wire Co.'s." Its abbreviation should be written "Stl. W. G.," to distinguish it from "S. W. G.," the usual abbreviation for the (British) Standard Wire Gage.

† The American Wire Gage sizes have been rounded off to the usual limits of commercial accuracy. They are given to four significant figures in Tables 410 to 413. They can be calculated with any desired accuracy, being based upon a simple mathematical law. The diameter of No. 0000 is defined as 0.4000 inch and of No. 36 as 0.0050 inch. The

ratio of any diameter to the diameter of the next greater number  $\frac{39}{0.0050} = 1.1229322.$ Taken from Circular No. 31. Copper Wire Tables, U.S. Bureau of Standards which contains more complete tables.

## TABLES 407-413. WIRE TABLES.

## TABLE 407. - Introduction. Mass and Volume Resistivity of Copper and Aluminum.

The following wire tables are abridged from those prepared by the Bureau of Standards at the request and with the cooperation of the Standards Committee of the American Institute of Electrical Engineers (Circular No. 31 of the Bureau of Standards). The standard of copper resistance used is "The International Annealed Copper Standard" as adopted Sept. 5, 1013, by the International Electrotechnical Commission and represents the average commercial high-conductivity copper for the purpose of electric conductors. This standard corresponds to a conductivity of 58. × 10<sup>-5</sup> cgs. units, and a density of 8.89, at 20° C.

In the various units of mass resistivity and volume resistivity this may be stated as

0.15328 ohm (meter, gram) at 20° C. 875.20 ohms (mile, pound) at 20° C. 1.7241 microhm-cm. at 20° C. 0.67879 microhm-inch at 20° C. 10.371 ohms (mil, foot) at 20° C.

The temperature coefficient for this particular resistivity is  $a_{20} = 0.00393$  or  $a_0 = 0.00427$ . The temperature coefficient of copper is proportional to the conductivity, so that where the conductivity is known the temperature coefficient may be calculated, and vice-versa. Thus the next table shows the temperature coefficients of copper having various percentages of the standard conductivity. A consequence of this relation is that the change of resistivity per degree is constant, independent of the sample of copper and independent of the temperature of reference. This resistivity-temperature constant, for volume resistivity and Centigrade degrees, is 0.00681 michromcm., and for mass resistivity is 0.000597 ohm (meter, gram).

The density of 8.89 grams per cubic centimeter at 20° C., is equivalent to 0.32117 pounds per

The values in the following tables are for annealed copper of standard resistivity. The user of the tables must apply the proper correction for copper of other resistivity. Hard-drawn copper may be taken as about 2.7 per cent higher resistivity than annealed copper.

The following is a fair average of the chemical content of commercial high conductivity copper:

| Copper   |      | Sulphur | 0.002% |
|----------|------|---------|--------|
| Silver   | .03  | Iron    | .002   |
| Oxygen   |      | Nickel  | Trace  |
| Arsenic  | .002 | Lead    | 66     |
| Antimony | .002 | Zinc    | 66     |

The following values are consistent with the data above:

| Conductivity at oo C., in c.g.s. electromagnetic units        | 62.969 × 10 <sup>-5</sup> |
|---------------------------------------------------------------|---------------------------|
| Resistivity at o° C., in michroms-cms                         | 1.5881                    |
| Density at o° C                                               | 8.90                      |
| Coefficient of linear expansion per degree C                  | 0.000017                  |
| "Constant mass" temperature coefficient of resistance at o° C | 0.00427                   |

The aluminum tables are based on a figure for the conductivity published by the U.S. Bureau of Standards, which is the result of many thousands of determinations by the Aluminum Company of America. A volume resistivity of 2.828 michrom-cm., and a density of 2.70 may be considered to be good average values for commercial hard-drawn aluminum. These values give:

| Mass resistivity, in ohms (meter, gram) at 20° C           | 0.0764 |
|------------------------------------------------------------|--------|
| " " (mile, pound) at 20° C                                 | 436.   |
| Mass per cent conductivity                                 | 200.7% |
| Volume resistivity, in michrom-cm. at 20° C                | 2.828  |
| Volume resistivity, in michrom-cm. at 20° C                | 1.113  |
| Volume per cent conductivity                               | 61.0%  |
| Density, in grams per cubic centimeter                     | 2.70   |
| Density, in pounds per cubic inch                          | 0.0975 |
|                                                            | ,,,    |
| he average chemical content of commercial aluminum wire is |        |
| Aluminum                                                   | 99.57% |
| Silicon                                                    | 0.29   |
| Iron                                                       | 0.14   |
|                                                            |        |

SMITHSONIAN TABLES.

T

# TABLES 408, 409.

## COPPER WIRE TABLES. TABLE 408. - Temperature Coefficients of Copper for Different Initial Temperatures (Centigrade) and Different Conductivities.

| Ohms<br>(meter, gram)<br>at 20° C. | Per cent conductivity. | ao       | ais      | a <sub>20</sub> | α <sub>25</sub> | <b>a</b> 30         | <b>a</b> 50 |
|------------------------------------|------------------------|----------|----------|-----------------|-----------------|---------------------|-------------|
| 0.161 34<br>.159 66                | 95%<br>96%             | 0.004 03 | 0.003 80 | 0.003 73        | 0.003 67        | 0.003 fo<br>.003 64 | 0.003 36    |
| .158 02<br>.157 53                 | 97%<br>97·3%           | .004 13  | .003 89  | .003 81         | .003 74         | .003 67             | .003 42     |
| .156 40<br>.154 82                 | 98%<br>99%             | .004 17  | .003 93  | .003 85         | .003.78         | .003 7I<br>.003 74  | .003 45     |
| . <b>153 28</b><br>.151 76         | 100%                   | .004 27  | .004 01  | .003 93         | .003 85         | .003 78             | .003 52     |

NOTE. — The fundamental relation between resistance and temperature is the following:

$$R_t = R_{t_1}(1 + a_{t_1}[t - t_1]),$$

where  $a_{t_1}$  is the "temperature coefficient," and  $t_1$  is the "initial temperature" or "temperature of reference."

The values of a in the above table exhibit the fact that the temperature coefficient of copper is proportional to the conductivity. The table was calculated by means of the following formula, which holds for any per cent conductivity, n, within commercial ranges, and for centigrade temperatures. (n is considered to be expressed decimally: e.g., if per cent conductivity = 99 per cent, n = 0.99.)

$$a_{t_1} = \frac{1}{\frac{1}{n(0.00393)} + (t_1 - 20)}.$$

TABLE 409. - Reduction of Observations to Standard Temperature. (Copper.)

|                     | Correction                          | ons to reduce                 | Resistivity t                            | o 20° C.                            | Factors to re                         | educe Resista                         | nce to 20° C.                          |                     |
|---------------------|-------------------------------------|-------------------------------|------------------------------------------|-------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|---------------------|
| Temper-<br>ature C. | Ohm (meter, gram).                  | Microhm—                      | Ohm (mile, pound).                       | Microhm—<br>inch.                   | For 96 per<br>cent con-<br>ductivity. | For 98 per<br>cent con-<br>ductivity. | For 100 per<br>cent con-<br>ductivity. | Temper-<br>ature C. |
| o<br>5<br>10        | +0.011 94<br>+ .008 96<br>+ .005 97 | +0.1361<br>+ .1021<br>+ .0681 | + 68.20<br>+ 51.15<br>+ 34.10            | +0.053 58<br>+ .040 18<br>+ .026 79 | 1.0816<br>1.0600<br>1.0392            | 1.0834<br>1.0613<br>1.0401            | 1.0853<br>1.0626<br>1.0409             | 0<br>5<br>10        |
| 11<br>12<br>13      | + .005 37<br>+ .004 78<br>+ .004 18 | + .0612<br>+ .0544<br>+ .0476 | + 30.69<br>+ 27.28<br>+ 23.87            | + .024 II<br>+ .02I 43<br>+ .018 75 | 1.0352<br>1.0311<br>1.0271            | 1.0359<br>1.0318<br>1.0277            | 1.0367<br>1.0325<br>1.0283             | 11 12 13            |
| 14<br>15<br>16      | + .003 58<br>+ .002 99<br>+ .002 39 | + .0408<br>+ .0340<br>+ .0272 | + 20.46<br>+ 17.05<br>+ 13.64            | + .016 c7<br>+ .013 40<br>+ .010 72 | 1.0232<br>1.0192<br>1.0153            | 1.0237<br>1.0196<br>1.0156            | 1.0242<br>1.0200<br>1.0160             | 14<br>15<br>16      |
| 17<br>18<br>19      | + .001 79<br>+ .001 19<br>+ .000 60 | + .0204<br>+ .0136<br>+ .0068 | + 10.23<br>+ 6.82<br>+ 3.41              | + .008 04<br>+ .005 36<br>+ .002 68 | 1.0114<br>1.0076<br>1.0038            | 1.0117<br>1.0078<br>1.0039            | 1.0119<br>1.0079<br>1.0039             | 17<br>18<br>19      |
| 20<br>21<br>22      | 000 60<br>001 19                    | 0068<br>0136                  | - 3.41<br>- 6.82                         | 002 68<br>005 36                    | 0.9962                                | 1.0000<br>c.9962<br>.9924             | 0.9961                                 | 20<br>21<br>22      |
| 23<br>24<br>25      | 001 79<br>002 39<br>002 99          | 0204<br>0272<br>0340          | - 10.23<br>- 13.64<br>- 17.05            | 008 04<br>010 72<br>013 40          | .9888<br>9851<br>9815                 | .9886<br>.9848<br>.9811               | .9883<br>.9845<br>.9807                | 23<br>24<br>25      |
| 26<br>27<br>28      | 003 58<br>004 18<br>004 78          | 0408<br>0476<br>0544          | - 20.46<br>- 23.87<br>- 27.28            | 016 07<br>018 75<br>021 43          | .9779<br>.9743<br>.9707               | .9774<br>-9737<br>.9701               | .9770<br>.9732<br>.9695                | 26<br>27<br>28      |
| 30<br>35            | 005 37<br>005 97<br>008 96          | 0612<br>0681<br>1021          | - 30.69<br>- 34.10<br>- 51.15<br>- 68.20 | 024 II<br>026 79<br>040 I8          | .9672<br>.9636<br>.9464               | .9629                                 | .9622<br>-9443                         | 30<br>35            |
| 40<br>45<br>50      | 011 94<br>014 93<br>017 92          | 1361<br>1701<br>2042          | - 85.25<br>-102.30                       | 053 58<br>066 98<br>080 37          | .9298                                 | .9265<br>.9122<br>.8964               | .9171<br>.9105<br>.8945                | 45<br>50            |
| 55<br>60<br>65      | 020 90<br>023 89<br>026 87          | 2382<br>2722<br>3062          | -110.35<br>-136.40<br>-153.45            | 107 16<br>120 56<br>133 95          | .8689<br>.8549                        | .8665<br>.8523                        | .8642<br>.8497                         | 60<br>65<br>70      |
| 70<br>75            | 029 86<br>032 85                    | 3403<br>3743                  | -170.50<br>-187.55                       | 147 34                              | .8281                                 | .8252                                 | .8223                                  | 75                  |

## WIRE TABLE, STANDARD ANNEALED COPPER.

American Wire Gage (B. & S.). English Units.

| Gage        | Diameter              | Cross-Sec      | tion at 20° C.                      |                  | Ohms per          | 1000 Feet.*         |                     |
|-------------|-----------------------|----------------|-------------------------------------|------------------|-------------------|---------------------|---------------------|
| Gage<br>No. | in Mils.<br>at 20° C. | Circular Mils. | Square Inches.                      | °° C<br>(=32° F) | 20° C<br>(=68° F) | 50° C<br>(= 122° F) | 75° C<br>(= 167° F) |
| 0000        | 460.0                 | 211 600.       | 0.1662                              | 0.045 16         | 0.049 01          | 0.054 79            | 0.059 61            |
|             | 409.6                 | 167 800.       | .1318                               | .056 95          | .061 80           | .069 09             | .075 16             |
|             | 364.8                 | 133 100.       | .1045                               | .071 81          | .077 93           | .087 12             | .094 78             |
| 0           | 324.9                 | 105 500.       | .08289                              | .090 55          | .098 27           | .1099               | .1195               |
| I           | 289.3                 | 83 690.        | .06573                              | .1142            | .1239             | .1385               | .1507               |
| 2           | 257.6                 | 66 370.        | .05213                              | .1440            | .1563             | .1747               | .1900               |
| 3 4 5       | 229.4                 | 52 640.        | .041 34                             | .1816            | .1970             | .2203               | .2396               |
|             | 204.3                 | 41 740.        | .032 78                             | .2289            | .2485             | .2778               | .3022               |
|             | 181.9                 | 33 100.        | .026 00                             | .2887            | .3133             | .3502               | .3810               |
| 6           | 162.0                 | 26 250.        | .020 62                             | .3640            | .3951             | .4416               | .4805               |
| 7           | 144.3                 | 20 820.        | .016 35                             | .4590            | .4982             | .5569               | .6059               |
| 8           | 128.5                 | 16 510.        | .012 97                             | .5788            | .6282             | .7023               | .7640               |
| 9           | 114.4                 | 13 090.        | .010 28                             | .7299            | .7921             | .8855               | .9633               |
| 10          | 101.9                 | 10 380.        | .008 155                            | .9203            | .9989             | 1.117               | 1.215               |
| 11          | 90.74                 | 8234.          | .006 467                            | 1.161            | 1.260             | 1.408               | 1.532               |
| 12          | 80.81                 | 6530.          | .005 129                            | 1.463            | 1.588             | 1.775               | 1.931               |
| 13          | 71.96                 | 5178.          | .004 067                            | 1.845            | 2.003             | 2.239               | 2.436               |
| 14          | 64.08                 | 4107.          | .003 225                            | 2.327            | 2.525             | 2.823               | 3.071               |
| 15          | 57.07                 | 3257.          | .002 558                            | 2.934            | 3.184             | 3.560               | 3.873               |
| 16          | 50.82                 | 2583.          | .002 028                            | 3.700            | 4.016             | 4.489               | 4.884               |
| 17          | 45.26                 | 2048.          | .001 609                            | 4.666            | 5.064             | 5.660               | 6.158               |
| 18          | 40.30                 | 1624.          | .001 276                            | 5.883            | 6.385             | 7.138               | 7.765               |
| 19          | 35.89                 | 1288.          | .001 012                            | 7.418            | 8.051             | 9.001               | 9.792               |
| 20          | 31.96                 | 1022.          | .000 802 3                          | 9.355            | 10.15             | 11.35               | 12.35               |
| 21          | 28.4 <b>5</b>         | 810.1          | .000 636 3                          | 11.80            | 12.80             | 14.31               | 15.57               |
| 22          | 25.35                 | 642.4          | .000 504 6                          | 14.87            | 16.14             | 18.05               | 19.63               |
| 23          | 22.57                 | 509.5          | .000 400 2                          | 18.76            | 20.36             | 22.76               | 24.76               |
| 24          | 20.10                 | 404.0          | .000 317 3                          | 23.65            | 25.67             | 28.70               | 31.22               |
| 25          | 17.90                 | 320.4          | .000 251 7                          | 29.82            | 32.37             | 36.18               | 39.36               |
| 26          | 15.94                 | 254.1          | .000 199 6                          | 37.61            | 40.81             | 45.63               | 49.64               |
| 27          | 14.20                 | 201.5          | .000 158 3                          | 47·42            | 51.47             | 57·53               | 62.59               |
| 28          | 12.64                 | 159.8          | .000 125 5                          | 59.80            | 64.90             | 72·55               | 78.93               |
| 29          | 11.26                 | 126.7          | .000 099 53                         | 75·40            | 81.83             | 91.48               | 99.52               |
| 30          | 10.03                 | 100.5          | .000 078 94                         | 95.08            | 103.2             | 115.4               | 125.5               |
| 31          | 8.928                 | 79.70          | .000 062 60                         | 119.9            | 130.1             | 145.5               | 158.2               |
| 32          | 7.950                 | 63.21          | .000 049 64                         | 151.2            | 164.1             | 183.4               | 199.5               |
| 33          | 7.080                 | 50.13          | .000 039 37 .000 031 22 .000 024 76 | 190.6            | 206.9             | 231.3               | 251.6               |
| 34          | 6.305                 | 39.75          |                                     | 240.4            | 260.9             | 291.7               | 317.3               |
| 35          | 5.615                 | 31.52          |                                     | 303.1            | 329.0             | 367.8               | 400.1               |
| 36          | 5.000                 | 25.00          | .000 019 64                         | 382.2            | 414.8             | 463.7               | 504.5               |
| 37          | 4.453                 | 19.83          | .000 01 5 57                        | 482.0            | 523.1             | 584.8               | 636.2               |
| 38          | 3.965                 | 15.72          | .000 012 35                         | 607.8·           | 659.6             | 737.4               | 802.2               |
| 39          | 3.531                 | 12.47          | .000 009 793                        | 766.4            | 831.8             | 929.8               | 1012.               |
| 40          | 3.145                 | 9.888          |                                     | 966.5            | 1049.             | 11 <b>7</b> 3.      | 1276.               |

<sup>\*</sup> Resistance at the stated temperatures of a wire whose length is 1000 feet at 200 C.

# WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). English Units (continued).

|             |                                   |                         |                         | . a. S. J. Engli        |                         |                        |                         |
|-------------|-----------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|-------------------------|
|             | Diameter                          | Pounds                  | Feet                    |                         | Feet per                | Ohm.*                  |                         |
| Gage<br>No. | Diameter<br>in Mils.<br>at 20° C. | per<br>1000 Feet.       | per<br>Pound.           | °° C<br>(=32° F)        | 20° C<br>(=68° F)       | 50° C<br>(=122° F)     | (=167° F)               |
| 0000        | 460.0                             | 640.5                   | 1.561                   | 22 140.                 | 20 400.                 | 18 250.                | 16 780.                 |
|             | 409.6                             | 507.9                   | 1.968                   | 17 560.                 | 16 180.                 | 14 470.                | 13 300.                 |
|             | 364.8                             | 402.8                   | 2.482                   | 13 930.                 | 12 830.                 | 11 480.                | 10 550.                 |
| 0           | 324.9                             | 319. <b>5</b>           | 3.130                   | 11 040.                 | 10 180.                 | 9103.                  | 8367.                   |
| I           | 289.3                             | 253.3                   | 3.947                   | 8758.                   | 8070.                   | 7219.                  | 6636.                   |
| 2           | 257.6                             | 200.9                   | 4.977                   | 6946.                   | 6400.                   | 5725.                  | 5262.                   |
| 3           | 229.4                             | 159.3                   | 6.276                   | 5508.                   | 5075.                   | 4540.                  | 4173.                   |
| 4           | 204.3                             | 126.4                   | 7.914                   | 4368.                   | 4025.                   | 3600.                  | 3309.                   |
| 5           | 181.9                             | 100.2                   | 9.980                   | 3464.                   | 3192.                   | 2855.                  | 2625.                   |
| 6           | 162.0                             | 79.46                   | 12.58                   | 2747·                   | 2531.                   | 2264.                  | 2081.                   |
| 7           | 144.3                             | 63.02                   | 15.87                   | 2179·                   | 2007.                   | 1796.                  | 1651.                   |
| 8           | 128.5                             | 49.98                   | 20.01                   | 1728.                   | 1592.                   | 1424.                  | 1309.                   |
| 9           | 114.4<br>101.9<br>90.74           | 39.63<br>31.43<br>24.92 | 25.23<br>31.82<br>40.12 | 1370.<br>1087.<br>861.7 | 1262.<br>1001.<br>794.0 | 89 <b>5.6</b><br>710.2 | 1038.<br>823.2<br>652.8 |
| 12          | 80.81                             | 19.77                   | 50.59                   | 683.3                   | 629.6                   | 563.2                  | 517.7                   |
| 13          | 71.96                             | 15.68                   | 63.80                   | 541.9                   | 499.3                   | 446.7                  | 410.6                   |
| 14          | 64.08                             | 12.43                   | 80.44                   | 429.8                   | 396.0                   | 354.2                  | 325.6                   |
| 15          | 57.07                             | 9.858                   | 101.4                   | 340.8                   | 314.0                   | 280.9                  | 258.2                   |
| 16          | 50.82                             | 7.818                   | 127.9                   | 270.3                   | 249.0                   | 222.8                  | 204.8                   |
| 17          | 45.26                             | 6.200                   | 161.3                   | 214.3                   | 197.5                   | 176.7                  | 162.4                   |
| 18          | 40.30                             | 4.917                   | 203.4                   | 170.0                   | 1 56.6                  | 140.1                  | 128.8                   |
| 19          | 35.89                             | 3.899                   | 256.5                   | 134.8                   | 1 24.2                  | 111.1                  | 102.1                   |
| 20          | 31.96                             | 3.092                   | 323.4                   | 106.9                   | 98.50                   | 88.11                  | 80.99                   |
| 21          | 28.46                             | 2.452                   | 407.8                   | 84.78                   | 78.11                   | 69.8 <sub>7</sub>      | 64.23                   |
| 22          | 25.35                             | 1.945                   | 514.2                   | 67.23                   | 61.95                   | 55.41                  | 50.94                   |
| 23          | 22.57                             | 1.542                   | 648.4                   | 53.32                   | 49.13                   | 43.94                  | 40.39                   |
| 24          | 20.10                             | 1.223                   | 817.7                   | 42.28                   | 38.96                   | 34.85                  | 32.03                   |
| 25          | 17.90                             | 0.9699                  | 1031.                   | 33.53                   | 30.90                   | 27.64                  | 25.40                   |
| 26          | 15.94                             | .7692                   | 1300.                   | 26.59                   | 24.50                   | 21.92                  | 20.15                   |
| 27          | 14.20                             | .6100                   | 1639.                   | 21.09                   | 19.43                   | 17.38                  | 15.98                   |
| 28          | 12.64                             | .4837                   | 2067.                   | 16.72                   | 15.41                   | 13.78                  | 12.67                   |
| 29          | 11.26                             | .3836                   | 2607.                   | 13.26                   | 12.22                   | 10.93                  | 10.05                   |
| 30          | 10.03                             | .3042                   | 3287.                   | 10.52                   | 9.691                   | 8.669                  | 7.968                   |
| 31          | 8.928                             | .2413                   | 4145.                   | 8.341                   | 7.685                   | 6.875                  | 6.319                   |
| 32          | 7.950                             | .1913                   | 5227.                   | 6.614                   | 6.095                   | 5.452                  | 5.011                   |
| 33          | 7.080                             | .1517                   | 6591.                   | 5.245                   | 4.833                   | 4.323                  | 3.974                   |
| 34          | 6.305                             | .1203                   | 8310.                   | 4.160                   | 3.833                   | 3.429                  | 3.152                   |
| 35          | 5.615                             | .095 42                 | 10 480.                 | 3.299                   | 3.040                   | 2.719                  | 2.499                   |
| 36          | 5.000                             | .075 68                 | 13 210.                 | 2.616                   | 2.411                   | 2.156                  | 1.982                   |
| 37          | 4.453                             | .060 01                 | 16 660.                 | 2.075                   | 1.912                   | 1.710                  | 1.572                   |
| 38          | 3.965                             | .047 59                 | 21 010.                 | 1.645                   | 1.516                   | 1.356                  | 1.247                   |
| 39<br>40    | 3.531<br>3.145                    | .037 74                 | 26 500.<br>33 410.      | 1.305                   | 1.202<br>0.9534         | 0.8529                 | 0.9886<br>.7840         |

<sup>•</sup> Length at 20° C. of a wire whose resistance is 1 ohm at the stated temperatures.

## WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). English Units (continued).

|             | Diameter                |                    | Ohms per Pound.     |               | Pounds per Ohm.     |
|-------------|-------------------------|--------------------|---------------------|---------------|---------------------|
| Gage<br>No. | in Mils<br>at<br>20° C. | °° C.<br>(=32° F.) | 20° C.<br>(=68° F.) | (=122° F.)    | 20° C.<br>(=68° F.) |
| 0000        | 460.0                   | 0.000 070 51       | 0.000 076 52        | 0.000 085 54  | 13 070.             |
|             | 409.6                   | .000 1121          | .000 1217           | .000 1360     | 8219.               |
|             | 364.8                   | .000 1783          | .000 1935           | .000 2163     | 5169.               |
| 0           | 324.9                   | .000 2835          | .000 3076           | .000 3439     | 3251.               |
| I           | 289.3                   | .000 4507          | .000 4891           | .000 5468     | 2044.               |
| 2           | 257.6                   | .000 7166          | .000 7778           | .000 8695     | 1286.               |
| 3 4 5       | 229.4                   | .001 140           | .001 237            | .001 383      | 808.6               |
|             | 204.3                   | .001 812           | .001 966            | .002 198      | 508.5               |
|             | 181.9                   | .002 881           | .003 127            | .003 495      | 319.8               |
| 6 7 8       | 162.0                   | .004 581           | .004 972            | .005 558      | 201.1               |
|             | 144.3                   | .007 284           | .007 905            | .008 838      | 126.5               |
|             | 128.5                   | .011 58            | .012 57             | .014 05       | 79·55               |
| 9 10        | 114.4                   | .018 42            | .019 99             | .022 34       | 50.03               |
|             | 101.9                   | .029 28            | .031 78             | .035 53       | 31.47               |
|             | 90.74                   | .046 56            | .050 53             | .056 49       | 19.79               |
| 12          | 80.81                   | .074 04            | .080 35             | .089 83       | 12.45               |
| 13          | 71.96                   | .1177              | .1278               | .1428         | 7.827               |
| 14          | 64.08                   | .1872              | .2032               | .2271         | 4.922               |
| 15          | 57.07                   | .2976              | .3230               | .3611         | 3.096               |
| 16          | 50.82                   | ·4733              | .5136               | .5742         | 1.947               |
| 17          | 45.26                   | ·7525              | .8167               | .9130         | 1.224               |
| 18          | 40.30                   | 1.197              | 1.299               | 1.452         | 0.7700              |
| 19          | 35.89                   | 1.903              | 2.065               | 2.308         | .4843               |
| 20          | 31.96                   | 3.025              | 3.283               | 3.670         | .3046               |
| 21          | 28.46                   | 4.810              | 5.221               | 5.836         | .1915               |
| 22          | 25.35                   | 7.649              | 8.301               | 9.280         | .1205               |
| 23          | 22.57                   | 12.16              | 13.20               | 14.76         | .075 76             |
| 24          | 20.10                   | 19.34              | 20.99               | 23.46         | .047 65             |
| 25          | 17.90                   | 30.75              | 33·37               | 37.31         | .029 97             |
| 26          | 15.94                   | 48.89              | 53.06               | 59.32         | .018 85             |
| 27          | 14.20                   | 77·74              | 84.37               | 94.32         | .011 85             |
| 28          | 12.64                   | 123.6              | 134.2               | 1 50.0        | .007 454            |
| 29          | 11.26                   | 196.6              | 213.3               | 238.5         | .004 688            |
| 30          | 10.03                   | 312 <b>.5</b>      | 339.2               | 379.2         | .002 948            |
| 31          | 8.928                   | 497.0              | 539.3               | 602.9         | .001 854            |
| 32          | 7.950                   | 790.2              | 857.6               | 958.7         | .001 166            |
| 33          | 7.080                   | 1256.              | 1364.               | 1 524.        | .000 7333           |
| 34          | 6.305                   | 1998.              | 2168.               | 2424.         | .000 4612           |
| 35          | 5.615                   | 3 <sup>1</sup> 77. | 3448.               | 3854.         | .000 2901           |
| 36          | 5.000                   | 5051.              | 5482.               | 6128 <b>.</b> | .000 1824           |
| 37          | 4.453                   | 8032.              | 8717.               | 9744•         | .000 1147           |
| 38          | 3.965                   | 12 770.            | 13 860.             | 15 490.       | .000 072 15         |
| 39          | 3.531                   | 20 310.            | 22 040.             | 24 640.       | .000 045 38         |
| 40          | 3.145                   | 32 290.            | 35 040.             | 39 170.       | .000 028 54         |

## WIRE TABLE, STANDARD ANNEALED COPPER.

American Wire Gage (B. & S.) Metric Units.

|             | Diameter            | Cross Section                    |        | Ohms per 1 | Kilometer.* |        |
|-------------|---------------------|----------------------------------|--------|------------|-------------|--------|
| Gage<br>No. | in mm.<br>at 20° C. | in mm. <sup>2</sup><br>at 20° C. | o° C.  | 20° C.     | 50° C.      | 75° C. |
| 0000        | 11.68               | 107.2                            | 0.1482 | 0.1608     | 0.1798      | 0.1956 |
|             | 10.40               | 85.03                            | .1868  | .2028      | .2267       | .2466  |
|             | 9.266               | 67.43                            | .2356  | .2557      | .2858       | .3110  |
| 0           | 8.252               | 53.48                            | .297 I | .3224      | •3604       | .3921  |
| I           | 7.348               | 42.41                            | .3746  | .4066      | •4545       | .4944  |
| 2           | 6.544               | 33.63                            | .4724  | .5127      | •5731       | .6235  |
| 3           | 5.827               | 26.67                            | .5956  | .6465      | .7227       | .7862  |
| 4           | 5.189               | 21.15                            | .7511  | .8152      | .9113       | .9914  |
| 5           | 4.621               | 16.77                            | .9471  | 1.028      | 1.149       | 1.250  |
| 6           | 4.115               | 13.30                            | 1.194  | 1.296      | 1.449       | 1.576  |
| 7           | 3.665               | 10.55                            | 1.506  | 1.634      | 1.827       | 1.988  |
| 8           | 3.264               | 8.366                            | 1.899  | 2.061      | 2.304       | 2.506  |
| 9           | 2.906               | 6.634                            | 2.395  | 2.599      | 2.905       | 3.161  |
|             | 2.588               | 5.261                            | 3.020  | 3.277      | 3.663       | 3.985  |
|             | 2.305               | 4.172                            | 3.807  | 4.132      | 4.619       | 5.025  |
| 12          | 2.053               | 3.309                            | 4.801  | 5.211      | 5.825       | 6.337  |
| 13          | 1.828               | 2.624                            | 6.054  | 6.571      | 7·345       | 7.991  |
| 14          | 1.628               | 2.081                            | 7.634  | 8.285      | 9.262       | 10.08  |
| 15          | 1.450               | 1.65c                            | 9.627  | 10.45      | 11.68       | 12.71  |
| 16          | 1.291               | 1.309                            | 12.14  | 13.17      | 14.73       | 16.02  |
| 17          | 1.150               | 1.038                            | 15.31  | 16.61      | 18.57       | 20.20  |
| 18          | 1.024               | 0.8231                           | 19.30  | 20.95      | 23.42       | 25.48  |
| 19          | 0.9116              | .6527                            | 24.34  | 26.42      | 29.53       | 32.12  |
| 20          | .8118               | .5176                            | 30.69  | 33.31      | 37.24       | 40.51  |
| 2I          | .7230               | .4105                            | 38.70  | 42.00      | 46.95       | 51.08  |
| 22          | .6438               | •3255                            | 48.80  | 52.96      | 59.21       | 64.41  |
| 23          | ·5733               | .2582                            | 61.54  | 66.79      | 74.66       | 81.22  |
| 24          | .5106               | .2047                            | 77.60  | 84.21      | 94.14       | 102.4  |
| 25          | -4547               | .1624                            | 97.85  | 106.2      | 118.7       | 129.1  |
| 26          | -4049               | .1288                            | 123.4  | 133.9      | 149.7       | 162.9  |
| 27          | .3606               | .1021                            | 155.6  | 168.9      | 188.8       | 205.4  |
| 28          | .3211               | .080 98                          | 196.2  | 212.9      | 238.0       | 258.9  |
| 29          | .2859               | .064 22                          | 247.4  | 268.5      | 300.1       | 326.5  |
| 30          | .2546               | .050 93                          | 311.9  | 338.6      | 378.5       | 411.7  |
| 31          | .2268               | .040 39                          | 393.4  | 426.9      | 477.2       | 519.2  |
| 32          | .2019               | .032 03                          | 496.0  | 538.3      | 601.8       | 654.7  |
| 33          | .1798               | .025 40                          | 625.5  | 678.8      | 7 58.8      | 825.5  |
| 34          | .1601               | .020 14                          | 788.7  | 856.0      | 956.9       | 1041.  |
| 35          | .1426               | .015 97                          | 994.5  | 1079.      | 1207.       | 1313.  |
| 36          | .1270               | .012.67                          | 1254.  | 1361.      | 1522.       | 1655.  |
| 37          | .1131               | .010 05                          | 1581.  | 1716.      | 1919.       | 2087.  |
| 38          | .1007               | .007 967                         | 1994.  | 2164.      | 2419.       | 2632.  |
| 39          | .089 69             | .006 318                         | 2514.  | 2729.      | 3051.       | 3319.  |
| 40          | .079 87             |                                  | 3171.  | 3441.      | 3847.       | 4185.  |

<sup>\*</sup>Resistance at the stated temperatures of a wire whose length is 1 kilometer at 20° C.

## WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.) Metric Units (continued).

|                |                         |                    | ne dage (B. &           |                          |                         |                         |                         |
|----------------|-------------------------|--------------------|-------------------------|--------------------------|-------------------------|-------------------------|-------------------------|
| Gage           | Diameter                | Kilograms          | Meters                  |                          | Meters p                | er Ohm.*                |                         |
| No.            | in mm.<br>at 20° C.     | Kilometer.         | Gram.                   | ∘° C.                    | 20° C.                  | 50° C.                  | 75° C.                  |
| 0000           | 11.68                   | 953.2              | 0.001 049               | 6749.                    | 6219.                   | 5563.                   | 5113.                   |
|                | 10.40                   | 755.9              | .001 323                | 5352.                    | 4932.                   | 4412.                   | 4055.                   |
|                | 9.266                   | 599.5              | .001 668                | 4245.                    | 3911.                   | 3499.                   | 3216.                   |
| 0              | 8.252                   | 475.4              | .002 103                | 3366.                    | 3102.                   | 2774.                   | 2550.                   |
| I              | 7.348                   | 377.0              |                         | 2669.                    | 2460.                   | 2200.                   | 2022.                   |
| 2              | 6.544                   | 299.0              |                         | 2117.                    | 1951.                   | 1745.                   | 1604.                   |
| 3              | 5.827                   | 237.1              | .004 217                | 1679.                    | 1547.                   | 1384.                   | 1272.                   |
| 4              | 5.189                   | 188.0              | .005 318                | 1331.                    | 1227.                   | 1097.                   | 1009.                   |
| 5              | 4.621                   | 149.1              | .006 706                | 1056.                    | 972.9                   | 870.2                   | 799.9                   |
| 6              | 4.115                   | 118.2              | .008 457                | 837.3                    | 771.5                   | 690.1                   | 634.4                   |
| 7              | 3.665                   | 93.78              | .010 66                 | 664.0                    | 611.8                   | 547·3                   | 503.1                   |
| 8              | 3.264                   | 74.37              | .013 45                 | 526.6                    | 485.2                   | 434.0                   | 399.0                   |
| 9 10           | 2.906                   | 58.98              | .016 96                 | 417.6                    | 384.8                   | 344.2                   | 316.4                   |
|                | 2.588                   | 46.77              | .021 38                 | 331.2                    | 305.1                   | 273.0                   | 250.9                   |
|                | 2.305                   | 37.09              | .026 96                 | 262.6                    | 242.0                   | 216.5                   | 199.0                   |
| 12             | 2.053                   | 29.42              | .034 00                 | 208.3                    | 191.9                   | 171.7                   | 1 57.8                  |
| 13             | 1.828                   | 23.33              | .042 87                 | 165.2                    | 152.2                   | 136.1                   | 12 5.1                  |
| 14             | 1.628                   | 18.50              | .054 06                 | 131.0                    | 120.7                   | 108.0                   | 99.24                   |
| 15             | 1.450                   | 14.67              | .068 16                 | 103.9                    | 95.71                   | 85.62                   | 78.70                   |
| 16             | 1.291                   | 11.63              | .085 95                 | 82.38                    | 75.90                   | 67.90                   | 62.41                   |
| 17             | 1.150                   | 9.226              | .1084                   | 65.33                    | 60.20                   | 53.85                   | 49.50                   |
| 18             | 1.024                   | 7.317              | .1367                   | 51.81                    | 47.74                   | 42.70                   | 39.25                   |
| 19             | 0.9116                  | 5.803              | .1723                   | 41.09                    | 37.86                   | 33.86                   | 31.13                   |
| 20             | .8118                   | 4.602              | .2173                   | 32.58                    | 30.02                   | 26.86                   | 24.69                   |
| 2I             | .7230                   | 3.649              | .2740                   | 25.84                    | 23.81                   | 21.30                   | 19.58                   |
| 22             | .6438                   | 2.894              | •3455                   | 20.49                    | 18.88                   | 16.89                   | 15.53                   |
| 23             | ·5733                   | 2.295              | •4357                   | 16.25                    | 14.97                   | 13.39                   | 12.31                   |
| 24             | .5106                   | 1.820              | .5494                   | 12.89                    | 11.87                   | 10.62                   | 9.764                   |
| 25             | ·4547                   | 1.443              | .6928                   | 10.22                    | 9.417                   | 8.424                   | 7.743                   |
| 26             | ·4049                   | 1.145              | .8736                   | 8.105                    | 7.468                   | 6.680                   | 6.141                   |
| 27             | .3606                   | 0.9078             | 1.102                   | 6.428                    | 5.922                   | 5.298                   | 4.870                   |
| 28             | .3211                   | .7199              | 1.389                   | 5.097                    | 4.697                   | 4.201                   | 3.862                   |
| 29             | .2859                   | •5709              | 1.752                   | 4.042                    | 3.725                   | 3.332                   | 3.063                   |
| 30             | .2546                   | •4527              | 2.209                   | 3.206                    | 2.954                   | 2.642                   | 2.429                   |
| 31             | .2268                   | •3590              | 2.785                   | 2.542                    | 2.342                   | 2.095                   | 1.926                   |
| 32             | .2019                   | •2847              | 3.512                   | 2.016                    | 1.858                   | 1.662                   | 1.527                   |
| 33             | .1798                   | .2258              | 4.429                   | 1.599                    | 1.473                   | 1.318                   | 1.211                   |
| 34             | .1601                   | .1791              | 5.584                   | 1.268                    | 1.168                   | 1.045                   | 0.9606                  |
| 35             | .1426                   | .1420              | 7.042                   | 1.006                    | 0.9265                  | 0.8288                  | .7618                   |
| 36<br>37<br>38 | .1270<br>.1131<br>.1007 | .089 31<br>.070 83 | 8.879<br>11.20<br>14.12 | 0.7974<br>.6324<br>.5015 | •7347<br>•5827<br>•4621 | .6572<br>.5212<br>.4133 | .6041<br>.4791<br>.3799 |
| 39             | .089 69                 | .056 17            | 17.80                   | ·3977                    | .3664                   | .3278                   | .3013                   |
| 40             | .079 87                 | .044 54            | 22.45                   | ·3154                    | .2906                   | .2600                   |                         |

\*Length at 20° C. of a wire whose resistance is 1 ohm at the stated temperatures.

## WIRE TABLE, STANDARD ANNEALED COPPER (continued).

American Wire Gage (B. & S.). Metric Units (continued).

|       |                 | ĺ           |                    |             |                |
|-------|-----------------|-------------|--------------------|-------------|----------------|
| Gage  | Diameter in mm. |             | Ohms per Kilogram. |             | Grams per Ohm. |
| No.   | at 20° C.       | ∘° C.       | 20° C.             | 50° C.      | 20° C.         |
| 0000  | 11.68           | 0.000 155 4 | 0.000 168 7        | 0.000 188 6 | 5 928 000.     |
|       | 10.40           | .000 247 2  | .000 268 2         | .000 299 9  | 3 728 000.     |
|       | 9.266           | .000 393 0  | .000 426 5         | .000 476 8  | 2 344 000.     |
| 0     | 8.252           | .000 624 9  | .000 678 2         | .000 758 2  | 1 474 000.     |
| 1     | 7·348           | .000 993 6  | .001 078           | .001 206    | 927 300.       |
| 2     | 6·544           | .001 580    | .001 715           | .001 917    | 583 200.       |
| 3     | 5.827           | .002 512    | .002 726           | .003 048    | 366 800.       |
| 4     | 5.189           | .003 995    | .004 335           | .004 846    | 230 700.       |
| 5     | 4.621           | .006 352    | .006 893           | .007 706    | 145 100.       |
| 6 7 8 | 4.115           | .010 10     | .010 96            | .012 25     | 91 230.        |
|       | 3.665           | .016 06     | .017 43            | .019 48     | 57 380.        |
|       | 3.264           | .025 53     | .027 71            | .030 98     | 36 080.        |
| 10    | 2.906           | .040 60     | .044 06            | .049 26     | 22 690.        |
|       | 2.588           | .064 56     | .070 07            | .078 33     | 14 270.        |
|       | 2.305           | .1026       | .1114              | .1245       | 8976.          |
| 12    | 2.053           | .1632       | .1771              | .1980       | 56.45          |
| 13    | 1.828           | .2595       | .2817              | .3149       | 3550.          |
| 14    | 1.628           | .4127       | .4479              | .5007       | 2233.          |
| 15    | 1.450           | .6562       | .7122              | .7961       | 140 <b>4.</b>  |
| 16    | 1.291           | 1.043       | 1.132              | 1.266       | 883.1          |
| 17    | 1.150           | 1.659       | 1.801              | 2.013       | 555.4          |
| 18    | 1.024           | 2.638       | 2.863              | 3.201       | 349·3          |
| 19    | 0.9116          | 4.194       | 4.552              | 5.089       | 219.7          |
| 20    | .8118           | 6.670       | 7.238              | 8.092       | 138.2          |
| 21    | .7230           | 10.60       | 11.51              | 12.87       | 86.88          |
| 22    | .6438           | 16.86       | 18.30              | 20.46       | 54.64          |
| 23    | ·5733           | 26.81       | 29.10              | 32.53       | 34.36          |
| 24    | .5106           | 42.63       | 46.27              | 51.73       | 21.61          |
| 25    | •4547           | 67.79       | 73.57              | 82.25       | 13.59          |
| 26    | .4049           | 107.8       | 117.0              | 130.8       | 8.548          |
| 27    | .3606           | 171.4       | 186.0              | 207.9       | 5.376          |
| 28    | .3211           | 272.5       | 295.8              | 330.6       | 3.381          |
| 29    | .2859           | 433.3       | 4 <b>7</b> 0.3     | 525.7       | 2.126          |
| 30    | .2546           | 689.0       | 747.8              | 836.0       | 1.337          |
| 31    | .2268           | 1096.       | 1189.              | 1329.       | 0.8410         |
| 32    | .2019           | 1742.       | 1891.              | 2114.       | .5289          |
| 33    | .1798           | 2770.       | 3006.              | 3361.       | .3326          |
| 34    | .1661           | 4404.       | 4780.              | 5344.       | .2092          |
| 35    | .1426           | 7003.       | 7601.              | 8497.       | .1316          |
| 36    | .1270           | 11140.      | 12090.             | 13510.      | .082 74        |
| 37    | .1131           | 17710.      | 19220.             | 21480.      | .052 04        |
| 38    | .1007           | 28150.      | 30560.             | 34160.      | .032 73        |
| 39    | .089 69         | 44770.      | 48590.             | 54310.      | .020 58        |
| 40    |                 | 71180.      | 77260.             | 86360.      | .012 94        |

## Hard-Drawn Aluminum Wire at 20° C. (or, 68° F.).

American Wire Gage (B. & S.). English Units.

|                |                      | Cross                       | Section.                           |                           |                             |                                |                       |
|----------------|----------------------|-----------------------------|------------------------------------|---------------------------|-----------------------------|--------------------------------|-----------------------|
| Gage<br>No.    | Diameter in Mils.    | Circular<br>Mils.           | Square<br>Inches.                  | Ohms<br>per<br>1000 Feet. | Pounds<br>per<br>1000 Feet. | Pounds<br>per Ohm.             | Feet<br>per Ohm.      |
| 0000           | 460.                 | 212 000.                    | 0.166                              | 0.0804                    | 195.                        | 2420.                          | 12 400.               |
|                | 410.                 | 168 000.                    | .132                               | .101                      | 154.                        | 1520.                          | 9860.                 |
|                | 365.                 | 133 000.                    | .105                               | .128                      | 122.                        | 957·                           | 7820.                 |
| 0              | 325.                 | 106 000.                    | .0829                              | .161                      | 97.0                        | 60 <b>2.</b>                   | 6200.                 |
| I              | 289.                 | 83 700.                     | .0657                              | .203                      | 76.9                        | 379.                           | 4920.                 |
| 2              | 258.                 | 66 400.                     | .0521                              | .256                      | 61.0                        | 238.                           | 3900.                 |
| 3              | 229.                 | 52 600.                     | .0413                              | .323                      | 48.4                        | 150.                           | 3090.                 |
| 4              | 204.                 | 41 ·700.                    | .0328                              | .408                      | 38.4                        | 94.2                           | 2450.                 |
| 5              | 182.                 | 33 100.                     | .0260                              | .514                      | 30.4                        | 59.2                           | 1950.                 |
| 6              | 162.                 | 26 300.                     | .0206                              | .648                      | 24.I                        | 37.2                           | 1 540.                |
| 7              | 144.                 | 20 800.                     | .0164                              | .817                      | 19.I                        | 23.4                           | 1 220.                |
| 8              | 128.                 | 16 500.                     | .0130                              | 1.03                      | 15.2                        | 14.7                           | 970.                  |
| 9 10           | 114.<br>102.<br>91.  | 13 100.<br>10 400.<br>8230. | .0103<br>.008 15<br>.006 47        | 1.30<br>1.64<br>2.07      | 9.55<br>7.57                | 9.26<br>5.83<br>3.66           | 770.<br>610.<br>484.  |
| 12             | 81.                  | 6530.                       | .005 i3                            | 2.61                      | 6.00                        | 2.30                           | 384.                  |
| 13             | 72.                  | 5180.                       | .004 07                            | 3.29                      | 4.76                        | 1.45                           | 304.                  |
| 14             | 64.                  | 4110.                       | .003 23                            | 4.14                      | 3.78                        | 0.911                          | 241.                  |
| 15             | 57·                  | 3260.                       | .002 56                            | 5.22                      | 2.99                        | ·573                           | 191.                  |
| 16             | 51.                  | 2580.                       | .002 03                            | 6.59                      | 2.37                        | ·360                           | 152.                  |
| 17             | 45·                  | 2050.                       | .001 61                            | 8.31                      | 1.88                        | ·227                           | 120.                  |
| 18             | 40.                  | 1620.                       | .001 28                            | 10.5                      | 1.49                        | .143                           | 95·5                  |
| 19             | 36.                  | 1290.                       | .001 01                            | 13.2                      | 1.18                        | .0897                          | 75·7                  |
| 20             | 32.                  | 1020.                       | .000 802                           | 16.7                      | 0.939                       | .0564                          | 60.0                  |
| 2I             | 28.5                 | 810.                        | .000 636                           | 21.0                      | .745                        | .0355                          | 47.6                  |
| 22             | 25.3                 | 642.                        | .000 505                           | 26.5                      | .591                        | .0223                          | 37.8                  |
| 23             | 22.6                 | 509.                        | .000 400                           | 33.4                      | .468                        | .0140                          | 29.9                  |
| 24             | 20.1                 | 404.                        | .000 317                           | 42.1                      | .371                        | .008 82                        | 23.7                  |
| 25             | 17.9                 | 320.                        | .000 252                           | 53.1                      | .295                        | .005 55                        | 18.8                  |
| 26             | 15.9                 | 254.                        | .000 200                           | 67.0                      | .234                        | .003 49                        | 14.9                  |
| 27<br>28<br>29 | 14.2<br>12.6<br>11.3 | 202.<br>160.<br>127.        | .000 158<br>.000 126<br>.000 099 5 | 84.4<br>106.<br>134.      | .185<br>.147<br>.117        | .002 19<br>.001 38<br>.000 868 | 9.39<br>7.45          |
| 30             | 10.0                 | 101.                        | .000 078 9                         | 169.                      | .0924                       | .000 546                       | 5.91                  |
| 31             | 8.9                  | 79.7                        | .000 062 6                         | 213.                      | .0733                       | .000 343                       | 4.68                  |
| 32             | 8.0                  | 63.2                        | .000 049 6                         | 269.                      | .0581                       | .000 216                       | 3.72                  |
| 33             | 7.1                  | 50.1                        | .000 039 4                         | 339·                      | .0461                       | .000 136                       | 2.95                  |
| 34             | 6.3                  | 39.8                        |                                    | 428.                      | .0365                       | .000 085 4                     | 2.34                  |
| 35             | 5.6                  | 31.5                        |                                    | 540.                      | .0290                       | .000 053 7                     | 1.85                  |
| 36<br>37<br>38 | 5.0<br>4·5<br>4.0    | 25.0<br>19.8<br>15.7        | .000 019 6                         | 681.<br>858.<br>1080.     | .0230<br>.0182<br>.0145     | .000 033 8                     | 1.47<br>1.17<br>0.924 |
| 39             | 3.5<br>3.1           | 12.5<br>9.9.                | .000 009 79                        | 1360.<br>1720.            | .0091                       | .000 008 40                    | ·733<br>.581          |

Hard-Drawn Aluminum Wire at 20° C.

## American Wire Gage (B. & S.) Metric Units.

| Gage<br>No.    | Diameter in mm.      | Cross Section in mm.2   | Ohms per<br>Kilometer.  | Kilograms per<br>Kilometer. | Grams per<br>Ohm.     | Meters per<br>Ohm.   |
|----------------|----------------------|-------------------------|-------------------------|-----------------------------|-----------------------|----------------------|
| 0000           | 11.7                 | 107.                    | 0.264                   | 289.                        | 1 100 000.            | 3790.                |
|                | 10.4                 | 85.0                    | ·333                    | 230.                        | 690 000.              | 3010.                |
|                | 9.3                  | 67.4                    | ·419                    | 182.                        | 434 000.              | 2380.                |
| 0              | 8.3                  | 53·5                    | .529                    | 144.                        | 273 000.              | 1890.                |
| I              | 7.3                  | 42·4                    | .667                    | 114.                        | 172 000.              | 1500.                |
| 2              | 6.5                  | 33.6                    | .841                    | 90.8                        | 108 000.              | 1190.                |
| 3 4 5          | 5.8                  | 26.7                    | 1.06                    | 72.0                        | 67 900.               | 943.                 |
|                | 5.2                  | 21.2                    | 1.34                    | 57•1                        | 42 700.               | 748.                 |
|                | 4.6                  | 16.8                    | 1.69                    | 45·3                        | 26 900.               | 593.                 |
| 6 7 8          | 4.1                  | 13.3                    | 2.13                    | 35.9                        | 16 900.               | 470.                 |
|                | 3.7                  | 10.5                    | 2.68                    | 28.5                        | 10 600.               | 373.                 |
|                | 3.3                  | 8.37                    | 3.38                    | 22.6                        | 6680.                 | 296.                 |
| 9              | 2.91                 | 6.63                    | 4.26                    | 17.9                        | 4200.                 | 235.                 |
| 10             | 2.59                 | 5.26                    | 5.38                    | 14.2                        | 2640.                 | 186.                 |
| 11             | 2.30                 | 4.17                    | <b>6.</b> 78            | 11.3                        | 1660.                 | 148.                 |
| 12<br>13<br>14 | 2.05<br>1.83<br>1.63 | 3.31<br>2.62<br>2.08    | 8.55<br>10.8<br>13.6    | 8.93<br>7.08<br>5.62        | 1050.<br>657.<br>413. | 92.8<br>73.6         |
| 15             | 1.45                 | 1.65                    | 17.1                    | 4.46                        | 260.                  | 58.4                 |
| 16             | 1.29                 | 1.31                    | 21.6                    | 3.53                        | 164.                  | 46.3                 |
| 17             | 1.15                 | 1.04                    | 27.3                    | 2.80                        | 103.                  | 36.7                 |
| 18             | 1.02                 | 0.823                   | 34·4                    | 2.22                        | 64.7                  | 29.1                 |
| 19             | 0.91                 | .653                    | 43·3                    | 1.76                        | 40.7                  | 23.1                 |
| 20             | .81                  | .518                    | 54.6                    | 1.40                        | 25.6                  | 18.3                 |
| 21<br>22<br>23 | .72<br>.64<br>•57    | .411<br>.326<br>.258    | 68.9<br>86.9<br>110.    | 0.879<br>.697               | 16.1<br>10.1<br>6.36  | 14.5<br>11.5<br>9.13 |
| 24             | .51                  | .205                    | 138.                    | ·553                        | 4.00                  | 7.24                 |
| 25             | .45                  | .162                    | 174.                    | .438                        | 2.52                  | 5.74                 |
| 26             | .40                  | .129                    | 220.                    | .348                        | 1.58                  | 4.55                 |
| 27             | .36                  | .102                    | 277·                    | .276                        | 0.995                 | 3.61                 |
| 28             | .32                  | .0810                   | 349·                    | .219                        | .626                  | 2.86                 |
| 29             | .29                  | .0642                   | 440.                    | .173                        | ·394                  | 2.27                 |
| 30             | .25                  | .0509                   | 555-                    | .138                        | .248                  | 1.80                 |
| 31             | .227                 | .0404                   | 700.                    | .109                        | .156                  | 1.43                 |
| 32             | .202                 | .0320                   | 883.                    | .0865                       | .0979                 | 1.13                 |
| 33             | .180                 | .0254                   | 1110.                   | .0686                       | .0616                 | 0.899                |
| 34             | .160                 | .0201                   | 1400.                   | .0544                       | .0387                 | .712                 |
| 35             | .143                 | .0160                   | 1770.                   | .0431                       | .0244                 | .565                 |
| 36<br>37<br>38 | .127<br>.113<br>.101 | .0127<br>.0100<br>.0080 | 2230.<br>2820.<br>3550. | .0342<br>.0271<br>.0215     | .005 63<br>.006 06    | .448<br>•355<br>.282 |
| 39<br>40       | .090<br>.080         | .0063                   | 4480.<br>5640.          | .0171                       | .003 81               | .223                 |

## TABLE 414. - Ratio of Alternating to Direct Current Resistances for Copper Wires.

This table gives the ratio of the resistance of straight copper wires with alternating currents of different frequencies to the value of the resistance with direct currents.

| Diameter of wire in                                                                                  |    | Frequency f =                                                        |                                                                                         |                                                                                                             |                                                                                                            |                                                                                           |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| millimeters.                                                                                         | 60 | 100                                                                  | 1000                                                                                    | 10,000                                                                                                      | 100,000                                                                                                    | 1,000,000                                                                                 |  |  |  |  |  |  |
| 0.05<br>0.1<br>0.25<br>0.5<br>1.0<br>2.0<br>3.<br>4.<br>5.<br>7.5<br>10.<br>15.<br>20.<br>25.<br>40. |    | *I.001<br>I.002<br>I.008<br>I.038<br>I.120<br>I.247<br>I.842<br>4.19 | I. 001 I. 000 I. 001 I. 002 I. 021 I. 047 I. 210 I. 503 2. 136 2. 756 3. 38 5. 24 I3. 7 | *I.001<br>I.008<br>I.120<br>I.437<br>I.842<br>2.240<br>3.22<br>4.19<br>6.14<br>8.10<br>IO.1<br>I7.4<br>39.1 | *I.ooI<br>I.oo3<br>I.o47<br>I.503<br>2.756<br>4.00<br>5.24<br>6.49<br>7.50<br>I2.7<br>I8.8<br>25.2<br>28.3 | *I.00I<br>I.008<br>I.247<br>2.240<br>4.19<br>8.10<br>I2.0<br>I7.4<br>I9.7<br>29.7<br>39.1 |  |  |  |  |  |  |

Values between 1.000 and 1.001 are indicated by \*1.001.

The values are for wires having an assumed conductivity of 1.60 microhm-cms; for copper wires at room temperatures the values are slightly less than as given in table.

The change of resistance of wire other than copper (from wires excepted) may be calculated from the above table

by taking it as proportional to  $d\sqrt{1/\rho}$  where d= diameter, f the frequency and  $\rho$  the resistivity.

If a given wire be wound into a solenoid, its resistance, at a given frequency, will be greater than the values in the table, which apply to straight wires only. The resistance in this case is a complicated function of the pitch and radius of the winding, the frequency, and the diameter of the wire, and is found by experiment to be sometimes as much as twice the value for a straight wire.

TABLE 415. - Maximum Diameter of Wires for High-frequency Alternating-to-direct-current Resistance Ratio of 1.01.

| Frequency ÷ 106                                                                                                               | 0.1                                                                                  | 0.2                                                                                            | 0.4   | 0.6   | 0.8                                                               | 1.0      | 1.2     | 1.5                                                                                  | 2.0     | 3.0                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------|-------|-------------------------------------------------------------------|----------|---------|--------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------|
| Wave-length, meters                                                                                                           | 3000                                                                                 | 1500                                                                                           | 750   | 500   | 375                                                               | 300      | 250     | 200                                                                                  | 150     | 100                                                                                                                            |
| Material.                                                                                                                     |                                                                                      |                                                                                                |       | D     | iameter i                                                         | n centim | eters.  |                                                                                      |         |                                                                                                                                |
| Copper Silver. Gold Platinum Mercury Manganim. Constantan. German silver. Graphite. Carbon.  Iron μ = 1000. μ = 500. μ = 100. | 0.1120<br>0.264<br>0.1784<br>0.1892<br>0.1942<br>0.765<br>1.60<br>0.00263<br>0.00373 | 0.0244<br>0.0297<br>0.0793<br>0.187<br>0.1261<br>0.1337<br>0.541<br>1.13<br>0.00186<br>0.00264 | 0.383 | 0.654 | 0.0936<br>0.0631<br>0.0664<br>0.0692<br>0.271<br>0.566<br>0.00094 | 0.00118  | 0.00108 | 0.0089<br>0.0108<br>0.0290<br>0.0683<br>0.0461<br>0.0488<br>0.0500<br>0.197<br>0.414 | 0.00084 | o.0065<br>o.0063<br>o.0077<br>o.0205<br>o.0483<br>o.0325<br>o.0345<br>o.140<br>o.140<br>o.292<br>o.00048<br>o.00068<br>o.00152 |

Bureau of Standards Circular 74, Radio Instruments and Measurements, 1918.

### ELECTROCHEMICAL EQUIVALENTS.

Every gram-ion involved in an electrolytic change requires the same number of coulombs or ampere-hours of electricity per unit change of valency. This constant is 96.404 coulombs or 26.804 ampere-hours per gram-hour (a Faraday) corresponding to an electrochemical equivalent for silver of 0.00111800 gram sec<sup>-1</sup> amp<sup>-1</sup>. It is to be noted that the change of valence of the element from its state before to that after the electrolytic action should be considered. The valence of a free, uncombined element is to be considered as 0. The same current will electrolyze "chemically equivalent" quantities per unit time. The valence is then included in the "chemically equivalent" quantity. The following table is based on the atomic weights of 1917.

| Element.                                                             | Change of valency.                                  | Mg<br>per<br>coulomb.                                                                                                                               | Coulombs<br>per<br>mg                                                                                                                       | Grams<br>per amp<br>hour.                                                                                                                        | Element. | Change of valency.              | Mg<br>per<br>coulomb.                                                                                                                      | Coulombs<br>per<br>mg                                                                                                             | Grams<br>per amp<br>hour.                                                                                                |
|----------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Aluminum. Chlorine  " " Copper. Gold. " Hydrogen. Lead. " " Mercury. | 3<br>5<br>7<br>1<br>2<br>1<br>3<br>1<br>1<br>2<br>4 | 0.0036<br>0.3675<br>0.1225<br>0.0735<br>0.0525<br>0.6588<br>0.3294<br>2.044<br>0.6812<br>0.010459<br>2.1473<br>1.0736<br>0.5368<br>2.0789<br>1.0394 | 10.682<br>2.721<br>8.164<br>13.606<br>19.05<br>1.518<br>3.036<br>0.4893<br>1.468<br>5.728<br>0.4657<br>0.9314<br>1.8628<br>0.4810<br>0.9620 | 0.3370<br>1.3229<br>0.4410<br>0.2646<br>0.1890<br>2.3717<br>1.1858<br>7.357<br>2.452<br>0.037607<br>7.7302<br>3.8651<br>1.9326<br>7.484<br>3.742 | Nickel   | 1 2 3 2 4 4 2 4 6 1 1 1 2 4 4 2 | 0.6081<br>0.3041<br>0.2027<br>0.08291<br>0.04145<br>1.0115<br>0.5057<br>0.3372<br>0.4052<br>1.1180<br>0.2384<br>0.6151<br>0.3075<br>0.3387 | 1.6444<br>3.289<br>4.933<br>12.062<br>24.123<br>0.9887<br>1.9773<br>2.966<br>2.468<br>0.89445<br>4.195<br>1.626<br>3.252<br>2.952 | 2.1892<br>1.0946<br>0.7298<br>0.2985<br>0.1492<br>3.641<br>1.821<br>1.214<br>1.459<br>4.0228<br>0.8581<br>2.214<br>1.107 |

The electrochemical equivalent for silver is 0.00111800 g sec<sup>-1</sup> amp<sup>-1</sup>. (See p. xxxvii.) For other elements the electrochemical equivalent = (atomic weight divided by change of valency) times 1/96494 g/sec/amp. or g/coulomb. The equivalent for iodine has been determined at the Bureau of Standards as 0.0013150 (1013).

For a unit change of valency for the diatomic gases Br2, Cl2, F2, H2, N2 and O2 there are required

8.619 coulombs/cm<sup>3</sup> o° C, 76 cm (0.1160 cm<sup>3</sup>/coulomb) 2.394 ampere-hours/l, o° C, 76 cm (0.4177 l/ampere-hour).

Note. — The change of valency for O2 is usually 2, etc.

### CONDUCTIVITY OF ELECTROLYTIC SOLUTIONS.

This subject has occupied the attention of a considerable number of eminent workers in molecular physics, and a few results are here tabulated. It has seemed better to confine the examples to the work of one experimenter, and the tables are quoted from a paper by F. Kohlrausch,\* who has been one of the most reliable and successful workers in this field.

The study of electrolytic conductivity, especially in the case of very dilute solutions, has furnished material for generalizations, which may to some extent help in the formation of a sound theory of the mechanism of such conduction. If the solutions are made such that per unit volume of the solvent medium there are contained amounts of the salt proportional to its electro-chemical equivalent, some simple relations become apparent. The solutions used by Kohlrausch were therefore made by taking numbers of grams of the pure salts proportional to their electrochemical equivalent, and using a liter of water as the standard of quantity of the solvent. Taking the electrochemical equivalent number as the chemical equivalent or atomic weight divided by the valence, and using this number of grams to the liter of water, we get what is called the normal or gram molecule per liter solution. In the table, m is used to represent the number of gram molecules to the liter of water in the solution for which the conductivities are tabulated. The conductivities were obtained by measuring the resistance of a cell filled with the solution by means of a Wheatstone bridge alternating current and telephone arrangement. The results are for 18° C., and relative to mercury at 0° C., the cell having been standardized by filling with mercury and measuring the resistance. They are supposed to be accurate to within one per cent of the true value.

The tabular numbers were obtained from the measurements in the following manner:—

Let  $K_{18}$  = conductivity of the solution at 18° C. relative to mercury at 0° C.

 $K_{18}^{\text{ws}} = \text{conductivity of the solvent water at } 18^{\circ} \text{ C. relative to mercury at o}^{\circ} \text{ C.}$  Then  $K_{18} - K_{18}^{\text{ws}} = k_{18} = \text{conductivity of the electrolyte in the solution measured.}$ 

 $\frac{k_{_{18}}}{}=\mu=$  conductivity of the electrolyte in the solution per molecule, or the "specific molecular conductivity."

## TABLE 417. — Value of $k_{18}$ for a few Electrolytes.

This short table illustrates the apparent law that the conductivity in very dilute solutions is proportional to the amount of salt dissolved.

| m       | KCl   | KCl NaCl |       | KC <sub>2</sub> H <sub>3</sub> O <sub>2</sub> | K <sub>2</sub> SO <sub>4</sub> | MgSO <sub>4</sub> |
|---------|-------|----------|-------|-----------------------------------------------|--------------------------------|-------------------|
| 0.00001 | 1.216 | 1.024    | 1.080 | 0.939                                         | 1.275                          | 1.056             |
| 0.00002 | 2.434 | 2.056    | 2.146 | 1.886                                         | 2.532                          | 2.104             |
| 0.00006 | 7.272 | 6.162    | 6.462 | 5.610                                         | 7.524                          | 6.216             |
| 0.0001  | 12.09 | 10.29    | 10.78 | 9.34                                          | 12.49                          | 10.34             |

#### TABLE 418. - Electro-Chemical Equivalents and Normal Solutions.

The following table of the electro-chemical equivalent numbers and the densities of approximately normal solutions of the salts quoted in Table 419 may be convenient. They represent grams per cubic centimeter of the solution at the temperature given.

| Salt dissolved. | Grams<br>per liter.                                                                                               | · m                                                                                 | Temp.                                                                             | Density.                                                                               | Salt dissolved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Grams<br>per liter.                                                                                     | m                                                                                                | Temp.                                                                                       | Density.                                                                                                             |
|-----------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| KCl             | 74-59<br>53-55<br>58-50<br>42-48<br>104-0<br>68.0<br>165.9<br>101.17<br>85.08<br>169.9<br>65-28<br>61.29<br>98.18 | 1.0<br>1.0009<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>0.5<br>0.5 | 15.2<br>18.6<br>18.4<br>18.4<br>18.6<br>15.0<br>18.6<br>18.7<br>-<br>18.3<br>18.6 | 1.0457<br>1.0152<br>1.0391<br>1.0227<br>1.0888<br>1.0592<br>1.1183<br>1.0601<br>1.0542 | K <sub>2</sub> SO <sub>4</sub>   Na <sub>2</sub> SO <sub>4</sub>   Na <sub>2</sub> SO <sub>4</sub>   Li <sub>2</sub> SO <sub>4</sub>   Na <sub>2</sub> SO <sub>4</sub>   Na <sub>2</sub> Co <sub>8</sub>   NCH   NCh | 87.16<br>71.09<br>55.09<br>60.17<br>80.58<br>79.9<br>69.17<br>53.04<br>56.27<br>36.51<br>63.13<br>49.06 | 1.0<br>1.0003<br>1.0007<br>1.0023<br>1.0<br>1.001<br>1.0006<br>1.0<br>1.0025<br>1.0041<br>1.0014 | 18.9<br>18.6<br>18.6<br>18.6<br>5.3<br>18.2<br>18.3<br>17.9<br>18.8<br>18.6<br>18.6<br>18.6 | 1.0658<br>1.0602<br>1.0445<br>1.0573<br>1.0774<br>1.0576<br>1.0576<br>1.0517<br>1.0477<br>1.0161<br>1.0318<br>1.0300 |

# SPECIFIC MOLECULAR CONDUCTIVITY \( \mu : MERCURY = 10^\circ\$.

| Salt dissolved.                                      | m=10                                                                                     | 5 3                                                                            | I                                    | 0.5                                          | 0.1                                          | .05                                         | .03                                  | 10.                                  |
|------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------------|--------------------------------------|--------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | - 77<br>- 75<br>- 75                                                                     |                                                                                | 919<br>968<br>907<br>752             | 672<br>958<br>997<br>948<br>839              | 736<br>1047<br>1069<br>1035<br>983           | 897<br>1083<br>1102<br>1078<br>1037         | 959<br>1107<br>1123<br>1101<br>1067  | 1098<br>1147<br>1161<br>1142<br>1122 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | -<br>-<br>-<br>35                                                                        | 487<br><br>- 150<br>31 448                                                     | 658<br>-<br>-<br>241<br>635          | 725<br>799<br>531<br>288<br>728              | 861<br>927<br>755<br>424<br>886              | 904<br>(976)<br>828<br>479<br>936           | 939<br>1006<br>(870)<br>537<br>(966) | 1006<br>1053<br>951<br>675<br>1017   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | - 8                                                                                      |                                                                                | 249<br>270<br>475<br>514<br>695      | 302<br>330<br>559<br>601<br>757              | 431<br>474<br>734<br>768<br>865              | 500<br>53 <sup>2</sup><br>784<br>817<br>897 | 556<br>587<br>828<br>851<br>(920)    | 685<br>715<br>906<br>915<br>962      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 30 24<br>660 127                                                                         | - 254                                                                          | 617<br>594<br>427<br>1820            | 694<br>671<br>510<br>1899                    | 817<br>784<br>682<br>2084<br>43              | 855<br>820<br>751<br>2343<br>62             | 877<br>841<br>799<br>2515<br>79      | 907<br>879<br>899<br>2855<br>132     |
| HCl                                                  | 600 142<br>610 147<br>148 16<br>423 99<br>0.5                                            | 0 2070                                                                         | 2780<br>2770<br>200<br>1718<br>8.4   | 3017<br>2991<br>250<br>1841<br>12            | 3244<br>3225<br>430<br>1986<br>31            | 3330<br>3289<br>540<br>2045<br>43           | 3369<br>3328<br>620<br>2078<br>50    | 3416<br>3395<br>790<br>2124<br>92    |
| Salt dissolved.                                      | .006 .00                                                                                 | .001                                                                           | .0006                                | ,0002                                        | 1000.                                        | .00006                                      | 400002                               | 100001                               |
| 1K2SO4                                               | 1130 116<br>1162 111<br>1176 111<br>1157 116                                             | 85 1193<br>97 1203<br>80 1190                                                  | 1220<br>1199<br>1209<br>1197<br>1190 | 1241<br>1209<br>1214<br>1204<br>1199         | 1249<br>1209<br>1216<br>1209<br>1207         | 1254<br>1212<br>1216<br>1215<br>1220        | 1266<br>1217<br>1216<br>1209<br>1198 | 1275<br>1216<br>1207<br>1205<br>1215 |
| ½BaCl <sub>2</sub>                                   | 1031 10<br>1068 10<br>982 10<br>740 8<br>1033 10                                         | 91 1101<br>33 1054<br>73 950                                                   | 1102<br>1109<br>1066<br>987          | 1118<br>1119<br>1084<br>1039                 | 1126<br>1122<br>1096<br>1062                 | 1133<br>1126<br>1100<br>1074<br>1077        | 1144<br>1135<br>1114<br>1084<br>1073 | 1142<br>1141<br>1114<br>1086<br>1080 |
|                                                      |                                                                                          | 3/ 1000                                                                        | 1069                                 | 1077                                         | 1078                                         | 10//                                        | 10/3                                 | 1000                                 |
| ½ZnSO <sub>4</sub>                                   | 744 86<br>773 83<br>933 95<br>939 93                                                     | 61 919<br>81 935<br>80 998<br>79 994<br>1008                                   | 953<br>967<br>1009<br>1004<br>1014   | 1077<br>1001<br>1015<br>1026<br>1020<br>1018 | 1078<br>1023<br>1034<br>1034<br>1029<br>1029 | 1032<br>1036<br>1038<br>1031<br>1027        | 1047<br>1052<br>1056<br>1035<br>1028 | 1060<br>1056<br>1054<br>1036<br>1024 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 744 86<br>773 85<br>933 95<br>939 95<br>976 99<br>921 96<br>891 97<br>956 10<br>3001 322 | 61 919<br>81 935<br>80 998<br>79 994<br>98 1008<br>42 952<br>13 919<br>10 1037 | 953<br>967<br>1009<br>1004           | 1001<br>1015<br>1026<br>1020                 | 1023<br>1034<br>1034<br>1029                 | 1032<br>1036<br>1038<br>1031                | 1047<br>1052<br>1056                 | 1060<br>1056<br>1054<br>1036         |

<sup>\*</sup> Acids and alkaline salts show peculiar irregularities.

## LIMITING VALUES OF $\mu$ . TEMPERATURE COEFFICIENTS.

## TABLE 420.- Limiting Values of µ.

This table shows limiting values of  $\mu = \frac{k}{m}$  .108 for infinite dilution for neutral salts, calculated from Table 271.

| Salt.                             | μ    | Salt.                | μ    | Salt.                                                       | μ    | Salt.                             | μ    |
|-----------------------------------|------|----------------------|------|-------------------------------------------------------------|------|-----------------------------------|------|
| ½K <sub>2</sub> SO <sub>4</sub> . | 1280 | ½BaCl₂ .             | 1150 | ½MgSO4 .                                                    | 1080 | ⅓H₂SO₄ .                          | 3700 |
| KCl                               | 1220 | ½KClO <sub>3</sub> . | 1150 | ½Na <sub>2</sub> SO <sub>4</sub> .                          | 1060 | HCl                               | 3500 |
| кі                                | 1220 | ⅓BaN₂O6 .            | 1120 | ½ZnCl                                                       | 1040 | HNO <sub>8</sub>                  | 3500 |
| NH4Cl                             | 1210 | ½CuSO <sub>4</sub> . | 1100 | NaCl                                                        | 1030 | ½H <sub>3</sub> PO <sub>4</sub> . | 1100 |
| KNO8                              | 1210 | AgNO <sub>3</sub> .  | 1090 | NaNO <sub>8</sub> .                                         | 980  | кон                               | 2200 |
| -                                 | -    | ½ZnSO <sub>4</sub> . | 1080 | K <sub>2</sub> C <sub>2</sub> H <sub>8</sub> O <sub>2</sub> | 940  | ½Na₂CO₃ .                         | 1400 |

If the quantities in Table 420 be represented by curves, it appears that the values of the specific molecular conductivities tend toward a limiting value as the solution is made more and more dilute. Although these values are of the same order of magnitude, they are not equal, but depend on the nature of both the jons forming the electrolyte.

are not equal, but depend on the nature of both the ions forming the electrolyte.

When the numbers in Table 421 are multiplied by Hittorf's constant, or 0.00011, quantities ranging between 0.14 and 0.10 are obtained which represent the velocities in millimetres per second of the ions when the electromotive force gradient is one volt per millimetre.

Specific molecular conductivities in general become less as the concentration is increased, which may be due to mutual interference. The decrease is not the same for different salts, but becomes much more rapid in salts of high valence.

Salts having acid or alkaline reactions show marked differences. They have small specific molecular conductivity in very dilute solutions, but as the concentration is in-

Salts having acid or alkaline reactions show marked differences. They have small specific molecular conductivity in very dilute solutions, but as the concentration is increased the conductivity rises, reaches a maximum and again falls off. Kohlrausch does not believe that this can be explained by impurities.  $H_2PO_4$  in dilute solution seems to approach a monobasic acid, while  $H_2SO_4$  shows two maxima, and like  $H_3PO_4$  approaches in very weak solution to a monobasic acid.

Kohlrausch concludes that the law of independent migration of the ions in media like water is sustained.

#### TABLE 421. - Temperature Coefficients.

The temperature coefficient in general diminishes with dilution, and for very dilute solutions appears to approach a common value. The following table gives the temperature coefficient for solutions containing o.or gram molecule of the salt.

| Salt.                           | Temp.<br>Coeff. | Salt.                                           | Temp.<br>Coeff. | Salt.                              | Temp.<br>Coeff. | Salt.                                                                                    | Temp.<br>Coeff. |
|---------------------------------|-----------------|-------------------------------------------------|-----------------|------------------------------------|-----------------|------------------------------------------------------------------------------------------|-----------------|
| KCl                             | 0.0221          | кі                                              | 0.0219          | ½K <sub>2</sub> SO <sub>4</sub> .  | 0.0223          | ½K₂CO <sub>8</sub>                                                                       | 0.0249          |
| NH <sub>4</sub> Cl              | 0.0226          | KNO <sub>3</sub>                                | 0.0216          | ½Na <sub>2</sub> SO <sub>4</sub> . | 0.0240          | ⅓Na <sub>2</sub> CO <sub>8</sub>                                                         | 0.0265          |
| NaCl                            | 0.0238          | NaNO <sub>8</sub>                               | 0.0226          | ½Li <sub>2</sub> SO <sub>4</sub> . | 0.0242          | WOW.                                                                                     |                 |
| LiCl                            | 0.0232          | AgNO <sub>3</sub>                               | 0.0221          | ½MgSO₄ .                           | 0.0236          | KOH                                                                                      | 0.0194          |
| ½BaCl₂                          | 0.0234          | Ba(NO <sub>8</sub> ) <sub>2</sub>               | 0.0224          | ½ZnSO <sub>8</sub> .               | 0.0234          | $HNO_8$ $\frac{1}{2}H_2SO_4$                                                             | 0.0162          |
| $\frac{1}{2}$ ZnCl <sub>2</sub> | 0.0239          | KClO <sub>8</sub>                               | 0.0219          | ½CuSO <sub>4</sub> .               | 0.0229          |                                                                                          |                 |
| ½MgCl₂ .                        | 0.0241          | KC <sub>2</sub> H <sub>8</sub> O <sub>2</sub> . | 0.0229          |                                    | -               | $ \begin{cases} \frac{1}{2} \text{H}_2 \text{SO}_4 \\ \text{for } m = .001 \end{cases} $ | 0.01 59         |

# THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

In the following table the equivalent conductance is expressed in reciprocal ohms. The concentration is expressed in milli-equivalents of solute per litre of solution at the temperature to which the conductance refers. (In the cases of potassium hydrogen sulphate and phosphoric acid the concentration is expressed in milli-formula-weights of solute, KHSO<sub>4</sub> or  $H_3PO_4$ , per liter of solution, and the values are correspondingly the modal, or "formal," conductances.) Except in the cases of the strong acids the conductance of the water was subtracted, and for sodium acetate, ammonium acetate and ammonium chloride the values have been corrected for the hydrolysis of the salts. The atomic weights used were those of the International Commission for 1905, referred to oxygen as 16.00. Temperatures are on the hydrogen gas scale.

# Concentration in gram equivalents.

Equivalent conductance in reciprocal ohms per centimeter cube gram equivalents per cubic centimeter.

| Substance.           | Concentration. |        | Equiv | alent con | nductanc | e at the | follow | ing ° C    | tempera    | tures. |            |
|----------------------|----------------|--------|-------|-----------|----------|----------|--------|------------|------------|--------|------------|
| Substance.           | Cor            | 180    | 250   | 500       | 75°      | 1000     | 1280   | 1560       | 2180       | 2810   | 306°       |
| Potassium chloride . | 0              | 130.1  |       | (232.5)   | (321.5)  | 414      | (519)  | 625        | 825        | 1005   | 1120       |
| " " .                | 2              | 126.3  | 146.4 | -         | -        | 393      | -      | 588        | 779        | 930    | 1008       |
| " " .                | 10             | 122.4  | 141.5 | 215.2     | 295.2    | 377      | 470    | 560        | 741        | 874    | 910        |
| " " .                | 80             | 113.5  | -     | -         |          | 342      | -      | 498        | 638        | 723    | 720        |
| " " .                | 100            | 112.0  | 129.0 | 194.5     | 264.6    | 336      | 415    | 490        |            |        | 0          |
| Sodium chloride      | 0              | 109.0  | -     | -         | -        | 362      | -      | 555        | 760        | 970    | 1080       |
| " - "                | 2              | 105.6  | -     | -         | - 1      | 349      | -      | 534        | 722        | 895    | 955<br>860 |
| " "                  | IO             | 102.0  | -     | -         | -        | 336      | T      | 511        | 685        | 820    |            |
| 66 66                | 80             | 93.5   | -     | -         | -        | 301      |        | 450        | 500        | 674    | 680        |
|                      | 100            | 92.0   | -     | _         | -        | 296      | -      | 442        | 780        | 965    | 1065       |
| Silver nitrate       | 0              | 115.8  | -     | -         | -        | 367      | -      | 570        |            | 877    |            |
| 66 66                | 2              | 112.2  | -     | -         | -        | 353      | _      | 539        | 727<br>673 | 790    | 935        |
|                      | IO             |        | _     |           |          | 337      | _      | 507<br>488 | 639        | 790    | 010        |
| " "                  | 20             | 105.1  |       |           |          | 326      | _      | 462        | 599        | 680    | 680        |
|                      | 40<br>80       | 96.5   |       |           |          | 294      | 1      | 432        | 552        | 614    | 604        |
| 66 66                |                | 90.5   |       |           |          | 289      |        | 43~        | 332        | 014    | 004        |
| Sodium acetate : :   | 100            | 78.1   |       |           | _        | 285      |        | 450        | 660        | _      | 924        |
| Sodium acetate       | 2              | 74.5   |       | _         | 1_       | 268      | _      | 421        | 578        | _      | 801        |
|                      | 10             | 71.2   | _     | _         | _        | 253      | _      | 396        | 542        | _      | 702        |
| "                    | 80             | 63.4   | _     | _         | _        | 221      | 11_11  | 340        | 452        |        | /          |
| Magnesium sulphate   | 0              | 114.1  | _     | _         | _        | 426      | _      | 690        | 1080       |        |            |
| Magnesium surpliace  | 2              | 94.3   |       | _         |          | 302      | -      | 377        | 260        |        |            |
| 66 66                | 10             | 76.1   | -     | _         | -        | 234      | -0     | 241        | 143        |        |            |
| 66 66                | 20             | 67.5   | _     | _         | _        | 190      | -      | 195        | 110        |        |            |
| " "                  | 40             | 59.3   | -     | -         | -        | 160      | -      | 158        | 88         |        |            |
|                      | 80             | 52.0   | -     | -         | -        | 136      | -      | 133        | 75         |        |            |
| " " .                | 100            | 49.8   | -     | -         | -        | 130      | -      | 126        |            |        |            |
| "                    | 200            | 43.1   | -     | -         | -        | 110      | -      | 100        | (0)        |        |            |
| Ammonium chloride    | 0              | 131.1  | 152.0 | -         | -        | (415)    | -      | (628)      | (841)      | -      | (1176)     |
| . "                  | 2              | 126.5  | 146.5 | -         | -        | 399      | -      | 601        | 801        | -      | 1031       |
| 66 66                | 10             | 122.5  | 141.7 | -         | -        | 382      | -      | 573        | 758        | -      | 925<br>828 |
| 66 - 66 .            | 30             | 118.1  | -     | -         | -        | -        | -      | -          | -          | ~      | 828        |
| Ammonium acetate.    | 0              | (99.8) | -     | -         | -        | (338)    | -      | (523)      |            |        |            |
| " "                  | 10             | 91.7   | -     | -         | -        | 300      | -      | 456        |            |        |            |
| " " .                | 25             | 88.2   | -     | -         | -        | 286      | -      | 426        |            |        |            |
|                      | 1              | 1      | 1     | !         |          |          | 1      | 1          | 1          | 1      |            |

From the investigations of Noyes, Melcher, Cooper, Eastman and Kato; Journal of the American Chemical Society, 30, p. 335, 1908.

# THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS AND BASES IN AQUEOUS SOLUTIONS.

| Substance.           | Concen-<br>tration. |                | Equiv          | alent co       | nductano   | e at th    | e follow   | ving ° C   | tempera      | atures. |             |
|----------------------|---------------------|----------------|----------------|----------------|------------|------------|------------|------------|--------------|---------|-------------|
| Substance.           | Con                 | 180            | 25°            | 50°            | 75°        | 1000       | 1280       | 1560       | 2180         | 2810    | 306°        |
| Barium nitrate       | 0                   | 116.9          | -              | -              | -          | 385        | -          | 600        | 840          | 1120    | 1300<br>824 |
| " "                  | 2                   | 109.7          | -              | -              | -          | 352        | -          | 536        | 715<br>618   | 828     | 824         |
| " "                  | 10                  | 101.0          | -              |                | _          | 322<br>280 | -          | 481        |              | 658     | 615         |
| 16 16                | 40<br>80            | 88.7           | _              | _              |            | 258        |            | 372        | 507          | 503     | 448         |
| 66 66                | 100                 | 79.1           | _              |                | _          | 249        |            | 3/2        | 449          | 430     |             |
| Potassium sulphate . | 0                   | 132.8          |                | _              | _          | 455        | _          | 715        | 1065         | 1460    | 1725        |
| " "                  | 2                   | 124.8          | -              | _              | _          | 402        | _          | 605        | 806          | 893     | 867         |
| 66 66                | 10                  | 115.7          | -              | -              | -          | 365        | -          | 537        | 672          | 687     | 637         |
| 66 66                | 40                  | 104.2          | -              | -              | -          | 320        | _          | 455        | 545          | 519     | 466         |
| " "                  | 80                  | 97.2           |                | -              |            | 294        | -          | 415        | 482          | 448     | 396         |
| " "                  | 100                 | 95.0           | -              |                | _          | 286        |            | 0          |              |         |             |
| Hydrochloric acid .  | 0                   | 379.0          | -              | -              | _          | 850        | -          | 1085       | 1265         | 1380    | 1424        |
| " "                  | 2                   | 373.6          | -              |                |            | 826        | -1         | 1048       | 1217         | 1332    | 1337        |
| " "                  | 80                  | 368.1          | _              |                |            | 807        | _          | 946        | 1168         | 1226    | 1162        |
| 66 66                | 100                 | 353.0<br>350.6 |                |                |            |            |            | 940        | 1006         | 1040    | 002         |
| Nitric acid          | 0                   | 377.0          | 421.0          | 570            | 706        | 754<br>826 | 945        | 1047       | (1230)       | _       | (1380)      |
| " "                  | 2                   | 371.2          | 413.7          | 559            | 690        | 806        | 919        | 1012       | 1166         | _       | 1156        |
| 46 46                | 10                  | 365.0          | 406.0          | 548            | 676        | 786        | 893        | 978        |              |         | 5           |
| 66 66                | 50                  | 353.7          | 393-3          | 528            | 649        | 750        | 845        | 917        |              |         |             |
| " "                  | 100                 | 346.4          | 385.0          | 516            | 632        | 728        | 817        | 880        | -            | -       | 454*        |
| Sulphuric acid       | 0                   | 383.0          | (429)          | (591)          | (746)      | 891        | (1041)     |            | 1505         |         | (2030)      |
| 66 66                | 2                   | 353.9          | 390.8          | 501            | 561        | 57 I       | 551        | 536<br>481 | 563          | -       | 637         |
| 66 66                | 10                  | 309:0          | 337.0          | 406            | 435        | 446        | 460        | 481        | 533          |         |             |
|                      | 50                  | 253.5          | 273.0          | 323            | 356        | 384        | 417        | 448        | 502          |         |             |
| ;                    | 100                 | 233.3          | 251.2          | 300            | 336        | 369        | 404        | 435        | 483          | _       | 474*        |
| Potassium hydrogen   | 2                   | 455.3          | 506.0<br>318.3 | 661.0          | 754        | 784        | 773        | 754        |              |         |             |
| sulphate             | 50                  | 295.5<br>263.7 | 283.1          | 374·4<br>329.1 | 403        | 422        | 446<br>402 | 477<br>435 |              |         |             |
| Phosphoric acid      | 0                   | 338.3          | 376            | 510            | 354<br>631 | 375<br>730 | 839        | 930        |              |         |             |
| " "                  | 2                   | 283.1          | 311.9          | 401            | 464        | 498        | 508        | 489        |              |         |             |
| 66 66                | ` IO                | 203.0          | 222.0          | 273            | 300        | 308        | 298        | 274        |              |         |             |
| 66 66                | 50                  | 122.7          | 132.6          | 157.8          | 168.6      | 168        | 158        | 142        |              |         |             |
| " "                  | 100                 | 96.5           | 104.0          | 122.7          | 129.9      | 128        | 120        | 108        |              |         |             |
| Acetic acid          | 0                   | (347.0)        | -              | -              | -          | (773)      | -          | (980)      | (1165)       |         | (1268)      |
| 66 66                | 10                  | 14.50          | -              | -              | -          | 25.1       | 1-1        | 22.2       | 14.7         |         |             |
| 66 66                | 30<br>80            | 8.50           |                | _              | -          | 14.7       | -          | 13.0       | 8.65         |         |             |
| " "                  | 100                 | 5.22           |                | _              |            | 9.05       | _          | 8.00       | 5.34<br>4.82 |         | T. Ph       |
| Sodium hydroxide     | 0                   | 216.5          |                | _              |            | 594        |            | 835        | 1060         |         | 1.57        |
| " " "                | 2                   | 212,1          | _              | _              | _          | 582        |            | 814        | 1000         |         |             |
| 46 46                | 20                  | 205.8          | _              | _              | _          | 559        | -          | 771        | 930          |         |             |
| 66 66                | 50                  | 200.6          | -              | -              | -          | 540        | -1         | 738        | 873          |         |             |
| Barium hydroxide .   | 0                   | 222            | 256            | 389            | (520)      | 645        | (760)      | 738<br>847 | ,,,          |         |             |
| " "                  | 2                   | 215            | -              | 359            | 4          | 591        |            |            |              |         |             |
| 66 66                | 10                  | 207            | 235            | 342            | 449        | 548        | 664        | 722        |              |         |             |
| " "                  | 50                  | 191.1          | 215.1          | 308            | 399        | 478        | 549        | 593        |              |         |             |
|                      | 100                 | 180.1          | 204.2          | 291            | 373        | 443        | 503        | 531        | ( )          |         | 12,06       |
| Ammonium hydrox-     | 10                  | 9.66           | (271)          | (404)          | (526)      | (647)      | (764)      | (908)      | (1141)       |         | (1406)      |
| ide                  | 30                  | 5.66           | _              |                |            | 13.6       |            | 13.0       | 15.6         |         |             |
| 100                  | 100                 | 3.10           | 3.62           | 5.35           | 6.70       | 7.47       | _          | 7.17       | 4.82         | _       | 1.33        |
|                      |                     | 1              | 3.02           | 3.33           | 5.75.      | / 4/       |            | 1 , ,      | 4.02         |         | 2.55        |

<sup>\*</sup> These values are at the concentration 80.0.

# THE EQUIVALENT CONDUCTIVITY OF SOME ADDITIONAL SALTS IN AQUEOUS SOLUTION.

Conditions similar to those of the preceding table except that the atomic weights for 1908 were used.

| Substance.              | Concen-    |              | Equivalen    | t conduct    | ance at t      | he follow    | ving ° C     | temperatu      | ire.      |
|-------------------------|------------|--------------|--------------|--------------|----------------|--------------|--------------|----------------|-----------|
| Subtance.               | tration.   | 00           | 180          | 25°          | 500            | 75°          | 1000         | 1280           | 1560      |
| Potassium nitrate       | 0 2        | 80.8         | 126.3        | 145.1        | 219            | 299<br>289.9 | 384          | 485            | 580       |
| 66 66                   | 12.5       | 75.3         | 117.2        | 134.9        | 202.9          | 276.4        | 351.5        | 435.4          | 551       |
| " "                     | 50         | 70.7         | 109.7        | 126.3        | 189.5          | 257.4        | 326.1        | 402.9          | 476.1     |
| " "                     | 100        | 67.2         | 104.5        | 120.3        | 180.2          | 244.I        | 308.5        | 379.5          | 447.3     |
| Potassium oxalate       | 0          | 79.4         | 127.6        | 147.5        | 230            | 322          | 419          | 538            | 653       |
|                         | 2          | 74.9         | 119.9        | 139.2        | 215.9          | 300.2        | 389.3        | 489.1          | 587       |
|                         | 12.5       | 69.3         | III.I        | 129.2        | 199.1          | 275.1        | 354.1        | 438.8          | 524.3     |
| 46 46                   | 50<br>100  | 63           | 94.6         | 116.5        | 178.6          | 244.9        | 312.2        | 383.8          | 449.5     |
| 66 66                   | 200        | 59.3<br>55.8 | 88.4         | 109.3        | 155            | 227.5        | 288.9        | 353.2          | 409.7     |
| Calcium nitrate         | 0          | 70.4         | 112.7        | 130.6        | 202            | 282          | 369          | 321.9          | 372.1     |
| 66 66                   | 2          | 66.5         | 107.1        | 123.7        | 191.9          | 266.7        | 346.5        | 438.4          | 575 529.8 |
| " "                     | 12.5       | 61.6         | 98.6         | 114.5        | 176.2          | 244          | 314.6        | 394.5          | 473.7     |
| " "                     | 50         | 55.6         | 88.6         | 102.6        | 157.2          | 216.2        | 276.8        | 343            | 405.1     |
| " "                     | 100        | 51.9         | 82.6         | 95.8         | 146.1          | 199.9        | 255.5        | 315.1          | 369.1     |
|                         | 200        | 48.3         | 76.7         | 88.8         | 135.4<br>288   | 184.7        | 234.4        | 288            | 334-7     |
| Potassium ferrocyanide. | 0          | 98.4         | 159.6        | 185.5        | 288            | 403          | 527          |                |           |
|                         | 0.5        | 91.6         | -            | 171.1        | 2120           |              |              |                |           |
| 46 44                   | 2.<br>12.5 | 84.8         | 137          | 158.9        | 243.8          | 335.2        | 427.6        |                |           |
| 66 66                   | 50         | 71<br>58.2   | 93.7         | 108.6        | 200.3<br>163.3 | 271<br>219.5 | 340<br>272.4 |                |           |
| 46 46                   | 100        |              | 84.9         | 98.4         | 148.1          | 198.1        | 245          |                |           |
| "                       | 200        | 53<br>48.8   | 77.8         | 90.1         | 135.7          | 180.6        | 222.3        |                |           |
| 66 66                   | 400        | 45.4         | 72.1         | 83.3         | 124.8          | 165.7        | 203.1        | -              |           |
| Barium ferrocyanide     | 0          | 91           | 150          | 176          | 277            | 393<br>166.2 | 521          | 2              |           |
| " "                     | 2          | 46.9         | 75           | 86.2         | 127.5          |              | 202.3        |                |           |
|                         | 12.5       | 30.4         | 48.8         | 56.5         | 83.1           | 107          | 129.8        | 0 _            | 1         |
| Calcium ferrocyanide .  | 0          | 88 -         | 146          | 171          | 271            | 386          | 512          |                |           |
| " "                     | 12.5       | 47.1         | 75.5         | 86.2         | 130            |              |              |                |           |
| 66                      | 50         | 31.2<br>24.1 | 49.9         | 57·4<br>44·4 | 64.6           | 81.9         |              |                |           |
| " "                     | 100        | 21.9         | 35.1         | 44.4         | 58.4           |              | 84.3         |                |           |
| "                       | 200        | 20.6         | 32.9         | 37.8         | 55             | 73.7<br>68.7 | 77.5         |                |           |
| 66 66                   | 400        | 20.2         | 32.2         | 37.1         |                | 67.5         | 76.2         |                |           |
| Potassium citrate       | 0          | 76.4         | 124.6        | 144.5        | 54<br>228      | 320          | 420          |                |           |
| " "                     | 0.5        | -            | 120.1        | 139.4        |                |              |              |                |           |
| " "                     | 2          | 71           | 115.4        | 134.5        | 210.1          | 293.8        | 381.2        |                |           |
|                         | 5          | 67.6         | 109.9        | 128.2        | 198.7          | 276.5        | 357.2        |                |           |
| " "                     | 12.5       | 62.9         | 101.8        | 118.7        | 183.6          | 254.2        | 326          |                |           |
| 44 44                   | 50         | 54.4         | 87.8<br>80.8 | 102.1        | 157.5          | 196.5        | 273          |                |           |
|                         | 300        | 43.5         | 69.8         | 93.9         | 143.7          | 167          | 209.5        |                |           |
| Lanthanum nitrate       | 0          | 75.4         | 122.7        | 142.6        | 223            | 313          | 413          | 534            | 651       |
| " "                     | 2          | 68.9         | 110.8        | 128.9        | 200.5          | 279.8        | 363.5        |                | 549       |
| " "                     | 12.5       | 61.4         | 98.5         | 114.4        | 176.7          | 243.4        | 311.2        | 457·5<br>383.4 | 447.8     |
| " "                     | 50         | 54           | 86.1         | 99-7         | 152.5          | 207.6        | 261.4        | 315.8          | 357-7     |
| 66 66                   | 100        | 49.9         | 79.4         | 91.8         | 139.5          | 189.1        | 236.7        | 282.5          | 316.3     |
|                         | 200        | 46           | 72.1         | 83.5         | 126.4          | 170.2        | 210.8        | 249.6          | 276.2     |
|                         |            |              |              |              |                |              |              |                |           |

From the investigations of Noyes and Johnston, Journal of the American Chemical Society, 31, p. 287, 1909.

SMITHSONIAN TABLES.

## CONDUCTANCE OF IONS. - HYDROLYSIS OF AMMONIUM ACETATE.

TABLE 424. - The Equivalent Conductance of the Separate Ions.

| Ion. | 00                                           | 180                                                              | 25°                                    | 500                                   | 75°                                   | 1000                                          | 1280                            | 1560                            |
|------|----------------------------------------------|------------------------------------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------------|---------------------------------|---------------------------------|
| K    | 40.4                                         | 64.6                                                             | 74·5                                   | 115                                   | 159                                   | 206                                           | 263                             | 317                             |
|      | 26                                           | 43.5                                                             | 50·9                                   | 82                                    | 116                                   | 155                                           | 203                             | 249                             |
|      | 40.2                                         | 64.5                                                             | 74·5                                   | 115                                   | 159                                   | 207                                           | 264                             | 319                             |
|      | 32.9                                         | 54.3                                                             | 63·5                                   | 101                                   | 143                                   | 188                                           | 245                             | 299                             |
|      | 33                                           | 55 <sup>2</sup>                                                  | 65                                     | 104                                   | 149                                   | 200                                           | 262                             | 322                             |
|      | 30                                           | 51 <sup>2</sup>                                                  | 60                                     | 98                                    | 142                                   | 191                                           | 252                             | 312                             |
|      | 35                                           | 61                                                               | 7 <sup>2</sup>                         | 119                                   | 173                                   | 235                                           | 312                             | 388                             |
| Cl   | 41.1<br>40.4<br>20.3<br>41<br>39<br>36<br>58 | 65.5<br>61.7<br>34.6<br>68 <sup>2</sup><br>63 <sup>2</sup><br>60 | 75.5<br>70.6<br>40.8<br>79<br>73<br>70 | 116<br>104<br>67<br>125<br>115<br>113 | 160<br>140<br>96<br>177<br>163<br>161 | 207<br>178<br>130<br>234<br>213<br>214<br>321 | 264<br>222<br>171<br>303<br>275 | 318<br>263<br>211<br>370<br>336 |
| Н    | 240                                          | 314                                                              | 350                                    | 465                                   | 565                                   | 644                                           | 722                             | 777                             |
|      | 105                                          | 172                                                              | 192                                    | 284                                   | 360                                   | 439                                           | 525                             | 592                             |

From Johnson, Journ. Amer. Chem. Soc., 31, p. 1010, 1909.

TABLE 425. - Hydrolysis of Ammonium Acetate and Ionization of Water.

| Temperature. | Percentage<br>hydrolysis. | Ionization constant of water.    | Hydrogen-ion concentration in pure water. Equivalents per liter. |
|--------------|---------------------------|----------------------------------|------------------------------------------------------------------|
| t            | rooh                      | K <sub>W</sub> ×10 <sup>14</sup> | C <sub>H</sub> ×10 <sup>7</sup>                                  |
| 0            | -                         | 0.089                            | 0.30                                                             |
| 18           | (0.35)                    | 0.46                             | 0.68                                                             |
| 25           | -                         | 0.82                             | 0.91                                                             |
| 100          | 4.8                       | 48.                              | 6.9                                                              |
| 156          | 18.6                      | 223.                             | 14.9                                                             |
| 218          | 52.7                      | 461.                             | 21.5                                                             |
| 306          | 91.5                      | 168.                             | 13.0                                                             |

Noyes, Kato, Kanolt, Sosman, No. 63 Publ. Carnegie Inst., Washington.

## TABLES 426, 427.

### DIELECTRIC STRENGTH.

TABLE 426, - Steady Potential Difference in Volts required to produce a Spark in Air with Ball Electrodes.

| Spark length.                                                                                                           | R = o.<br>Points.                                                                               | R = 0.25<br>cm.                                                                                        | R = 0.5<br>cm.                                                                                                       | R=1 cm.                                                                                                              | R = 2 cm.                                                                                  | R=3 cm.                                                             | $R = \infty$ . Plates.                                             |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|
| 0.02<br>0.04<br>0.06<br>0.08<br>0.1<br>0.2<br>0.3<br>0.4<br>0.5<br>0.6<br>0.8<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0 | 3720<br>4680<br>5310<br>5970<br>6300<br>6840<br>8070<br>8070<br>9960<br>10140<br>11250<br>12210 | 5010<br>8610<br>11140<br>14040<br>15990<br>17130<br>18060<br>20670<br>22770<br>24570<br>28380<br>29580 | 1560<br>2460<br>3300<br>4050<br>4740<br>8490<br>11460<br>14310<br>16950<br>19740<br>23790<br>26190<br>20970<br>33060 | 1530<br>2430<br>3240<br>3990<br>4560<br>8490<br>11340<br>14340<br>17220<br>20070<br>24780<br>27810<br>37260<br>45480 | 2340<br>3060<br>3810<br>4560<br>8370<br>11190<br>14250<br>16650<br>20070<br>25830<br>29850 | 4500<br>77770<br>10560<br>13140<br>16470<br>19380<br>26220<br>32760 | 4350<br>7590<br>10650<br>13560<br>16320<br>19110<br>24960<br>30840 |

Based on the results of Baille, Bichat-Blondot, Freyburg, Liebig, Macfarlane, Orgler, Paschen, Quincke, de la Rue, Wolff. For spark lengths from 1 to 200 wave-lengths of sodium light, see Earhart, Phys. Rev. 15, p. 163; Hobbs, Phil. Mag. 10, p. 607, 1905.

TABLE 427. — Alternating Current Potentials required to produce a Spark in Air with various Ball Electrodes.

The potentials given are the maxima of the alternating waves used. Frequency, 33 cycles per second.

| Spark length.                                                                                         | R=1 cm.                                                                                                                                                                      | R = 1.92                                                                                                                                          | R = 5                                                                                                                                                      | R = 7.5                                                                                                                                                    | R=10                                                                                                                                              | R=15                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 0.08<br>.10<br>.15<br>.20<br>.25<br>0.30<br>.35<br>.40<br>.45<br>.50<br>0.6<br>.7<br>.8<br>0.9<br>1.0 | 3770<br>4400<br>5990<br>7510<br>9045<br>10480<br>11980<br>13360<br>14770<br>16140<br>18700<br>21350<br>23820<br>26190<br>28380<br>.32400<br>35850<br>38750<br>40900<br>42950 | 4380<br>5940<br>7440<br>8970<br>10400<br>11890<br>13300<br>14700<br>16070<br>18730<br>21380<br>24070<br>26640<br>29170<br>34100<br>38850<br>43400 | 4330<br>5830<br>7340<br>8850<br>10270<br>11670<br>13100<br>14400<br>15890<br>18550<br>21140<br>23740<br>26400<br>28950<br>33790<br>38850<br>43570<br>48300 | 4290<br>5790<br>7250<br>8710<br>10130<br>11570<br>12930<br>14290<br>15640<br>18300<br>20980<br>23490<br>26130<br>28770<br>33660<br>38580<br>47900<br>52400 | 4245<br>5800<br>7320<br>8760<br>10180<br>11610<br>12980<br>14330<br>15690<br>18350<br>20990<br>23540<br>26110<br>28680<br>33640<br>38620<br>43520 | 4230<br>5780<br>7330<br>8760<br>10150<br>11590<br>12970<br>14320<br>15690<br>18400<br>21000<br>23550<br>26090<br>28610<br>33620<br>38580 |

Based upon the results of Kawalski, Phil. Mag. 18, p. 699, 1909.

### DIELECTRIC STRENGTH.

TABLE 428. — Potential Necessary to produce a Spark in Air between more widely Separated Electrodes.

| cm.                                                                                     | Steady potentials.                                       |                                                                  |                                                                                                          |                                                            |                                                                                                                                | Steady potentials.                                                                        |                             |                                        | cm.                                                          | Alter-<br>nt. | Steady potentials. |  |  |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------|--------------------------------------------------------------|---------------|--------------------|--|--|
| Spark length, cm.                                                                       | ints.                                                    | Ball electrodes.                                                 |                                                                                                          | Cup ele                                                    | ctrodes.                                                                                                                       | Spark length, cm.                                                                         | 5                           | Ball ele                               | ctrodes.                                                     |               |                    |  |  |
| Spark                                                                                   | Dull points. Al                                          | R=1 cm.                                                          |                                                                                                          |                                                            | Projection. 4.5 mm. 1.5 mm.                                                                                                    |                                                                                           | Dull points,<br>nating curi | R=1 cm.                                | R=2.5 cm.                                                    |               |                    |  |  |
| 0.3<br>0.5<br>0.7<br>1.0<br>1.2<br>1.5<br>2.0<br>2.5<br>3.0<br>3.5<br>4.0<br>4.5<br>5.0 | 12000<br>-<br>29200<br>-<br>40000<br>-<br>48500<br>56500 | 30240<br>33800<br>37930<br>42320<br>45000<br>46710<br>-<br>49100 | 17620<br>23050<br>31390<br>36810<br>44310<br>56000<br>65180<br>71200<br>78300<br>78500<br>81540<br>83800 | -<br>-<br>31400<br>-<br>56500<br>-<br>80400<br>-<br>101700 | 11280<br>17420<br>22950<br>31260<br>36700<br>44510<br>56530<br>68720<br>81140<br>92400<br>103800<br>114600<br>126500<br>135700 | 6.0<br>7.0<br>8.0<br>10.0<br>12.0<br>14.0<br>15.0<br>16.0<br>20.0<br>25.0<br>30.0<br>35.0 | 61000<br>                   | 52000<br>52400<br>74300<br>-<br>-<br>- | 86830<br>90200<br>91930<br>93300<br>94400<br>94700<br>101000 |               |                    |  |  |

This table for longer spark lengths contains the results of Voege, Ann. der Phys. 14, 1904, using alternating current and "dull point" electrodes, and the results with steady potential found in the recent very careful work of C. Müller, Ann. d. Phys. 28, p. 585, 1909.



The specially constructed electrodes for the columns headed "cup electrodes" had the form of a projecting knob 3 cm. in diameter and having a height of 4-5 mm. and 1.5 mm. respectively, attached to the plane face of the electrodes. These electrodes give a very satisfactory linear relation between the spark lengths and the voltage throughout the range studied.

TABLE 429. - Effect of the Pressure of the Gas on the Dielectric Strength.

Voltages are given for different spark lengths 1.

| Pressure.<br>cm. Hg. | l=0.04 | l=0.06                 | l=0.08            | <i>l</i> =0.10     | <i>ไ</i> =0.20              | <i>l</i> =0 30              | <i>l</i> =0.40               | <i>l</i> =0.50               |
|----------------------|--------|------------------------|-------------------|--------------------|-----------------------------|-----------------------------|------------------------------|------------------------------|
| 2<br>4<br>6<br>10    | -      | -<br>483<br>582<br>771 | 567<br>690<br>933 | 648<br>795<br>1090 | 744<br>1015<br>1290<br>1840 | 939<br>1350<br>1740<br>2450 | 1110<br>1645<br>2140<br>3015 | 1266<br>1915<br>2505<br>3580 |
| 15                   | -      | 1060                   | 1280              | 1490               | 2460                        | 3300                        | 4080                         | 4850                         |
| 25                   | 1110   | 1420                   | 1725              | 2040               | 3500                        | 4800                        | 6000                         | 7120                         |
| 35                   | 1375   | 1820                   | 2220              | 2615               | 4505                        | 6270                        | 7870                         | 9340                         |
| 45                   | 1640   | 2150                   | 2660              | 3120               | 5475                        | 7650                        | 9620                         | 11420                        |
| 55                   | 1820   | 2420                   | 3025              | 3610               | 6375                        | 8950                        | 11290                        | 13455                        |
| 65                   | 2040   | 2720                   | 3400              | 4060               | 7245                        | 10210                       | 12950                        | 15470                        |
| 75                   | 2255   | 3035                   | 3805              | 4565               | 8200                        | 11570                       | 14650                        | 17450                        |

This table is based upon the results of Orgler, 1899. See this paper for work on other gases (or Landolt-Börnstein-Meyerhoffer).

Meyerhoffer).
For long spark lengths in various gases see Voege, Electrotechn. Z. 28, 1907. For dielectric strength of air and CO<sub>2</sub> in cylindrical air condensers, see Wien, Ann. d. Phys. 29, p. 679, 1909.

#### DIELECTRIC STRENGTH.

#### TABLE 430. - Dielectric Strength of Materials.

Potential necessary for puncture expressed in kilovolts per centimeter thickness of the dielectric.

| Substance.           | Kilovolts<br>per cm.                                        |                                                                              |                                                       |                                                                                                                 |                                                            | Kilovolts<br>per cm.                                   |
|----------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|
| Ebonite Empire cloth | 300-1500<br>90<br>80-200<br>20<br>30-60<br>100-200<br>40-90 | Castor  Cottonseed Lard  Linseed, raw  "boiled  Lubricating Neatsfoot  Olive | 1.0 " 0.2 " 1.0 " 0.2 " 1.0 " 0.2 " 1.0 " 1.0 " 1.0 " | 190<br>130<br>70<br>140<br>40<br>185<br>90<br>190<br>200<br>90<br>170<br>215<br>160<br>180<br>180<br>190<br>110 | Blotting Manilla Paraffined Varnished . Paraffine : Melted | 350<br>400<br>230<br>450<br>45-75<br>160-500<br>90-130 |

TABLE 431. - Potentials in Volts to Produce a Spark in Kerosene.

| Spark length. | Electrodes Balls of Diam. d. |       |       |       |  |  |  |  |  |
|---------------|------------------------------|-------|-------|-------|--|--|--|--|--|
| mm.           | 0.5 cm.                      | ı cm. | 2 cm. | 3 cm. |  |  |  |  |  |
| 0,1           | 3800                         | 3400  | 2750  | 2200  |  |  |  |  |  |
| .2            | 7500                         | 6450  | 4800  | 3500  |  |  |  |  |  |
| -3            | 10250                        | 9450  | 7450  | 4600  |  |  |  |  |  |
| .4            | 11750                        | 10750 | 9100  | 5600  |  |  |  |  |  |
|               | 13050                        | 12400 | 11000 | 6900  |  |  |  |  |  |
| .5<br>.6      | 14000                        | 13550 | 12250 | 8250  |  |  |  |  |  |
| .8            | 15500                        | 15100 | 13850 | 10450 |  |  |  |  |  |
| 1.0           | 16750                        | 16400 | 15250 | 12350 |  |  |  |  |  |

Determinations of the dielectric strength of the same substance by different observers do not agree well. For a discussion of the sources of error see Mościcki, Electrotechn. Z. 25, 1904.

For more detailed information on the dependence of the sparking distance in oils as a function of the nature of the electrodes, see Edmondson, Phys. Review 6, p. 65, 1898.

#### DIELECTRIC CONSTANTS.

## TABLE 432. — Dielectric Constant (Specific Inductive Capacity) of Gases. Atmospheric Pressure.

Wave-lengths of the measuring current greater than 10000 cm.

| Gas.                            |         | Temp. |                      | c constant<br>red to | Authority.                           |
|---------------------------------|---------|-------|----------------------|----------------------|--------------------------------------|
| Ods.                            |         | °C.   | Vacuum=1             | Air=1                | Trumonty.                            |
| Air                             |         | 0 -   | 1.000590             | I.000000<br>I.000001 | Boltzmann, 1875.<br>Klemenčič, 1885. |
| Ammonia                         |         | 20    | 1.00718              | 1.00659              | Bädeker, 1901.                       |
| Carbon bisulphide               | : : :   | 0     | 1.00290              | 1.00231              | Klemenčič.<br>Bädeker.               |
| Carbon dioxide .                |         | 0 0   | 1.000946             | 1.000356             | Boltzmann.<br>Klemenčič.             |
| Carbon monoxide.                |         | 0     | 1.000690             | 1.000100             | Boltzmann.<br>Klemenčič.             |
| Ethylene                        |         | 0 0   | 1.00131              | 1.00072              | Boltzmann.<br>Klemenčič.             |
| Hydrochloric acid               |         | 100   | 1.00258              | 1.00199              | Bädeker.                             |
| Hydrogen                        |         | 0     | 1.000264<br>1.000264 | o.999674<br>o.999678 | Boltzmann.<br>Klemenčič.             |
| Methane                         |         | 0     | 1.000944             | 1.000354             | Boltzmann.<br>Klemenčič.             |
| Nitrous oxide (N <sub>2</sub> O |         | 0     | 1.00116              | 1.00057              | Boltzmann.<br>Klemenčič.             |
| Sulphur dioxide . "             | : : :   | 0 0   | 1.00993              | 1.00934              | Bädeker.<br>Klemenčič.               |
| Water vapor, 4 atmo             | spheres | 145   | 1.00705              | 1.00646              | Bädeker.                             |

## TABLE 433. - Variation of the Dielectric Constant with the Temperature.

For variation with the pressure see next table.

If  $D_{\theta}$  = the dielectric constant at the temperature  $\theta^{\circ}$  C.,  $D_{t}$  at the temperature  $t^{\circ}$  C., and  $\alpha$  and  $\beta$  are quantities given in the following table, then

$$D_{\theta} = D_t \left[ \mathbf{1} - \alpha (t - \theta) + \beta (t - \theta)^2 \right].$$

The temperature coefficients are due to Bädeker.

| Gas.            | α                       | β                       | Range of temp. ° C. |
|-----------------|-------------------------|-------------------------|---------------------|
| Ammonia         | 5.45 × 10 <sup>-6</sup> | 2.59 × 10 <sup>-7</sup> | 10 — 110            |
| Sulphur dioxide | 6.19 × 10 <sup>-6</sup> | 1.86 × 10 <sup>-7</sup> | 0-110               |
| Water vapor .   | 1.4×10 <sup>-4</sup>    | -                       | 145                 |

The dielectric constant of air at atmospheric pressure but with varying temperature may also be calculated from the fact that D-1 is approximately proportional to the density.

# TABLES 434, 435. DIELECTRIC CONSTANTS (continued).

TABLE 434. - Change of the Dielectric Constant of Gases with the Pressure.

| Gas.                                     | Temper-<br>ature, ° C. | Pressure atmos.                                                                                          | Dielectric constant.                                                                                                                                                | Authority.                                                                                                     |
|------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Air  " " " " " " " " " " " " " " " " " " | 19                     | 20<br>40<br>60<br>80<br>100<br>20<br>40<br>60<br>80<br>100<br>120<br>140<br>160<br>180<br>10<br>20<br>40 | 1.0108<br>1.0218<br>1.0218<br>1.0330<br>1.0548<br>1.0101<br>1.0196<br>1.0294<br>1.0387<br>1.0482<br>1.0579<br>1.0674<br>1.0760<br>1.0845<br>1.020<br>1.060<br>1.010 | Tangl, 1907.  """  """  Occhialini, 1905.  """  """  """  """  Linde, 1895.  """  """  """  """  """  """  """ |

TABLE 435. - Dielectric Constants of Liquids.

A wave-length greater than 10000 centimeters is denoted by ∞.

| Substance.        | Temp.   Wave length cm. | Dielectric constant.                                                                                                                                         | Author-                                   | Substance.                                                                       | Temp. ° C.                                                | Wave-<br>length,<br>cm.                  | Dielectric constant.                                                                                                                                 | Author-                                |
|-------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Alcohol:     Amyl | frozen                  | 2.4<br>30.1<br>23.0<br>17.4<br>16.0<br>10.8<br>4.7<br>2.7<br>54.6<br>44.3<br>35.3<br>28.4<br>25.8<br>24.4<br>23.0<br>20.6<br>8.8<br>4<br>5.0<br>3.07<br>58.0 | 1 1 1 1 1 2 2 1 1 1 1 1 2 2 3 3 4 4 1 1 1 | Alcohol: Methyl  " " Propyl " " Acetone " " Acetic acid " " Amyl acetate Amylene | -50 0 +20 17 -120 -60 0 +20 15 -80 0 15 17 18 15 17 19 19 | ∞ " " 75 ∞ " " 1200 73 ∞ 1200 200 75 ∞ " | 45.3<br>35.0<br>31.2<br>33.2<br>46.2<br>33.7<br>24.8<br>22.2<br>12.3<br>33.8<br>26.6<br>21.85<br>20.7<br>9.7<br>10.3<br>7.07<br>6.29<br>4.81<br>2.20 | 1 1 1 1 2 1 1 1 1 2 5 5 6 6 2 2 2 9 10 |

References on page 358.

#### DIELECTRIC CONSTANTS OF LIQUIDS.

A wave-length greater than 10000 centimeters is designated by  $\infty$ .

| Substance.                                                                                                                                                         | Temp.                                                                                    | Wave-<br>length<br>cm.                                                                               | Diel.<br>const.                                                                                                                                                                                                                                                                                                 | Author-<br>ity.                                       | Substance.                                   | Temp.                                                                                                 | Wave-<br>length<br>cm.                    | Diel.<br>const.                                                                                                                                                                                                                       | Author-                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Aniline Benzol (benzene)  "" Bromine Carbon bisulphide "" Chloroform Decane Decylene Ethyl ether "" "" "" "" "" "" "" "" "" "" "" "" ""                            | 18 18 19 23 20 17 18 17 14 17 —80 60 100 140 180 Crit. temp. 192 (frozen) 15 15 15 17 18 | 73<br>84<br>9<br>73<br>80<br>73<br>80<br>"""<br>"""<br>"""<br>"""<br>"""<br>"""<br>"""<br>"""<br>""" | 7.316<br>2.288<br>2.26<br>3.18<br>2.626<br>2.64<br>5.2<br>4.97<br>2.24<br>7.05<br>5.67<br>4.68<br>4.368<br>4.365<br>3.12<br>2.66<br>2.12<br>1.53<br>4.35<br>19.0<br>62.0<br>58.5<br>56.9<br>1<br>25.4<br>4.4<br>4.4<br>62.0<br>5.6<br>62.0<br>5.6<br>62.0<br>62.0<br>62.0<br>62.0<br>62.0<br>62.0<br>62.0<br>62 | 11 12 12 13 2 110 " " " " " " " " " " " " " " " " " " | Nitrobenzol                                  | (frozen) -10 -5 0 +15 30 18 17 17 20 11 20 14 21 13 - 20 11.4 - 20 16 13.4 20 - 4 88 -83 +16 19 18 17 | ∞  " " " " " " " " " " " " " " " " " "    | 9.9<br>42.0<br>41.0<br>37.8<br>35.1<br>36.45<br>34.0<br>1.949<br>2.83<br>4.67<br>3.11<br>3.10<br>2.25<br>3.35<br>2.13<br>3.02<br>3.11<br>3.03<br>2.13<br>1.92<br>2.85<br>3.02<br>3.17<br>9.23<br>2.17<br>9.68<br>2.51<br>2.37<br>2.37 | 1 " " " " " " " " " " " " " " " " " " " |
| ide 46% in H <sub>2</sub> O \$                                                                                                                                     |                                                                                          | ,                                                                                                    |                                                                                                                                                                                                                                                                                                                 |                                                       | for temp. coeff.<br>see Table 344.           | 17<br>17<br>17                                                                                        | 200<br>74<br>38                           | 80.6<br>81.7<br>83.6                                                                                                                                                                                                                  | 2 "                                     |
| 1 Abegg-Seitz, 18<br>2 Drude, 1896.<br>3 Marx, 1898.<br>4 Lampa, 1896.<br>5 Abegg, 1897.<br>6 Thwing, 1894.<br>7 Drude, 1898.<br>8 Francke, 1893.<br>9 Löwe, 1898. | 99.                                                                                      | 11 T<br>12 Se<br>13 T<br>14 C<br>15 v.                                                               | andolt-<br>urner,<br>chlundt<br>angl, 10<br>oolidge<br>Lang,<br>ernst,<br>alvert,                                                                                                                                                                                                                               | 1900.<br>903.<br>1896.<br>1896.                       | 19 A<br>20 I<br>21 S<br>22 T<br>23 I<br>24 M | Hasenöh<br>Arons-Ru<br>Hopkinso<br>Jalvioni,<br>Tomaszev<br>Heinke, H<br>Jarx.<br>Tuchs.              | abens, 1<br>on, 1881<br>1888.<br>wski, 18 | 892.                                                                                                                                                                                                                                  |                                         |

## Addenda to Table 440, p. 361, Dielectric Constant of Rochelle Salt:

The polarization of the Rochelle salt dielectric in an electric field is somewhat analogous to the behavior of the magnetization of iron in a magnetic field, showing both saturation and hysteresis. The dielectric constant D depends on the initial and final fields and the hysteresis.

The last value may be fair value for ordinary purposes. The electrodes were tinfoil attached with shellac. The field was applied perpendicular to the a axis. Like piezoelectric properties, the dielectric constant varies with different crystals. It depends on the temperature as follows: (field o to 880 v/cm)

 $-70^{\circ}$  C, D = 12;  $-40^{\circ}$ , 14;  $-20^{\circ}$ , 48;  $0^{\circ}$ , 174;  $+20^{\circ}$ , 88;  $+30^{\circ}$ , 52.

(Data from Valesek, University of Minnesota, 1921.)

## DIELECTRIC CONSTANTS OF LIQUIDS (continued).

## TABLE 436. - Temperature Coefficients of the Formula:

 $D_{\theta} = D_{t}[1-\alpha(t-\theta)+\beta(t-\theta)^{2}].$ 

| Substance.                                                                                                                                                                         | α                                                                                                                                                                                | β                                       | Temp. | Authority.                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------|
| Amyl acetate . Aniline . Benzene . Carbon bisulphide . "Chloroform . Ethyl ether . Methyl alcohol . Oils: Almond . Castor . Olive . Paraffine . Toluene . "Water . " Meta-xylene . | 0.0024<br>0.00351<br>0.00106<br>0.000966<br>0.000922<br>0.00410<br>0.00459<br>0.0057<br>0.00163<br>0.01067<br>0.00364<br>0.000921<br>0.000921<br>0.004474<br>0.004583<br>0.00436 | 0.0000087<br>0.00000060<br>0.000015<br> |       | Löwe. Ratz. Hasenöhrl. Ratz. Drude. Hasenöhrl. Heinke, 1896. "" Hasenöhrl. Ratz. Tangl. Heerwagen. Drude. Coolidge. Tangl. |

(See Table 433 for the signification of the letters.)

## TABLE 437 .- Dielectric Constants of Liquefied Gases.

A wave-length greater than 10000 centimeters is designated by ∞.

| Substance.       | Temp.                                                              | Wave-<br>length cm.              | Dial.<br>constant.                                                                                                                                                      | Authority. | Substance.                                                           | Temp. ° C.                                                                                        | Wave-<br>length cm.                      | Dial, constant.                                                                                                        | Authority.                                |
|------------------|--------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Air              | -191 " -34 14 -5 0 +10 +15 -60 -20 0 +10 0 +10 0 14 23 21 10 50 90 | ∞ 75 75 130 ∞ " " " " 100 84 " " | 1.432<br>1.47-1.50<br>21-23<br>16.2<br>1.608<br>1.583<br>1.540<br>1.526<br>2.150<br>2.030<br>1.970<br>1.940<br>2.08<br>1.88<br>2.52<br>about 95<br>5.93<br>4.92<br>3.76 | 1 2 3 4 5  | Nitrous oxide  """  Oxygen  Sulphur dioxide  """  """  """  Critical | -88<br>-5<br>+5<br>+15<br>-182<br>"<br>14.5<br>20<br>40<br>60<br>80<br>100<br>120<br>140<br>154.2 | € 66 66 66 66 66 66 66 66 66 66 66 66 66 | 1.938<br>1.630<br>1.578<br>1.520<br>1.491<br>1.465<br>13.75<br>14.0<br>12.5<br>10.8<br>9.2<br>7.8<br>6.4<br>4.8<br>2.1 | 8 5 5 11 11 11 11 11 11 11 11 11 11 11 11 |
| ı v. Pirani, 190 | 03.                                                                |                                  | 4 (                                                                                                                                                                     | Cooli      | dge, 1899. 7                                                         | Schlui                                                                                            | ndt, 1                                   | 901.                                                                                                                   |                                           |

- 2 Bahn-Kiebitz, 1904. 3 Goodwin-Thompson, 1899.
- 5 Linde, 1895. 6 Eversheim, 1904.
- 8 Hasenöhrl, 1900.
- 9 Fleming-Dewar, 1896.

TABLE 438. — Standard Solutions for the Calibration of Apparatus for the Measuring of Dielectric Constants.

| Turner.                                                                                                        |                                                                                     |                                             | Dru                                                | ide.                                         |                                         | Nernst.                     |                                      |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------|----------------------------------------------|-----------------------------------------|-----------------------------|--------------------------------------|
| Substance.                                                                                                     | Diel. const.<br>at $18^{\circ}$ .<br>$\lambda = \infty$ .                           | Aceto                                       | one in benzene                                     | the in benzene at 19°. $\lambda = 75$ cm.    |                                         |                             | cohol in                             |
| Benzene                                                                                                        | 2.288                                                                               | Per cent<br>by weight.                      | Density 16°.                                       | Dielectric constant.                         | Temp.                                   |                             | Dielectric                           |
| Meta-xylene Ethyl ether Aniline Ethyl chloride O-nitro toluene Nitrobenzene Water (conduct. 10 <sup>-8</sup> ) | 2.376<br>4.36 <sup>7</sup><br>7.29 <sup>8</sup><br>10.90<br>27.71<br>36.45<br>81.07 | 0<br>20<br>40<br>60<br>80<br>100            | 0.885<br>0.866<br>0.847<br>0.830<br>0.813<br>0.797 | 2.26<br>5.10<br>8.43<br>12.1<br>16.2<br>20.5 | 0.1%<br>0.3<br>0.4<br>0.5<br>0.5        | 100<br>90<br>80<br>70<br>60 | 26.0<br>29.3<br>33.5<br>38.0<br>43.1 |
|                                                                                                                |                                                                                     | Water in acetone at 19°. $\lambda = 75$ cm. |                                                    |                                              |                                         |                             |                                      |
|                                                                                                                |                                                                                     | 0<br>20<br>40<br>60<br>80<br>100            | 0.797<br>0.856<br>0.903<br>0.940<br>0.973<br>0.999 | 20.5<br>31.5<br>43.5<br>57.0<br>70.6<br>80.9 | 0.6%<br>0.5<br>0.5<br>0.5<br>0.5<br>0.4 |                             |                                      |

TABLE 439. - Dielectric Constants of Solids.

| Substance.           | Condi-<br>tion. | Wave-<br>length,<br>cm. | Dielectric constant. | Author-<br>ity. | Substance.               | Condi-<br>tion. | Wave-<br>length,<br>cm. | Dielectric constant. | Author- |
|----------------------|-----------------|-------------------------|----------------------|-----------------|--------------------------|-----------------|-------------------------|----------------------|---------|
| Asphalt              | _               | 00                      | 2,68                 | 1               |                          | Temp.           |                         |                      |         |
| Barium sul-          |                 |                         |                      |                 | Iodine (cryst.) .        | 23              | 75                      | 4.00                 | 2       |
| phate                | -               | 75                      | 10.2                 | 2               | Lead chloride .          |                 | 66                      |                      |         |
| Caoutchouc . Diamond | _               | °°                      | 2.22                 | 3               | (powder)                 | -               | 66                      | 42                   | 2       |
| mainond              |                 | 75                      | 16.5                 | I               | " nitrate . " sulphate . | _               | 66                      | 16<br>28             | 2 2     |
| Ebonite              |                 | /3<br>∞                 | 5.50<br>2.72         | 4               | " molybde-               | _               |                         | 20                   | 2       |
| "                    | _               | "                       | 2.86                 |                 | nate                     | _               | 66                      | 24                   | 2       |
| 66                   | -               | 1000                    | 2.55                 | 5               | Marble                   |                 |                         | 24                   |         |
| Glass *              | Density.        |                         | 33                   |                 | (Carrara)                | -               | 66                      | 8.3                  | 2       |
| Flint (extra         |                 |                         |                      |                 | Mica                     | -               | 00                      | 5.66-5.97            | 5       |
| heavy) .             | 4.5             | 00                      | 9.90                 | 7               | "                        | -               | 66                      | 5.80-6.62            | 15      |
| Flint (very          | ,               | 66                      |                      |                 | Madras, brown            | -               | "                       | 2.5-3.4              | 16      |
| light)               | 2.87            | 66                      | 6.61                 | 7               | " green                  | -               | 66                      | 3.9-5.5              | 16      |
| Hard crown<br>Mirror | 2.48            |                         | 6.96                 | 7               | luoy .                   | -               | 66                      | 4.4                  | 16      |
| "                    | _               | 66                      | 6.44-7.46            | 5               | Bengal, yellow white     | _               | 66                      | 2.8                  | 16      |
| 66                   | _               | 600                     | 5.37-5.90            | 8               | " ruby .                 | _               | 66                      | 4.2                  | 16      |
| Lead (Pow-           |                 | 000                     | 3.42-0.20            | 0               | Canadian am-             |                 |                         | 4.2-4./              | 10      |
| ell)                 | 3.0-3.5         | 00                      | 5.4-8.0              | 9               | ber                      | _               | 66                      | 3.0                  | 16      |
| Jena                 |                 |                         |                      |                 | South America            | -               | 66                      | 5.9                  | 16      |
| Boron .              | -               | - 66                    | 5.5-8.1              | IO              | Ozokerite (raw)          | -               | 66                      | 2.21                 | I       |
| Barium .             | -               | 66                      | 7.8-8.5              | 10              | Paper (tele-             |                 |                         |                      |         |
| Borosili-            |                 | 66                      |                      |                 | phone)                   | -               | 66                      | 2.0                  | 17      |
| Gutta percha.        | _               |                         | 6.4-7.7              | I               | " (cable) .              | -               | "                       | 2.0-2.5              | 18      |
| Gatta percha.        | Temp.           |                         | 3.3-4.9              | II              | Paraffine                | Melting         | 66                      | 2.46                 |         |
| Ice                  | E               | 1200                    | 2.85                 | 12              | "                        | point. 44-46    | 66                      | 2.32                 | 19      |
| 6                    | -18             | 5000                    | 3.16                 | 13              | "                        | 54-56           | 46                      | 2.14                 | 20      |
| "                    | -190            | 7.5                     | 1.76-1.88            | 14              | "                        | 74-76           | 46                      | 2.16                 | 20      |
|                      |                 |                         |                      |                 |                          | / - / -         | 1                       |                      |         |

References on p. 361.

\* For the effect of temperature, see Gray-Dobbie, Pr. Roy. Soc. 63, 1898; 67, 1900.

" " " wave-length, see K. F. Löwe, Wied. Ann. 66, 1898.

## TABLES 439, 440.

## DIELECTRIC CONSTANTS (continued).

TABLE 439. - Dielectric Constants of Solids (continued).

| Substance.                                                                                                                                                          | Condi-<br>tion. | Wave-<br>length,<br>cm.              | Diel.                                                                                                                            | Author-                                                                   | Substance.                                                                                                                   | Condi-<br>tion.                                                                                                                                         | Wave-<br>length,<br>cm.                    | Diel.<br>constant.                                                                                                                              | Author-                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Paraffine  "Phosphorus: Yellow Solid Liquid Porcelain: Hard (Royal B'l'n) Seger " Figure " Selenium  " Shellac  " Amber                                             | 47.º6<br>56.º2  | 61<br>61<br>75<br>80<br>80<br>80<br> | 2.16<br>2.25<br>3.60<br>4.1<br>3.85<br>5.73<br>6.61<br>6.84<br>7.44<br>6.60<br>6.13<br>6.14<br>3.10<br>2.95-3.73<br>3.67<br>2.86 | 21<br>21<br>22<br>22<br>22<br>22<br>22<br>23<br>4<br>24<br>24<br>25<br>18 | Sulphur Amorphous  Cast, fresh  "" Cast, old  Liquid Strontium sulphate Thallium carbonate "nitrate Wood Red beech "" Oak "" | near melting-point                                                                                                                                      | ∞ 75 ∞ 75 ∞ 75 75 ∞ 75 ∞ 75 ∞ 75 ∞ ″ ″ ″ ″ | 3.98<br>3.80<br>4.22<br>4.05<br>3.95<br>3.60<br>3.90<br>3.42<br>11.3<br>17<br>16.5<br>dried<br>4.83-2.51<br>7.73-3.63<br>4.22-2.46<br>6.84-3.64 | 1 2 1 18 2 18 2 18 2 1 1 2 2 2 2 |
| 1 v. Pirani, 1903. 2 Schmidt, 1903. 3 Gordon, 1879. 4 Winklemann, 1889. 5 Elsas, 1891. 6 Ferry, 1897. 7 Hopkinson, 1891. 8 Arons-Rubens, 1891. 9 Gray-Dobbie, 1898. |                 |                                      | 12 Thw<br>13 Abe                                                                                                                 | marii<br>gg, 18<br>n-Kie<br>ke, 18<br>Vilson                              | ne-data).<br>1894.<br>897.<br>Bitz, 1904.<br>897.                                                                            | 18 Fallinger, 1902. 19 Boltzmann, 1875. 20 Zietkowski, 1900. 21 Hormell, 1902. 22 Schlundt, 1904. 23 Vonwiller-Mason, 1907. 24 Wüllner, 1887. 25 Donle. |                                            |                                                                                                                                                 |                                  |

## TABLE 440. - Dielectric Constants of Crystals.

 $D\alpha$ ,  $D\beta$ ,  $D\gamma$  are the dielectric constants along the brachy, macro and vertical axes respectively.

| $D\alpha$ , $D\beta$ , $D\gamma$ are the | dielect                                                            | ine con                                                                                                                    | Stants                                                                                                                       | aion                              | g the brachy, macro                                                                                                                                                           | and ve                                 | iticai                                                                                                       | anto I                                                         | spece                                                                                                        | · · · · ·                                                |
|------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Substance.                               | Wave-<br>length,<br>cm.                                            | Diel.                                                                                                                      |                                                                                                                              | Author-<br>ity.                   | Substance.                                                                                                                                                                    | Wave-<br>length,<br>cm.                | Diel. cons                                                                                                   |                                                                | Dγ                                                                                                           | Author-<br>ity.                                          |
| UNIAXIAL: Apatite Beryl                  | 75<br>%<br>75<br>%<br>75<br>75<br>%<br>1000<br>75<br>%<br>75<br>75 | 9.50<br>7.85<br>7.10<br>6.05<br>8.49<br>8.78<br>7.80<br>8.50<br>4.69<br>4.38<br>4.27<br>13.3<br>89<br>7.13<br>6.75<br>12.8 | 7.40<br>7.44<br>6.05<br>5.52<br>7.56<br>8.29<br>6.80<br>8.00<br>5.06<br>4.46<br>4.34<br>11.3<br>1.73<br>6.54<br>5.65<br>12.6 | 1 2 3 1 4 5 1 1 4 6 6 4 1 4 1 1 1 | RHOMBIC: Aragonite  Barite Celestite Cerussite MgSO <sub>4</sub> +7H <sub>2</sub> O K <sub>2</sub> SO <sub>4</sub> Rochelle salt* Sulphur " Topaz " colorless * See page 358. | ∞ 75 ∞ 75 75 75 75 75 ∞ " " " 75 75 75 | 9.14<br>9.80<br>6.97<br>7.65<br>7.70<br>25.4<br>5.26<br>6.09<br>6.70<br>3.81<br>3.65<br>3.65<br>3.65<br>6.25 | 10.09<br>12.20<br>18.5<br>23.2<br>6.05<br>5.08<br>6.92<br>3.97 | 7.13<br>6.55<br>7.00<br>7.70<br>8.30<br>19 2<br>8.28<br>4.48<br>8.89<br>4.77<br>4.66<br>4.66<br>6.30<br>6.44 | 4<br>1<br>1<br>7<br>7<br>7<br>7<br>8<br>7<br>1<br>1<br>4 |
|                                          |                                                                    |                                                                                                                            |                                                                                                                              |                                   | ger, 190 <b>2</b> , 1919.<br>mi, 1903.<br>189 <b>7</b> .                                                                                                                      | 7 B<br>8 B                             | orel,<br>olztm                                                                                               | 189 <b>3.</b><br>ann, 18                                       | 375.                                                                                                         |                                                          |

#### WIRELESS TELECRAPHY.

#### Wave-Length in Meters, Frequency in periods per second, and Oscillation Constant LC in Microhenries and Microfarads.

The relation between the free wave-length in meters, the frequency in cycles per second, and the capacity-inductance product in microfarads and microhenries are given for circuits between 1000 and 10,000 meters. For values between 100 and 1000 meters, multiply the columns for n by 10 and move the decimal point of the corresponding LC column two places to the left (dividing by 100); for values between 10,000 and 100,000, divide the n column by 10 and multiply the LC column by 100. The relation between wave-length and capacity-inductance may be relied upon throughout the table to within one part in 200.

Example 1: What is the natural wave-length of a circuit containing a capacity of 0.001 microfarad, and an inductance of 454 microhenries? The product of the inductance and capacity is 454 × 0.001 = 0.454. Find 0.454 under LC; opposite under meters is 1270 meters, the natural

wave-length of the circuit.

Example 2: What capacity must be associated with an inductance of 880 microhenries in order to tune the circuit to 3500 meters? Find opposite 3500 meters the LC value 3.45; divide this by 880, and the quotient, 0.00397, is the desired capacity in microfarads.

Example 3: A condenser has the capacity of 0.004 microfarad. What inductance must be placed in series with this condenser in order that the circuit shall have a wave-length of 600 meters? From the table, the LC value corresponding to 600 meters is 0.101. Divide this by 0.004, the capacity of the condenser, and the desired inductance is 25.2 microhenries.

| Meters.         n         LC         Meters.         n         LC         Meters.         n           1000         300,000         0.281         1300         230,800         0.476         1600         187,500           1010         297,000         0.287         1310         229,000         0.483         1610         186,300           1020         294,100         0.293         1320         227,300         0.490         1620         185,200           1030         291,300         0.299         1330         225,600         0.498         1630         184,100           1040         288,400         0.305         1340         223,900         0.505         1640         182,900           1050         283,700         0.310         1350         222,200         0.513         1650         181,800           1060         283,600         0.316         1360         220,600         0.521         1660         180,700           1070         280,400         0.322         1370         218,900         0.529         1670         179,600           1080         277,800         0.328         1380         217,400         0.536         1680         178,600 | 0.721<br>0.730<br>0.739<br>0.748<br>0.757<br>0.766<br>0.776<br>0.785<br>0.794<br>0.804 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1010         297,000         0.287         1310         229,000         0.483         1610         186,300           1020         294,100         0.293         1320         227,300         0.490         1620         185,200           1030         291,300         0.299         1330         225,600         0.498         1630         184,100           1040         288,400         0.305         1340         223,900         0.505         1640         182,900           1050         285,700         0.310         1350         222,200         0.513         1650         183,800           1060         283,600         0.316         1360         220,600         0.521         1660         180,700           1070         280,400         0.322         1370         218,900         0.529         1670         179,600           1080         277,800         0.328         1380         217,400         0.536         1680         178,600                                                                                                                                                                                                                            | 0.730<br>0.739<br>0.748<br>0.757<br>0.766<br>0.776<br>0.785<br>0.794                   |
| 1020         294,100         0.293         1320         227,300         0.490         1620         185,200           1030         291,300         0.299         1330         225,600         0.498         1630         184,100           1040         288,400         0.305         1340         223,900         0.505         1640         182,900           1050         285,700         0.310         1350         222,200         0.513         1650         181,800           1060         283,600         0.316         1360         220,600         0.521         1660         180,700           1070         280,400         0.322         1370         218,900         0.529         1670         179,600           1080         277,800         0.328         1380         217,400         0.536         1680         178,600                                                                                                                                                                                                                                                                                                                                                 | 0.739<br>0.748<br>0.757<br>0.766<br>0.776<br>0.785<br>0.794                            |
| 1030         291,300         0.299         1330         225,600         0.498         1630         184,100           1040         288,400         0.305         1340         223,900         0.505         1640         182,900           1050         285,700         0.310         1350         222,200         0.513         1650         181,800           1060         283,600         0.316         1360         220,600         0.521         1660         180,700           1070         280,400         0.322         1370         218,900         0.529         1670         179,600           1080         277,800         0.328         1380         217,400         0.536         1680         178,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.748<br>0.757<br>0.766<br>0.776<br>0.785<br>0.794                                     |
| 1040         288,400         0.305         1340         223,900         0.505         1640         182,900           1050         285,700         0.310         1350         222,200         0.513         1650         181,800           1060         283,600         0.316         1360         220,600         0.521         1660         180,700           1070         280,400         0.322         1370         218,900         0.529         1670         179,600           1080         277,800         0.328         1380         217,400         0.536         1680         178,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.757<br>0.766<br>0.776<br>0.785<br>0.794                                              |
| 1050         285,700         0.310         1330         222,200         0.513         1650         181,800           1060         283,600         0.316         1360         220,600         0.521         1660         180,700           1070         280,400         0.322         1370         218,900         0.529         1670         179,600           1080         277,800         0.328         1380         217,400         0.536         1680         178,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.766<br>0.776<br>0.785<br>0.794                                                       |
| 1060     283,600     0.316     1360     222,600     0.521     1660     180,700       1070     280,400     0.322     1370     218,900     0.529     1670     179,600       1080     277,800     0.328     1380     217,400     0.536     1680     178,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.776<br>0.785<br>0.794                                                                |
| 1070 280,400 0.322 1370 218,900 0.529 1670 179,600 1080 277,800 0.328 1380 217,400 0.536 1680 178,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.785                                                                                  |
| 1080 277,800 0.328 1380 217,400 0.536 1680 178,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.794                                                                                  |
| 77. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |
| 1090 275,200 0.335 1390 215,800 0.544 1690 177,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.804                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |
| 1100 272,700 0.341 1400 214,300 0.552 1700 176,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.813                                                                                  |
| 1110 270,300 0.347 1410 212,800 0.559 1710 175,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.823                                                                                  |
| 1120 267,900 0.353 1420 211,300 0.567 1720 174,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.833                                                                                  |
| 1130 265,500 0.359 1430 209,800 0.576 1730 173,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.842                                                                                  |
| 1140 263,100 0.366 1440 208,300 0.584 1740 172,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.852                                                                                  |
| 1150   260,900   0.372   1450   206,900   0.592   1750   171,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.862                                                                                  |
| 1160   258,600   0.379   1460   205,500   0.600   1760   170,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.872                                                                                  |
| 1170   256,400   0.385   1470   204,100   0.608   1770   169,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.882                                                                                  |
| 1180   254,200   0.392   1480   202,700   0.617   1780   168,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.892                                                                                  |
| 1190   252,100   0.399   1490   201,300   0.625   1790   167,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.902                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |
| 1200 250,000 0.405 1500 200,000 0.633 1800 166,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.912                                                                                  |
| 1210 247,900 0.412 1510 198,700 0.642 1810 165,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.923                                                                                  |
| 1220 245,900 0.419 1520 197,400 0.650 1820 164.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.933                                                                                  |
| 1230 243,900 0.426 1530 196,100 0.659 1830 163,900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.943                                                                                  |
| 1240 241,900 0.433 1540 194,800 0.668 1840 163,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.953                                                                                  |
| 1250 240,000 0.440 1550 193,600 0.676 1850 162,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.963                                                                                  |
| 1260 238,100 0.447 1560 192,300 0.685 1860 161,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.974                                                                                  |
| 1270 236,200 0.454 1570 191,100 0.694 1870 160,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.985                                                                                  |
| 1280   234,400   0.461   1580   189,900   0.703   1880   159,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.995                                                                                  |
| 1290 232,600 0.468 1590 188,700 0.712 1890 158,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.006                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |

Adapted from table prepared by Greenleaf W. Picard; copyright by Wireless Specialty Apparatus Company, New York. Computed on basis of 300,000 kilometers per second for the velocity of propagation of electromagnetic waves.

## TABLE 441 (concluded).

## WIRELESS TELEGRAPHY.

## Wave-Length, Frequency and Oscillation Constant.

| Meters. | n        | LC    | Meters. | n                | LC           | Meters. | n      | LC   |
|---------|----------|-------|---------|------------------|--------------|---------|--------|------|
|         |          |       | .0.     |                  |              |         | 0.5    |      |
| 1900    | 1 57,900 | 1.016 | 2800    | 107,100          | 2.21         | 7000    | 42,860 | 13.8 |
| 1910    | 157,100  | 1.026 | 2820    | 106,400          | 2.24         | 7100    | 42,250 | 14.2 |
| 1920    | 1 56,300 | 1.037 | 2840    | 105,600          | 2.27         | 7200    | 41,670 | 14.6 |
| 1930    | 155,400  | 1.048 | 2860    | 104,900          | 2.30         | 7300    | 41,100 | 15.0 |
| 1940    | 1 54,600 | 1.059 | 2880    | 104,200          | 2.33         | 7400    | 40,540 | 15.4 |
| 1950    | 1 53,800 | 1.070 | 2900    | 103,400          | 2.37         | 7500    | 40,000 | 15.8 |
| 1960    | 153,100  | 1.081 | 2920    | 102,700          | 2.40         | 7600    | 39,470 | 16.3 |
| 1970    | 152,300  | 1.092 | 2940    | 102,000          | 2.43         | 7700    | 38,960 | 16.7 |
| 1980    | 151,500  | 1.103 | 2960    | 101,300          | 2.47         | 7800    | 38,460 | 17.1 |
| 1990    | 1 50,800 | 1.114 | 2980    | 100,700          | 2.50         | 7900    | 37,980 | 17.6 |
| 2000    | 150,000  | 1.126 | 3000    | 100,000          | 2.53         | 8000    | 37,500 | 18.0 |
| 2020    | 148,500  | 1.148 | 3100    | 96,770           | 2.70         | 8100    | 37,040 | 18.5 |
| 2040    | 147,100  | 1.171 | 3200    | 93,750           | 2.88         | 8200    | 36,590 | 18.9 |
| 2060    | 145,600  | 1.194 | 3300    | 90,910           | 3.07         | 8300    | 36,140 | 19.4 |
| 2080    | 144,200  | 1.218 | 3400    | 88,240           | 3.26         | 8400    | 35,710 | 19.9 |
| 2100    | 142,900  | 1.241 | 3500    | 85,910           | 3.45         | 8500    | 35,290 | 20.3 |
| 2120    | 141,500  | 1.265 | 3600    | 83,330           | 3.65         | 8600    | 34,880 | 20.8 |
| 2140    | 140,200  | 1.289 | 3700    | 81,080           | 3.85         | 8700    | 34,480 | 21.3 |
| 2160    | 138,900  | 1.313 | 3800    | 78,950           | 4.06         | 8800    | 34,090 | 21.8 |
| 2180    | 137,600  | 1.338 | 3900    | 76,920           | 4.28         | 8900    | 33,710 | 22.3 |
| 2200    | 136,400  | 1.362 | 4000    | 75,000           | 4.50         | 9000    | 33,330 | 22.8 |
| 2220    | 135,100  | 1.387 | 4100    | 73,170           | 4.73         | 9100    | 32,970 | 23.3 |
| 2240    | 1 33,900 | 1.412 | 4200    | 71,430           | 4.96         | 9200    | 32,610 |      |
| 2260    | 132,700  | 1.438 | 4300    | 69,770<br>68.180 | 5.20         | 9300    | 32,260 | 24.3 |
| 2280    | 131,600  | 1.463 | 4400    |                  | 5.45         | 9400    | 31,910 | 24.9 |
| 2300    | 130,400  | 1.489 | 4500    | 66,670           | 5.70         | 9500    | 31,590 | 25.4 |
| 2320    | 129,300  | 1.515 | 4600    | 65,220           | 5.96         | 9600    | 31,250 | 25.9 |
| 2340    | 128,200  | 1.541 | 4700    | 63,830           | 6.22         | 9700    | 30,930 | 26.5 |
| 2360    | 127,100  | 1.568 | 4800    | 62,500           | 6.49         | 9800    | 30,610 | 27.0 |
| 2380    | 126,000  | 1.594 | 4900    | 61,220           | 6.76         | 9900    | 30,310 | 27.6 |
| 2400    | 125,000  | 1.621 | 5000    | 60,000           | 7.04         | 10000   | 30,000 | 28.1 |
| 2420    | 124,000  | 1.648 | 5100    | 58,820           | 7.32         |         |        |      |
| 2440    | 129,000  | 1.676 | 5200    | 57,690           | 7.61         |         |        |      |
| 2460    | 121,900  | 1.703 | 5300    | 56,600           | 7.91<br>8.21 |         |        |      |
| 2480    | 121,000  | 1.731 | 5400    | 55,560           | 0.21         |         |        |      |
| 2500    | 120,000  | 1.759 | 5500    | 54,550           | 8.51         |         |        |      |
| 2 520   | 119,000  | 1.787 | 5600    | 53,570           | 8.83         |         |        |      |
| 2540    | 118,100  | 1.816 | 5700    | 52,630           | 9.15         |         |        |      |
| 2560    | 117,200  | 1.845 | 5600    | 51,720           | 9.47         |         |        |      |
| 2580    | 116,300  | 1.874 | 5900    | 50,850           | 9.81         | -       |        |      |
| 2600    | 115,400  | 1.903 | 6000    | 50,000           | 10.1         |         |        |      |
| 2620    | 114,500  | 1.932 | 6100    | 49,180           | 10.5         |         |        |      |
| 2640    | 113,600  | 1.962 | 6200    | 48,550           | 10.8         |         |        |      |
| 2660    | 112,800  | 1.991 | 6300    | 47,620           | II.I         |         |        |      |
| 2680    | 111,900  | 2.02  | 6400    | 46,870           | 11.5         |         |        |      |
| 2700    | 111,100  | 2.05  | 6500    | 46,150           | 11.9         |         |        | -    |
| 2720    | 110,300  | 2.08  | 6600    | 45,450           | 12.3         |         |        |      |
| 2740    | 109,500  | 2.11  | 6700    | 44,780           | 12.6         |         |        |      |
| 2760    | 108,700  | 2.14  | 6800    | 44,120           | 13.0         |         |        |      |
| 2780    | 107,900  | 2.18  | 6900    | 43,480           | 13.4         |         |        |      |
| 2800    | 107,100  | 2.21  | 7000    | 42,860           | 13.8         |         |        |      |
|         |          | 1     | III     |                  |              | 101     |        |      |

# TABLE 442. WIRELESS TELECRAPHY.

## Radiation Resistances for Various Wave-Lengths and Antenna Heights.

The radiation theory of Hertz shows that the radiated energy of an oscillator may be represented by  $E = \text{constant} \ (h^2/\lambda^2) \ I^2$ , where h is the length of the oscillator,  $\lambda$ , the wave-length and I the current at its center. For a flat-top antenna  $E = 1600 \ (h^2/\lambda^2) \ I^2$  watts;  $1600 \ h^2/\lambda^2$  is called the radiation resistance.

(h = height to center of capacity of conducting system.)

| h=<br>Wave-<br>Length λ                                        | 40 Ft.                                   | 60 Ft.                                        | 80 Ft.                                                       | 100 Ft.                                                                                 | 120 Ft.                                                     | 160 Ft.                                                     | 200 Ft.                                                     | 300 Ft.                                                     | 450 Ft.                                                      | 600 Ft.                                                | 1200 Ft.                                                     |
|----------------------------------------------------------------|------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|
| # 200 300 400 600 1200 1500 2000 2500 3000 4000 5000 6000 7000 | ohm 6.0 2.7 1.5 0.66 0.37 0.24 0.17 0.11 | ohm 13.4 6.0 3.4 1.5 0.84 0.54 0.37 0.24 0.13 | ohm 24.0 10.6 6.0 2.7 1.5 0.95 0.66 0.42 0.24 0.15 0.11 0.06 | ohm<br>37.0<br>16.5<br>9.3<br>4.1<br>2.3<br>1.5<br>1.03<br>0.66<br>0.37<br>0.24<br>0.17 | ohm 54.0 23.8 13.4 6.0 3.4 2.1 1.5 0.95 0.54 0.34 0.24 0.13 | ohm 95.0 42.4 23.8 10.6 6.0 3.8 2.6 1.7 0.95 0.61 0.42 0.24 | ohm  16.4 9.2 6.0 4.1 2.6 1.5 0.95 0.66 0.37 0.24 0.16 0.12 | ohm  37.4 21.0 13.5 9.3 6.0 3.4 2.2 1.5 0.84 0.53 0.37 0.27 | 0hm  84.0 47.0 30.0 21.0 13.4 7.5 4.8 3.4 1.9 1.20 0.84 0.61 | ohm 149.0 84.0 54.0 37.0 24.0 13.4 8.6 6.0 3.4 2.2 1.5 | 215.0<br>149.0<br>95.0<br>54.0<br>24.0<br>13.4<br>8.6<br>6.0 |

Austin, Jour. Wash. Acad. of Sci. 1, p. 190, 1911.

TABLE 443.

THE DIELECTRIC PROPERTIES OF NON-CONDUCTORS.

Phillips Thomas, J. Franklin Inst. 176, 283, 1913.

| Results of tests at unit area a                                                                                                                                                                                           | and unit thic                   | kness of die           | lectric.                                        |                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------|
| At 1000 cycles.                                                                                                                                                                                                           | Mica.                           | Paper.                 | Celluloid.                                      | Ice.                                                                                  |
| Max. absorbable energy, watts-sec/cm <sup>3</sup> 90°-angle of lead Equiv. resistance ohms/cm <sup>3</sup> ×10 <sup>11</sup> Conductivity per cm. cube×10 <sup>-10</sup> Percent change in cap. per cycle×10 <sup>4</sup> | 4.00<br>0.198<br>0° 57′<br>3.91 |                        | 13.26<br>0.640<br>3° 40'<br>48.3<br>0.207       | .011×10 <sup>6</sup><br>86.40<br>.00040<br>13° 39'<br>1400<br>.00722<br>70.0<br>0.127 |
| At 15 cycles.  Specific inductive capacity                                                                                                                                                                                | 0.203                           | 5.77<br>0.126<br>0.306 | 18.60<br>0.90<br>1.74<br>71.5×10 <sup>-14</sup> | 429.0<br>0.002<br>1.59<br>————————————————————————————————————                        |

#### MAGNETIC PROPERTIES.

Unit pole is a quantity of magnetism repelling another unit pole with a force of one dyne;  $4\pi$  lines of force radiate from it. M, pole strength;  $4\pi M$  lines of force radiate from pole of strength M.

H, field strength, = no. of lines of force crossing unit area in normal direction; unit = gauss =

one line per unit area.

M, magnetic moment, = Ml, where l is length between poles of magnet.

I, intensity of magnetization or pole strength per unit area, = M/V = M/A where A is cross section of uniformly magnetized pole face, and V is the volume of the magnet.  $4\pi M/A = 4\pi I =$ no. lines of force leaving unit area of pole.

J, specific intensity of magnetism, =  $I/\rho$  where  $\rho$  = density, g/cm<sup>3</sup>.

 $\phi$ , magnetic flux, =  $4\pi M + HA$  for magnet placed in field of strength H (axis parallel to field).

Unit, the maxwell.

B, flux density (magnetic) induction, =  $\phi/A = 4\pi I + H$ ; unit the gauss, maxwell per cm.  $\mu$ , magnetic permeability, =B/H. Strength of field in air-filled solenoid  $=H=(4\pi/10)$  ni in gausses, i in amperes, n, number of turns per cm length. If iron filled, induction increased, i.e., no. of lines of force per unit area, B, passing through coil is greater than H;  $\mu = B/H$ .

k, susceptibility; permeability relates to effect of iron core on magnetic field strength of coil; if effect be considered on iron core, which becomes a magnet of pole strength M and intensity of magnetism I, then the ratio  $I/H = (\mu - 1)/4\pi$  is the magnetic susceptibility per unit volume and is a measure of the magnetizing effect of a magnetic field on the material placed in the field.

 $\mu = 4\pi\kappa + I$ .

 $\chi$ , specific susceptibility (per unit mass) =  $\kappa/\rho = J/H$ .

 $\chi_A$ , atomic susceptibility, =  $\chi \times$  (atomic weight);  $\chi_M$  = molecular susceptibility.

 $J_{\rm A}$ ,  $J_{\rm M}$ , similarly atomic and molecular intensity of magnetization.

Hysteresis is work done in taking a cm<sup>3</sup> of the magnetic material through a magnetic cycle =  $\int H dI = (1/4\pi) \int H dB$ . Steinmetz's empirical formula gives a close approximation to the hysteresis loss; it is  $aB^{1.6}$  where B is the max. induction and a is a constant (see Table 472). The retentivity  $(B_r)$  is the value of B when the magnetizing force is reduced to zero. The reversed field necessary to reduce the magnetism to zero is called the coercive force  $(H_c)$ .

Ferromagnetic substances,  $\mu$  very large,  $\kappa$  very large: Fe, Ni, Co, Heusler's alloy (Cu 62.5, Mn 23.5, Al 14. See Stephenson, Phys. Rev. 1910), magnetite and a few alloys of Mn.  $\mu$  for Heusler's alloy, 90 to 100 for B=2200; for Si sheet steel 350 to 5300.

Paramagnetic substances,  $\mu > 1$ , very small but positive,  $\kappa = 10^{-3}$  to  $10^{-6}$ : oxygen, especially

at low temperatures, salts of Fe, Ni, Mn, many metallic elements. (See Table 474.)

Diamagnetic substances,  $\mu < 1$ ,  $\kappa$  negative. Most diamagnetic substance known is Bi, -14× 10-6. (See Table 474.)

Paramagnetic substances show no retentivity or hysteresis effect. Susceptibility independent of field strength. The specific susceptibility for both para- and diamagnetic substances is independent of field strength.

For Hall effect (galvanomagnetic difference of potential), Ettinghausen effect (galvanomagnetic difference of temperature), Nernst effect (thermomagnetic difference of potential) and the Leduc

effect (thermomagnetic difference of temperature), see Tables 487 and 488.

Magneto-strictive phenomena: Joule effect: Mechanical change in length when specimen is subjected to a magnetic field. With increasing field strength, iron and some iron alloys show first a small increment  $\Delta l/l = (7 \text{ to } 35) \times 10^{-7}$ , then a decrement, and for H = 1600,  $\Delta l/l$  may amount to  $-(6 \text{ to } 8) \times 10^{-6}$ . Cast cobalt with increasing field first decreases,  $\Delta l/l = -8 \times 10^{-6}$ , H = 150, then increases in length,  $\Delta l/l = +5 \times 10^{-6}$ , H = 2000; annealed cobalt steadily contracts,  $\Delta l/l = -25 \times 10^{-6}$ , H = 2000. Ni rapidly then slowly contracts,  $\Delta l/l = -30 \times 10^{-6}$ , H = 100;  $-35 \times 10^{-6}$ , H = 300;  $-36 \times 10^{-6}$ , H = 2000 (Williams, Phys. Rev. 34, 44, 1912). A transverse field generally gives a reciprocal effect.

Wiedemann effect: The lower end of a vertical wire, magnetized longitudinally, when a current is passed through it, if free, twists in a certain direction, depending upon circumstances (see Williams, Phys. Rev. 32, 281, 1911). A reciprocal effect is observed in that when a rod of soft

iron, exposed to longitudinal magnetizing force, is twisted, its magnetism is reduced.

Villari effect; really a reciprocal Joule effect. The susceptibility of an iron wire is increased by stretching when the magnetism is below a certain value, but diminished when above that value.

#### COMPOSITION AND MACNETIC

This table and Table 456 below are taken from a paper by Dr. Hopkinson \* on the magnetic properties of iron and steel, which is stated in the paper to have been 240. The maximum magnetization is not tabulated; but as stated in the by  $4\pi$ . "Coercive force" is the magnetizing force required to reduce the magnetization to zero. The "demagnetizous magnetization in the opposite direction to the "maximum induction" stated in the table. The "energy which, however, was only found to agree roughly with the results of experiment.

| Test. specimen. Total Manga-Sulphur Silicon Phos- Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No. | Description of           |            |       |                 | Chemic   | al analys | sis.  |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------|------------|-------|-----------------|----------|-----------|-------|-------------------|
| Malleable cast iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | Description of specimen. | Temper.    |       | Manga-<br>nese. | Sulphur. | Silicon.  |       | Other substances. |
| 3   Gray cast iron   .   -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I   | Wrought iron             | Annealed   | _     | -               | -        | -         | _     | _                 |
| Bessemer steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2   |                          | 66         | -     | -               | -        | -         |       | -                 |
| Whitworth mild steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                          | -          |       |                 |          |           | -     | -                 |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                          | Annoaled   |       |                 |          |           |       | -                 |
| The first content of the content o | 8   |                          | ""         |       |                 |          | 0,042     |       | _                 |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | "                        | Soil-hard- |       |                 |          |           |       |                   |
| Hadfield's manganese   Steel   Steel |     | •                        |            | - 0-  |                 |          | 0         |       | _                 |
| Hadfield's manganese   Steel   Steel | 8   | •                        |            |       |                 |          |           | 1     | -                 |
| Hadfield's manganese   Steel   Steel | 9   |                          |            | 46    | "               | 66       | 44        | 66    | -                 |
| Steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10  | Hadfield's manganese (   | _          | LOOF  | 12 260          | 0.028    | 0.204     | 0.070 |                   |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | steel                    | 1          |       |                 | 0        |           |       |                   |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1   | Manganese steel          |            | 0.074 | 4.730           | 0.023    |           | 0.078 | _                 |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 44 46                    |            | "     |                 | "        | .,        |       |                   |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13  | 412.0                    | ened       |       |                 |          | - 1       |       | _                 |
| Chrome steel     Annealed     Coil-hard-ened     As forged     Annealed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                          | As forged  |       | 8 740           |          | 0.094     | 0.072 | -                 |
| Silicon steel     Sened   As forged   As forged   As forged   Chrome steel     As forged   Chrome steel     Annealed   Chrome steel     Annealed   Chrome steel     Annealed   Chrome steel     As forged   Chrome steel     Annealed   Chrome steel     As forged   Chrome steel     Chrome steel     As forged   Chrome steel     Chrome                                                                                                                                                                                                                                                                                                                                                                                                                   | - 1 |                          |            |       |                 |          |           |       |                   |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16  |                          |            |       | **              | "        | "         | "     | -                 |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17  |                          |            | 0.685 | 0.694           |          | 3.438     | 0.123 | -                 |
| Chrome steel     Sened   As forged   As forged   As forged   Annealed   Oil-hard-  ened   Cil   As forged   O.532   O.393   O.020   O.220   O.041   O.621   Cr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18  |                          |            |       |                 |          |           |       | -                 |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19  |                          |            | "     | "               | 66       | 66        | 66    | -                 |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20  |                          | As forged  | 0.532 | 0.393           |          |           |       | 0.621 Cr.         |
| 22 " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21  |                          |            | "     | 66              | "        | "         | "     | "                 |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22  | "                        |            | 66    | 66              | 66       | 66        | "     | "                 |
| 25 26 27 28 29 29 29 20 20 21 22 22 23 24 25 26 27 28 28 29 20 20 20 21 22 22 23 24 25 26 27 28 28 29 20 20 20 21 21 22 22 23 24 25 26 27 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23  |                          |            | 0.687 | 0.028           | 44       | 0.134     | 0.043 | 1.195 Cr.         |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                          | Annealed   | "     | 66              | "        | ",        | ""    | 7,                |
| Tungsten steel   As forged Annealed   1.357   0.036   None.   0.043   0.047   4.649   W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25  | "                        |            | 66    | 66              | 66       | 66        | "     | 66                |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26  | Tungsten steel           |            | 1.357 | 0.036           | None.    | 0.043     | 0.047 | 4.640 W.          |
| 28 " "   in cold water   Hardened in tepid water   Gray cast iron   White " "   White " "   Hincold water   Gray cast iron   Gray cast iron .                                                                                                                                                                                                                                        | - 1 |                          | Annealed   | 3,57  | "               |          | "         | "     | 7.049             |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0  | 66 66                    |            | "     |                 | "        |           |       | ,,                |
| Care cast iron   Care Cast   | 28  |                          |            |       | •               |          |           |       | "                 |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                          |            |       |                 |          |           |       |                   |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29  | "                        | { in tepid | 66    | 66              | 46       | 66        | 66    | 66                |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                          |            |       |                 |          |           |       |                   |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30  | " (French) .             |            | 0.511 | 0.625           | None.    | 0.021     | 0.028 | 3.444 W.          |
| 32   Gray cast iron   -   3.455   0.173   0.042   2.044   0.151   2.064   C.†   33   Mottled cast iron   -   2.581   0.610   0.105   1.476   0.435   1.477   C.†   2.036   0.386   0.467   0.764   0.458   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |                          |            | 0.855 | 0.312           | -        | 0.151     | 0.089 |                   |
| 34   White " " · ·   -   2.036   0.386   0.467   0.764   0.458   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                          | -          | 3.455 | 0.173           |          |           | 0.151 | 2.064 C.†         |
| 31 6 31 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                          |            |       |                 |          |           | 0.435 | 1.477 C.†         |
| 13. 73.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                          |            |       |                 |          |           |       | _                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                          |            | 7.5.0 | 1.91~           |          | 3.52      | -     |                   |

<sup>\*</sup> Phil. Trans. Roy. Soc. vol. 176.

† Graphitic carbon.

## PROPERTIES OF IRON AND STEEL.

The numbers in the columns headed "magnetic properties" give the results for the highest magnetizing force used, paper, it may be obtained by subtracting the magnetizing force  $(z_4o)$  from the maximum induction and then dividing netizing force" is the magnetizing force which had to be applied in order to leave no residual magnetization after dissipated" was calculated from the formula:—Energy dissipated  $\equiv$  coercive force  $\times$  maximum induction  $\div$   $\pi$ 

| No. of Test.   Temper.   Specific electristics   Maximum induction   Maximum inducti |       |                        |             |          |          |            |          |                    |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------|-------------|----------|----------|------------|----------|--------------------|-------------|
| Test.   Temper.   Calaresis tance.   Maximum indicute five force.   Temper.   Calaresis tance.   Malleable cast iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                        |             | Specific | 1        | Magnetic p | ropertie | s.                 |             |
| Test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                        | Temper.     | electri- |          | D          |          |                    | Energy dis- |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Test. | specimen.              |             |          |          |            |          | Demag-<br>netizive |             |
| Malleable cast iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                        |             |          | duction. | tion.      | force.   |                    |             |
| Malleable cast iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 3371 4 *               |             |          |          |            |          |                    |             |
| Gray cast iron   Bessemer steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                        |             |          |          |            | 2.30     | -                  |             |
| Bessemer steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                        | -           |          |          |            |          | _                  |             |
| Whitworth mild steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4     | Bessemer steel         | -           |          |          | 7860       |          |                    |             |
| The first content of the content o | 5     | Whitworth mild steel . |             |          |          | 7080       |          | -                  | 10289       |
| The composition of the composi |       | •                      |             |          |          | 9840       | 6.73     | -                  | 40120       |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                        |             | .01390   | 18796    | 11040      | 11.00    | -                  | 65786       |
| Seed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8     |                        |             | .01559   | 16120    | 10740      | 8.26     | -                  | 42366       |
| Hadfield's manganese   Steel   Steel | 9     | 66 66                  |             | .01695   | 16120    | 8736       | 19.38    |                    | 99401       |
| Steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IO    | Hadfield's manganese ( | ( 0         | 0655     | . 270    |            |          |                    |             |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | steel                  | An forms    |          |          |            |          |                    |             |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | Wanganese steel        |             |          |          |            | 23.50    |                    | 34567       |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 66 66                  | 5 Oil-hard- |          |          |            |          |                    |             |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                        |             |          |          | 2150       | 27.04    | 40.29              | 41941       |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 66 66                  |             | .00993   | 747      | 540        | 24.50    | 50.20              | 15474       |
| Silicon steel     As forged   .06163   15148   11073   9.49   12.60   45740   36485   19   " "   Chrome steel   As forged   .06165   14696   8084   12.75   17.14   59619   12.60   .06185   14701   8149   7.80   10.74   36485   19   " " As forged   .06195   14696   8084   12.75   17.14   59619   .02016   15778   9318   12.24   13.87   61439   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218   .0218                                |       | 66 66                  |             | _        |          | 340        | 24.30    | 30.39              | 134/4       |
| 18       " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | Ciliana atanl          |             |          | , 55     |            |          | -                  | _           |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                        |             |          |          |            |          |                    |             |
| Chrome steel     As forged   .02016   15778   9318   12.24   13.87   61439   122     42425     6014ad   .01942   14848   7570   8.98   12.24   42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425     42425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | " "                    |             |          |          |            |          |                    |             |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | Chuema etcal           |             |          |          |            |          |                    |             |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                        |             |          |          |            |          |                    |             |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 44 46                  | 6 Oil-hard- |          |          |            |          |                    |             |
| 24 " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                        |             |          |          |            | 0 0      |                    |             |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                        |             |          |          |            |          |                    | 64842       |
| Tungsten steel   As forged   .02249   15718   10144   15.71   17.75   78568   27   28   "   Annealed   Hardened in cold water   Hardened in tepid water   Hardened   Water   Hardened   Water   Hardened   Har             |       | 66 66                  | 5 Oil-hard- |          |          |            |          |                    |             |
| 27 " " Annealed (Hardened in cold water (Hardened in tepid water (Hardened in tepid water (Oil hardened in tepid water (Hardened in tepid water (Hardened in tepid water (Oil hardened in tepid water (Hardened in tepid water (Oil hardened in te     |       | Tungatan ataal         |             |          |          |            |          |                    |             |
| 29 " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | rungsten steer         |             |          |          |            |          |                    |             |
| 29 " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                        | ( Hardened  | .52230   | 20490    | 11003      | 3.50     | 10.53              | 003.3       |
| Company   Comp | 28    |                        |             | .02274   | -        | -          | -        | -                  | -           |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                        |             |          |          |            |          |                    |             |
| 30 " " (French) .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29    | "                      |             | .02249   | 15610    | 9482       | 30.10    | 34.70              | 149500      |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                        |             |          |          |            |          | 11                 |             |
| 31     "     .     .     Very hard     .04427     12133     6818     51.20     70.69     197660       32     Gray cast iron     .     -     .11400     9148     3161     13.67     17.03     39789       33     Mottled cast iron     .     -     .06286     10546     5108     12.24     -     41072       34     White     "     .     -     .05661     9342     5554     12.24     20.40     36383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30    | " (French) .           | ,           | .03604   | 14480    | 8643       | 47.07    | 64.46              | 216864      |
| 32   Gray cast iron   -   .11400   9148   3161   13.67   17.03   39789   33   Mottled cast iron   -   .06286   10546   5108   12.24   -   41072   34   White " "   -   .05661   9342   5554   12.24   20.40   36383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31    |                        |             | .04427   |          |            |          | 70.69              |             |
| 34 White " "   -   .05661   9342   5554   12.24   20.40   36383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32    |                        | -           |          | 9148     |            |          | 17.03              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                        | _           |          |          |            |          | 20.40              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                        | -           |          |          |            | -        | -                  | -           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                        |             |          |          |            |          |                    |             |

TABLE 446. - Magnetic Properties of Iron and Steel.

|                                            | Electro-                                  | Good<br>Cast                             | Poor<br>Cast                           | Steel.                               | Cast                                 | Electrica                                 | al Sheets.                               |
|--------------------------------------------|-------------------------------------------|------------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------|
|                                            | Iron.                                     | Steel.                                   | Steel.                                 | Steen.                               | Iron.                                | Ordinary.                                 | Silicon<br>Steel.                        |
| Chemical composition in per cent Si Mn P S | 0.024<br>0.004<br>0.008<br>0.008<br>0.001 | 0.044<br>0.004<br>0.40<br>0.044<br>0.027 | 0.56<br>0.18<br>0.29<br>0.076<br>0.035 | 0.99<br>0.10<br>0.40<br>0.04<br>0.07 | 3.11<br>3.27<br>0.56<br>1.05<br>0.06 | 0.036<br>0.330<br>0.260<br>0.040<br>0.068 | 0.036<br>3.90<br>0.090<br>0.009<br>0.006 |
| Coercive force {                           | 2.83<br>[0.36]                            | 1.51<br>[0.37]                           | 7.I<br>(44.3)                          | 16.7<br>(52.4)                       | 11.4<br>[4.6]                        | [1.30]                                    | [0.77]                                   |
| Residual B }                               | 11400<br>[10800]                          | 10600                                    | 10500                                  | 13000 (7500)                         | 5100<br>[5350]                       | [9400]                                    | [9850]                                   |
| Maximum permeability {                     | 1850<br>[14400]                           | 3550<br>[14800]                          | 700<br>(170)                           | 375<br>(110)                         | 240<br>[600]                         | [3270]                                    | [6130]                                   |
| B for H=150 {                              | 19200<br>[18900]                          | 18800                                    | 17400<br>(15400)                       | 16700<br>(11700)                     | 10400<br>[11000]                     | [18200]                                   | [17550]                                  |
| $4\pi I$ for saturation . $\left\{\right.$ | 21620<br>[21630]                          | 21420<br>[21420]                         | 20600 (20200)                          | 19800 (18000)                        | 16400<br>[16800]                     | [20500]                                   | [19260]                                  |

E. Gumlich, Zs. für Electrochemie, 15, p. 599; 1909.

Brackets indicate annealing at 800° C in vacuum. Parentheses indicate hardening by quenching from cherry-red.

TABLE 447.- Cast Iron in Intense Fields.

|       | Soft Cast | Iron. |              | Hard Cast Iron, |       |            |              |  |  |  |  |
|-------|-----------|-------|--------------|-----------------|-------|------------|--------------|--|--|--|--|
| Н     | В         | I     | μ            | Н               | В     | I          | μ            |  |  |  |  |
| 114   | 9950      | 782   | 87.3<br>62.8 | 142             | 7860  | 614        | 55.4         |  |  |  |  |
| 172   | 10800     | 846   | 62.8         | 254             | 9700  | 752        | 55·4<br>38.2 |  |  |  |  |
| 433   | 13900     | 1070  | 32.1         |                 | 10850 | 836<br>983 | 30.6         |  |  |  |  |
| 744   | 1 57 50   | I 200 | 21.2         | 339<br>684      | 13050 | 983        | 19.1         |  |  |  |  |
| 1234  | 17300     | 1280  | 14.0         | 915             | 14050 | 1044       | 15.4         |  |  |  |  |
| 1820  | 18170     | 1300  | 10.0         | 1570            | 15900 | 1138       | 10.1         |  |  |  |  |
| 12700 | 31100     | 1465  | 2.5          | 2020            | 16800 | 1176       | 8.3          |  |  |  |  |
| 13550 | 32100     | 1475  | 2.4          | 10900           | 26540 | 1245       | 2.4          |  |  |  |  |
| 13800 | 32500     | 1488  | 2.4          | 1 3200          | 28600 | 1226       | 2.2          |  |  |  |  |
| 15100 | 33650     | 1472  | 2.2          | 14800           | 30200 | 1226       | 2.0          |  |  |  |  |

B. O. Peirce, Proc. Am. Acad. 44, 1909.

#### TABLE 448. - Corrections for Ring Specimens.

In the case of ring specimens, the average magnetizing force is not the value at the mean radius, the ratio of the two being given in the table. The flux density consequently is not uniform, and the measured hysteresis is less than it would be for a uniform distribution. This ratio is also given for the case of constant permeability, the values being applicable for magnetizations in the neighborhood of the maximum permeability. For higher magnetizations the flux density is more uniform, for lower it is less, and the correction greater.

| Ratio of<br>Radial<br>Width to | Ratio of Ave<br>H at Mear     | erage H to<br>Radius.      |                               | esis for Uniform<br>ctual Hysteresis. |
|--------------------------------|-------------------------------|----------------------------|-------------------------------|---------------------------------------|
| Diameter<br>of Ring.           | Rectangular<br>Cross-section. | Circular<br>Cross-section. | Rectangular<br>Cross-section. | Circular<br>Cross-section.            |
| 1/2                            | 1.0986                        | 1.0718                     | 1.112                         | 1.084                                 |
| 1/3                            | 1.0397                        | 1.0294                     | 1.045                         | 1.033                                 |
| 1/4                            | 1.0216                        | 1.0162                     | 1.024                         | 1.018                                 |
| 1/5                            | 1.0137                        | 1.0102                     | 1.015                         | 1.011                                 |
| 1/6                            | 1.0094                        | 1.0070                     | 1.010                         | 1.008                                 |
| 1/7                            | 1.0069                        | 1.0052                     | 1.008                         | 1.006                                 |
| 1/8                            | 1.0052                        | 1.0040                     | 1.006                         | 1.004                                 |
| 1/10                           | 1.0033                        | 1.0025                     | 1.003                         | 1.002                                 |
| 1/19                           | 1.0009                        | 1.0007                     | 1.001                         | 1.001                                 |

M. G. Lloyd, Bull. Bur. Standards, 5, p. 435; 1908.

## MAGNETIC PROPERTIES OF IRONS AND STEELS.

## TABLE 449. - Magnetic Properties of Various Types of Iron and Steel.

From tests made at the Bureau of Standards. B and H are measured in cgs units.

| Values of B.         |        | 2000        | 4000           | 6000 | 8000 | 10,000           | 12,000 | 14,000          | 16,000          | 18,000       | 20,000       |
|----------------------|--------|-------------|----------------|------|------|------------------|--------|-----------------|-----------------|--------------|--------------|
| Annealed Norway iron | Η<br>μ | .81<br>2470 |                |      |      |                  |        | <b>7.25</b>     |                 |              | _            |
| Cast semi-steel      | Η<br>μ | 2.00        |                |      |      | 9.82             |        | <b>24.9</b> 563 | <b>50.5</b> 317 | <b>135</b> . | <b>325</b> . |
| Machinery steel      | Η<br>μ | 5.0         | <b>8.8</b> 455 |      |      | <b>25 .8</b> 390 |        | <b>50.5</b> 280 | 76.0<br>210     | 142.<br>127  | _            |

## TABLE 450. - Magnetic Properties of a Specimen of Very Pure Iron (.017% C).

From tests at the Bureau of Standards. B and H are measured in cgs units.

| Values of B                   |        | 2000            | 4000 | 6000            | 8000 | 10,000 | 12,000          | 14,000           | 16,000          | 18,000          | 20,000          |
|-------------------------------|--------|-----------------|------|-----------------|------|--------|-----------------|------------------|-----------------|-----------------|-----------------|
| Very pure iron as received    | Η<br>μ | <b>3.30</b> 606 |      | <b>6.35</b> 945 | 00   |        | <b>18.9</b> 635 |                  | <b>47.0</b> 340 |                 | <b>240</b> . 83 |
| Annealed in vacuo from 900° C | Η<br>μ | <b>.46</b> 4350 |      | . <b>80</b>     |      |        |                 | <b>3.20</b> 4380 |                 | <b>72.0</b> 250 | <b>194</b> .    |

As received:  $H_{\text{max}}$  150  $B_{\text{max}}$  18,900  $B_r$  7,650  $H_c$  2.8

After annealing:  $H_{\text{max}}$  150  $B_{\text{max}}$  19,500  $H_{\text{c}}$  0.53

#### TABLE 451. - Magnetic Properties of Electrical Sheets.

From tests at the Bureau of Standards. B and H are measured in cgs units.

| Values of B                         |        | 2000        | 4000             | 6000 | 8000 | 10,000 | 12,000 | 14,000       | 16,000 | 18,000       | 20,000 |
|-------------------------------------|--------|-------------|------------------|------|------|--------|--------|--------------|--------|--------------|--------|
| Dynamo steel                        | Η<br>μ |             |                  |      |      |        |        | 9.20<br>1520 |        | <b>114</b> . | _      |
| Ordinary trans-<br>former steel     | Η<br>μ | <b>.60</b>  | <b>.87</b>       |      |      |        |        | 10.9<br>1280 |        | 149.         | _      |
| High silicon trans-<br>former steel | Η<br>μ | .50<br>4000 | . <b>70</b> 5720 |      |      |        |        | 9.80         |        | 165.         | _      |

#### MAGNETIC PROPERTIES OF IRONS AND STEELS.

#### TABLE 452. - Magnetic Properties of Two Types of American Magnet Steel.

From tests at the Bureau of Standards. B and H are measured in cgs units.

| Values of B     |        | 2000       | 4000         | 6000 | 8000       | 10,000    | 12,000    | 14,000    | 16,000 | 18,000 | 20,000 |
|-----------------|--------|------------|--------------|------|------------|-----------|-----------|-----------|--------|--------|--------|
| Tungsten steel. | $\mu$  | 35.0<br>57 | 53 · 3<br>75 | 63.3 | 72.0       | 83.4      | 109       | 200<br>70 | _      | _      | =      |
| Chrome steel    | H<br>µ | 34·5<br>58 | 49.0         | 63.5 | 88.4<br>91 | 143<br>70 | 270<br>45 | =         | =      | =      | =      |

#### TABLE 453. - Magnetic Properties of a Ferro-Cobalt Alloy, Fe<sub>2</sub>Co (35% Cobalt).

From tests at the Bureau of Standards. B and H are measured in cgs units.

| Values of B           |                 | 2000        | 4000        | 6000        | 8000 | 10,000     | 12,000 | 14,000      | 16,000      | 18,000      | 20,000      |
|-----------------------|-----------------|-------------|-------------|-------------|------|------------|--------|-------------|-------------|-------------|-------------|
| As received           | $_{\mu}^{H}$    | 3.10<br>645 | 4.28<br>935 | 5.50        | 7.17 | 9.65       | 13.4   | 19.1<br>730 | 27·3<br>590 | 40.0<br>450 | 65.0<br>310 |
| Annealed at }         | $_{\mu}^{H}$    | 3.00<br>670 | 4.II<br>970 | 5.05        | 6.45 | 8.40       | 11.3   | 15.4        | 21.9<br>730 | 31.7<br>570 | 50.6<br>400 |
| Quenched from 1000° C | $\frac{H}{\mu}$ | 10.8        | 13.8        | 19.1<br>314 | 28.7 | 43 · 4 230 | 65.8   | 104         | 163<br>98   | 262<br>69   | =           |

As received Annealed at 1000° C  $B_{\text{max}}$   $\begin{cases} 15,000 \\ 15,000 \end{cases}$   $H_{\text{max}}$   $\begin{cases} 22.9 \\ 18.3 \end{cases}$   $B_r$   $\begin{cases} 7750 \\ 7450 \end{cases}$   $H_{\sigma}$   $\begin{cases} 3.79 \\ 3.05 \end{cases}$  Quenched from 1000° C  $\begin{cases} 15,000 \\ 15,000 \end{cases}$ 

## TABLE 454. — Magnetic Properties of a Ring Sample of Transformer Steel in Very Weak Fields.

From tests made at the Bureau of Standards. B and H are measured in cgs units.

|  |  | 7.51 10. | 18 0.020<br>19 11.64<br>56 582 |
|--|--|----------|--------------------------------|
|  |  | 1        |                                |

#### TABLE 455. - Magnetic Properties of Iron in Very Weak Fields.

The effect of very small magnetizing forces has been studied by C. Baur and by Lord Rayleigh. The following short table is taken from Baur's paper, and is taken by him to indicate that the susceptibility is finite for zero values of H and for a finite range increases in simple proportion to H. He gives the formula k = 15 + 100H, or I = 15H + 100H? The experiments were made on an annealed ring of round bar 1.013 cms radius, the ring having a radius of 9.432 cms. Lord Rayleigh's results for an iron wire not annealed give k = 6.4 + 5.1H, or  $I = 6.4H + 5.1H^2$ . The forces were reduced as low as 0.00004 cgs, the relation of k to H remaining constant.

| F                                    | irst experiment                  | Second experiment.             |                                  |                                  |
|--------------------------------------|----------------------------------|--------------------------------|----------------------------------|----------------------------------|
| Н                                    | k .                              | I                              | П                                | k                                |
| .01580<br>.03081<br>.07083<br>.13188 | 16.46<br>17.65<br>23.00<br>28.90 | 2.63<br>5.47<br>16.33<br>38.15 | .0130<br>.0847<br>.0946<br>.1864 | 15.50<br>18.38<br>20.49<br>25.07 |
| .38422                               | 39.81<br>58.56                   | 91.56                          | . 2903                           | 32.40<br>35.20                   |

#### PERMEABILITY OF SOME OF THE SPECIMENS IN TABLE 448

#### TABLE 456.

This table gives the induction and the permeability for different values of the magnetizing force of some of the specimens in Table 445. The specimen numbers refer to the same table. The numbers in this table have been taken from the curves given by Dr. Hopkinson, and may therefore be slightly in error; they are the mean values for rising and falling magnetizations.

| Magnetiz-<br>ing force.            | Specimen                                                                                  | ı (iron).                                                                      | Specim<br>(annealed                                                         |                                                                                  | Specimen 9<br>8 tempe                                                             |                                                             | Specin<br>(cast in                                                                          |                                                                                      |
|------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Н                                  | В                                                                                         | μ                                                                              | В                                                                           | μ                                                                                | В                                                                                 | μ                                                           | В                                                                                           | μ                                                                                    |
| 1 2 3 5 10 20 40 50 70 100 150 200 | 200<br>-<br>10050<br>12550<br>14550<br>15200<br>15800<br>16360<br>16400<br>17400<br>17950 | -<br>100<br>-<br>2010<br>1255<br>727<br>507<br>395<br>320<br>234<br>168<br>116 | 1525<br>9000<br>11500<br>12650<br>13300<br>13800<br>14350<br>14900<br>15700 | -<br>-<br>-<br>300<br>900<br>575<br>422<br>332<br>276<br>205<br>149<br>105<br>80 | 7,50<br>16,50<br>587,5<br>987,5<br>11,600<br>12,000<br>13,400<br>14,500<br>15,800 | 150<br>165<br>294<br>329<br>290<br>240<br>191<br>145<br>105 | 265<br>700<br>1625<br>3000<br>5000<br>6000<br>6500<br>7100<br>7350<br>7900<br>8 500<br>9500 | 265<br>350<br>542<br>600<br>500<br>300<br>217<br>177<br>149<br>113<br>85<br>63<br>51 |

Tables.457-9, 463-5 give the results of some experiments by Du Bois,\* on the magnetic properties of iron, nickel, and cobalt under strong magnetizing forces. The experiments were made on ovoids of the metals 18 centimeters long and 0.6 centimeters diameter. The specimens were as follows: (1) Soft Swedish iron carefully annealed and having a density 7.32. (2) Hard English cast steel yellow tempered at 230° C.; density 7.78. (3) Hard drawn best nickel containing 99 % Ni with some SiO<sub>2</sub> and traces of Fe and Cu; density 8.32. (4) Cast cobalt giving the following composition on analysis: Co=93.1, Ni=5.8, Fe=0.8, Fe=0.8, Cu=0.2, Si=0.1, and C=0.3. The specimen was very brittle and broke in the lathe, and hence contained a surfaced joint held together by clamps during the experiment. Referring to the columns, H, B, and \(\ella \) have the same meaning as in the other tables, S is the magnetic moment per gram, and I the magnetic moment per cubic centimeter. H and S are taken from the curves published by Du Bois; the others have been calculated using the densities given.

## MAGNETIC PROPERTIES OF SOFT IRON AT 0° AND 100° C. TABLE 457.

| Soft iron at 0° C.                       |                                                    |                                              |                                                    |                                               |                                          | Sof                                                | t iron at 100                                | o° C.                                              | -                                             |
|------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|-----------------------------------------------|------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|-----------------------------------------------|
| H                                        | S                                                  | I                                            | В                                                  | μ                                             | Н                                        | S                                                  | I                                            | В                                                  | µ                                             |
| 100<br>200<br>400<br>700<br>1000<br>1200 | 180.0<br>194.5<br>208.0<br>215.5<br>218.0<br>218.5 | 1408<br>1521<br>1627<br>1685<br>1705<br>1709 | 17790<br>19310<br>20830<br>21870<br>22420<br>22670 | 177.9<br>96.5<br>52.1<br>31.2<br>22.4<br>18.9 | 100<br>200<br>400<br>700<br>1000<br>1200 | 180.0<br>194.0<br>207.0<br>213.4<br>215.0<br>215.5 | 1402<br>1511<br>1613<br>1663<br>1674<br>1679 | 17720<br>19190<br>20660<br>21590<br>22040<br>22300 | 177.2<br>96.0<br>51.6<br>29.8<br>21.0<br>18.6 |

## MACNETIC PROPERTIES OF STEEL AT 0° AND 100° C. TABLE 458.

|                                                   |                                                             | Steel at oo                                          | C.                                                          |                                                      |                                                          | S                                                                    | teel at 100°                                                 | C.                                                                   |                                                             |
|---------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|
| Н                                                 | S                                                           | I                                                    | В                                                           | μ                                                    | Н                                                        | S                                                                    | . I                                                          | В                                                                    | μ                                                           |
| 100<br>200<br>400<br>700<br>1000<br>1200<br>3750† | 165.0<br>181.0<br>193.0<br>199.5<br>203.5<br>205.0<br>212.0 | 1283<br>1408<br>1500<br>1552<br>1583<br>1595<br>1650 | 16240<br>17900<br>19250<br>20210<br>20900<br>21240<br>24470 | 162.4<br>89.5<br>48.1<br>28.9<br>20.9<br>17.7<br>6.5 | 100<br>200<br>400<br>700<br>1000<br>1500<br>3000<br>5000 | 165.0<br>180.0<br>191.0<br>197.0<br>199.0<br>203.0<br>205.5<br>208.0 | 1278<br>1395<br>1480<br>1527<br>1543<br>1573<br>1593<br>1612 | 16170<br>17730<br>19000<br>19890<br>20380<br>21270<br>23020<br>25260 | 161.7<br>88.6<br>47.5<br>28.4<br>20.4<br>14.2<br>7.7<br>5.1 |

\* "Phil. Mag," 5 series, vol. xxix.

† The results in this and the other tables for forces above 1200 were not obtained from the ovoids above referred to, but from a small piece of the metal provided with a polished mirror surface and placed, with its polished face normal to the lines of force, between the poles of a powerful electromagnet. The induction was then inferred from the rotation of the plane of a polarized ray of red light reflected normally from the surface. (See Kerr's "Constants," p. 331.)

#### MAGNETISM AND TEMPERATURE.

#### TABLE 459. - Magnetism and Temperature, Critical Temperature.

The magnetic moment of a magnet diminishes with increasing temperature. Different specimens vary widely. In the formula  $Mt/M_0 = (1-at)$  the value of a may range from .0003 to .001 (see Tables 457-458). The effect on the permeability with weak fields may at first be an increase. There is a critical temperature (Curie point) above which the permeability is very small (paramagnetic?). Diamagnetic susceptibility does not change with the temperature. Paramagnetic susceptibility decreases with increase in temperature. This and the succeeding two tables are taken from Dushman, "Theories of Magnetism," General Electric Review, 1916.

| Substance.   | Critical<br>temperature,<br>Curie point.          | Reference.                      | Substance.                                               | Critical<br>temperature,<br>Curie point. | Reference.                           |
|--------------|---------------------------------------------------|---------------------------------|----------------------------------------------------------|------------------------------------------|--------------------------------------|
| Iron, α form | 756° C<br>920<br>1280<br>536<br>589<br>555<br>520 | 1<br>1<br>1<br>1<br>2<br>3<br>3 | MnBi. MnSb. MnAs. MnAs. MnP. Heusler alloy Nickel Cobalt | 18 " 25                                  | 4<br>4<br>4<br>4<br>5<br>1<br>6<br>6 |

References: (1) P. Curie; (2) see Williams, Electron Theory of Magnetism, quoted from Weiss; (3) du Bois, Tr. Far. Soc. 8, 211, 1912; (4) Hilpert, Tr. Far. Soc. 8, 207, 1912; (5) Gumaer; (6) Stifler, Phys. Rev. 33, 268, 1911.

#### TABLE 460. - Temperature Variation for Paramagnetic Substances.

The relation deduced by Curie that  $\chi = C/T$ , where C is a constant and T the absolute temperature, holds for some paramagnetic substances over the ranges given in the following table. Many paramagnetic substances do not obey the law (Honda and Owen, Ann. d. Phys. 32, 1027, 1910; 37, 657, 1912). See the following table.

| Substance. | C × 108                                      | Range ° C                                               | Reference.                              | Substance                                                                          | C × 10 <sup>6</sup>                  | Range ° C                                          | Refer-<br>ence.  |
|------------|----------------------------------------------|---------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|------------------|
| Oxygen     | 33,700<br>7,830<br>1,520<br>28,000<br>38,500 | 20° to 450° C<br>20 to 1370<br>850 " 1360<br>850 " 1267 | IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | Gadolinium sulphate.<br>Ferrous sulphate<br>Ferric sulphate<br>Manganese chloride. | 21,000<br>11,000<br>17,000<br>30,000 | -259° to 17<br>-259 " 17<br>-208 " 17<br>-258 " 17 | 2<br>2<br>3<br>3 |

References: (1) P. Curie, London Electrician, 66, 500, 1912; see also Du Bois, Rap. du Cong. 2, 460, 1900; (2) Perrier, Onnes, Tables annuelles, 3, 288, 1914; (3) Oosterhuis, Onnes, Lc. 2, 389, 1913.

## TABLE 461. — Temperature Effect on Susceptibility of Diamagnetic Elements.

#### No effect:

| C Diamond, +170 to 200°<br>C "Sugar" carbon<br>Si Cryst. | S Cryst.; ppt. Zn -170 to 300° As - | Se —<br>Br —170 to 18°<br>Zr Cryst. —170 to 500°<br>Cd —170 to 300° | Sb -170 to 50°<br>Cs and Au<br>Hg -39 to +350°<br>Pb 327 to 600° |
|----------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|
|                                                          |                                     |                                                                     |                                                                  |

#### Increase with rise in Temperature:

| C Diamond, 200 to 1200° Ag | I -170 to 114°<br>Hg -170 to -30° |
|----------------------------|-----------------------------------|
|                            | C Diamond, 200 to 1200°           |

#### Decrease with rise in Temperature:

| C Amorphous       | Gd -179 to 30°  | In -170 to 150° | Tl —            |
|-------------------|-----------------|-----------------|-----------------|
| C Ceylon graphite | Ge -170 to 900° | Sb +50 to +631° | Pb —170 to 327° |
| Cu —              | Zr 500 to 1200° | Te -            | Bi —170 to 268° |
| Zn +300 to 700°   | Cd 300 to 700°  | I +114 to +200° | 70 00 000       |

#### TABLE 462. — Temperature Effects on Susceptibility of Paramagnetic Elements.

#### No effect:

| Li —            | K -170 to 150° | Cr -170 to 500° | W  | _ |
|-----------------|----------------|-----------------|----|---|
| Na -170 to 97°  | Ca -170 to 18° | Mn -170 to 250° | Os | _ |
| Al 657 to 1100° | V -170 to 500° | Rb —            |    |   |

## Increase with rise in Temperature:

| Ti -40 to 1100° Cr 500 to 1100° Mo -170 to 1200° | Ru +550 to 1200°<br>Rh — | Ba -170 to 18°<br>Ir and Th |
|--------------------------------------------------|--------------------------|-----------------------------|
|--------------------------------------------------|--------------------------|-----------------------------|

#### Decrease with rise in Temperature:

| (O) —           | Ti -180 to -40° | Ni 350 to 800°  | Pd and Ta         |
|-----------------|-----------------|-----------------|-------------------|
| As —170 to 657° | Mn 250 to 1015° | Co above 1150°  | Pt and U          |
| Mg —            | (Fe) —          | Cb -170 to 400° | Rare earth metals |

Tables 461 and 462 are due to Honda and Owen; for reference, see preceding table.

SMITHSONIAN TABLES.

## MACNETIC PROPERTIES OF METALS.

TABLE 463. - Cobalt at 100° C.

| Н               | S   | I    | В         | μ       |  |  |
|-----------------|-----|------|-----------|---------|--|--|
| 200             | 106 | 848  | 10850     | 54.2    |  |  |
| 300             | 116 | 928  | 11960     | 39.9    |  |  |
| 500             | 127 | 1016 | 13260     | 26.5    |  |  |
| 700             | 131 | 1048 | 13870     | 19.8    |  |  |
| 1000            | 134 | 1076 | 14520     | 14.5    |  |  |
| 1 500           | 138 | 1104 | 15380     | 10.3    |  |  |
| 2500            | 143 | 1144 | 16870     | 6.7     |  |  |
| 4000            | 145 | 1164 | 18630     | 4.7     |  |  |
| 6000            | 147 | 1176 | 20780     | 3.5     |  |  |
| 9000            | 149 | 1192 | 23980     | 2.6     |  |  |
| At oo           |     |      | n gave th | ne fol- |  |  |
| lowing results: |     |      |           |         |  |  |
| 7900            | 154 | 1232 | 23380     | 3.0     |  |  |
|                 |     |      |           |         |  |  |

TABLE 464. - Nickel at 100° C.

| Н       | S               | I       | В     | μ      |  |  |
|---------|-----------------|---------|-------|--------|--|--|
| 100     | 35.0            | 309     | 3980  | 39.8   |  |  |
| 200     | 43.0            | 380     | 4966  | 24.8   |  |  |
| 300     | 46.0            | 406     | 5399  | 18.0   |  |  |
| 500     | 50.0            | 441     | 6043  | 12.1   |  |  |
| 700     | 51.5            | 454     | 6409  | 9.1    |  |  |
| 1000    | 53.0            | 468     | 6875  | 6.9    |  |  |
| 1500    | 56.0            | 494     | 7707  | 5.1    |  |  |
| 2500    | 58.4            | 515     | 8973  | 3.6    |  |  |
| 4000    | 59.0            | 520     | 10540 | 2.6    |  |  |
| 6000    | 59.2            | 522     | 12561 | 2.1    |  |  |
| 9000    | 59.4            | 524     | 15585 | 1.7    |  |  |
| 12000   | 59.6            | 526     | 18606 | 1.5    |  |  |
| At oo C |                 | pecimer |       | e fol- |  |  |
|         | lowing results: |         |       |        |  |  |
| 12300   | 67.5            | 595     | 19782 | 1.6    |  |  |

TABLE 465. - Magnetite.

The following results are given by Du Bois \* for a specimen of magnetite.

| Н     | I                | В     | μ    |
|-------|------------------|-------|------|
| 500   | 3 <sup>2</sup> 5 | 8361  | 16.7 |
| 1000  | 345              | 9041  | 9.0  |
| 2000  | 350              | 10084 | 5.0  |
| 12000 | 350              | 20084 | 1.7  |

Professor Ewing has investigated the effects of very intense fields on the induction in iron and other metals.† The results show that the intensity of magnetization does not increase much in iron after the field has reached an intensity of 1000 c. g. s. units, the increase of induction above this being almost the same as if the iron were not there, that is to say, dB/dH is practically unity. For hard steels, and particularly manganese steels, much higher forces are required to produce saturation. Hadfield's manganese steel seems to have nearly constant susceptibility up to a magnetizing force of 10,000. The following tables, taken from Ewing's papers, illustrate the effects of strong fields on iron and steel. The results for nickel and cobalt do not differ greatly from those given above.

TABLE 466. — Lowmoor Wrought Iron.

| Н     | I    | В     | μ    |
|-------|------|-------|------|
| 3080  | 1680 | 24130 | 7.83 |
| 6450  | 1740 | 28300 | 4.39 |
| 10450 | 1730 | 32250 | 3.09 |
| 13600 | 1720 | 35200 | 2.59 |
| 16390 | 1630 | 36810 | 2.25 |
| 18760 | 1680 | 39900 | 2.13 |
| 18980 | 1730 | 40730 | 2.15 |

TABLE 467. — Vicker's Tool Steel.

| Н                                       | I                                    | В                                         | μ                                    |
|-----------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|
| 6210<br>9970<br>12120<br>14660<br>15530 | 1530<br>1570<br>1550<br>1580<br>1610 | 25480<br>29650<br>31620<br>34550<br>35820 | 4.10<br>2.97<br>2.60<br>2.36<br>2.31 |

TABLE 468. — Hadfield's Manganese Steel.

| -                 |                                      |                                                                                 |
|-------------------|--------------------------------------|---------------------------------------------------------------------------------|
| I                 | В                                    | μ                                                                               |
| 55<br>84          | 2620<br>3430                         | 1.36                                                                            |
| 111               | 7310                                 | 1.31<br>1.24<br>1.35                                                            |
| 191<br>263<br>396 | 10290<br>11690<br>14790              | 1.30<br>1.39<br>1.51                                                            |
|                   | 84<br>84<br>111<br>187<br>191<br>263 | 55 2620<br>84 3430<br>84 4400<br>111 7310<br>187 8970<br>191 10290<br>263 11690 |

TABLE 469. - Saturation Values for Steels of Different Kinds.

| ;                                                   | Н     | I    | В     | μ    |
|-----------------------------------------------------|-------|------|-------|------|
| Bessemer steel containing about 0.4 per cent carbon | 17600 | 1770 | 39880 | 2.27 |
|                                                     | 18000 | 1660 | 38860 | 2.16 |
|                                                     | 19470 | 1480 | 38010 | 1.95 |
|                                                     | 18330 | 1580 | 38190 | 2.08 |
|                                                     | 19620 | 1440 | 37690 | 1.92 |
|                                                     | 18700 | 1590 | 38710 | 2.07 |

<sup>\* &</sup>quot; Phil. Mag." 5 series, vol. xxix, 1890.

## DEMAGNETIZING FACTORS FOR RODS.

#### TABLE 470.

H= true intensity of magnetizing field, H'= intensity of applied field, I= in-

Here intensity 0. magnetizing field, H' = intensity of applied field, I = intensity of magnetization, H = H' - NI. Shuddemagen says: The demagnetizing factor is not a constant, falling for highest values of I to about I/7 the value when unsaturated; for values of I (I = I + I + I) less than 10000, I = I + I is approximately constant; using a solenoid wound on an insulating tube, or a tube of split brass, the reversal method gives values for I = I + I which are considerably lower than those given by the step-by-step method; if the solenoid is wound on a thick brass tube, the two methods practically except. tically agree.

|                                                                                                  |                                                                                              |                                                                                                          | Values                                                                                                   | of N× 104.                                                                                        |                                                                          |            |                                                       |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------|-------------------------------------------------------|
|                                                                                                  |                                                                                              | Cylinder.                                                                                                |                                                                                                          |                                                                                                   |                                                                          |            |                                                       |
| Ratio                                                                                            |                                                                                              |                                                                                                          |                                                                                                          | I                                                                                                 | Ballistic Step                                                           | Method.    |                                                       |
| Length<br>to<br>Diameter.                                                                        | Ellipsoid.                                                                                   | Uniform<br>Magneti-                                                                                      | Magneto-<br>metric<br>Method                                                                             | Dubois.                                                                                           | Shudden<br>Pract                                                         | agen for I | Range of ancy.                                        |
|                                                                                                  |                                                                                              | zation.                                                                                                  | (Mann).                                                                                                  |                                                                                                   | Diame                                                                    | er.        |                                                       |
|                                                                                                  |                                                                                              |                                                                                                          |                                                                                                          | 0.158 cm.                                                                                         | 0.3175 cm.                                                               | 1.111 cm.  | 1.905 cm.                                             |
| 5<br>10<br>15<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>150<br>200<br>300<br>400 | 7015<br>2549<br>1350<br>848<br>432<br>266<br>181<br>132<br>101<br>80<br>65<br>54<br>26<br>16 | -<br>630<br>280<br>160<br>70<br>39<br>25<br>18<br>13<br>9.8<br>7.8<br>6.3<br>2.8<br>1.57<br>0.70<br>0.39 | 6800<br>2550<br>1400<br>898<br>460<br>274<br>182<br>131<br>99<br>78<br>63<br>51.8<br>25.1<br>15.2<br>7.5 | 2160<br>1206<br>775<br>393<br>238<br>162<br>118<br>89<br>69<br>55<br>45<br>20<br>11<br>5.0<br>2.8 | -<br>-<br>388<br>234<br>160<br>116<br>88<br>69<br>56<br>46<br>23<br>12.5 |            | 1960<br>1075<br>671<br>343<br>209<br>149<br>106<br>63 |

#### TABLE 471.

Shuddemagen also gives the following, where B is determined by the step method and H = H' - KB.

| Ratio of                                            | Values o                                            | f K×10⁴.                                                                     |
|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------|
| Length<br>to<br>Diameter.                           | Diameter<br>0.3175 cm.                              | Diameter<br>1.1 to 2.0 cm.                                                   |
| 15<br>20<br>25<br>30<br>40<br>50<br>60<br>80<br>100 | 30.9<br>18.6<br>12.7<br>9.25<br>5.5<br>3.66<br>1.83 | 85.2<br>53.3<br>36.6<br>27.3<br>16.6<br>11.6<br>8.45<br>5.05<br>3.26<br>1.67 |

C. R. Mann, Physical Review, 3, p. 359; 1896. H. DuBois, Wied. Ann. 7, p. 942; 1902. C. L. B. Shuddemagen, Proc. Am. Acad. Arts and Sci. 43, p. 185, 1907 (Bibliography).

## DISSIPATION OF ENERGY IN THE CYCLIC MAGNETIZATION OF VARIOUS SUBSTANCES.

C. P. Steinmetz concludes from his experiments \* that the dissipation of energy due to hysteresis in magnetic metals can be expressed by the formula  $e = aB^{1.6}$ , where e is the energy dissipated and a a constant. He also concludes that the dissipation is the same for the same range of induction, no matter what the absolute value of the terminal inductions may be. His experiments show this to be nearly true when the induction does not exceed ± 15000 c. g. s. units per sq. cm. It is possible that, if metallic induction only be taken, this may be true up to saturation; but it is not likely to be found to hold for total inductions much above the saturation value of the metal. The law of variation of dissipation with induction range in the cycle, stated in the above formula, is also subject to verification.†

#### Values of Constant a.

The following table gives the values of the constant a as found by Steinmetz for a number of different specimens.

The data are taken from his second paper.

| Number of specimen.                                                  | Kind of material. | Description of specimen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Value of a.                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | Iron              | Norway iron Wrought bar Commercial ferrotype plate Annealed Thin tin plate Soft galvanized wire Annealed cast steel Soft annealed cast steel Very soft annealed cast steel Very soft annealed cast steel Same as 8 tempered in cold water Tool steel glass hard tempered in water " tempered in oil " annealed Same as 12,13, and 14, after having been subjected to an alternating m. m. f. of from 4000 to 6000 ampere turns for demagnetization Gray cast iron " " containing ½ aluminium " " " containing ½ % aluminium " " " A square rod 6 sq. cms. section and 6.5 cms. long, from the Tilly Foster mines, Brewsters, Putnam County, New York, stated to be a very pure sample Soft wire Annealed wire, calculated by Steinmetz from Ewing's experiments Hardened, also from Ewing's experiments Rod containing about 2 % of iron, also calculated from Ewing's experiments by Steinmetz Consisted of thin needle-like chips obtained by milling grooves about 8 mm. wide across a pile of thin sheets clamped together. About 30 % by volume of the specimen was iron.  Ist experiment, continuous cyclic variation of m. m. f. 180 cycles per second 3d " 79-91 cycles per second | .00227<br>.00326<br>.00548<br>.00458<br>.00286<br>.00425<br>.00349<br>.00848<br>.00457<br>.00318<br>.02792<br>.07476<br>.02679<br>.01899<br>(.06130<br>.02700<br>(.01445<br>.01306<br>.01365<br>.01459<br>.02348<br>.0122<br>.0156<br>.0385<br>.0120 |

<sup>\* &</sup>quot;Trans. Am. Inst. Elect. Eng." January and September, 1892. † See T. Gray, "Proc. Roy. Soc." vol. lvi.

#### ENERGY LOSSES IN TRANSFORMER STEELS.

Determined by the wattmeter method.

Loss per cycle per  $cc = AB^2 + bnB^2$ , where B = flux density in gausses and n = frequency in cycles per second. x shows the variation of hysteresis with B between 5000 and 10000 gausses, and y the same for eddy currents.

|                                   |                                                                                        | Ergs p                                                                    | er Gran                                                                   | nme per (                                                              | Cycle.                                                         |                                                                      |                                                                                      |                                                                                                  |                                                                                | er Pound<br>d 10000 G                                                                 |                                                                              |
|-----------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Designation.                      | Thick-<br>ness.<br>cm.                                                                 | 10000 Gausses.                                                            |                                                                           | 5000 Gausses.                                                          |                                                                | x                                                                    | y                                                                                    | a                                                                                                | Gage                                                                           |                                                                                       |                                                                              |
|                                   | Ç                                                                                      | Hyste-<br>resis.                                                          | Eddy Currents at                                                          | Hyste-<br>resis.                                                       | Eddy Currents at                                               |                                                                      |                                                                                      |                                                                                                  | Eddy Current<br>Loss for Gage<br>No. 29. ‡                                     | Hyste-<br>resis.                                                                      | Total.                                                                       |
| Unannealed<br>A<br>B<br>C<br>D    | 0.0399<br>.0326<br>.0422<br>.0381                                                      | 1599<br>1156<br>1032<br>1009                                              | 186<br>134<br>242<br>184                                                  | 562<br>384<br>356<br>353                                               | 46<br>36<br>70<br>48                                           | 1.51<br>1.59<br>1.51<br>1.52                                         | 2.02<br>1.89<br>1.79<br>1.94                                                         | 0.00490<br>.00358<br>.00319                                                                      | 0.41<br>0.44<br>0.47<br>0.44                                                   | 4·35<br>3·14<br>2.81<br>2·74                                                          | 4.76<br>3.58<br>3.28<br>3.18                                                 |
| Annealed E F G H* I K* L B M N P  | .0476<br>.0280<br>.0394<br>.0307<br>.0318<br>.0282<br>.0346<br>.0338<br>.0335<br>.0340 | 735<br>666<br>563<br>412<br>341<br>394<br>381<br>354<br>372<br>321<br>334 | 236<br>100<br>210<br>146<br>202<br>124<br>184<br>200<br>178<br>210<br>184 | 246<br>220<br>193<br>138.5<br>111.5<br>130<br>125<br>116<br>127<br>105 | 58<br>27<br>54<br>39<br>55<br>32<br>50<br>57<br>46<br>56<br>50 | 1.58<br>1.60<br>1.54<br>1.58<br>1.62<br>1.61<br>1.61<br>1.55<br>1.62 | 2.02<br>1.88<br>1.96<br>1.90<br>1.88<br>1.90<br>1.88<br>1.81<br>1.95<br>1.90<br>1.88 | .00227<br>.00206<br>.00174<br>.00127<br>.00105<br>.00122<br>.00118<br>.00110<br>.00115<br>.00099 | 0.36<br>0.44<br>0.47<br>0.54<br>0.70<br>0.54<br>0.535<br>0.61<br>0.555<br>0.63 | 2.00<br>1.81<br>1.53<br>1.12<br>0.93<br>1.07<br>1.035<br>0.96<br>1.01<br>0.87<br>0.91 | 2.36<br>2.25<br>2.00<br>1.66<br>1.63<br>1.61<br>1.57<br>1.57<br>1.56<br>1.50 |
| Silicon steels Q† R S T U V* W* X | .0361<br>.0315<br>.0452<br>.0338<br>.0346<br>.0310<br>.0305                            | 303<br>288<br>278<br>250<br>270<br>251.5<br>197<br>200                    | 54<br>42<br>72<br>60<br>42<br>47<br>43<br>65                              | 98<br>93<br>90<br>78<br>86<br>79<br>62.3<br>64.2                       | 15<br>11<br>18<br>18<br>12<br>13<br>12.4<br>16.6               | 1.63<br>1.64<br>1.63<br>1.68<br>1.66<br>1.68<br>1.67                 |                                                                                      | .00094<br>.00089<br>.00086<br>.00077<br>.00084<br>.00078                                         | 0.14<br>0.15<br>0.12<br>0.18<br>0.12<br>0.17<br>0.16<br>0.12                   | 0.825<br>0.78<br>0.755<br>0.68<br>0.735<br>0.685<br>0.535                             | 0.965<br>0.93<br>0.875<br>0.86<br>0.855<br>0.855<br>0.695<br>0.665           |

Lloyd and Fisher, Bull. Bur. Standards, 5, p. 453; 1909.

Note. — For formulæ and tables for the calculation of mutual and self inductance see Bulletin Bureau of Standards, vol. 8, p. 1-237, 1912.

<sup>\*</sup> German. † English.

‡ In order to make a fair comparison, the eddy current loss has been computed for a thickness of 0.0357 cm. (Gage No. 29), assuming the loss proportional to the thickness.

## MAGNETIC SUSCEPTIBILITY.

If  $\mathfrak T$  is the intensity of magnetization produced in a substance by a field strength  $\mathfrak D$ , then the magnetic susceptibility  $H=\mathfrak T/\mathfrak D$ . This is generally referred to the unit mass; italicized figures refer to the unit volume. The susceptibility depends greatly upon the purity of the substance, especially its freedom from iron. The mass susceptibility of a solution containing p per cent by weight of a water-free substance is, if  $H_0$  is the susceptibility of water, (p/100) H + (1 - p/100)  $H_0$ .

|                                                                                   |                           |      |         | The second secon | ,   (1 -            |       | /) X10- |
|-----------------------------------------------------------------------------------|---------------------------|------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|---------|
| Substance.                                                                        | H×106                     | Temp | Remarks | Substance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H × 10 <sup>6</sup> | Temp. | Remarks |
| Ag                                                                                | -0.19                     | 18°  |         | K <sub>2</sub> CO <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.50               | 20°   | Sol'n   |
| AgCl                                                                              | -0.28                     |      |         | Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +0.38               |       |         |
| Air, I Atm                                                                        | +0.024                    | 15   |         | Mb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +0.04               | 18    | 1       |
| Al <sub>2</sub> K <sub>2</sub> (SO <sub>4</sub> ) <sub>4</sub> 24H <sub>2</sub> O | -1.0                      | 10   | Crys.   | MgSO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +0.55               | 18    |         |
| A, 1 Atm                                                                          | -0.10                     | 0    |         | Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.40<br>+11.       | 18    |         |
| As                                                                                | -0.3                      | 18   |         | MnCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +122.               | 18    | Sol'n   |
| Au                                                                                | -0.15                     | 18   |         | MnSO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +100.               | 18    | 66      |
| BaCl <sub>2</sub>                                                                 | -0.71                     | 18   |         | $N_2$ , I Atm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.001               | 16    |         |
| Be                                                                                | <del>-0.36</del><br>+0.79 | 20   | Powd.   | NH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | —I.I                | -0    |         |
| Bi                                                                                | <del>-1.4</del>           | 15   | Towa.   | NaCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +0.51<br>-0.50      | 18    |         |
| Br                                                                                | -0.38                     | 18   |         | Na <sub>2</sub> CO <sub>8</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.19               | 17    | Powd.   |
| C, arc-carbon                                                                     | -2.0                      | 18   |         | Na <sub>2</sub> CO <sub>3</sub> . 10 H <sub>2</sub> O .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.46               | 17    | "       |
| C, diamond                                                                        | -0.49                     | 18   |         | Nb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +1.3                | 18    |         |
| CH <sub>4</sub> , 1 Atm                                                           | +0.001                    | 16   |         | NiCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +40.                | 18    | Sol'n   |
| $CS_2$ , $I$ $Atin$                                                               | +0.002<br>-0.77           | 16   |         | $NiSO_4$ $O_2$ , 1 Atm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +30.                | 20    | 66      |
| CaO                                                                               | -0.27                     | 16   | Powd.   | Os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +0.120<br>+0.04     | 20    |         |
| CaCl <sub>2</sub>                                                                 | -0.40                     | 19   | 46      | P, white                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.90               | 20    |         |
| CaCO <sub>8</sub> , marble                                                        | -0.7                      |      |         | P, red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.50                | 20    |         |
| Cd                                                                                | -0.17                     | 18   |         | Pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.12               | 20    |         |
| CeBr <sub>3</sub>                                                                 | +6.3                      | 18   |         | PbCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.25               | 15    | Powd.   |
| CoCl <sub>2</sub>                                                                 | -0.59<br>+90.             | 16   | Sol'n   | Pd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +5.8                | 18    | Sol'n   |
| CoBr <sub>2</sub>                                                                 | +47.                      | 18   | "       | Pt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +13.<br>+1.1        | 18    | Sorn    |
| $CoI_2$                                                                           | +33.                      | 18   | 66      | PtCl <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                 | 22    | Sol'n   |
| $CoSO_4$                                                                          | +-57.                     | 19   | 66      | Rh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +1.1                | 18    | 20111   |
| $C_0(NO_3)_2$                                                                     | 十.57.                     | 18   | 66      | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.48               | 18    |         |
| Cr                                                                                | +3.7                      | 18   | D       | SO <sub>2</sub> , I Atm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.30               | 16    | - 1     |
| Cu                                                                                | -0.28<br>-0.09            | 17   | Powd.   | Sb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.94               | 18    | 1       |
| CuCl <sub>2</sub>                                                                 | +12.                      | 20   | Sol'n   | Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.32<br>-0.12      | 18    | Crys.   |
| CuSO <sub>4</sub>                                                                 | +10.                      | 20   | Sol'n   | SiO2, Quartz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.44               | 20    | Cijs.   |
| CuS                                                                               | +0.16                     | 17   | Powd.   | —Glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>-0.5</b> ±       |       |         |
| FeCl <sub>3</sub>                                                                 | +90.                      |      | Sol'n   | Sn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +0.03               | 20    |         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                              | +90.<br>+82.              | 18   | 66      | $\operatorname{SrCl}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.42               | 20    | Sol'n   |
| Fe <sub>2</sub> (NO <sub>3</sub> ) <sub>6</sub>                                   | +50.                      | 18   | 66      | Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +0.93<br>-0.32      | 18    | 1       |
| FeCn <sub>6</sub> K <sub>4</sub>                                                  | -0.44                     | 10   | Powd.   | Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +0.18               | 18    |         |
| FeCn <sub>6</sub> K <sub>3</sub>                                                  | +9.1                      |      | 66      | Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +3.1                | 18    | - 1     |
| He, I Atm                                                                         | -0.002                    | 0    |         | Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +1.5                | 18    |         |
| H <sub>2</sub> , I Atm                                                            | 0.000                     | 16   |         | Wo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +0.33               | 20    |         |
| $H_2$ , 40 Atm $H_2$ O                                                            | 0.000<br>-0.79            | 16   |         | $Z_{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.15<br>-0.40      | 18    |         |
| HCl                                                                               | -0.80                     | 20   |         | Zr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.45               | 18    |         |
| $H_2SO_4$                                                                         | +0.78                     | 20   |         | CH <sub>3</sub> OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.73               |       |         |
| HNO3                                                                              | -0.70                     | 20   |         | C <sub>2</sub> H <sub>5</sub> OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.80               |       |         |
| Hg                                                                                | -0.19                     | 20   | -       | C <sub>8</sub> H <sub>7</sub> OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.80               |       |         |
| In                                                                                | -0.4                      | 20   |         | $C_2H_5OC_2H_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.60               | 20    |         |
| Ir.                                                                               | +0.15<br>+0.15            | 18   |         | $CHCl_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.58<br>-0.78      |       |         |
| K                                                                                 | +0.40                     | 20   |         | Ebonite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +1.1                |       |         |
| KC1                                                                               | -0.50                     | 20   |         | Glycerine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.64               | 22    |         |
| KBr                                                                               | -0.40                     | 20   |         | Sugar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.57               |       |         |
| KI                                                                                | -0.38                     | 20   | Salle   | Paraffin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.58               |       |         |
| $  \begin{array}{cccccccccccccccccccccccccccccccccccc$                            | -0.35<br>-0.42            | 22   | Sol'n   | Petroleum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.91               |       |         |
| KMnO <sub>4</sub>                                                                 | +2.0                      | 20   |         | Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.77<br>-0.2-5     |       | 1       |
| KNO <sub>3</sub>                                                                  | <del>-</del> 0.33         | 20   |         | Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.81               |       |         |
|                                                                                   | 00                        |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |       |         |

Values are mostly means taken of values given in Landolt-Börnstein's Physikalisch-chemische Tabellen. See especially Honda, Annalen der Physik (4), 32, 1910.

#### MACNETO-OPTIC ROTATION.

Faraday discovered that, when a piece of heavy glass is placed in magnetic field and a beam of plane polarized light passed through it in a direction parallel to the lines of magnetic force, the plane of polarization of the beam is rotated. This was subsequently found to be the case with a large number of substances, but the amount of the rotation was found to depend on the kind of matter and its physical condition, and on the strength of the magnetic field and the wave-length of the polarized light. Verdet's experiments agree fairly well with the formula—

$$\theta = clH\left(r - \lambda \frac{dr}{d\lambda}\right) \frac{r^2}{\lambda^2},$$

where c is a constant depending on the substance used, I the length of the path through the substance, H the intensity of the component of the magnetic field in the direction of the path of the beam, r the index of refraction, and  $\lambda$  the wave-length of the light in air. If H be different, at different parts of the path, IH is to be taken as the integral of the variation of magnetic potential between the two ends of the medium. Calling this difference of potential v, we may write  $\theta = Av$ , where A is constant for the same substance, kept under the same physical conditions, when the one kind of light is used. The constant A has been called "Verdet's constant," \* and a number of values of it are given in Tables 476-480. For variation with temperature the following formula is given by Bichat:—

$$R = R_0 (1 - 0.00104t - 0.000014t^2),$$

which has been used to reduce some of the results given in the table to the temperature corresponding to a given measured density. For change of wave-length the following approximate formula, given by Verdet and Becquerel, may be used :-

$$\frac{\theta_1}{\theta_2} = \frac{\mu_1^2(\mu_1^2 - 1)\lambda_2^2}{\mu_2^2(\mu_2^2 - 1)\lambda_1^2},$$

where  $\mu$  is index of refraction and  $\lambda$  wave-length of light.

A large number of measurements of what has been called molecular rotation have been made. particularly for organic substances. These numbers are not given in the table, but numbers proportional to molecular rotation may be derived from Verdet's constant by multiplying in the ratio of the molecular weight to the density. The densities and chemical formulæ are given in the table. In the case of solutions, it has been usual to assume that the total rotation is simply the algebraic sum of the rotations which would be given by the solvent and dissolved substance. or substances, separately; and hence that determinations of the rotary power of the solvent medium and of the solution enable the rotary power of the dissolved substance to be calculated. Experiments by Quincke and others do not support this view, as very different results are obtained from different degrees of saturation and from different solvent media. No results thus calculated have been given in the table, but the qualitative result, as to the sign of the rotation produced by a salt, may be inferred from the table. For example, if a solution of a salt in water gives Verdet's constant less than 0.0130 at 20° C., Verdet's constant for the salt is negative.

The table has been for the most part compiled from the experiments of Verdet, H. Becquerel, Quincke, Koepsel, Arons, Kundt, Jahn, Schönrock, Gordon, Rayleigh and Sidgewick, Perkin, Perkin, Bichat.\*\*\*

As a basis for calculation, Verdet's constant for carbon disulphide and the sodium line D has been taken as 0.0420 and for water as 0.0130 at 20° C.

\* The constancy of this quantity has been verified through a wide range of variation of magnetic field by H. E. J. G. Du Bois (Wied. Ann. vol. 35), p. 137, 1888.

† "Ann. de Chim. et de Phys." [3] vol. 52, p. 120, 1858.

† "Ann. de Chim. et de Phys." [5] vol. 12; "C. R." vols. 90, p. 1407, 1880, and 100, p. 1374, 1885.

§ "Wied. Ann." vol. 24, p. 606, 1885.

† "Wied. Ann." vol. 24, p. 161, 1885.

\* "Wied. Ann." vol. 23, p. 161, 1885.

\* "Wied. Ann." vol. 23, p. 228, 1884, and 27, p. 191, 1886.

† "Wied. Ann." vol. 23, p. 280, 1891.

† "Wied. Ann." vol. 23, p. 280, 1891.

† "Zeits. für Phys. Chem." vol. 11, p. 753, 1893.

§ "Proc. Roy. Soc." 36, p. 4, 1885.

† "Jour. Chem. Soc."

\*\* "Jour. Chem. Soc."

\*\* "Jour. Chem. Soc."

## MAGNETO-OPTIC ROTATION.

Solids.

| Substance.                                                                                     | Formula.                                        | Wave-<br>length.                                          | Verdet's<br>Constant.<br>Minutes.                                   | Temp. C.                                  | Authority.                                               |
|------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|
| Amber Blende                                                                                   | $ZnS$ $C$ $PbB_2O_4$ $Se$ $Na_2B_4O_7$ $Cu_2O$  | μ<br>0.589<br>"<br>"<br>0.687<br>0.589<br>0.687           | 0.0095<br>0.2234<br>0.0127<br>0.0600<br>0.4625<br>0.0170<br>0.5908  | 18-20° 15 15 15 15 15 15                  | Quincke. Becquerel.  "" "" ""                            |
| Fluorite                                                                                       | CaFl <sub>2</sub>                               | 0.2534<br>.3655<br>.4358<br>.4916<br>.589<br>1.00<br>2.50 | 0.05989<br>.02526<br>.01717<br>.01329<br>.00897<br>.00300<br>.00049 | 20 44 44 44 44 44 44 44 44 44 44 44 44 44 | Meyer, Ann. der<br>Physik, 30, 1909.                     |
| Glass, Jena: Medium ph<br>Heavy crow<br>Light flint,<br>Heavy flint<br>"<br>Zeiss, Ultraviolet | O451 . O500 . S163 .                            | 3.00<br>0.589<br>"<br>"<br>"<br>0.313<br>0.405            | .00030<br>0.0161<br>0.0220<br>0.0317<br>0.0608<br>0.0888<br>0.0674  | "<br>"<br>"<br>"<br>"<br>16<br>"          | DuBois, Wied. Ann. 51, 1894.  Landau, Phys. ZS. 9, 1908. |
| Quartz, along axis, i.e., plate cut I to axis                                                  | SiO <sub>2</sub>                                | 0.436<br>0.2194<br>.2573<br>.3609<br>.4800                | .0311<br>0.1587<br>.1079<br>.04617                                  | 20 "                                      | Borel, Arch. sc. phys. 16, 1903.                         |
| Rock salt                                                                                      | NaCl                                            | .5892<br>.6439<br>0.2599<br>.3100<br>.4046<br>.4916       | .01664<br>.01368<br>0.2708<br>.1561<br>.0775                        | "<br>20<br>"<br>"                         | Meyer, as above.                                         |
| Sugar, cane: along<br>axis IIA                                                                 | C <sub>12</sub> H <sub>22</sub> O <sub>11</sub> | .6708<br>1.00<br>2.00<br>4.00<br>0.451<br>.540            | .0245<br>.01050<br>.00262<br>.00069<br>.0122<br>.0076<br>.0066      | 66<br>66<br>20<br>66<br>66                | Voigt, Phys. ZS. 9, 1908.                                |
| axis IIA <sup>1</sup>                                                                          | KCl                                             | 0.451<br>.540<br>.626<br>0.4358<br>.5461<br>.6708         | 0.0129<br>.0084<br>.0075<br>0.0534<br>.0316<br>.02012               | 20<br>44<br>44<br>44                      | Meyer, as above.                                         |
|                                                                                                |                                                 | 1.20<br>2.00<br>4.00                                      | .00608                                                              | 66                                        |                                                          |

## TABLE 477.

## MAGNETO-OPTIC ROTATION.

Liquids: Verdet's Constant for  $\lambda = 0.589\mu$ .

| Acetone   C <sub>8</sub> H <sub>6</sub> O   0.7947   0.0113   20°   Jahn.   Perkin.   Perkin.   Propyl   C <sub>8</sub> H <sub>1</sub> OH   0.8021   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0.124   0. |                    |                                                 |           |          |          |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------|-----------|----------|----------|-------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Substance.         | Chemical formula.                               | grams per | constant | Temp. C. | Authority.  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                                 |           |          |          |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                                 |           |          |          |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                                 |           |          |          | -Perkin.    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dutyiic            |                                                 | 1 2272    |          | 15       | 66          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                                 | 1.2072    |          |          | 66          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                                 | 1.7859    |          |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | " Hydroiodic       | HI                                              | 1.9473    |          | 66       |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TAILLIC .          |                                                 | 1.5190    |          |          |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sulphulic          |                                                 |           |          |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                                 |           |          |          | Jahn.       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dutyi              |                                                 |           |          | 66       | 66          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | CH <sub>0</sub> OH                              |           |          |          | 66          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | C <sub>8</sub> H <sub>7</sub> OH                | 0.8042    |          | 66       |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzene            |                                                 |           |          | 66       |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | CHBr <sub>8</sub> .                             |           | .0317    | 15       | Perkin.     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                                 | 1.4486    |          |          | "           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Englene            |                                                 | ,         |          |          |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tri Celly I        |                                                 |           |          |          |             |
| Chlorides: Amyl  Arsenic  Carbon  CCl4  CCl4  CBHylene  Methylene  Sulphur bi-  Tin tetra  Tin tetra  Methyl                                            | Methylene          |                                                 | 2.49/1    |          |          |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | " " "              | "                                               |           |          |          |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chlorides: Amyl    | CHCI                                            | 0.8740    |          |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | " Arsenic          |                                                 |           |          |          | Becquerel.  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Carbon             |                                                 | _         |          | "        | 66          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chlorotorm         | CHCl <sub>8</sub>                               |           |          |          |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ethyl              | C <sub>2</sub> H <sub>5</sub> Cl                |           |          |          | Perkin.     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ethylene           |                                                 | 1.2509    |          | 15       | D'acquerol  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                                 | - 1.236T  |          |          |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                                 |           |          | "        |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | " Tin tetra        |                                                 | _         |          | "        | 7.6         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Zinc bi-           |                                                 |           |          |          |             |
| "Propyl $C_8H_7I$ $I.7658$ $0.0271$ " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | $C_2H_5I$                                       |           |          |          |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Michiga            |                                                 |           |          |          |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tropyr             |                                                 |           |          |          |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                                 |           |          |          | 66          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | C <sub>8</sub> H <sub>7</sub> O.NO <sub>2</sub> |           |          | 66       | 66          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Paraffins: Heptane | C7H16                                           | 0.6880    |          |          |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hexane             | C <sub>6</sub> H <sub>14</sub>                  |           | .0125    |          |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 Citalic          |                                                 | 0.6332    |          |          |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                                 | _         |          |          | Becquerel.  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                                 | 08581     |          | 28       | Schönrock   |
| 0.275 0.3609 0.4046 0.500 0.589 0.700 0.700  0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.7776 0.                                          |                    |                                                 | 0.0501    |          | 20       |             |
| 0.3609 .0384 Physik, 30, 0.4046 .0293 .0909. Meas-<br>0.500 .0184 ures by 0.589 .0131 Landau, 0.700 Siertsema,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.275              |                                                 |           |          |          | Ann. der    |
| 0.4046 .0293 .030. Meas-<br>0.500 .0184 ures by<br>0.589 .0131 .0191 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .0091 .00                                    |                    |                                                 |           | .0384    |          | Physik, 30, |
| 0.589 .0131 Landau,<br>0.700 .0091 Siertsema,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                                                 | 10        | .0293    |          | 1909. Meas- |
| 0.700 .0091 Siertsema,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                                 |           |          |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                                 |           |          |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | 1-                                              |           |          |          |             |
| 1.300 .00264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                                 |           |          |          | Tilger som. |
| Xylene C <sub>8</sub> H <sub>10</sub> 0.8746 .0263 27 Schönrock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | C <sub>8</sub> H <sub>10</sub>                  | 0.8746    |          | 27       | Schönrock.  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                                 |           |          |          |             |

## MAGNETO-OPTIC ROTATION.

Solutions of acids and salts in water. Verdet's constant for  $\lambda = 0.589 \mu$ .

|                                       | _         |             |       |                |                                                      |           |             |       |     |
|---------------------------------------|-----------|-------------|-------|----------------|------------------------------------------------------|-----------|-------------|-------|-----|
| Chemical                              | Density,  | Verdet's    | T     |                | 01. 1.1                                              | Density,  | Verdet's    |       |     |
| formula.                              | grams     | constant    | Temp. | *              | Chemical formula,                                    | grams     | constant    | Temp. | *   |
| 0                                     | per c. c. | in minutes. |       |                |                                                      | per c. c. | in minutes. | C.    |     |
|                                       |           |             |       | 0              |                                                      |           |             |       |     |
| C <sub>8</sub> H <sub>6</sub> O       | 0.9715    | 0.0129      | 20°   | I              | LiCl                                                 | 1.0619    | 0.07.45     | 200   | 7   |
| HBr                                   | 1.3775    | 0.0244      | 66    | J              | "                                                    | 1.0316    | 0.0145      | 20°   | J.  |
| 66                                    | 1.1163    | 0.0168      | 4.6   | - 66           | MnCl <sub>2</sub>                                    | 1.1966    | 0.0143      | 7.5   | B   |
| HC1                                   | 1.1573    | 0.0204      | . 66  | 46             | 46                                                   | 1.0876    | 0.0150      | 15    | 66  |
| - 66                                  | 1.0762    | 0.0168      | 46    | 66             | HgCl <sub>2</sub>                                    | 1.0381    | 0.0137      | 16    | S   |
| "                                     | 1.0158    | 0.0140      | 66    | J              | 66                                                   | 1.0349    | 0.0137      | 66    | 66  |
| HI                                    | 1.9057    | 0.0499      | 66    | P              | NiCl <sub>2</sub>                                    | 1.4685    | 0.0270      | 15    | В   |
| 44                                    | 1.4495    | 0.0323      | 66    | 66             | 66                                                   | 1.2432    | 0.0196      | ű     | 66  |
| All I                                 | 1.1760    | 0.0205      | 66    | "              | 16                                                   | 1.1233    | 0.0162      | 66    | 66  |
| HNO <sub>3</sub>                      | 1.3560    | 0.0105      |       | 66             | KCl                                                  | 1.6000    | 0.0163      | 66    | 66  |
| NH <sub>3</sub><br>NH <sub>4</sub> Br | 8168.0    | 0.0153      | 15    | 66             |                                                      | 1.0732    | 0.0148      | 20    | J   |
| 1411411                               | 1.2805    | 0.0226      | 66    | 44             | NaCl                                                 | 1.2051    | 0.0180      | 15    | В   |
| BaBr <sub>2</sub>                     | 1.1576    | 0.0186      |       |                | "                                                    | 1.0546    | 0.0144      | 66    | - " |
| 66                                    | 1.2855    | 0.0215      | 20    | J <sub>"</sub> | SrCl <sub>2</sub>                                    | 1.0418    | 0.0144      | 66    | J.  |
| CdBr <sub>2</sub>                     | 1.3291    | 0.0170      | 66    | 66             | 31 C12                                               | 1.1921    | 0.0162      |       | 66  |
| "                                     | 1.1608    | 0.0162      | 66    | 66             | SnCl <sub>2</sub>                                    | 1.3280    | 0.0146      |       | V   |
| CaBr <sub>2</sub>                     | 1.2491    | 0.0189      | 66    | 66             | 16                                                   | 1.1112    | 0.0200      | 15    | 66  |
| "                                     | 1.1337    | 0.0164      | 66    | 66             | ZnCl <sub>2</sub>                                    | 1.2851    | 0.0196      | 66    | 66  |
| KBr                                   | I.1424    | 0.0163      | 66    | - 66           | "                                                    | 1.1595    | 0.0161      | 66    | 66  |
| 66                                    | 1.0876    | 0.0151      | 66    | 66             | K <sub>2</sub> CrO <sub>4</sub>                      | 1.3598    | 0.0098      | 66    | 66  |
| NaBr                                  | 1.1351    | 0.0165      | 66    | 66             | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>        | 1.0786    | 0.0126      | "     | 66  |
| 66                                    | 1.0824    | 0.0152      | 66    | 66             | Hg(CN)2                                              | 1.0638    | 0.0136      | 16    | S   |
| SrBr <sub>2</sub>                     | 1.2901    | 0.0186      | 66    | 66             | 46                                                   | 1.0605    | 0.0135      | - 66  | 66  |
| "                                     | 1.1416    | 0.0159      | 66    | 66             | NH <sub>4</sub> I                                    | 1.5948    | 0.0396      | 15    | P   |
| K <sub>2</sub> CO <sub>8</sub>        | 1.1906    | 0.0140      | 20    | 66             | 46                                                   | 1.5109    | 0.0358      | 66    | 46  |
| Na <sub>2</sub> CO <sub>3</sub>       | 1.1006    | 0.0140      | 66    | 66             | "                                                    | 1.2341    | 0.0235      | 66    | 66  |
| NIT CI                                | 1.0564    | 0.0137      |       |                | CdI                                                  | 1.5156    | 0.0291      | 20    | J.  |
| NH <sub>4</sub> Cl                    | 1.0718    | 0.0178      | 15    | V              | KI                                                   | 1.1521    | 0.0177      | 66    |     |
| BaCl <sub>2</sub>                     | 1.2897    | 0.0168      | 20    | J <sub>"</sub> | KI<br>"                                              | 1.6743    | 0.0338      | 15    | B   |
| CdCl <sub>2</sub>                     | 1.1338    | 0.0149      | 66    | 66             | 66                                                   | 1.3398    | 0.0237      | 66    | 44  |
| "                                     | 1.3179    | 2           | 66    | 66             | NaI                                                  | 1.1705    | 0.0182      | 66    | 7   |
| 46                                    | 1.1732    | 0.0179      | 66    | 66             | "                                                    | 1.1939    | 0.0200      | 66    | 16  |
| 66                                    | 1.1531    | 0.0157      | 66    | 66             | NH <sub>4</sub> NO <sub>8</sub>                      | 1.2803    | 0.01/5      | 15    | P   |
| CaCl <sub>2</sub>                     | 1.1504    | 0.0165      | "     | "              | KNO <sub>8</sub>                                     | 1.0634    | 0.0121      | 20    | ĵ   |
| 66                                    | 1.0832    | 0.0152      | 44    | 66             | NaNO <sub>8</sub>                                    | 1.1112    | 0.0131      | 66    | "   |
| CuCl <sub>2</sub>                     | 1.5158    | 0.0221      | 15    | В              | $U_2O_3N_2O_5$                                       | 2.0267    | 0.0053      | 66    | В   |
| 66                                    | 1.1330    | 0.0156      | ű.    | 66             |                                                      | 1.1963    | 0.0115      | 46    | 66  |
| FeCl <sub>2</sub>                     | 1.4331    | 0.0025      | 15    | 66             | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>      | 1.2286    | 0.0140      | 15    | P   |
| 66                                    | 1.2141    | 0.0099      | 46    | 66             | NH4.HSO4                                             | 1.4417    | 0.0085      |       | 66  |
| "<br>T C                              | 1.1093    | 0.0118      | "     | 66             | BaSO <sub>4</sub>                                    | 1.1788    | 0.0134      | 20    | J   |
| Fe <sub>2</sub> Cl <sub>6</sub>       | 1.6933    | -0.2026     | 46    | 66             | (°                                                   | 1.0938    | 0.0133      | 66    | 66  |
| 66                                    | 1.5315    | -0.1140     | 44    | 66             | CdSO <sub>4</sub>                                    | 1.1762    | 0.0139      | 66    | 66  |
| "                                     | 1.3230    | -0.0348     | "     | 46             | T: SO                                                | 1.0890    | 0.0136      | "     | 46  |
| 66                                    | 1.0864    | 0.0081      | "     | 46             | Li <sub>2</sub> SO <sub>4</sub><br>MnSO <sub>4</sub> | 1.1762    | 0.0137      | "     | 66  |
| - "                                   | 1.0445    | 0.0001      | 46    | 66             | K <sub>2</sub> SO <sub>4</sub>                       | 1.2441    | 0.0138      | 66    | 66  |
| 46                                    | 1.0232    | 0.0113      | 66    | 66             | Na <sub>2</sub> SO <sub>4</sub>                      | 1.0475    | 0.0135      | 66    | 66  |
|                                       | 1.0232    | 0.0122      |       |                | 1102004                                              | 1.0001    | 0.0133      |       |     |
|                                       |           |             |       |                |                                                      |           |             |       |     |

<sup>\*</sup> J, Jahn, P, Perkin, V, Verdet, B, Becquerel, S, Schönrock; see p. 378 for references.

#### TABLE 479. - Magneto-Optic Rotation.

Gases.

| Substanc                                                                                         | е. |   | Pressure.                                            | Temp.                                      | Verdet's<br>constant in<br>minutes.                                                   | Authority.                                    |
|--------------------------------------------------------------------------------------------------|----|---|------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------|
| Carbon dioxide<br>Carbon disulphide .<br>Ethylene .<br>Nitrogen .<br>Nitrous oxide .<br>Oxygen . | •  | 3 | <br>Atmospheric 74 cms. Atmospheric " " " " 246 cms. | Ordinary  70° C. Ordinary  "  "  "  20° C. | 6.83 × 10 <sup>-6</sup> 13.00 " 23.49 " 34.48 " 6.92 " 16.90 " 6.28 " 31.39 " 38.40 " | Becquerel.  Bichat. Becquerel.  " " " Bichat. |

See also Siertsema, Ziting. Kon. Akad. Watt., Amsterdam, 7, 1899; 8, 1900.

Du Bois shows that in the case of substances like iron, nickel, and cobalt which have a variable magnetic susceptibility the expression in Verdet's equation, which is constant for substances of constant susceptibility, requires to be divided by the susceptibility to obtain a constant. For this expression he proposes the name "Kundt's constant." These experiments of Kundt and Du Bois show that it is not the difference of magnetic potential between the two ends of the medium, but the product of the length of the medium and the induction per unit area, which controls the amount of rotation of the beam.

#### TABLE 480. - Verdet's and Kundt's Constants.

The following short table is quoted from Du Bois' paper. The quantities are stated in c. g. s. measure, circular measure (radians) being used in the expression of "Verdet's constant" and "Kundt's constant."

| Name of substance. | Magnetic                                                                                                                                    | Verdet's co | nstant.                                                                   | Wave-length                                       | Kundt's                                                                                   |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| Name of substance. | susceptibility.                                                                                                                             | Number.     | Authority.                                                                | of light<br>in cms.                               | constant.                                                                                 |  |
| Cobalt             | + 0.0126 × 10 <sup>-5</sup><br>- 0.0751 "<br>- 0.0694 "<br>- 0.0633 "<br>- 0.0566 "<br>- 0.0541 "<br>- 0.0876 "<br>- 0.0716 "<br>- 0.0982 " |             | Becquerel.  Arons Becquerel. De la Rive.  Becquerel. Rayleigh. Becquerel. | 6.44×10 <sup>-5</sup> 6.56 ' 5.89 " " " " " " " " | 3.99<br>3.15<br>2.63<br>0.014<br>—4.00<br>—5.4<br>—5.6<br>—5.8<br>—14.9<br>—17.1<br>—17.7 |  |

#### TABLE 481. - Values of Kerr's Constant.\*

Du Bois has shown that the rotation of the major axis of vibration of radiations normally reflected from a magnet is algebraically equal to the normal component of magnetization multiplied into a constant K. He calls this constant K, Kerr's constant for the magnetized substance forming the magnet.

| Color of light. | Spectrum | Wave-<br>length | Kerr's constant in minutes per c. g. s. unit of magnetization. |          |          |            |  |  |
|-----------------|----------|-----------------|----------------------------------------------------------------|----------|----------|------------|--|--|
| Color of fight. | line.    | in cms.         | Cobalt.                                                        | Nickel.  | Iron.    | Magnetite. |  |  |
| Red             | Li a     | 67.7            | -0.0208                                                        | -0.0173  | -0.01 54 | +0.0096    |  |  |
| Red             | _        | 62.0            | -0.0198                                                        | -0.0160  | -0.0138  | +0.0120    |  |  |
| Yellow          | D        | 58.9            | -0.0193                                                        | -0.01 54 | -0.0130  | +0.0133    |  |  |
| Green           | В        | 51.7            | -0.0179                                                        | -0.0159  | -0.0111  | +0.0072    |  |  |
| Blue            | F        | 48.6            | -0.0180                                                        | -0.0163  | -0.0101  | +0.0026    |  |  |
| Violet          | G        | 43.1            | 0.0182                                                         | -0.0175  | 0.0089   | -          |  |  |

<sup>\*</sup> H. E. J. G. Du Bois, " Phil. Mag." vol. 29.

TABLE 482. - Dispersion of Kerr Effect.

| Wave-length. | ο.5μ         | 1.0μ             | 1.5μ         | 2.0μ  | 2.5µ        |  |
|--------------|--------------|------------------|--------------|-------|-------------|--|
| Steel        | —II'.        | <b>—16</b> ′.    | -14'.        | —II'. | <b>9'.0</b> |  |
| Cobalt       | <b>-</b> 9.5 | -11.5            | <b>—</b> 9.5 | —II.  | -6.5        |  |
| Nickel       | <b>−</b> 5.5 | <del>-</del> 4.0 | 0            | +1.75 | +3.0        |  |

Field Intensity = 10,000 C.G.S. units. (Intensity of Magnetization = about 800 in steel, 700 to 800 in cobalt, about 400 in nickel). Ingersoll, Phil. Mag. 11, p. 41, 1906.

TABLE 483. - Dispersion of Kerr Effect.

| Mirror.   | Field<br>(C. G. S.) | .41µ | .44µ | .48µ | .52µ          | .56µ | .60µ | .64µ | .66μ         |
|-----------|---------------------|------|------|------|---------------|------|------|------|--------------|
| Iron      | 21,500              | 25   | 26   | 28   | 31            | 36   | 42   | 44   | <b>-</b> .45 |
| Cobalt    | 20,000              | 36   | 35   | 34   | <b>-</b> -⋅35 | 35   | 35   | 35   | 36           |
| Nickel    | 19,000              | 16   | 15   | 13   | 13            | 14   | 14   | 14   | 14           |
| Steel     | 19,200              | 27   | 28   | 31   | 35            | 38   | 40   | 44   | 45           |
| Invar     | 19,800              | 22   | 23   | 24   | 23            | 23   | 22   | 23   | 23           |
| Magnetite | 16,400              | 07   | 02   | +.04 | +.06          | +.08 | +.06 | +.04 | +.03         |

Foote, Phys. Rev. 34, p. 96, 1912.

See also Ingersoll, Phys. Rev. 35, p. 312, 1912, for "The Kerr Rotation for Transverse Magnetic Fields," and Snow, l. c. 2, p. 29, 1913, "Magneto-optical Parameters of Iron and Nickel."

## RESISTANCE OF METALS. MAGNETIC EFFECTS.

TABLE 484.—Variation of Resistance of Bismuth, with Temperature, in a Transverse Magnetic Field.

|                                                                                             | Proportional Values of Resistance.                                                                           |                                                                                                               |                                                                                                             |                                                                                                              |                                                                                                              |                                                                                                              |                                                                                                              |                                                                                                              |                                                                                                              |  |  |  |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Н                                                                                           | -192°                                                                                                        | -135°                                                                                                         | -100°                                                                                                       | -37°                                                                                                         | o°                                                                                                           | +18°                                                                                                         | +600                                                                                                         | +1000                                                                                                        | +1830                                                                                                        |  |  |  |  |
| 2000<br>4000<br>6000<br>8000<br>12000<br>14000<br>16000<br>18000<br>20000<br>25000<br>35000 | 0.40<br>1.16<br>2.32<br>4.00<br>5.90<br>8.60<br>10.8<br>12.9<br>15.2<br>17.5<br>19.8<br>25.5<br>30.7<br>35.5 | 0.60<br>0.87<br>1.35<br>2.06<br>2.88<br>3.80<br>4.76<br>5.82<br>6.95<br>8.15<br>9.50<br>13.3<br>18.2<br>20.35 | 0.70<br>0.86<br>1.20<br>1.60<br>2.00<br>2.43<br>2.93<br>3.50<br>4.11<br>4.76<br>5.40<br>7.30<br>9.8<br>12.2 | 0.88<br>0.96<br>1.10<br>1.29<br>1.50<br>1.72<br>1.94<br>2.16<br>2.38<br>2.60<br>2.81<br>3.50<br>4.20<br>4.95 | 1.00<br>1.08<br>1.18<br>1.30<br>1.43<br>1.57<br>1.71<br>1.87<br>2.02<br>2.18<br>2.33<br>2.73<br>3.17<br>3.62 | 1.08<br>1.11<br>1.21<br>1.32<br>1.42<br>1.54<br>1.67<br>1.80<br>1.93<br>2.06<br>2.20<br>2.52<br>2.86<br>3.25 | 1.25<br>1.26<br>1.31<br>1.39<br>1.46<br>1.54<br>1.62<br>1.70<br>1.79<br>1.88<br>1.97<br>2.22<br>2.46<br>2.69 | 1.42<br>1.43<br>1.46<br>1.51<br>1.62<br>1.62<br>1.67<br>1.73<br>1.80<br>1.87<br>1.95<br>2.10<br>2.28<br>2.45 | 1.79<br>1.80<br>1.82<br>1.85<br>1.87<br>1.89<br>1.92<br>1.94<br>1.96<br>1.99<br>2.03<br>2.09<br>2.17<br>2.25 |  |  |  |  |

TABLE 485. — Increase of Resistance of Nickel due to a Transverse Magnetic Field, expressed as % of Resistance at  $0^\circ$  and H=0 .

| Н                                                                                              | -190°                                                                                       | -75°                                                                                                          | 00                                                                                                   | +180                                                                                                          | +1000                                                                                                         | +1820                                                                                                |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 0<br>1000<br>2000<br>3000<br>4000<br>6000<br>8000<br>10000<br>12000<br>14000<br>18000<br>20000 | +0<br>+0.20<br>+0.17<br>0.00<br>-0.17<br>-0.19<br>-0.18<br>-0.18<br>-0.18<br>-0.17<br>-0.17 | 0<br>+0.23<br>+0.16<br>-0.05<br>-0.15<br>-0.20<br>-0.23<br>-0.27<br>-0.30<br>-0.32<br>-0.35<br>-0.38<br>-0.41 | 0<br>+0.07<br>+0.03<br>-0.34<br>-0.60<br>-0.70<br>-0.82<br>-0.87<br>-0.91<br>-0.94<br>-0.98<br>-1.03 | 0<br>+0.07<br>+0.03<br>-0.36<br>-0.72<br>-0.83<br>-0.90<br>-0.95<br>-1.00<br>-1.04<br>-1.09<br>-1.13<br>-1.17 | 0<br>+0.96<br>+0.72<br>-0.14<br>-0.70<br>-1.02<br>-1.15<br>-1.23<br>-1.30<br>-1.37<br>-1.44<br>-1.51<br>-1.59 | 0<br>+0.04<br>-0.07<br>-0.60<br>-1.15<br>-1.53<br>-1.66<br>-1.76<br>-1.85<br>-2.05<br>-2.15<br>-2.25 |
| 30000<br>35000                                                                                 | -0.14<br>-0.12<br>-0.10                                                                     | -0.49<br>-0.56<br>-0.63                                                                                       | -1.12<br>-1.22<br>-1.32                                                                              | -1.29<br>-1.40<br>-1.50                                                                                       | -1.76<br>-1.95<br>-2.13                                                                                       | -2.50<br>-2.73<br>-2.98                                                                              |

F. C. Blake, Ann. der Physik, 28, p. 449; 1909.

TABLE 486.— Change of Resistance of Various Metals in a Transverse Magnetic Field.

Room Temperature.

| Metal.                                                                                                                                        | Field Strength<br>in Gausses.                      | Per cent<br>Increase.                                                                                                                                                                       | Authority.                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nickel " Cobalt Cadmium Zinc Copper Silver Gold Tin Palladium Platinum Lead Tantalum Magnesium Manganin Tellurium Antimony Iron  Nickel steel | diverse results,<br>crease in weak i<br>in strong. | -1.2 -1.4 -1.0 -1.4 -0.53 +0.03 +0.01 +0.004 +0.003 +0.002 +0.001 +0.0003 +0.0003 +0.01 +0.01 +0.02 to 0.34 +0.02 to 0.16 mens show very usually an infields, a decrease similarly to iron. | Williams, Phil. Mag. 9, 1905. Barlow, Pr. Roy. Soc. 71, 1903. Dagostino, Atti Ac. Linc. 17, 1908. Grummach, Ann. der Phys. 22, 1906.  "" "" "" "" "" "" "" "" "" "" "" Dagostino, l. c. Goldhammer, Wied Ann. 31, 1887. Grummach, l. c. Barlow, l. c. Williams, l. c. |

#### TABLE 487. - Transverse Galvanomagnetic and Thermomagnetic Effects.

Effects are considered positive when, the magnetic field being directed away from the observer, and the primary current of heat or electricity directed from left to right, the upper edge of the specimen has the higher potential or higher temperature.

E = difference of potential produced; T = difference of temperature produced; I = primary

current;  $\frac{dt}{dx}$  = primary temperature gradient; B = breadth, and D = thickness, of specimen H = intensity of field. C. G. S. units.

Hall effect (Galvanomagnetic difference of Potential), 
$$E = R \frac{HI}{D}$$

Ettingshausen effect ( " " Temperature),  $T = P \frac{HI}{D}$ 

Nernst effect (Thermomagnetic " Potential),  $E = QHB \frac{dt}{dx}$ 

Leduc effect ( " " Temperature),  $T = SHB \frac{dt}{dx}$ 

| Substance,    | Values of R.                          | P×106.                           | Q × 10 <sup>6</sup> .                   | S×108.      |
|---------------|---------------------------------------|----------------------------------|-----------------------------------------|-------------|
| Tellurium     | +400 to 800<br>+ 0.9 " 0.22           | +200<br>+2                       | +360000<br>+9000 to 18000               | +400        |
| Steel         | +.012 " 0.033<br>+.010 " 0.026        | <del>-0.07</del>                 | -700 " 1700<br>+1600 " 7000             | +200        |
| Iron          | +.007 " 0.011<br>+.0016 " 0.0046      | -0.06<br>+0.01                   | -1000 " 1500<br>+1800 " 2240            | +39<br>+13  |
| Zinc          | +.00055                               | -                                | —54 " 240                               | +13         |
| Lead          | +.00040<br>+.00009<br>00003           | -                                | up to —5.0<br>—5.0 (?)<br>—4.0 (?)      | +5          |
| Platinum      | 0002<br>00052                         | -                                | -90 to 270                              | -2<br>-18   |
| German silver | 00054<br>00057 to .00071              | - 1                              |                                         |             |
| Manganese     | 0009<br>00093<br>0007 to .0012        | _                                | +50 to 130                              | -2          |
| Silver        | 0008 " .0015<br>0023                  | -                                | <del>-46</del> " 430                    | -4ĭ         |
| Magnesium     | 00094 to .0035<br>00036 " .0037       | Lagrange                         | 1 2000 16 2000                          |             |
| Carbon        | —.0045 " .024<br>—.017<br>— up to 16. | +0.04 to 0.19<br>+5.<br>+3 to 40 | +2000 " 9000<br>+100<br>+ up to 132000  | -45<br>-200 |
|               |                                       | 1 3 70 40                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |             |

TABLE 488. - Variation of Hall Constant with the Temperature.

|                                              |                                              | Bis                                          | muth.1                                       |                                              |                                              | Antimony.2           |                         |                         |                         |       |  |  |  |
|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------|-------------------------|-------------------------|-------------------------|-------|--|--|--|
| Н                                            | -182 <sup>0</sup>                            | -90°                                         | -23°                                         | +11.50                                       | +1000                                        | Н                    | —186°                   | -79°                    | +21.50                  | +58°  |  |  |  |
| 1000<br>2000<br>3000<br>4000<br>5000<br>6000 | 62.2<br>55.0<br>49.7<br>45.8<br>42.6<br>40.1 | 28.0<br>25.0<br>22.9<br>21.5<br>20.2<br>18.9 | 17.0<br>16.0<br>15.1<br>14.3<br>13.6<br>12.9 | 13.3<br>12.7<br>12.1<br>11.5<br>11.0<br>10.6 | 7.28<br>7.17<br>7.06<br>6.95<br>6.84<br>6.72 | 1750<br>3960<br>6160 | 0.263<br>0.252<br>0.245 | 0.249<br>0.243<br>02.35 | 0.217<br>0.211<br>0.209 | 0.203 |  |  |  |
|                                              |                                              |                                              |                                              |                                              | Bismuth                                      | .3                   |                         |                         |                         |       |  |  |  |
| Н                                            | +14.50                                       | +104                                         | 0 12                                         | 5° 1                                         | 89 <sup>0</sup>                              | 2120                 | 2390                    | 259°                    | 269°                    | 2700  |  |  |  |
| 890                                          | 5.28                                         | 2.57                                         | 2.1                                          | 12 I                                         | .42                                          | 1.24                 | 1.11                    | 0.97                    | 0.83                    | 0.77* |  |  |  |

<sup>1</sup> Barlow, Ann. der Phys. 12, 1903.
2 Everdingen, Comm. Phys. Lao. Leaten, 30.
3 Traubenberg, Ann. der Phys. 17, 1905.
4 Melting-point.
Both tables taken from Jahn, Jahrbuch der Radioactivität und Electronik, 5, p. 166; 1908, who has collected data of all observers and gives extensive bibliography.

#### RÖNTGEN (X-RAYS) RAYS.

#### TABLE 489. - Cathode and Canal Rays.

Cathode (negative) rays consist of negatively charged particles (charge  $4.77 \times 10^{-10}$  esu,  $1.591 \times 10^{-20}$  emu, mass,  $9 \times 10^{-28}$  g or 1/1800 H atom, diam.  $4 \times 10^{-13}$  cm) emitted at low pressures in an electric discharge tube perpendicularly to the cathode (: can be focused) with velocities (10° to 10¹0 cm/sec.) depending on the acting potential difference. When stopped by suitable body they produce heat, ionization (inversely proportional to velocity squared), photographic action, X-rays, phosphorescence, pressure. The bulk of energy is transformed into heat (Pt, Ta, W may be fused). In an ordinary X-ray tube carrying 10⁻³ ampere the energy given up may be of the order of 100 cal/m. Maximum thickness of glass or Al for appreciable transmission of high speed particles is .0015 cm. Maximum velocity  $V_d$  with which a cathode ray of velocity  $V_0$  may pass through a material of thickness d is given by  $V_0^4 - V_d^4 = ad \times 10^{40}$ ; a = 2 for air, 732 for Al and 2540 for Au, cm-sec. units (Whiddington, 1912). Cathode rays have a range of only a few millimeters in air.

Canal (positive) rays move from the anode with velocities about 108 cm/sec. in opposite direction to the cathode rays, carry a positive charge, a mass of the order of magnitude of the H molecule, cause strong ionization, fluorescence (LiCl fluoresces blue under cathode, red under canal ray bombardment), photographic action, strong pulverizing or disintegrating power and

by bombardment of the cathode liberate the cathode rays.

#### TABLE 490. - Speed of Cathode Rays.

The speed of the cathode particles in cm/sec. as dependent upon the drop of potential to which they owe the speed, is given by the formula  $v = 5.95 \sqrt{E} \cdot 10^7$ . The following table gives values of  $5.95 \sqrt{E}$ .

| Voltage<br>Velocity × 10 <sup>-7</sup> | 10 18.8 | 20 26.6     | 30<br>32.6   | 40<br>37.6   |     | 60<br>46.1 |     | 80<br>53·3   |     | 100<br>59·5 |
|----------------------------------------|---------|-------------|--------------|--------------|-----|------------|-----|--------------|-----|-------------|
| Voltage<br>Velocity × 10 <sup>-7</sup> | 100     | 200<br>84.2 | 300<br>103.1 | 400<br>119.1 | 500 | 600        | 700 | 800<br>168.3 | 900 | 1000        |

For voltages 1000 to 10,000 multiply 2d line by 10, etc.

#### TABLE 491. - Cathodic Sputtering.

The disintegration of the cathode in an electric discharge tube is not a simple phenomenon. The particles taking part in the sputtering must be either large or of high speed or both (2000+gauss field required for their deviation). It depends upon the nature of the residual gas. H, N, CO<sub>2</sub> are not generally favorable; Ar is especially favorable, also He, Ne, Kr and Xe. Raised temperature favors it. The relative sputtering from various metals is shown in the following table (Crookes, Pr. R. S. 1891); the residual gas was air, pressure about .05 mm Hg.

| Metal | Pt Cu Cd Ni | i Ir Fe Al N | Mg Brass 47 |
|-------|-------------|--------------|-------------|
|-------|-------------|--------------|-------------|

For further data on cathode, canal and X-rays, see X-rays by G. W. C. Kaye, Longmans, 1917, upon which much of the above and the following data for X-rays is based. See also J. J. Thomson, Positive Rays, Longmans, 1913.

#### TABLES 492-493. RÖNTGEN (X-RAYS) RAYS.

TABLE 492. - X-rays, General Properties.

X-rays are produced whenever and wherever a cathode ray hits matter. They are invisible. of the same nature as, and travel with the velocity of light, affect photographic plates, excite phosphorescence, ionize gases and suffer deviation neither by magnetic nor electric fields as do cathode rays. In an ordinary X-ray tube (vacuum order o.oo1 to o.o1 mm Hg) the cathode (concave for focusing, generally of aluminum) rays are focused on an anticathode of high atomic weight (W, Pt, high atomic weight, high melting point, low vapor pressure, to avoid sputtering, high thermal conductivity to avoid heating). Depth to which cathode rays penetrate, order ingli thermat conductivity to avoid heating). Depth to which cathode rays penetrate, order of  $0.2 \times 10^{-5}$  cm in Pb, 90,000 volts (Ham, 1910),  $24 \times 10^{-5}$  cm in Al, 22,000 volts (Warburg, 1915). Note: High speed H and He molecules ( $2 \times 10^{8}$  cm/sec.) can penetrate 0.001 to 0.006 mm mica; He  $\alpha$  particles ( $2 \times 10^{9}$  cm/sec.), 0.04 mm glass.

The X-rays from an ordinary bulb consist of two main classes:

Heterogeneous ("general," "independent") radiation, which depends solely on the speed of the parent cathode rays. It is always present and its range of hardness (wave-lengths) depends on the range of present of the orthode rays.

on the range of speeds of the cathode rays. Its energy is proportional to the 4th power of these

Homogeneous ("characteristic," "monochromatic") radiation (K, L, M, etc. radiations, see Table 498 for wave-lengths), characteristic of the metal of the anticathode. Generated only when cathode rays are sufficiently fast. There is a critical velocity for each characteristic radiation from each material, proportional to the atomic weight of the anticathode. The critical velocity for the K radiation is  $V_K = A \times 10^8$ , when A is the atomic weight of the radiator (e.g. anticathode);  $V_L = 1/2(A - 48)10^8$ .

The following relation has been found to hold experimentally between the voltage V through which the cathode particles fall and the maximum frequency  $\nu$  of the X-rays produced:  $eV = h\nu$ , where e is the electronic charge and h, Planck's constant. Blake and Duane (Phys. Rev. 10, 624, 1917) found for h, 6.555 × 10<sup>-27</sup> erg second.

As the speed of the cathode rays is increased, shorter and shorter wave-lengthed "independent" X-rays are produced until the critical speed is reached for the "characteristic" rays; with faster speeds, the cathode rays become at first increasingly effective for the characteristic radiation,

then less so as the independent radiation again predominates.

When cathode rays hit the anticathode some 75 per cent are reflected, the more the heavier its atomic weight. The chances of the remainder hitting an atom so as to generate an X-ray are slight; only 1/1000 or 1/2000 of the original energy goes into X-rays. If  $E_x$  and  $E_c$  are the energies of the X and the parent cathode rays, A the atomic weight of the anticathode,  $\beta$  the velocity of the cathode rays as fraction of the light value ( $3 \times 10^{10}$  cm/sec.), Beatty showed (Pr. R. S. 1913) that  $E_x = E_c$  (.51 × 10<sup>4</sup> $A\beta^2$ ); this refers only to the independent radiations; when characteristic radiations are excited their energy must be added and the tube becomes considerably more efficient. No quantitative expression for the latter has been developed.

When an X-ray strikes a substance three types of radiation result: scattered (sometimes called secondary) X-rays, characteristic X-rays and corpuscular rays (negatively charged particles). The proportions of the rays depend on the substance and the quality of the primary rays. When the proportions of the rays depend on the substance and the quality of the primary rays. When the substance is of low atomic weight, by far the greater portion of the X-rays, if of a penetrating type, are scattered. With elements of the Cr-Zn group most of the resulting radiation is "characteristic." With the Cu group the scattered radiation (1/200) is negligible. Heavier elements, both scattered and characteristic X-rays. Corpuscular radiation greater, mass for mass, for elements of high atomic weight and may mask and swamp the characteristic radiation. Hence an X-ray tube beam, heterogeneous in quality, allowed to fall on different metals, — Cu, Ag, Fe, Pt, etc., — excites characteristic X-rays of wide range of qualities. Exciting ray must be harder than the characteristic radiation wished. The higher the atomic weight of the material struck (radiator) the more reportating the quality of the resulting radiation as shown by the following (radiator), the more penetrating the quality of the resulting radiation as shown by the following table, which gives  $\lambda$ , the reciprocal of the distance in cm in Al, through which the rays must pass in order that their intensity will be reduced to 1/2.7 of their original intensity.

TABLE 493. - Röntgen Secondary Rays.

| Radiator.     | Cr          | Fe           | Со   | Ni           | Cu   | Zn           | As          | Se          | Sr           | Ag           | Sn           |
|---------------|-------------|--------------|------|--------------|------|--------------|-------------|-------------|--------------|--------------|--------------|
| Atomic weight | 52.<br>367. | 55.8<br>239. | 59.0 | 58.7<br>160. | 63.6 | 65.4<br>106. | 75.0<br>61. | 79.2<br>51. | 87.6<br>35.2 | 108.<br>6.75 | 119.<br>4·33 |

With the radiator at 45° to the primary X-rays at most only about 50 per cent of the energy goes to characteristic rays and only about 1/10 of the latter escape the surface of the radiator. The  $\beta$  radiations of radioactive elements may possibly be regarded (Rutherford) as a characteristic radiation produced by the expulsion of the  $\alpha$  particles. The hardness of some corresponds to the

For more complete data on X-rays, see X-rays, G. W. C. Kaye, Longmans, 1917, upon which these X-ray tables are greatly based.

#### RÖNTGEN (X-RAYS) RAYS.

#### TABLE 494. - Corpuscular Rays.

Corpuscular rays are given off in greatest abundance when radiator emits its characteristic radiation. Intensity increases with atomic weight (4th power, Moore, Pr. Phys. Soc.). Greater number emitted at right angles to incident rays. Velocity range (6 to 8.5)10° cm/sec.  $v_0 = \text{velocity}$  when leaving radiator =  $10^8(A=A\text{tomic weight}) = \text{critical}$  velocity necessary to excite characteristic radiation, therefore corpuscular rays have practically the same velocity as the original generating cathode rays. Are of uniform quality when excited by characteristic rays and follow exponential law of absorption in gases. If  $\lambda$  is the absorption coefficient and A the atomic weight,  $\lambda A^4 = \lambda v_0^4 = constant$  (Whiddington, Beatty).  $\lambda$  is defined by  $I = I_0 e^{-\lambda d}$  where I and  $I_0$  are the intensities after and before absorption and d the thickness of the absorptive layer in cm. The following values for  $\lambda$  in air for characteristic radiations from various substances are due to Sadler. (At  $v_0$  C and  $v_0$  C and

| Metal emitting |      |      | ]            | Exciting cl          | haracterist | ic radiation         | on from              |    |                      |                      |
|----------------|------|------|--------------|----------------------|-------------|----------------------|----------------------|----|----------------------|----------------------|
| corpuscles.    | Ni   | Cu   | Zn           | As                   | Se          | Sr                   | Мо                   | Rh | Ag                   | Sn                   |
| Al<br>Fe<br>Cu | 38.9 | 37.0 | 35.8<br>36.2 | 29.6<br>30.2<br>30.4 | 26.4        | 20.0<br>21.5<br>20.8 | 15.2<br>15.5<br>15.2 |    | 8.90<br>8.84<br>8.81 | 6.54<br>6.41<br>6.67 |

## TABLE 495. - Intensity of X-Rays. Ionization.

The intensity of the radiation from an X-ray bulb is proportional to the current. Except at low voltages it equals  $Ki(v^1-v_0^1)$  where i is the current, v the applied voltage,  $v_0$  the break-down voltage and K a constant for the tube (Krönke). The intensity of X-rays is most accurately measured by the ionization they produce. This may be referred to the International Radium Standard (see Table 508). It is proportional to the 4th power of the speed of the parent cathode rays (Thomson), (true only of independent rays, Beatty, 1913). The saturation current due to X-ray ionization is usually of the order of  $10^{-10}$  to  $10^{-10}$  ampere. When X-rays pass through a substance, only once in a while is an atom struck, only perhaps v in a billion, and ionized. The ionization is probably an indirect process through the mediation of corpuscular rays. In the absence of secondary radiations the ionization is proportional to the mass of the gas (that is, its pressure at constant temperature). It depends on the nature of the gas, but is little affected by the quality of the rays. The following results are due to Crowther, 1908.

|                                                                                                                                                       | Ioniz                                                | ation relative t                                   | o air = 1.                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|-------------------------------------|
| Gas or vapor.                                                                                                                                         | Density, air = 1.                                    | Soft X-rays<br>6 mm spark.                         | Hard X-rays<br>27 mm spark.         |
| Hydrogen H2. Carbon dioxide CO2. Ethyl chloride C2HsCl. Carbon tetrachloride CCl4. Ethyl bromide C2HsBr. Methyl iodide CH2I. Mercury methyl Hg(CH2)2. | 0.07<br>1.53<br>2.24<br>5.35<br>3.78<br>4.96<br>7.93 | 0.01<br>1.57<br>18.0<br>67.<br>72.<br>145.<br>425. | 0.18<br>1.49<br>17.3<br>71.<br>118. |

## RÖNTGEN (X-RAYS) RAYS.

#### TABLE 496. — Mass Absorption Coefficients, $\lambda/d$ .

The quality by which X-rays have been generally classified is their "hardness" or penetrating power. It is greater the greater the exhaustion of the tube, but for a given tube depends solely upon the potential difference of the electrodes. With extreme exhaustion the X-rays have an appreciable effect after passing through several millimeters of brass or Al. The penetrability of the characteristic radiation is in general proportional to the 5th power of the atomic weight of the radiator. The absorption of any substance is equal to the sum of the absorptions of the individual atoms and is independent of the chemical combination, its physical state and probably of the temperature. Most of the following table is from the work of Barkla and Sadler, Phil. Mag. 17, 739, 1999. For starred radiators, L radiations used; for others the K.

If  $I_0$  be the intensity of a parallel beam of homogeneous radiation incident normally on a plate of absorbing material of thickness t, then  $I = I_0 e^{-\lambda x}$  gives the intensity I at the depth x. Because of the greater homogeneity of the secondary X-rays they were used in the determination of the following coefficients. The coefficients  $\lambda$  have been divided by the

density d.

|            |                                                                                           | Absorber.                                                    |                                                                                                            |    |                                                                 |                                                             |                                   |                                                                                                              |                                       |                                                                                     |                                                                              |  |
|------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| Radiator.  | С                                                                                         | Mg                                                           | A1                                                                                                         | Fe | Ni                                                              | Cu                                                          | Zn                                | Ag                                                                                                           | Sn                                    | Pt                                                                                  | Au                                                                           |  |
| Cr. Fe. Co | 15.3<br>10.1<br>8.0<br>6.6<br>5.2<br>4.3<br>2.5<br>2.0<br>.46<br>.35<br>.31<br>.29<br>.26 | 126.<br>80.<br>64.<br>52.<br>41.<br>35.<br>19.<br>16.<br>2.2 | 136.<br>88.<br>72.<br>50.<br>48.<br>39.<br>2.5<br>10.<br>2.5<br>1.6<br>8.<br>30.<br>17.<br>16.<br>8.<br>7. |    | 129.<br>84.<br>67.<br>56.<br>63.<br>265.<br>166.<br>141.<br>23. | 143. 95. 75. 62. 53. 56. 176. 150. 24. — 127. 139. 127. 77. | 170. 112. 92. 74. 61. 50. 175. 27 | 580.<br>381.<br>314.<br>262.<br>214.<br>175.<br>88.<br>13.<br>16.<br>46.<br>35.<br>140.<br>78.<br>73.<br>42. | 714. 472. 392. 328. 272. 132. 112. 16 | (517.) 340. 281. 2361. 194. 162. 106. 93. 56. 47. — 133. 113. 1128. 125. 134. 132 . | (507.)<br>367.<br>367.<br>306.<br>253.<br>210.<br>178.<br>100.<br>61.<br>52. |  |

#### TABLE 497. — Absorption Coefficients of Characteristic Radiations in Gases.

The penetrating power of X-rays ranges in normal air from 1 to 10,000 cm or more. The absorptive power of 1 cm air = 1/820 that of water.  $\lambda$  (see preceding table for definition) for air for soft bulb (1.5 to 5 cm spark gap, 4 to 10 m air), .00020. (Eve and Day, Phil. Mag. 1912.) The absorption coefficient for gases for characteristic or monochromatic radiations varies directly with the pressure. For different characteristic radiations it is proportional to the coefficients in air. It varies with the 5th power of the atomic weight of the radiator. The following table is taken from Kaye's X-rays and is based on the work of Barkla and Collier (Phil. Mag. 1912) and Owen. All are for the gas at 0° C and 76 cm Hg.

|                                             | Air                                                                                     |                                                                                      | CO <sub>2</sub>                                       |                                                                   | S                                                          | O <sub>2</sub>                                                                       | C <sub>2</sub>                                              | H₅Br                                                                                 | CI   | I <sub>3</sub> I                                  |
|---------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------|------|---------------------------------------------------|
| Fe. Co. Ni. Cu. Zn. As. Se. Br. St. Mo. Ag. | .0202<br>.0165<br>.0136<br>.0109<br>.0090<br>.0053<br>.0044<br>.0039<br>.0023<br>.00127 | 15.6<br>12.7<br>10.5<br>8.43<br>6.96<br>4.10<br>3.40<br>3.02<br>1.78<br>0.98<br>0.59 | λ .0456 .0319 .0227 .0184 .00988 .00782 .00420 .00281 | 23.1<br>16.1<br>11.5<br>9.31<br>5.00<br>3.96<br>—<br>2.12<br>1.42 | λ -24 -20 -166 -134 -112 -066 -0546 -050 -0281 -0160 -0079 | 83.3<br>69.4<br>57.6<br>46.5<br>38.9<br>22.9<br>19.1<br>17.4<br>9.76<br>5.56<br>2.75 | 325<br>.260<br>.215<br>.128<br>.110<br>.096<br>.325<br>.210 | 105.<br>83.2<br>66.3<br>53.1<br>43.9<br>26.1<br>22.4<br>19.6<br>66.3<br>42.9<br>22.0 | 2.16 | 339.  282. 241. 198. 116. 97. 86.5 53.0 30.9 17.7 |

#### X-RAY SPECTRA AND ATOMIC NUMBERS.

Kaye has shown that an element excited by sufficiently rapid cathode rays emits Röntgen rays characteristic of that substance. These were analyzed and the wave-lengths determined by Moseley (Phil. Mag. 27, 703, 1914), using a crystal of potassium ferrocyanide as a grating. He noted the K series, showing two lines, and the L series with several. He found that every element from Al to Au was characterized by integer N, which determines its X-ray spectrum; N is identified with the number of positive units associated with its atomic nucleus. The order of these atomic numbers (N) is that of the atomic weights, except where the latter disagrees with the order of the chemical properties. Known elements now correspond with all the numbers between 1 and 92 except 6. There are here six possible elements still to be discovered (atomic nos. 43, 61, 72, 75, 85).

The frequency of any line in an X-ray spectrum is approximately proportional to  $A(N-b)^2$ , where A and B are constants. All X-ray spectra of each series are similar in structure, difference only in wave-lengths.  $Q_X = (v/2\pi)^2$ ,  $Q_X$ 

 $Q_L = (v/\sqrt{5}v)$  where v is the frequency of the a line and v0 the fundamental Rydberg frequency. The atomic number

for the K series =  $Q_K + 1$  and for the L series,  $Q_L + 7.4$  approximately.  $v_0 = 3.29 \times 10^{15}$  Moseley's work has been extended, and the following tables indicate the present (1919) knowledge of the X-ray spectra.

(a) V Contro (WAVE-LENCTUS ) Y 108 CM)

| (a) K Series (Wave-lengths, $\Lambda \times 10^3$ CM).                                                                                                                 |                                                                   |                                                                                                                                                 |                                                                                                                |                                                                                                              |                                                                                                                                                              |                                           |                                                                                                                                            |                                                                                                                        |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------|
| Element,<br>atomic<br>number.                                                                                                                                          | β2                                                                | $\beta_1$                                                                                                                                       | α4                                                                                                             | a3a4<br>(not<br>separable)                                                                                   | as                                                                                                                                                           | <b>a</b> 1                                | a <sub>1</sub> a <sub>2</sub><br>(not<br>separable)                                                                                        | $\alpha_2$                                                                                                             |                |
| 11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar 19 K 20 Ca 21 Sc 22 Ti 23 Va                                                                                             | 3.074                                                             | 9.477<br>7.986<br>6.759<br>5.808<br>5.018<br>4.394<br>3.449<br>3.086<br>2.778<br>2.509<br>2.281                                                 | 9.845<br>8.300<br>7.080<br>6.122<br>5.314                                                                      | 4.692<br>                                                                                                    | 9.856<br>8.310<br>7.088<br>6.129<br>5.317                                                                                                                    | 3.735<br>3.355<br>3.028<br>2.742<br>2.498 | 11.951<br>9.915<br>8.360<br>7.131<br>6.168<br>5.360<br>4.712                                                                               | 3.738<br>3.359<br>3.032<br>2.746<br>2.502                                                                              |                |
| Element,<br>atomic<br>number.                                                                                                                                          | $\beta_2$                                                         | $eta_1$                                                                                                                                         | <b>α</b> 1 -                                                                                                   | a2                                                                                                           | Element,<br>atomic<br>number.                                                                                                                                | $oldsymbol{eta_2}$                        | $eta_1$                                                                                                                                    | <b>a</b> 1                                                                                                             | a <sub>2</sub> |
| 24 Cr<br>25 Mn<br>26 Fe<br>27 Co<br>28 Ni<br>29 Cu<br>30 Zn<br>31 Ga<br>32 Ge<br>33 As<br>34 Se<br>35 Br<br>36 Kr<br>37 Rb<br>38 Sr<br>39 Y<br>40 Zr<br>41 Nb<br>42 Mo | 2.069 1.892 1.736 1.602 1.488 1.379 1.281 0.914 813 .767 .733 657 | 2.079<br>1.902<br>1.748<br>1.613<br>1.497<br>1.391<br>1.294<br>1.204<br>1.131<br>1.052<br>0.993<br>-825<br>-779<br>-746<br>-705<br>.669<br>.633 | 2. 284<br>2. 093<br>1. 028<br>1. 781<br>1. 653<br>1. 533<br>1. 433<br>1. 257<br>1. 170<br>1. 104<br>1. 035<br> | 2.288<br>2.097<br>1.032<br>1.785<br>1.657<br>1.543<br>1.437<br>1.342<br>1.251<br>1.174<br>1.109<br>1.040<br> | 43 Ru<br>444 Ru<br>45 Rh<br>46 Pd<br>47 Ag<br>48 Cd<br>49 Sn<br>50 Sn<br>57 IS<br>53 I<br>53 X<br>55 Ce<br>56 Ba<br>57 La<br>58 Ce<br>59 Pr<br>60 Nd<br>74 W |                                           | 0.574<br>.547<br>.501<br>.501<br>.453<br>.445<br>.416<br>.404<br>.388<br>—<br>.343<br>.329<br>.343<br>.329<br>.314<br>.301<br>.292<br>.177 | 0.645<br>615<br>562<br>5362<br>538<br>510<br>487<br>468<br>456<br>437<br>398<br>388<br>372<br>355<br>342<br>330<br>203 |                |

## X-RAY SPECTRA AND ATOMIC NUMBERS.

(b) L Series (Wave-Lengths,  $\lambda \times 10^8$  cm).

| Element,<br>atomic<br>number.                                                                                                                 | ı                                                                                                                                   | a <sub>2</sub>                                                                                                                                                                                                                               | a <sub>1</sub>                                                                                                                                                           | a <sub>3</sub>                                                                             | Element,<br>atomic<br>number.                                                                                                                 | 2                                         | a <sub>2</sub>                                                                                                                        | aı                                                                                                                                                                               | η                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 30 Zn 33 As 35 Br 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 55 Cs 56 Ba 57 La 58 Ce 59 Pr |                                                                                                                                     |                                                                                                                                                                                                                                              | 12.346<br>0.701<br>8.391<br>7.335<br>6.879<br>6.464<br>5.403<br>5.724<br>4.845<br>4.595<br>4.146<br>3.766<br>3.594<br>3.434<br>3.290<br>3.146<br>2.665<br>2.563<br>2.462 | 8.360 7.305 6.440 6.057 5.709 5.381 4.823 4.572 4.133                                      | 60 Nd 62 Sa 63 Eu 64 Gb 65 Tb 66 Dy 67 Ho 68 Er 70 Ad 71 Cp 73 Ta 74 W 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 88 Ra 90 Th 92 U | 1.892<br>1.834<br>1.672<br>1.840<br>1.499 | 2.379 2.210 2.131 2.054 1.983 1.916 1.854 1.794 1.681 1.620 1.528 1.481 1.398 1.360 1.323 1.283 1.251 1.215 1.186 1.183 — 0.969 0.922 | 2.369<br>2.200<br>2.121<br>2.043<br>1.973<br>1.983<br>1.783<br>1.670<br>1.519<br>1.313<br>1.371<br>1.388<br>1.350<br>1.240<br>1.240<br>1.205<br>1.144<br>1.100<br>0.957<br>0.911 | I.935 I.725 I.618 I.435 I.124 I.197 I.124 I.091 I.059 II.059 |
| Element,<br>atomic<br>number.                                                                                                                 | βι                                                                                                                                  | $oldsymbol{eta_1}$                                                                                                                                                                                                                           | $eta_2$                                                                                                                                                                  | $eta_3$                                                                                    | $oldsymbol{eta}_5$                                                                                                                            | <b>γ</b> 1                                | γ2                                                                                                                                    | γ3                                                                                                                                                                               | γ4                                                           |
| 33 As 35 Br 37 Rb 38 Sr 39 Y 40 Zr 41 Mo 42 Mo 44 Rh 45 Rh 46 Ag 47 Cd 49 Sn 51 Ssb 52 Te 53 Cs 56 La 57 Ce 59 Nd 62 Sa 64 Gd 62 Tb           | 4.071<br>3.861<br>3.676<br>3.337<br>3.184<br>3.044<br>2.018<br>2.668<br>2.558<br>2.453<br>2.357<br>2.167<br>1.023<br>1.851<br>1.784 | 9. 449<br>8. 141<br>7. 091<br>6. 639<br>6. 227<br>5. 851<br>5. 493<br>5. 175<br>4. 630<br>4. 372<br>4. 144<br>4. 128<br>3. 733<br>3. 252<br>3. 074<br>2. 584<br>2. 569<br>2. 268<br>2. 269<br>2. 167<br>2. 209<br>1. 918<br>1. 844<br>1. 775 | 5.317<br>                                                                                                                                                                | 4.0300 3.823 3.039 3.149 3.007 2.873 2.629 2.520 2.414 2.307 2.217 2.128 1.888 1.811 1.745 | 1.659                                                                                                                                         | 5.386<br>                                 | 2.903<br>2.70<br>2.903<br>2.77<br>1.803<br>1.65<br>1.599<br>(1.562)                                                                   | 2.889<br>32<br>—<br>34<br>—<br>1.933<br>1.775                                                                                                                                    | 2.831                                                        |

## X-RAY SPECTRA AND ATOMIC NUMBERS.

|                                                                                                                 |                                                                                                                   | (b)                                                                                                                                          | L SERIES                                                                                                              | (WAVE-LEN                                                                                                             | vgths, λ ×                        | ( 10 <sup>8</sup> CM).                                                                                          |    |                                                                                                 |                |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------|----------------|
| Element,<br>atomic<br>number.                                                                                   | β4                                                                                                                | $eta_1$                                                                                                                                      | $\beta_2$                                                                                                             | βε                                                                                                                    | βι                                | $\gamma_1$                                                                                                      | γ2 | γ3                                                                                              | γ4             |
| 66 Dy 67 Ho 68 Er 70 Ad 71 Cp 73 Ta 74 W 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 TI 82 Pb 83 Bi 84 Po 88 Ra 90 Th 92 U | 1.721<br>1.657<br>1.599<br>1.490<br>1.437<br>1.343<br>1.296<br>1.214<br>1.174<br>1.102<br>1.036<br>1.036<br>1.036 | 1.700<br>1.646<br>1.586<br>1.474<br>1.421<br>1.323<br>1.278<br>1.104<br>1.154<br>1.120<br>1.080<br>1.049<br>1.012<br>0.983<br>0.050<br>0.920 | 1.622<br>1.568<br>1.514<br>1.414<br>1.368<br>1.280<br>1.241<br>1.107<br>1.103<br>1.101<br>1.005<br>0.083<br>0.954<br> | 1.683<br>1.620<br>1.560<br>1.451<br>1.393<br>1.258<br>1.176<br>1.138<br>1.098<br>1.059<br>0.908<br>0.968<br>0.937<br> |                                   | 1. 470 1. 415 1. 367 1. 224 1. 135 1. 007 1. 021 0. 989 0. 928 0. 928 0. 896 0. 864 0. 842 0. 810 0. 654 0. 615 |    | 1.418<br>1.365<br>1.316<br>1.223<br>1.183<br>1.097<br>1.058<br>0.929<br>0.894<br>0.816<br>0.790 |                |
|                                                                                                                 |                                                                                                                   | (c)                                                                                                                                          | M Series                                                                                                              | (WAVE-LE                                                                                                              | ngths, λ >                        | < 108 CM).                                                                                                      |    |                                                                                                 |                |
| Element,<br>atomic<br>number.                                                                                   |                                                                                                                   | а                                                                                                                                            | β                                                                                                                     | γι                                                                                                                    | γ2                                | δ                                                                                                               |    | δ2                                                                                              | E              |
| 79 A<br>81 T<br>82 P<br>83 B<br>90 T<br>92 U                                                                    | b 5. i 5. h 4.                                                                                                    | 838<br>479<br>303<br>117<br>139<br>905                                                                                                       | 5.623<br>5.256<br>5.095<br>4.903<br>3.941<br>3.715                                                                    | 5.348<br>4.910<br>4.726<br>3.812                                                                                      | 5.284<br>—<br>—<br>3.678<br>3.480 | 4.5                                                                                                             | 61 | 5.102<br>4.826<br>4.695<br>4.532<br>3.324                                                       | 4.735<br>4.456 |

Reference: Jahrbuch der Radioaktivität und Elektronik, 13, 296, 1916.

## (d) Tungsten X-ray Spectrum (Wave-lengths, $\lambda \times 10^8$ cm).

The wave-lengths of the tungsten X-ray spectrum have been measured more frequently than those of any other element. The following values are perhaps the most accurate that have hitherto been published. Compton, Physical Review, 7, 646, 1916 (errata, 8, 753, 1916).

| Line.                    | · · λ                                          | Line.            | λ                                              | Line.       | λ                          |
|--------------------------|------------------------------------------------|------------------|------------------------------------------------|-------------|----------------------------|
| a<br>b<br>c'<br>c''<br>d | 1.0249<br>1.0399<br>1.0582<br>1.0652<br>1.0959 | e<br>f<br>g<br>h | 1.2185<br>1.2420<br>1.2601<br>1.2787<br>1.2985 | j<br>k<br>l | 1.3363<br>1.4735<br>1.4844 |

Other references on the X-ray spectrum of tungsten: Gorton, Physical Review, 7, 203, 1916; Hull, Proc. Nat. Acad. Sci. 2, 265, 1916; Dershem, Physical Review, 11, 461, 1918; Overn, Physical Review, 14, 137, 1919.

The following values for tungsten are from Duane and Patterson, Phys. Rev. 16, p. 526, 1920:

| Ka .17806                                                                                                    | on wave-lengths X<br>La <sub>1</sub> 1.2136                                                                              | 10 <sup>8</sup> cm.<br>La <sub>2</sub> 1.0726                                            | La <sub>3</sub>             | 1.024                       |                        |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|------------------------|
| Emission wave-le<br>Ka <sub>2</sub> .21341<br>Ll 1.6756<br>Lβ <sub>4</sub> 1.2985<br>Lγ <sub>1</sub> 1.09608 | ength × 108 cm.<br>Ka <sub>1</sub> .20860<br>La <sub>2</sub> 1.4839<br>LB <sub>1</sub> 1.27892<br>Ly <sub>2</sub> 1.0655 | Kβ .18420<br>La <sub>1</sub> 1.47306<br>Lβ <sub>3</sub> 1.2601<br>Ly <sub>3</sub> 1.0506 | Kλ<br>Lη<br>Lβ <sub>2</sub> | .17901<br>1.4176<br>1.24193 | Lβ <sub>5</sub> 1.2040 |

#### X-RAY ABSORPTION SPECTRA AND ATOMIC NUMBERS.

A marked increase in the absorption of X-rays by a chemical element occurs at frequencies close to those of the X-rays characteristic of that element. The absorption coefficient is much greater on the short wave-length side. In the K series the  $\alpha$  lines are much stronger than the corresponding  $\beta$  and  $\gamma$  lines, but the wave-lengths of the  $\alpha$  lines are greater. There is a marked increase in the absorption at wave-lengths considerably shorter than the  $\alpha$  lines and near the B lines. Bragg came to the conclusion that the critical absorption frequency lay at or above the  $\gamma$  of the K series. The  $\gamma$  line has a frequency about 1 per cent higher than the corresponding  $\beta$  line. For the L series there are 3 characteristic marked absorption changes (de Broglie).

The critical absorption wave-lengths of the following table are due to Blake and Duane, Phys. Rev. 10, 697, 1917. The equation  $\nu = \nu_0(N - 3.5)^2$  where  $\nu$  is Rydberg's fundamental frequency (109,675 × the velocity of light) and N the atomic number, represents the data with considerable accuracy. The nuclear charge is obtained by Q = 2e(N - 3.5).

| Element.                                                                   | Atomic number.                               | ÅU                                                          | Element.                                                                              | Atomic number.                         | ÅU                                                                           | Element.                                               | Atomic number.                         | ÅU                                                     |
|----------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------|--------------------------------------------------------|
| Bromine Krypton Rubidium Strontium Yttrium Zirconium Columbium Molybdenum. | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | .9179<br>.8143<br>.7696<br>.7255<br>.6872<br>.6503<br>.6180 | Ruthenium<br>Rhodium<br>Palladium.<br>Silver<br>Cadmium<br>Indium<br>Tin<br>Antimony. | 44<br>45<br>46<br>47<br>48<br>49<br>50 | . 5584<br>. 5324<br>. 5075<br>. 4850<br>. 4632<br>. 4434<br>. 4242<br>. 4065 | Tellurium Iodine Xenon Caesium Barium Lanthanum Cerium | 52<br>53<br>54<br>55<br>56<br>57<br>58 | .3896<br>.3727<br><br>.3444<br>.3307<br>.3188<br>.3073 |

Radioactivity is a property of certain elements of high atomic weight. It is an additive property of the atom, dependent only on it and not on the chemical compound formed nor affected by physical conditions controlling ordinary reactions, viz: temperature, whether solid or

liquid or gaseous, etc.

With the exception of actinium, radioactive bodies emit  $\alpha$ ,  $\beta$ , or  $\gamma$  rays.  $\alpha$  rays are easily absorbed by thin metal foil or a few cms. of air and are positively charged atoms of helium emitted with about 1/15 the velocity of light. They are deflected but very slightly by intense electric or magnetic fields. The  $\beta$  rays are on the average more penetrating, are negatively charged particles projected with nearly the velocity of light, easily deflected by electric or magnetic fields and identical in type with the cathode rays of a vacuum tube. The  $\gamma$  rays are extremely penetrating and non-deviable, analogous in many respects to the very penetrating Röntgen rays. These rays produce ionization of gases, act on the photographic plate, excite phosphorescence, produce certain chemical reactions such as the formation of ozone or the decomposition of water. All radioactive compounds are luminous even at the temperature of liquid air.

Table 506 is based very greatly on Rutherford's Radioactive Substances and their radiations (Oct. 1912). To this and to Landolt-Börnstein Physikalisch-chemische Tabellen the reader is referred for references. In the three radioactive series each successive product (except Ur. Y, and Ra.  $C_2$ ) results from the transformation of the preceding product and in turn produces the following. When the change is accompanied by the ejection of an a particle (helium, atomic weight = 4.0) the atomic weight decreases by 4. The italicized atomic weights are thus computed. Each product with its radiation decays by an exponential law; the product and its radiation consequently depend on the same law.  $I = I_0 e^{-\lambda t}$  where  $I_0 = \text{radioactivity}$  when t = O, I that at the time t, and  $\lambda$  the transformation constant. Radioactive equilibrium of a body with its products exists when that body is of such long period that its radiation may be considered constant and the decay and growth of its products are balanced.

International radium standard: As many radioactivity measures depend upon the purity of the radium used, in 1912 a committee appointed by the Congress of Radioactivity and Electricity, Brussels, 1910, compared a standard of 21.99 mg. of pure Ra. chloride sealed in a thin glass tube and prepared by Mme. Curie with similar standards by Hönigschmid and belonging to The Academy of Sciences of Vienna. The comparison showed an agreement of 1 in 300. Mme. Curie's standard was accepted and is preserved in the Bureau international des poids et mesures at Sèvres, near Paris. Arrangements have been made for the preparation of duplicate standards

for governments requiring them.

TABLE 500. — Relative Phosphorescence Excited by Radium.
(Becquerel, C. R. 129, p. 912, 1899.)

| Without sc | reen, | Hexagonal zinc blende  |     |  | 13.36 | With screen |  |  | .04 |
|------------|-------|------------------------|-----|--|-------|-------------|--|--|-----|
| 4.6        | 66    | Pt. cyanide of barium  |     |  | 1.99  | "           |  |  | .05 |
| 66         | 66    | Diamond                |     |  | 1.14  | " "         |  |  | .01 |
| 66         | 66    | Double sulphate Ur and | I K |  | 1.00  | " "         |  |  | .31 |
| 66         | 6.6   | Calcium fluoride       |     |  | 30    | " "         |  |  | ,02 |

The screen of black paper absorbed most of the  $\alpha$  rays to which the phosphorescence was greatly due. For the last column the intensity without screen was taken as unity. The  $\gamma$  rays have very little effect.

# **TABLE 501.— The Production of α Particles (Helium).** (Geiger and Rutherford, Philosophical Magazine, 20, p. 691, 1910.)

| Radioactive substance (1 gram.)                                    | a particles<br>per sec.                                                                                                       | Helium per year.                                                                                             |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Uranium . Uranium in equilibrium with products Thorium """" Radium | 2.37 × 10 <sup>4</sup><br>9.7 × 10 <sup>4</sup><br>2.7 × 10 <sup>4</sup><br>3.4 × 10 <sup>10</sup><br>13.6 × 10 <sup>10</sup> | 2.75 × 10 <sup>-5</sup> cu. mm.<br>11.0 × 10 <sup>-5</sup> " " " 3.1 × 10 <sup>-5</sup> " " " 39 " " 158 " " |

# TABLE 502. — Heating Effect of Radium and its Emanation. (Rutherford and Robinson, Philosophical Magazine, 25, p. 312, 1913.)

|              |   | He | ating effect in gram- | calories per hour per | gram radium. |        |  |
|--------------|---|----|-----------------------|-----------------------|--------------|--------|--|
|              |   |    | a rays.               | β rays.               | γ rays.      | Total. |  |
| Radium       |   |    | 25.1                  | -                     | -            | 25.1   |  |
| Emanation .  |   |    | 25.1                  | -                     | -            | 28.6   |  |
| Radium A .   |   |    | 30.5                  | -                     | -            | 30.5   |  |
| Radium B + C | ٠ | •  | 39-4                  | 4.7                   | 6.4          | 50.5   |  |
| Totals       |   |    | 123.6                 | 4.7                   | 6.4          | 134.7  |  |

Other determinations: Hess, Wien. Ber. 121, p. 1, 1912, Radium (alone) 25.2 cal. per hour per gram. Meyer and Hess, Wien. Ber. 121, p. 603, 1912, Radium in equilibrium, 132.3 gram. cal. per hour per gram. See also, Callendar, Phys. Soc. Proceed. 23, p. 1, 1910; Schweidler and Hess, Ion. 1, p. 161, 1909; Angström, Phys. ZS. 6, 685, 1905, etc.

# TABLES 503-505.

#### TABLE 503. - Stopping Powers of Various Substances for a Rays.

s, the stopping power of a substance for the a rays is approximately proportional to the square root of the atomic weight, w.

| Substance s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H <sub>2</sub> .24 .26 | Air<br>1.0<br>1.0 | O <sub>2</sub> 1.05 1.05 | C <sub>2</sub> H <sub>2</sub><br>1.11<br>1.17 | C <sub>2</sub> H <sub>4</sub> 1.35 1.44 | A1<br>1.45<br>1.37             | N <sub>2</sub> O<br>1.46<br>1.52 | CO <sub>2</sub><br>1.47<br>1.51 | CH <sub>8</sub> Br<br>2.09<br>2.03 | CS <sub>2</sub><br>2.18<br>1.95 | Fe<br>2.26<br>1.97 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|--------------------------|-----------------------------------------------|-----------------------------------------|--------------------------------|----------------------------------|---------------------------------|------------------------------------|---------------------------------|--------------------|
| Substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cu                     | Ni                | Ag                       | Sn                                            | C <sub>6</sub> H <sub>6</sub> 3.37 3.53 | C <sub>5</sub> H <sub>12</sub> | C <sub>2</sub> H <sub>5</sub> I  | CCl <sub>4</sub>                | Pt                                 | Au                              | Pb                 |
| s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.43                   | 2.46              | 3.17                     | 3·37                                          |                                         | 3·59                           | 3.13                             | 4.02                            | 4.16                               | 4.45                            | 4.27               |
| \( \forall w \cdot | 2.10                   | 2.20              | 2.74                     | 2.88                                          |                                         | 3.86                           | 3.06                             | 3.59                            | 3.68                               | 3.70                            | 3.78               |

Bragg, Philosophical Magazine, 11, p. 617, 1906.

## TABLE 504,—Absorption of $\beta$ Rays by Various Substances.

 $\mu$ , the coefficient of absorption for  $\beta$  rays is approximately proportional to the density, D. See Table 506 for  $\mu$  for Al.

| Substance | B<br>4.65 | C<br>4.4<br>12 | Na<br>4.95<br>23 | Mg<br>5.1<br>24.4 | Al<br>5.26<br>27 | Si<br>5.5<br>28 | P<br>6.1<br>31 | S<br>6.6<br>32 | K<br>6.53<br>39 | Ca<br>6.47<br>40 |
|-----------|-----------|----------------|------------------|-------------------|------------------|-----------------|----------------|----------------|-----------------|------------------|
| Substance | Ti        | Cr             | Fe               | Co                | Cu               | Zn              | Ar             | Se             | Sr              | Zr               |
|           | 6.2       | 6.25           | 6.4              | 6.48              | 6.8              | 6.95            | 8.2            | 8.65           | 8.5             | 8.3              |
|           | 48        | 52             | 56               | 59                | 63.3             | 65.5            | 75             | 79             | 87.5            | 90.7             |
| Substance | Pd        | Ag             | Sn               | Sb                | I                | Ba              | Pt             | Au             | Pb              | U                |
|           | 8.0       | 8.3            | 9.46             | 9.8               | 10.8             | 8.8             | 9-4            | 9.5            | 10.8            | 10.1             |
|           | 106       | 108            | 118              | 120               | 126              | 137             | 195            | 197            | 207             | 240              |

For the above data the  $\beta$  rays from Uranium were used. Crowther, Philosophical Magazine, 12, p. 379, 1906.

TABLE 505.—Absorption of  $\gamma$  Rays by Various Substances.

|                            |                                                      | Radiu                                        | m rays.                                              | Uraniu                                       | m rays.                                              | Th. D.                                       | Meso. Th2                                 | Range of<br>thickness                                                 |
|----------------------------|------------------------------------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------|
| Substance.                 | Density.                                             | μ (cm)-1                                     | 100µ/D                                               | μ(cm)-1                                      | 100µ/D                                               | μ(cm) <sup>-1</sup>                          | μ(cm)-1                                   | cm.                                                                   |
| Hg<br>Pb                   | 13.59                                                | .642<br>•495                                 | 4.7 <sup>2</sup><br>4.34                             | .832<br>.725                                 | 6.12<br>6.36                                         | .462                                         | .620                                      | .3 to 3.5                                                             |
| Cu Brass . Fe Sn Slate Al  | 8.81<br>8.35<br>7.62<br>7.24<br>7.07<br>2.85<br>2.77 | .351<br>.325<br>.304<br>.281<br>.228<br>.118 | 3.98<br>3.89<br>3.99<br>3.88<br>3.93<br>4.14<br>4.06 | .416<br>.392<br>.360<br>.341<br>.329<br>.134 | 4.72<br>4.70<br>4.72<br>4.70<br>4.65<br>4.69<br>4.69 | .294<br>.271<br>.250<br>.236<br>.233<br>.096 | ·373<br>·355<br>·316<br>·305<br>·300<br>- | .o " 7.6<br>.o " 5.86<br>.o " 7.6<br>.o " 5.5<br>.o " 6.0<br>.o " 9.4 |
| Glass .<br>S<br>Paraffin . | 2.52<br>1.79<br>.86                                  | .105<br>.078<br>.042                         | 4.16<br>4.38<br>4.64                                 | .122<br>.092<br>.043                         | 4.84<br>5.16<br>5.02                                 | .089<br>.066<br>.031                         | .083                                      | .0 " 11.3<br>.0 " 11.6<br>.0 " 11.4                                   |

In determining the above values the rays were first passed through one cm. of lead.

Russell and Soddy, Philosophical Magazine, 21, p. 130, 1911.

#### TABLE 506.

#### RADIOACTIVITY.

P=1/2 period = time when body is one half transformed. A = transformation constant (see previous page). The initial velocity of the  $\alpha$  particle is deduced from the formula of Geiger  $V^3=aR$ , where R= range and assuming the velocity for RaC of range 7.06 cm. at 20° is 2.06  $\times$  10° cm per sec., i.e.,  $v=1.07/R^{\frac{3}{2}}$ .

| ſ | 1                                                                                                                                                      |                                                                           |                                                                                                                      |                                                                                                          |                                                                                                                                  |                                      |                                      |                                                                                                           |                                                                |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| ı |                                                                                                                                                        |                                                                           |                                                                                                                      | Uranium-                                                                                                 | RADIUM GR                                                                                                                        | OUP.                                 |                                      |                                                                                                           |                                                                |
| ı |                                                                                                                                                        |                                                                           |                                                                                                                      |                                                                                                          |                                                                                                                                  |                                      |                                      | z rays.                                                                                                   |                                                                |
| ۱ |                                                                                                                                                        | Atomic<br>weights.                                                        | 1/2 period;                                                                                                          | Transformation constants. $\lambda = \frac{.6931}{P}$                                                    | Rays.                                                                                                                            | Range. 760mm, 15° C                  | Initial velocity.                    | Kinetic energy.                                                                                           | Whole no.<br>of ions<br>produced.                              |
| ı |                                                                                                                                                        |                                                                           |                                                                                                                      | P                                                                                                        |                                                                                                                                  | cm                                   | cm per s                             | Ergs.                                                                                                     | By an a particle.                                              |
|   | Uranium r Uranium X1 Uranium X2 Uranium 2 Uranium Y                                                                                                    | 234.2<br>234.2<br>234.2<br>230.2?                                         | 5 × 10 <sup>9</sup> y.<br>24.6 d.<br>1.15 m.<br>10 <sup>5</sup> yr.<br>1.5 d.                                        | 1.4 $\times$ 10 <sup>-10</sup> y.<br>.0282 d.<br>.01 sec.<br>7 $\times$ 10 <sup>-7</sup> y.<br>.46 d.    | $\beta + \gamma$ $\beta$ $\beta$                                                                                                 | 2.50                                 | 1.45 × 109<br>-<br>1.53 × 109        | .72 × 10 <sup>-5</sup>                                                                                    | 1.26 × 10 <sup>5</sup><br>—<br>—<br>1.37 × 10 <sup>5</sup>     |
|   | Ionium Radium Ra Emanation Radium A Radium B Radium C Radium C Ra C Ra C Radium C'                                                                     | 226<br>222<br>218<br>214<br>214<br>210?                                   | 10 <sup>5</sup> yr.<br>1730 y.<br>3.85 d.<br>3.0 m.<br>26.8 m.<br>19.5 m.                                            | 7.0 × 10 <sup>5</sup> y.<br>.00040 y.<br>.180 d.<br>.231 m.<br>.0258 m.<br>.0355 m.                      | $ \begin{array}{c} a + \beta \\ a + \beta \\ \beta + \gamma \\ a + \beta \end{array} $                                           | 4.75                                 | 1.56 × 10° 1.61 " 1.73 " 1.82 "      | .79 " .92 " 1.01 "                                                                                        | 1.50 "<br>1.74 "<br>1.88 "<br>—                                |
|   | Ra D, radio-<br>lead<br>Ra E<br>Ra F. Polonium                                                                                                         | 210<br>210<br>210                                                         | 10 <sup>-6</sup> s.?<br>15.8 y.<br>4.85 d.<br>136 d.                                                                 | 700000 s.<br>.044 y.<br>.143 d.<br>.00510 d.                                                             | $\begin{array}{c} \alpha \\ \text{slow } \beta \\ \beta + \gamma \\ \alpha \end{array}$                                          | 6.94                                 | =                                    | .87 × 10 <sup>-5</sup>                                                                                    | 2.37 × 10 <sup>5</sup> 1.63 × 10 <sup>5</sup>                  |
| ı |                                                                                                                                                        |                                                                           |                                                                                                                      | Actini                                                                                                   | UM GROUP.                                                                                                                        |                                      |                                      |                                                                                                           |                                                                |
|   | Actinium                                                                                                                                               | A<br>A - 4<br>A - 8<br>A - 12<br>A - 16<br>A - 16                         | ?<br>19.5 d.<br>10.2 d.<br>3.9 s.<br>.002 s.<br>36 m.<br>2.1 m.<br>4.7 m.                                            | .0355 d.<br>.068 d.<br>.178 s.<br>.350 s.<br>.0193 m.<br>.33 m.                                          | $ \begin{array}{c} \alpha? \\ \alpha + \beta \\ \alpha \\ \alpha \\ \text{slow } \beta \\ \beta + \gamma \\ \alpha \end{array} $ | 4.26                                 | 1.76 "<br>1.76 "<br>1.91 "<br>1.98 " | $.82 \times 10^{-6}$ $.94                                    $                                            | 1.8 "<br>1.79 "<br>2.04 "<br>2.20 "                            |
| I |                                                                                                                                                        |                                                                           |                                                                                                                      | THORIU                                                                                                   | M GROUP.                                                                                                                         |                                      |                                      |                                                                                                           |                                                                |
|   | Thorium I Mesothorium I Mesothorium I Mesothorium I Radiothorium. Thorium X Th. Emanation. Thorium A Thorium B Thorium B Thorium D Thorium C Thorium C | 232<br>228<br>228<br>228<br>224<br>220<br>216<br>212<br>212<br>208<br>212 | 1.3 × 10 <sup>10</sup> y. 5.5 y. 6.2 hr. 2 yr. 3.65 d. 54 sec. 0.14 sec. 10.6 h. 60 m. 3.1 m. 10 <sup>-11</sup> sec. | 5.3 × 10 <sup>-11</sup> .126 yr112 h347 y190 d0128 s. 4.95 s0654 h0118 m224 m. 7 × 10 <sup>10</sup> sec. | $ \begin{array}{c} a \\ \text{none} \\ \beta + \gamma \\ a + \beta \\ a \\ \beta + \gamma \\ a \\ \beta + \gamma \end{array} $   | 3.87<br>4.30<br>5.00<br>5.70<br>4.80 | 1.94<br>1.76 × 109                   | .69 × 10 <sup>-6</sup> .89 × 10 <sup>-5</sup> .94 " 1.15 " .95 × 10 <sup>-5</sup> 1.53 × 10 <sup>-5</sup> | 1.66 × 10 <sup>8</sup> 1.8 " 1.9 " 2.2 " 1.8 × 10 <sup>5</sup> |
|   | Potassium<br>Rubidium                                                                                                                                  | 39.I<br>85.5                                                              | 5                                                                                                                    | 5                                                                                                        | ββ                                                                                                                               | =                                    | =                                    | =                                                                                                         | =                                                              |
| ď |                                                                                                                                                        |                                                                           |                                                                                                                      |                                                                                                          |                                                                                                                                  | -                                    |                                      |                                                                                                           |                                                                |

See The Constants of Radioactivity, Wendt, Phys. Rev. 7, p. 389, 1916.

 $\mu$  = coefficient of absorption for  $\beta$  rays in terms of cms. of aluminum;  $\mu_1$ , of the  $\gamma$  rays in cms of Al, so that if  $J_0$  is the incident intensity, J that after passage through d cms,  $J=J_{0e}{}^-d\mu$ .

|                             |                            | **                 | modgii is cinis, 5 =             |                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|-----------------------------|----------------------------|--------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                             |                            | URAN               | NIUM-RADIUM GRO                  | UP.                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|                             | β                          | rays.              | γ rays.                          |                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|                             | Absorption coefficient = μ | Velocity light = 1 | Absorption coefficient = $\mu_1$ | Remarks.                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Ur 1<br>Ur X1               |                            | Wide serve         | _                                | 1 gram U emits 2.37 × 10 <sup>4</sup> α particles per sec.                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| Ur X2                       |                            | Wide range         | 24, .70, .140                    | β rays show no groups of definite velocities. Chemically allied to Th.                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Ur 2<br>Ur Y                | 300                        | =                  | =                                | Not separable from Ur 1. Probably branch product. Exists in small                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| Io                          | -                          | -                  | _                                | quantity. Chemical properties of and non-separable from Thorium.                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Ra                          | 200                        | .52, .65           | 354, 16, .27                     | Chemical properties of Ba. 1 gr emits per sec. in equilib. 13.6 × 10 <sup>10</sup> a particles.                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Ra Em                       | -                          | _                  | _                                |                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Ra A                        | -                          |                    | -                                | Like solid, has + charge, volatile in H,                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Ra B                        | 13, 80, 890                | .36 to .74         | 230, 40, .51                     | Volatile about 400° C in H. Separated                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Ra C1                       | 13, 53                     | .80 to .98         | .115                             | Inert gas, density III H, boils -65° C, density solid 5-6, condenses low pressure -150° C.  Like solid, has + charge, volatile in H, 400°, in O about 550°.  Volatile about 400° C in H. Separated pure by recoil from Ra A.  Volatile in H about 430°, in O about 1000°.  Probably branch product. Separated by recoil from Ra C.  Separated with Pb, not yet separable from it. Volatile below 1000°. |  |  |  |  |  |  |  |
| Ra D                        | 130                        | -                  | 45, .99                          | Separated with Pb, not yet separable from                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| Ra E                        | 43                         | Wide range         | Like Ra D<br>585                 | Separated with Bi. Probably changes to Pb. Volatile about 1000°.                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|                             |                            |                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|                             |                            | 1                  | ACTINIUM GROUP.                  |                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Act                         |                            |                    | _                                | Probably branch product Ur series.<br>Chemically allied to Lanthanum.                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Rad. Act<br>Act X<br>Act Em | —<br>—                     | Ξ                  | 25, . 190                        | Chemical properties analogous to Ra. Inert gas, condenses between -120° and                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| Act A                       | Very soft                  | =                  | 120, 31, .45                     | -150°.  Analogous to Ra A. Volatile above 400°.  "Ra B. "700°.  "Ra C.                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Act C <sub>1</sub>          | 28.5                       | =                  | . 198                            | (Obtained by recoil.)                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|                             |                            |                    | THORIUM GROUP.                   |                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Th                          | _                          | _                  | -                                | Volatile in electric arc. Colorless salts not                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| Mes. Th. I                  | _                          | .37 to .66         |                                  | Volatile in electric arc. Colorless salts not<br>spontaneously phosphorescent.<br>Chemical properties analogous to Ra from<br>which non-separable.                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| Mes. Th. 2<br>Rad. Th       | 20 to 38.5                 | =                  | 26, .116                         | Chemically allied to Th, non-separable from it.                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Th. X<br>Th. Em             | About 330                  | ·47 _ ·51          | =                                | Chemically analogous to Ra.                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| Th. A<br>Th. B              | 110                        | .63 .72            | 160, 32, .36                     | Inert gas, condenses at low pressure between -120° and -150°.  + charged, collected on - electrode. Chemically analogous to Ra B. Volatile above 630° C. Chemically analogous to Ra C. Volatile                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Th. C1                      | 15.6                       |                    | Weak                             | Chemicany analogous to ita C. Volatile                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Th. C'                      | <del>-</del><br>24.8       | -3, .4, .93-5      | .096                             | above 730°.  Th. C¹and Th.D are probably respectively  \$\beta\$ and \$a\$ ray products from Th. C₁.  Got by recoil from Th. C. Probably transforms to Bi.                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| K                           | 38, 102<br>380, 1020       |                    |                                  | Activity = 1/1000 of Ur.<br>" = 1/500 of Ur.                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Rb                          | 380, 1020                  |                    |                                  | - 1/300 01 011                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |

#### RADIOACTIVITY.

## TABLE 507. — Total Number of Ions produced by the $\alpha$ , $\beta$ , and $\gamma$ Rays.

The total number of ions per second due to the complete absorption in air of the  $\beta$  rays due to 1 gram of radium is  $9 \times 10^{14}$ , to the  $\gamma$  rays,  $13 \times 10^{14}$ .

The total number of ions due to the  $\alpha$  rays from I gram of radium in equilibrium is  $2.56 \times 10^{16}$ . If it be assumed that the ionization is proportional to the energy of the radiation, then the total energy emitted by radium in equilibrium is divided as follows: 92.I parts to the  $\alpha$ , 3.2 to the  $\beta$ , 47 to the  $\gamma$  rays. (Rutherford, Moseley, Robinson.)

#### TABLE 508 .- Amount of Radium Emanation. Curie.

At the Radiology Congress in Brussels in 1910, it was decided to call the amount of emanation in equilibrium with 1 gram of pure radium one Curie. [More convenient units are the millicurie ( $10^{-8}$ Curie) and the microcurie ( $10^{-6}$ Curie)]. The rate of production of this emanation is  $1.24\times10^{-9}$  cu. cm. per second. The volume in equilibrium is 0.59 cu. mm. (760 cm.,  $0^{0}$ C.) assuming the emanation mon-atomic.

The Mache unit is the quantity of Radium emanation without disintegration products which produces a saturation current of  $10^{-8}$  unit in a chamber of large dimensions. I curie =  $2.5 \times 10^{9}$  Mache units.

The amount of the radium emanation in the air varies from place to place; the amount per cubic centimeter of air expressed in terms of the number of grams of radium with which it would be in equilibrium varies from 24×10<sup>-12</sup> to 350×10<sup>-12</sup>.

#### TABLE 509. - Vapor Pressure of the Radium Emanation in cms. of Mercury.

(Rutherford and Ramsay, Phil. Mag. 17, p. 723, 1909, Gray and Ramsay, Trans. Chem. Soc. 95, p. 1073, 1909.)

Temperature C°.  $-127^{\circ}$   $-101^{\circ}$   $-65^{\circ}$   $-56^{\circ}$   $-10^{\circ}$   $+17^{\circ}$   $+49^{\circ}$   $+73^{\circ}$   $+100^{\circ}$   $+104^{\circ}$  (crit) Vapor Pressure. 0.9 5 76 100 500 1000 2000 3000 4500 4745

## TABLE 510. — References to Spectra of Radioactive Substances.

Radium spectrum:

Demarçay, C. R. 131, p. 258, 1900.

Radium emanation spectrum: Rutherford and Royds, Phil. Mag. 16, p. 313, 1908; Watson, Proc.

Roy. Soc. A 83, p. 50, 1909
Polonium spectrum: Curie and Debierne, Rad. 7.

Roy. Soc. A 83, p. 50, 1909. Curie and Debierne, Rad. 7, p. 38, 1910, C. R. 150, p. 386, 1910.

## TABLE 511. - Molecular Velocities.

The probability of a molecular velocity x is  $(4/\sqrt{\pi})x^2e^{-x^2}$ , the most probable velocity being taken as unity. The number of molecules at any instant of speed greater than e is  $2N(hm/\pi)^{\frac{1}{2}}\left\{\int_{e}^{e^{-h}hme^{2}}de + ee^{-hme^{2}}\right\}$  (see table), where N is the total number of molecules. The mean velocity G (sq. rt. of mean sq.) is proportional to the mean kinetic energy and the pressure which the molecules exert on the walls of the vessel and is equal to 15,800  $\sqrt{T/m}$  cm/sec, where T is the absolute temperature and m the molecular weight. The most probable velocity is denoted by W, the

$$G = W \sqrt{3/2} = 1.225W;$$
  $\Omega = W \sqrt{4/\pi} = 1.128W;$   $G = \Omega \sqrt{3\pi/8} = 1.086\Omega.$ 

The number of molecules striking unit area of inclosing wall is  $(1/4)N\Omega$  (Meyer's equation), where N is the number of molecules per unit volume; the mass of gas striking is  $(1/4)\rho\Omega$  where  $\rho$  is the density of the gas. For air at normal pressure and room temperature  $(20^{\circ}\text{C})$  this is about  $1_4$  g/cm²/sec. See Langmuir, Phys. Rev. 2, 1913 (vapor pressure of W) and J. Amer. Ch. Soc. 37, 1915 (Chemical Reactions at Low Pressures), for fertile applications of these latter equations. The following table is based on Kinetic Theory of Gases, Dushman, Gen. Elec. Rev. 18, 1915, and Jeans, Dynamical Theory of Gases, 1916.

| Gas. | Molec-<br>ular                                                                     |                                                                                           |                                                                                                  |                                                                                                  |                                                                                 | Arithmetical average velocity, $\Omega 	imes ro^{-2}$ cm/sec.                                              |                                                                                                            |                                                                                                     |                                                                                                                   |                                                                                                                      |                                                                                                                |                                                                                                             |  |
|------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
|      | weight.                                                                            | 273°                                                                                      | 293°                                                                                             | 373°                                                                                             | 223°                                                                            | 273°                                                                                                       | 293°                                                                                                       | 373°                                                                                                | 1000°                                                                                                             | 1500°                                                                                                                | 2000°                                                                                                          | 6000°                                                                                                       |  |
| Air  | 39.88<br>28.00<br>44.00<br>4.00<br>2.01<br>82.92<br>200.6<br>96.0<br>20.2<br>28.02 | 485<br>633<br>413<br>493<br>393<br>1311<br>1838<br>286<br>184<br>493<br>461<br>615<br>228 | 502<br>655<br>428<br>511<br>408<br>1358<br>1904<br>296<br>191<br>605<br>511<br>478<br>637<br>236 | 567<br>740<br>483<br>576<br>459<br>1533<br>2149<br>335<br>215<br>683<br>577<br>539<br>720<br>267 | 404<br>527<br>344<br>410<br>327<br>1092<br>1534<br>238<br>154<br>410<br>384<br> | 447<br>583<br>381<br>454<br>362<br>1208<br>1696<br>263<br>170<br>—<br>538<br>454<br>425<br>—<br>566<br>210 | 463<br>604<br>395<br>471<br>376<br>1252<br>1755<br>272<br>176<br>—<br>557<br>471<br>440<br>—<br>587<br>218 | 522<br>681<br>445<br>531<br>434<br>1412<br>1980<br>308<br>199<br>—————————————————————————————————— | 855<br>1115<br>729<br>870<br>694<br>2300<br>3241<br>502<br>325<br>469<br>1030<br>869<br>813<br>339<br>1084<br>400 | 1047<br>1367<br>892<br>1065<br>850<br>2840<br>3970<br>618<br>398<br>575<br>1260<br>1064<br>996<br>416<br>1317<br>493 | 1209<br>1577<br>1030<br>981<br>3270<br>4583<br>712<br>459<br>664<br>1460<br>1229<br>1150<br>480<br>1533<br>570 | 2094<br>2734<br>1784<br>2130<br>1700<br>5680<br>1236<br>7940<br>1150<br>2520<br>2128<br>1092<br>2634<br>986 |  |

Free electron, molecular weight = 1/1835 when H= 1; G= 1.114  $\times$  107 at 0° C and  $\Omega=$  1.026  $\times$  107 at 0° C.

### TABLE 512. - Molecular Free Paths, Collision Frequencies and Diameters.

The following table gives the average free path L derived from Boltzmann's formula  $\mu$  (.350 $z\rho\Omega$ ),  $\mu$  being the viscosity,  $\rho$  the density, and from Meyer's formula  $\mu$ (.300 $z\rho\Omega$ ). Experimental values (Verh. d. Phys. Ges. 14, 596, 1912; 15, 373, 1913) agree better with Meyer's values, although many prefer Boltzmann's formula. As the pressure decreases, the free path increases, at one bar (ordinary incandescent lamp) becoming 5 to 10 cm. The diameters may be determined from L by Sutherland's equation  $\{1.402/\sqrt{2\pi}NL(z+C/T)\}^{\frac{1}{2}}$ , N being the number of molecules per unit vol. and C Sutherland's constant; from van der Waal's b,  $\{3b/2NV\pi\}^{\frac{1}{2}}$ ; from the heat conductivity k, the specific heat at constant volume cv,  $\{1.46\rho Gcv/Nk\}^{\frac{1}{2}}$  (Laby and Kaye); a superior limit from the maximum density in solid and liquid states (Jeans, Sutherland, 1916) and an inferior limit from the dielectric constant D,  $\{(D-1)z/\pi N\}^{\frac{1}{2}}$ , or the index of refraction n,  $\{(n^2-1)z/\pi N\}^{\frac{1}{2}}$ . The table is derived principally from Dushman, l.c.

| L×10 <sup>6</sup> (cm) Average free path.* |                                                                                        |                                                                           |                                                                          | Collision                                                               | 108 × Molecular diameters (cm):                                   |                                                                                        |                                                      |                                                                      |                                                                          |  |
|--------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| Gas.                                       |                                                                                        | mann.                                                                     | Mever.                                                                   | frequency. $\Omega/L$                                                   | From L                                                            | From                                                                                   | From                                                 | Lim                                                                  | iting                                                                    |  |
|                                            | o° C                                                                                   | 20° C                                                                     | 20° C                                                                    | X 10-6<br>20° C*                                                        | (vis-<br>cosity)<br>µ                                             | van der<br>Waal's                                                                      | conduc-<br>tivity                                    | Max.<br>density                                                      | Min. D or n                                                              |  |
| Ammonia                                    | 5. 92<br>8. 98<br>8. 46<br>5. 56<br>25. 25<br>16. 00<br>9. 5<br>8. 50<br>9. 05<br>5. 6 | 6.60<br>9.88<br>9.23<br>6.15<br>27.45<br>17.44<br>(14.70)<br>9.29<br>9.93 | 5.83<br>8.73<br>8.16<br>5.44<br>33.10<br>15.40<br>(13.0)<br>8.21<br>8.78 | 9150<br>4000<br>5100<br>6120<br>4540<br>10060<br>—<br>—<br>5070<br>4430 | 2.97<br>2.88<br>3.19<br>3.34<br>1.90<br>2.40<br>—<br>3.15<br>2.98 | 3.08<br>2.94<br>3.12<br>3.23<br>2.65<br>2.34<br>(3.69)<br>3.01<br>3.15<br>2.92<br>4.02 | 2.86<br>3.40<br>2.30<br>2.32<br>3.14<br>3.53<br>3.42 | 2.87<br>3.27<br>3.35<br>1.98<br>2.40<br>3.35<br>3.23<br>2.99<br>3.55 | 2.66<br>2.74<br>2.90<br>1.92<br>2.17<br>(2.70)<br>2.95<br>2.71<br>(3.18) |  |

\* Pressure = 106 bars = 106 dynes + cm2 = 75 cm Hg.

#### TABLE 513. - Cross Sections and Lengths of Some Organic Molecules.

According to Langmuir (J. Am. Ch. Soc. 38, 2221, 1016) in solids and liquids every atom is chemically combined to adjacent atoms. In most inorganic substances the identity of the molecule is generally lost, but in organic compounds a more permanent existence of the molecule probably occurs. When oil spreads over water evidence points to a layer a molecule thick and that the molecules are not spheres. Were they spheres and an attraction existed between them and the water, they would be dissolved instead of spreading over the surface. The presence of the -COOH, -CO or -OH groups generally renders an organic substance soluble in water, whereas the hydrocarbon chain decreases the solubility. When an oil is placed on water the -COOH groups are intracted to the water and the hydrocarbon chains repelled but attracted to each other. The process leads the oil over the surface until all the -COOH groups are intended in the hydrocarbon oils will not spread over water. Benzene will not mix with water. When a limited amount of oil is present the spreading ceases when all the water-attracted groups are in contact with water. If weight w of oil spreads over water surface A, the area covered by each molecule is AM/wN where M is the molecular weight of the oil (O = r6), N, Avogadro's constant. The vertical length of a molecule  $l = M/a\rho N = W/\rho A$  where  $\rho$  is the oil density and a the horizontal area of the molecule.

| Substance.                                                                                                                                                                                                                                                                                                                                                               | Cross<br>section<br>in<br>cm <sup>2</sup><br>× 10 <sup>16</sup> | l in cm<br>(length)<br>× 108                       | Substance.                                       | Cross<br>section<br>in<br>cm <sup>2</sup><br>× 10 <sup>16</sup> | l in cm (length)                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|
| Palmitic acid C <sub>15</sub> H <sub>31</sub> COOH. Stearic acid C <sub>17</sub> H <sub>35</sub> COOH. Cerotic acid C <sub>25</sub> H <sub>35</sub> COOH. Oleic acid C <sub>17</sub> H <sub>35</sub> COOH. Linoleic acid C <sub>17</sub> H <sub>35</sub> COOH. Linoleic acid C <sub>17</sub> H <sub>35</sub> COOH. Ricinoleic acid C <sub>17</sub> H <sub>32</sub> COOH. | 24<br>24<br>25<br>48<br>47<br>66<br>90                          | 19.6<br>21.8<br>29.0<br>10.8<br>10.7<br>7.6<br>5.8 | Cetyl alcohol C <sub>16</sub> H <sub>35</sub> OH | 21<br>29<br>21<br>69<br>137<br>145<br>280<br>143                | 21.9<br>35.2<br>44.0<br>23.7<br>11.9<br>11.2<br>5.7<br>11.0 |

### TABLE 514. - Size of Diffracting Units in Crystals. ¶

The use of crystals for the analysis of X-rays leads to estimates of the relative sizes of molecular magnitudes. The diffraction phenomenon is here not a surface one, as with gratings, but one of interference of radiations reflected from the regularly spaced atomic units in the crystals, the units fitting into the lattice framework of the crystal. In cubical crystals [roo] this framework is built of three mutually perpendicular equidistant planes whose distance apart in crystallographic parlance is  $d_{100}$ . This method of analysis from the nature of the diffraction pattern leads also to a knowledge of the structure of the various atoms of the crystal. See Bragg and Bragg, X-rays and Crystal Structure, 1918.

| Crystal.                                | Elementary<br>diffracting element.                                                   | Side of cube.                                                                                                                                  | Molecules or atoms in unit cube. |
|-----------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| KCl.<br>NaCl.<br>ZnS.<br>CaF2.<br>FeS2. | Face-centered cube * " " " † " " † † " " §                                           | cm<br>6.30 × 10 <sup>-8</sup><br>5.56 × 10 <sup>-8</sup><br>5.46 × 10 <sup>-8</sup><br>5.40 × 10 <sup>-8</sup><br>5.26 × 10 <sup>-8</sup>      | 4 molecules                      |
| Fe. Al. Na. Ni. "                       | Body-centered cube<br>Face-centered cube<br>Body-centered cube<br>Face-centered cube | $\begin{array}{c} 2.86 \times 10^{-8} \\ 4.05 \times 10^{-8} \\ 4.30 \times 10^{-8} \\ 2.76 \times 10^{-8} \\ 3.52 \times 10^{-8} \end{array}$ | 2 atoms 4 " 2 " 4 "              |

<sup>\*</sup> Each atom is so nearly equal in diffracting power (atomic weight) in KCl that the apparent unit diffracting element is a cube (simple) of \( \frac{1}{4} \) this size. Elementary body-centered cube, — atom at each corner, one in center; e.g., Fe, Ni (in part), Na, Lir Elementary face-centered cube, — atom at each corner, one in center of each face; e.g., Cu, Ag, Au, Pb, Al, Ni (in part), etc. Simple cubic lattice, — atom in each corner. Double face-centered cubic or diamond lattice — C (diamond); Si, Sb, Bi, As?, Te?, † Diamond lattice. † Cubic-holohedral. § Cubic-pyritohedral.

Metals taken from Hull, Phys. Rev. 10, p. 661, 1917
¶ See Table 528 for best values of calcite and rock-salt grating spaces.

Note:— (Hull, Science 52, 227, 1920). Ca, face-centered cube, side 5.56 Å, each atom 12 neighbors 3.93 Å distant. Ti, centered cube, cf. Fe, side 3.14 Å, 8 neighbors 2.72 Å. Zn, 6 nearest neighbors in own plane. 2.67 Å, 3 above, 3 below, 2.92 Å. Cd, cf. Zn, 2.96 Å, 3.30 Å. In, face-centered tetragonal, 4 nearest 3.24 Å, 4 above, 4 below, 3.33 Å. Ru, cf. Zn, 2.69 Å, 2.64 Å. Pd, face-centered cube, side 3.02 Å, 12 neighbors 2.77 Å. Ta, centered cube, side 3.27 Å, 8 neighbors 2.83 Å. Ir, face-centered cube, side 3.80 Å, 12 neighbors, 2.69 Å (A = 10<sup>-8</sup> cm). Note:— (Bragg, Phil. Mag. 40, 169, 1920). Crystals empirically considered as tangent spheres of diameter in table, atom at center of sphere. When lattice known allows estimation of dimensions of crystal unit. Table foot of next page

(atomic numbers, elements, diameter in Angstroms, 10-8 cm).

## ELECTRONS, RUTHERFORD ATOM, BOHR ATOM, MAGNETIC FIELD OF ATOM.

References: Millikan, The Electron, 1917; Science, 45, 421, 1917; Humphreys, Science, 46, 273, 1917; Lodge, Nature, 104, 15 and 82, 1919; Thomson, Conduction of Electricity through Gases; Campbell, Modern Electrical Theory; Lorentz, The Theory of Electrons; Richardson, The Electron Theory of Matter, 1914.

Electron: an elementary + or - unit of electricity.

Free negative electron: (corpuscle, J. J. Thomson); mass =  $9.01 \times 10^{-28}$ g = 1/1845 H atom, probably all of electrical origin due to inertia of self-induction.

Theory shows that when speed of electron = 1/10 velocity of light its mass should be appreciably dependent upon that speed. If  $m_0$  be mass for small velocity v, m be the transverse mass for v, v/(velocity of light) =  $\beta$ , then m = 1/10 then m = $m_0(1 - \beta^2)^{\frac{1}{6}}$ , Lorentz, Einstein;

for 
$$\beta = 0.01$$
 0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  $m/m_0 = 1.0005$  1.005 1.02 1.048 1.091 1.155 1.250 1.400 1.667 2.204

(Confirmed by Bucherer, Ann. d. Phys. 1909, Wolz, Ann. d. Phys. Radium ejects electrons with 3/10 to 98/100 velocity of light.) m, due to charge =  $2E^2/3a$ , E = charge, a = radius, whence radius of electron =  $2 \times 10^{-13}$  cm = 1/50,000 atomic radius. Cf. (radius of earth)/(radius of Neptune's orbit) = 1/360,000.

Positive electron: heavy, extraordinarily small, never found associated with mass less than that of H atom. If mass all electrical (?) radius must be 1/2000 that of the — electron. No experimental evidence as with — electron, since high enough speeds not available. Penetrability of atom by  $\beta$  particle (may penetrate 10,000 atomic systems before it happens to detach an electron) and  $\alpha$  particles (8000 times more massive than — electron, pass through 500,000 atoms without apparent deflection by nucleus more than 2 or 3 times) shows extreme minuteness. Upper limit: not larger than 10<sup>-12</sup> cm for Au (heavy atom) or 10<sup>-13</sup>, H (light atom) (Rutherford). Cf. (radius sun)/(radius Neptune's orbit) = 1/3000, but sun is larger than planets. (Hg atoms by billions may pass through thin-walled highly-evacuated glass tubes without impairing vacuum, therefore massive parts of atoms must be extremely small compared to volume of atom.)

Rutherford atom: number of free + charges on atomic nuclei of different elements = approximately  $\frac{1}{2}$  atomic weight (Rutherford, Phil. Mag. 21, 1911, deflection of  $\alpha$  particles); Barkla concluded free — electrons outside nucleus same in number (Phil. Mag. 21, 1911, X-ray scattering). If mass is electromagnetic, then lack of exact equivalence may be due to overlapping fields in heavy crowded atoms, a sort of pacing effect; the charge on U = 22, at. wt. = 238.5. Moseley (Phil. Mag. 26, 1912; 27, 1914) photographed and analyzed X-ray spectra, showing their exact similarity in structure from element to element, differing only in frequencies, the square roots of these frequencies forming an arithmetical progression from element to element. Moseley's series of increasing X-ray frequencies is with one or two exceptions that of increasing atomic weights, and these exceptions are less anomalous for the X-ray series than for the atomic-weight series. It seems plausible then that there are 92 elements (from H to U) built up by the addition of some electrical element. Moseley assigned successive integers to this series (see Table 531) known now as atomic numbers. atomic numbers.

Moseley's discovery may be expressed in the form

$$\frac{n_1}{n_2} = \frac{E_1}{E_2}$$
 or  $\frac{\Lambda_2}{\lambda_1} = \frac{E_1^2}{E_2^2}$ 

where E is the nuclear charge and  $\Lambda$  the wave-length. Substituting for the highest frequency line of W,  $\Lambda_2 = 0.167 \times 10^{-8}$  cm (Hull),  $E_2 = 74 = Nw$ , and  $E_1 = 1$ , then  $\Lambda_1 = \text{highest}$  possible frequency by element which has one + electron;  $\Lambda_1 = 91.4 \ m\mu$ . Now the H ultra-violet series highest frequency line  $= 91.2 \ m\mu$  (Lyman); i.e., this ultra-violet in of H is nothing but its  $K \times 10^{-8}$  line. Similarly, it seems equally certain that the ordinary Balmer series of H (head at 365  $m\mu$ ) is its  $L \times 10^{-8}$  ray series and Paschen's infra-red series its  $M \times 10^{-8}$  ray series.

There may be other - electrons on the nucleus (with corresponding + charges) since they seem to be shot out by radioactive processes. They may serve to hold the + charges together. He, atomic no. = 2, has  $= 10^{-8}$  free + charges, at. wt. = 4; may imagine nucleus has  $= 10^{-8}$  the charges together. He, atomic no. = 2, has  $= 10^{-8}$  free  $+ 10^{-8}$  cm. Has one  $+ 10^{-8}$  and no  $+ 10^{-8}$  electrons.

The application of Newton's law to Moseley's law leads to  $= 10^{-8}$  km where the  $= 10^{-8}$  are the radii of the immost  $= 10^{-8}$  cm in  $= 10^{-8}$  km in = 1

Bohr atom: (Phil. Mag. 26, 1, 476, 857, 1913; 29, 332, 1915; 30, 394, 1915). The experimental facts and the law of circular electronic orbits limit the electrons to orbits of particular radii. When an electron is disturbed from its orbit, e.g., struck out by a cathode ray, or returns from space to a particular orbit, energy must be radiated. It is suggestive that the emission of a  $\beta$  ray requires a series of  $\gamma$  ray radiations. H does not radiate unless ionized and then gives out a spectrum represented by Balmer's formula  $\nu = N(1/n_1^2 - 1/n_2^2)$  where  $\nu$  is the frequency, N, a constant, and  $n_1$  for all the lines in the visible spectrum has the value 2, n, the successive integers, 3, 4, 5, ..., if  $n_1 = 1$  and n, 2, 3, 4, ..., Lyman's ultra-violet series results; if  $n_1 = 3$ , n, 4, 5, 6, ..., Paschen's infra-red series. These considerations led Bohr to his atom and he assumed: (a) a series of circular non-radiating orbits governed as above; (b) radiation taking place only when an electron jumps from one to another of these orbits, the amount radiated and its frequency

SMITHSONIAN TABLES.

#### (This Table supplements Table 514).

|                                                                                                                                                                      | ( Time Table pabbies     |             |                                          |                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|------------------------------------------|-----------------------------------------------------------------|
| 3 Li 3.00 13 Al<br>4 Gl 2.30 14 Si<br>6 C 1.54 16 S<br>7 N 1.30 17 Cl<br>8 O 1.30 18 A<br>9 F 1.35 19 K<br>10 Ne 1.30* 20 Ca<br>11 Na 3.55 22 Ti<br>12 Mg 2.85 24 Cr | 2.70 25 Mn<br>2.35 26 Fe | 2.95† 36 Kr | 4.50 55<br>3.90 56<br>3.55 81<br>3.20 82 | Xe 2.70*<br>Cs 4.75<br>Ba 4.20<br>Tl 4.50<br>Pb 3.80<br>Bi 2.96 |

† Cr, "electronegative," 2.35; Mn, ditto, 2.35. \* Outer electron shell.

Broughall (Phil. Mag. 41, p. 872, 1921) computes in the same units from Van der Waal's constant "b" the diameters of He, N, A, Kr, and X as 2.3, 2.6, 2.9, 3.1, and 3.4. These inert elements correspond to Langmuir's completely filled successive electron shells. The corresponding atomic numbers are 2, 10, 18, 36 and 54. For Langmuir's theory see J. Am. Ch. Soc., p. 868, 1919, Science 54, p. 59, 1921.

### BOHR ATOM, MAGNETIC FIELD OF ATOM.

being determined by  $h\nu=A_1$ , h being Planck's constant and  $A_1$  and  $A_2$  the energies in the two orbits; (c) the various possible circular orbits, for the case of a single electron rotating around a single positive nucleus, to be determined by  $T=(1/2)\tau hn$ , in which  $\tau$  is a whole number, n is the orbital frequency, and T is the kinetic energy of rotation. The remarkable test of this theory is not its agreement with the H series, which it was constructed to fit, but in the value found for N. From (a), (b), and (c) it follows that  $N=(2\pi^2e^3E^2m)/h^3=3.294\times 10^{18}$ , within 1/10 per cent of the observed value (Science, 45, p. 327).

The radii of the stable orbits  $=\tau^2h^2/4\pi^3mc^4$ , or the radii bear the ratios 1, 4, 9, 16, 25. If normal 1 he assumed to be with its electron in the immost orbit, then  $2a=1.1\times 10^{-8}$ ; best determination gives  $2.2\times 10^{-8}$ . The fact that 1 he mits its characteristic radiations only when ionized favors the theory that the emission process is a settling down to normal condition through a series of possible intermediate states, i.e., a change of orbit is necessary for radiation. That in the stars there are 133 lines in the Balmer series, while in the laboratory we never get more than 12, is easily explicable from the Bohr theory.

Bohr's theory leads to the relationship  $\nu_{K} = \nu_{L} a$  (see X-ray tables), Rydberg-Schuster law.

For further development, see Sommerfeld, Ann. d. Phys. 51, 1, 1016, Paschen, Ann. d. Phys., October, 1916; Harkins, Recent work on the structure of the atom, J. Am. Ch. Soc. 37, p. 1396, 1915; 39, p. 856, 1916.

Magnetic field of atom: From the Zeeman effect due to the action of a magnetic field on the radiating electron the Magnetic field of atom: From the Zeeman effect due to the action of a magnetic field on the radiating electron to strength of the atomic magnetic field comes out about 108 gauss, 2000 times the most intense field yet obtained by an electromagnet. A similar result is given by the rotation of a number of electrons, A108, where A is the atomic weight; for Fe this gives 108 gauss. For other determinations, see Weiss (J. de Phys. 6, p. 607, 1907; 7, p. 249, 1908), Ritz (Ann. d. phys. 25, p. 660, 1908), Oxley (change of magnetic susceptibility on crystallization, Phil Tr. Roy. Soc. 215, p. 95, 1915) and Merritt (fluorescence, 1915); Humphreys, "The Magnetic Field of an Atom," Science, 46, p. 276, 1917.

SMITHSONIAN TARIFS

Note: The phenomena of Electron Emission, Photo-electric Effect and Contact (Volta) Potential treated in the sbeequent tables are extremely sensitive to surface conditions of the metal. The most consistent observations have been made in high vacua with Ireshly cut metal surfaces.

#### TABLE 516. Electron Emission from Hot Metals.

Among the free electrons within a metal some may have velocities great enough to escape the surface attraction.

The number n reaching the surface with velocities above this critical velocity =  $N(RT/2\pi M)^{\frac{1}{2}}e^{\frac{RT}{RT}}$  where N= number of electrons in each cm³ of metal, R the gas constant (83.15 × 10° erg-dyne), T the absolute temperature, M the atomic weight of electron (0.00546, O = 16), w the work done when a "gram-molecule" of electrons (6.06 × 10³0 electrons or 96,500 coulombs) escape. It seems very probable that this work is done against the attraction of the electron's own induced image in the surface of the conductor. When a sufficiently high + field is applied to escaping electrons so that none return to the conductor, then the saturation current has been found to follow the equation

$$i = a\sqrt{Te^{-b/T}}$$

assuming N and w constant with the temperature; this is equivalent to the equation for n just given and is known as Richardson's equation. In the following table due to Langmuir (Tr. Am. Electroch. Soc. 29, 125, 1916)  $\frac{1}{12000} = \frac{1}{12000} = \frac{1}{1$ 

| Metal.                                                                                                          | amp/cm²                                                                                                                                                                 | b                                                                               | i2000<br>amp/cm <sup>2</sup>                                | φ<br>(volts).                                               |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| Tungsten * Thorium. Tantalum. Molybdenum. Carbon (untreated). Titanium Iron. Platinum † BaO-SrO, Pt-6 % Ir core | 2.36 × 10 <sup>7</sup><br>2.0 × 10 <sup>8</sup><br>1.12 × 10 <sup>7</sup><br>2.1 × 10 <sup>7</sup><br>1300?<br>2400?<br>1.25 × 10 <sup>7</sup><br>1,6 × 10 <sup>6</sup> | 52500<br>39000<br>50000<br>50000<br>48000<br>28000?<br>37000?<br>51060<br>20000 | 0.0042<br>30.0<br>0.007<br>.013<br>.048?<br>.0010?<br>.0035 | 4.52<br>3.36<br>4.31<br>4.31<br>4.14<br>2.4?<br>3.2?<br>4.4 |

<sup>\*</sup> Best determined value of table, pressure less than 10<sup>-7</sup> mm Hg. † Schlichter, 1015.

## TABLE 517. Photo-electric Effect.

A negatively charged body loses its charge under the influence of ultra-violet light because of the escape of negative electrons freed by the absorption of the energy of the light. The light must have a wave-length shorter than some limiting value  $\lambda_0$  characteristic of the metal. The emission of these electrons, unlike that from hot bodies, is independent of the temperature. The relation between the maximum velocity v of the expelled electron and the frequency v of the light is  $(1/2)mv^2 = hv - P$  (Einstein's equation) where h is Planck's constant  $(6.58 \times 10^{-20} \text{ erg. sec.})$ ; hv sometimes taken as the energy of a "quanta," P, the work which must be done by the electron in overcoming surface forces,  $(1/2)mv^2$  is the maximum kinetic energy the electron may have after escape. Richardson identifies the P of Einstein's formula with the w of electron emission of the preceding table. The minimum frequency  $v_0$  (corresponding to maximum wave-length  $\lambda_0$ ) at which the photo-electric effect can be observed is determined by hv = P. P applies to a single electron, whereas w applies to one coulomb  $(6.06 \times 10^{-20} \text{ electrons})$ ; therefore  $w = NP = .00390^{\circ}0 \text{ ergs.}$   $\phi = (12.4 \times 10^{-5})\lambda_0$  volts. See Millikan, Pr. Nat. Acad. 2, 78, 1916; Phys. Rev. 7, 355, 1916; 4, 73, 1914; Hennings, Phys. Rev. 4, 228, 1914.

#### TABLE 518. Ionizing Potentials and Single-line Spectra.

When electrons are accelerated through gases or vapors, especially those with small electron affinity (inert gases, metallic vapors) at well-defined potentials a large transfer of energy takes place between the moving electrons and the gas atoms. There appear to be two types of inelastic encounters under such circumstances: the first accompanied by the emission of a radiation of a single line at a potential called the resonance potential and satisfying the relation  $h\nu = eV$  where V is the potential fall,  $\nu$  the frequency and h Planck's constant; the second ionizes the gas (ionization potential), exciting the radiation of a composite spectrum. The latter potential satisfies a relation  $h\nu = eV$  except that  $\nu$  is now the limiting frequency of a series of lines. The following table was communicated by Tate and Foote (see Phil Mag 26 (e. 1018)) (see Phil. Mag. 36, 64, 1918).

| Metal. | λ                                                                 | Ioniza<br>poten                                                |                                                               | h †                                                  | λ                                                                                                                | Resor                                                             |                                                                                      | h †                                                          | Observers.                                                                                                                                                                  |
|--------|-------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Na     | 2856.65‡ 2968.40‡ 3184.28‡ 1621.7\$ 1319.95\$ 1378.69\$ 1187.96\$ | Obs.  5.13 4.1 4.1 3.9 7.75 9.5 8.92 10.35  7.3 6.04  II.5 8.0 | 5.11<br>4.32<br>4.15<br>3.87<br>7.61<br>9.34<br>8.95<br>10.38 | 6.57<br>6.22<br>6.46<br>6.59<br>6.66<br>6.53<br>6.53 | 5889.97<br>7664.94<br>7800.29<br>8521.12<br>4571.38<br>3075.99<br>2536.72<br>11513.22<br>16717.69<br>4226.73 *** | Obs.  2.12 1.55 1.6 1.48 2.65 4.1 3.88 4.9 1.07 1.93 3.0 4.7 1.26 | 2.09<br>1.61<br>1.58<br>1.45<br>2.70<br>4.01<br>3.78<br>4.86<br>1.07<br>1.84<br>2.92 | 6.63<br>6.31<br>6.62<br>6.69<br>6.43<br>6.70<br>6.71<br>6.60 | Tate and Foote Foote, Rognley, Mohler Foote and Mohler Tate and Foote Tate, Davis, Goucher, others Tate and Mohler Mohler and Foote Foote, Rognley, Mohler Mohler and Foote |
|        |                                                                   |                                                                | MEAN C                                                        | F COM                                                | PUTED $h = 6.5$                                                                                                  | 5 × 10                                                            | ERG.                                                                                 | SEC.                                                         |                                                                                                                                                                             |

\* Computed from relation  $Ve = h\nu$  or  $V = 12334/\lambda$  volts;  $\lambda$  in Angstrom units. † Computed from  $h = 0.5308\lambda V$  to  $^{30}$  \$ Limit of principal series of single lines, 1.5S. ¶ Combination series line 1.5S - 2p? \*\* First line principal series single lines 1.55 - 2P.

#### CONTACT (VOLTA) POTENTIALS.

There has been considerable controversy over the reality and nature of the contact differences of potential between two metals. At present, due to the studies of Langmuir, there is a decided tendency to believe that this Volta difference of potential is an intrinsic property of metals closely allied to the phenomena just given in Tables 516 to 518 and that the discrepancies among different observers have been caused by the same disturbing surface conditions. The following values of the contact potentials with silver and the relative photo-sensitiveness of a few of the metals are from Henning, Phys. Rev. 4, 228, 1914. The values are for freshly cut surfaces in vacuo. Freshly cut surfaces are more electro-positive and grow more electro-negative with age. That the observed initial velocities of emission of electrons from freshly cut surfaces are nearly the same for all metals suggests that the more electro-positive a metal is the greater the actual velocity of emission of electrons from its surface.

| Ag   Cu   Fe   Brass   Sn   Zn   Al   Mg | Contact potential with Ag | Ag<br>o<br>50 | 1 , | 1 | Brass |  | Zn<br>.59<br>80 |  |  |
|------------------------------------------|---------------------------|---------------|-----|---|-------|--|-----------------|--|--|
|------------------------------------------|---------------------------|---------------|-----|---|-------|--|-----------------|--|--|

From the equation  $w=RT\log(N_A/N_B)$ , where w is the work necessary per gram-molecule when electrons pass through a surface barrier separating concentrations  $N_A$  and  $N_B$  of electrons, it can be shown (Langmuir, Tr. Am. Eletroch. Soc. 29, 142, 1916, et seq.) that the Volta potential difference between two metals should be

$$v_1 - v_2 = \frac{1}{F} \{ w_2 - w_1 + RT \log(N_A/N_B) \} = \frac{w_2 - w_1}{F} = \phi_2 - \phi_1$$

(see Table 517 for significance of symbols), since the number of free electrons in different metals per unit volume is so nearly the same that  $RT \log (N_A/N_B)$  may be neglected. The contact potentials may thus be calculated from photoelectric phenomena (see Table 517 for references). They are independent of the temperature. The following table gives a summary of values of  $\phi$  in volts obtained from the various phenomena where an electron is torn from the attraction of some surface. In the case of ionization potentials the work necessary to take an electron from an atom of metal vapor is only approximately equal to that needed to separate it from a solid metal surface.

#### (a) THE ELECTRON AFFINITY OF THE ELEMENTS, IN VOLTS.

| Metal.                                                                                                                                              |                                                       | Thermionic.<br>(Langmuir.)                                          | Photo-<br>electric.<br>(Richardson)               | Miscel-<br>laneous. | Single-<br>line<br>spectra. | Adjusted<br>mean.                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|---------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Tungsten. Platinum. Tantalum. Molybdenum. Carbon. Silver. Copper. Bismuth. Tin. Iron. Zinc. Thorium. Aluminum Magnesium. Titanium. Lithium. Sodium. | 4.05<br>(4.0)<br>3.78<br>3.86<br>3.46<br>3.06<br>2.63 | 4.52<br>4.31<br>4.31<br>4.14<br>—<br>3.2?<br>3.36<br>—<br>2.4?<br>— | <br>4.1<br>3.7<br>3.5<br>3.4<br>2.8<br>3.2<br>2.1 | 4.45                | 4.04                        | 4.52<br>4.4?<br>4.3<br>4.3<br>4.1<br>4.1<br>4.0<br>3.7<br>3.7<br>3.4<br>3.4<br>3.4<br>3.4<br>3.0<br>2.7<br>2.4<br>2.35<br>1.82 |

(b) It should not be assumed that all the emf of an electrolytic cell is contact emf. Its emf varies with the electrolyte, whereas the contact emf is an intrinsic property of a metal. There must be an emf between the two electrodes of such a cell dependent upon the concentration of the electrolyte used. The following table gives in its first line the electrode potential  $\epsilon_h$  of the corresponding metals (in solutions of their salts containing normal ion concentration) on assumption of no contact emf at the junction of the metals. The second line,  $\phi - \epsilon_h - 3.7$  volts, gives an idea of the electrode potentials (arbitrary zero) exclusive of contact emf.

| Metal                                                                      | Ag    | Cu    | Bi    | Sn    | Fe    | Zn    | Mg    | Li    | Na    |
|----------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $ \begin{array}{c} e_h \dots \\ \phi - e_h - 3.7 \dots \dots \end{array} $ | +0.80 | +0.34 | +0.20 | -0.10 | -0.43 | -0.76 | -1.55 | -3.03 | -2.73 |
|                                                                            | -0.40 | +0.04 | +0.20 | -0.20 | -0.43 | -0.46 | -0.55 | -1.65 | -0.85 |

## IONIC MOBILITIES AND DIFFUSIONS.

The process of ionization is the removal of an electron from a neutral molecule, the molecule thus acquiring a resultant + charge and becoming a + ion. The negative carriers in all gases at high pressures, except inert gases, consist for the most part of carriers with approximately the same mobilities as the + ions. The negative electrons must, therefore, change initially to ions by union with neutral molecules.

The mobility, U, of an ion is its velocity in cm/sec, for an electrical field of one volt per cm. The rates of diffusion, D, are given in cm/sec. U = DP/Ne, where P is the pressure, N, the number of molecules per unit volume of a gas and e the electronic charge.

Nature of the gas and the mobilities: (1) The mobilities are approximately proportional to the inverse sq. rts. of the molecular weights of the permanent gases; better yet when the proportionality is divided by the 4th root of the dielectric constant minus unity; (2) The ratio U + /U - seems to be greater than unity in all the more electronegative gases.

negative gases.

Mobilities of Gaseous Mixtures: Three types: (1) Inert gases have high mobilities; small traces of electronegative gases make values normal. (2) Mixed gases: lowering of mobilities is greater than would be expected from simple law of mixture. (3) Abnormal changes produced by addition of small quantities of electronegative gases:

| e.g.: normal mobility 6 mm C <sub>2</sub> H <sub>3</sub> Br gave 6 mm C <sub>2</sub> H <sub>3</sub> OH 10 mm C <sub>2</sub> H <sub>3</sub> OH 0 mm C <sub>2</sub> H <sub>3</sub> OH " | U + = 1.37 1.37 1.37 0.91 | 1.80 | Wellisch, Pr.<br>Roy. Soc. 82A,<br>p. 500, 1909. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------|--------------------------------------------------|
| 9 mm C₃H <sub>6</sub> O "                                                                                                                                                             | 1.15                      | 1.37 |                                                  |

Temperature Coefficient of Mobility: There is no decided change with the temperature.

Pressure Coefficient of Mobility: Mobility varies inversely with the pressure in air from 100 to 1/10 atmosphere for — ion, to 1/1000, for + ion; below 1/10 atmosphere all observers agree that the negative ion in air increases abnormally rapidly.

Free Electrons: In pure He, Ar, and N, the negative carriers have a high mobility and are, in part at any rate, free electrons; electrons become appreciable in air at 10 cm pressure.

#### TABLE 520. - Ionic Mobilities.

| Dry gas.                                                                  | Mobilities.                                                  |                                                   | K - 1 Observer.                                                                    |                                                          | Dry gas.                                                                                                 | Mobi | lities.                                                      | K - 1                                                              | Observer. |
|---------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------|--------------------------------------------------------------------|-----------|
| H<br>He<br>Ar<br>N<br>O<br>CO <sub>2</sub> .<br>NH <sub>3</sub> .<br>Air. | 6.70<br>5.09<br>1.37<br>1.27<br>1.36<br>0.81<br>0.74<br>1.40 | 7.95<br>6.31<br>—<br>1.80<br>0.85<br>0.80<br>1.78 | .000273<br>.00074<br>.000100<br>.000590<br>.000540<br>.000960<br>.00770<br>.000590 | Zeleny<br>Franck<br>"<br>"<br>Zeleny<br>Wellisch<br>Mean | Nitrous oxide. Ethyl alcohol. CCla Ethyl chloride Ethyl ther. Methyl bromide Ethyl formate Ethyl iodide. |      | 0.90<br>0.27<br>0.31<br>0.31<br>0.31<br>0.28<br>0.31<br>0.16 | .00107<br>.00940<br>.00426<br>.01550<br>.00742<br>.01460<br>.00870 | Wellisch  |

Franck, Jahr. d. Rad. u. Elek. 9, p. 2, 1912; Wellisch, Pr. Roy. Soc. 82A, p. 500, 1909. The following values are from Yen, Pr. Nat. Acad. 4, 19 8.

|                                     | H <sub>2</sub> | N <sub>2</sub>       | Air.                 | SO <sub>2</sub>      | C5H12                | C <sub>2</sub> H <sub>6</sub> O | C <sub>2</sub> H <sub>4</sub> O | C <sub>2</sub> H <sub>5</sub> Cl | CH <sub>3</sub> I      | C2H5I                |
|-------------------------------------|----------------|----------------------|----------------------|----------------------|----------------------|---------------------------------|---------------------------------|----------------------------------|------------------------|----------------------|
| $U+\ldots$ $U-\ldots$ $U-/U+\ldots$ |                | 1.30<br>1.80<br>1.38 | I.37<br>I.81<br>I.34 | .412<br>.414<br>1.00 | .385<br>.451<br>I.17 | .363<br>.373<br>I.03            | .307<br>.331<br>1.07            | .304<br>.317<br>1.04             | . 216<br>. 226<br>1.05 | 1.81<br>1.81<br>1.00 |

#### TABLE 521. - Diffusion Coefficients.

The following table gives the observed and computed (D=300UP/Ne= very nearly 0.0236U) values of the diffusion coefficients. The diffusion coefficients are given for some neutral molecules as actually determined for some gases into gases of nearly equal molecular weight. Table taken from Loeb, "The Nature of the Gascous Ion," J. Franklin Inst. 184, p. 775, 1917.

| Q l'G                                           | Gas diffused                                       | D                                                                                    | <i>U</i> +                                                        | D + ic                                                                                 | or ions.                            |
|-------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------|
| Gas, diffusing.                                 | into                                               | molecules.                                                                           | 0 +                                                               | Computed.                                                                              | Observed.                           |
| Ar. H2. Air. O2. CO2. CO2 C2H50H Air. H20. NH2. | Hc N2 O2 N2 N2 N2O CO CO CO2 Ethyl acetate Air NH3 | 0.706<br>.730<br>.178<br>.171<br>1.5-1.0<br>1.31<br>0.0693<br>.093<br>.246<br>.190 ‡ | 5.09<br>6.02<br>1.35<br>1.27<br>.82<br>.81<br>.34<br>.30†<br>1.35 | 1.20<br>0.143<br>0.0319<br>.0299<br>.0193<br>.0103<br>.0805<br>.0071<br>.0319<br>.0174 | 0.123<br>0.028<br>.025<br>.023*<br> |

#### COLLOIDS.

## TABLE 522. - General Properties of Colloids.

For methods of preparing colloids, see The Physical Properties of Colloidal Solutions, Burton, 1016; for general properties, see Outlines of Colloidal Chemistry, J. Franklin Inst. 185, p. 1, 1018 (contains bibliography).

The colloidal phase is conditioned by sufficiently fine division (1 × 10<sup>-4</sup> to 10<sup>-7</sup> cm). Colloids are suspensions (in gas, liquid, solid) of masses of small size capable of indefinite suspension; suspensions in water, alcohol, benzole, glycerine, are called hydrosols, alcosols, benzosols, glycerosols, respectively. The suspended mass is called the disperse phase, the medium the dispersion medium.

Collous tall into 3 quite definite classes: 1st, those consisting of extremely finely divided particles (Cu, Au, Ag, etc.) capable of more or less indefinite suspension against gravity, in equilibrium of somewhat the same aspect as the gases of the atmosphere, depending as in the Brownian movement upon the bombardment of the molecules of the medium: 2nd, those resisting precipitation (hamoglobin, etc.) probably because of charged nuclei and which may be coagulated and precipitated by the neutralization of the charges; 3rd, colloidal as distinguished from the crystalloidal condition, the colloid being very slowly diffusible and incapable unlike crystalloids of penetrating membranes (gelatine, silicic acid, caramel, glue, white of egg, gum, etc.).

| Smallest | partic | le of Au | 1 0 | bserved by Zsigmody (ultramicroscope) | 1.7 | × 10 <sup>-7</sup> cm. |
|----------|--------|----------|-----|---------------------------------------|-----|------------------------|
| 44       | - 66   | visible  | in  | ordinary microscope about             | 2.5 | X 10-5 cm.             |
| 66       | 66     | 66       | 66  | ultramicroscope, with electric arc    | 15  | X 10 <sup>-7</sup> cm. |
| 66       | 66     | 66       | 6.6 | " with direct sunlight                | I   | X 10 <sup>-7</sup> cm. |

TABLE 523. - Molecular Weights of Colloids.

| Determined from diffusion. |                               | Determined from freezing point                                                                     |                                                        |
|----------------------------|-------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Gum arabic                 | 1750<br>2730<br>7420<br>13200 | Glycogen (162)* Tungstic acid (250)* Gum Albumose Ferric hydrate (107)* Egg albumen. Starch (162)* | 1625<br>1750<br>1800<br>2400<br>6000<br>14000<br>25000 |

<sup>\*</sup> Formula weight.

#### TABLE 524. - Brownian Movement.

The Brownian movement is a microscopically observed agitation of colloidal particles. It is caused by the bombardment of them by the molecules of the medium and may be used to determine the value of Avogadro's number. Perrin, Chaudesaignes, Ehrenhaft and De Broglie found, respectively, 70, 64, 63 and 64  $\times$  10.22 as the value of this constant. The following table indicates the size and the dependence of this movement on the magnitude of the particles.

| Material.      | Diameter<br>× 105 cm                                                | Medium.                            | Temp.                    | Velocity<br>× 10 <sup>5</sup><br>cm/sec.          | Observer.                                                                               |
|----------------|---------------------------------------------------------------------|------------------------------------|--------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------|
| Dust particles | 2.0<br>0.35<br>0.1<br>0.06<br>.4 to .5<br>10.<br>10.<br>4.5<br>2.13 | Water  "" Acetone Water  ""  "" "" | 20? "" "18 20 17 20? 20? | none 200. 280. 700. 3900. 3200. 124. 1.55 2.4 3.4 | Zsigmody  " Svedberg, 1906–9  Henri, 1908 Perrin, Dabrowski, 1909. Chaudesaignes, 1908. |

The movement varies inversely as the size of the particles; in water, particles of diameter greater than  $4\mu$  show no perceptible movement; when smaller than  $4\mu$ , lively movement begins, while at 10  $m\mu$  the trajectories amount up to

COLLOIDS.

## TABLE 525. - Adsorption of Gas by Finely Divided Particles. See also p. 439

Fine division means great surface per unit weight. All substances tend to adsorb gas at surface, the more the higher the pressure and the lower the temperature. Since different gases vary in this adsorption, fractional separation is possible. Pt black can absorb 100 vols. H<sub>2</sub>, 800 vols. O<sub>2</sub>, Pd 3000 vols. H<sub>2</sub>. In gas analysis Pd, heated to 100°, is used to remove H<sub>2</sub> (higher temperature used for faster adsorption, will take more at lower temperature). Pt can dissolve several vols. of H<sub>2</sub>, Pd, nearly 100 at ordinary temperatures; but it seems probable that the bulk of the 100 vols. of H<sub>2</sub> taken by Pt and the 3000 by Pd must be adsorbed. In 1848 Rose found the density 21 to 22 for Pt foil, but 26 for precipitated Pt.

The film of adsorbed air entirely changes the behavior of very small particles. They flow like a liquid (cf. fog). With substances like carbon black as little as 5 per cent of the bulk is C; a liter of C black may contain 2.5 liters of air. Mitscherlich calculated that when CO<sub>2</sub> at atmospheric pressure, 12° C, as dsorbed by boxwood charcoal, it occupies 1/56 original vol. Apparent densities of gases adsorbed at low temperatures by cocoanut charcoal are of the same order (sometimes greater) as liquids.

| Cm³ of Gas          | Adsorbed l           | oy a Cm³ o                    | f Synthetic Cl                | harcoal (corr                 | ected to o° (          | C, 76 cm        | (Hemperl a      | and Vater).      |
|---------------------|----------------------|-------------------------------|-------------------------------|-------------------------------|------------------------|-----------------|-----------------|------------------|
| °C                  | H <sub>2</sub>       | Ar                            | N <sub>2</sub>                | O <sub>2</sub>                | СО                     | CO <sub>2</sub> | NO              | N <sub>2</sub> O |
| +20°<br>-78<br>-185 | 7·3<br>19.5<br>284.7 | 12.6                          | 21.0<br>107.4<br>632.2        | 25.4<br>122.4                 | 26.8<br>139.4<br>697.0 | 83.8<br>568.4   |                 | 109.4            |
|                     | CH <sub>4</sub>      | C <sub>2</sub> H <sub>6</sub> | C <sub>2</sub> H <sub>4</sub> | C <sub>2</sub> H <sub>2</sub> | NH <sub>3</sub>        | H₂S             | Cl <sub>2</sub> | SO <sub>2</sub>  |
| +20°<br>-78         | 41.7<br>174.3        | 119.1<br>275.5                | 139.2<br>360.7                | 135.8<br>488.5                | 197.0                  | 213.0           | 304.5           | 337.8            |
| Cm³                 | of Gas Adso          | rbed by a                     | Cm³ of Cocoa                  | nut Charcoal                  | l (corrected           | to o° C,        | 76 cm) (Dewa    | ar).             |
| °C                  | °C He                |                               | H <sub>2</sub>                | N <sub>2</sub>                | O:                     |                 | СО              | Ar               |
| -185                | 1                    | 2 5                           | 4<br>135                      | 15                            | 230                    |                 | 21<br>190       | 12               |

See Langmuir, J. Am. Ch. Soc. 40, 1361, 1918; Richardson, 39, 1829, 1916.

TABLE 526. - Heats of Adsorption.

| Adsorber.                                                     | Amylene. | Water. | Acetone. | Methyl<br>alcohol.           | Ethyl<br>alcohol.    | Aniline. | Amyl<br>alcohol.     | Ethyl<br>ether. | Chloro-<br>form.            | Benzene.                   | Carbon<br>disulphide.     | Carbon<br>tetra-<br>chloride. | Hexane.           |
|---------------------------------------------------------------|----------|--------|----------|------------------------------|----------------------|----------|----------------------|-----------------|-----------------------------|----------------------------|---------------------------|-------------------------------|-------------------|
| Fuller's earth *  Bone charcoal *  Kaolin *  Fuller's earth † | 78.8     | 8.5    | 9.3      | 21.8<br>17.6<br>27.6<br>.679 | 17.2<br>16.5<br>24.5 | 13.4     | 10.9<br>10.6<br>20.4 | 10.5            | 8.4<br>14.0<br>15.7<br>.611 | 4.6<br>11.1<br>9.9<br>.610 | 4.6<br>8.4<br>9.9<br>.621 | 4.2<br>13.9<br>9.4<br>.625    | 3.9<br>8.9<br>7.2 |

<sup>\*</sup> Small calories liberated when I g of the adsorbent is added to a relatively large quantity of the liquid. † Volume adsorped from saturated vapor by I g of fuller's earth. Gurvich, J. Russ. Phys. Ch. Soc. 47, 805, 1915.

TABLE 527. — Molecular Heats of Adsorption and Liquefaction (Favre).

| Adsorber. Gas |                                                                                            | Molecular h                                            | eats of                |           |                                     | Molecular heats of                                      |                                    |  |
|---------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------|-----------|-------------------------------------|---------------------------------------------------------|------------------------------------|--|
|               | Gas.                                                                                       | adsorption.                                            | lique-<br>faction.     | Adsorber. | Gas.                                | adsorption.                                             | lique-<br>faction.                 |  |
| Platinum      | H <sub>2</sub><br>H <sub>2</sub><br>NH <sub>3</sub><br>CO <sub>2</sub><br>N <sub>2</sub> O | 46200<br>18000<br>5900-8500<br>6800-7800<br>7100-10900 | (5000)<br>6250<br>4400 | Charcoal  | SO <sub>2</sub><br>HCl<br>HBr<br>HI | 10000-10000<br>9200-10200<br>15200-15800<br>21000-23000 | 5600<br>(3600)<br>(4000)<br>(4400) |  |

## TABLE 528. - Miscellaneous Constants (Atomic, Molecular, etc.).

| Elementary electrical charge, charge on electron, $\frac{1}{2}$ charge on $\alpha$ particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | = 4.774 × 10 <sup>-10</sup> esu ( <b>M</b> )<br>= 1.591 × 10 <sup>-20</sup> emu<br>= 1.591 × 10 <sup>-19</sup> coulomb                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mass of an electron. Radius of an electron. Ratio $e/m$ , small velocities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              | = $9.01 \times 10^{-28} \text{ g}$<br>about $2 \times 10^{-13} \text{ cm}$<br>= $1.766 \times 10^7 \text{ emu. g}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Number of molecules per gram molecule or per gram molecular weight (Avogadro constant).  Number of gas molecules per cm³, 76 cm, o° C (Loschmidt's number).  Number of gas molecules per cm³, 76 cm, o° C (Loschmidt's number).  Number of gas molecules per cm³, 76 cm, o° C (at r × 106 bars.  Kinetic energy of translation of a molecule at o° C.  Constant of molecular energy, Es/T = change of translational energy per ° C.  Mass of hydrogen atom.  Radius of hydrogen molecule about  Mean free path, ditto, 76 cm, o° C, about  Sq. rt. mean sq. velocity, ditto, 76 cm, o° C.  Arithmetical average velocity, ditto, 76 cm, o° C.  Average distance apart of molecules, 76 cm, o° C.  Boltzmann gas constant = constant of entropy equation = R/N = poVo/TN = {}\$\{}\$\{}\$\{}\$\{}\$\{}\$\{}\$\{}\$\{}\$\{}\$\ | n<br>E <sub>0</sub><br>ε<br>L<br>G<br>Ω<br>k | = 6.062 × 10 <sup>23</sup> (M)<br>= 2.705 × 10 <sup>19</sup> (M)<br>2.570 × 10 <sup>19</sup> = 5.621 × 10 <sup>-14</sup> erg (M)<br>= 5.621 × 10 <sup>-14</sup> erg (M)<br>= 1.662 × 10 <sup>-24</sup> g (M)<br>10 <sup>-6</sup> cm<br>= 1.6 × 10 <sup>-5</sup> cm/sec.<br>= 1.34 × 10 <sup>5</sup> cm/sec.<br>= 1.70 × 10 <sup>5</sup> cm/sec.<br>= 3 × 10 <sup>-6</sup> cm<br>= 1.372 × 10 <sup>-16</sup> erg/° C<br>= 22.412 liters<br>= 22.708 liters<br>= 84.780 g-cm/° C<br>= 0.08204 l-atm/° C<br>= 8.315 × 10 <sup>-6</sup> erg/° C |
| Absolute zero = 0° Kelvin.   1 Megabar (= Meteorological "bar") = 10° dynes/cm² = 1.013 kg/cm².   Mechanical equivalent of heat, 1 g (20° C) cal.   Faraday constant.   Velocity of light in vacuo .   Planck's element of action.  Rydberg's fundamental frequency.  Rydberg's constant, $V_0/c$ .   Wien's constant of spectral radiation .   Stefan-Boltzmann constant of total radiation.   Grating space in calcite.   Grating space in rock-salt (Uhler, Cooksey).   Potential difference in volts for X-rays of wave-length $\lambda$ in cm = $V\lambda = hc/e$ .   Reference: (M) Millikan, Phil. Mag. 34, 1, 1917.                                                                                                                                                                                                  | F                                            | = -273.13° C<br>= 0.987 atmosphere<br>= 4.184 X 107 ergs<br>= 4.184 X 107 ergs<br>= 4.184 Joules<br>= 96494 coulombs<br>= 2.9986 X 1010 cm/sec.<br>= 6.547 X 10 <sup>-27</sup> erg. sec. (M)<br>= 3.28880 X 1016 sec1<br>= 109678.7<br>= 1.4312 for \( \) in cm (M)<br>= 5.72 \( \) 10 <sup>-12</sup> watt/cm <sup>2</sup> (M)<br>= 3.030 \( A \)<br>= 2.814 \( \) 10 <sup>-8</sup> cm<br>= 1.241 X 10 <sup>-4</sup> volt. cm                                                                                                               |

## TABLE 529. - Radiation Wave-length Limits.

| Hertzen waves, longest                              | 000.0 cm           |
|-----------------------------------------------------|--------------------|
| " shortest                                          | 0. 2 cm            |
| Infra-red, longest, reststrahlung, focal-isolation. | 0.03 cm            |
| Infra-red, spectroscopically studied                | 0.002 CM           |
| Visible, longest                                    |                    |
| " shortest                                          | 0.000 04 cm        |
| Ultra-violet, Lyman, shortest *                     | 0.000 006 cm       |
| X-rays, longest                                     | 0.000 000 12 cm    |
|                                                     | 0.000 000 001 cm   |
| $\gamma$ rays, longest                              | 0.000 000 013 cm   |
| " shortest                                          | 0.000 000 000 7 cm |

\* 0.000 0020 cm (Millikan-Sawyer, 1920)

## TABLE 530. - Periodic System of the Elements.

| 0        | I                | 11        | 111                           | IV              | v                             | VI              | VII                           |                         |
|----------|------------------|-----------|-------------------------------|-----------------|-------------------------------|-----------------|-------------------------------|-------------------------|
| -        | R <sub>2</sub> O | RO        | R <sub>2</sub> O <sub>3</sub> | RO <sub>2</sub> | R <sub>2</sub> O <sub>5</sub> | RO <sub>3</sub> | R <sub>2</sub> O <sub>7</sub> | RO4 Oxides.             |
|          | _                | _         |                               | RH4             | RH <sub>3</sub>               | RH              | RH                            | — Hydrides.             |
| He<br>4  | Li<br>7          | Gl<br>9   | В                             | C<br>12         | N<br>14                       | O<br>16         | F 19                          | _                       |
| Ne 20    | Na<br>23         | Mg<br>24  | Al<br>27                      | Si<br>28        | P<br>31                       | S<br>32         | Cl<br>35                      | =                       |
| A<br>40  | K<br>39          | Ca<br>40  | Sc<br>44                      | Ti<br>48        | V                             | Cr<br>52        | Mn<br>55                      | Fe Ni Co<br>56 59 59    |
| =        | Cu<br>64         | Zn<br>ó5  | Ga<br>70                      | Ge<br>72        | As<br>75                      | Se<br>79        | Br<br>80                      | =                       |
| Kr<br>82 | Rb<br>85         | Sr<br>88  | Yt<br>89                      | Zr<br>91        | Cb<br>94                      | Mo<br>96        | =                             | Ru Rh Pd<br>102 103 107 |
| =        | Ag<br>108        | Cd<br>112 | In<br>115                     | Sn<br>119       | Sb<br>120                     | Te<br>128       | I<br>127                      | =                       |
| X<br>128 | Cs<br>133        | Ba<br>137 | La<br>139                     | Ce<br>140       | Pr<br>141                     | Nd<br>144       | =                             | =                       |
| =        | Sa<br>150        | Eu<br>152 | Gd<br>157                     | Tb<br>159       | Ds<br>162                     | Er<br>168       | =                             | =                       |
| =        | Tm<br>168        | Yb<br>174 | Lu<br>175                     | =               | Ta<br>181                     | W<br>184        | _                             | Os Ir Pt<br>191 193 195 |
| =        | Au<br>197        | Hg<br>201 | Tl<br>204                     | Pb 207          | Bi<br>208                     | Po 210          | _                             | =                       |
| Em (222) | =                | Ra<br>226 | Ac<br>(227)                   | Th 232          | UrX2<br>234                   | U<br>238        | =                             | =                       |

## TABLE 531. - Atomic Numbers.\*

| 1 Hydrogen 2 Helium 3 Lithium 4 Beryllium 5 Boron 6 Carbon 7 Nitrogen 8 Oxygen 9 Fluorine 10 Neon 11 Sodium 12 Magnesium 13 Aluminum 14 Silicon 15 Phosphorus 16 Sulphur 17 Chlorine 18 Argon 19 Potassium | 20 Calcium 21 Scandium 22 Titanium 23 Vanadium 24 Chromium 25 Manganese 26 Iron 27 Cobalt 28 Nickel 29 Copper 30 Zinc 31 Gallium 32 Germanium 33 Arsenic 34 Selenium 35 Bromine 36 Krypton 37 Rubidium 38 Strontium | 39 Yttrium 40 Zirconium 41 Niobium ‡ 42 Molybdenum 43 Ruthenium 45 Rhodium 46 Palladium 47 Silver 48 Cadmium 49 Indium 50 Tin 51 Antimony 52 Tellurium 53 Iodine 54 Xenon 55 Caesium 56 Barium 57 Lanthanum | 58 Cerium 59 Praseodymium 60 Neodymium 61 62 Samarium 63 Europium 64 Gadolinium 65 Terbium 66 Dysprosium 67 Holmium 68 Erbium 69 Thulium 70 Ytterbium 71 Lutecium 72 Tantalum 74 Tungsten 75 | 76 Osmium 77 Iridium 78 Platinum 79 Gold 80 Mercury 81 Thalium 82 Lead 83 Bismuth 84 Polonium 85 Emanation 87 88 Radium 89 Actinium 90 Thorium 91 Uranium X2 92 Uranium |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

† Glucinium.

‡ Columbium.

SMITHSONIAN TABLES.

\* Quoted from Millikan's The Electron, 1917.

### PERODIC SYSTEM AND THE RADIOACTIVE ISOTOPES.\*

|                          | 4                                                      | 5A                                                     | 6A                                                                     | 7A                                             | 0                                                | ıA                          | 2A                                                                              | 3A                                                      | 4                                                                  |                                |
|--------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------|--------------------------------|
| Vb<br>IVb<br>IIIb<br>IIb | 82<br>Pb<br>50<br>Sn<br>32<br>Ge<br>14<br>Si<br>6<br>C | 83<br>Bi<br>51<br>Sb<br>33<br>As<br>15<br>P            | Non-meta<br>84<br>Po<br>52<br>Te<br>34<br>Se<br>16<br>S<br>8<br>O<br>1 | 85<br><br>53<br>I<br>35<br>Br<br>17<br>Cl<br>9 | Inert-gases.  86                                 | 55 Cs 37 Rb 19 K 11 Na 3 Li | ght-meta<br>88<br>Ra<br>56<br>Ba<br>38<br>Sr<br>20<br>Ca<br>12<br>Mg<br>4<br>Be | 89<br>Ac<br>57<br>La<br>39<br>Y<br>21<br>Sc<br>13<br>Al | 90<br>Th<br>58<br>Ce<br>40<br>Zr<br>22<br>Ti<br>14<br>Si<br>6<br>C | VI<br>Va<br>IVa<br>IIIa<br>IIa |
| III' IV'                 | 22<br>Ti<br>40<br>Zr                                   | 23<br>V<br>41<br>Cb                                    | 24<br>Cr<br>42<br>Mo                                                   | 25<br>Mn<br>43                                 | Heavy metals.  26 27 28 Fe Co N 44 45 46 Ru Rh P | 29<br>i Cu<br>1 47<br>d Ag  | 30<br>Zn<br>48<br>Cd                                                            | 31<br>Ga<br>49<br>In                                    | 32<br>Ge<br>50<br>Sn                                               | III'                           |
| V"                       | 58 5<br>Ce I                                           | 9 60<br>Pr Nd                                          | 61 62<br>— Sa                                                          | 63<br>Eu                                       | 64 65 66<br>Gd Tb Dy                             | 67 68<br>Ho E               | 69<br>Ad                                                                        | 70 71<br>Cp Yb                                          | 72<br>Lu                                                           | V"                             |
| V'<br>VI                 | 72<br>Lu<br>90<br>Th                                   | 73<br>Ta<br>91<br>Bv                                   | 74<br>W<br>92<br>U                                                     | 75<br>—                                        | 76 77 78<br>Os Ir Pt                             | 79<br>Au                    | 80<br>Hg                                                                        | 81<br>Tl                                                | 82<br>Pb                                                           | V'<br>VI                       |
|                          | 4                                                      | 5B                                                     | 6B                                                                     | 7B                                             |                                                  | īВ                          | 2 B                                                                             | 3B                                                      | 4                                                                  |                                |
| (Tl)<br>81               | 82<br>————————————————————————————————————             | $\left\{\begin{array}{c} - \\ RaE \end{array}\right\}$ | (Po) 84 {                                                              |                                                | dioactive isotop<br>(Nt) ( )<br>86 87            |                             | (Ac)<br>89                                                                      | (Th)<br>90                                              | (Bv)                                                               | (U)<br>92                      |
| { ThI<br>{ Acr<br>( Rac  | { PbTh PbAc RaD } ← ThB AcB RaB }                      | 1 7                                                    | ThC'<br>AcC'<br>RaC'<br>ThA<br>AcA<br>RaA                              |                                                | AcEm } ← { RaEm }                                | ThX AcX Ra MsT'             | {                                                                               | RaTh<br>RaAc<br>Io  ←  Th Uy Ux'                        | Uz<br>Ux"                                                          | U2                             |

← Indicates the loss of an alpha particle (producing He); the element becomes more electro-positive and the atomic weight decreases by 4, position changing 2 columns to the left.

✓ Indicates beta radiation (loss of electron); the element becomes more electro-negative, atomic weight remains the same, position changes one column to the right and up.

Isotopes of an element have the same valency and the same chemical properties (solubility, reactivity, etc.), although their atomic weights may differ. The isotopes of Bi are, e.g., RaE, ThC, AcC, RaC.

In the upper half of the table are the elements possessing high electro-potential, simple spectra, colorless ions. The properties are analogous in the vertical direction (groups). In the lower half are the elements with low electro-potential, complex spectra, colored ions and tending to form complex double salts, the general properties of the elements

tial, complex spectra, colored ions and tending to form complex double salts, the general properties of the elements being more pronounced in the horizontal direction (periods).

On the left side of the table are the electro-negative elements, those of the upper half forming strong acids, those of the lower half weak oxyacids.

On the right side of the table are the electro-positive elements, forming bases, oxysalts, sulfides, etc.

The center of the lower half is occupied by the amphoteric elements forming weak acids and bases, many complex compounds and double salts, many insoluble and mostly colored compounds.

A very striking point, however, is, as already mentioned, that the similarity among the elements in the upper half is in the vertical-direction, and in the lower half in the horizontal direction. This justifies the use of the expressions group-relation and period-relation.

\* Table adapted from Hackb, J. Am. Chem. Soc. 40, 1023, 1918, Phys. Rev. 13, 169, 1919.

The following iscorpes have been determined by moone of mass express. Actor Phil Mag. 40, 622, 1922. No.

The following isotopes have been determined by means of mass-spectra. Aston, Phil. Mag. 40, 633, 1920; Nature, 106, 468, 1920. The columns give symbol, min. number of isotopes, masses in order of intensity. Numbers in brackets are provisional.

| H  | I | 1.008  | F  | I | 19           | A 2    | 40, 36                                   |
|----|---|--------|----|---|--------------|--------|------------------------------------------|
| He | 1 | 4      | Ne | 2 | 20, 22, (21) | As 1   | 75                                       |
| В  | 2 | 11, 10 | Si | 2 | 28, 29, (30) | Br 2   | 79. 81                                   |
| C  | I | 12     | P  | I | 31           | Kr 6   | 84, 86, 82, 83, 80, 78                   |
| N  | I | 14     | S  | 1 | 32           | X 5,   | (7) 129, 132, 131, 134, 136, (128, 130?) |
| 0  | I | 16     | Cl | 2 | 35, 37, (39) | Hg (6) | (197-200), 202, 204                      |

#### ASTRONOMICAL DATA.

### TABLE 533. - Stellar Spectra and Related Characteristics.

The spectra of almost all the stars can be arranged in a continuous sequence, the various types connected in a series of imperceptible gradations. With one unimportant exception, the sequence is linear, the transition between two given types always involving the same intermediate steps. According to the now generally adopted Harvard system of classification, certain principal types of spectrum are designated by letters, — O. B., A., F. G., K., M., R. and N., — and the intermediate types by suffixed numbers. A spectrum halfway between classes B and A is denoted B5, while those differing slightly from Class A in the direction of Class B are called B8 or Bo. In Classes M and O the notation M3, Mb, Mc, etc., is employed. Classes R and N apparently form a side chain branching from the main series near Class K. The colors of the stars, the degree to which they are concentrated into the region of the sky, including the Milky Way, and the average magnitudes of their peculiar velocities in space, referred to the center of gravity of the naked-eye stars as a whole, all show important correlations with the spectral type. In the case of colors, the correlation is so close as to indicate that both spectrum and color depend almost entirely on the surface temperature of the stars. The correlation in the other two cases, though statistically important, is by no means as close.

Examples of all classes from O to M are found among the bright stars. The brightest star of Class N is of magnitude 5.3; the brightest of Class R, 7.0.

## TABLE 534. - The Harvard Spectral Classification.

| Class. | Principal spectral lines<br>(dark unless otherwise<br>stated).                                   | Example.   | Number<br>brighter<br>than 6.25,<br>mag. | Per cent<br>in<br>galactic<br>region. | Color index. | Effective<br>surface<br>temperature,<br>K | Mean<br>peculiar<br>velocity,<br>km/sec. |
|--------|--------------------------------------------------------------------------------------------------|------------|------------------------------------------|---------------------------------------|--------------|-------------------------------------------|------------------------------------------|
| OB     | Bright H lines, bright spark lines of He, N,O,C H, He, spark lines of N and O, a few spark lines | γ Velorum  | 20                                       | 100                                   | -0.3         | -                                         |                                          |
|        | of metals                                                                                        | € Orionis  | 696                                      | 82                                    | -0.30        | 20,000°                                   | 6                                        |
| A      | H series very strong, spark<br>lines of metals                                                   | Sirius     | 1885                                     | 66                                    | 0.00         | 11,000°                                   | 10                                       |
|        | H lines fainter. Spark and arc lines of metals                                                   | Canopus    | 720                                      | 57                                    | +0.33        | 7,500°                                    | 14                                       |
| G      | Arc lines of metals, spark lines very faint                                                      | The sun    | 609                                      | 58                                    | +0.70        | 5,000°                                    | 15                                       |
| K      | Arc lines of metals, spec-<br>trum faint in violet                                               | Arcturus   | 1719                                     | 56                                    | +1.12        | 4,200°                                    | 17                                       |
| M      | Bands of TiO2, flame and arc lines of metals                                                     | Antares    | 457                                      | 54                                    | +1.00        | 3,100°                                    | 17                                       |
| R      | Bands of carbon, flame and arc lines of metals.                                                  |            | 0                                        | 63                                    |              | 3,000°                                    |                                          |
| N      | Bands of carbon, bright                                                                          |            | 0                                        | 03                                    | +1.7         | 3,000                                     | 15                                       |
|        | lines, very little violet                                                                        | 19 Piscium | 8                                        | 87                                    | +2.5         | 2,300°                                    | 13                                       |

Compiled mainly from the Harvard Annals. Temperatures based on the work of Wilsing and Scheiner. Radial velocities from Campbell. Data for classes R and N from Curtis and Rufus. The color indices are the differences of the visual and photographic magnitudes. Negative values indicate bluish white stars; large positive values, red stars. The peculiar velocities are in the radial direction (towards or from the sun). The average velocities in space should be twice as great.

The "galactic region" here means the zone between galactic latitudes = 30°, and including half the area of the

heavens. 96% of the stars of known spectra belong to classes A, F, G, K, 99.7% including B and M (Innes, 1919).

TABLE 535. - Apex and Velocity of Solar Motion.

| R. A. 1900.                                 | Dec.                  | Velocity,<br>km/sec. | Method.                             | No. of stars.        | Authority.                                                                                     |
|---------------------------------------------|-----------------------|----------------------|-------------------------------------|----------------------|------------------------------------------------------------------------------------------------|
| 18 <sup>h</sup> 02 <sup>m</sup> 17 54 18 00 | +34.3<br>25.1<br>29.2 | 19.5                 | Proper motions<br>Radial velocities | 5413<br>1193<br>1405 | Boss, Astron. J. 614, 1910<br>Campbell, Lick Bull. 196, 1911<br>Strömberg, Astrophys. J. 1918. |

#### ASTRONOMICAL DATA.

#### TABLE 536. - Motions of the Stars.

The individual stars are moving in all directions, but, for the average of considerable groups, there is evidence of a drift away from the point in the heavens towards which the sun is moving (solar apex). The best determinations of the solar motion, relative to the stars as a whole, are given in Table 535. In round numbers this motion of the sun may be taken as 30 km/sec, towards the point R. A. 18 h. om., Dec +30.0°.

After allowance is made for the solar motion, the motions of the stars in space, relative to the general mean, present marked peculiarities. If from an arbitrary origin a series of vectors are drawn, representing the velocities of the various stars, the ends of these vectors do not form a spherical cluster (as would occur if the motions of the stars were at random), but a decidedly elongated cluster, whose form can be approximately represented either by the superposition of two intermingling spherical clusters with different centers (Kapteyn's two-stream hypothesis) or by a single ellipsoidal cluster (Schwarzschild), the actual form, however, being more complicated than is indicated by either of these hypotheses. The direction of the longest axis of the cluster is known as that of preferential motion. The two opposite points in the heavens at the extremities of this axis are called the vertices. The components of velocity of the stars parallel to this axis average considerably larger than those parallel to any axis perpendicular to it.

The preferential motion varies greatly with 'spectral type, being practically absent in Class B, very strong in Class A, and somewhat less conspicuous in Classes F to M, on account of the greater mean velocities of these stars in all directions. The positions of the vertices are nearly the same for all.

directions. The positions of the vertices are nearly the same for all.

Numerous investigators, from the more distant naked-eye stars, find substantially the same position for the vertex, the mean being R. A. 6 h, 6 m., Dec. +9°. The nearer stars, of large proper motion, give a mean of 6 h. 12m., +25°. (See Strömberg's discussion, cited above.)

+25°. (See Strömberg's discussion, cited above.)

In addition to these general phenomena, there are numerous clusters of stars whose members possess almost exactly equal and parallel motions, — for example, the Pleiades, the Hyades, and certain large groups in Ursa Major, Scorpius, and Orion. The vertices, and the directions toward which these clusters are moving, are all in the plane of the galaxy. Several faint stars are known which have radial velocities between 300 and 350 km/sec. (e.g. A. G. Berlin 1366 R.A. 1900 = 4h 8m 6, Dec. 1900 = +22.7°, mag. 8.0 velocity of recession 339 km/sec.), and it is probable that the actual velocity in space exceeds 500 km/sec. for some of these.

The 9th magnitude star A. G. Berlin 1366 has a radial velocity of 404 km/sec.

The greatest known proper motion is that of Barnard's star of the ninth magnitude in Ophiuchus, 10.3" per year, Position angle 35°. The parallax of this star is 0.5°, and its radial velocity about —100 km/sec.

The average radial velocity of the globular clusters is 100 km/sec. and that of the spiral nebulae 400 km. The greatest individual values are approaching the sun. The spiral nebulae, with a few exceptions, are receding. The greatest individual values are —410 km for the cluster N. G. C. 6934 and +1800 km for the nebula N. G. C. 584.

Average velocities with regard to center of gravity of the stellar system, according to Campbell (Stellar Motion, 1913):

Type B Stars: 6.6 km per sec. Type G Stars: 15.0 km. per sec.
" K " 16.8 " " " " 10.9 " " " " 66

For radial velocities of 119 stars see Astrophysical Journal, 48, p. 261, 1918.

TABLE 537. - Distances of the Stars.

| Distances.                                                                                                                                                                               | Parsecs.*                                                      | Light years.                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|
| Alpha Centauri (nearest star). Barnard's Star. Sirius. Arcturus. The Hyades. Nebula of Orion (Kapteyn). Globular Clusters (Shapley): omega Centauri (nearest). N. G. C. 7006 (farthest). | 1.32<br>1.9<br>2.7<br>13.0<br>40.<br>185.<br>6,500.<br>67,000. | 4.3<br>6.3<br>8.7<br>43.0<br>130.<br>600.<br>21,000.<br>220,000. |

<sup>\*</sup> Parsec = 206,265 astronomical units = 3.08 × 1013 km = 3.26 light years. 1 astronomical unit = distance sun

Practically all the stars visible to the naked eye lie within 1000 parsecs of the sun, and most of them are more than 100 parsecs distant. In the vicinity of the sun, the majority of the stars lie within two or three hundred parsecs of the galactic plane; but along this plane the star-filled region extends far beyond 1000 parsecs in all directions, and may reach 30,000 parsecs in the great southern star clouds (Shapley).

Average parallax 6 planetary nebulae, 0.018" (van Maanen, Pr. Nat. Acad. 4, p. 394, 1918).

#### ASTRONOMICAL DATA.

#### TABLE 538.—Brightness of the Stars.

Stellar magnitudes give the apparent brightness of the stars on a logarithmic scale, — a numerical increase of one magnitude corresponding to a decrease of the common logarithm of the light by 0.400, and a change of five magnitudes to a factor of 100. The brightest objects have negative stellar magnitudes. The visual magnitude of the Sun is -20.7; of the mean full Moon, -12.5; of Sirius, -1.6; of Vega, +0.2; of Polaris, +2.1. (The stellar magnitude of a standard candle 1 m distant is -14.18.) The faintest stars visible with the naked eye on a clear dark night are of about the sixth magnitude (though a single luminous point as faint as the eighth magnitude can be seen on a perfectly black background). The faintest stars visible with a telescope of aperture A in are approximately of magnitude 9 + 5 logic A. The faintest spars of about the 21st magnitude. A standard candle, of the same color as the stars, would appear of magnitude +0.8 at a distance of one kilometer.

The actual luminosity of a star is expressed by means of its absolute magnitude, which (Kantene's definition) is

magnitude +0.8 at a distance of one kilometer.

The actual luminosity of a star is expressed by means of its absolute magnitude, which (Kapteyn's definition) is the stellar magnitude which the star would appear to have if placed at a distance of ten parsecs. The absolute magnitude of the sun is +4.8 (equal to that of α2 Centauri); of Sirius is +1.3; of Arcturus, -0.4. The faintest star at present known (Innes), a distant companion to α Centauri, has the (visual) absolute magnitude +15.4, and a luminosity 0.0000 that of the sun. The brightest so far definitely measured, β Orionis, has (Kapteyn) the abs. mag. -5.5 and a luminosity 13,000 times the sun's. Canopus, and some other stars, may be still brighter.

Intrinsic brightness of sun's surface = 57,000 candles per cm² of surface. (Abbot-Fowle, 1920)

The absolute magnitudes of 6 planetary nebulae average 9.1; average diameter, 4000 astronomical units (Solar system to Neptune = 60 astr. units), van Maanen, Pr. Nat. Acad. 4, p. 394, 1918.

#### Giant and Dwarf Stars.

The stars of Class B are all bright, and nearly all above the absolute magnitude zero. Stars of comparable brightness occur in all the other spectral classes, but the inferior limit of brightness diminishes steadily for the "later" or redder types. The distribution of absolute magnitudes conforms to the superposition of two series, in each of which the individual stars of each spectral class range through one or two magnitudes on each side of the mean absolute magnitude. In one, — the "giant stars," — this mean brightness is nearly the same for all spectral classes, and not far from absolute magnitude zero. In the other, — the "dwarf stars," — it diminishes steadily from about abs. mag.— 2 for Class Bo to +ro for Class M. The two series overlap in Classes A and F, are fairly well separated in Class K, and sharply so in Class M. Two very faint stars of Classes A and F fall into neither series.

The majority of the stars visible to the naked eye are giants, since these, being brighter, can be seen at much greater distances. The greatest percentage of dwarf stars among those visible to the eye is found in Classes F and G. The dwarf stars of Classes K and M are actually much more numerous per unit of volume, but are so faint that few of the former, and none of the latter, are visible to the naked eye.

Adams and Stromberg have shown that the mean peculiar velocities of the giant stars are all small, — increasing only from about 6 km/sec. for Class B to 12 for Class M, — while those of the dwarf stars are much greater, increasing within each spectral class by about 1.5 km per unit of absolute magnitude, and reaching fully 30 km for stars of Class M and abs. mag. 10. Both giant and dwarf stars show the phenomenon of preferential motion.

## TABLE 539. - Masses and Densities.

The stars differ much less in mass than in any other characteristic. The greatest definitely determined mass is that of the brighter component of the spectroscopic binary  $\beta$  Scorpii, which is of 13 times the sun's mass, 400 times its luminosity, and spectrum B1. The smallest known mass is that of the faint component of the visual binary Krueger 60, whose mass is 0.15, and luminosity 0.0004 of the sun's, and spectrum M. The giant stars are in general more massive than the dwarfs. According to Russell (Publ. Astron. Soc. America, 3, 327, 1917) the mean values are:

| Spectrum.      | Mass of a<br>Binary System. | Spectrum. | Mass.     |
|----------------|-----------------------------|-----------|-----------|
| B <sub>2</sub> | 12 X Sun                    | F2 dwarf  | 3.0 X Sun |
| Ao             | 6.5 "                       | G2 "      | I. 2 "    |
| F5 giant       | 8 "                         | K8 "      | 0.9 "     |
| TZ - 66        | "                           |           |           |

The densities of stars can be determined only if they are eclipsing variables. It appears that the stars of Classes B and A have densities averaging about one tenth that of the sun and showing a relatively small range about this value, while those of Classes F to K show a wide range in density, from 1.8 times that of the sun (W Urs. Maj.) to 0.000002

while those of Classes F to K show a wide range in density, from 1.8 times that of the sun (W Urs. Maj.) to 0.000002 (W Crucis).

The surface brightness of the stars probably diminishes by at least one magnitude for each step along the Harvard scale from B to M. It follows that the dwarf stars are, in general, closely comparable with the sun in diameter, while the stars of Classes B and A, though larger, rarely exceed ten times the sun's diameter. The redder giant stars, however, must be much larger, and a few, such as Antares, may have diameters exceeding that of the earth's orbit. The densities of these stars must be exceedingly low.

If arranged in order of increasing density, the giant and dwarf stars form a single sequence starting with the giant stars of Class M, proceeding up that series to Class B, and then down the dwarf series to Class M. It is believed by Russell and others that this sequence indicates the order of stellar evolution,—a star at first rising in temperature as it contracts and then cooling off again. The older theory, however, regards the evolutionary sequence as proceeding in all cases from Class B to Class M.

#### MISCELLANEOUS ASTRONOMICAL DATA.

```
Tropical (ordinary) year
                                  = \{365, 24219879 - 0.00000000014 (t - 1900)\} days
                                  = \{365.25636042 + 0.0000000011 (t - 1900)\} days
Sidereal year
Anomalistic year
                                  = \{365.25964134 + 0.0000000304 (t - 1900)\} days
Eclipse year
                                  = \{346.620000 + 0.00000036 (t - 1900)\} days
Synodical (ordinary) month = \{29.530588102 - 0.0000000294 (t - 1900)\} days
                                  = \{27.321660890 - 0.0000000252 (t - 1900)\} days
Sidereal month
Sidereal day (ordinary, two successive transits
of vernal equinox, might be called equinoctial
day)
                                                          = 86164.00054 mean solar seconds
                                                           = 23 h. 56 m. 4.09054 mean solar time
Sidereal day (two successive transits of same
fixed star)
                                                          = 86164.00066 mean solar seconds
1920, Julian Period = 6633
January 1, 1920, Julian-day number = 2422325
Solar parallax = 8.7958" ± 0.002" (Weinberg)
8.807 ± 0.0027 (Hincks, Eros)
8.799 (Sampson, Jupiter satellites; Harvard observations)
                     8.80 Paris conference
Lunar parallax = 3422.63" = 57' 2.63" (Newcomb)
Mean distance earth to sun = 149500000 kilometers = 92900000 miles
Mean distance earth to moon = 60.2678 terrestrial radii
                                    = 384411 kilometers = 238862 miles
Light traverses mean radius of earth's orbit in 498.580 seconds
Velocity of light (mean value) in vacuo, 200860 kilometers/sec. (Michelson-Newcomb)
= 186324 statute miles/sec.
Constant of aberration
                                    = 20.4874'' \pm 0.005''
                                       20.47 Paris conference (work of Doolittle and others
                                         indicates value not less than 20.51)
Light year = 9.5 \times 10^{12} kilometers = 5.9 \times 10^{12} miles

Parsec, distance star whose parallax is 1 sec. = 31 \times 10^{12} km = 19.2 \times 10^{12} m

General precession = 50.2564'' + 0.000222 (t - 1900)'' (Newcomb)

Obliquity of ecliptic = 23^{\circ} 27' 8.26'' - 0.4684 (t - 1900)'' (Newcomb)

Constant of nutation = 9.21'' (Paris conference)
                                    = 666.07 \times 10^{-10} \text{ cm}^3/\text{g sec}^2 \pm 0.16 \times 10^{-10}
Gravitation constant
Eccentricity earth's orbit
                                    = e = 0.01675104 - 0.0000004180 (t - 1900) -
                                           0.000000000126 (t - 1900)^2
                                    = e_2 = 0.05490056 \text{ (Brown)}
= I = 5^{\circ} 8' 43.5'' \text{ (Brown)}
= 0.04488716 \text{ (Brown)}
Eccentricity moon's orbit
Inclination moon's orbit
Delaunay's \gamma = \sin \frac{1}{2}I
Lunar inequality of earth
                                    = L = 6.454''
                                    = Q = 124.785'' (Brown)
Parallactic inequality moon
Mean sidereal motion of = -19^{\circ} 21' 19.3838'' + 0.001294 (t - 1900)''
moon's node in 365.25 days
Pole of Milky Way
                                    = R. A., 12 h. 48 m.; Dec., +27°
```

## ASTRONOMICAL DATA

#### TABLE 541. - The First-magnitude Stars.

| No.                                                                                        | Star.                                                                                                                                                                                                             |                                                                                    | Spec-<br>trum.                                                                              | R.A.<br>1900.                                                                                                                                                                 | Dec. 1900.                                                                                                                                                                                       | Annual proper motion,                                                                                                          | P.A. of µ                                                                    | Parallax.                                                                                                                                                                                             | Abs.                                                                                           | Radial velocity km. |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------|
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18 | Achernar Aldebaran † Capella † † Rigel † Betelgeuse † Betelgeuse † Canopus Sirius * Procyon * Pollux Regulus † a Crucis † B Centauri † Arcturus a Centauri † Arcturus Antares † Vega § Altair § Deneb § Fomalhaut | -0.9<br>-1.6<br>0.5<br>1.2<br>1.3<br>1.1<br>1.5<br>1.2<br>0.9<br>0.2<br>0.3<br>1.2 | B5<br>GB8<br>Ma<br>F A<br>F5<br>KB8<br>B1<br>B1<br>B2<br>B1<br>KG<br>Ma<br>A A5<br>A2<br>A3 | 1 <sup>h</sup> 34.0 <sup>m</sup> 4 30.2 5 9.3 5 9.7 5 49.8 6 21.7 6 40.7 7 34.1 7 39.2 10 3.0 12 21.0 12 41.9 13 19.0 13 19.0 14 32.8 16 23.3 18 33.6 19 45.9 20 38.0 22 52.1 | -57° 45'<br>+16 18<br>+45 54<br>-8 19<br>+7 23<br>-52 38<br>-16 35<br>+5 29<br>+28 16<br>+12 27<br>-62 33<br>-59 9<br>-10 38<br>+19 42<br>-60 25<br>-26 13<br>+38 41<br>+8 36<br>+44 55<br>-30 9 | 0.094" 0.203 0.437 0.001 0.029 0.018 1.316 1.242 0.625 0.247 0.048 0.056 0.055 0.041 2.282 3.680 0.034 0.346 0.355 0.001 0.365 | 108° 160 168 135 74 56 204 264 269 240 229 211 192 209 281 192 36 54 180 117 | +0.051"<br>+0.056<br>+0.075<br>+0.007<br>+0.019<br>+0.007<br>+0.376<br>+0.033<br>+0.047<br>+0.008<br>-0.012<br>+0.037<br>+0.075<br>+0.075<br>+0.759<br>+0.021<br>+0.021<br>+0.021<br>+0.021<br>+0.033 | -0.9 -0.2 -0.5 -5.5 -5.5 -2.7 -6.7 +1.2 +3.0 +0.2 -1.1 -0.5 -4.0 -1.3 -0.5 -4.7 -1.5 -7.2 +2.0 |                     |

#### TABLE 542. - Wolf's Observed Sun-spot Numbers. Annual Means.

Sun-spot number =  $k(10 \times \text{number})$  of groups and single spots observed + total number of spots in groups and single spots). k depends on condition of observation and telescope, equaling unity for Wolf with 3-in. telescope and power of 64. Wolf's numbers are closely proportional to spotted area on sun. 100 corresponds to about 1/500 of visible disk covered (umbras and penumbras). Periodicity: mean, 11.13, extremes, 7.3 and 17.1 years. Monthly Weather Review, 30, p. 171, 1902; monthly means, revised, 1749–1901; see A. Wolfer in Astronomische Mitteilungen and Zeitschrift für Meteorologie, daily and monthly values.

| Year.                                                                                                                        | 0                                                                           | 1                                                                                          | 2                                                                                          | 3                                                                                          | 4                                                                                | 5                                                                                                | 6                                                                                                  | 7                                                                                                  | 8                                                                                              | 9                                                                               |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 1750<br>1760<br>1770<br>1780<br>1790<br>1800<br>1810<br>1820<br>1830<br>1840<br>1850<br>1860<br>1870<br>1880<br>1890<br>1900 | 83<br>63<br>101<br>85<br>90<br>16<br>71<br>63<br>66<br>96<br>139<br>32<br>7 | 48<br>86<br>82<br>68<br>67<br>34<br>1<br>7<br>48<br>37<br>64<br>77<br>111<br>54<br>36<br>3 | 48<br>61<br>66<br>38<br>60<br>45<br>5<br>4<br>28<br>24<br>54<br>59<br>102<br>60<br>73<br>5 | 31<br>45<br>35<br>23<br>47<br>43<br>12<br>2<br>8<br>11<br>39<br>44<br>66<br>64<br>85<br>24 | 12<br>36<br>31<br>10<br>41<br>48<br>13<br>15<br>21<br>47<br>45<br>64<br>78<br>42 | 10<br>21<br>7<br>24<br>21<br>42<br>35<br>17<br>57<br>40<br>7<br>30<br>17<br>52<br>64<br>63<br>46 | 10<br>11<br>20<br>83<br>16<br>28<br>46<br>36<br>122<br>62<br>4<br>16<br>11<br>25<br>42<br>54<br>55 | 32<br>38<br>92<br>132<br>6<br>10<br>41<br>50<br>138<br>98<br>23<br>7<br>12<br>13<br>26<br>62<br>99 | 48<br>70<br>154<br>131<br>4<br>8<br>30<br>62<br>103<br>124<br>55<br>37<br>37<br>27<br>48<br>78 | 54<br>106<br>126<br>118<br>7<br>2<br>24<br>67<br>86<br>96<br>94<br>74<br>6<br>6 |

Note: The sun's apparent magnitude is -26.5, sending the earth 90,000,000 times as much light as the star Note: The sun's apparent magnitude is +4.8.

Aldebaran. Its absolute magnitude is +4.8.

Ratio of total radiation of sun to that of moon about 100,000 to 1

""" light """ "" "" 400,000 to 1

Langley

<sup>\*</sup>Visual binary. † Spectroscopic binary. † Pair with common proper motion. § Wide pair probably optical.

Mass relative to sun of (7) is 3.1; of (8), 1.5; of (16), 2.0. For description of types, see Table 534 or Annals of Harvard College Observatory, 28, p. 146, or more concisely 56, p. 66, and 91, p. 5. The light ratio between successive stellar magnitudes is  $\sqrt[4]{100}$  or the number whose logarithm is 0.4000, viz., 2.512. The absolute magnitude of a star is its magnitude reduced to a distance corresponding to 0.1" parallax.

## GEODETICAL AND ASTRONOMICAL TABLES.

TABLE 543 .- Length of Degrees on the Earth's Surface.

| At                                     | Miles per degree                                            |                                                             | Km. per degree                                                 |                                                          | Km. per degree                          |                                                            | At                                                          | Miles p                                                    | er degree                                                | Km. pe | er degree |
|----------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|--------|-----------|
| Lat.                                   | of Long.                                                    | of Lat.                                                     | of Long.                                                       | of Lat.                                                  | Lat.                                    | of Long.                                                   | of Lat.                                                     | of Long.                                                   | of Lat.                                                  |        |           |
| 00<br>10<br>20<br>30<br>40<br>45<br>50 | 69.17<br>68.13<br>65.03<br>59.96<br>53.06<br>49.00<br>44.55 | 68.70<br>68.72<br>68.79<br>63.88<br>68.99<br>69.05<br>69.11 | 111.32<br>109.64<br>104.65<br>96.49<br>85.40<br>78.85<br>71.70 | 110.57<br>110.60<br>110.70<br>110.85<br>111.03<br>111.13 | 55°<br>60<br>65<br>70<br>75<br>80<br>90 | 39.77<br>34.67<br>29.32<br>23.73<br>17.96<br>12.05<br>0.00 | 69.17<br>69.23<br>69.28<br>69.32<br>69.36<br>69.39<br>69.41 | 64.00<br>55.80<br>47.18<br>38.19<br>28.90<br>19.39<br>0.00 | 111.33<br>111.42<br>111.50<br>111.57<br>111.62<br>111.67 |        |           |

For more complete table see "Smithsonian Geographical Tables."

#### TABLE 544 .- Equation of Time.

The equation of time when  $\dotplus$  is to be added to the apparent solar time to give mean time. When the place is not on a standard meridian (75 th, etc.) its difference in longitude in time from that meridian must be subtracted when east, added when west to get standard time (75 th meridian time, etc.). The equation varies from year to year cyclically, and the figure following the  $\pm$  sign gives a rough idea of this variation.

| Ian. I                 | M. S.<br>+ 3 26±14                                           | Apr. 1 | M. S. +4 2+ 7                               | July 1 | M. S.<br>+3 31±5                       | Oct. 1                 | M. S.<br>—10 12 1 8                         |
|------------------------|--------------------------------------------------------------|--------|---------------------------------------------|--------|----------------------------------------|------------------------|---------------------------------------------|
| Feb. 1<br>I5<br>Mar. 1 | + 9 25± 9<br>+13 42± 4<br>+14 20± 2<br>+12 34± 4<br>+ 9 9± 6 | May 1  | +0 8± 5<br>-2 54± 3<br>-3 49± 1<br>-2 28± 3 | Aug. 1 | +5 42±3<br>+6 9±3<br>+4 24±5<br>+0 2±7 | Nov. 1<br>15<br>Dec. 1 | -14 5 6<br>-16 19 2<br>-15 22 4<br>-10 58 8 |

#### TABLE 545 .- Planetary Data.

| Body.                                                                                       | Reciprocals of masses.                                                                              | Mean distance<br>from the sun.<br>Km.                                                  | Sidereal<br>period.<br>Mean days.                                                           | Equatorial<br>diameter.<br>Km.                                                          | Inclination of orbit.                                                 | Mean<br>density.<br>H <sub>2</sub> O=1                                      | Gravity<br>at<br>surface.                                             |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Sun<br>Mercury<br>Venus<br>Earth*<br>Mars<br>Jupiter<br>Saturn<br>Uranus<br>Neptune<br>Moon | 1.<br>6000000.<br>408000.<br>329390.<br>3093500.<br>1047.35<br>3501.6<br>22869.<br>19700.<br>†81.45 | 58 x 10 <sup>6</sup> 108 " 149 " 228 " 778 " 1426 " 2869 " 4495 " 38 x 10 <sup>4</sup> | 87.97<br>244.70<br>365.26<br>686.98<br>4332.59<br>10759.20<br>30685.93<br>60187.64<br>27.32 | 1391107<br>4842<br>12191<br>12757<br>6784<br>142745<br>120798<br>49693<br>52999<br>3476 | 7°.003<br>3.393<br>1.850<br>1.308<br>2.492<br>0.773<br>1.778<br>5.145 | 1.42<br>5.61<br>5.16<br>5.52<br>3.95<br>1.34<br>.69<br>1.36<br>1.30<br>3.36 | 28.0<br>0.4<br>0.9<br>1.00<br>0.4<br>2.7<br>1.2<br>1.0<br>1.0<br>0.17 |

<sup>\*</sup>Earth and moon. † Relative to earth. Inclination of axes: Sun 7°.25; Earth 23°.45; Mars 24°.6; Jupiter 3°.1; Saturn 26°.8; Neptune 27°.2. Others doubtful. Approximate rates of rotation: Sun 25dd; Moon 27dd; Mercury 88d; Venus 225d; Mars 24h 37m; Jupiter 9h 55m; Saturn 10h 14m.

## TABLE 546. - Numbers and Equivalent Light of the Stars.

The total of starlight is a sensible but very small amount. This table, taken from a paper by Chapman, shows that up to the 20th magnitude the total light emitted is equivalent to 687 1st-magnitude stars, equal to about the hundredth purt of full moonlight. If all the remaining stars are included, following the formula, the equivalent addition would be only three more 1st-magnitude stars. The summation leaves off at a point where each additional magnitude is adding more stars than the last. But, according to the formula, between the 23d and 24th magnitudes there is a turning point, after which each new magnitude adds less than before. The actual counts have been carried so near this turning point that there is no reasonable doubt of its existence. Given its existence, the number of stars is probably finite, a conclusion open to very little doubt. All the indications of the earlier terms must be misleading if the margin between 1 and 2 thousand millions is not enough to cover the whole. (Census of the Sky, Sampson, Observators, 2015) atory, 1915.)

| Magnitude, | Number.                                                                           | Equivalent<br>number<br>of 1st-<br>magnitude<br>stars.             | Totals to<br>magnitude, | Magnitude,                                                                                                                               | Number. | Equivalent<br>number<br>of 1st-<br>magnitude<br>stars.       | Totals to<br>magnitude,                                                          |
|------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------|----------------------------------------------------------------------------------|
|            | a Carinæ<br>a Centauri<br>8<br>27<br>73<br>189<br>650<br>2,200<br>6,600<br>22,550 | 11<br>6<br>2<br>14<br>17<br>18<br>19<br>26<br>35<br>42<br>56<br>65 |                         | 9.0-10.0. 10.0-11.0. 11.0-12.0. 12.0-13.0. 13.0-14.0. 14.0-15.0. 15.0-16.0. 17.0-18.0. 18.0-19.0. 19.0-20.0. All stars fainter than 20.0 |         | 69<br>68<br>60<br>51<br>40<br>31<br>22<br>16<br>10<br>6<br>3 | 380<br>448<br>508<br>559<br>599<br>630<br>652<br>668<br>678<br>684<br>687<br>690 |

#### TABLE 547. - Albedos.

The albedo, according to Bond, is defined as follows: "Let a sphere S be exposed to parallel light. Then its Albedo is the ratio of the whole amount reflected from S to the whole amount of light incident on it." In the following table, m = the stellar magnitude at mean opposition; g = magnitude it would have at full phase and unit distance from earth and sun;  $\sigma =$  assumed mean semi-diameter at unit distance; p = ratio of observed brightness at full phase to that of a flat disk of same size and same position, illuminated and viewed normally and reflecting all the incident light according to Lambert's law; g depends on law of variation of light with phase; albedo = pq. Russell, Astrophysical Lournal  $4\pi$ , p, 1/3, 1/3, 1/3.

Journal, 43, p. 173, 1916.

Albedo of the earth: A reduction of Very's observations by Russell gives 0.45 in close agreement with the recent value of Aldrich of 0.43 (see Aldrich, Smithsonian Misc. Collections, 69, 1919).

| Object. | т                                                  | g                                                                             | σ                                               | Þ                                                            | q                                                             | Visual<br>albedo.                                            | Color<br>index.                                   | Photo-<br>graphic<br>albedo.                  |
|---------|----------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|
| Moon    | -2.12<br>-4.77<br>-1.85<br>-2.29<br>+0.89<br>+5.74 | +0.40<br>-0.88<br>-0.06<br>-4.06<br>-1.36<br>-8.99<br>-8.67<br>-6.98<br>-7.06 | 2.40" 3.45 3.45 8.55 4.67 95.23 77.95 36.0 34.5 | 0.105<br>.164<br>.077<br>.492<br>.139<br>.375<br>.420<br>.42 | 0.694<br>0.42<br>0.72<br>1.20<br>1.11<br>1.5:<br>1.5:<br>1.5: | 0.073<br>.069<br>.055<br>.59<br>.154<br>.56:<br>.63:<br>.73: | +1.18<br><br>+0.78<br>+1.38<br>+0.50<br>+1.12<br> | 0.051<br><br>.60<br>.090<br>.73:<br>0.47:<br> |

#### TABLE 548. - Duration of Sunshine.

| Declination of sun: approx. date:                                               | Dec. 22.                                                                 | -15° Feb. 9 Nov. 3. h m                                                                   | -10° Feb. 23 Oct. 19.                                                                               | —5°<br>Mar. 8<br>Oct. 6.                                                                               | o° Mar. 21 Sept. 23. h m                                                                                 | h m                                                                                                      | +10° Apr. 16 Aug. 28. h m                                                                       | +15° May 1 Aug. 13.                                                                    | h m                                                                           | +23° 27' June 21                                                              |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 0°<br>10°<br>20°<br>30°<br>40°<br>50°<br>55°<br>60°<br>65°<br>70°<br>75°<br>30° | 12 07<br>11 32<br>10 55<br>10 13<br>9 19<br>8 04<br>7 09<br>5 52<br>3 34 | 12 07<br>11 45<br>11 22<br>10 57<br>10 25<br>9 43<br>9 12<br>8 34<br>7 39<br>6 10<br>2 37 | 12 07<br>11 53<br>11 38<br>11 21<br>11 01<br>10 34<br>10 15<br>9 52<br>9 19<br>8 31<br>7 04<br>3 10 | 12 07<br>12 00<br>11 53<br>11 44<br>11 35<br>11 23<br>11 14<br>11 04<br>10 50<br>10 29<br>9 55<br>8 46 | 12 07<br>12 07<br>12 07<br>12 08<br>12 09<br>12 10<br>12 12<br>12 13<br>12 16<br>12 19<br>12 26<br>12 38 | 12 07<br>12 14<br>12 22<br>12 31<br>12 43<br>12 58<br>13 09<br>13 23<br>13 43<br>14 11<br>15 00<br>16 44 | 12 07<br>12 21<br>12 37<br>12 55<br>13 17<br>13 48<br>14 09<br>14 36<br>15 15<br>16 15<br>18 05 | 12 07<br>12 29<br>12 52<br>13 19<br>13 53<br>14 40<br>15 13<br>15 57<br>17 01<br>18 50 | 12 07<br>12 36<br>13 08<br>13 46<br>14 32<br>15 38<br>16 26<br>17 31<br>19 19 | 12 07<br>12 43<br>13 20<br>14 05<br>15 01<br>16 23<br>17 23<br>18 52<br>22 03 |

For more extensive table, see Smithsonian Meteorological Tables.

#### TABLE 549. - The Solar Constant.

Solar constant (amount of energy falling at normal incidence on one square centimeter per minute on body at earth's mean distance) = 1.932 calories = mean 696 determinations 1902—12. Apparently subject to variations, usually within the range of 7 per cent, and occurring irregularly in periods of a week or ten days.

Computed effective temperature of the sun: from form of black-body curves, 6000° to 7000° Absolute; from  $\lambda$ max. = 2930 and max. = 0.470 $\mu$ , 6230°; from total radiation,  $J = 76.8 \times 10^{-12} \times T^4$ ,

5830°.

#### TABLE 550. - Solar spectrum energy (arbitrary units) and its transmission by the earth's atmosphere.

Values computed from  $e_m = e_0 a^m$ , where  $e_m$  is the intensity of solar energy after transmission through a mass of air m; m is unity when the sun is in the zenith, and approximately = sec. zenith distance for other positions (see table 556);  $e_0$  = the energy which would have been observed had there been no absorbing atmosphere; a is the fractional amount observed when the sun is in the zenith.

| th.                                                                                        | Т                | ransmis                                                                                         | sion co                                                                                                | ef-                                                          |                                                                                              |                                                                                            |                                                                                              | Intens                                                                                | sity Sol                                                                                | ar Ener                                        |                                                                  | rbitrary<br>Units,                                              | ,                                                        |                                                         |                                                       |
|--------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|
| Wave-length                                                                                | Wash-<br>ington. | Mount<br>Wilson.                                                                                | Mount<br>Whitney.                                                                                      | ne mile<br>nearer<br>earth.                                  |                                                                                              | Mount<br>Whitney.                                                                          |                                                                                              | Mount                                                                                 | Wilson                                                                                  | •                                              |                                                                  | W                                                               | 'ashingt                                                 | on.                                                     |                                                       |
|                                                                                            | Wa               | Mo                                                                                              | Mo                                                                                                     | One                                                          | m=o                                                                                          | m = 1                                                                                      | m = 1                                                                                        | 2                                                                                     | 4                                                                                       | 6                                              | m = 1                                                            | 2                                                               | 3                                                        | 4                                                       | 6                                                     |
| 0.30<br>.32<br>.34<br>.36<br>.38<br>.40<br>.46<br>.50<br>.60<br>.70<br>.80<br>I.00<br>2.00 |                  | (.460)<br>.520<br>.580<br>.635<br>.676<br>.729<br>.862<br>.900<br>.950<br>.970<br>.970<br>.970* | (.550)<br>.615<br>.692<br>.741<br>.784<br>.809<br>.887<br>.919<br>.940<br>.964<br>.976<br>.975<br>.965 | .562<br>.768<br>.829<br>.850<br>.866<br>.903<br>.915<br>.941 | 54<br>1111<br>232<br>302<br>354<br>414<br>618<br>606<br>504<br>364<br>266<br>166<br>63<br>25 | 30<br>68<br>160<br>224<br>278<br>335<br>548<br>557<br>474<br>351<br>260<br>162<br>61<br>23 | 25<br>58<br>135<br>192<br>239<br>302<br>514<br>522<br>454<br>346<br>258<br>163<br>61*<br>24* | 30<br>78<br>122<br>162<br>220<br>428<br>450<br>409<br>329<br>250<br>160<br>60*<br>23* | 2<br>8<br>26<br>49<br>74<br>117<br>296<br>334<br>331<br>297<br>235<br>154<br>57*<br>21* | 1 2 9 20 34 62 205 248 268 268 221 147 55* 19* | 134<br>232<br>426<br>441<br>393<br>312<br>236<br>153<br>59<br>23 | 51<br>130<br>294<br>323<br>306<br>268<br>209<br>141<br>55<br>21 | 19<br>73<br>203<br>237<br>238<br>230<br>185<br>130<br>52 | 7<br>41<br>140<br>174<br>185<br>197<br>164<br>120<br>49 | 3<br>13<br>67<br>94<br>112<br>145<br>145<br>102<br>43 |

Transmission coefficients are for period when there was apparently no volcanic dust in the air.

\* Possibly too high because of increased humidity towards noon.

TABLE 551. — The intensity of Solar Radiation in different sections of the spectrum, ultra-violet, visual infra-red. Calories.

| Wave-le | ngth. |                   | Mou               | int Whi                   | tney.             |                   |                   | Mount             | Wilson                    |                   | 1                 | Washin                    | gton.             |                   |
|---------|-------|-------------------|-------------------|---------------------------|-------------------|-------------------|-------------------|-------------------|---------------------------|-------------------|-------------------|---------------------------|-------------------|-------------------|
| μ μ     |       | m=o               | m = 1             | 2                         | 3                 | 4                 | m = 1             | 2                 | 3                         | 4                 | m=1               | 2                         | 3                 | 4                 |
| 0.70    |       | .31<br>.71<br>.91 | .25<br>.67<br>.87 | .19<br>.62<br>.85<br>1.66 | .16<br>.58<br>.82 | .13<br>.54<br>.80 | .23<br>.65<br>.69 | .16<br>.57<br>.68 | .12<br>.51<br>.66<br>1.28 | .09<br>.45<br>.63 | .13<br>.53<br>.69 | .06<br>.40<br>.62<br>1.08 | .04<br>.30<br>.57 | .02<br>.24<br>.53 |

TABLE 552.—Distribution of brightness (Radiation) over the Solar Disk. (These observations extend over only a small portion of a sun-spot cycle.)

| Wave-                                                                                | μ                                                      | μ                                                           | μ                                                           | μ                                                           | μ                                                           | μ                                                           | μ                                                           | μ                                                           | μ                                                           | μ                                                           | μ                                                    | μ 1.031                                                      | μ                                                                    | μ                                                                    | μ                                                            |
|--------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|
| length.                                                                              | D-323                                                  | 0.386                                                       | 0.433                                                       | 0.456                                                       | 0.481                                                       | 0.501                                                       | 0.534                                                       | 0.604                                                       | 0.670                                                       | 0.699                                                       | 0.866                                                |                                                              | 1.225                                                                | 1.655                                                                | 2.097                                                        |
| Fraction Radius, 0.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00<br>25.00 | 144<br>128<br>120<br>112<br>99<br>86<br>76<br>64<br>49 | 338<br>312<br>289<br>267<br>240<br>214<br>188<br>163<br>141 | 456<br>423<br>395<br>368<br>333<br>296<br>266<br>233<br>205 | 515<br>486<br>455<br>428<br>390<br>351<br>317<br>277<br>242 | 511<br>483<br>456<br>430<br>394<br>358<br>324<br>290<br>255 | 489<br>463<br>437<br>414<br>380<br>347<br>323<br>286<br>254 | 463<br>440<br>417<br>396<br>366<br>337<br>312<br>281<br>254 | 399<br>382<br>365<br>348<br>326<br>304<br>284<br>259<br>237 | 333<br>320<br>308<br>295<br>281<br>262<br>247<br>227<br>210 | 307<br>295<br>284<br>273<br>258<br>243<br>229<br>212<br>195 | 174<br>169<br>163<br>159<br>152<br>145<br>138<br>130 | 111<br>108<br>105.5<br>103<br>99<br>94.5<br>90.5<br>86<br>81 | 77.6<br>75.7<br>73.8<br>72.2<br>69.8<br>67.1<br>64.7<br>61.6<br>58.7 | 39.5<br>38.9<br>38.2<br>37.6<br>36.7<br>35.7<br>34.7<br>33.6<br>32.3 | 14.0<br>13.8<br>13.6<br>13.4<br>13.1<br>12.8<br>12.5<br>12.5 |

Taken from vols. II and III and unpublished data of the Astrophysical Observatory of the Smithsonian Institution. Schwartzchild and Villiger: Astrophysical Journal, 23, 1906.

#### ATMOSPHERIC TRANSPARENCY AND SOLAR RADIATION.

TABLE 553. - Transmission of Radiation Through Moist and Dry Air.

This table gives the wave-length,  $\lambda$ ; a the transmission of radiation by dry air above Mount Wilson (altitude = 1730 m. barometer, 620 mm.) for a body in the zenith; finally a correction factor,  $a_w$ , due to such a quantity of aqueous vapor in the air that if condensed it would form a layer cm. thick. Except in the bands of selective absorption due to the air, a agrees very closely with what would be expected from purely molecular scattering.  $a_w$  is very much smaller than would be correspondingly expected, due possibly to the formation of ions by the ultra-violet light from the sun. The transmission varies from day to day. However, values for clear days computed as follows agree within a per cent or two of those observed when the altitude of the place is such that the effect due to dust may be neglected, e. g. for altitudes greater than 1000 meters. If B =

the barometric pressure in mm., w, the amount of precipitable water in cm., then  $a_B = a^{\frac{620}{2}} a_w^{\frac{37}{4}}$ . w is best determined spectroscopically (Astrophysical Journal, 35, p. 149, 1912, 37, p. 359, 1913) other-

wise by formula derived from Hann,  $w = 2.3e_w 10^{-22000}$ ,  $e_w$  being the vapor pressure in cm. at the station, h, the altitude in meters. See Table 377 for long-wave transmission.

Fowle, Astrophysical Journal, 38, 1913.

TABLE 554. - Brightness of (radiation from) Sky at Mt. Wilson (1730 m.) and Flint Island (sea level).

| Zenith dist. of zone .  108 × mean ratio sky/sun Mt. Wilson Flint Island Mt Wilson Wilson Wilson Flint Island Mt Wilson Hill Island |   | 1500*<br>115<br>51.0 | 400<br>122<br>58.8 | 35 <sup>-50</sup> 520 128 91.5 22.5 | 50-60 <sup>0</sup><br>610<br>150<br>87.2<br>21.4 | 60-70°<br>660<br>185<br>104-3<br>29.2 | 700<br>210<br>117.6                | 80-90 <sup>0</sup><br>720<br>460<br>125.3<br>80.0 |                       | Sun 636                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------|--------------------|-------------------------------------|--------------------------------------------------|---------------------------------------|------------------------------------|---------------------------------------------------|-----------------------|------------------------|
| Altitude of sun . Sun's brightness, cal. per cm.² per min. Ditto on horizontal surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • | 3.9                  | 17.9               | 5°<br>•533<br>•046                  | 15° .900 .233                                    | 25°<br>1.233<br>.524                  | 35·3  <br>35°  <br>1·358  <br>.780 | 47 <sup>10</sup> 1.413 1.041                      | 65°<br>1.496<br>1.355 | 82½°<br>1.521<br>1.507 |
| Mean brightness on normal surface sky × Total sky radiation on horizontal cal. per per m. Total sun + sky, ditto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | -                    | -                  | .056                                | .110                                             | .385<br>.162<br>.686                  | 365<br>.189<br>.969                | .205<br>1.246                                     | 326<br>.225<br>1.581  | .240                   |

\* Includes allowance for bright region near sun. For the dates upon which the observation of the upper portion of table were taken, the mean ratios of total radiation sky/sun, for equal angular areas, at normal incidence, at the island and on the mountain, respectively, were 636 × 10-8 and 210 × 10-8, and 77 × 10-3, for the whole sky, at normal incidence, 0.57 and 0.20; on a horizontal surface, 305. One of the Smithsonian Institution, vols. II and III, and unpublished researches (Abbot).

TABLE 555. —Relative Distribution in Normal Spectrum of Sunlight and Sky-light at Mount Wilson.

Zenith distance about 50°.

|                            | μ     | μ     | μ     | μ     | μ     | μ     | C   | D   | b   | F   |
|----------------------------|-------|-------|-------|-------|-------|-------|-----|-----|-----|-----|
| Place in Spectrum          | 0.422 | 0.457 | 0.491 | 0.566 | 0.614 | 0.660 |     |     |     |     |
| Intensity Sunlight         | 186   | 232   | 227   | 211   | 191   | 166   |     |     |     |     |
| Intensity Sky-light        | 1194  | 986   | 701   | 395   | 231   | 174   |     |     |     |     |
| Ratio at Mt. Wilson        | 642   | 425   | 309   | 187   | 121   | 105   | 102 | 143 | 246 | 311 |
| Ratio computed by Rayleigh | -     | -     | _     | -     | -     | - 1   | 102 | 164 | 258 | 32  |
| Ratio observed by Rayleigh | _     | -     | _     |       | -     | -     | 102 | 168 | 291 | 36  |

### TABLE 556. - Air Masses.

See Table 174 for definition. Besides values derived from the pure secant formula, the table contains those derived from various other more complex formula, taking into account the curvature of the earth, refraction, etc. The most recent is that of Bemporad.

| Zenith Dist.                                       | 00                           | 200                          | 40 <sup>0</sup>         | 60°                                       | 70 <sup>0</sup>                           | 75°                     | 800                                  | 850                                       | 880                                  |
|----------------------------------------------------|------------------------------|------------------------------|-------------------------|-------------------------------------------|-------------------------------------------|-------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|
| Secant<br>Forbes<br>Bouguer<br>Laplace<br>Bemporad | 1.00<br>1.00<br>1.00<br>1.00 | 1.064<br>1.065<br>1.064<br>- | 1.305<br>1.306<br>1.305 | 2.000<br>1.995<br>1.990<br>1.993<br>1.995 | 2.924<br>2.902<br>2.900<br>2.899<br>2.904 | 3.864<br>3.809<br>3.805 | 5.76<br>5.57<br>5.56<br>5.56<br>5.60 | 11.47<br>10.22<br>10.20<br>10.20<br>10.39 | 28.7<br>18.9<br>19.0<br>18.8<br>19.8 |

The Laplace and Bemporad values, Lindholm, Nova Acta R. Soc. Upsal. 3, 1913; the others, Radau's Actinometric, 1877.

#### TABLES 557-558.

#### RELATIVE INTENSITY OF SOLAR RADIATION.

TABLE 557.— Mean intensity J for 24 hours of solar radiation on a horizontal surface at the top of the atmosphere and the solar radiation A, in terms of the solar radiation,  $A_0$ , at earth's mean distance from the sun.

| Date.                                                                        | Motion of<br>the sun<br>in<br>longi-                                                                            |                                                                                       |                                                                                       | RELATI                                                                                | VE MEA                                                                                 | N VERT                                                                                |                                                                                       |                                                                                       | $\left(\frac{J}{A_0}\right)$                                          | •                                                     |                                               | $\frac{A}{A_0}$                                                                                            |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------|
|                                                                              | tude.                                                                                                           | 00                                                                                    | 100                                                                                   | 200                                                                                   | 30°                                                                                    | 40°                                                                                   | <b>50</b> °                                                                           | 60°                                                                                   | 700                                                                   | 800                                                   | 900                                           |                                                                                                            |
| Jan. 1 Feb. 1 Mar. 1 Apr. 1 May 1 June 1 July 1 Aug. 1 Sept. 1 Oct. 1 Dec. 1 | 0.99<br>31.54<br>59.14<br>89.70<br>119.29<br>149.82<br>179.39<br>209.94<br>240.50<br>270.07<br>300.63<br>330.19 | 0.303<br>.312<br>.320<br>.317<br>.303<br>.287<br>.283<br>.294<br>.310<br>.317<br>.312 | 0.265<br>.282<br>.303<br>.319<br>.318<br>.315<br>.312<br>.316<br>.318<br>.308<br>.286 | 0.220<br>.244<br>.279<br>.312<br>.330<br>.334<br>.333<br>.330<br>.316<br>.289<br>.251 | o. 169<br>.200<br>.245<br>.295<br>.329<br>.345<br>.347<br>.334<br>.305<br>.261<br>.211 | 0.117<br>.150<br>.204<br>.269<br>.320<br>.349<br>.352<br>.330<br>.285<br>.225<br>.164 | 0.066<br>.100<br>.158<br>.235<br>.302<br>.345<br>.351<br>.318<br>.256<br>.183<br>.114 | 0.018<br>.048<br>.108<br>.195<br>.278<br>.337<br>.345<br>.300<br>.220<br>.135<br>.063 | 0.006<br>.056<br>.148<br>.253<br>.344<br>.356<br>.282<br>.180<br>.084 | 0.013<br>.101<br>.255<br>.360<br>.373<br>.295<br>.139 | 0.082<br>.259<br>.366<br>.379<br>.300<br>.140 | 1.0335<br>1.0288<br>1.0173<br>1.0009<br>0.9841<br>0.9666<br>0.9709<br>0.9828<br>0.9995<br>1.0164<br>1.0288 |
| Year                                                                         |                                                                                                                 | 0.305                                                                                 | 0.301                                                                                 | 0.289                                                                                 | 0.268                                                                                  | 0.241                                                                                 | 0.209                                                                                 | 0.173                                                                                 | 0.144                                                                 | 0.133                                                 | 0.126                                         |                                                                                                            |

#### TABLE 558, - Mean Monthly and Yearly Temperatures.

Mean temperatures of a few selected American stations, also of a station of very high, two of very low temperature, and one of very great and one of very small range of temperature.

|                                                                                                                                                                         | Jan.                                                                                                     | Feb.                                                                                | Mar.                                                                                 | Apr.                                                                                                              | May.                                                                                                                       | June.                                                                                                           | July.                                                                                                                     | Aug.                                                                                                             | Sept.                                                                                                                      | Oct.                                                                                                                        | Nov.                                                                                 | Dec.                                                                                                | Year.                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 3 Montreal 4 Boston 5 Chicago 6 Denver 7 Washington 8 Pikes Peak 9 St. Louis 10 San Francisco 11 Yuma 12 New Orleans 13 Massaua 14 Ft. Conger (Greenl'd) 15 Werchojansk | -21.6<br>-10.9<br>- 2.8<br>- 4.8<br>- 2.1<br>+ 0.7<br>-16.4<br>- 0.8<br>+10.1<br>+12.3<br>+12.1<br>+25.6 | -18.8 - 9.1 - 2.2 - 2.9 + 0.1 + 2.1 - 15.6 + 1.7 + 10.9 + 14.9 + 14.5 - 40.1 - 45.3 | -11.0 - 4.3 + 1.2 + 3.8 + 5.2 - 13.4 + 6.2 + 12.0 + 18.1 + 16.7 - 27.1 - 33.5 - 32.5 | + 1.9<br>+ 4.8<br>+ 7.3<br>+ 7.9<br>+ 8.3<br>+ 11.7<br>- 10.4<br>+ 12.6<br>+ 21.0<br>6 + 29.0<br>- 25.3<br>- 13.7 | +10.9<br>+12.6<br>+13.6<br>+13.4<br>+13.6<br>+17.7<br>- 5.3<br>+18.8<br>+13.7<br>+25.1<br>+23.7<br>+31.1<br>-10.0<br>+ 2.0 | +17.1<br>+18.3<br>+19.1<br>+19.7<br>+19.1<br>+22.9<br>+0.4<br>+24.0<br>+14.7<br>+26.8<br>+33.5<br>+0.4<br>+12.3 | +18.9<br>+20.5<br>+21.8<br>+22.2<br>+22.1<br>+24.9<br>+ 4.5<br>+26.0<br>+14.6<br>+33.1<br>+27.9<br>+34.8<br>+2.8<br>+15.5 | +17.6<br>+19.3<br>+20.6<br>+21.6<br>+21.2<br>+23.7<br>+ 3.6<br>+24.9<br>+14.8<br>+32.6<br>+27.5<br>+34.7<br>+1.0 | +11.6<br>+14.7<br>+16.9<br>+17.9<br>+16.6<br>+19.9<br>- 0.3<br>+20.8<br>+15.8<br>+29.1<br>+25.7<br>+33.3<br>- 9.0<br>+ 2.5 | + 4.1<br>+ 7.8<br>+ 11.1<br>+ 10.3<br>+ 13.4<br>- 5.8<br>+ 14.2<br>+ 15.2<br>+ 22.8<br>+ 21.0<br>- 31.7<br>- 22.7<br>- 15.0 | - 7.6 - 0.2 + 4.8 + 3.6 + 3.3 + 6.9 - 11.8 + 13.5 + 16.6 + 15.9 + 29.0 - 30.9 - 37.8 | -15.7<br>-7.1<br>-0.5<br>-0.0<br>+2.3<br>-14.4<br>+2.0<br>+10.8<br>+13.1<br>+27.0<br>-33.4<br>-47.0 | + 0.6<br>+ 5.5<br>+ 9.2<br>+ 9.1<br>+ 9.7<br>+ 12.6<br>- 7.1<br>+ 13.1<br>+ 13.2<br>+ 22.3<br>+ 20.4<br>+ 30.3<br>- 20.0<br>- 16.7 |

Lat., Long., Alt. respectively: (1)  $+58^{\circ}.5$ ,  $63^{\circ}.0$  W, -; (2) +49.9, 9.7.1 W, 233m.; (3) +45.5, 73.6 W, 57m.; (4) +42.3, 71.1 W, 38m.; (5) +41.9, 87.6 W, 251m.; (6) +39.7, 105.0 W, 1613m.; (7) +38.9, 97.0 W, 34m.; (8) +38.8, 105.0 W, 4308m.; (9) +38.6, 90.2 W, 173m.; (10) +37.8, 122.5 W, 47m.; (11) +32.7, 114.6 W, 43m.; (12) +30.0, 90.1 W, 16m.; (13) +15.6, 37.5 E, 9m.; (14) +81.7, 64.7 W., -; (15) +67.6, 133.8 E, 140m.; (16) -6.2, 106.8 E, 7m.

Taken from Hann's Lehrbuch der Meteorologie, 2'nd edition, which see for further data.

Note: Highest recorded temperature in world =  $57^{\circ}$  C in Death Valley, California, July 10, 1913. Lowest recorded temperature in world =  $-68^{\circ}$  C at Verkhoyansk, Feb. 1892.

#### THE EARTH'S ATMOSPHERE.

#### TABLE 559. - Miscellaneous Data. Variation with Latitude.

Optical evidence of atmosphere's extent: twilight 63 km, luminous clouds 83, meteors 200, aurora 44–360. Jeans computes a density at 170 km of 2 × 10<sup>18</sup> molecules per cm³, nearly all H (5% He); at 810 km, 3 × 10<sup>18</sup> molecules per cm³ almost all H. When in equilibrium, each gas forms an atmosphere whose density decrease with altitude is independent of the other components (Dalton's law, HaO vapor does not). The lighter the gas, the smaller the decrease rate. A homogeneous atmosphere, 76 cm pressure at sea-level, of sea-level density, would be 7001 m high. Average sea-level barometer is 74 cm; corresponding homogeneous atmosphere (truncated cone) 7700 m, weighs (base, m²) 10,120 kg; this times earth's area is 52 × 10<sup>14</sup> metric tons or 10<sup>-8</sup> of earth's mass. The percentage by vol. and the partial pressures of the dry-air components at sea-level are: N2, 78.03, 593.02 mm; O2, 20.99, 159.52; A, 0.94, 7.144; CO2, 0.03, 0.228; H2, 0.07, 0.75; Ne, 0.0012, 0.009; He, 0.0004, 0.003 (Hann). The following table gives the variation of the mean composition of moist air with the latitude (Hann).

| Equator. N2 75.99 | O <sub>2</sub> 20.44 | A. 0.92 | H <sub>2</sub> O 2.63 | CO <sub>2</sub> 0.02 |
|-------------------|----------------------|---------|-----------------------|----------------------|
| 50° N. 77.32      | 20.80                | 0.94    | 0.92                  | 0.02                 |
| 70° N. 77.87      | 20.94                | 0.94    | 0.22                  | 0.03                 |

## TABLE 560. - Variation of Percentage Composition with Altitude (Humphreys).

Computed on assumptions: sea-level temperature 11°C; temperature uniformly decreasing 6° per km up to 11 km, from there constant with elevation at -55°. J. Franklin Inst. 184, p. 388, 1917.

| Height,<br>km | Argon. | Nitrogen. | . Water vapor. | Oxygen. | Carbon dioxide. | Hydrogen. | Helium. | Total pressure, mm |
|---------------|--------|-----------|----------------|---------|-----------------|-----------|---------|--------------------|
| 140           | _      | 0.01      | _              | _       | _               | 99.15     | 0.84    | 0.0040             |
| 120           |        | 0.10      |                |         |                 | 98.74     | 1.07    | 0.0052             |
| 100           | -      | 2.95      | 0.05           | 0.11    | _               | 95.58     | 1.31    | 0.0067             |
| 80            | _      | 32.18     | 0.17           | 1.85    | _               | 64.70     | 1.10    | 0.0123             |
| 60            | 0.03   | 81.22     | 0.15           | 7.69    |                 | 10.68     | 0.23    | 0.0935             |
| 50            | 0.12   | 86.78     | 0.10           | 10.17   |                 | 2.76      | 0.07    | 0.403              |
| 40            | 0.22   | 86.42     | 0.06           | 12.61   | _               | 0.67      | 0.02    | 1.84               |
| 30            | 0.35   | 84.26     | 0.03           | 15.18   | 0.01            | 0.16      | 0.01    | 8.63               |
| 20            | 0.59   | 81.24     | 0.02           | 18.10   | 10.0            | 0.04      |         | 40.99              |
| 15            | 0.77   | 79.52     | 0.01           | 19.66   | 0.02            | 0.02      | -       | 89.66              |
| II            | 0.94   | 78.02     | 0.01           | 20.99   | 0.03            | 0.01      | _       | 168.00             |
| 5             | 0.94   | 77.89     | 0.18           | 20.95   | 0.03            | 0.01      | -       | 405.               |
| 0             | 0.93   | 77.08     | 1.20           | 20.75   | 0.03            | 0.01      | _       | 760.               |

#### TABLE 561. — Variation of Temperature, Pressure and Density with Altitude.

Average data from sounding balloon flights (65 for summer, 52 for winter data) made at Trappes (near Paris), Uccle (near Brussels), Strassburg and Munich. Compiled by Humphreys, 16 to 20 m chiefly extrapolated.

|                                                                                                                                                                                                                   |                                                                                                                                           | Summer.                                                                                                                                                                                                        |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Winter.                                                                                                                                                                             |                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Elevation,<br>km                                                                                                                                                                                                  | Temp. ° C                                                                                                                                 | Pressure,<br>mm of Hg.                                                                                                                                                                                         | Density,<br>dry air,<br>g/cm <sup>3</sup>                                                                                                                                                                                                                  | Temp. ° C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pressure,<br>mm of Hg.                                                                                                                                                              | Density,<br>dry air,<br>g/cm <sup>3</sup>                                                                                                                                                                    |
| 20.0<br>19.0<br>18.0<br>17.0<br>16.0<br>15.0<br>14.0<br>13.0<br>11.0<br>10.0<br>9.0<br>8.0<br>7.0<br>6.0<br>5.0<br>4.0<br>3.0<br>2.5<br>2.0<br>1.5<br>1.5<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | -51.0 -51.0 -51.0 -51.0 -51.0 -51.0 -51.0 -51.0 -51.0 -51.0 -51.0 -49.5 -45.5 -37.8 -29.7 -22.1 -15.1 -15.1 -15.0 +14.5 +15.0 +14.5 +15.7 | 44.1<br>51.5<br>60.0<br>70.0<br>81.7<br>95.3<br>111.1<br>129.6<br>151.2<br>176.2<br>205.1<br>237.8<br>274.3<br>314.9<br>360.2<br>410.6<br>466.6<br>528.9<br>562.5<br>598.0<br>635.4<br>674.8<br>716.3<br>760.0 | 0.000092<br>.000108<br>.000126<br>.000146<br>.000171<br>.000199<br>.000232<br>.000237<br>.000316<br>.000419<br>.000524<br>.000583<br>.000649<br>.000722<br>.000803<br>.000803<br>.000892<br>.000942<br>.000942<br>.000942<br>.000942<br>.000942<br>.000942 | -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 -57.0 | 30.5<br>46.3<br>54.2<br>63.5<br>74.0<br>87.1<br>102.1<br>119.5<br>140.0<br>102.0<br>224.1<br>260.6<br>301.6<br>347.5<br>308.7<br>455.9<br>519.7<br>554.3<br>590.6<br>670.6<br>774.0 | 0.000085<br>.000100<br>.000117<br>.000137<br>.000160<br>.000187<br>.000220<br>.000257<br>.000301<br>.000353<br>.000406<br>.000590<br>.000590<br>.000590<br>.000691<br>.00015<br>.000123<br>.001146<br>.00115 |

760 mm = 20.021 in. = 1013.3 millibars. 1 mm = 1.33322387 millibars. 1 bar = 1,000,000 dynes; this value, sanctioned by International Meteorological Conferences, is 1,000,000 times that sometimes used by physicists.

SMITHSONIAN TABLES.

#### TERRESTRIAL TEMPERATURES.

TABLE 562. - Temperature Variation over Earth's Surface (Hann).

| Latitude.                                                                         |                                                                                                                                          |                                                                              | ires ° C                                                                                                                                                 |                                                                                  | Mean                                                                                                                                                           | Land                                                                                                                                             |                                                                                                                           |                                                                                               |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Latitude.                                                                         | Jan.                                                                                                                                     | Apr.                                                                         | July.                                                                                                                                                    | Oct.                                                                             | Year.                                                                                                                                                          | Range.                                                                                                                                           | temp.                                                                                                                     | %                                                                                             |
| North pole +80° 70 60 50 40 30 20 +10 Equator -10 20 30 40 50 60 70 80 South pole | -41.0<br>-32.2<br>-26.3<br>-16.1<br>-7.2<br>+5.5<br>14.7<br>21.0<br>25.8<br>26.4<br>25.3<br>21.6<br>15.4<br>8.4<br>3.2<br>-1.2<br>(-4.3) | -28.0 -22.7 -14.0 -2.8 +5.2 13.1 20.1 25.2 27.2 26.6 25.9 24.0 18.7 12.5 5.4 | -1.0<br>+2.0<br>7.3<br>14.1<br>17.9<br>24.0<br>27.3<br>28.0<br>27.0<br>25.7<br>23.0<br>19.8<br>14.5<br>8.8<br>3.0<br>-9.3<br>-21.0<br>(-28.7)<br>(-33.0) | -24.0 -19.1 -9.3 -0.3 -0.3 -0.9 15.7 21.8 26.4 26.9 26.5 25.7 22.8 18.0 11.7 4.8 | -22.7<br>-17.1<br>-10.7<br>-11.1<br>+5.8<br>14.1<br>20.4<br>25.3<br>26.8<br>26.3<br>25.5<br>23.0<br>18.4<br>11.9<br>5.4<br>-3.2<br>-12.0<br>(-20.6)<br>(-25.0) | 40.0<br>34.2<br>33.6<br>30.2<br>25.1<br>18.5<br>12.6<br>6.1<br>1.4<br>0.9<br>3.4<br>5.5<br>7.1<br>6.6<br>5.4<br>12.5<br>19.8<br>(24.4)<br>(27.0) | -1.7<br>-1.7<br>+0.7<br>4.8<br>7.9<br>14.1<br>21.3<br>25.4<br>27.2<br>27.1<br>25.8<br>24.0<br>19.5<br>13.3<br>+6.4<br>0.0 | 20<br>53<br>61<br>58<br>45<br>43.5<br>31.5<br>24<br>22<br>20<br>4<br>20<br>71<br>100<br>(100) |

#### TABLE 563. - Temperature Variation with Depth (Land and Ocean).

Table illustrates temperature changes underground at moderate depths due to surface warming (read from plot for Tiflis, Lehrbuch der Meteorologie, Hann and Süring, 1915). Below 20–30 m (nearer the surface in tropics) there is no annual variation. Increase downwards at greater depths, 0.03 = °C per m (r° per 35 m) l.c. At Pittsburgh, 1524 m, 49.4°, .0294 per m; Oberschlesien, 2003 m, 70°, .0294 per m; or W. Virginia, 2200 m, 70°, .034° per m (Van Orstrand). Mean value outflow heat from earth's center, 0.0000172 g-cal/cm²/yec. or 54 g-cal/cm²/year (30 Laby). Open ocean temperatures: Greatest mean annual range (Schott) 40° N, 4.2° C; 30° S, 5.1°; but 10° N, only 2.2°; 50° S, 2.9°. Mean surface temp. whole ocean (Krümmel) 17.4°; all depths, 30°. Below 1 km nearly isothermal with depth. In tropics, surface 28°; at 183 m, 11°, 80% all water less than 4.4°. Deep-sea (bottom) temps. range —0.5° to +2.6°. Soundings in S. Atlantic: 0 km, 18.9°; .25 km, 15°; .5 km, 8.3°; 1 km, 3.3°; 3 km, 1.7°; 4.5 km, 0.6°.

| Depth,                                                    | Temperature, centigrade.                 |                                           |                                           |                                              |                                              |                                              |                                              |                                              |                                              |                                                    |                                             |                                            |
|-----------------------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------|---------------------------------------------|--------------------------------------------|
| m                                                         | Jan.                                     | Feb.                                      | Mar.                                      | Apr.                                         | May.                                         | June.                                        | July.                                        | Aug.                                         | Sept.                                        | Oct.                                               | Nov.                                        | Dec.                                       |
| 0<br>0.5<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0 | 1<br>4<br>6<br>9<br>11<br>14<br>15<br>15 | 4<br>6<br>8<br>10<br>12<br>13<br>14<br>14 | 10<br>9<br>8<br>9<br>10<br>12<br>12<br>13 | 14<br>13<br>12<br>11<br>11<br>11<br>12<br>13 | 21<br>18<br>15<br>14<br>13<br>13<br>12<br>13 | 29<br>23<br>20<br>18<br>16<br>14<br>13<br>13 | 32<br>26<br>24<br>21<br>10<br>16<br>14<br>14 | 32<br>28<br>26<br>23<br>21<br>17<br>16<br>14 | 24<br>24<br>23<br>22<br>21<br>18<br>16<br>15 | 16<br>18<br>18<br>18<br>18<br>18<br>18<br>17<br>16 | 9<br>12<br>14<br>15<br>16<br>17<br>17<br>16 | 4<br>6<br>10<br>12<br>14<br>15<br>16<br>16 |

#### TABLE 564.

#### GEOCHEMICAL DATA.

Eighty-three chemical elements (86 including Po, Ac and UrX<sub>2</sub>) are found on the earth. Besides the eight occurring uncombined as gases, 23 may be found native, Sb, As, Bi, C, Cu, Au, Ir, Fe, Pb?, Hg, Ni, Os, Pd, Pt, Rh, Ru, Se, Ag, S, Ta?, Te, Sn?, Zn?. Combined the elements form about 1000 known mineral species. Rocks are in general aggregates of these species. Some few (e. g., quartzite, limestone, etc.) consist of one specie. We have some knowledge of the earth to a depth of 10 miles. This portion may be divided into three parts: the innermost of crystalline or plutonic rocks, the middle, of sedimentary or fragmentary rocks, the outer of clays, gravels, etc. 93% of it is solid mater, 7% liquid, and the atmosphere amounts by weight to 0.03% of it. Besides the 9 major constituents of igneous rock (see 7th col. of table) 3 are notable by their almost universal occurrence, TiO<sub>2</sub>, P<sub>2</sub>O<sub>5</sub>, and MnO. Bo, Gl, and Sc are also widely distributed.

The density of the earth as a whole is 6.22 (Burgess): continental surface 2.67 and outer to miles of great and outer to miles of great

The density of the earth as a whole is 5.52 (Burgess); continental surface, 2.67 and outer ro miles of crust, 2.40 (Harkness). Computed from average chemical composition: outer ten miles as a whole, 2.77; northern continents 2.73; southern, 2.76; Atlantic basin, 2.83; Pacific basin, 2.88.

Data of Geochemistry, Clarke, Bul. 616, U. S. Geological Survey, 1916; Washington, J. Franklin. Inst. 190,

p. 757, 1920.

AVERAGE COMPOSITION OF KNOWN TERRESTRIAL MATTER.

|                                                                                                       | Avera                                                                                   | age compo                                        | sition.                                                                                                              |                                                                                              | Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | erage com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | position                                                                           | of lithosp                                                                       | here.                                                      |                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Atomic number and element.                                                                            | Litho-<br>sphere,<br>93%                                                                | Hydro-<br>sphere,<br>7%                          | Average including atmosphere.                                                                                        | Igneous rocks.                                                                               | Compound.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Igneous<br>rocks,<br>95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Shale,                                                                             | Sand-<br>stone,<br>0.75%                                                         | Lime-<br>stone,<br>o. 25%                                  | Weighted average.                                                                                                                                                  |
| 8 O 14 Si 13 Al 26 Fe 20 Ca 12 Mg 11 Na 19 K 1 H 22 Ti 6 C 17 Cl 35 P 16 Sa 25 Mn 38 Sr 7 N 9 Fl etc. | 47.33<br>27.74<br>7.85<br>4.50<br>3.47<br>2.46<br>2.46<br>0.22<br>0.46<br>10<br>.06<br> | 85.79 0.05 0.14 1.14 0.04 10.67 0.002 2.07 0.008 | 46.43<br>27.77<br>8.14<br>5.12<br>3.63<br>2.00<br>0.127<br>.629<br>.027<br>.055<br>—<br>.130<br>.096<br>.018<br>.096 | 47. 29<br>28. 02<br>7. 06<br>4. 56<br>3. 47<br>2. 20<br>2. 50<br>2. 47<br>0. 10<br>. 063<br> | SiO <sub>2</sub> Al <sub>1</sub> O <sub>3</sub> Fe <sub>2</sub> O <sub>3</sub> GaO MgO CaO MagO CaO MagO CaO MagO CaO MagO Coo <sub>2</sub> PaO <sub>5</sub> SO <sub>3</sub> CC Fe So <sub>3</sub> SO <sub>3</sub> CC Cl Fe MnO MnO NiO Cr <sub>2</sub> O <sub>3</sub> VaO <sub>3</sub> Li <sub>2</sub> O Cr <sub>2</sub> Coo <sub>2</sub> Coo <sub>3</sub> CC | 15-3-0<br>15-3-5<br>3-80<br>3-80<br>3-89<br>5-08<br>3-84<br>3-13<br>1-14<br>1.05<br>0.039<br>.053<br>.053<br>.078<br>.022<br>.022<br>.025<br>.022<br>.025<br>.026<br>.032<br>.030<br>.030<br>.040<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050 | \$8.10<br>15.40<br>4.02<br>2.45<br>2.44<br>3.11<br>1.30<br>3.24<br>5.00<br>.65<br> | 78.33 4.77 1.07 1.07 1.06 5.50 1.16 5.50 1.31 1.63 1.63 1.05 1.07 1.07 1.05 1.05 | 5.19 0.81 .54 7.89 42.57 .05 .33 .77 .06 41.54 .09 .05 .02 | 59.77<br>14.89<br>2.69<br>3.39<br>3.74<br>4.86<br>3.25<br>2.98<br>2.02<br>.77<br>.02<br>.70<br>.28<br>.10<br>.03<br>.06<br>.09<br>.04<br>.09<br>.025<br>.05<br>.05 |

AVERAGE COMPOSITION OF METEORITES: The following figures give in succession the element, atomic number (bracketed), and the percentage amount in stony meteorites (Merrill, Mem. Nat. Acad. Sc. 14, p. 28, 1916). The "iron" meteorites contain a much larger percentage of iron and nickel, but there is a tendency to believe that with such meteorites the composition is altered by the volatilization or burning up of the other material in passing through the air. Note the greater abundance of elements of even atomic number (97.2 per cent).

| O (8)<br>S (16)<br>Na (11)<br>C (6)<br>H (1)<br>Ru (44)<br>O (8)<br>36.53<br>1.80<br>0.15<br>0.15<br>H (1)<br>0.09<br>tr. | Fe (26) 23.32<br>Ca (20) 1.72<br>Cr (24) 0.32<br>Co (27) 0.12<br>Cu (20) Pd (46) tr. | Si (14) 18.03<br>Al (13) 1.53<br>Mn (25) 0.23<br>Ti (22) 0.11<br>Cl (17) 0.09<br>Pt (78) tr. | Mg (12) Ni (28) K (19) P (15) V (23) Ir (77) | 13.60<br>1.52<br>0.17<br>0.11<br>tr. |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|

## ACCELERATION OF GRAVITY.

## For Sea Level and Different Altitudes.

Calculated from U. S. Coast and Geodetic Survey formula, p. 134 of Special Publication No. 40 of that Bureau.  $g = 9.78039 \; (1 + 0.005294 \sin^2\phi - 0.000007 \sin^22\phi) \; \text{m}$   $g = 32.08783 \; (1 + 0.005294 \sin^2\phi - 0.000007 \sin^22\phi) \; \text{ft.}$ 

| Latitude $\phi$           | cm/sec <sup>2</sup>             | log g                                                     | ft./sec²                                    | Latitude $\phi$             | cm/sec²                                 | log g                                                              | ft./sec²                                    |
|---------------------------|---------------------------------|-----------------------------------------------------------|---------------------------------------------|-----------------------------|-----------------------------------------|--------------------------------------------------------------------|---------------------------------------------|
| 0°<br>5<br>10<br>12<br>14 | 978.039<br>.078<br>.195<br>.262 | 2.9903562<br>.9903735<br>.9904254<br>.9904552<br>.9904898 | 32.0878<br>.0891<br>.0929<br>.0951<br>.0977 | 50°<br>51<br>52<br>53<br>54 | 981.071<br>.159<br>.247<br>.336<br>.422 | 2.9917004<br>.9917394<br>.9917784<br>.9918 <b>1</b> 77<br>.9918558 | 32.1873<br>.1902<br>.1931<br>.1960<br>.1988 |
| 15                        | 978.384                         | 2. 9905094                                                | 32.0991                                     | 55                          | 981.507                                 | 2.9918934                                                          | 32.2016                                     |
| 16                        | .430                            | . 9905298                                                 | .1007                                       | 56                          | .592                                    | .9919310                                                           | .2044                                       |
| 17                        | .480                            | . 9905520                                                 | .1023                                       | 57                          | .675                                    | .9919677,                                                          | .2071                                       |
| 18                        | .532                            | . 9905750                                                 | .1040                                       | 58                          | .757                                    | .9920040                                                           | .2098                                       |
| 19                        | .585                            | . 9905985                                                 | .1057                                       | 59                          | .839                                    | .9920403                                                           | .2125                                       |
| 20                        | 978 641                         | 2.9906234                                                 | 32.1076                                     | 60                          | 981.918                                 | 2.9920752                                                          | 32.2151                                     |
| 21                        | .701                            | .9906500                                                  | .1095                                       | 61                          | .995                                    | .9921073                                                           | .2176                                       |
| 22                        | .763                            | .9906775                                                  | .1116                                       | 62                          | 982.070                                 | .9921424                                                           | .2201                                       |
| 23                        | .825                            | .9907050                                                  | .1136                                       | 63                          | .145                                    | .9921756                                                           | .2225                                       |
| 24                        | .892                            | .9907348                                                  | .1158                                       | 64                          | .218                                    | .9922079                                                           | .2249                                       |
| 25                        | 978.960                         | 2.9907649                                                 | 32.1180                                     | 65                          | 982.288                                 | 2.9922388                                                          | 32.2272                                     |
| 26                        | 979.030                         | .9907960                                                  | .1203                                       | 66                          | .356                                    | .9922689                                                           | .2295                                       |
| 27                        | .101                            | .9908275                                                  | .1227                                       | 67                          | .422                                    | .9922981                                                           | .2316                                       |
| 28                        | .175                            | .9908603                                                  | .1251                                       | 68                          | .487                                    | .9923268                                                           | .2338                                       |
| 29                        | .251                            | .9908940                                                  | .1276                                       | 69                          | .549                                    | .9923542                                                           | .2358                                       |
| 30                        | 979.329                         | 2.9909286                                                 | 32.1302                                     | 70                          | 982.608                                 | 2.9923803                                                          | 32.2377                                     |
| 31                        | .407                            | .9909632                                                  | .1327                                       | 71                          | .665                                    | .9924055                                                           | .2396                                       |
| 32                        | .487                            | .9909987                                                  | .1353                                       | 72                          | .720                                    | .9924298                                                           | .2414                                       |
| 33                        | .569                            | .9910350                                                  | .1380                                       | 73                          | .772                                    | .9924528                                                           | .2431                                       |
| 34                        | .652                            | .9910718                                                  | .1407                                       | 74                          | .822                                    | .9924749                                                           | .2448                                       |
| 35                        | 979 · 737                       | 2.9911095                                                 | 32.1435                                     | 75                          | 982.868                                 | 2.9924952                                                          | 32.2463                                     |
| 36                        | · 822                           | .9911472                                                  | .1463                                       | 76                          | .912                                    | .9925147                                                           | .2477                                       |
| 37                        | · 908                           | .9911853                                                  | .1491                                       | 77                          | .954                                    | .9925332                                                           | .2491                                       |
| 38                        | · 995                           | .9912238                                                  | .1520                                       | 78                          | .992                                    | .9925500                                                           | .2503                                       |
| 39                        | 980 · 083                       | .9912628                                                  | .1549                                       | 79                          | 983.027                                 | .9925655                                                           | .2515                                       |
| 40                        | 980.171                         | 2.9913018                                                 | 32.1578                                     | 80                          | 983.059                                 | 2.9925796                                                          | 32.2525                                     |
| 41                        | .261                            | .9913417                                                  | .1607                                       | 81                          | .089                                    | .9925929                                                           | .2535                                       |
| 42                        | .350                            | .9913812                                                  | .1636                                       | 82                          | .115                                    | .9926043                                                           | .2544                                       |
| 43                        | .440                            | .9914210                                                  | .1666                                       | 83                          | .139                                    | .9926149                                                           | .2552                                       |
| 44                        | .531                            | .9914613                                                  | .1696                                       | 84                          | .160                                    | .9926242                                                           | .2558                                       |
| 45                        | 980.621                         | 2.9915011                                                 | 32.1725                                     | 85                          | 983.178                                 | 2.9926321                                                          | 32.2564                                     |
| 46                        | .711                            | .9915410                                                  | .1755                                       | 86                          | .191                                    | .9926379                                                           | .2569                                       |
| 47                        | .802                            | .9915814                                                  | .1785                                       | 87                          | .203                                    | .9926432                                                           | .2572                                       |
| 48                        | .892                            | .9916212                                                  | .1814                                       | 88                          | .211                                    | .9926467                                                           | .2575                                       |
| 49                        | .981                            | .9916606                                                  | .1844                                       | 90                          | 983.217                                 | .9926494                                                           | .2577                                       |

To reduce log g (cm. per sec.) to log g (ft. per sec.) add log 0.03280833 = 8.5159842 - 10.

The standard value of gravity, used in barometer reductions, etc., is 980.665. It was adopted by the International Committee on Weights and Measures in 1901. It corresponds nearly to latitude 45° and sea-level.

## FREE-AIR CORRECTION FOR ALTITUDE.

-0.0003086 cm/sec<sup>2</sup>/m when altitude is in meters. -0.00003086 ft/sec<sup>2</sup>/ft when altitude is in feet.

| Altitude. | Correction.                 | Altitude. | Correction.        |
|-----------|-----------------------------|-----------|--------------------|
| 200 m.    | -0.0617 cm/sec <sup>2</sup> | 200 ft.   | -0.000617 ft./sec² |
| 300       | .0026                       | 300       | ,000026            |
| 400       | .1234                       | . 400     | ,001234            |
| 500       | . 1543                      | 500       | ,001543            |
| 600       | . 1852                      | 600       | - ,001852          |
| 700       | . 2160                      | 700       | .002160            |
| 800       | . 2469                      | 800       | .002460            |
| 900       | - 2777                      | 000       | .002777            |

#### GRAVITY.

The following more recent gravity determinations (Potsdam System) serve to show the accuracy which may be assumed for the values in Table 565, except for the three stations in the Arctic Ocean. The error in the observed gravity is probably not greater than 0.010 cm/sec², as the observations were made with the half-second invariable pendulum, using modern methods.

In recent years the Coast and Geodetic Survey has corrected the computed value of gravity for the effect of material above sea-level, the deficiency of matter in the oceans, the deficiency of density in the material below sea-level under the continents and the excess of density in the earth's crust under the ocean, in addition to the reduction for elevation. Such corrections make the computed values agree more closely with those observed. See special publication No. 40 of the U. S. Coast and Geodetic Survey entitled, "Investigations of Gravity and Isostatic Compensation upon the Intensity of Gravity," by J. F. Hayford and William Bowie, 1912.

| Name.   Latitude.   Elevation, meters.     Reduced to sea-level.     Reference.     Reduced to sea-level.     Reference.       Reduced to sea-level.     Reference.     Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Reference.   Refe |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reduced to sca-level.   Reduced to sca-level.   Reduced to sca-level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ootacamund, India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Arctic Sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

References: (1) Report 16th General Conference International Geodetic Association, London and Cambridge, 1909, 3d Vol. by Dr. E. Borráss, 1911; (2) U. S. Coast and Geodetic Survey, Special Publ. No. 40; \* (3) U. S. Coast and Geodetic Survey, Report for 1897, Appendix 6.\*

<sup>\*</sup>For references (2) and (3), values were derived from comparative experiments with invariable pendulums, the value for Washington being taken as 980.112. For the latter, Appendix 5 of the Coast and Geodetic Survey Report for 1001, and pages 25 and 244 of the 3d vol. by Dr. E. Borráss in 1011 of the Report of the 16th General Conference of the Intern. Geodetic Association, London and Cambridge, 1002. As a result of the adjustment of the net of gravity base stations throughout the world by the Central Bureau of the Intern. Geodetic Association, the value of the Washington base station was changed to 88 u.S. ington base station was changed to 980.112.

## ACCELERATION OF GRAVITY (g) IN THE UNITED STATES.

The following table is a bridged from one for 210 stations given on pp. 50 to 52. Special Publication No. 40, U. S. Coast and Geodetic Survey. The observed values depend on relative determinations and on adopted value of 980.112 for Washington (Coast and Geodetic Survey Office, see footnote, Table 566). There are also given terms necessary in reducing the theoretical value (Table 565) to the proper elevation (free-air) and to allow for topography and isostatic compensation by the Hayford method (see introductory note to Table 566).

To a certain extent, the greater the bulk of material below any station, the less its average density. This phenomenon is known as isostatic compensation. The depth below sea-level to which this compensation extends is about 96 km, Below this depth any mass element is subject to equal (fluid) pressure from all directions.

| Station.   Latitude.   Longitude.   Elevation, meters.   Correction. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rey West, Fla                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Corr | ection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| New Orleans, La.                                                     | Station.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Latitude.                                                                                                                                                                                                                                                                                                                                                                                                                  | Longitude.                                                                                                                                                                                                                                                                                                                                                                                                | tion,                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | and com-<br>pensation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                      | New Orleans, La. Austin, Tex. university. El Paso, Tex. Yuma, Ariz. Charleston, S. C Birmingham, Ala. Arkansas City, Ark. Atlanta, Ga. capitol. Beaufort, N. C. Little Rock, Ark. Memphis, Tenn. Charlotte, N. C. Las Vegas, N. Mex. Knoxville, Tenn. Grand Canyon, Ariz. Cloudland, Tenn. Grand Canyon, Ariz. Cloudland, Tenn. Mount Hamilton, Cal., Obs'y. Richmond, Va. San Francisco, Cal. St. Louis, Mo., university. Pike's Peak, Col. Colorado Springs, Col. Washington, D. C., Bur. St'ds. Wallace, Kans. Green River, Utah. Cincinnati, Ohio, obs'y. Baltimore, Md., university. Terre Haute, Ind. Denver, Col., university obs'y. Philadelphia, Pa., university. Wheeling, W. Va. Princeton, N. J. Pittsburg, Pa. Salt Lake City, Utah. New York, N. Y., university. Weneling, W. Va. Princeton, N. J. Pittsburg, Pa. Salt Lake City, Utah. New York, N. Y., university. Worcester, Mass. Cambridge, Mass. observatory Ithaca, N. Y., university. Fort Dodge, Iowa. Grand Rapids, Mich. Madison, Wis., university. Boise, Idaho. Mitchell, S. Dak. university. Bosies, Idaho. Mitchell, S. Dak. university. Lancaster, N. H. Grand Canyon, Wyo. Minneapolis, Minn. Calais, Me. Miles City, Mont. Seattle. Wash. university. | 29 57.0 30 17.2 31 46.3 32 43.3 32 43.3 32 43.3 33 30.8 33 36.5 33 45.0 34 43.1 34 45.0 35 8.8 35 13.8 35 57.7 36 5.3 37 20.4 37 32.2 37 47.5 38 50.7 38 50.7 38 50.7 38 50.7 38 50.7 38 50.7 38 50.7 38 50.7 39 17.8 47.5 40 21.0 40 21.0 40 21.0 40 21.0 40 21.0 40 48.5 40 58.4 41 47.4 42 16.5 40 58.4 41 47.4 42 22.8 42 27.1 40 48.5 40 58.4 41 47.4 42 16.5 40 58.4 41 30.8 42 22.8 43 30.8 44 58.7 45 11.2 46 24.2 | 90 4.2 97 44.2 106 29.0 114 37.0 86 48.8 91 12.2 84 23.3 76 39.8 92 16.4 90 3.3 80 50.8 105 12.1 83 55. 112 6.8 82 7.9 121 38.6 77 26.1 122 25.7 90 12.2 105 2.0 104 49.0 77 4.0 101 35.4 110 9.9 84 25.3 76 37.3 87 23.8 104 556.9 75 11.7 43.8 81 36.6 111 53.8 87 36.1 71 48.5 71 74.8 88 36.1 71 48.5 71 77.8 76 20.0 94 11.4 85 40.8 89 24.0 91 11.4 85 40.8 89 24.0 91 11.4 85 40.8 89 24.0 91 11.4 | 189 1146 54 6 179 44 11 89 80 228 1960 280 849 1189 1189 11005 1143 11005 1243 1005 1243 1005 1243 1005 1243 101 1038 116 205 64 235 1322 38 1311 210 236 270 382 1311 210 236 270 382 381 281 2170 236 270 382 381 283 381 283 381 283 381 283 381 383 383 384 385 385 | 979. 324<br>979. 324<br>979. 529<br>979. 546<br>979. 536<br>979. 600<br>979. 524<br>979. 721<br>979. 721<br>979. 749<br>979. 721<br>979. 740<br>979. 721<br>979. 403<br>979. 721<br>979. 403<br>979. 965<br>980. 001<br>979. 965<br>980. 001<br>979. 636<br>980. 004<br>980. 105<br>980. 105<br>980. 241<br>980. 278<br>980. 324<br>980. 324<br>980. 325<br>980. 331<br>980. 337<br>980. 337<br>980. 337<br>980. 337<br>980. 597<br>980. 631<br>980. 597<br>980. 631<br>980. 597<br>980. 631<br>980. 597<br>980. 597 |      | +.013001016 +.011016 +.017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017017 |

TABLE 568. - Length of Seconds Pendulum at Sea Level and for Different Latitudes.

|                                                  | Length in cm                                                                      | Log.                                                                                              | Length in inches.                                                                          | Log.                                                                                              |                                                    | Length in cm                                                                      | Log.                                                                                              | Length in inches.                                                                 | Log.                                                                                              |
|--------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 0<br>5<br>10<br>15<br>20<br>25<br>30<br>35<br>40 | 99.0961<br>.1000<br>.1119<br>.1310<br>.1571<br>99.1894<br>.2268<br>.2681<br>.3121 | 1.996056<br>.996074<br>.996126<br>.996210<br>.996324<br>1.996465<br>.996629<br>.996810<br>.997002 | 39.0141<br>.0157<br>.0204<br>.0279<br>.0382<br>39.0509<br>.0656<br>.0819<br>.0992<br>.1171 | 1.591222<br>.591239<br>.591292<br>.591375<br>.591490<br>1.591631<br>.591794<br>.591976<br>.592168 | 50<br>55<br>60<br>65<br>70<br>75<br>80<br>85<br>90 | 99.4033<br>-4475<br>-4891<br>-5266<br>-5590<br>99.5854<br>-6047<br>-6168<br>-6207 | 1.997401<br>.997594<br>.997776<br>.997939<br>.998081<br>1.998196<br>.998280<br>.998332<br>.998350 | 39.1351<br>.1525<br>.1689<br>.1836<br>.1964<br>39.2068<br>.2144<br>.2191<br>.2207 | 1.592566<br>.592760<br>.592941<br>.593104<br>.593246<br>1.593361<br>.593446<br>.593498<br>.593515 |

Calculated from Table 565 by the formula  $l = g/\pi^2$ . For each 100 ft. of elevation subtract 0.00053 cm or 0.000375 in. or 0.000313 ft. This table could also have been computed by either of the following formulae derived from the gravity formula at the top of Table 565.

antity formula at the top of Table 305.  $l = 0.990961(1+0.005294 \sin^2\phi - 0.00007 \sin^22\phi)$  meters  $l = 0.990961 + 0.005246 \sin^2\phi - 0.00007 \sin^22\phi$  meters  $l = 39.014135(1+0.005294 \sin^2\phi - 0.00007 \sin^22\phi)$  inches.  $l = 39.014135 + 0.206535 \sin^2\phi - 0.000276 \sin^22\phi$  inches.

#### TABLE 569. - Miscellaneous Geodetic Data.

6378388 ± 18 meters; 3963.339 miles. 6356909 meter Equatorial radius = a = 6378206 meters; = b = 6356584 meters; Polar semi-diameter Survey. Reciprocal of flattening =  $\frac{a}{a-b}$  = 295.0 3949.992 miles. 297.0 ± 0.5 Square of eccentricity  $= e^2 = \frac{a^2 - b^2}{a^2} = 0.006768658$  $0.0067237 \pm 0.0000120$ 

Difference between geographical and geocentric latitude  $= \phi - \phi' = 688.2242'' \sin 2\phi - 1.1482'' \sin 4\phi + 0.0026'' \sin 6\phi$ .

Mean density of the earth = 5.5247 ± 0.0013 (Burgess Phys. Rev. 1902).

Continental surface density of the earth = 2.67 Mean density outer ten miles of earth's crust = 2.40 Harkness. See also page 423.

Constant of gravity, 6.66 × 10-8 c.g.s. units.

Rigidity =  $n = 8.6 \times 10^{11}$  c.g.s. units. Viscosity =  $e = 10.9 \times 10^{16}$  c.g.s. units (comparable to steel).

Moments of inertia of the earth; the principal moments being taken as A, B, and C, and C the greatest:

$$\frac{C-A}{C}=\text{0.003}26521=\frac{\text{I}}{306.259};$$
 
$$C-A=\text{0.001064767}\ Ea^2;$$
 
$$A=B=\text{0.325029}\ Ea^2;$$
 
$$C=\text{0.326094}\ Ea^3;$$
 where  $E$  is the mass of the earth and  $a$  its equatorial semi-diameter.

## TERRESTRIAL MAGNETISM.

#### Secular Change of Declination.

Changes in the magnetic declination between 1810, the date of the earliest available observations, and 1920. Based on tables in "Distribution of the Magnetic Declination in Alaska and Adjacent Regions in 1970" and "Distribution of the Magnetic Declination in the United States for January 11, 1915," published by the United States Coast and Geodetic Survey. For a somewhat different set of stations, see 6th Revised Edition of the Smithsonian Physical Tables.

| State.        | Station.                | 1810         | 1820           | 1830     | 1840           | 1850         | 1860    | 1870    | 1880                           | 1800    | 1000   | 1010    | 1020           |
|---------------|-------------------------|--------------|----------------|----------|----------------|--------------|---------|---------|--------------------------------|---------|--------|---------|----------------|
| Julie.        |                         |              |                |          |                |              |         |         |                                |         |        |         | 1920           |
|               |                         | 0            | 0              | ۰        | ۰              | 0            | 0       | 0       | 0                              | 0       | 0      | 0       | 0              |
| Ala.          | Ashland<br>Tuscaloosa   |              | 6.2E           | 6.1 E    | 5.9 E<br>7.2 E | 5.6E         | 5.2 E   | 4.7E    | 4.1 E                          | 3.4E    | 3.0E   | 2.9 E   | 3.0E<br>4.6E   |
| Alas.         | Sitka                   |              | 7.3 E          | 7.3 E    | _              | 0.9 E        | 28.7 E  | 20.0E   | 29.3 E                         | 2Q.5E   | 2Q.7E  | 30.2E   | 30.4 E         |
|               | Kodiak                  | _            | =              | <u> </u> | -              | _            | 26.2 E  | 25.7 E  | 25.2 E                         | 24.8 E  | 24.5 E | 24.2 E  | 24.2 E         |
|               | Unalaska<br>St. Michael | _            |                | _        |                |              |         |         | 19.6E                          |         |        |         |                |
| Ariz.         | Holbrook                | _            | _              | _        | _              | 13.5 E       | 13.7 E  | 13.8E   | 13.6 E                         | 13.4E   | 13.5 E | 14.1E   | 2I.OE<br>14.5E |
| Ark.          | Prescott                | 7 7 F        | 7 OF           | 8 OF     | 8 OF           | 13.3E        | 13.0 E  | 13.7 E  | 13.7E<br>6.5E                  | 13.0 E  | 13.7E  | 14.4E   | 14.9E          |
|               | Danville                |              | -              | 9.3E     | 9.3 E          | 9.2E         | 9.0E    | 8.6E    | 8.1E                           | 7.6 E   | 7.2 E  | 7.4E    | 7.7E           |
| Cal.          | Bagdad Mojave           | T2 4 F       | T2 0 F         | 13.1 E   | 13.5 E         | 13.9E        | 14. I E | 14.3 E  | 14.4E                          | 14.4E   | 14.6E  | 15.3E   | 15.7E          |
|               | Modesto                 | 13.8 E       | 14.2 E         | 14.7 E   | 15.1 E         | 15.5 E       | 15.8E   | 16. I E | 16. I E                        | 16.2 E  | 16.6E  | 17.3 E  | 17.7E          |
| Colo.         | Redding                 | 15.6 E       | 16.1 E         | 16.6E    |                |              |         |         | 18.2E                          |         |        |         |                |
|               | Ouray                   |              | _              | _        | _              | 15.0E        | 15.2 E  | 15.2 E  | 15.0E                          | 14.6E   | 14.6 E | 15.1 E  | 15.5 E         |
| Conn.<br>Del. | Hartford<br>Dover       | 5. IW        | 5.5W<br>1.0W   |          |                | 7.5W<br>3.4W |         |         | 9.4W<br>5.3W                   |         |        |         |                |
| D. C.         | Washington              | 0.5 E        |                |          |                | 1.0W         |         |         | 3.0W                           |         |        |         |                |
| Fla.          | Miami                   | 5.8E         | 5.7 E          |          |                |              | 3.9 E   | 3.3 E   | 2.7 E                          | 2.2E    | 1.7 E  | 1.5 E   | 1.5E           |
|               | Bartow Jacksonville     | 5.0 E        | 5.4 E<br>5.0 E |          |                | 4.4E<br>4.2E |         | 3.2 E   | 2.6 E                          | 1.8E    |        |         |                |
| C-            | Tallahassee<br>Millen   | 5.8E         | 5.8E           | 5.7 E    | 5.5 E          | 5.2 E        | 4.8 E   | 4.2 E   | 3.6E                           | 3.0E    | 2.5 E  | 2.4 E   | 2.4E           |
| Ga.           | Americus                | 5.0 E        | 4.8E<br>6.0E   |          |                | 3.9E         | 3.4E    | 2.7 E   | 2.1 E<br>3.5 E                 | 1.5E    | 0.9E   | 0.7E    | 0.5E           |
| Haw.          | Honolulu                |              | _              | =        | _              | 9.4E         | 9.4E    | 9.5 E   | 9.8E                           | IO. I E | 10.4E  | 10.7 E  | II.IE          |
| Idaho         | Pocatello<br>Boise      | _            |                |          |                | 17.7E        | 17.9E   | 18.8E   | 17.9E<br>18.8E                 | 17.8 E  | 17.9E  | 18.5 E  | 18.8E          |
| m.            | Pierce                  |              |                |          | 20.2 E         | 20.6 E       | 21.0 E  | 21.2 E  | 21.1 E                         | 21.2 E  | 21.4 E | 22.0E   | 22.2E          |
| 111.          | Kankakee Rushville      | 7.7 E        | 8.0E           | 8. I E   | 8.0E           | 0.3E         | 5.8E    | 5.3 E   | 4.8E<br>6.4E                   | 4.IE    | 3.5E   | 3.3E    | 3.1E           |
| Ind.<br>Iowa  | Indianapolis            | 5.0 E        | 5.1 E          | 5.0E     | 4.7 E          | 4.3 E        | 3.8E    | 3.3E    | 2.7E<br>7.5E                   | 2. I E  | 1.5 E  | I.IE    | 0.9E           |
| Iowa          | Walker<br>Sac City      |              | 8.9E           | 9. I E   | 9.1E           | 8.9E         | 8.0E    | 8.2E    | 7.5E<br>9.6E                   | 8.8E    | 0.2E   | 0.2E    | 0.2E<br>8.6E   |
| Kans.         | Emporia                 | _            | =              |          |                | 11.5E        | II.4E   | II.2E   | 10.8E                          | 10.2 E  | 9.QE   | IO. I E | 10.3E          |
| Ky.           | Ness City<br>Manchester | 3.5E         | 3.6 E          | 3.4E     | 2 TE           | 2 8 E        | 2 2 E   | T 6E    | 11.9E                          | 0 3 E   | 0 2W   | 0 6w    | 0 8w           |
|               | Louisville              | 4.8 E        | 4.9E           | 4.8E     | 4.6E           | 4.3 E        | 3.8E    | 3.2 E   | 2.5E                           | 1.9E    | 1.5 E  | 1.3 E   | 1.2E           |
| La.           | Winfield                | 8 6 P        | 800            | 0.9E     | 0.8E           | 0.5E         | 0.0E    | 5.5E    | 2.5E<br>4.8E<br>7.6E           | 4.2 E   | 3.9E   | 3.7E    | 3.8E           |
| Me.           | Eastport                | 13.0W        |                |          |                |              |         |         |                                |         |        |         |                |
|               | Bangor<br>Portland      |              |                | 13.2W    | 13.9W          | 14.7W        | 15.4W   | 15.QW   | 16.4W                          | 10.7W   | 17. IW | 17.8W   | 18.8W          |
| Md.           | Baltimore               | O.QW         | I.IW           | I.4W     | I.OW           | 2.4W         | 3. IW   | 3.8w    | 4.4W                           | 5.ow    | 5.6w   | 6.3W    | 7.OW           |
| Mass.         | Boston<br>Pittsfield    | 7.3W<br>5.7W | 7.8w           | 8.4W     | g. IW          | g.8w         | 10.5W   | II.OW   | 11.5W                          | 12.0W   | 12.6W  | 13.4W   | 14.4W          |
| Mich.         | Marquette               | _            | 6.7E           | 6.7E     | 6.5E           | 6. I E       | 5.5E    | 4.7 E   | 10.0W<br>3.8E                  | 3.0E    | 2.4 E  | 2. I E  | I.7E           |
|               | Grand Haven             | and the same | 2 6 E          | 2 4 12   | OTE            | 7 6 E        | TAR     | 0 2 5   | 0 5337                         | T 0337  | 7 8337 | 0 2337  | 2 8337         |
| Minn.         | St. Paul.               | _            | 11.6E          | 11.8E    | 4.0E           | 4.4E         | 3.8E    | 3.1 E   | 2.4E<br>10.3E<br>10.5E<br>9.0E | 0.5E    | 8.QE   | 8.8E    | 8.7E           |
|               | Marshall<br>Hibbing     | _            | -              | _        | 11.7E          | 11.6E        | 11.4E   | 11.0E   | 10.5 E                         | 9.8E    | 9.3E   | 9.4E    | 9.4E           |
|               | Bagley                  |              |                |          |                |              |         |         |                                |         |        |         |                |
| Miss.         | Meridian<br>Vicksburg   | 7.3E         | 7.4E           | 7.5 E    | 7.4E           | 7.2 E        | 6.9E    | 6.5E    | 5.9 E                          | 5.2 E   | 4.8 E  | 4.9 E   | 5.1 E          |
|               | vicasourg               | 0.2E         | 6.4 E          | 8.5 E    | 8.4E           | 8.2 E        | 8.0 E   | 7.6 E   | 7.1 E                          | 0.4E    | 0.0E   | O.IE    | 6.4 E          |
|               | Vicksburg               | 8.2E         | 8.4E           | 8.5E     | 8.4E           | 8.2E         | 8.0E    | 7.6 E   | 7.1 E                          | 6.4E    | 6.0E   | 6.1E    | 6              |

# Secular Change of Declination (concluded).

| -              |               |          |         |         |        |         |              |         |              |         |         |         |              |
|----------------|---------------|----------|---------|---------|--------|---------|--------------|---------|--------------|---------|---------|---------|--------------|
|                |               |          |         |         |        |         |              |         |              |         |         |         | 1            |
| State.         | Station.      | 1810     | 1820    | 1830    | 1840   | 1850    | 1860         | 1870    | 1880         | 1800    | 1000    | 1010    | 1020         |
| Dearte.        | October 10111 | 2010     | 2020    | 2030    | 2040   | 1030    | -000         | 10,0    | 1000         | 1090    | 1900    | 1910    | 1920         |
|                |               |          |         |         | _      |         |              |         |              |         |         |         |              |
|                |               |          |         |         |        |         |              |         |              |         |         |         |              |
|                |               |          |         |         |        |         |              |         |              |         |         |         | 3 1          |
| Mo.            | Hermann       |          | 0.2E    | 0.3E    | 0.2 E  | O.O.E   | 8.7E         | 8.3E    | 7.7 E        | 7.0 E   | 6 5 E   | 6 5 E   | 6.6E<br>8.0E |
| 1410.          |               |          | 9.55    | 9.32    | 9.22   | 9.02    | - 4 -        | 0.02    | 0            | 7.01    | 0.3 5   | 0.8 =   | 0.02         |
| 1              | Sedalia       |          | 9.9 E   | 10.0 E  | 10.0 E | 9.9E    | 9.0E         | 9.3E    | 8.7E         | 8.0E    | 7.0E    | 7.8E    | 8.0E         |
| Mont.          | Miles City    |          |         |         |        | 77 6 E  | 17.8E        | 17 7 E  | T7 4 E       | 16 OF   | 16 AF   | 77 2 E  | 177 6E       |
| Mont.          |               |          |         |         |        | 17.02   | 17.00        | 11.12   | 17.42        | 10.91   | 10.9 E  | 17.3 E  | 17.02        |
|                | Lewistown     |          |         |         | 19.5 E | 119.8 E | 20. I E      | 20. I E | [19.9E       | 19.0 E  | 19.0 E  | 20. I E | 20.4 E       |
| 3              | Ovando        |          |         | _       | 20 4 E | 20 8 E  | 27 7 7       | 27 2 E  | OT TE        | 20 0 5  | OT TE   | 24 6 0  | 22.0E        |
|                |               |          |         |         |        |         |              |         |              |         |         |         |              |
| Nebr.          | Albion        |          | 12.4 E  | 12.7 E  | 12.9 E | 12.9 E  | 12.8 E       | [12.5 E | 12.0E        | 11.4E   | II.OE   | II.2E   | II.5E        |
|                | Valentine     |          |         | -       | -      | TA TE   | TATE         | TO OF   | T2 4 E       | T2 8 E  | T2 6 F  | 12 SE   | 13.1 E       |
|                | A 11:         |          |         |         |        | 1-4     | -4 2         | 23.92   | 1-3.4        | 12.01   | 12.0 E  | 12.02   | 123.12       |
|                | Alliance      |          |         | _       |        | 115.4E  | 15.4E        | 15.3 E  | 14.8 E       | 14.3 E  | 14.2 E  | 14.5E   | 14.8E        |
| Nev.           | Elko          |          |         | _       | _      | 77 2 E  | 17.6 E       | T7 7 E  | T7 7 E       | T7 6 F  | 77 8 E  | 78 47   | TROF         |
| TACA.          |               | _        |         |         |        | 1, 3 5  | 11.02        | 1.1.1.  | 1.1.12       | 17.01   | 17.0E   | 10.4 E  | 10.9E        |
|                | Hawthorne     | _        |         |         |        | 10.2 E  | 16.6E        | 10.8 E  | 117.0 E      | 17.0E   | 17.3 E  | 18.0 E  | 18.4E        |
| N. H.          | Hanover       | 7. IW    | 7.5W    | 8.2W    | 8.gw   | 0 778   | TO EW        | TT TW   | TT 6W        | T2 0W   | T 2 638 | T 2 230 | 14.2W        |
| 14. 11.        | Tranover      |          |         |         |        |         |              |         |              |         |         |         |              |
| N. J.          | Trenton       | 2.8W     | 3. IW   | 3.5W    | 4. IW  | 4.7W    | 5.4W         | 0.0W    | 0.7W         | 7.2W    | 7.8W    | 0.0W    | 9.4W         |
| N. J.<br>N. M. | Santa Rosa    |          |         |         | -      | 72 7 E  | 12.8E        | 72 7 E  | TO AF        | TOOF    | TTAF    | T2 FF   | TOOF         |
| 14. 111.       |               |          |         |         |        |         |              |         |              |         |         |         |              |
|                | Laguna        | _        | _       | _       |        |         |              |         |              |         |         |         | 14.1E        |
| N. Y           | Albany        | 5.7W     | 5.9W    | 6.4W    | 7.ow   |         |              |         |              |         |         |         | 12.5W        |
| 21. 2          |               |          |         | J.4W    |        |         |              | 9.211   | 6.00         | -5.5W   | 20.91   | 0       | 1-2.3"       |
|                | Elmira        | 2.2W     | 2.4W    | 2.8W    | 3.3W   |         |              |         | 6.3W         |         |         |         |              |
|                | Buffalo       | I.OW     | I.IW    | I.4W    | I.QW   | 2.4W    | 3.2W         |         |              |         |         |         |              |
| N O            |               |          |         |         |        | 2.411   | 3.211        | 3.00    | 4.711        | 3.41    | J.9W    | 0.50    |              |
| N. C.          | Newbern       | 1.7E     | 1.6E    | 1.3 E   |        |         | 0.3W         |         |              |         |         |         | 4.0W         |
|                | Greensboro    | 3.5E     | 3.4E    | 3.1 E   | 2.7 E  | 2.2E    | 1.6E         | LOE     | 0.3E         | 0.3W    | 0.8w    | I.3W    | 1.8w         |
|                |               |          |         |         |        |         |              |         |              |         |         |         |              |
|                | Asheville     | 4.2E     | 4.2 E   | 4.0 E   | 3.0 E  | 3.1 E   | 2.6E         | 2.0 E   | 1.3 E        | 0.7E    | 0.2 E   | O. 2W   |              |
| N. D.          | Jamestown     |          |         | IA.OE   | 14.2 E | 14.2 E  | 14.0 E       | 13.7 E  | 13.2 E       | 12.5E   | 12.2E   | 12.4 E  | 12.5E        |
| 1 2.           | Bismarck      |          |         | 14.02   | 24.00  | -2      | - 6          | 12.72   | -3.6         | 22.32   | 22.22   |         |              |
|                |               |          |         |         |        |         |              |         |              |         |         |         | 15.2E        |
| 1              | Dickinson     |          |         |         |        | 17.7E   | 17.7E        | 17.5E   | ITT. TE      | 16.5E   | 16.3 E  | 16.7 E  | 16.0E        |
| Ohio           | Canton        | 0.00     | 0.07    |         |        |         |              |         |              |         |         |         |              |
| Onio           |               | 2.3 E    | 2.2E    | 2.0 E   |        |         | 0.6E         |         |              |         |         |         |              |
| 3              | Urbana        | 4.4E     | 4.4E    | 4.3 E   | 4.0E   | 3.5 E   | 3.0E         | 2.4E    | 1.8E         | T.TE    | 0.5E    | O. I E  | 0.3W         |
| Okla.          | Okmulgee      | التاطنية | الاختنا | 4.0 -   |        | 70 07   | IO. I E      | 0 0 0   | 0 # 70       | 0 = 11  | 0 5 7   | 9 0 12  | 0.2E         |
| Okla.          | Okinuigee     |          |         |         | _      | 10.2 E  | 10. 1 E      | 9.0E    | 9.5 E        | 9.1E    | 0.7 E   | 0.9E    | 9.2E         |
| 1              | Enid          |          |         |         |        | II.2E   | II.2E        | II.OE   | 10.6 E       | 10.2 E  | 0.8E    | IO. I E | 10.5E        |
| Ore.           | Sumpter       |          |         |         |        |         |              |         |              |         |         |         |              |
| Oic.           |               | الحال    |         |         |        |         | 19.7E        |         |              |         |         |         |              |
|                | Detroit       | 16.7 E   | 17.4E   | 18.0 E  | 18.6E  | IQ. 2 E | 19.7 E       | 20. I E | 20.3 E       | 20.5E   | 20.8 E  | 21.6 E  | 21.0E        |
| Pa.            | Wilkes-Barre  | 2.3W     |         |         |        |         |              |         | 6.ow         |         |         | 8.ow    | 8.8w         |
| I a.           |               |          | 2.5W    | 2.9W    | 3.4W   |         | 4.7W         | 5.3W    |              |         |         |         |              |
|                | Lockhaven     | I.4W     | 1.5W    | I.QW    | 2.4W   | 3.ow    | 3.6w         | 4.3W    | 5.0W         | 5.6W    | 6.3W    | 7.0W    | 7.7W         |
|                | Indiana       | 0.6E     | 0.5E    |         |        |         |              |         |              |         |         |         |              |
|                |               |          | 0.5 E   | 0.3 E   | 0.1W   | 0.7W    | 1.3W         | 2.0W    | 2.0W         | 3.3W    | 3.9W    |         |              |
| P. R.          | San Juan      |          |         |         | _      |         |              |         |              |         | I.OW    | 2.0W    | 3.4W         |
| R. I.          | Newport       | 6.6w     | 7.IW    | 7.7W    | 8.4W   | Q.IW    | 0 8377       | TO 231  | 10.8w        | TT 9337 |         |         |              |
| 1. 1.          |               |          |         |         |        |         |              |         |              |         |         |         |              |
| S. C.          | Marion        | 3.4E     | 3.3E    | 3.0 E   | 2.6E   | 2. I E  | 1.6E         | O.QE    | 0.3E         | 0.4W    | I.OW    | 1.4W    | 1.8w         |
| 1 1            | Aiken         | 4.8E     | 4.7 E   | 4.5 E   |        | 2 7 1   | 3.1E         | 2 5 5   | TOF          | TOF     | 075     | OIE     | O.IE         |
| 100            |               |          | 4.72    | 4.3 5   |        |         |              |         |              |         |         |         |              |
| S. D.          | Huron         | -        |         | _       | 13.2 E | 13.2 E  | 13.0E        | 12.7 E  | 12.3 E       | 11.7 E  | II.2E   | II.5E   | 11.7E        |
|                | Murdo         |          |         |         |        | TE OF   | 14.9E        | TA 7 E  | T4 2 E       | T2 7 F  | T2 1 E  | 12 7 F  | TZ OF        |
|                |               |          |         |         | 3      |         |              |         |              |         |         |         |              |
|                | Rapid City    | _        |         | -       |        | 10.4E   | 16.4E        | 10.3 E  | 15.8 E       | 15.3 E  | 15.1 E  | 15.4E   | 15.7E        |
| Tenn.          | Knoxville     | 3.8E     | 3.8E    | 3.6E    | 3.3 E  | 2.9E    | 2.4 E        | 1.8E    | I.IE         | 0.5%    | 0.0     | 0.3W    | 0.5W         |
|                | Shelbyville   |          |         |         | 6 0 7  | 5 05    |              |         |              |         |         |         |              |
|                |               | 6.4E     | 6.5 E   |         |        |         | 5.5 E        | 4.9E    | 4.3 E        | 3.7E    | 3.2E    | 3.0E    | 2.9E         |
|                | Huntingdon    | 7.3 E    | 7.4 E   | 7.4E    | 7.3 E  | 7.0E    | 0.6E         | O.IE    | 5.5E<br>8.4E | 4.QE    | 4.4 E   | 4.3E    | 4.4E         |
| Tex.           | Houston       | 7.5      | 9.0E    |         |        |         | 0 2 5        | 8 0 5   | 8 4 5        | 7 0 5   | 7 7 7   | 8.1E    | 8.6E         |
| I CA.          |               |          | 9.UE    |         |        | 9.4E    | 9.3 E        | 0.9E    | 8.4E<br>9.2E | 7.9E    | 7.7E    | 0.1 E   | O.OE         |
|                | San Antonio   |          |         | 9.5E    | 9.7E   | 9.8E    | 9.7E         | 9.5E    | 9.2E         | 8.7E    | 8.7E    | 9.2E    | 9.7E         |
|                | Pecos         |          |         |         | TI OF  | TTTE    | II.IE        | TIOF    | TO SE        | TO AT   | TO 2 F  | TO 8 F  | TT 2 F       |
| 111            | 387-41        |          |         |         |        |         |              |         |              |         |         |         |              |
|                | Wytheville    | 2.9E     | 2.9E    | 2.7E    | 2.4E   | 2.0 E   | I.4E         | 0.8E    | O.IE         | 0.5W    | I.IW    | 1.5W    | 1.9W         |
| Wash.          | Wilson Creek  |          | -       | _       |        | 27 2 5  | 21 6 F       | 21 8 E  | 2T OF        | 22 TE   | 22'AF   | 22 OF   | 23.3 E       |
| 11 4011.       |               | _        |         |         | }      |         |              |         |              |         |         |         |              |
|                | Seattle       | 18.9E    | 19.5 E  | 20. I E | 20.7 E | 21.2E   | 21.0 E       | 22.0 E  | 22.2 E       | 22.4E   | 22.8 E  | 23.5 E  | 23.8E        |
| W. Va.         | Sutton        | I.QE     | T.8 E   | 1.6E    | T.2F   | 0.85    | 0.2 E        | O AW    | T T33/       | T 8337  | 2 430   | 2.00    | 3.4W         |
| 33750          |               |          |         |         |        |         |              |         |              |         |         |         |              |
| Wis.           | Shawamo       | _        | 7.4E    | 7.4E    | 7.3E   | 7.0E    | 6.5E         | 5.9E    | 5.0E         | 4.3 E   | 3.7E    | 3.4E    | 3.1 E        |
|                | Floydada      |          |         |         | -      | TT.2F   | TT 3 F       | TT 2 E  | TOOF         | TO AF   | TO 3 F  | TO 7 F  | II.IE        |
| Utah           |               |          |         |         |        |         |              |         |              |         |         |         |              |
|                | Manti         | الأحرال  |         | -       | -      |         |              |         |              |         |         |         | 17.5E        |
| Vt.            | Rutland       | 6.6w     | 7. IW   | 7.6w    | 8 2W   |         | 9.8w         |         |              |         |         |         |              |
|                | Diebersed.    |          |         |         |        |         |              |         |              |         |         |         |              |
| Va.            | Richmond      | 0.8E     | 0.6E    | 0.3E    | O.IW   | O.OW    | 1.2W         | 1.8W    | 2.5W         | 3.IW    | 3.7W    | 4.2W    | 4.9W         |
|                | Lynchburg     | 1.6E     | 1.5E    | 1.3E    | OOF    | OSE     | O. TW        | 0.70    | T.AW         | 2.0W    | 2.6W    | 3. TW   | 3.7W         |
|                |               |          |         |         | 0.9E   | 0.35    | 0.1W         | J. 7W   | 1 . 4 **     | 2.01    | 2.0W    | 3.14    | 3./11        |
|                | Stanley       |          | 8.9E    | 9.0E    | 9.0E   | 8.8 E   | 0.IW<br>8.4E | 7.8E    | 7.IE         | 0.3 E   | 5.8E    | 5.0 E   | 5.4E         |
| Wyo.           | Douglas       | _        |         | _       | _      | 15.8E   | 16.0 F       | 16.0F   | 15.8E        | T5.3 E  | 15.2 E  | 15.7 E  | 16.0E        |
| 1130.          |               |          |         |         |        | -4 0 E  | -0.0E        | -0.0E   | -6.0 E       | -6.3E   | -6 6 -  | 20.15   | 20.01        |
|                | Green River   |          |         | _       | -      | 10.8 E  | 17.0 E       | 17.0E   | 10.8 E       | 10.5E   | 10.0E   | 17.2 E  | 17.5E        |
|                |               |          |         |         |        |         |              |         |              |         | 3       | 1       |              |
|                |               |          |         |         |        |         |              |         |              |         | -       |         |              |
|                |               |          |         |         |        |         |              |         |              |         |         |         |              |

# TABLE 571. — Dip or Inclination.

This table gives for the epoch January 1, 1915, the values of the magnetic dip, I, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column.

| λ        | ۰            |              | 0            | 0            | 0            | 0            | 0            | 0              | 0            | 0            | 0            | 0            | 0    |
|----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|--------------|--------------|--------------|--------------|------|
| φ        | 65           | 70           | 75           | 80           | 85           | 90           | 95           | 100            | 105          | 110          | 115          | 120          | 125  |
|          | 0            | 0            | 0            | 0            | 0            | 0            | ۰            | ٥              | 0            | ۰            | 0            | 0            | 0    |
| 19       |              | _            | 50.4         | 49.4<br>51.0 | 48.5         | 47.2<br>50.1 | 46.1<br>48.9 | 45. I<br>47. 9 | 44.I<br>46.9 | _            | _            | _            | = 1  |
| 23       |              | _            | 55.1         | 54.2         | 53.7<br>56.1 | 52.8<br>55.2 | 51.7         | 50.4<br>53.1   | 49.7         | 48.7         | 50.1         |              |      |
| 25<br>27 | _            | =            | 57.6<br>59.8 | 59.3         | 58.3         | 57.6         | 56.6         | 55.6           | 54.6         | 53.6         | 52.4         | -            |      |
| 29<br>31 |              | 63.6         | 61.9         | 61.3<br>63.4 | 60.5<br>62.8 | 59.7<br>62.0 | 58.9<br>61.1 | 57.9<br>60.1   | 56.8<br>59.0 | 55.8<br>58.1 | 54.6<br>57.0 | 53.8<br>55.8 | _    |
| 33       | _            | 65.4         | 65.6         | 65.3         | 64.7         | 64.0<br>66.1 | 63.I<br>65.3 | 62.4           | 61.2         | 60.2<br>62.2 | 59.I<br>61.0 | 58.0<br>60.1 | _    |
| 35<br>37 |              | 69.1         | 69.2         | 69.0         | 68.9         | 68.1         | 67.3         | 66.4           | 65.2         | 64.2         | 63.1         | 62.1         |      |
| 39       | -            | 70.6         | 70.8         | 70.6         | 70.6         | 70.0         | 69.2         | 68.3<br>70.1   | 67.3<br>60.0 | 66.2<br>68.0 | 64.9<br>66.6 | 63.9         | 62.5 |
| 4I<br>43 | _            | 72.2<br>73.6 | 72.3<br>74.0 | 72.5<br>74.I | 72.2         | 71.7<br>73.5 | 72.6         | 71.8           | 70.7         | 69.7         | 68.4         | 65.5         | 64.3 |
| 45<br>47 | 74·3<br>75.6 | 74.9         | 75·4<br>76.8 | 75.5<br>76.9 | 75·5<br>76.9 | 75.2         | 74·5<br>76.1 | 73·5<br>75·1   | 72.4         | 71.3         | 70.2<br>71.7 | 69.0<br>70.5 | 67.8 |
| 49       | 76.5         | 77-4         | 78.2         | 78.5         | 78.5         | 78.3         | 77.7         | 76.7           | 75-7         | 74.5         | 73.2         | 72.1         | 71.2 |

#### TABLE 572. - Secular Change of Dip.

Values of the magnetic dip for places designated by the north latitudes and longitudes west of Greenwich in the first two columns for January 1 of the years in the heading. The degrees are given in the third column and the minutes in the succeeding columns.

| Latitude.                  | Long-<br>itude.                 |                                 | 1855                            | 1860                            | 1865                            | 1870                            | 1875                            | 1880                            | 1885                            | 1890                            | 1895                            | 1900                            | 1905                             | 1910                               | 1915                          |
|----------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------|------------------------------------|-------------------------------|
| 25<br>25<br>30<br>30<br>30 | 80<br>110<br>83<br>100<br>115   | 55+<br>49+<br>60+<br>57+<br>54+ | ,<br>32<br>14<br>66<br>41<br>47 | ,<br>32<br>26<br>70<br>46<br>56 | ,<br>31<br>36<br>73<br>55<br>63 | ,<br>29<br>45<br>74<br>64<br>65 | ,<br>26<br>52<br>73<br>67<br>64 | ,<br>23<br>61<br>67<br>62<br>66 | ,<br>18<br>67<br>57<br>57<br>69 | ,<br>18<br>74<br>51<br>58<br>73 | ,<br>22<br>82<br>53<br>65<br>79 | ,<br>31<br>92<br>63<br>74<br>85 | ,<br>43<br>102<br>78<br>87<br>90 | ,<br>73<br>116<br>101<br>103<br>96 | ,<br>108<br>132<br>126<br>120 |
| 35<br>35<br>35<br>35<br>40 | 80<br>90<br>105<br>120<br>75    | 66+<br>65+<br>62+<br>59+<br>71+ | 67<br>67<br>-<br>56<br>82       | 68<br>61<br>-<br>59<br>82       | 67<br>53<br>61<br>78            | 64<br>46<br>47<br>61<br>73      | 55<br>39<br>45<br>60<br>65      | 45<br>34<br>39<br>59<br>55      | 36<br>28<br>39<br>61<br>43      | 31<br>27<br>39<br>64<br>33      | 30<br>27<br>43<br>66<br>27      | 32<br>29<br>49<br>66<br>24      | 40<br>38<br>57<br>66<br>24       | 55<br>51<br>65<br>66<br>29         | 72<br>66<br>72<br>66<br>36    |
| 40<br>40<br>40<br>45<br>45 | 90<br>105<br>120<br>65<br>75    | 70+<br>67+<br>64+<br>74+<br>75+ | 30 —                            | 31<br>—<br>112<br>87            | 34<br>—<br>103<br>83            | 37<br>56<br>51<br>94<br>78      | 36<br>53<br>52<br>82<br>73      | 32<br>51<br>54<br>70<br>61      | 29<br>51<br>57<br>59<br>50      | 26<br>51<br>58<br>48<br>41      | 25<br>52<br>58<br>37<br>31      | 26<br>56<br>54<br>30<br>26      | 30<br>50<br>50<br>26<br>24       | 38<br>63<br>45<br>22<br>24         | 48<br>66<br>42<br>18<br>24    |
| 45<br>45<br>45<br>49<br>49 | 90<br>105<br>122.5<br>92<br>120 | 74+<br>72+<br>68+<br>77+<br>72+ | 86<br><br>45<br>80<br>          | 86<br>                          | 86<br><br>47<br>78<br>25        | 84<br>50<br>76<br>24            | 82<br>50<br>74<br>23            | 80<br>30<br>49<br>74<br>22      | 73<br>28<br>47<br>69<br>21      | 68<br>27<br>44<br>66<br>20      | 66<br>26<br>40<br>65<br>20      | 64<br>26<br>37<br>63<br>19      | 65<br>25<br>33<br>60<br>17       | 68<br>25<br>27<br>58<br>12         | 72<br>2.4<br>21<br>60<br>06   |

#### TABLE 573. - Horizontal Intensity.

This table gives for the epoch January r, r, r, the horizontal intensity, H, expressed in cgs units, corresponding to the longitudes in the heading and the latitudes in the first column.

| λ                          | 65°  | 70°                  | 75°                                  | 80°                                  | 85°                                  | 90°                                  | 95°                                  | 100°                                      | 105°                                 | 110°                                 | II5°                                 | 120°                                 | 125°                         |
|----------------------------|------|----------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------|
| 19<br>21<br>23<br>25       |      | _                    | . 297<br>. 290<br>. 283<br>. 273     | .303<br>.296<br>.288                 | .311<br>.303<br>.294<br>.286         | .316<br>.310<br>.301<br>.292         | .321<br>.315<br>.307<br>.298<br>.288 | .325<br>.320<br>.311<br>.302              | .325<br>.320<br>.311<br>.303         |                                      | .304                                 | 1111                                 |                              |
| 27<br>29<br>31<br>33<br>35 |      | .237                 | .264<br>.253<br>.242<br>.230<br>.217 | .271<br>.258<br>.247<br>.236<br>.223 | .276<br>.265<br>.254<br>.242<br>.232 | .281<br>.272<br>.260<br>.248<br>.235 | .277<br>.266<br>.255                 | . 292<br>. 283<br>. 272<br>. 259<br>. 249 | .295<br>.286<br>.276<br>.264<br>.251 | .296<br>.287<br>.279<br>.270<br>.256 | .297<br>.288<br>.280<br>.271<br>.260 | . 288<br>. 280<br>. 272<br>. 263     |                              |
| 37<br>39<br>41<br>43<br>45 |      | .191<br>.178<br>.166 | .193<br>.178<br>.166                 | .196<br>.182<br>.165                 | .213<br>.200<br>.185<br>.171         | .222<br>.206<br>.191<br>.174<br>.160 | .227<br>.212<br>.197<br>.182<br>.167 | .234<br>.218<br>.204<br>.189              | .240<br>.226<br>.212<br>.198<br>.185 | .244<br>.232<br>.218<br>.207<br>.192 | .250<br>.237<br>.226<br>.214<br>.202 | .253<br>.242<br>.232<br>.221<br>.210 | .245<br>.236<br>.227<br>.216 |
| 47                         | .135 | .143                 | .139                                 | .139                                 | .141                                 | .142                                 | .136                                 | .144                                      | .168                                 | . 180<br>. 164                       | .187                                 | .195                                 | . 189                        |

#### TABLE 574. - Secular Change of Horizontal Intensity.

Values of horizontal intensity,  $H_1$  in cgs units for the places designated by the latitude and longitude in the first two columns for January  $\pi$  of the years in the heading.

| Lat.                                                     | Long.                                                           | 1860                                                              | 1865                                                                | 1870                                                                                   | 1875                                                                                   | 1880                                                                                   | 1885                                                                                   | 1890                                                                                   | 1895                                                                                   | 1900                                                                                   | 1905                                                                                   | 1910                                                                                             | 1915                                                                                   |
|----------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 25<br>25<br>30<br>30<br>30<br>35<br>35<br>35<br>35<br>40 | 80<br>110<br>83<br>100<br>115<br>80<br>90<br>105<br>120<br>75   | .3086<br>.3216<br>.2775<br>—<br>.2996<br>.2367<br>—<br>—<br>.1876 | .3073<br>.3202<br>.2768<br>.2978<br>.2981<br>.2362<br>              | .3057<br>.3187<br>.2760<br>.2959<br>.2966<br>.2357<br>.2460<br>—                       | .3042<br>.3168<br>.2752<br>.2941<br>.2949<br>.2355<br>.2460<br>.2619<br>.2714          | .3025<br>.3153<br>.2743<br>.2924<br>.2934<br>.2351<br>.2459<br>.2607<br>.2702          | .3008<br>.3141<br>.2732<br>.2908<br>.2922<br>.2347<br>.2456<br>.2598<br>.2690          | .2990<br>.3128<br>.2720<br>.2894<br>.2910<br>.2340<br>.2453<br>.2589<br>.2679          | .2970<br>.3115<br>.2705<br>.2882<br>.2899<br>.2335<br>.2445<br>.2582<br>.2670          | .2949<br>.3102<br>.2686<br>.2867<br>.2890<br>.2325<br>.2435<br>.2572<br>.2663<br>.1921 | .2917<br>.3088<br>.2658<br>.2847<br>.2880<br>.2306<br>.2418<br>.2559<br>.2657          | . 2870<br>. 3063<br>. 2614<br>. 2817<br>. 2863<br>. 2272<br>. 2387<br>. 2537<br>. 2645<br>. 1889 | .2810<br>.3030<br>.2560<br>.2780<br>.2840<br>.2230<br>.2350<br>.2510<br>.2030<br>.1860 |
| 40<br>40<br>45<br>45<br>45<br>45<br>45<br>45<br>49<br>49 | 90<br>105<br>120<br>65<br>75<br>90<br>105<br>122.5<br>92<br>120 | .2080<br>.1504<br>.1487<br>.1648<br>.2183<br>.1336<br>.1846       | .2076<br><br>.1515<br>.1490<br>.1646<br><br>.2175<br>.1334<br>.1845 | .2073<br>.2269<br>.2439<br>.1527<br>.1497<br>.1644<br>.1895<br>.2166<br>.1330<br>.1844 | .2070<br>.2263<br>.2430<br>.1543<br>.1508<br>.1641<br>.1894<br>.2158<br>.1327<br>.1841 | .2069<br>.2258<br>.2422<br>.1557<br>.1518<br>.1639<br>.1893<br>.2148<br>.1325<br>.1836 | .2068<br>.2254<br>.2416<br>.1568<br>.1529<br>.1637<br>.1891<br>.2140<br>.1324<br>.1831 | .2066<br>.2250<br>.2409<br>.1579<br>.1540<br>.1636<br>.1888<br>.2134<br>.1324<br>.1826 | .2062<br>.2245<br>.2402<br>.1590<br>.1548<br>.1637<br>.1885<br>.2130<br>.1327<br>.1824 | .2054<br>.2237<br>.2396<br>.1598<br>.1552<br>.1636<br>.1881<br>.2128<br>.1330<br>.1825 | .2042<br>.2227<br>.2390<br>.1600<br>.1552<br>.1633<br>.1875<br>.2128<br>.1336<br>.1825 | .2019<br>.2210<br>.2381<br>.1596<br>.1543<br>.1620<br>.1864<br>.2125<br>.1330<br>.1823           | .1990<br>.2190<br>.2370<br>.1590<br>.1530<br>.1600<br>.1850<br>.2120<br>.1320<br>.1820 |

#### TABLE 575. - Total Intensity.

This table gives for the epoch January 1, 1915, the values of the total intensity, F, expressed in cgs units corresponding to the longitudes in the heading and the latitudes in the first column.

| λφ                                             | 65°  | 70° | 75°                                                                                                  | 80°                                                                                                  | 85°                                                                                                          | 90°                                                                                                                          | 95°                                                                          | 100°                                                                                                         | 105°                                                                                                                 | 110° | II5° | 120°                                                                  | 125° |
|------------------------------------------------|------|-----|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------|------|-----------------------------------------------------------------------|------|
| 19 21 23 25 27 20 31 33 35 5 37 39 41 43 45 47 | .588 |     | .466<br>.478<br>.495<br>.509<br>.525<br>.537<br>.548<br>.557<br>.562<br>.577<br>.585<br>.602<br>.607 | .466<br>.480<br>.492<br>.513<br>.531<br>.537<br>.555<br>.576<br>.586<br>.590<br>.605<br>.605<br>.611 | .469<br>.482<br>.497<br>.513<br>.525<br>.538<br>.556<br>.566<br>.584<br>.592<br>.605<br>.620<br>.619<br>.622 | .465<br>.483<br>.498<br>.512<br>.524<br>.539<br>.554<br>.566<br>.580<br>.595<br>.602<br>.602<br>.603<br>.613<br>.626<br>.631 | .463<br>.479<br>.495<br>.510<br>.523<br>.536<br>.550<br>.564<br>.577<br>.588 | .461<br>.477<br>.488<br>.503<br>.517<br>.533<br>.546<br>.559<br>.574<br>.585<br>.590<br>.605<br>.613<br>.618 | .453<br>.468<br>.481<br>.494<br>.509<br>.522<br>.536<br>.548<br>.557<br>.572<br>.586<br>.592<br>.592<br>.612<br>.617 |      |      | .488<br>.498<br>.5128<br>.528<br>.541<br>.550<br>.570<br>.586<br>.584 |      |

#### TABLE 576. - Secular Change of Total Intensity.

Values of total intensity, F, in cgs units for places designated by the latitudes and longitudes in the first two columns for January  $\mathbf{r}$  of the years in the heading.

| Lat.     | Long. | 1855   | 1860   | 1865   | 1870     | 1875   | 1880   | 1885   | 1830   | 1895   | 1900   | 1905   | 1910   | 1915             |
|----------|-------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|------------------|
| 0        | 0     |        |        |        |          |        |        |        |        |        |        |        |        |                  |
| 25       | 80    | . 5476 | - 5453 | - 5427 | . 5396   | . 5363 | . 5324 | . 5285 | - 5253 | .5227  | . 5208 |        | . 5160 | .5131            |
| 25       | IIO   | .4941  | .4946  | .4941  | -4933    | .4914  | . 4906 | .4900  | . 4889 | . 4884 | . 4879 | .4876  | .4861  | .4836            |
| 30       | 83    | - 5758 | - 5755 | .5608  | - 5735   | .5716  | . 5678 | .5625  | -5584  | -5559  | - 5549 | .5534  | .5510  | . 5471           |
| 30       | 115   | . 5210 | .5216  | . 5205 | · 5595   | .5567  | ·5523  | .5479  | · 5455 | . 5450 | . 5002 | . 5441 | .5068  | · 5399           |
| 3-       | 5     | . 55   | . 5    | 132-3  |          |        | 139    | . 3    | . 3    | . 5094 | . 5-9- |        | . 5    | . 5 - 4 -        |
| 35       | 80    | .6101  | . 6090 | . 6075 | .6048    | . 6008 | - 5955 | .5910  | . 5873 | . 5856 | . 5838 | . 5823 | . 5796 | . 5756           |
| 35       | 90    | -      | _      | -      | - 5993   | . 5966 | . 5946 | .5914  | . 5904 | . 5885 | . 5868 |        | . 5834 | . 5800           |
| 35<br>35 | 105   |        |        | _      | F 4 F 77 | .5720  | .5675  | . 5656 | . 5636 | . 5634 | . 5630 |        | . 5604 | .5567            |
| 40       | 75    | .6183  | .6193  | .6196  | · 5457   | .5428  | .5401  | .5383  | . 5369 | . 5356 | .5342  | .5330  | .5948  | .5892            |
|          |       |        |        |        |          |        |        |        | ,      | 1004/  |        |        |        |                  |
| 40       | 90    |        | .6236  |        | .6246    | .6233  | .6200  | .6190  | .6169  | .6151  | .6133  | .6118  | . 6089 | .6052            |
| 40       | 105   | _      |        | _      | .6040    | .6011  | . 5988 | - 5978 | .5967  | - 5958 | • 5955 | - 5944 | .5012  | .5871            |
| 40       | 65    | .6161  | .6150  | .6140  | .5739    | .5720  | .5709  | .5707  | .5692  | . 5676 | . 5647 | .5021  | .5581  | . 5546           |
| 45       | 75    | .6369  | .6347  | .6330  | .6320    | .6329  | .6281  | .6247  | .6228  | .6180  | .6171  | .6157  | .6121  | .6070            |
|          |       |        |        |        |          |        |        | - 17   |        |        |        |        |        |                  |
| 45       | 90    |        | .6552  | .6544  | .6522    |        | .6474  |        | .6377  | .6366  |        | .6344  | .6315  | ,6264            |
| 45<br>45 | 105   | .6037  | .6010  | .6010  | .6000    | F079   | .6296  | .6276  | .6261  | .6245  | .6232  | .6206  | .6170  | .6118            |
| 45       | Q2    | .6616  | .6597  | .6578  | .6540    |        | .5944  | .5913  | . 5883 | . 5855 | .5837  | . 5820 | .5784  | · 5745<br>· 6349 |
| 49       | 120   |        | .6121  | .6107  | .6008    | .6083  | .6061  | .6039  | .6017  | .6010  | .6008  | -5997  | .5963  | . 5922           |

#### TABLE 577. - Agonic Line.

The line of no declination appears to be still moving westward in the United States, but, as the line of no annual change is only a short distance to the west of it, it is probable that the extreme westerly position will soon be reached.

| Lat.                   | Lo                                   | ngitudes                             | of the ago                           | nic line fo                          | or the year                          | ırs                                  |
|------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| N.                     | 1800                                 | 1850                                 | 1875                                 | 1890                                 | 1905                                 | 1915                                 |
| 25                     | 0                                    | •                                    | 0                                    | 75.5                                 | ° 76.1                               | 77-4                                 |
| 30                     |                                      | _                                    | _                                    | 78.6                                 | 79.7                                 | 80.0                                 |
| 35<br>6<br>7<br>8      | 75.2<br>76.3<br>76.7<br>76.9         | 76.7<br>77.3<br>77.7<br>78.3<br>78.7 | 79.0<br>79.7<br>80.6<br>81.3<br>81.6 | 79.9<br>80.5<br>82.2<br>82.6<br>82.2 | 81.7<br>82.8<br>83.5<br>83.6<br>83.6 | 82.7<br>84.4<br>84.0<br>84.1<br>83.9 |
| 40<br>I<br>2<br>3<br>4 | 77.0<br>77.9<br>79.1<br>79.4<br>79.8 | 79·3<br>80.4<br>81.0<br>81.2         | 81.6<br>81.8<br>82.6<br>83.1<br>83.3 | 82.7<br>82.8<br>83.7<br>84.3<br>84.9 | 84.0<br>84.6<br>84.8<br>85.0<br>85.5 | 84.3<br>85.1<br>85.3<br>85.4<br>85.8 |
| 45<br>6<br>7<br>8<br>9 |                                      |                                      | 83.6<br>84.2<br>85.1<br>86.0<br>86.5 | 85.2<br>84.8<br>85.4<br>85.9<br>86.3 | 86.0<br>86.4<br>86.4<br>86.5<br>87.2 | 86.2<br>86.3<br>86.6<br>87.2<br>88.0 |

#### TABLE 578. - Mean Magnetic Character of Each Month in the Years 1906 to 1917.\*

Means derived from daily magnetic characters based upon the following scale: o, no disturbance; 1, moderate disturbance, and 2, large disturbance.

| Year.  1906 1907 1908 1909 1910 1911 1912 1913 | Jan.  0.45 0.69 0.64 0.76 0.58 0.78 0.42 0.51 | Feb.  0.90 0.83 0.71 0.63 0.71 0.89 0.49 0.53 | 0.68<br>0.58<br>0.87<br>0.79<br>0.81<br>0.78<br>0.45 | Apr.  0.63 0.55 0.68 0.49 0.68 0.76 0.45 0.54 | May.  0.58 0.72 0.82 0.72 0.72 0.70 0.47 0.45 | June.  0.56 0.67 0.66 0.54 0.53 0.47 0.45 | July.  0.69 0.67 0.49 0.53 0.55 0.61 0.41 | Aug.  0.63 0.66 0.77 0.65 0.81 0.53 0.49 0.46 | Sept.  0.79 0.68 0.89 0.70 0.80 0.50 0.47 0.58 | Oct.  0.59 0.71 0.53 0.69 0.96 0.59 0.46 0.57 | Nov.  0.55 0.61 0.60 0.49 0.77 0.49 0.45 0.45 | Dec. 0.71 0.53 0.47 0.58 0.76 0.45 0.43 0.36 | Year<br>Mean.<br>0.65<br>0.66<br>0.68<br>0.62<br>0.72<br>0.63<br>0.46<br>0.48 |
|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------|
| 1914                                           | 0.46                                          | 0.50                                          | 0.62                                                 | 0.50                                          | 0.37                                          | 0.52                                      | 0.61                                      | 0.60                                          | 0.53                                           | 0.64                                          | 0.60                                          | 0.46                                         | 0.54                                                                          |

<sup>\*</sup>Compiled from annual reviews of the "Caractère magnétique de chaque jour" prepared by the Royal Meteorological Institute of the Netherlands for the International Commission for Terrestrial Magnetism. The number of stations supplying complete data for the above years were respectively, 30, 32, 36, 38, 34, 39, 43, 42, 37, 35, 35, 50ata from Sitka, Ekaterinburg, Stonyhurst, Wilhelmshaven, Potsdam-Seddin, De Bilt, Greenwich, Kew, Val Joyeux, Pola, Cheltenham, Honolulu, Bombay, Porto Rico, and Buitenzorg were employed for all of the years.

# RECENT VALUES OF THE MAGNETIC ELEMENTS AT MAGNETIC OBSERVATORIES.

(Compiled by the Department of Terrestrial Magnetism, Carnegie Institution of Washington.)

|                                  |                      |                               |                       |                                   | Magnetic                            | elements | 3.             |                            |
|----------------------------------|----------------------|-------------------------------|-----------------------|-----------------------------------|-------------------------------------|----------|----------------|----------------------------|
| Place.                           | Latitude.            | Longitude.                    | Middle<br>of<br>year. |                                   | To allow at an                      | Inter    | nsity (cg      | s units).                  |
|                                  |                      |                               | year.                 | Declination.                      | Inclination.                        | Hor'l.   | Ver'l.         | Total.                     |
| Davidson                         | 0 /                  | o /                           |                       | 0 /                               | o /                                 | -6.      |                |                            |
| Pavlovsk                         | 59 41 N<br>57 03 N   | 30 29 E<br>135 20 W           | 1907                  | 1 09.9 E<br>30 24.0 E             | 70 37.7 N<br>74 26.0 N              | .1650    | .4694          | · 4975<br>· 5805           |
| Rude Skov                        | 55 51 N              | 60 38 E<br>12 27 E<br>49 08 E | 1907                  | 10 35.5 E<br>8 44.3 W             | 70 52.2 N<br>68 50.6 N              | .1762    | .5081          | .5378                      |
| Kasan                            | 55 19 N              | 3 12 W                        | 1912                  | 8 09.1 E<br>17 54.9 W             | 69 17.3 N<br>69 37.3 N              | .1802    | .4765          | .5094<br>.4831             |
| Stonyhurst                       | 53 51 N              | 2 28 W<br>8 00 E              | 1915                  | 16 38.0 W<br>11 28.2 W            | 68 41.4 N<br>67 30.7 N              | .1734    | .4446          | -4772                      |
| Potsdam                          | 52 23 N              | 13 04 E<br>13 01 E            | 1916                  | 8 o7.6 W<br>8 o8.9 W              | 66 27.1 N<br>66 24.1 N              | .1870    | .4290          | · 4735<br>· 4680<br>· 4680 |
| Irkutsk<br>De Bilt               | 52 16 N              | 104 16 E<br>5 11 E            | 1905                  | 1 58.1 E<br>12 22.6 W             | 70 25.0 N<br>66 46.5 N              | .2001    | . 5625         | - 5970                     |
| Valencia                         | 51 56 N              | 10 15 W<br>10 20 E            | 1913                  | 20 19.6 W                         | 68 og. 2 N                          | .1789    | .4314          | . 4694<br>. 4808           |
| Bochum                           | 51 20 N              | 7 14 E                        | 1905                  | 10 40.3 W<br>11 39.4 W            | 66 -6 -5 -7                         |          | =              | =                          |
| Kew                              | 51 28 N              | 0 19 W                        | 1915<br>1916          | 15 18.4 W<br>14 46.9 W            | 66 56.6 N<br>66 52.8 N              | .1846    | .4338<br>.4332 | ·4714<br>·4710             |
| Uccle                            | 50 48 N<br>50 46 N   | 4 21 E<br>16 14 E             | 1911                  | 13 13.9 W<br>6 58.2 W             | 66 co.1 N                           | .1902    | · 4273         | . 4677                     |
| Beuthen                          | 50 00 N              | 18 55 E<br>5 05 W             | 1908                  | 6 12.3 W<br>17 24.2 W             | 66 26.6 N                           | . 1830   | .4312          | -4704                      |
| Prague                           | 50 05 N<br>50 04 N   | 14 25 E<br>19 58 E            | 1912                  | 7 50.3 W<br>5 03.3 W              | 64 18.4 N                           | =        | _              |                            |
| Val Joyeux                       | 48 49 N              | 2 OI E<br>11 37 E             | 1913                  | 13 59.2 W<br>9 23.8 W             | 64 38.9 N<br>63 06.2 N              | . 1974   | .4167          | .4611                      |
| Kremsmünster<br>O'Gyalla (Pesth) | 48 03 N              | 14 08 E<br>18 12 E            | 1904                  | 9 02.4 W<br>6 17.5 W              |                                     | .2106    | - 4000         | .4561                      |
| Udessa                           | 46 26 N I            | 30 46 E<br>13 51 E            | 1910                  | 2 2 5 0 W                         | 62 26.9 N<br>60 05.1 N              | .2171    | .4161          | .4693                      |
| Agincourt (Toronto)              | 43 47 N<br>42 42 N   | 70 I6 W                       | 1916                  | 7 39.0 W<br>6 33.4 W<br>12 44.8 W | 74 43.5 N                           | .2217    | . 3853         | · 4445<br>· 6068           |
| Tiflis                           | 41 43 N              | 2 53 E<br>44 48 E             | 1913                  | 3 09.1 E                          | 56 51.1 N                           | .2522    | .3761          | . 4528                     |
| Ebro (Tortosa)                   | 40 49 N              | 14 15 E<br>0 31 E             | 1911                  | 12 51.6 W                         | 56 11.7 N<br>57 47.5 N<br>58 34.7 N | . 2330   | .3698          | .4371                      |
| Baldwin *                        | 40 12 N<br>38 47 N   | 8 25 W<br>95 10 W             | 1915                  | 15 57.5 W<br>8 34.0 E             | 08 50.2 N                           | . 2305   | ·3773<br>.5596 | .4422<br>.6001             |
| San Fernando                     | 38 44 N<br>36 28 N   | 76 50 W<br>6 12 W             | 1916                  | 6 07.6 W<br>14 51.7 W             | 70 49.9 N<br>54 26 6 N              | .1934    | .5662          | . 5889                     |
| Tokio. Tucson.                   | 35 41 N<br>32 15 N   | 139 45 E<br>110 50 W          | 1912<br>1916          | 5 03.4 W<br>13 44.4 E<br>2 59.6 W | 48 53.7 N<br>59 26.1 N              | .3000    | .3438          | .4563<br>.5322             |
| Dehra Dun                        | 31 19 N<br>30 19 N   | 78 03 E                       | 1909                  | 2 18.8 E                          | 45 34.9 N<br>44 22.9 N              | .3323    | .3391          | ·4747                      |
| Barrackpore †                    | 29 52 N<br>22 46 N   | 31 20 E<br>88 22 E            | 1913                  | 2 17.0 W<br>0 32.2 E              | 40 47.6 N<br>30 58.9 N              | .3003    | .2592          | .3967                      |
| Honolulu                         | 22 18 N<br>21 19 N   | 114 10 E<br>158 04 W          | 1016                  | 0 13.8 W<br>0 43.8 E              | 30 51.8 N<br>39 29.2 N              | .3716    | .2220          | . 4328                     |
| Alihág                           | 18 56 N<br>18 38 N   | 96 27 E<br>72 52 E            | 1914                  | 0 02.6 E<br>0 40.6 E              | 23 06.1 N<br>24 21.1 N              | .3898    | .1663          | . 4238                     |
| Viennes                          | 18 00 N<br>14 36 N   | 65 26 W<br>121 10 E           | 1916                  | 3 19.4 W                          | 50 56.7 N                           | . 2315   | .1669          | .4047                      |
| Kodaikánal<br>Batavia-Buitenzorg | 10 14 N<br>6 11 S    | 77 28 E<br>106 49 E           | 1914                  | 0 40.9 E<br>1 17.1 W              | 16 18.2 N<br>4 11.2 N               | .3820    | .0275          | .3981                      |
| St. Paul de Loanda               | 8 48 S<br>13 48 S    | 13 13 E                       | 1912                  | 0 47.3 E<br>16 12.3 W             | 31 19.4 S<br>35 32.2 S              | .3068    | .2232          | .4229                      |
| Tananarive                       | 18 55 S              | 171 46 W<br>47 32 E           | 1916                  | 9 59.9 E<br>9 29.7 W              | 29 54.5 S<br>54 05.7 S              | .2533    | . 2034         | .4080                      |
| Pilar                            | 20 06 S<br>31 40 S   | 57 33 E<br>63 53 W            | 1916                  | 9 47.6 W<br>8 40.4 E              | 52 54.6 S                           | . 2320   | .3069          | .3847                      |
| Christchurch                     | 33 27 S<br>43 32 S   | 70 42 W<br>172 37 E           | 1909                  | 13 57.9 E<br>16 44.8 E            | 25 41.5 S<br>29 57.2 S<br>67 59.8 S | .2241    | .5546          | .5982                      |
| New Year's Island<br>Orcadas     | 54 45 S ‡<br>60 45 S | 64 03 W‡<br>42 32 W           | 1906                  | 15 41.6 E<br>4 46.5 E             | 50 03.6 S<br>54 26.0 S              | .2717    | -3244          | .4231                      |
|                                  |                      |                               |                       | - 43.3 23                         | 3, 20.00                            | +2334    | •3544          | - 4357                     |

<sup>\*</sup> Baldwin Obs'y replaced by Tucson Obs'y, Oct. 1909; mean given for Jan.—Oct. '09.
\*\* Replaced Zi-ka-wei Obs'y, 1908. † Observations discontinued Apr. 26, 1915.
‡ Provisional values taken for position of Port Cork, p. 298, American Practical Navigator, 1914 edition.

# APPENDIX.

## DEFINITIONS OF UNITS.

ACTIVITY. Power or rate of doing work; unit, the watt.

AMPERE. Unit of electrical current. The international ampere, "which is one-tenth of the unit of current of the C. G. S. system of electro-magnetic units, and which is represented sufficiently well for practical use by the unvarying current which, when passed through a solution of nitrate of silver in water, and in accordance with accompanying specifications, deposits silver at the rate of 0.00111800 of a gram per second."

The ampere = 1 coulomb per second = 1 volt through 1 ohm = 10-1 E. M. U. = 3 X

10° E. S. U.\*

Amperes = volts/ohms = watts/volts = (watts/ohms) $\frac{1}{2}$ .

Amperes  $\times$  volts = amperes  $^2 \times$  ohms = watts. ANGSTROM. Unit of wave-length = 10-10 meter.

ATMOSPHERE. Unit of pressure.

English normal = 14.7 pounds per sq. in. = 29.929 in. = 760.18 mm Hg. 32° F.

= 760 mm of Hg. 0° C = 29.922 in. = 14.70 lbs. per sq. in. BAR. A pressure of one dyne per cm.2 Meteorological "bar" = 106 dynes/cm2.

BRITISH THERMAL UNIT. Heat required to raise one pound of water at its temperature of maximum density, 1° F. = 252 gram-calories.

CALORIE. Small calorie = gram-calorie = therm = quantity of heat required to raise one gram of water at its maximum density, one degree Centigrade.

Large calorie = kilogram-calorie = 1000 small calories = one kilogram of water raised one degree Centigrade at the temperature of maximum density.

For conversion factors see page 197.

CANDLE, INTERNATIONAL. The international unit of candlepower maintained jointly by national laboratories of England, France and United States of America. CARAT. The diamond carat standard in U. S. = 200 milligrams. Old standard

= 205.3 milligrams = 3.168 grains.

The gold carat: pure gold is 24 carats; a carat is 1/24 part. CIRCULAR AREA. The square of the diameter = 1.2733 × true area.

True area = 0.785398 × circular area.

COULOMB. Unit of quantity. The international coulomb is the quantity of electricity transferred by a current of one international ampere in one second. = 10<sup>-1</sup> E. M. U. = 3 × 10<sup>9</sup> E. S. U. Coulombs = (volts-seconds)/ohms = amperes × seconds.

CUBIT = 18 inches.

DAY. Mean solar day = 1440 minutes = 86400 seconds = 1.0027379 sidereal day. Sidereal day = 86164.10 mean solar seconds.

DIGIT. 3/4 inch; 1/12 the apparent diameter of the sun or moon. DIOPTER. Unit of "power" of a lens. The number of diopters = the reciprocal of the focal length in meters.

DYNE. C. G. S. unit of force = that force which acting for one second on one gram produces a velocity of one cm per sec. = Ig ÷ gravity acceleration in cm/sec./sec.

Dynes = wt. in g × acceleration of gravity in cm/sec./sec.
ELECTROCHEMICAL EQUIVALENT is the ratio of the mass in grams deposited

in an electrolytic cell by an electrical current to the quantity of electricity.

ENERGY. See Erg.

ERG. C. G. S. unit of work and energy = one dyne acting through one centimeter.

For conversion factors see page 197.

FARAD. Unit of electrical capacity. The international farad is the capacity of a condenser charged to a potential of one international volt by one international coulomb of electricity = 10-9 E. M. U. = 9 × 10<sup>th</sup> E. S. U.
The one-millionth part of a farad (microfarad) is more commonly used.

Farads = coulombs/volts.

<sup>\*</sup> E. M. U.=C. G. S. electromagnetic units. E. S. U.=C. G. S. electrostatic units.

FOOT-POUND. The work which will raise one pound one foot high. For conversion factors see page 197.

FOOT-POUNDALS. The English unit of work = foot-pounds/g.

For conversion factors see page 197.
g. The acceleration produced by gravity.
GAUSS. A unit of intensity of magnetic field = 1 E. M. U. = \frac{1}{3} \times 10^{-10} E. S. U.

GRAM. See page 6.

GRAM-CENTIMETER. The gravitation unit of work = g. ergs.

GRAM-MOLECULE = x grams where x = molecular weight of substance.

GRAVITATION CONSTANT = G in formula G  $\frac{m_1 m_2}{r^2}$  = 666.07 × 10<sup>-10</sup> cm.<sup>3</sup>/gr. sec.<sup>2</sup>

HEAT OF THE ELECTRIC CURRENT generated in a metallic circuit without self-induction is proportional to the quantity of electricity which has passed in coulombs multiplied by the fall of potential in volts, or is equal to (coulombs × volts)/4.181 in small calories.

The heat in small or gram-calories per second = (amperes<sup>2</sup> × ohms)/4.181 = volts<sup>2</sup>/ (ohms × 4.181) = (volts × amperes)/4.181 = watts/4.181. HEAT. Absolute zero of heat = -273.13° C., -459.6° Fahrenheit, -218.5° Reaumur. HEFNER UNIT. Photometric standard; see page 260.

HENRY. Unit of induction. It is "the induction in a circuit when the electromotive force induced in this circuit is one international volt, while the inducing current varies at the rate of one ampere per second." = 10° E. M.  $U = 1/9 \times 10^{-11}$  E. S. U.

HORSEPOWER. The English and American horsepower is defined by some authorities as 746 watts and by others as 550 foot-pounds per second. The continental horsepower is defined by some authorities as 736 watts and by others as 75 kilogrammeters per second. See page 197.

IOULE. Unit of work=10 ergs. For electrical Joule see p. xxxvii.

 $Joules = (volts^2 \times seconds) / ohms = watts \times seconds = amperes^2 \times ohms \times sec.$ 

For conversion factors see page 197.

IOULE'S EOUIVALENT. The mechanical equivalent of heat = 4.185 × 10' ergs. See page 197.

KILODYNE. 1000 dynes. About 1 gram.

KINETIC ENERGY in ergs = grams  $\times$  (cm./sec.)<sup>2</sup>/2.

LITER. See page 6. LUMEN. Unit of flux of light-candles divided by solid angles.

MEGABAR. Unit of pressure = 1 000 000 bars = 0.987 atmospheres.

MEGADYNE. One million dynes. About one kilogram.

METER. See page 6.
METER CANDLE. The intensity of lumination due to standard candle distant one

MHO. The unit of electrical conductivity. It is the reciprocal of the ohm.

MICRO. A prefix indicating the millionth part.

MICROFARAD. One-millionth of a farad, the ordinary measure of electrostatic capacity.

MICRON.  $(\mu)$  = one-millionth of a meter.

MIL. One-thousandth of an inch.

MILE. See pages 5, 6.

MILE, NAUTICAL or GEOGRAPHICAL = 6080.204 feet.

MILLI-. A prefix denoting the thousandth part.

MONTH. The anomalistic month = time of revolution of the moon from one perigee to another = 27.55460 days.

The nodical month = draconitic month = time of revolution from a node to the same

node again == 27.21222 days.

The sidereal month = the time of revolution referred to the stars = 27.32166 days (mean value), but varies by about three hours on account of the eccentricity of the orbit and "perturbations."

The synodic month = the revolution from one new moon to another = 29.5306 days (mean value) = the ordinary month. It varies by about 13 hours.

OHM. Unit of electrical resistance. The international ohm is based upon the ohm equal to 10° units of resistance of the C. G. S. system of electromagnetic units, and is represented by the resistance offered to an unvarying electric current by a column of mercury, at the temperature of melting ice, 14.4521 grams in mass, of a constant cross section and of the length of 106.3 centimeters." = 10° E. M. U. =  $1/9 \times 10^{-11}$  E. S. U.

International ohm = 1.01367 B. A. ohms = 1.06292 Siemens' ohms.

B. A. ohm = 0.98651 international ohms. Siemens' ohm = 0.94080 international ohms.

PENTANE CANDLE. Photometric standard. See page 260.

 $PI = \pi = ratio of the circumference of a circle to the diameter = 3.14159265359.$ 

POUNDAL. The British unit of force. The force which will in one second impart a velocity of one foot per second to a mass of one pound.

RADIAN =  $180^{\circ}/\pi = 57.29578^{\circ} = 57^{\circ} 17' 45'' = 206265''$ . SECOHM. A unit of self-induction = 1 second  $\times$  1 ohm.

THERM = small calorie = (obsolete).

THERMAL UNIT, BRITISH = the quantity of heat required to warm one pound of water at its temperature of maximum density one degree Fahrenheit = 252 gramcalories.

VOLT. The unit of electromotive force (E. M. F.). The international volt is "the electromotive force that, steadily applied to a conductor whose resistance is one of the E. M. F. of the Weston Normal cell is taken as 1.0183 international volts at 20° C. = 10<sup>8</sup> E. M. U. = 1/300 E. S. U. See page 197.

VOLT-AMPERE. Equivalent to Watt/Power factor.

WATT. The unit of electrical power = 107 units of power in the C. G. S. system. It is represented sufficiently well for practical use by the work done at the rate of one Joule per second.

Watts=volts × amperes = amperes<sup>2</sup> × ohms = volts<sup>2</sup>/ohms (direct current or alternating current with no phase difference).

For conversion factors see page 197.

Watts  $\times$  seconds = Joules.

WEBER. A name formerly given to the coulomb.

WORK in ergs = dynes × cm. Kinetic energy in ergs = grams × (cm./sec.) 3/2.

YEAR. See page 414. Anomalistic year = 365 days, 6 hours, 13 minutes, 48 seconds. Sidereal "= 365 " 6 " 9 " 9.314 " Ordinary "= 365 " 5 " 48 " 46 + "

" same as the ordinary year. Tropical

#### TABLE 580.

# TEMPERATURE MEASUREMENTS.

The ideal standard temperature scale (Kelvin's thermodynamic scale, see introduction, p. xxxiv) is independent of the properties of any substance, and would be indicated by a gas thermometer using a perfect gas. The scale indicated by any actual gas can be corrected if the departure of that gas from a perfect gas be known (see Table 206, p. 195,—also Buckingham, Bull. Bur. Standards, 3, 237). The thermodynamic correction of the constant-pressure scale at any temperature is very nearly proportional to the constant pressure at which the gas is kept and that for the constant-volume scale is approximately proportional to the initial pressure at the ice-point. The gas thermometer has been carried up to the melting point of palladium, 1822° K (1549° C) (Day and Sosman, Am. J. Sc., 29, p. 93, 1910).

A proposed international agreement divides the temperature scale into three intervals. The first interval, -40° to 450° C, uses the platinum resistance thermometer calibrated at the melting point of ice, 0° C, at saturated steam, 100° C, and sulphur vapor, 444.6° C, all under standard atmospheric pressure. Points

on the temperature scale are interpolated by the Callendar formulæ:

$$Pt = \frac{R_t - R_0}{R_{100} - R_0} \text{ ioo } \quad \text{or} \quad t - Pt = \delta \, \left\{ \frac{t}{\text{ioo}} - 1 \right\} \frac{t}{\text{ioo}}$$

where t is the temperature, R, the resistance, Pt, the platinum temperature, and  $\delta$ , a constant.

Temperatures in the second interval are measured by a standard platinum-platinum-rhodium couple calibrated say at the freezing points of zinc, 419.4° C, cadmium, 320.9° C, antimony, 630° C, and copper free from oxide, 1083° C. These points furnish constants for the formula, e =a + bt + ct² (see Sosman, Am. J. Sc., 20. p. 1, 1010).

For the region above 1100° C most experimenters base their results upon certain radiation laws. These laws all apply to a black body and the temperature of a non-black body cannot be determined directly without correction for its emissive power. For standard points the melting points of gold, 1336° K and palladium 1822° K, are convenient,

Above 1336° K the optical pyrometer is generally used with a calibration based upon Wien's equation

$$I_{\lambda} = c_1 \lambda^{-5} e^{-\frac{c_2}{\lambda T}}$$

By comparing the brightness of a black body at two temperatures and applying this equation, the following formula results:

$$\label{eq:Resolvent} \text{log R} = \frac{c_2 \text{log e}}{\lambda} \left\{ \frac{\textbf{I}}{T_2} - \frac{\textbf{I}}{T_1} \right\}$$

where R is the ratio of the brightnesses,  $\lambda$ , the wave-length used,  $T_1$  and  $T_2$ , the two temperatures, and  $c_2 \equiv 14.250 \ \mu$  deg. Thus if R is measured and one temperature known, the other can be calculated.

A table of the standard fixed points is given in Table 207, p. 195. With these determined there comes the difficulty of maintaining this temperature scale both from the standpoint of the standardizing laboratory and the man using the temperature scale in the practical field. In the region of the platinum-resistance thermometer and the thermocouple, standards of either can be obtained from the standardizing laboratories and used in checking up the secondary instruments. It is not very difficult to actually check up a resistance thermometer at any one of the standard points in the region  $-40^{\circ}$  C to  $+450^{\circ}$  C. It is a little more difficult to check the thermocouple in the region  $450^{\circ}$  C to  $1100^{\circ}$  C. Most of the standard fixed points in this region are given by melting points of metals that must be melted so as to avoid oxidation. This requires a neutral atmosphere, or that the sample be covered with some flux that will protect it.

Both the gold and the palladium, used to calibrate the scale above 1300° K, can be successfully melted in a platinum wound black-body furnace. The whole operation can be carried out in the open air, requiring neither a vacuum nor neutral atmosphere within the furnace. But because of the trouble necessitated by a black-body comparison, much time can be saved if a tungsten lamp with filament of suitable size is standardized so as to have the same brightness for a particular part of the filament, when observed with the optical pyrometer, as the standard black-body furnace for one or more definite temperatures. With such lamps properly calibrated, any one may maintain his own temperature scale for years, if the calibration does not extend higher than that of the palladium point and the standard lamp is not accidentally heated to a higher temperature.

(See 1919 Report of Standards Committee on Pyrometry, Forsythe, J. Opt. Soc. of America, 4, p. 205, 1920; The Measurement of High Temperatures, Burgess, Le Chatelier, 1912, The Disappearing Filament Type of Optical Pyrometer, Forsythe, Tr. Faraday Soc., 1919.)

The following additional adsorption tables (see page 407, Table 525) may be of use in the "cleaning-up of vacua." See Dushman, General Electric Review, 24, 58, 1921, Methods for the Production and Measurement of High Vacua.

#### TABLE 581. - Adsorption of H and He by Cocoanut Charcoal at the temperature of liquid air.

For the preparation of activated charcoal see Dushman, l. c. 5 g of charcoal at the temperature of liquid air will clean up the residual gases in a volume of 3000 cm<sup>8</sup> from an initial pressure of 1 bar (bar = 1 dyne/cm<sup>2</sup>) to less than 0.0005 bars at the temperature of liquid air. 5 grams cleaned up 3000 cm<sup>8</sup> of H from an initial pressure at room temperature of 0.01 bar to a final pressure at liquid air temperature of less than 0.0004 bar. The clean-up is rapid at first but then slower taking about an hour to reach equilibrium. The figures of the following table are from Firth, Z. Phys. Ch. 74, 129, 1910; 86, 294, 1913. p is in mm of Hg; v = volume adsorbed per g of charcoal reduced to 0° C and 76 cm Hg.

|                           | Hyd                                  | rogen                   |                              | Не                              | lium                                 |
|---------------------------|--------------------------------------|-------------------------|------------------------------|---------------------------------|--------------------------------------|
| 9<br>17<br>30<br>51<br>59 | 21.5<br>32.1<br>46.5<br>53.3<br>56.0 | 90<br>126<br>186<br>245 | 59.3<br>63.1<br>69.2<br>76.0 | 120<br>171<br>235<br>428<br>705 | 0.337<br>.465<br>.81<br>1.17<br>1.84 |

TABLE 582. - Adsorption by Ch rcoal at Low Pressures and temperatures.

Extrapolated by Dushman from Claude, see l. c., and C.R. 158, 861, 1914. Amounts occluded in terms of volume measured at 1 bar, 0° C. e.g. at a pressure of 0.01 bar, 1 g charcoal would clean up 130 cm<sup>8</sup> hydrogen or 18,000 cm<sup>8</sup> nitrogen from a pressure of 1 bar down to 0.01 bar.

| Н, Т                      | = 77.6° K    | N, T = 90.6° K |                 |
|---------------------------|--------------|----------------|-----------------|
| p = 8.  i. o.i o.oi o.ooi | v = 106,000. | p = 5.3        | v == 9,500,000. |
|                           | 13,250       | 1.             | 1,800,000       |
|                           | 1,325        | 0.0            | 180,000         |
|                           | 133          | 0.01           | 18,000          |
|                           | 13           | 0.001          | 1,800           |

#### TABLE 583. - Adsorption of Hydrogen by Palladium Black.

Palladium, heated, allows hydrogen to pass through it freely; the gas is first adsorbed and then diffuses through. For the preparation of palladium black, see reference at top of page for Dushman. The following data are from Valentiner, Verh. Deutsch. Phys. Ges., 3, 1003, 1911. Different samples vary greatly. P gives the pressure in mm of Hg, and V the volume at standard pressure and temperature per g of palladium black.

| -190° C : P =   | .0005 | .001         | .002         | .005         | .012         | .025        |
|-----------------|-------|--------------|--------------|--------------|--------------|-------------|
| V =             |       | 3.06         | 33.0         | 40.0         | 47.2         | 63.0        |
| +20° C: P = V = | 100.  | .005<br>0.26 | .037<br>0.40 | .110<br>0.52 | .315<br>0.70 | .76<br>0.92 |



# INDEX.

| FAGE                                                          | 2100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| martialar anaray of 306                                       | Atomic heats, elements at 50° K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| halium 304                                                    | magnetic field 401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ions produced 206 208                                         | Atomic heats, elements at 50° K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| production of                                                 | numbers 409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| range                                                         | volumes, elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| stanning nowers of substances 305                             | numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| * particles: energy of                                        | 0 1 11 Mal 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Abbanistians                                                  | B-rays, absorption coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Aborestian constant                                           | absorption of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Absolute units                                                | lons produced by 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Abbreviations                                                 | velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Absorption applications on transmission and                   | Baimer series spectrum formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\beta$ -rays 395                                             | Bar, definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| priays                                                        | Barometer, attitude, variation with 421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| V-rove 280                                                    | reduction for capillarity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analogotion of growity                                        | to atd gravity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Accomplators voltage                                          | to std. startly 130-143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Actinium group of redicactive substances 205                  | Pottorios composition voltages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Activity definition                                           | Poures goals convergion to densities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Adoptation mate of even                                       | December 1 and orders roots 66 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Adaptation, rate of tye                                       | Bravial eructale formulae 1 refractive indices 286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| by fine particles                                             | - refractive indices 287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| host of                                                       | Plack absorbers long-\ transparencies 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| β-rays                                                        | Second   Second |
| Agenie line                                                   | luminosity of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Airs composition of vertation with alt and lat                | luminous efficiency of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| dencity of moiet                                              | Planck's constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| densities in air reduction to vacuo                           | radiation, total for various temp 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| dielectric etrenath                                           | by wave-lenths, var. temp 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| humidity relative via v n and dry 187                         | Stefan-Roltzmann constant 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| via wet and dry 180                                           | -temperature for C. Pt. and W 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| index of refraction                                           | Bohr atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| masses                                                        | Boiling points: elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| moist transparency short \ \ 470                              | pressure effect 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| long $\lambda$                                                | inorganic compounds 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$          | organic compounds 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| resistance, fluid                                             | rise of, salts in HoO 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| sparkling potentials for                                      | water,- pressure variation 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| thermal conductivity, high temperatures 254                   | Boltzman gas-constant (ertropy) 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| thermometer, comparison with 59 III 193                       | Bougle decimale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| vapor pressure of water in 185-186                            | Break-down voltage, dielectrics 304, 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| viscosity                                                     | Brightness of sky 419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| wave-lengths in air, reduction to vacuo 293                   | of stars 413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Albedos 417                                                   | or sun 200, 413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Altitudes by barometer                                        | temperature of C, Pt and W 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Alternating points of water 144                               | of various light courses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Alternating current resistances                               | Brinell hardness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Aluminum: mechanical properties                               | British thermal unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| resistivity constants                                         | British weights and massures 8-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| wire-tables, English units 342                                | Brownian movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Aluminum: mechanical properties - 79-80 resistivity constants | Buoyancy correction: of densities 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ammonia, fatent and specific neats 228, 232                   | weighings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ampere equivalents                                            | $\gamma$ -function 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Anipere turns xivi                                            | Y-rays: absorption coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Angstrom, wave-length unit 200                                | absorption of 397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Authorities                                                   | ions produced by 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Anthogarithms, std. 4-place, p. 28; .9 to 1.0 30              | Cadmium line, red. $\lambda$ of intern. prim. std                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Apothecaries weights                                          | Calcite grating space 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Arc, Iron, lines                                              | Calibration points for temperatures 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Astronomical data 411-420                                     | for thermoclements 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ampere equivalents                                            | Calorie, definition 435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                               | Canal rays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| height of                                                     | candle, energy from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| homogeneous, height of                                        | meter conditional standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| pressure, altitude variation 421                              | Capacity of wires for electrical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| "Atmosphere ": value of pressure unit 421, 435                | Capacity specific industries sweets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| "Atmosphere": value of pressure unit                          | capacity, specific inductive: crystals 361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Atom: Bohr                                                    | gases, I(t, p) 350-357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Atom, hydrogen: mass, mean free path 408                      | lia gases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| radius, mean velocity 408                                     | solids 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Atom: Bohr                                                    | Planck's constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PAGE                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Capillarity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Crystals: diffracting units, X-rays 400                                                                                                                                                                                                                                                                 |
| correction to barometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ejacticity 102-102                                                                                                                                                                                                                                                                                      |
| Carcel unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | retraction indices: alums, quartz 281                                                                                                                                                                                                                                                                   |
| Cathode rays:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | fluorite, spar 280 rock-salt, silvine 279                                                                                                                                                                                                                                                               |
| Cathode rays:         386           energy of         386           penetration depths         387           X-rays, generative efficiency for         387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | refr. indices: minerals, isotropic 282                                                                                                                                                                                                                                                                  |
| X-rays, generative efficiency for 387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | uniaxial                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (+-) . 284, 285                                                                                                                                                                                                                                                                                         |
| Cells: standard, roltages 313 Weston normal xli Weston portable xliii voltaic, composition, roltages 312–313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | blaxial                                                                                                                                                                                                                                                                                                 |
| Westen normal XII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (+-) . 286, 287                                                                                                                                                                                                                                                                                         |
| voltaic composition voltages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | miscel. uniaxiai 285<br>biaxiai 289                                                                                                                                                                                                                                                                     |
| voltalc, composition, voltages         312-313           Centipoles         155           Characteristic X-rays         387-392           Charcoal, adsorption by         407           Charge, elementary electrical         408           Chemical energy data         241-246           Coals, heats of combustion         242           Collision frequencies, molecules         399           Colloids         406-407           Color: eye sensitiveness to         256-258           indices of various stars         411           lights, of various         261           screens         300-307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Diaxial   289                                                                                                                                                                                                                                                                                           |
| Characteristic X-rays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cubical expansion coefficients: gases                                                                                                                                                                                                                                                                   |
| Charcoal, adsorption by 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | liquids 221                                                                                                                                                                                                                                                                                             |
| Charge, elementary electrical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Current measures: absolute units                                                                                                                                                                                                                                                                        |
| Coals heats of combustion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | equivalents                                                                                                                                                                                                                                                                                             |
| Collision frequencies, molecules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Curie, radium standard                                                                                                                                                                                                                                                                                  |
| Colloids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Curie, radium standard 398 point and constant, magnetic 372 Cutting-tool lubricants 154 Cylindrical harmonics (Bessel) 1st and 2nd deg. 66                                                                                                                                                              |
| Color: eye sensitiveness to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cutting-tool lubricants                                                                                                                                                                                                                                                                                 |
| indices of various stars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cylindrical narmonics (Bessel) 1st and 2nd deg 66                                                                                                                                                                                                                                                       |
| sereens 206-207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | general formulæ . 68<br>roots 68                                                                                                                                                                                                                                                                        |
| complimentary colors 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                         |
| temperature of C, Pt and W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Day, length of sidereal                                                                                                                                                                                                                                                                                 |
| Combination, heats of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Degree on earth's surface length of                                                                                                                                                                                                                                                                     |
| Combustion, nears of . carbon and misc. cpus 241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Demagnetizing factors for rods                                                                                                                                                                                                                                                                          |
| explosives 243-244 fuels 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Densities in air, reduction to vacuo                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Densities: air moist, values of h/760 133-135                                                                                                                                                                                                                                                           |
| Conductivity, electrical: see resistivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | methyl aqueous                                                                                                                                                                                                                                                                                          |
| solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | allovs                                                                                                                                                                                                                                                                                                  |
| Conductivity, electrical: see resistivity 322-332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | aqueous solutions                                                                                                                                                                                                                                                                                       |
| electrolytic:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Baumé equivalents 109                                                                                                                                                                                                                                                                                   |
| equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cane sugar, aqueous                                                                                                                                                                                                                                                                                     |
| alloys 327-328 electrolytic: 346-352 equivalent 349 ionic 352 sp. molecular 347 Illuiting values 347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | earth                                                                                                                                                                                                                                                                                                   |
| sp. molecular 347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | elements chemical                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gases                                                                                                                                                                                                                                                                                                   |
| temp. coefs 348 Conductivity, thermal: alloys, metals 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | glycerol, aqueous                                                                                                                                                                                                                                                                                       |
| building materials 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | insulators thormal                                                                                                                                                                                                                                                                                      |
| earth 422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Declination, magnetic: secular change                                                                                                                                                                                                                                                                   |
| gases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mercury, - 10° to + 360° C                                                                                                                                                                                                                                                                              |
| high temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | minerals                                                                                                                                                                                                                                                                                                |
| high temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | organic compounds                                                                                                                                                                                                                                                                                       |
| liquids 217 metals, high temp 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 410                                                                                                                                                                                                                                                                                                     |
| metals, high temp 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | stars                                                                                                                                                                                                                                                                                                   |
| sait solutions 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sucrose, aqueous                                                                                                                                                                                                                                                                                        |
| Cones number and distance exact in over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sulphuric acid, aqueous 126                                                                                                                                                                                                                                                                             |
| Constants: mathematical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tin, liquid; tin-lead eutectic 115                                                                                                                                                                                                                                                                      |
| miscellaneous, atomic, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | water, 0 to 41° C, - 10° to 250° C.118, 120                                                                                                                                                                                                                                                             |
| Cones, number and distance apart in eye 258 Constants: mathematical 14 miscellaneous, atomic, etc. 408 radiation, $\sigma$ , C <sub>1</sub> , C <sub>2</sub> 247 Contact difference of content of c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | solids various 113 stars 413 sucrose, aqueous 156 sulphuric acid, aqueous 126 tin, liquid; tin-lead cutectic 115 water, 0° to 41° C, — 10° to 250° C.118, 120 woods 26 Developers and resolving power of photo. plate 263 Diamagnetic properties 365 Diamagnetic susceptibility, temperature effect 372 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diamagnetic properties                                                                                                                                                                                                                                                                                  |
| Contrast, eye sensitiveness to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Diamagnetic susceptibility, temperature effect 372                                                                                                                                                                                                                                                      |
| convection, cooling by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Diameter morecules 399                                                                                                                                                                                                                                                                                  |
| Conversion factors: general formulae, see introduction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Some organic molecules                                                                                                                                                                                                                                                                                  |
| Baumé to densities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | crystals . 350–360                                                                                                                                                                                                                                                                                      |
| horse-nower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gases f(t, p)                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | liquids 357                                                                                                                                                                                                                                                                                             |
| Copper: mechanical and control | liquefied gases 359                                                                                                                                                                                                                                                                                     |
| Cooling of hodies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Standard colutions                                                                                                                                                                                                                                                                                      |
| wire, alternating current resistance . 344 wire tables, English units . 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dielectric strength (see sparking potentials) . 353-355                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dielectrics, volume and surface resistances                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Differentials, formulae                                                                                                                                                                                                                                                                                 |
| Corpuscular radiation (X-rays)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dielectrics, volume and surface resistances                                                                                                                                                                                                                                                             |
| cosmes, circular, natural, (°') 32-36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | integral                                                                                                                                                                                                                                                                                                |
| (radians) 37–40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ionic                                                                                                                                                                                                                                                                                                   |
| logarithmic, (°') 32–36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | metals                                                                                                                                                                                                                                                                                                  |
| Cosines, circular, natural, (*')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                         |
| Cotangents, circular, natural, (°')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and districted their mai                                                                                                                                                                                                                                                                                |
| (-31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dilution heat of (U CO)                                                                                                                                                                                                                                                                                 |
| logarithmic, (°')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Difficusional formulae                                                                                                                                                                                                                                                                                  |
| hyperbalia (radians)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                         |
| (radians)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Diopter XXV Dip, magnetic, 1915 value, secular variation 435 Disk, distribution of brightness over sun's 418 Distance earth to meet 418                                                                                                                                                                 |
| Critical data for games                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Disk, distribution of brightness over sun's                                                                                                                                                                                                                                                             |
| Crova wave-length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Distance earth to moon                                                                                                                                                                                                                                                                                  |
| 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Distance earth to moon                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                         |

| PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PAGE                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Distance of the stars, nebulae and clusters 412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Elements: evaporation rate, Mo, W, Pt                                                                                                                                                                                                                                                                                                                                                    |
| Dyes, transparency of 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | expansion, cubical (gaseous) 222                                                                                                                                                                                                                                                                                                                                                         |
| Dynamical equivalent of thermal unit 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | linear (solid)                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | isotones                                                                                                                                                                                                                                                                                                                                                                                 |
| e (base of natural logarithms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | isotopes                                                                                                                                                                                                                                                                                                                                                                                 |
| e (elementary electrical charge) 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | melting points                                                                                                                                                                                                                                                                                                                                                                           |
| e/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | melting points                                                                                                                                                                                                                                                                                                                                                                           |
| $e^x$ , $e^{-x}$ , and their logarithms $x=0$ to 10 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Peltier effect 317, 320–322                                                                                                                                                                                                                                                                                                                                                              |
| $x \text{ fractional } \dots 56$ $e^{x^2}, e^{-x^2}$ $x = 0.1 \text{ to } 5.0 \dots 54$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | periodic system                                                                                                                                                                                                                                                                                                                                                                          |
| $\pi$ $\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | specific heats                                                                                                                                                                                                                                                                                                                                                                           |
| x, = x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spectra   265                                                                                                                                                                                                                                                                                                                                                                            |
| $e^4 - e^4 - x = 1 	ext{ to 20} 	ext{ 55}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | thermal conductivities 213                                                                                                                                                                                                                                                                                                                                                               |
| $e^{\frac{\sqrt{\pi}}{4}x}, e^{-\frac{\sqrt{u}}{4}x}$ $x=1$ to 20 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | expansion                                                                                                                                                                                                                                                                                                                                                                                |
| $e \xrightarrow{4}$ , $e \xrightarrow{4}$ $x=1$ to 20 $\cdots$ 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Thomson effect 227 329                                                                                                                                                                                                                                                                                                                                                                   |
| $\frac{e^x+e^{-x}}{2}$ , $\frac{e^x-e^{-x}}{2}$ and their logarithms 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | valencies 77                                                                                                                                                                                                                                                                                                                                                                             |
| Farth: atmospheric data 421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vapor pressures                                                                                                                                                                                                                                                                                                                                                                          |
| conductivity, thermal 422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Elementary electric charge 408                                                                                                                                                                                                                                                                                                                                                           |
| degrees on, length of 416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Elements, magnetic, at various observatories 434                                                                                                                                                                                                                                                                                                                                         |
| elements, percentage composition 423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Elliptic integrals                                                                                                                                                                                                                                                                                                                                                                       |
| geochemical data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Emissivities radiation                                                                                                                                                                                                                                                                                                                                                                   |
| moments of inertia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Energy kinetic, definition                                                                                                                                                                                                                                                                                                                                                               |
| moon, distance of 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of molecule 408                                                                                                                                                                                                                                                                                                                                                                          |
| ## 2   Anton Regard   Compared   Compared | thermo-electric powers 317, 319 Thomson effect 317, 320 valencies 771 vapor pressures 775 Elementary electric charge 408 Elements, magnetic, at various observatories 434 Elliptic integrals 609 Elmanation (radioactive) 338 Emissivities, radiation 249, 250 Energy kinetic, definition 428 Energy, minimum visible to eye 261 solar, data relating to 418—420 of candle radiation 260 |
| size of, shape of 427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | solar, data relating to 418–420                                                                                                                                                                                                                                                                                                                                                          |
| spheroid constants 427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of candle radiation                                                                                                                                                                                                                                                                                                                                                                      |
| temperatures 420, 422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Futrony constant (Roltzmann)                                                                                                                                                                                                                                                                                                                                                             |
| viscosity 427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of candle radiation                                                                                                                                                                                                                                                                                                                                                                      |
| Efficiency of various lights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Equation of time 416                                                                                                                                                                                                                                                                                                                                                                     |
| temperatures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Equation of time 4.66 Equilibrium radioactive 394 Equivalent, electrochemical 34.5—346 mechanical, of heat 197 Erg 435                                                                                                                                                                                                                                                                   |
| Flactic modulus of rigidity. — Lendo, variation 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Equivalent, electrochemical 345-346                                                                                                                                                                                                                                                                                                                                                      |
| Elasticity (see mechanical data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Free mechanical, of neat                                                                                                                                                                                                                                                                                                                                                                 |
| Elasticity (see mechanical data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Erichson values                                                                                                                                                                                                                                                                                                                                                                          |
| Electrical charge, elementary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Errors, probable 57-59                                                                                                                                                                                                                                                                                                                                                                   |
| Electrical equivalents 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ettingshausen effect                                                                                                                                                                                                                                                                                                                                                                     |
| Electrical units: international                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Eutectic mixtures, melting points 206, 207                                                                                                                                                                                                                                                                                                                                               |
| standards xxxviii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evaporation rate of, Mo, Pt, W 175                                                                                                                                                                                                                                                                                                                                                       |
| practical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Erg                                                                                                                                                                                                                                                                                                                                                                                      |
| Electric tribo- series (frictional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | solids                                                                                                                                                                                                                                                                                                                                                                                   |
| Electrochemical equivalents 345, 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | linear: elements 218                                                                                                                                                                                                                                                                                                                                                                     |
| silver 345 Electrolytic conduction: ammonium acetate 352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | miscellaneous 219                                                                                                                                                                                                                                                                                                                                                                        |
| Electrolytic conduction: ammonium acetate 352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Explosives: decomposition, ignition temp 244                                                                                                                                                                                                                                                                                                                                             |
| equivalent conductance 345–346<br>bydrolysis 352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Exponential functions: see index under e                                                                                                                                                                                                                                                                                                                                                 |
| ionic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | diffusion integral 60                                                                                                                                                                                                                                                                                                                                                                    |
| ionic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gudermanians 41                                                                                                                                                                                                                                                                                                                                                                          |
| solutions 345-346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hyperbolic functions (nat) . 41<br>hyperbolic functions (logs) . 41                                                                                                                                                                                                                                                                                                                      |
| spec. molecular 347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nyperbolic functions (logs) . 41                                                                                                                                                                                                                                                                                                                                                         |
| limiting value $\mu$ 348 temp. coef 348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | probability integral 56-57                                                                                                                                                                                                                                                                                                                                                               |
| Electro-motive force: accumulators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | color sensitiveness                                                                                                                                                                                                                                                                                                                                                                      |
| contact 314, 316, 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | contrast sensibility                                                                                                                                                                                                                                                                                                                                                                     |
| Peltier 321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fechner's law                                                                                                                                                                                                                                                                                                                                                                            |
| standard cells 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | giare sensibility                                                                                                                                                                                                                                                                                                                                                                        |
| temp. coef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Probability integral   56-57                                                                                                                                                                                                                                                                                                                                                             |
| voltaic cells 312-313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | miscellaneous data                                                                                                                                                                                                                                                                                                                                                                       |
| Weston normal xli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | persistence of vision                                                                                                                                                                                                                                                                                                                                                                    |
| Weston portable xliii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pupil size for various intensities 258                                                                                                                                                                                                                                                                                                                                                   |
| Electromagnetic System of units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Purkinge phenomenon                                                                                                                                                                                                                                                                                                                                                                      |
| Electromagnetic/electrostatic units=v xxx, xxxvi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | small dif of color sensitiveness to                                                                                                                                                                                                                                                                                                                                                      |
| affinity of elements 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | threshold sensitiveness                                                                                                                                                                                                                                                                                                                                                                  |
| e/m 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | visibility of radiation, relative 258                                                                                                                                                                                                                                                                                                                                                    |
| elementary charge 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                          |
| emission from not bodies 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Factorials: $\gamma$ function, $n=1$ to $2 \dots 62$                                                                                                                                                                                                                                                                                                                                     |
| ionization potentials 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $n!, n=1 \text{ to } 20 \dots 47$<br>$\log_{n}, n=1 \text{ to } 100 \dots 40$                                                                                                                                                                                                                                                                                                            |
| mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Falling bodies (Stokes' law)                                                                                                                                                                                                                                                                                                                                                             |
| radius 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Farad                                                                                                                                                                                                                                                                                                                                                                                    |
| resonance potentials 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Faraday xliv, 311, 345                                                                                                                                                                                                                                                                                                                                                                   |
| work required to remove 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Faraday constant 408                                                                                                                                                                                                                                                                                                                                                                     |
| Elements: atomic heats at 50° K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fechner's law                                                                                                                                                                                                                                                                                                                                                                            |
| atomic volumes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ferromagnetism                                                                                                                                                                                                                                                                                                                                                                           |
| atomic weights (international) 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | metals, behavior of in 365-377                                                                                                                                                                                                                                                                                                                                                           |
| boiling points 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | resistance of metals in                                                                                                                                                                                                                                                                                                                                                                  |
| compressibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rotation of plane of polarization . 378                                                                                                                                                                                                                                                                                                                                                  |
| Elements   Atomic neats at 50° K   220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | thermo-galvanometric effects . 385 Filaments, heat losses from                                                                                                                                                                                                                                                                                                                           |
| densities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Flame temperatures                                                                                                                                                                                                                                                                                                                                                                       |
| densities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pluidity ree                                                                                                                                                                                                                                                                                                                                                                             |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAGE     | PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Foet pound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 436      | Hardness: (see mechanical properties)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Foot pound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 149      | Brinell test 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Formation, heat of, for elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 245, 246 | elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Formulæ: conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3        | Townshies eviludrical (Rescal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| least squares                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | roots formula 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Fraimhnoigh lines, solar, wave-lengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 205      | zonal 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Free path of molecules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300      | Heat; adsorption heats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Freezing mixtures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 211      | atomic heats of elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| point, lowering of for salt solutions .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 208      | combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| point of water, pressure effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | combustion: explosives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Frequencies, corresponding to wave-lengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 293      | 111018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| in air, reduction to vacuo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 293      | organic compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Friction, mechanical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101      | conductivity: metals (also high temp.) 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| skin (air resistance)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 152      | gases 217, 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Frictional electricity series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 322      | liquids 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| internal of metals, temp. variation skin (air resistance).  Frictional electricity series Functions: Bessel functions (roots, 68) cylindrical harmonics elliptic exponential gamma hyporbolic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 66–68  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| cylindrical harmonics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 66–68  | formation, heat of, H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| empuc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 09       | letent heat of fusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| exponential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 40-50  | vanorization elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| hyperbolic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02       | NH2 232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| probability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 56-58  | steam 234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| probability trigonometric, circular (°')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32       | various 232-233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| trigonometric, circular (radians) .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37       | pressure variation, NH <sub>2</sub> liq 232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| trigonometric, circular (radians) . zonal harmonics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64       | losses from incandescent wires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Fundamental frequency (Rydberg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 408      | mechanical equivalent of 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Fundamental frequency (Rydberg) Fundamental standards units Fusion current for wires Fusion, latent heat of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . XXXIII | neutralization, H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Engler current for wines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . XXIII  | solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fusion latent heat of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 329      | ammonia lia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| rusion, latent heat of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 240      | electricity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Gages, wire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 333      | gases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Galvano-magnetic effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 385      | liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Gamma function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Gas constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 408      | dinholida, 104. 220 electricity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cases absorption of by liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 192-194  | Silicates   229   Solids   227   true [elements, f(t)]   225   vapors   230   water   230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| shearntion of hy water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 172      | true Colements f(+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| absorption onef long-wave radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170-171  | vanors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| X-rays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 309      | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Gas thermometry Gases: absorption of by liquids absorption of by water absorption coef: long-wave radiation X-rays compressibility conductivity, thermal critical data densities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104      | total [elements, f(t)] 225 treatment of steels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| conductivity, thermal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 217      | treatment of steels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| critical data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 212      | Heating effect, radium and emanation 394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| densities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 127      | Hefner unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| dielectric constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 356-361  | Heights, barometric determination of 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 353-355  | boiling point of water determination of 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 168      | Helium, production, relation to radium 394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10nic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 405      | Heterochromatic consibility of one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| expansion coemcients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 222      | Hertzen wave-lengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| dielectric constants strength diffusion ionic expansion coefficients expansion of flow in tubes ignition temperatures of mixtures magnetic susceptibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120-132  | High-frequency electric resistance of wires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ignition temperatures of mixtures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 244      | Herizontal intensity earth's field, 1015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| magnetic susceptibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 377      | secular var 431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| magnetic-optical rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 382      | Horse power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| refractive indices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 292      | Humidity, relative: vapor-pressure and dry 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| resistance (acrodynamical)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150-153  | wet and dry 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ignition temperatures of mixtures magnetic susceptibility magnetic-optical rotation refractive indices resistance (aerodynamical) solubility in water sound, velocity of, in specific heats (also cp/cr) viscosity volume, f(t, p) f(t), i+0.00367, logs Gauss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 170-171  | Helium, production, relation to radium  Henry  Henry  Henry  Heterochromatic sensibility of eye xxxxii, xliv, 311  Heterochromatic sensibility of eye x257  Hertzen wave-lengths 408  High-frequency electric resistance of wires 344  Horizontal intensity earth's field, 1915 431  Secular var. 431  Horse power 197  Humidity, relative: vapor-pressure and dry 187  wet and dry 189  Hydrogen: atomic data. mass, radius, etc. 408  Series spectra 275, 401  thermometer 192-194  Hydrolysis of ammonium acetate 192-194  Hydrostatic pressures of Hg and H <sub>2</sub> 0 columns 136  Hyperbolic functions, natural and logarithmic 41  Hysteresis 375-376 |
| sound, velocity of, in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 147      | thermometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| viscosity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 230      | Hydrolysis of ammonium acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| volume, f(t, p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104-105  | Hydrostatic pressures of Hg and HoO columns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| f(t), 1+0.00367, logs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 128-122  | Hyperbolic functions, natural and logarithmic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Gaussian system of units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | xlv. 365 | Hysteresis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Gaussian system of units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Warrent  | Tre alletronic medifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| t-eocuemical data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100      | freezing point, pressure effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Geodetic data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 121-125  | Ice-point, thermodynamic scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Gilbert Clare sensibility of eye Glassea: refraction indices, American                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 311      | Ignition temperatures gaseous mixtures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Classes refraction in its contraction in its contra | 257      | Incandescent filaments, heat losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| oracea. refraction indices, American                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 277      | freezling point, pressure effects 200 lce-point, thermodynamic scale 195 lgnition temperatures gaseous mixtures 244 lncandescent filaments, heat losses 255 Inclination (dip) of magnetic needle, 1915 430                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| German, temp. var.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 278      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| resistance electric, temp. var transparency of 302-304,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 332      | Index of refraction: air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VISSS VESSELS. VOLUME OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 800      | alums                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Gram-molecule definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .06      | fute fute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | fats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Cravitation constant Gravity, acceleration of, altitude variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 400    | gases and vapors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Gravity, acceleration of, altitude variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 42/      | glass American                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| fattinge variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 424      | glass American 277<br>German f(t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| opserved values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 425-426  | iceland spar 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| GIBVILY SDECING, SEE GENSIILES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | i i      | ilquened gases 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Gudermanians Guration radii of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41       | liquids 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Gyration, radii of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70       | " metals 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | minerals, isotropic 282<br>uniaxial 284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Hall effect, temperature variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 385      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Diaxial 286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| PAGE                                                                                                                                                                                   | PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Index of refraction: miscellaneous, isotropic 283                                                                                                                                      | Length, standards of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| uniaxial 285                                                                                                                                                                           | Light: eye, sensitiveness of to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| blaxial 289                                                                                                                                                                            | flux, definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| nitroso-dimthyl-aniline 280<br>quartz 280                                                                                                                                              | lambert, definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| rock-salt. f(t)                                                                                                                                                                        | least visible to eye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| rock-salt, f(t)                                                                                                                                                                        | least visible to eye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| silvine 279<br>solids, blaxial 286, 289<br>isotropic 282, 283<br>uniaxial 284, 285                                                                                                     | photometric standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| solids, biaxial 286, 289                                                                                                                                                               | units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| isotropic 282, 283                                                                                                                                                                     | rotation of plane by substances 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| standard media for microscope. 294                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| wonong and                                                                                                                                                                             | reflection of: formulæ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| waxes                                                                                                                                                                                  | function of "n" 297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Induction, self                                                                                                                                                                        | reflecting power: metals 295-298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Inductive capacity, specific: crystals 361                                                                                                                                             | pigments 299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| gases, f(t, p) 356-357                                                                                                                                                                 | powders 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| lig gases 250                                                                                                                                                                          | scattered light 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| solids 359                                                                                                                                                                             | temperature variation 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                        | sensitiveness of eye to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Inertia, moments of                                                                                                                                                                    | transparency to: crystals 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Thorganic compounds: boiling points 201                                                                                                                                                | dyes 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| densities 201                                                                                                                                                                          | rotation of plane, magnetic 378–383 reflection of: formulæ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| melting points 201 soluibilities 169                                                                                                                                                   | Jena 302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Insulators: break-down potentials                                                                                                                                                      | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| dielectric properties                                                                                                                                                                  | wave-lengths: cadmium std. line 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| resistance, thermal 214-216 electrical                                                                                                                                                 | PIPMPNIS 200-271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| electrical                                                                                                                                                                             | Fraunhofer lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| thtegral: unusion 60                                                                                                                                                                   | Solar, Rowland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| elliptic                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| gamma function                                                                                                                                                                         | color of various                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| probability                                                                                                                                                                            | efficiency of various electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Intensity, horizontal, earth field, 1915 431                                                                                                                                           | photographic efficiency of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| gamma function                                                                                                                                                                         | Lignus, brightness of various   260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Intensity, total, earth field, 1915 432                                                                                                                                                | Light-year 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| International candle standard                                                                                                                                                          | Linear expansion coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                        | Liquids: absorption of gases by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| standards xxxvjii                                                                                                                                                                      | Baumé density scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| standards         xxxviit           standard radium         394, 398           standard wave-lengths         266-267           Intrinsic brightness of various lights         260      | capillarity of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| standard wave-lengths 266-267                                                                                                                                                          | combustion heat, fuels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Intrinsic brightness of various lights                                                                                                                                                 | compressibilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ionic charge 401, 408                                                                                                                                                                  | conductivity, thermal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| diffusion                                                                                                                                                                              | densities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| mobilities 405  Ionization potentials 403  Ions produced by $\alpha, \beta, \gamma$ rays 398  work required 4 detach                                                                   | mercury, f(t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ions produced by $\alpha, \beta, \gamma$ rays                                                                                                                                          | water, f(t) 118-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                        | dielectric constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ions, conductance of       352         heat of formation       246         Iron, magnetic properties (steels)       365-376         standard wave-lengths, international       266-267 | Strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Tron magnetic properties (steels) 267-276                                                                                                                                              | expansion coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| standard wave-lengths, international                                                                                                                                                   | expansion coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Isostacy                                                                                                                                                                               | fuels, combustion heats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Isotopes                                                                                                                                                                               | magnetic optic rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Joule                                                                                                                                                                                  | magnetic susceptibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Joule magnetic effect                                                                                                                                                                  | refractive indices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| K X-ray spectrum series                                                                                                                                                                | diffusion, aqueous solutions   16t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                        | specific heats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Kinetic energy                                                                                                                                                                         | surface tensions 173-172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| molecular 408                                                                                                                                                                          | thermal conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Kundt's constant, magneto-optic                                                                                                                                                        | expansion, cubical 22:  vapor pressures 175-18; viscosity, absolute 157-15; specific, solutions 16; Logarithms: standard 4-place 2; 100 to 2000 2; 2011, standard 4-place 2; 2012, standard 4-place 2; 2013, standard 4-place 2; 2014, standard 4-place 2; 2014, standard 4-place 2; 2014, standard 4-place 2; 2014, standard 4-place 2; 2015, standard 4-place 2; 2015, standard 4-place 2; 2015, standard 4-place 2; 2016, standard 4-place 2; 2016, standard 4-place 2; 2017, standard 4-place 2; 2 |
| L X-ray series                                                                                                                                                                         | viscosity, absolute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| L X-ray series                                                                                                                                                                         | specific, solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Latent heat of fusion                                                                                                                                                                  | Logarithms: standard 4-place                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Latent heat of pressure variation ind. ammonia                                                                                                                                         | 1000 to 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| formulæ                                                                                                                                                                                | and, sumand 4-place                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| formulæ 232<br>steam tables 234                                                                                                                                                        | .9000 to 1.0000 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| various 231                                                                                                                                                                            | Logarithmic functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Latitude correction to barometer 139-142                                                                                                                                               | Long-wave transmissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| of a few stations 420, 434                                                                                                                                                             | Loschmidt's number 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Least squares: formulæ 59 probability integral, arg, hx 56                                                                                                                             | Lowering of freezing points by salts 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| x/r 57                                                                                                                                                                                 | Lubricants for cutting tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| inverse 60                                                                                                                                                                             | Lumen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $0.6745\sqrt{1/(n-1)}$                                                                                                                                                                 | Lumar parallax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $0.6745\sqrt{1/n(n-1)}  \dots  58$                                                                                                                                                     | Lux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $0.8453\sqrt{1/n(n-1)}$                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $0.8453[1/n\sqrt{n-1}] \dots 58$                                                                                                                                                       | M X-ray spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Leduc thermomagnetic effect                                                                                                                                                            | Mache radioactivity unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Legal electrical units xxxvli                                                                                                                                                          | Maclauren's theorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| PAGE                                                                                 | PAGI                                                                             |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Magnetic field: atomic 402                                                           | Mechanical properties: definitions: modulus of rupture 74 proportional limit. 72 |
| bismuth, resistance in 384                                                           | proportional limit. 72                                                           |
| Ettinghausen effect                                                                  | scieroscope 7                                                                    |
| Hall effect                                                                          | ultimate strength,                                                               |
| Joule effect                                                                         | compr. 72<br>tension 72                                                          |
| Leduc effect                                                                         | vield noint                                                                      |
| Nernst effect                                                                        | yleld point                                                                      |
| optical rotation polarization . 378–383                                              | brasses 83-81                                                                    |
| resistance of metals in 384                                                          | bronzes 83-8                                                                     |
| thouse magnetic effects                                                              | copper 83-8                                                                      |
| Villari effect                                                                       | 1ron 75-76                                                                       |
| Villart effect                                                                       | miscel                                                                           |
| Magnetic properties, eabalt of to roof C                                             | steel                                                                            |
| Curie constant                                                                       | white metal 89                                                                   |
| Curie point                                                                          | arummum 80-8                                                                     |
| definitions                                                                          | alloys 8                                                                         |
| 277 J                                                                                | brick and brick piers 90 cement 90                                               |
| diamagnetism, f(t) 365, 372                                                          | cement mortars                                                                   |
| ferro-cobalt alloy 370                                                               | clay products 9                                                                  |
| hystersis                                                                            | concrete                                                                         |
| ferromagnetism 365<br>hystersis 375-376<br>iron: 367-376<br>cast, intense fields 368 | concrete                                                                         |
| cast, intense fields 368                                                             | brasses and bronzes 83-8                                                         |
| pure                                                                                 | wire 82–8;                                                                       |
| very weak fields 370                                                                 | heat treatment for steels 70                                                     |
| wrought                                                                              | iron:                                                                            |
| wrought                                                                              | alloys                                                                           |
| magneto-strictive effects 365                                                        | p-ratio extension/contraction. 10:                                               |
| magnet steel 370                                                                     | rigidity moduli f(t) 100                                                         |
| maxwell                                                                              | rope, manila 9                                                                   |
| paramagnetism, f(t) 365, 372                                                         | steel-wire 70                                                                    |
| paramagnetism, f(t) 365, 372<br>permeability 365, 371                                | rubber, sheet 9 steel:                                                           |
| saturation values for steels 373                                                     | steel: 70                                                                        |
| steel:                                                                               | alloys                                                                           |
| magnet steel 270                                                                     | neat treatment for 70                                                            |
| manganese steel 373                                                                  | wire                                                                             |
| saturation values 373                                                                | wire-rope                                                                        |
| energy losses                                                                        | stone products                                                                   |
| tool steel 373<br>transformer steel . 371, 376                                       | terra-cotta piers 9                                                              |
| transformer steel . 371, 370                                                         | tungsten 89                                                                      |
|                                                                                      | terra-cotta piers                                                                |
| susceptibility . 365, 372, 377 temperature effects                                   | woods: conifers: English unit 9                                                  |
| Megnetical temperature effects 371-373                                               | metric unit . 99<br>hard: English unit . 99                                      |
| declination declination                                                              | metric unit 90                                                                   |
| declination                                                                          | Melting points: alloys 200                                                       |
| dip                                                                                  | elements                                                                         |
| intensity, horizontal 423<br>total 424                                               | eutectics 20 inorganic compounds 20                                              |
| magnetic character yearly 424                                                        | inorganic compounds 20                                                           |
| ODSERVATORIES, elements at 426                                                       | lime-alumina-silica compounds 20                                                 |
| Magneto-optic rotation, gases                                                        | organic compounds 203                                                            |
| Kerr constant                                                                        | paraffins 20;<br>pressure effect                                                 |
| Kundt constant 383                                                                   | water-ice, pressure effect 200                                                   |
| liquids 380                                                                          | Meniscus, volume of mercury 14;                                                  |
| solids                                                                               | water-ice, pressure effect 200 Meniscus, volume of mercury                       |
|                                                                                      | conductivity thermal, high temp 254                                              |
| Magnitudes, absolute stellar 415, 412                                                | electric resistance standard xxxvii                                              |
| stellar 415, 412                                                                     | meniscus, volume of                                                              |
| Mass: electronic, f(velocity)                                                        | pressure nyurostatic of columns                                                  |
| Mass absorption coefficient for X-rays   Masses, stellar   415, 412                  | pressure hydrostatic of columns                                                  |
| hydrogen atom 408                                                                    | vapor pressure                                                                   |
| Mass absorption coefficient for X-rays                                               | Metals: conductivity, thermal 21;                                                |
| Mathematical constants                                                               | diffusion                                                                        |
| physical                                                                             | potential differences, Volta 316, 402                                            |
| Maxwell                                                                              | reflection of light by 295-296, 298                                              |
| Mathematical constants                                                               | refraction indices                                                               |
| relectity H molecule                                                                 | resistivity, temperature coefficient 323                                         |
| English—metric                                                                       | pressure effect 320                                                              |
| 197                                                                                  | Volta emf 316, 404                                                               |
|                                                                                      | weight sheet metal                                                               |
| Mechanical properties: definitions                                                   | Metallic reflection                                                              |
| elastic limit                                                                        | Meteors, chemical composition                                                    |
| narquess 74                                                                          | Metric weights and measures, equivalents 5-10                                    |
| moduli 74                                                                            | Mho                                                                              |

| PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Micron, $\mu$ .       7, 436         Milky way, pole of .       414         Minerals: densities refractive indices: blaxial isotropic 282 uniaxial 284       282         creatife heats       284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pendulum, second: formula; latitude variation 427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Milky way, pole of 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pendulum, second: formula; latitude variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| refractive indices: biaxial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pentane candle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| isotropic 282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | thermometer 194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| uniaxial 284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yerlodic System: Hackn 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Minimum energy for light sensation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Permeability, magnetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Mixtures freezing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Persistence of vision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mobilities, ionic 405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Petrol-ether thermometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Minimum   Content   Cont | Phot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Moist air density of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Photoelectricity 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| maintenance of 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Photographic data: intensification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| transparency to radiation, .36 to 1.7\mu. 411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | plate characteristics 263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Molecular colligion fraguencies 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | resolving power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| conductivities: equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | speeds various materials 263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| specific 346-348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Photometric definitions, units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| crystal units 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Physiological constants of the eve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| diameters 399, 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pi (π)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| heats of adsorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pigments, reflecting powers $f(\lambda)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| liquefaction 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pitch:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| kinetic energy 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | organ pipes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| kinetic energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Permeability, magnetic   365 et seq.     Persistence of vision   258     Petrol-ether thermometer   194     Phosphorescence (radio-active excitation)   394     Photographic data: intensification   264     Photographic data: intensification   264     Photographic data: intensification   264     Photographic data: intensification   265     Photometric definitions, units   265     Photometric definitions, units   265     Speeds various materials   265     Physiological constants of the eye   258     Physiological constants of the eye   258     Physiological constants of the eye   269     Piges, organ: pitch   149     Pigments, reflecting powers f(λ)   299     Pipes, organ: pitch   149     Pignes, regar: pitch   149     Pitch:   148     Organ pipes   149     Pitch:   149     Planck's "h"   405     radiation formulæ, C₁ C₂   247     Plane, air resistance to   150-152     Planetary data   416     Planetary data   416     Polarized data   101     Polsson's ratio   101     Polonium radioactive series   306     Polarized light: reflection by   295-296, 297     Polarized light: reflection by   295-296, 297     Potential (emf): accumulators   313     Potential (emf): accumulators   314, 316, 404     Politics   314, 316, 404     Politics   314, 316, 404     Politics   403     Politics   403 |
| gram-molecule 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Planck's "h" 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| velocities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Plane, air resistance to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| weights of colloids 406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Planetary data 416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| formulae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Platinum resistance thermometer 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| velocities   399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | thermoelectric thermometer 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Meon: albedo 417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Poisson's ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| distance from earth, parallax 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Polonium radioactive series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Musical scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Polarized light: reflection by 295-296, 297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Musical scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rotation of plane 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mutual induction 376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Porcelain, resistance, $f(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Nernst thermomagnetic potential difference 385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Positive rays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Neutral points thermoelectric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Potential (emf): accumulators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Neutralization, heat of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nickel, Kerr's constants for 383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fonizing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| magnetic properties, o to 100°° 373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Peltier 321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| resistance in magnetic field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sparking, kerosene 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Nitroso-dimethyl-anillne, refractive index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | resonance 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Nuclear charge, atomic 393, 401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | standard cells 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Number of store                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | thermo-electric 317-320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Numbers atomic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Weston normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| X-ray spectra and 390-393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | portable xliii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sun-snot.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Poundal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nutation 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pressure: air on moving surfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sparking   Service   335     various   353-355     resonance   403     standard cells   317     standard cells   317-320     pressure effect   320     Weston normal   xi     portable   xiii     portable   xiii     Poundal   436     Precession   444     Pressure: air, on moving surfaces   150-152     barometric, reductions, capillarity   138-143     gravity   138-143     gravity   138-143     critical, gases   212     mercury columns   136     volume relations, gases   104     water columns   136     ressure effect on boiling points   200     resistance electrical   326     chemoelectric powers   320     Pressure vapor: alcohol, methyl and ethyl   178     aqueous (steam tables 234)   183-186     elements   175     mercury   186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Observatories, magnetic elements at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gravity 138–143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| electrical equivalents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | boiling water 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Oersted xlvl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | critical, gases 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Oils, viscosity of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mercury columns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Optical constants of metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | volume relations, gases 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Optical rotation magnetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pressure effect on boiling points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Organ pines, pitch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | melting points 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Organ pipes, pitch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | resistance electrical 326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| densities 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Procesure vapor: alcohol mathyl and athyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| melting points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | aqueous (steam tables 234) . 183-186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Oscillation constants wireless telegraphy 362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | elements 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| times of wires, temperature variation 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Overtones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| T ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | various   176-18t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| π pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Probable errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Parsec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Propagative region inverse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Parallax, solar, lunar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Proportional limit (P-limit) 74 et seq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| stellar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pupil diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Partials (sound)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Purkinje phenomenon 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Particle, smallest visible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quality, tone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Peltier effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Quality, tone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| pressure effect 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | transmission of radiation by 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , PAGE                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| P gee constant 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Refraction index: air, $f(\lambda)$                                               |
| R, gas constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Refraction index: air, $f(\lambda)$                                               |
| Radian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | crystals, see minerals 279-289                                                    |
| circular functions in terms of 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fats                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fluorite, f(t) 280                                                                |
| $f(\lambda,T)  \dots  247, 248$ total, $f(t)  \dots  247$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gases 292                                                                         |
| total, $f(t) \dots 247$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | glasses, American, $f(\lambda)$                                                   |
| candle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ireland-spar                                                                      |
| constants, $\sigma$ , $C_1$ , $C_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | liquids 200                                                                       |
| high temperatures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | liquids                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | microscopic determination media . 294                                             |
| pressure effect 251-252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | minerals, biaxial, positive 286                                                   |
| pressure effect .251-252 emissivities249, 250 eye sensitiveness to256-258 $f(\lambda)$ 256, 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | negative 287<br>isotropic 282<br>uniaxial, positive                               |
| eye sensitiveness to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | isotropic 282                                                                     |
| $f(\lambda)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uniaxial, positive 284                                                            |
| moon's compared to suns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | negative 284 miscellaneous, biaxial 289 isotropic 283                             |
| Planck's formula 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | miscellaneous, blaxial 289                                                        |
| σ, Stefan's formula 247 solar constant of 418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uniaxial 285                                                                      |
| variation with latitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nitroso-dimethyl aniline 280                                                      |
| month 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | oils                                                                              |
| Stefan's formula 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | quartz 280                                                                        |
| sim's to earth 418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | quartz <t< td=""></t<>                                                            |
| sun's compared to moon 415<br>temperature as function of 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | salt solutions 291                                                                |
| temperature as function of 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                   |
| transmissibility of by air, moist . 308, 419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vapors 292                                                                        |
| alum 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | waxes                                                                             |
| transmissibility of by air, moist . 308, 419 alum 305 atmosphere . 308, 419 crystals, f(\lambda) 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vapors                                                                            |
| dves (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Posistones six (corodynamical)                                                    |
| fluorite $f(\lambda)$ 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nlanes nlanes                                                                     |
| glass, f(\lambda) , 302-304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Resistance, air (aerodynamical)                                                   |
| ice-land spar 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aspect factor 152                                                                 |
| lamp-black 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | shape factor                                                                      |
| long-wave, $f(\lambda)$ . 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | size factor 153                                                                   |
| quartz, $f(\lambda)$ 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | skin friction                                                                     |
| rock-salt, I(A) . 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | shape factor                                                                      |
| water, I(A) 307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Resistance, resistivity electrical (see conductivity).                            |
| Padii of greation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alloys, f(t) 323, 327–328                                                         |
| rystals, f(\lambda) 305 dyes, f(\rangle) 301 fluorite, f(\lambda) 305 glass, f(\lambda) 302-304 ice-land spar 305 lamp-black 309 long-wave, f(\lambda) 309 quartz, f(\lambda) 305 rock-salt, f(\lambda) 305 rock-salt, f(\lambda) 307 rock-salt, f(\lambda) 307 rock-salt, f(\lambda) 307 Radio of gyration 70 Radio-activity 394-398 a rays: helium 394 ions produced 398 kinetic energy 396 number produced 396 production of 394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | alloys, f(t)                                                                      |
| g rays; helium 394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | alternating current values                                                        |
| ions produced 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | antennæ (wireless)                                                                |
| kinetic energy 396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | copper, f(t)                                                                      |
| number produced 396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | reduction to standard temperature 335                                             |
| production of 394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | wire-tables, English units 336                                                    |
| range 396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | metric units 339                                                                  |
| stopping powers for 395 stopping powers for 395 velocity, initial 396 actinium group 396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dielectrics, volume, surface 331                                                  |
| actinium group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | electrolytic, see conductivity 345-352                                            |
| βrays: absorption coefficients . 395, 397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | equivalents 311                                                                   |
| lons produced 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | glass, $f(t)$                                                                     |
| velocities 397 γ rays: absorption coefficients . 395, 397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | high temperature values                                                           |
| γ rays: absorption coemcients . 395, 397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | low temperature values                                                            |
| ions produced 398 constants, various 396-397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | low temperature values                                                            |
| Curie unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mercury resistance standards xxxviii                                              |
| emanation 308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | metals, f(t)                                                                      |
| Curie unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | porcelain, f(t)                                                                   |
| heating effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | porcelain, f(t)                                                                   |
| hellum, Production of 394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | standards, mercury xxxviii                                                        |
| ions produced by a, p and y rays . 308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | surface, of dielectrics                                                           |
| isotopes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | thermometer, platinum resistance 195                                              |
| phosphorescence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | volume, of dielectrics                                                            |
| radium group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | wire, auxiliary table for computing 322 wire tables, aluminum, common units . 342 |
| spectra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | metric 342                                                                        |
| standard, international 394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | conner common units 226                                                           |
| thorium group 396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | copper, common units 336 metric 339                                               |
| 1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975 | Resolving power photographic plate                                                |
| transformation constants 396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Resonance potentials (spectra)                                                    |
| vapor pressure of emanation 398 Radium emanation, vapor-pressure 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Resonance potentials (spectra)                                                    |
| group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sensitiveness to light and colors 256-258                                         |
| spectra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rigidity of earth                                                                 |
| spectra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rigidity moduli, f(t) 100 Ritz spectrum series formula                            |
| Reciprocals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ritz spectrum series formula                                                      |
| Reciprocals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ROCKS, Specific heats of                                                          |
| rong-wave 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rock-salt, index of refraction                                                    |
| metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rods in retina of eye                                                             |
| f(n,i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rontgen rays:                                                                     |
| f(n,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Röntgen rays:                                                                     |
| polarization by 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cathode efficiencies                                                              |
| rough surfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | corpuscular radiation                                                             |
| stellite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cathode efficiencies                                                              |
| variation with angle 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | energy relations                                                                  |
| temperature 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | general radiations 387                                                            |

| PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PAGI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Röntgen rays: heterogeneous radiations 387                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Solutions: refractive indices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| homogeneous radiations 387                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | specific heats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| independent radiations 387                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vapor pressures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ionization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Verdet's constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| K series of radiations 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vapor pressures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| inclusive 388 ionization 388 K series of radiations 390 L series of radiations 391 M series of radiations 392 monochromatic radiations 387                                                                                                                                                                                                                                                                                                                                                             | Sound, velocity of: gases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| M series of radiations 392                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| monochromatic radiations 387                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| secondary radiations 387                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | waves, energy of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| spectra: absorption 393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sparking potentials: air, alternating potentials 35;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| K series 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | targe spark-gaps, I(p) 354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| L Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | disjortries 35.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| tungston                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kerocene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| wave_length and cathode fall 287                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Specific heat of electricity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| monochromatic radiations   387   secondary radiations   387   secondary radiations   387   secondary radiations   393   K   series   390   L   series   390   L   series   391   M   series   392   wave-length and cathode fall   387   Roots of Bessel functions, rst and 2nd orders   68   Roots square   15   Rope, manilla, mechanical properties   95   steel wire, mechanical properties   79   Rctation of polarized light   310   magnetic   378-382   Rough surfaces, reflecting power   299 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Roots square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Rope, manilla, mechanical properties 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gases, also c <sub>p</sub> /c <sub>v</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| steel wire, mechanical properties 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Retation of polarized light 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mercury '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| magnetic 378–382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | minerals and rocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Rough surfaces, reflecting power 299 Rowland solar wave-lengths 272 Rupture, moduli of                                                                                                                                                                                                                                                                                                                                                                                                                 | TOCKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Rowland solar wave-lengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Silicates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| supture, moduli of 74 et seq                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SUIIUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Pudhera constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | water 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Rutherford atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| agustis series roundia (apecurum) 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | conversion of Baume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Stefan-Roltzmann 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Specific inductive canacities: crystals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7, Stefan-Boltzmann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gases, f(t,p) 356-352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| conductivity thermal 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | liquids, f(t) . 357-359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| freezing point lowering 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | solids 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| vapor pressure 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | std. solutions 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Scales, musical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Specific molecular conductivity 347-348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Scieroscope (hardness test)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Specific resistance, see resistivity 323-326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Scales, musical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Specific viscosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| second pendulum, formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Spectrum: Diack-Dody Intensities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| sea-level values, $\Gamma(\varphi)$ 419                                                                                                                                                                                                                                                                                                                                                                                                                                                                | elements, international units 207, 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iron etandards international units 266 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| X-rays 287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | radium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Self induction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | series, limits, first terms, etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sensation, Minimum energy of light for                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | solar: intensities of energy 418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rowland wave-lengths 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Saviar mathamatical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cor. to intern. scale 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Series, mathematical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| first terms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | stellar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| limits of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | wave-lengths standards 266, 267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Morgendorn formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | reduction to std. pressure. 268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pudhara formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X-ray: absorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| vibration differences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K coring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sheet metal weight of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Silver, electrochemical equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Silver voltameter xl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tungsten 392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Silvine, refractive index                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Speed of corpuscles 401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| sines, natural and logarithmic, circular 32                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Spherical harmonics 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Series spectra: Balmer formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Atomic numbers   390-393     K series   390     L series   393     L series   394     M series   394     Speed of corpuscles   401     Sphetrial harmonics   64     Sphetrial harmonics   65     Supurer cots of numbers   15     Square roots of numbers   15     Square roots of numbers   15     Squares, least, — formulæ and tables   56-55     Standard cells, emf of   311     radium, international   394     refractive media for microscope   294     resistance, mercury   xxxviii     temperature calibration points   195     wave-lengths: primary (international)   266     secondary (international)   266     second |
| Win frintian of resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Squares of numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| doen films                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Squarer least — formula and tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Calide: aamproccibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Standard calls amf of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| contact notentials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | radium international                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| densities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | refractive media for microscope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| dielectric constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | resistance, mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| expansion coefficients, cubical                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | temperature calibration points 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| linear 218-220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | wave-lengths: primary (international) . 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| hardness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | secondary (international) . 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| magneto-optic rotation 379                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tertiary (international) 267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| refractive indices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | reduction to std. pressure . 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| magneto-optic rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Standards: electrical, international xxxviii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| velocity of sound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fundamental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Solubility: gases in water                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | photometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| nrescure effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | denetties 413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| salts in water inorganic f(t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dictances 413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| velocity of sound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stars: brightness 413 densities 413 distances 412 equivalent 1st magnitude 417 first magnitude data (positions, etc.) 415 Harvard classification 411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Solutions: boiling point raise by salts in                                                                                                                                                                                                                                                                                                                                                                                                                                                             | first magnitude data (nositions, etc.) 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| conductivity electrolytic 346-352                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Harvard classification 411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| thermal 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | light, total 417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| densities of agreems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | light, total 417 magnitudes, apparent and absolute 413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| diffusion of aqueous 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | masses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| diffusion of aqueous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | motions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| freezing points lowering by salts in 208                                                                                                                                                                                                                                                                                                                                                                                                                                                               | number of 417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| PAGE                                                                                                                                                                                        | PAGE                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Stars: size 413                                                                                                                                                                             | Thermal conductivity: insulators                                                                                   |
| spectra                                                                                                                                                                                     | high temp. 214                                                                                                     |
| temperatures, surface 411                                                                                                                                                                   | liquids 217                                                                                                        |
| velocities 412, 415                                                                                                                                                                         | ature 213                                                                                                          |
| Steam tables                                                                                                                                                                                | salt solutions                                                                                                     |
| Steam tables 234 Steel: magnetic properties 367-376 emechanical properties 76-79 Stefan-Boltzmann constant, and formula 247                                                                 | salt solutions 216<br>water 216                                                                                    |
| Stefan-Roltzmann constant and formula                                                                                                                                                       |                                                                                                                    |
| Steinmetz magnetic constant                                                                                                                                                                 | Thermal dinustrities                                                                                               |
| Stellite, reflecting powers                                                                                                                                                                 | liquids 221                                                                                                        |
| Stellite, reflecting powers                                                                                                                                                                 | Solids                                                                                                             |
| Stokes law for falling bodies 150                                                                                                                                                           | linear: elements 218                                                                                               |
| Stone, mechanical properties                                                                                                                                                                | miscellaneous 219 Thermal unit: British 435                                                                        |
| Storage batteries                                                                                                                                                                           | calorie                                                                                                            |
| Sucrose viscosities of solutions f(t)                                                                                                                                                       | calorie 435<br>dynamical equivalents 197                                                                           |
| Sugar cane, densities aqueous solutions 126                                                                                                                                                 | Thermo-chemistry: heat of combustion; carbon cpds . 241                                                            |
| Surgas cane, densities aqueous solutions                                                                                                                                                    | coals 242                                                                                                          |
| Suprarric acid, densities aqueous solutions   125                                                                                                                                           | cokes 242                                                                                                          |
| brightness                                                                                                                                                                                  | gases 242<br>liquid fuels . 242                                                                                    |
| disk brightness distribution 410                                                                                                                                                            | miscellaneous .241                                                                                                 |
| Fraunhofer lines                                                                                                                                                                            | peats 242                                                                                                          |
| magnitude stellar 413                                                                                                                                                                       | heat of dilution, $H_2SO_4$ 246                                                                                    |
| motion 4II                                                                                                                                                                                  | formation 245                                                                                                      |
| motion                                                                                                                                                                                      | ions 246                                                                                                           |
| Darallax 414                                                                                                                                                                                | neutralization 246                                                                                                 |
| radiation compared to moon 414 constant (solar constant) 418                                                                                                                                | Thermodynamical scale of temperature, ice-point 195                                                                |
| variation with month and latitude 420                                                                                                                                                       | Thermoelectrical properties: (emf) alloys 318 platinum 319                                                         |
| spectrum: energy intensities 418                                                                                                                                                            | elements 317                                                                                                       |
| Fraunhofer lines                                                                                                                                                                            | Peltier 317, 321                                                                                                   |
| Rowland's wave-lengths 272                                                                                                                                                                  | pressure effects . 320                                                                                             |
| spot numbers, Wolf's 415                                                                                                                                                                    | Thomson . 317, 320                                                                                                 |
| temperature 418                                                                                                                                                                             | Thermoelements, calibration of                                                                                     |
| velocity                                                                                                                                                                                    | Thermogalvanometric effect                                                                                         |
| velocity 411 wave-lengths: Fraumhofer lines 265 Rowland's 272 Sunshine, duration of f(month, latitude) 417                                                                                  | Thermometry: should a voro                                                                                         |
| Sunshine duration of f(month latitude)                                                                                                                                                      | air—relli o° to 200° C                                                                                             |
| Surface resistivities, solid dielectrics                                                                                                                                                    | 50III, 100° to 200° C 103                                                                                          |
| Surface tensions 173, 174                                                                                                                                                                   | 59III, high temperature 194                                                                                        |
| Susceptibility magnetic, definition                                                                                                                                                         | Thermomagnetic effects                                                                                             |
| elements, etc 377                                                                                                                                                                           | gas-mercury, formulæ, comparisons 192-194 hydrogen — 16III, o° to 100° C 192 16III, 59 — 5° to — 35° C 192 various |
| Tongonta sireular not and log ((° /)                                                                                                                                                        | hydrogen — 16111, 0° to 100° C 192                                                                                 |
| Tangents circular, nat. and log., \$('\(^{\circ}'\)) 32 f(radians) 37 hyperbolic, nat. and log 41 Taylor's series 13 Telegraphy, wireless: 362, 364 Temperature, black-body scale for W 250 | 16111, 59 —5° to                                                                                                   |
| hyperbolic, nat, and log 41                                                                                                                                                                 | Tarious Tod                                                                                                        |
| Taylor's series                                                                                                                                                                             |                                                                                                                    |
| Telegraphy, wireless:                                                                                                                                                                       |                                                                                                                    |
| Temperature, black-body scale for W 250                                                                                                                                                     |                                                                                                                    |
| brightness black body as function of. 261                                                                                                                                                   | platinum resistance 195 resistance electrical 195                                                                  |
| brightness scale for C                                                                                                                                                                      | stem corrections                                                                                                   |
| critical gas constants                                                                                                                                                                      | stem corrections 190-191<br>thermodynamic scale, ice-point 195                                                     |
| earth: f(altitude)                                                                                                                                                                          | thermo-electric, Cu-Constantan 196                                                                                 |
| earth: f(altitude)                                                                                                                                                                          | Pt-PtRh 106                                                                                                        |
| monthly and yearly means 420                                                                                                                                                                | Pt-PtRh 196 Thomson thermo-electric effect 317, 320                                                                |
| variation below surface 422                                                                                                                                                                 | Thornim radio-active group constants of                                                                            |
| flame temperatures                                                                                                                                                                          | Threshold sensitiveness of eye                                                                                     |
| ignition, gaseous mixtures 244                                                                                                                                                              | Timber, strength of                                                                                                |
| standards                                                                                                                                                                                   | Timbre (sound)                                                                                                     |
| sun's 418                                                                                                                                                                                   | Time solar sidereal                                                                                                |
| thermodynamic                                                                                                                                                                               | Time, equation of                                                                                                  |
| zero absolute                                                                                                                                                                               | Transformation constants of radio-active substances. 396                                                           |
| Tensile strengths, see mechanical properties 74-99                                                                                                                                          | Transformation points of minerals 207                                                                              |
| Tension, surface                                                                                                                                                                            | Transmissibility to radiation: air, moist 308, 410                                                                 |
| Tensions, vapor, see vapor pressures 175-186                                                                                                                                                | atmospheric 418<br>crystals, various 306                                                                           |
| Terrestrial magnetism: agonic line 425                                                                                                                                                      | crystals, various 306                                                                                              |
| declination 420                                                                                                                                                                             | dyes 301<br>glass, American . 303, 304                                                                             |
| dlp                                                                                                                                                                                         | giass, American . 303, 304<br>Jena 302                                                                             |
| inclination 422<br>intensity, horizontal 423                                                                                                                                                | Jena 302<br>water 307                                                                                              |
| total 424                                                                                                                                                                                   | water-vapor 308 410                                                                                                |
| magnetic character, yearly . 425                                                                                                                                                            | water-vapor 308, 419 Trigonometric functions: circular, (°') nat., log 32                                          |
| observatories, elements at 426                                                                                                                                                              | (radians), log 37                                                                                                  |
| Thermal unit, British 435                                                                                                                                                                   | hyperbolic, nat., log 41                                                                                           |
| standard calorie 435                                                                                                                                                                        | Tribo-electric series                                                                                              |
| Thermal conductivity: alloys, metals 213<br>building materials . 215                                                                                                                        | Tubes, flow of gas through                                                                                         |
| earth 422                                                                                                                                                                                   | Tuning forks, temperature coefficients 149                                                                         |
| gases , , , , , 217                                                                                                                                                                         | Ultimate strengths of materials, see Mechanical.                                                                   |
| high temperature 254                                                                                                                                                                        | properties                                                                                                         |

| PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Units of measurements, see introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Voltaic cells; comp., emf: double fluid 312<br>secondary 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Units of measurements, see Introduction xxiii electrical, absolute xxxvi international                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | single fluid 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| legal xxxvii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | standard 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| practicalxxxvi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | etorage 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| internationalxxxvi legalxxxvi practicalxxxvi fundamentalxxii photometric260 radioactive394 work, transformation factors 197 Uranium group of radio-active substances396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Voltameter, silver xl Volts, electrical equivalents 311 Volts, legal, international xll, 311 Volume atomic, 50° K 226 critical for gases 212 glass vessels, determination of 72 grasse f(n) 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| photometric 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Volts, electrical equivalents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| work transformation factors 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Velume atomic, 50° K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Uranium group of radio-active substances 396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | critical for gases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| oranian group to the control of the | glass vessels, determination of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| v, ratio electro-magnetic to -static units xxx, xxxvi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gases, f(p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Vacuo, reduction of densities to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I(t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Valencies of the claments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | resistance of dielectrics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Van der Waal's constants 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vaporization, latent heat of: 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | water, o° to 40° C 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Van der Waal's constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | water, o° to 40° C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| formulæ 232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vowers, tone characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| steam tables 234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Waal's (van der) constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Vapor pressure: alcohol ethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water: boiling point, f(p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Vapor pressure: alcohol ethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water: boiling point, f(p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| carbon disulphide 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | solutions, ethyl alcohol 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | glycerol 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mercury 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sucrose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150 |
| salt solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sulphuric acid 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| water: atmospheric via wet and dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | various 122, 159-163 freezing point, f (pressure) 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| sea-level 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ionization of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| other altitudes . 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lonization of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| saturated 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pressure (hydrostatic) of columns of 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| steam tables 234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | solutions: boiling points 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Vapor, water; weight per me and it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | densities, see water, density solu-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| diffusion of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| heats of vaporization 231-239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | electrolytic conduction 346-352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Saturated   103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | electrolytic conduction . 346–352<br>freezing points 208<br>viscosities 156, 159–163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| pressures, see vapor pressures 175-180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | viscosities 156, 159–163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| refractive indices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | specific heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| viscosities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | transparency to radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| water, transparency to radiation 308, 419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | specific heat         227           thermal conductivity         216           transparency to radiation         307           vapor pressure         234-239, 183-184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Velocity of light 408, 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vapor pressure of in atmosphere 185-189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Velocity of light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vapor pressure of in atmosphere 185-189 viscosity, f(t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | volume, 0° to 40° C, — 10° to 250° C. 119, 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| solids 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Water-vapor, determination in atmosphere, via wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| stars 411, 412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | various altitudes 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Yordet's constant (magnete entite) 278-282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and dry sea-level 186 various altitudes 185 relative humidity via wet and dry 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| verdet's constant (magneto-optic) 370–302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dry and v.b 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in atmosphere, f(altitude) 421<br>transparency 308, 419<br>weight saturated per m <sup>3</sup> and ft <sup>3</sup> 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| solids 379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | weight saturated per m <sup>8</sup> and ft <sup>3</sup> 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Solutions, aqueous 381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Watt xxxvii, xlv, 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Villari magnetic effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Wave-lengths: Angstrom, definition 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Viscosity: air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cadmium red line 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| alcohol ethyl, f(t, dilution) 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | elements international scale 267 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Record   R  | Watt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| earth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | neon, international scale 266 pipes (sound)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| gases, temperature and pressure var. 164-165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pipes (sound)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| glycerol, dilution variation 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Röntgen 300-303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| specific solutions f(dens t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Röntgen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| atom, conc. 25° C 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | corrections to Intern \(\lambda 272\)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| gases, temperature and pressure val. 104-105 glycerol, dilution variation 156 liquids, f(t) 157-158 specific: solutions, f(dens., t) 159 atom. conc. 25° C 163 sucrose solutions, f(t, dilution) 156 vapors, f(p, t) 164-165 water, f(t) 159 Visibility of radiation 256-258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | solar, Fraunhofer lines 265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| vapors, f(p, t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rowland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Visibility of radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | standard pressure, correction to 268<br>standards: international primary 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Visibility of radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | secondary 266-267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| white lights 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tertiary 267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vision, distinct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vacuo, reduction to 293<br>wireless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Vision, distinct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X-ray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Voltages: accumulators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Waves, energy of sound 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Voltages: accumulators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Weighings, reduction to vacuo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Peltier 321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weight sheet metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Peltier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weights, atomic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| pressure effect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Weights and Measures: customary to metric 5 metric to customary 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| voltaic cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | metric to imperial 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| voltaic cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | metric to imperial 8 imperial to metric 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Weston portable xliii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | miscellaneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| PAGE                                                | PAG                                      |
|-----------------------------------------------------|------------------------------------------|
| Weston normal cell xli                              | X-rays:                                  |
| Weston portable cell xliii                          | absorption coefficients (mass) 38        |
| Wiedemann magnetic effect                           | atomic numbers and spectra 390-39        |
|                                                     | calcite grating space 40                 |
| Wind pressures                                      | cathode efficiencies                     |
| Wire gages, comparison                              | characteristic radiations                |
| Wire, mechanical properties: copper 82-83           | corpuscular radiation 387-38             |
| steel                                               | crystals, diffraction with 40            |
| steel rope and cable . 79                           | energy relations                         |
| Wire resistance, auxiliary table for computing 322  | general radiations                       |
| Wire tables: aluminum, English measures 342         | heterogeneous radiations                 |
| metric measures 343                                 | homogeneous radiations                   |
| see also 334                                        | independent radiations                   |
| copper, English measures 336                        | intensity                                |
| metric measures                                     | ionization                               |
| see also 334                                        | K series of radiations                   |
| temperature coefficients .334, 335                  | L series of radiations                   |
| reduc. to std 335                                   | M series of radiations                   |
|                                                     | monochromatic radiations                 |
| Wires, alternating-current resistance 344           | secondary radiations                     |
| carrying capacity of                                | spectra: absorption 39                   |
| high-frequency resistance                           | K series 390                             |
| Wires, heat losses from incandescent, bright Pt 255 | L series 39                              |
| Pt sponge . 255                                     | M series                                 |
| Wireless telegraphy: antennæ resistances 364        | tungsten 392                             |
| wave-lengths, frequencies, oscil-                   | wave-lengths                             |
| lation constants 362                                | wave-lengths and cathode fall 38         |
| Wolf sun-spot numbers, 1750 to 1917 415             | Years 414, 432                           |
| Woods: densities                                    | Yearly temperature means                 |
| mechanical properties: conifers, Eng. units. 99     | Young's modulus, definition              |
| metric units 97                                     | values                                   |
| hard wds, Eng. units 98                             | Yield point (mechanical property) 74-103 |
| metric units of                                     |                                          |
| Work, conversion factors                            | Zero, absolute, thermodynamic scale 193  |
|                                                     |                                          |



Che Riverside Press

CAMBRIDGE . MASSACHUSETTS

U . S . A



# DATE DUE SLIP

UNIVERSITY OF CALIFORNIA MEDICAL SCHOOL LIBRARY

# THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

1m-7,'25



17380

Library of the University of California Medical School

